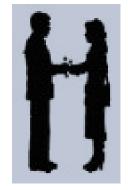


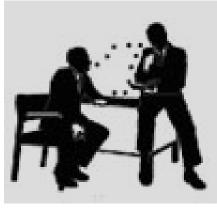
SARS-COVID-2 transmission and prevention

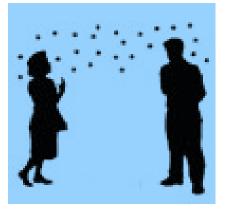
Glenn Morrison (and many slides from Barbara Turpin)


Environmental Sciences and Engineering

Gillings School of Global Public Health

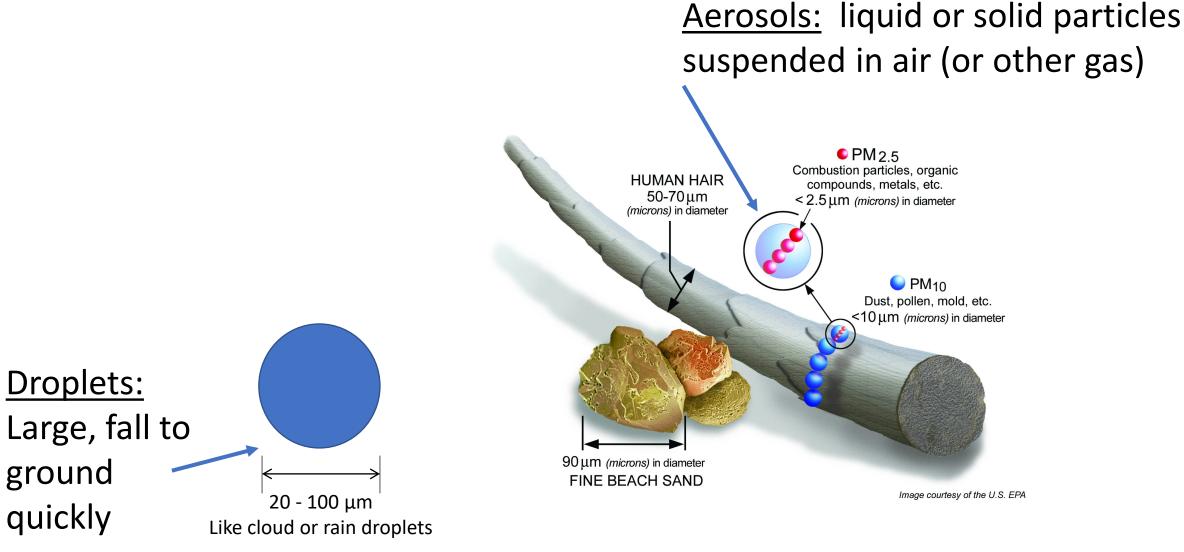
Virus transmission


direct contact


Fomite pathway

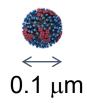
indirect contact

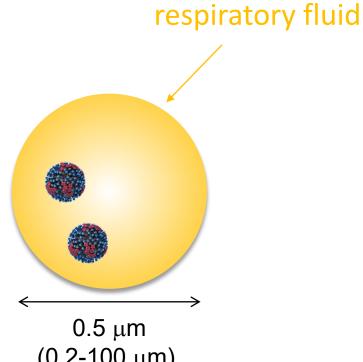
close-range only (<2 m)


large droplets

aerosols

Aerosols, Close and long range


What are aerosols?



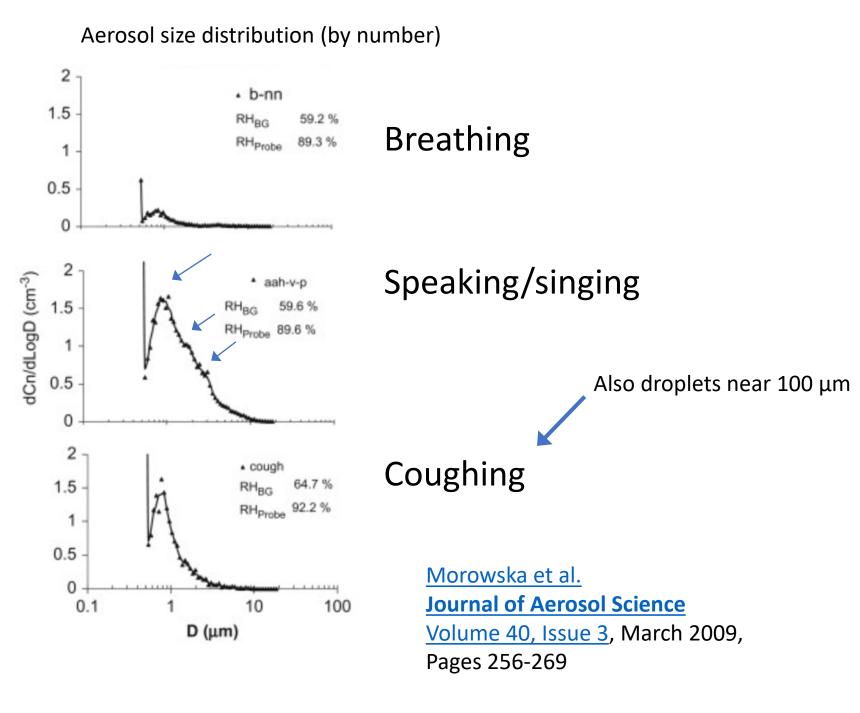
https://www.cdc.gov/flu/resource-center/freeresources/graphics/images.htm, http://solutionsdesignedforhealthcare.com/rhinovirus, https://phil.cdc.gov/Details.aspx?pid=23312, https://pdb101.rcsb.org/motm/132

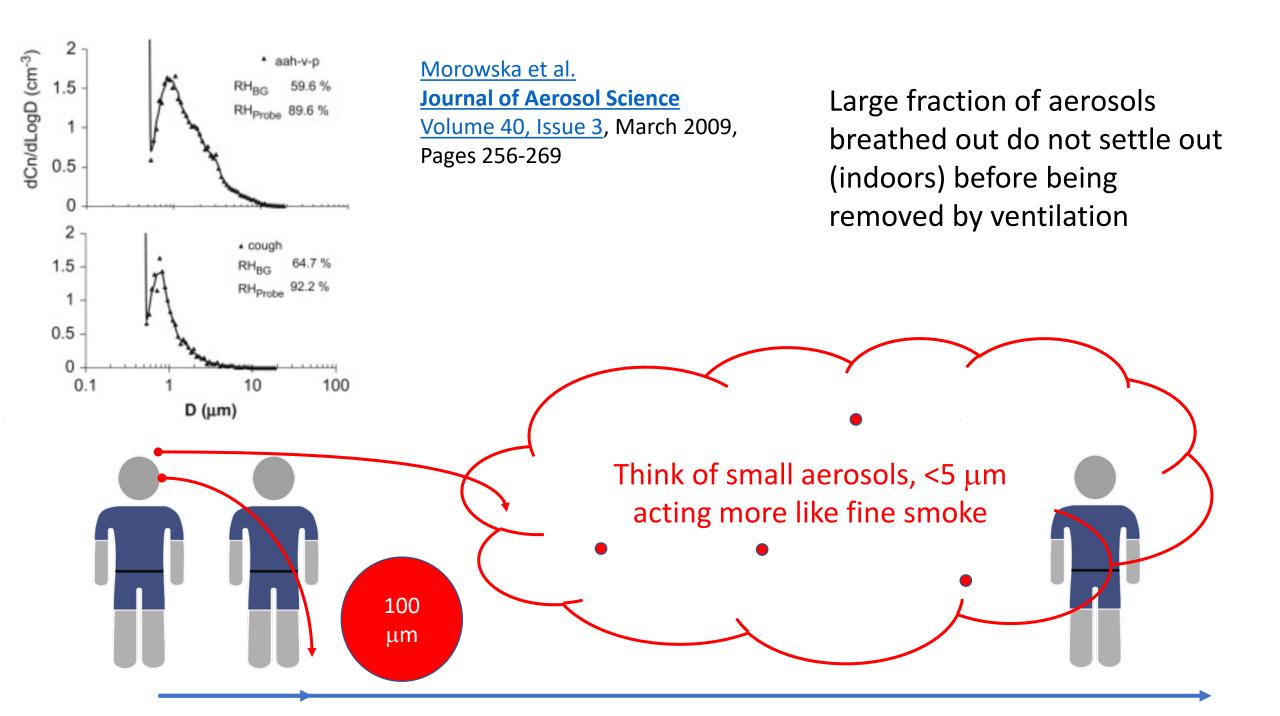
Size Matters

• Airborne virus is not naked!

• Size determines

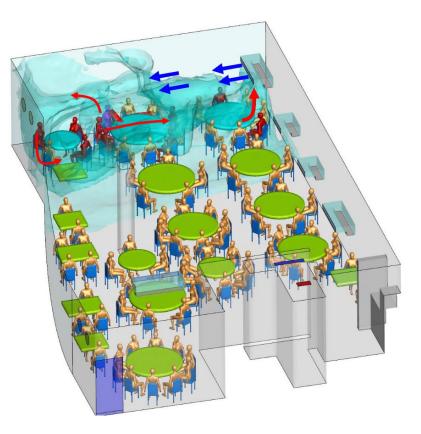
(0.2-100 µm)


- Lifetime in the atmosphere
- Where it deposits in the respiratory system

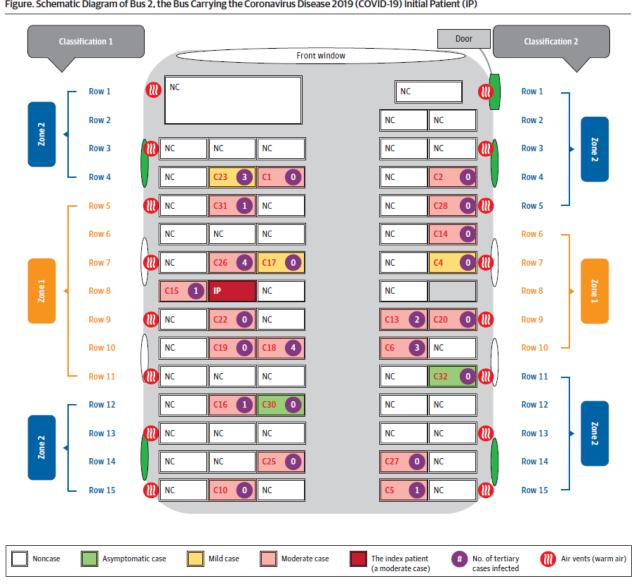

Aerosol generated by Breathing, speaking, and coughing

High air velocity shears respiratory fluids during expiration

Modes: 0.8 μm (largest mode) 2-4 μm (two modes) 100 μm (smaller)


Droplets (100 µm): By number, 0.8µm mode is 100 times larger (coughing)

Evidence for SARS-Cov-2 transmission by aerosols


- "super spreader" events 18x more likely indoors
 - Nishiura, medRxiv 2020.02.28.20029272; doi: https://doi.org/10.1101/2020.02.28.20029272
- Dinner in China
 - Diners in local flow zone infected
 - Li et al. (2020) medRxiv, doi: https://www.medrxiv.org/content/10.1101/2020.04.16.200 67728v1
- Skagit Valley Choir
 - Precautions to avoid contact
 - Transmission broadly spread across room
 - 52 + index case of 61 total people
 - Miller et al. (2020) medRxiv, doi: https://www.medrxiv.org/
 - content/10.1101/2020.06.15.20132027v2.full.pdf+html

Study published THIS WEEK: probable aerosol transmission on bus

Outbreak associated with Buddhist retreat

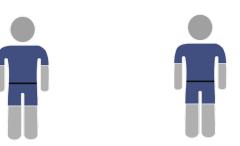
- 100 min round trip
- no masks (early in pandemic)
- Index case from Wuhan
- Note cases distributed randomly
- Bus 1, no cases; Bus 2, 24 cases
- Shen et al. JAMA Internal Medicine, 2020

An aerosol scientist's perspective

Summary of Evidence vs. Modes of Transmission

	Droplets	Fomites	Aerosols	<u>Key:</u>
Outdoors << Indoors	X	√	11	 ✓: evidence ✓✓: very strong ev.
Similar viruses demonstrated	X	√	✓	X: no evidence
Animal models	?	√	✓	
Superspreading events	X	X	11	
Importance of close proximity	✓	X	11	
Consistency of close prox. & room-level	X	X	✓	ultiple erenc
Physical plausibility (talking)	X	√	✓	ling the items that could bear on multiple See other slides for details and references
Physical plausibility (cough, sneeze)	✓	√	✓	bear iis an
Impact of reduced ventilation	X	X	✓	ould defa
SARS-CoV-2 infectivity demonstrated in real world	X	X	✓	that c
SARS-CoV-2 infectivity demonstrated in lab	X	√	✓	ems t r slid
"Droplet" PPE works reasonably	✓	√	✓	the it othe
Transmission by a/pre-symptomatics (no cough)	X	✓	√	0
Infection through eyes	✓	√	✓	Only including the items that could bear on multiple bathways. See other slides for defails and reference
Transmission risk models	~	√	✓	Only

https://twitter.com/jljcolorado/statu s/1300438984481415175/photo/1


Control of transmission by aerosols

Source control, masks (also limit loud talking/singing)

Dilution, Ventilation

Distance and density

Minimize contact time

Receptor control, masks

Type and level of group activity	Low occupancy			High occupancy				
	Outdoors and well ventilated	Indoors and well ventilated	Poorly ventilated	Outdoors and well ventilated	Indoors and well ventilated	Poorly ventilated		
Wearing face cove	erings, contact for sh	nort time	,					
Silent								
Speaking								
Shouting, singing								
Wearing face cove	erings, contact for pr	olonged time						
Silent								
Speaking		*		*				
Shouting, singing								
No face coverings	s, contact for short ti	me						
Silent								
Speaking								
Shouting, singing								
No face coverings	s, contact for prolong	ged time						
Silent								
Speaking								
Shouting, singing								

Risk of transmission

Low Medium High

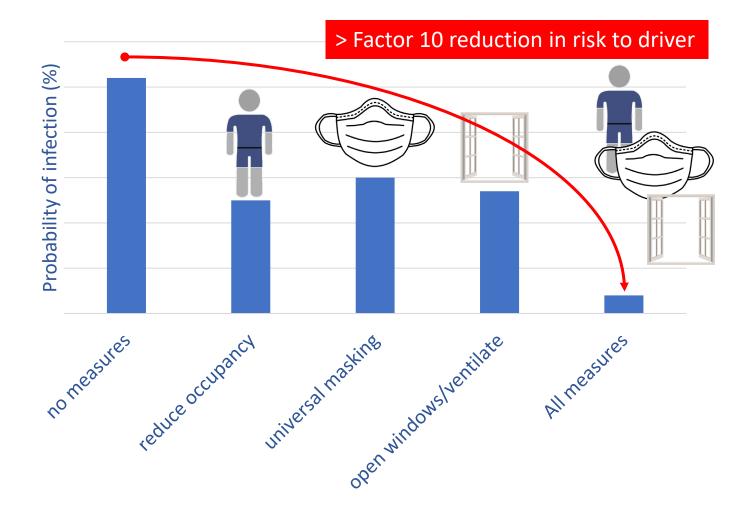
* Borderline case that is highly dependent on quantitative definitions of distancing, number of individuals, and time of exposure

Jones Nicholas R, Qureshi Zeshan U, Temple Robert J, Larwood Jessica P J, Greenhalgh Trisha, Bourouiba Lydia et al. Two metres or one: what is the evidence for physical distancing in covid-19? BMJ 2020; 370 :m3223

Risk simulators available, specific to aerosols

Barrier Bernet Format Data Tools Add-ons Help							
	💽 🍸 - 100% 👻 💿 View or	nly 🛨					
fx							
	A	В	С	D	E	F	
12	Estimation of COVID-	19 aerosol t	ransmis	sion	in an urbar	n bus	
3							
4	Input Parameters						
5		Value			Value in other u	units	
6	Surface area	307	sq ft	=	28.6	m2	
7	Height	7.9	ft	=	2.4	m	
8	Volume				69	m3	
9							
10	Passengers	40	people				
11	Breathing rate	0.8	m3/h				
12							
13	Duration of trip	45	min	_	0.75	h	
14							
15	Ventilation w/ outside air	-	h-1		1.4	L/s/per	
16	Decay rate of the virus	0.32					
17	Deposition to surfaces		h-1				
18	Additional control measures		h-1				
19	Total first order loss rate	3.62	n-1				
20 21	Emotion of nonvelotion info-to-t	0.000/					
21	Fraction of population infected	0.30%	noonlo				
22	Number of passengers infected	0.12	people				
23							

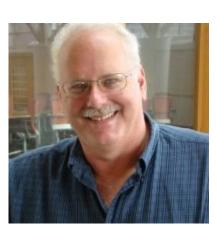
https://tinyurl.com/covid-estimator


http://covid-exposure-modelerdata-devils.cloud.duke.edu/

Known Parameters Va	alue	Uncertain Parameters: Specify Range		Minimum		Maximum	
Number of faculty in the course 1 (f	(fixed)	Percentage of faculty-age people in community who are infectious (%)	0.7	¢	1.4	÷	
Number of students in the course 40	0 🚖	Percentage of student-age people in community who are infectious (%)	0.7	¢	1.4	÷	
Number of in-person class sessions in the course 20	0 🚖	Mask efficiency in reducing virus exhalation (%)	0		0	+	
Duration of each in-person class session (min.) 36	60 🚖	Mask efficiency in reducing virus inhalation (%)	0		0	+	
Floor area of classroom (sq. ft.) 30	00 🚖	Room air ventilation rate w/outside air (air changes per hour)	5	ŧ	10	+	
Height of classroom (ft.) 8	÷	Additional control measures (effective air changes per hour)	0	ŧ	0	+	
		Decay rate of virus infectivity indoors (per hour)	0	-	1	-	
		Deposition rate of virus to surfaces (per hour)	0.3	•	1.5		
		Inhalation rate: Faculty (m³/minute)	0.005	٠	0.01	-	
		Inhalation rate: Student (m³/minute)	0.005	-	0.007	-	
		FOR ADVANCED USERS ONLY					
Calculate Infection Probability		Click links below before specifying	Mean		Standard	Deviatio	
		log10[Quanta emission rate: Faculty (quanta/hour)]	1.5	-	0.71		
		log10[Quanta emission rate: Student (quanta/hour)]	0.69	-	0.71	-	
Predicted Infection Probabilities for the Sem	nester						
FOR FACULTY MEMBER TEACHING THE COURSE		FOR A STUDENT TAKING THE COURSE					
		Best Estimate of Infection Probability 26.87%					
Best Estimate of Infection Probab	bility 27.25%						
Best Estimate of Infection Probab 5% chance that infection probability will be less t		5% chance that infection probability will be less than 2.50%					

Simulate infection probability for bus driver

- Risk of infection to driver
 - 6 Month, 4 hours/day
- Assumptions
 - Hygiene and distancing
 - Bus size, air well mixed in bus
 - Air leakage
 - Community infection %
- Measures
 - From 40 \rightarrow 10 passengers
 - No masks \rightarrow universal masks
 - Closed \rightarrow open windows



Research and Expertise related to SARS-Cov-2

- Aerosol Scientists
- Microbiologists
- Building/indoor science
- Epidemiology

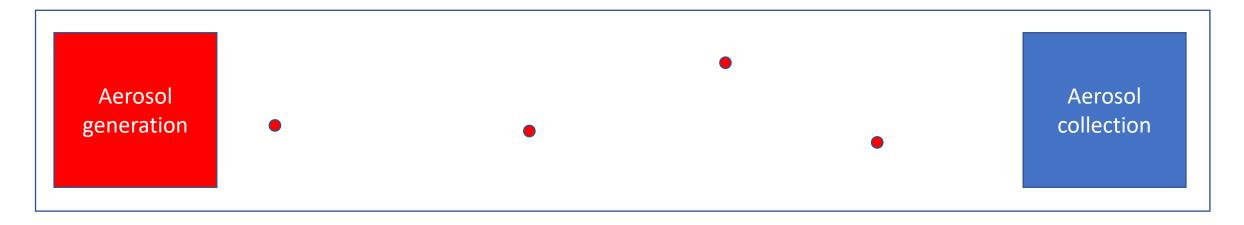
Barbara Turpin

Ralph Baric

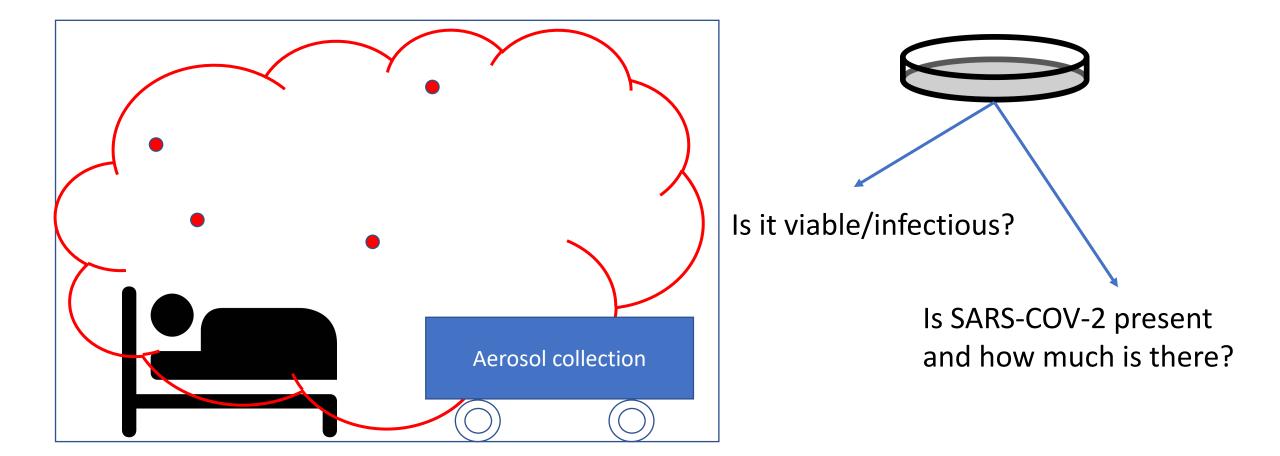
Jill Stewart

Jason Surratt

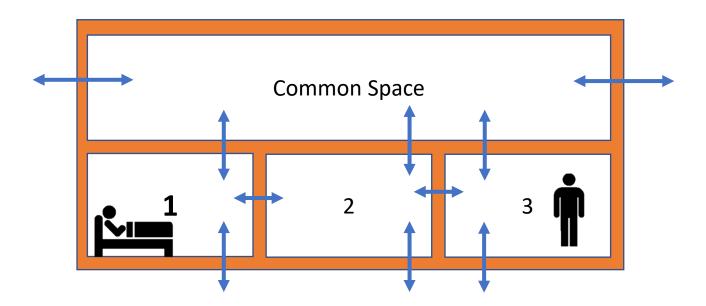
Michael Fisher


Thank you

What about UNC?


• Major question remains: how viable is aerosol SARS-Cov-2?

- Test variables
 - Environmental conditions (Temperature, Relative humidity)
 - Time
 - Oxidants such as ozone


Field measurements

• What do we see in residences of COV-positive individuals?

Field measurements

 How have aerosols moved between dorm rooms on floors with outbreaks?

