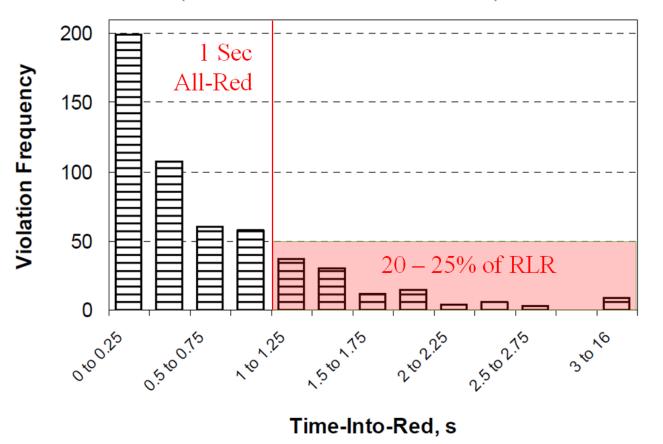


Executive Committee for Highway Safety January 8, 2016

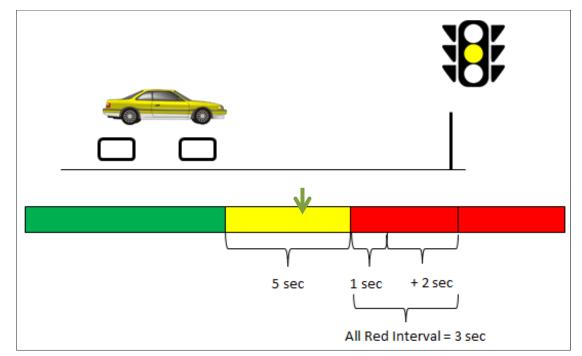

Dynamic All-Red Extension Preliminary Results

Carrie L. Simpson, PE

The Problem

Frequency of Red-Light Violations as a Function of Time-Into-Red (Bonneson & Zimmerman 2004)

How It Works

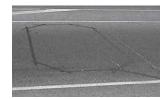

Signalized Intersection with:

- Yellow Interval: 5 seconds
- Default Red Interval: 1 second
- Alarm Time: 5 seconds
- Closest Loop is 240' from Stop Bar

Example Scenario:

- 1. Vehicle below crosses the loops at 3 seconds into the yellow interval
- 2. 5 second stop time is placed on the red interval
- Vehicle has remaining 2 seconds of yellow, 1 second of default red, and 2 seconds of red extension = 5 seconds from the time they cross the loops.

Total All-Red Time: 3 sec



http://www.shutterstock.com/pic-104301266/stock-photo-d-renderings-of-an-all-red-traffic-light.html

Transportation

Inductive Loop

http://cronkitezine.asu.edu/specialprojects/ph otoenforcement/pages/technology.html

Equipment

- Signal Controller: Oasis/2070
- Detection method Two 6' X 6' inductive loops spaced 10' apart
- Northstar Controls Model NQ4 Speed Advisory System
 - Unit is typically placed in separate cabinet next to inductive loops
 - Loop outputs feed into inputs of NQ4 logic unit and determines if preset speed threshold has been violated (threshold varies by location – typically 5 mph below design speed)
 - We tweaked outputs from our NQ4 detector systems to get the controller to handle the necessary "holds"
 - Duration of alarm output is 5 sec

Costs

• Estimate \$5,000 per approach, using our detection method

First Installation: NC 11 @ NC 561 - Ahoskie

Project Timeline

February 2011

 Ahoskie Test Site Installed (Case Study Only – Not Included in Aggregated Results)

Fall 2012

- Eight Pilot Sites Selected & Signal Designs Completed
- Before Period Compliance Data Collected at Eight Pilot Sites

January – October 2013

• Eight Pilot Sites Installed

February 2013 - October 2014

 After Period Compliance Data Collected at Eight Pilot Sites (1, 3, 6 and 12-Mo.)

April 2015

• Preliminary Crash Results

2017

Final Crash Results (3 years of After Data)

 consider waiting for additional Crash Data....

Pilot Study Locations

Site	Location Description	Treated Approaches	Distance to	Yellow	Default Red	Signal	Mainline Cross	Mainline	Mainline Speed
Sile		freated Approaches	Loop (ft)	Interval (sec)	Interval (sec)	Phase	Section	AADT	Limit (mph)
1	US 17 at US 158 and SR 1416, Pasquotank County	US 17 - Both	290	5.5-5.6	1.0-1.1	5	4 Lane Divided	17,000	60
2	US 17 at SR 1300, Perquimans County	US 17 - Both	290	5.5	2.0	6	4 Lane Divided	15,500	55
3	US 17/158 at SR 1333), Pasquotank County	US 17 - Both	290	5.5	1.0	2	4 Lane Divided	8,000	60
4	NC 24 at SR 1141/SR 1144, Carteret County	NC 24 - Both	240	5.3	1.1	3	5 Lane Undivided	18,500	55
5	US 17 at NC 904, Brunswick County	US 17 - Both	240	5.2-5.3	1.0-1.2	5	4 Lane Divided	22,000	55
6	US 70 Business at SR 2558, Wake County	US 70 Bus - Eastbound	240	5.2	1.2	6	4 Lane Divided	29,500	55
7	US 601 at NC 268, Surry County	US 601 - Both	155	4.3	1.0	2	2 Lane	4,800	45
8	US 52 at US 52 Business and SR 2011, Surry County	US 52 - Westbound	240	5.1	2.0	6	4 Lane Divided	14,500	55

Site 5

Transportation

Study Design

Compliance Data:

- Video collected by Quality Counts, LLC at Eight Pilot Sites
- Collected 1-2 Days @ Before, 1 Mo After, 3 Mo After, 6 Mo After & 1 Yr After Period
- OBSERVING CHANGES IN DRIVER BEHAVIOR/ADAPTATION OVER TIME
- CHECKING SYSTEM OPERATION

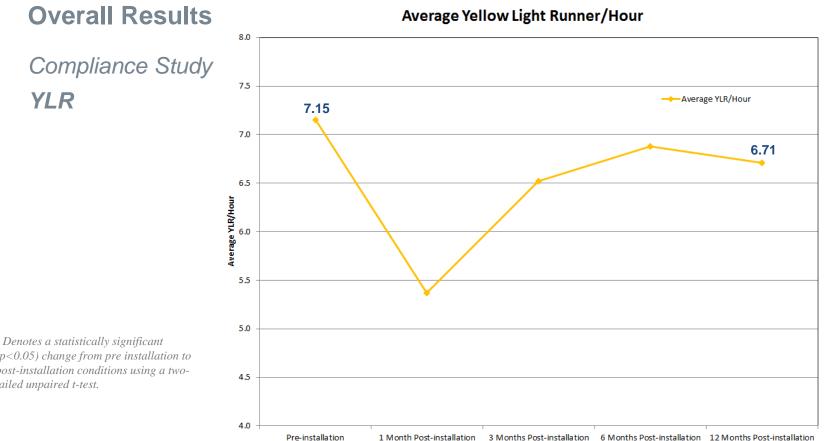
Measures of Effectiveness

- Average Yellow Light Runners (YLR)
- Average Red Light Runners (RLR)
- Average Target* RLR

* Target RLR consists of vehicles we assume should receive an allred extension, excluding vehicles entering the intersection during the default all-red clearance interval.

Study Design

Crash Data:


- 3 Years of Before & After Data at Test Site (Case Study Only Not Included in Aggregated Results)
- Preliminary Results at Eight Pilot Sites Currently 1-2 years of After Period Crash Data (Wait until 3 years of After Period Crash Data for Final Results)
- Selected sites with moderate Red Light Running crash patterns (1-3 crashes per year) Expect Regression to the Mean to be a factor
- EXPECT A DECREASE IN RED LIGHT RUNNING CRASHES

Measures of Effectiveness

- Total Crashes
- Fatal and Injury Crashes
- Angle Crashes
- Rear End Crashes

^a Denotes a statistically significant
(p<0.05) change from pre installation to
post-installation conditions using a two-
tailed unpaired t-test.

	Time Period	Observation Period	Number of	Average	Average YLR/	Average YLR/
Yellow Light	Time Period	(hours)	Observations	YLR/Hour	1,000 veh	Cycle
	Pre-installation	304	2173	7.15	22.36	0.186
Runner Dala	1 Month Post-installation	255	1370	5.37 ^ª	17.13 ^ª	0.127 ^a
	3 Month Post-installation	155	1010	6.52	20.32	0.147 ^a
	6 Months Post-installation	155	1067	6.88	19.75	0.158
	12 Months Post-installation	193	1295	6.71	22.35	0.141 ^a

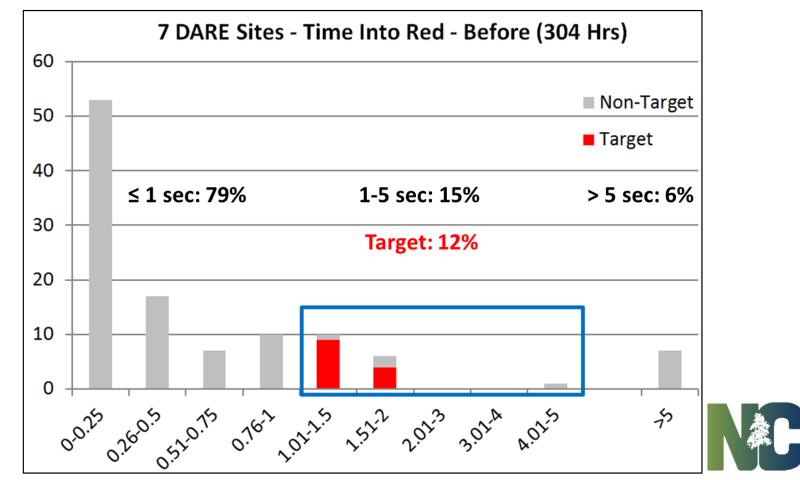
Overall Results 1.00 Compliance Study 0.90 Average Target RLR/Hour 0.80 0.70 AVerage RLR/Hour 0.50 0.40 0.42 0.37 0.30 0.20 0.078 0.10 0.043 0.00 Pre-installation 1 Month Post-installation 3 Months Post-installation 6 Months Post-installation 12 Months Post-installation

	Time Period	Observation Period (hours)	Number of Observations	Average RLR/Hour	Average RLR/ 1,000 veh	Average RLR/ Cycle
	Pre-installation	304	111	0.37	1.21	0.0089
Red Light	1 Month Post-installation	255	113	0.44	1.30	0.0102
Runner Data	3 Month Post-installation	155	86	0.55 ^a	1.79	0.0121
	6 Months Post-installation	155	93	0.60 ^a	1.74	0.0125 ^a
	12 Months Post-installation	193	193 82		1.40	0.0088
	Time Period	Observation Period (hours)	Number of Observations	Average RLR/Hour	Average RLR/ 1,000 veh	Average RLR/ Cycle
and Ded Light	Time Period Pre-installation			-		•
get Red Light		(hours)	Observations	RLR/Hour	1,000 veh	Cycle
get Red Light Runner Data	Pre-installation	(hours) 304	Observations 13	RLR/Hour 0.043	1,000 veh 0.139	Cycle 0.0010
	Pre-installation 1 Month Post-installation	(hours) 304 255	Observations 13 10	RLR/Hour 0.043 0.039	1,000 veh 0.139 0.145	Cycle 0.0010 0.0008

Average Red Light Runner/Hour

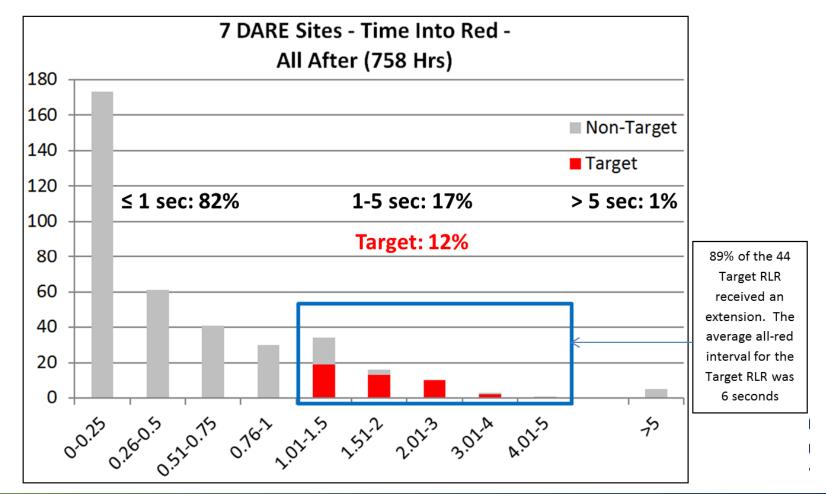
^{*a*} Denotes a statistically significant (p < 0.05) change from pre installation to post-installation conditions using a twotailed unpaired t-test.

RLR


Target RLR consist of vehicles that based on our assumptions should receive an all-red extension, excluding vehicles entering the intersection during the default allred clearance interval. The side street movement (4+8) is the next phase served for Target RLR. We assume RLR hit loops traveling at/above the set speed, and maintain speeds at the posted speed limit.

Target Red L Runner E

Transportation


Overall Results

Compliance Study: **Time into Red – Before** (111 RLR)

Overall Results

Compliance Study: Time into Red – After (374 RLR)

Overall Results

Usage Data (From Signal Logs)

Average Extensions/Hour range from 0.11 - 3.13Average Length of Extension range from 1.4 - 3.2 seconds

Number of Extension Calls Per Approach

Signal ID	After Period	Hours Collected	Average Extensions Per Hour		Average Length of	f Extension (Sec)	Average Cycles Per Hour
Signal ID			Phase 2	Phase 6	Phase 2	Phase 6	Average cycles Fer Hour
01-0314	1 month	192	2.21*		n/:	а	46
01-0514	2 years	168	2.91*		n/a		45
01-0381	2 years	144	1.23	1.20	1.5	1.4	39
01-0658	1 month	336	0.33	0.93	n/a	n/a	47
01-0038	2 years	432	0.53	0.56	2.8	2.9	48
02-0470	1 month	240	1.11	0.93	n/a	n/a	41
03-0342	1 year	72	2.79	2.69	2.5	2.4	56
05-1142	6 months	168	2.93	-	2.9	-	32
03-1142	2 years	144	3.13	-	2.8	-	32
11-1090	3 months	1368	0.11	0.27	3.2	3.2	65
11-1093	2 months	192	2.54	-	2.7	-	55

*Average extensions for both approaches combined.

Conclusions – Compliance Study

Comparing the before period to the final after period, there is no statistically significant change in YLR and RLR/hour in the overall sample

- 1062 Hours (about 1.5 months) of video data is included from 7 sites
- There were some significant increases in RLR at the 3 & 6 mo. marks
- However, by final after period, appears to be minimal habituation...
- The system is not going to capture all RLR crashes provides extra protection against angle crashes caused by a specific group of mainline RLR vehicles.
 - Of 374 observed RLR, 6 entered the intersection too late for an extension (3 of these were police or EMS with lights on)
- Vehicle conflicts are rare. Even with hundreds of hours of observation, there were too few conflicts to evaluate.
 - Observed 2 near misses in the after period. The vehicles were too late to receive the all red extension, entering the intersection at 6 sec and 9 sec.

Conclusions – Crash Analysis

- >We need to wait for more after crash data before trying to draw conclusions.
- Preliminary results are promising for target angle crashes & severe injury crashes.
- If possible, we will try to draw a connection between system parameters and crash performance. Perhaps there is more benefit when the target window is larger and extends later in the red:
 - Larger Target Window Design speed is closer to what drivers are actually traveling and the loops are placed further back (however, more False+)
 - Extends Later into Red A longer default red clearance is used (1.5+ seconds) and later protection can be offered

Conclusions – Operations

>The system **can work** as designed.

• There were 44 Target RLR in the after period sample – 89% (39 of 44) got an extension.

>The system **can remain in operation** for an extended period of time.

- All sites were operating at the 2-year after mark
- Signals with Dynamic Red require periodic monitoring.
 - Like monitoring already required to maintain proper signal operation
 - 03-0342 @ 3 mo mark (relay switch failed *unrelated* to DARE)
 - 01-0381 @ 3 & 6 mo mark (water backed up in conduit *unrelated*)
 - 05-1142 @ 1 yr mark (signal phasing change/construction-unrelated)
 - Supervisor Circuit planned for future installations

≻Minimal risk with system

• If it's not working, the signal will revert to standard red interval

➤More sites in development....

Video Clips

Target http://youtu.be/LKCQvtPFMsQ

https://youtu.be/qJ52wMowehM?list=PLFPISVRUEsJqDGOS458c2HfhYNy1QM4lt

https://youtu.be/-pHBTIOoKEU?list=PLFPISVRUEsJqDGOS458c2HfhYNy1QM4lt

https://youtu.be/FwjAiPbKKwA?list=PLFPISVRUEsJqDGOS458c2HfhYNy1QM4It

https://youtu.be/4kSvUbj4c5E?list=PLFPISVRUEsJqDGOS458c2HfhYNy1QM4lt

Non Target https://youtu.be/uRsEUNWd7vQ?list=PLFPISVRUEsJqDGOS458c2HfhYNy1QM4lt

