

NORTH CAROLINA Department of Transportation

Multimodal Innovations Webinar Series

April 27, 2021

Multimodal Innovations Webinar Series

May The Autonomous Shuttle Pilot – Learning and Leveraging for the Future

June

Tech Showcase (Tentative) – Updates on New Technologies in the Mobility World

ncdot.gov

Today's Speakers

Calvin Gladney, LEED AP, is President and CEO of Smart Growth America and is a nationally recognized thought leader on the equitable and sustainable revitalization of communities. Prior to being named President and CEO of Smart Growth America in April of 2018, Mr. Gladney was Managing Partner of Mosaic Urban Partners, a real estate development and advisory services firm that advised non-profits, cities, and elected officials on how to sustainably and equitably regenerate their communities. In 2017, Mr. Gladney was also the Urban Land Institute's Senior Visiting Fellow for Equity.

Mr. Gladney graduated *cum laude* from Harvard Law School, received his BS from Cornell University and is a LEED Accredited Professional. He is a trustee of the Urban Land Institute and a board member of the Center for Community Progress. He is also a member of ULI's national Public/Private Partnership Council (Blue Flight). Mr. Gladney also serves as an adjunct professor at Georgetown University's Masters in Real Estate Program where he teaches real estate entrepreneurship and a real estate market analysis class.

As the Policy Director to the Chief Operating Officer of NC's Department of Transportation, **Aldea Coleman** is responsible for managing strategic initiatives and planning processes that impact all divisions within the agency. Aldea joined NCDOT after more than 18 years of transportation and urban planning work in communities throughout the United States. Her previous work includes extensive advocacy work around Complete Streets policy and implementation, as well as managing transit-oriented development planning processes and creating community outreach strategies in multi-cultural communities. Aldea received a master degree in Geography from the University of North Carolina at Charlotte and bachelor degree in Environmental Science from North Carolina A&T State University.

Dr. Eleni Bardaka is an Assistant Professor in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University. Her work focuses on two main research areas: (i) the study of causal social and economic impacts of transportation investments and policies; and (ii) the analysis of aggregate and individual travel demand, preferences, and needs related to public transportation systems, smart mobility systems, and land-use and infrastructure financing policies. In her research, she uses quasi-experimental methods, spatial analysis, and econometric modeling. Dr. Bardaka holds a Ph.D. and M.S. degree in Transportation Engineering and an M.S. degree in Economics from Purdue University. She earned a five-year diploma in Civil Engineering at the National Technical University of Athens in Greece.

Another Way to Get from Here to There: IMD Innovation & Technology Webinar Series - Equity & Access

April 27, 2021

Presentation by Calvin Gladney, @SmartGrowthCEO

Smart Growth America North Star

"We envision a country where no matter where you live, or who you are, you can enjoy living in a place that is healthy, prosperous, and resilient."

The SGA Family

State Smart Transportation Initiative

Report: Available now https://smartgrowthamerica.org/resources/the-congestion-con-how-more-lanes-and-more-money-equals-more-traffic/

Chasing the dream only to catch the nightmare

Induced demand

How highway expansion actually creates more traffic

Image: Contract of the second seco

America

Adding capacity is failing to produce results

Freeway capacity grew faster than population, yet delay exploded

42%

32%

Change in freeway lane-miles, population growth, and annual hours of delay in the largest 100 urbanized areas from 1993-2017. Delay is defined as extra time spent traveling at congested rather than free-flow speeds. While FHWA only provides data on lane-miles of freeway, TTI's delay metrics capture both freeways and arterial roads.

.............

Our "solutions" for congestion are completely disconnected from solving the problem

Change in freeway lane-miles, population growth, and annual hours of delay from 1993-2017. Delay = extra time spent traveling at congested rather than free-flow speeds.

Dangerous by Design 2021

Report: Available now smartgrowthamerica.org/dangerous-by-design

People of color are disproportionately represented

Relative pedestrian danger by race and ethnicity (2010-2019)

Smart Growth America

Disparities by neighborhood income

Pedestrian fatalities per 100,000 people by census tract MHI

Census tract median household income

These disparities are awful, but we know how to fix them. It's time to reverse these patterns of exclusion and invest in safer, equitable streets.

...

smartgrowthamerica.org/dangerous-by-d...

1:32 PM · Mar 24, 2021 · Twitter Web App

Speed or safety

Eliminating right turn "slip" lanes in favor of right-angle turns produces slower, safer turns and shorter crossing distances for people.

Complete Streets Act of 2021

The Complete Streets Act of 2021 does three basic things:

- 1. **Sets aside federal funds** to support Complete Streets projects (five percent of annual federal highway funds).
- 2. **Requires states to create a program** to provide technical assistance and **award funding** for communities to build Complete Streets projects.
- 3. Directs localities to adopt a Complete Streets policy that meets a minimum set of standards to access that dedicated funding.

UNDOING THE DAMAGE of URBAN FIREWAYS

A two-part panel event | April 20, 2021 | 1:00pm EDT

Report: Available now https://www.thirdway.org/digital-event/undoing-the-damage-of-urban-freeways

I-35 UPPER DECK CONSTRUCTION 1973 Austin, Texas

Durham Freeway 1972 Durham, North Carolina

Smart Growth America's **Equity Summit:**

Day three panel: The role of government in undoing the harm caused by the Interstate Highway System

January 26-28 // smartgrowthamerica.org/equity-summit/

https://youtu.be/p5NwGUxO89Y

ACCESS

What we measure now

What we should measure – destination access

Access to jobs by transit & poverty

Access to jobs and other needs — affordability

Housing + Transportation Costs % Income

< 24%

36 - 45% 45 - 54%

24 - 36%

54 - 66% 66 - 78%

78 - 87%

87% +

Total

< 24% 24-36% 36-45% 45-54% 54-66% 66-78% 78-87% 87%+

Another Proposed Project

Map 9: Reachable in 45 minutes today (gray) and reachable with Rose Lanes (red)

Presentation by Calvin Gladney, @SmartGrowthCEO

1.100

NORTH CAROLINA Department of Transportation

SEA-Change: An Equity Framework

Aldea Coleman, Policy Director

Office of the Chief Operating Officer

IMD Innovation & Technology Webinar Series | April 27, 2021

From areas under the responsibility of the Office of the Chief Deputy Secretary

The Strategic Equity Agenda (SEA-Change) is a blueprint for action by offices and divisions within NCDOT. This document provides a set of forward-looking strategies for increasing equity, building upon previous planning initiatives and successes from each office and division. The presentation will highlight how this living document provides a framework for coordinating Diversity, Equity, and Inclusion (DEI) activities across departments to increase equity within the Transportation field.

SEA-Change: An Equity Framework for NCDOT

Transportation + Equity

- Transportation development in the U.S. has a deeply inequitable history tied closely to segregation, access and loss of housing, jobs, and other services.
- Addressing this history of discrimination and inequitable access to transportation is key toward expanding opportunities and creating an equitable future.
- Addressing long standing inequities through the involvement of communities in transportation decision making, strategic investment, and the provision of increased services to those with the fewest transportation options can begin to build wealth and opportunity in these communities.

Drafted by each business unit and division

Provided a framework for achieving equity goals & collaboration across the organization

Building block for Secretary's DEI Plan

Participating NCDOT Offices & Divisions

Office of Civil Rights

Office of HBCU Outreach

Transportation Planning

Logistics + Freight

Rail Division

Aviation Division

Ferry Aviation

Integrated Mobility
Planning Process

Planning Team

Collected data from a wide range of experience, expertise, and documentation of past equityrelated work at NCDOT and beyond

Division/Office Directors

Developed a shared set of goals, strategies, and tactics for advancing equity that draws heavily upon existing programs, activities, and work of the offices and divisions.

Guiding Principles & Key Strategies

Strengthen Internal Awareness

Cultivate a Diverse Workforce

Use Data & Metrics

Strengthen Public Engagement

Leverage Planning Structures

Promote Diverse Contractors

Expand Access to Transportation

Recommendations for NCDOT leadership to support equity

Programs	 Add equity/diversity metrics to Goals Identify an equity champion in each division/office 			
Policies	 Implement contracting policies that expand & promote opportunities to small & minority companies 			
Awareness	 Provide regular, clear direction on the importance of DEI efforts & internal/external resources Develop in-person DEI trainings for all staff 			
Leadership Development	 Develop intentional programs and targeted marketing for recruiting and retaining minority talent, working with key partners Develop and retain subject matter experts on issues of equity at the organization 			
External Partners	 Learn from and support NCDOT partners in supporting equitable outcomes across the transportation industry. 			

ncdot.gov

Resources

Baseline Industry & Demographic Trends

2020

DEVELOPING A SCHOOL TO TRANSPORTATION WORKFORCE PIPELINE IN NORTH CAROLINA

Recommendations to North Carolina Department of Transportation for Enhancing Transportation Career Opportunities for HBCUs and MSI Students

NORTH CAROLINA Department of Transportation

Thank you!

Aldea Coleman, Policy Director

Office of the Chief Operating Officer

accoleman@ncdot.gov

Poverty Suburbanization and Changes in Access to Transit over Time

Eleni Bardaka Assistant Professor, NCSU

Suburbanization of poverty

- 1970s: Poverty started increasing, income inequality, recessions
- Low-income households attracted to suburbs
 - More affordable; more low-skill jobs; federal efforts to "deconcentrate" poverty
- 1990s: similar low-income population in cities and suburbs
- By 2015: low-income population in the suburbs had doubled and poverty rate increased (from 8% to 12%)

How has access to transit changed over time for the low-income population?

How the geography of poverty has changed over time

How transit systems have evolved over time in urban and suburban areas

Research scope: Triangle Region, NC

Why is this important?

- Public transportation agencies strive to apply equity planning premises and prioritize access to transit for population groups that cannot afford other modes
- Suburbanization trends pose additional challenges

 <u>Understanding</u> the direction and magnitude of the changes in poverty and transit access -> encouraging agencies to identify equitable and efficient solutions

Defining geographical areas

- City center
 - High-density areas
- Inner-ring suburbs
 - Areas built during the construction wave after WWII
- Outer-ring suburbs
 - Areas mainly built after 1970
- Rural areas
 - Anything outside the US Census urban boundary

NC STATE UNIVERSITY

Growth of suburban areas, 1990-2010

Growth of suburban areas, 1990-2010

		City Center	Inner-Ring Suburbs	Outer-Ring Suburbs	Rural
Total area (sq. miles)	1990	17.56	76.28	209.32	5324.01
	2000	19.14	91.13	482.40	5034.50
	2010	18.77	51.75	947 70	4708.88
Percentage change in total area	% Δ (2000–1990)	9.02%	19.46%	130.47%	-5.44%
	% Δ (2010–2000)	-1.95%	-43.21%	75.74%	-6.47%
Percentage of area shifted ¹	% Δ (2000–1990)	8.65%	12.67%	13.23%	5.93%
	%Δ(2010–2000)	18.10%	54.78%	8.01%	7.03%

¹ Proportion of land of a given area that is no longer part of the same geographical category in the next decade. For example, 8.65% of the city center areas in 1990 are no longer classified as city center areas in 2000.

- Small changes in city center total area
- Redevelopment in inner-ring suburbs -> decrease in total area
- Noteworthy expansion of outer-ring suburbs

NC STATE UNIVERSITY

Changes in the geography of poverty

	Changing Geography			1990 Constant Geography			
	Poverty Rate	Low-income Population	Low-income Population Density	Poverty Rate	Low-income Population	Low-income Population Density	
		City Cente	51.	City Center			
1990	23%	17,615	1267	23%	17,615	1267	
2000	27%	20,069	1349	25%	18,475	1278	
2011	28%	22,573	1492	30%	23,926	1565	
% Δ(2000–1990)	17%	14%	7%	8%	5%	1%	
% Δ (2011–2000)	3%	12%	11%	20%	30%	22%	
		Inner-Ring Su	burbs		Inner-Ring Su	burbs	
1990	12%	22,830	438	12%	22,830	438	
2000	16%	37,391	564	17%	31,468	624	
2011	22%	31,195	778	20%	49,563	931	
% Δ (2000–1990)	35%	64%	29%	40%	38%	42%	
% Δ (2011–2000)	32%	-17%	38%	18%	58%	49%	
Outer-Ring Suburbs				Outer-Ring Suburbs			
1990	5%	10,366	72	5%	10,366	72	
2000	8%	36,700	117	7%	18,155	124	
2011	13%	129,253	389	11%	42,534	311	
% Δ (2000–1990)	63%	254%	62%	34%	75%	72%	
% Δ (2011–2000)	59%	252%	233%	56%	134%	151%	
	Rural			Rural			
1990	11%	69,501	54	11%	69,501	54	
2000	10%	60,516	20	10%	86,578	69	
2011	15%	93,111	37	15%	160,109	125	
% Δ (2000–1990)	-10%	-13%	-62%	-3%	25%	27%	
% Δ (2011–2000)	57%	54%	82%	41%	85%	81%	

NC STATE UNIVERSITY

Changes in the bus network over time

	Changing Geography ¹				1990 Constant Geography ¹				
	City Center	Inner-Ring Suburbs	Outer-Ring Suburbs	Rural	City Center	Inner-Ring Suburbs	Outer-Ring Suburbs	Rural	Total
Length of bus line	es (miles)								
1995	249.35	349.43	231.32	136.07	249.35	349.43	231.32	136.07	966.17
2005	377.86	509.35	642.53	383.59	353.87	556.32	566.40	436.75	1913.33
2015	441.39	361.85	1556.27	256.74	430.92	731.27	704.14	749.93	2616.26
% Δ (2005–1995)	52%	46%	178%	182%	42%	59%	145%	221%	98%
% Δ (2015–2005)	17%	-29%	142%	-33%	22%	31%	24%	72%	37%
Number of bus st	ops								
1995	674	1057	586	165	674	1057	586	165	2482
2005	809	1330	1166	226	786	1350	1020	375	3531
2015	797	835	2316	121	815	1483	1203	568	4069
% Δ(2005–1995)	20%	26%	99%	37%	17%	28%	74%	127%	42%
% Δ (2015–2005)	-1%	-37%	99%	-46%	4%	10%	18%	51%	15%
Density of bus lin	es (miles per s	q. mile)							
1995	14.20	4.58	1.11	0.03	14.20	4.58	1.11	0.03	0.17
2005	19.74	5.59	1.33	0.08	20.16	7.29	2.71	0.08	0.34
2015	23.52	6.99	1.84	0.05	24.55	9.59	3.36	0.14	0.46
% Δ(2005–1995)	39%	22%	21%	198%	42%	59%	145%	221%	98%
% Δ (2015–2005)	19%	25%	38%	-28%	22%	31%	24%	72%	37%
Density of bus sto	ops (number pe	er sq. mile)							
1995	38.39	13.86	2.80	0.03	38.39	13.86	2.80	0.03	0.44
2005	42.27	14.60	2.42	0.04	44.77	17.70	4.87	0.07	0.63
2015	42.47	16.13	2.73	0.03	46.42	19.44	5.75	0.11	0.72
% Δ(2005–1995)	10%	5%	-14%	45%	17%	28%	74%	127%	42%
% Δ (2015–2005)	0%	11%	13%	-43%	4%	10%	18%	51%	15%

Measuring access to public transportation

- Impedance (friction) to reach a bus stop by walking
- Zero friction if walking time to transit is 5 minutes or less

• Walking time: shortest network distance between the centroid of a census block group and a bus stop.

Access to public transportation, 1995-2015

- Increase in transit access
 - Much higher for original outer-ring suburbs
 - Lower for newly suburbanized areas
- Access remains low in the outer-suburbs and less than 12% of what is experienced in city center areas

	Changing Geography				1990 Constant Geography				
	City Center	Inner-Ring Suburbs	Outer-Ring Suburbs	Rural	City Center	Inner-Ring Suburbs	Outer-Ring Suburbs	Rural	
1995	3.209	0.980	0.142	0.005	3.209	0.980	0.142	0.005	
2005	3.618	1.008	0.265	0.008	3.796	1.342	0.362	0.013	
2015	3.880	1.190	0.457	0.000	3.982	1.471	0.484	0.023	
%∆(2005–1995)	13%	3%	86%	49%	18%	37%	154%	137%	
% Δ(2015–2005)	7%	18%	72%	-98%	5%	10%	34%	83%	

Access to public transportation, 1995-2015

On average, high-poverty areas* experience higher access to transit

* Block groups that belong to the 20% of block groups with the highest poverty rate

Summary

- Comparable increase in poverty rate and access over time for city centers and inner suburbs
- Highest increase in both poverty and bus access happened in the outer-ring suburbs
- Improvements in transit access were lower in the recently urbanized areas (within the outer-ring suburbs) where <u>two-</u> <u>thirds of the outer suburban poor population</u> reside
- The access experienced by 130,000 people below the poverty limit in outer suburbs is <u>one tenth</u> of city center access level

NC STATE UNIVERSITY

Thank you!

<u>Access to full study</u>: https://www.sciencedirect.com/science/article/pii/S0966 692320310073

Eleni Bardaka Assistant Professor ebardak@ncsu.edu 919-515-8576

https://www.ccee.ncsu.edu/people/ebardak

https://elenibardaka.wordpress.ncsu.edu/

- ✓ This session has been approved for 1 AICP CM Hour.
- ✓ The Reference Number is 9214876.
- \checkmark Attendance is automatically recorded.