CONTENTS SHEET NO

36002

Ľ

5

REFERENCE

HEEI	<u>NU.</u>	
I		
2		
3		
4		
5-6		

DESCRIPTION

TITLE SHEET LEGEND (SOIL & ROCK)

SITE PLAN

PROFILE BORE LOGS

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT**

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY _GATES

PROJECT DESCRIPTION BRIDGE NO. 27 ON -L- (SR 1428) OVER RAYNOR SWAMP

	STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
\mathbb{N}	J.C.	SF-360027	1	6

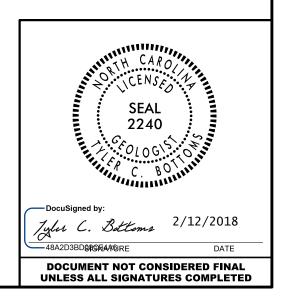
CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 707-6800. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU UNPELACED TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOLI MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOLI MOISTURE CONDITIONS MAY YARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOS NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERRETATIONS MADE, OR OPNION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONSTROST TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY IMINSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES: I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C.DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.


PERSONNEL

S.N. ZIMARINO

R.E. SMITH

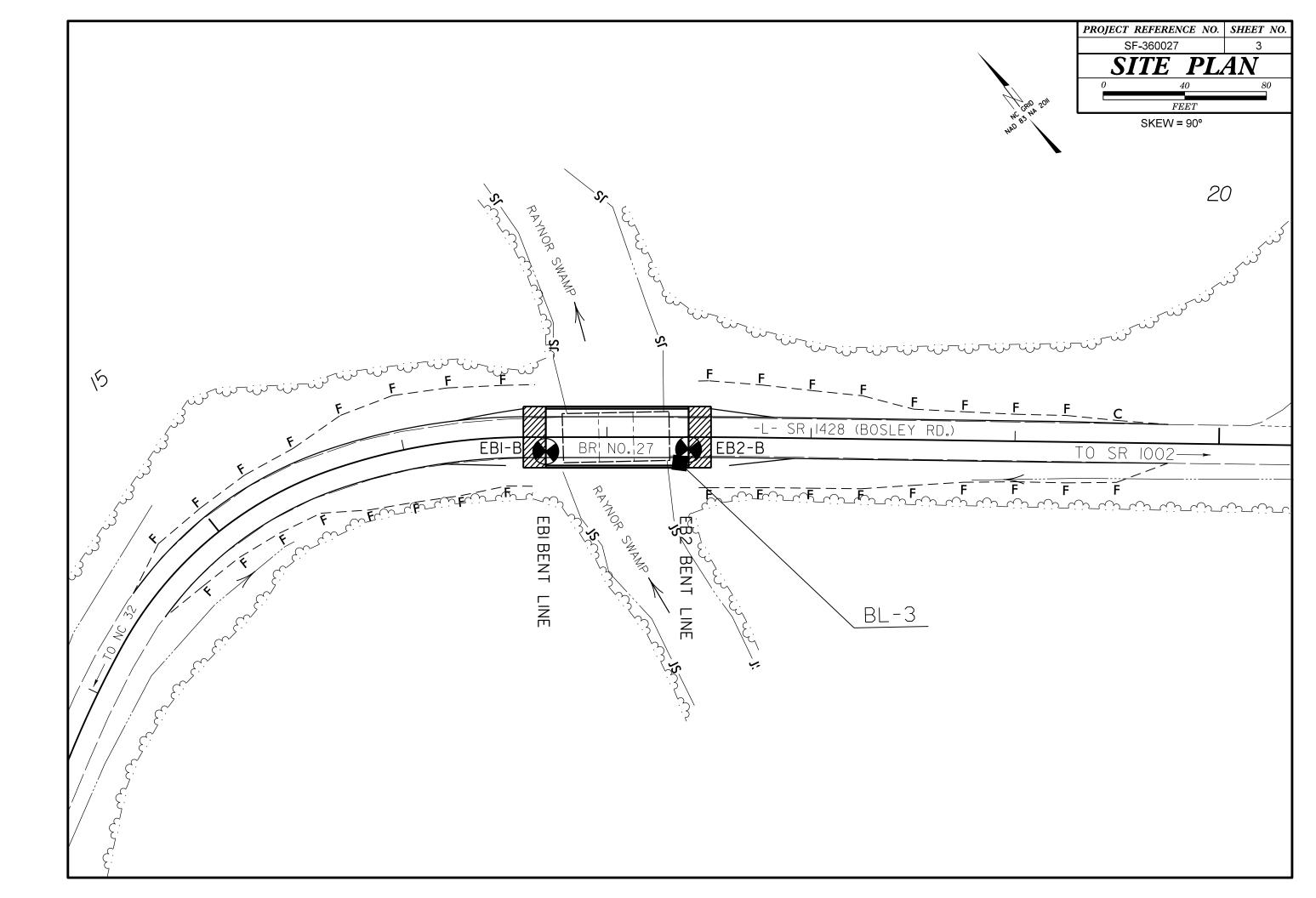
J.M. EDMONDSON

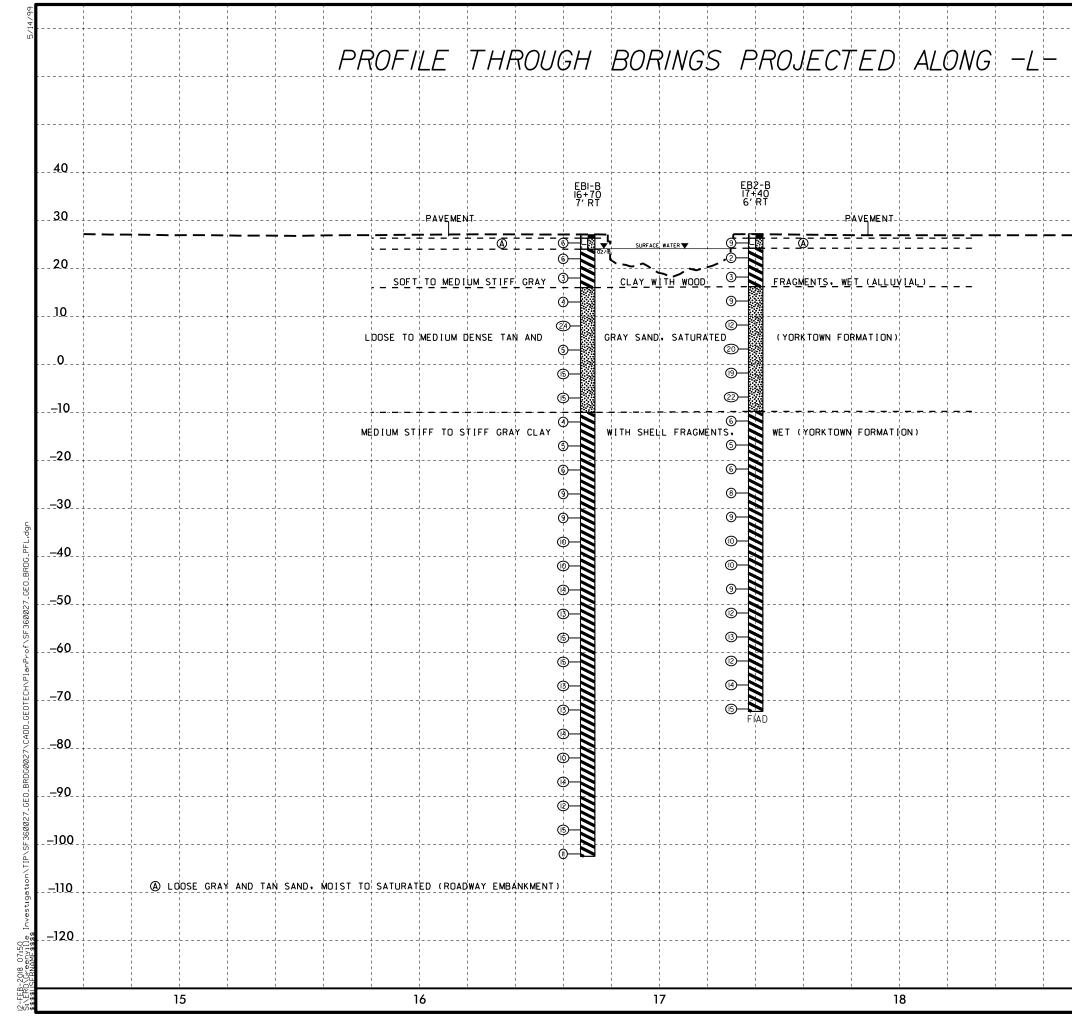
INVESTIGATED BY _____. BOTTOMS DRAWN BY _____C.J. CORNETTE CHECKED BY ______. D.N. ARGENBRIGHT SUBMITTED BY ______. ARGENBRIGHT DATE _____ FEBRUARY 2018

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

			SOIL C	ESCRIPT	ION						GI	RADATION						ROCK DE	SCRIPTION
BE PENETRA ACCORDING IS BAS CONSISTENC	TED WITH TO THE ED ON TH CY, COLOR,	A CONTINUC STANDARD PI E AASHTO S TEXTURE, MO	ATED, SEMI-CON US FLIGHT POV NETRATION TE (STEM, BASIC (ISTURE, AASHTO	VER AUGER AN ST (AASHTO 1 DESCRIPTIONS CLASSIFICA	ND YIELD LESS 206, ASTM D GENERALLY II 110N, AND OTHE	5 THAN 10 1586), SOI NCLUDE TH R PERTINE	Ø BLOWS PI L CLASSIFI HE FOLLOWI ENT FACTOF	ER FOOT CATION NG: RS SUCH	<u>WELL GRADED</u> - INDICAT <u>UNIFORMLY GRADED</u> - IN <u>GAP-GRADED</u> - INDICATE	NDICATE	S THAT SOIL	PARTICLES ARE AL	L APPROXIMA ZES OF TWO	TELY THE SAME SIZE.	ROCK LINE IN SPT REFUSAL BLOWS IN NO REPRESENTED	NDICATES _ IS PEN ON-COAS) BY A 2	S THE LEVE NETRATION E STAL PLAIN ZONE OF WE	L AT WHICH NON-CO BY A SPLIT SPOON S MATERIAL, THE TR ATHERED ROCK.	WOULD YIELD SPT REFUSAL IF TEST ASTAL PLAIN MATERIAL WOULD YIELC AMPLER EQUAL TO OR LESS THAN Ø. ANSITION BETWEEN SOIL AND ROCK
			SITION, ANGULAR MOIST WITH INT.					•				SOIL GRAINS IS D	SIGNATED B	Y THE TERMS:	WEATHERED	HLS HRE		Y DIVIDED AS FOLLO	WS: NIN MATERIAL THAT WOULD YIELD SP
			end and	AASHTO	CLASSIFI	CATION	١		ANGULAR, SUBAN			ICAL COMPOS			ROCK (WR)			100 BLOWS PER F	
GENERAL CLASS.		Sranular mate ≤ 35% passing			(MATERIALS ASSING \$200)	OF	rganic mater	IALS	MINERAL NA			Z, FELDSPAR, MICA, 1		ETC.	CRYSTALLINE ROCK (CR)				GRAIN IGNEOUS AND METAMORPHIC RO REFUSAL IF TESTED. ROCK TYPE IN
GROUP	A-1	A-3	A-2		A-6 A-7	A-1, A-2	A-4, A-5		ARE USED IN	V DESCR		IN THEY ARE CONSID	ERED OF SIC	GNIFICANCE.			<u> 20.20</u>	GNEISS, GABBRO, S	GRAIN METAMORPHIC AND NON-COAST
000	-a A-1-b	A-2-4	-2-5 A-2-6 A-2-		A-7-5. A-7-6	A-3	A-6, A-7		SL IG	HTLY C	OMPRESSIBLE	RESSIBILITY	LL < 31		NON-CRYSTAL ROCK (NCR)	LINE			K THAT WOULD YEILD SPT REFUSAL DES PHYLLITE, SLATE, SANDSTONE, ET
51MBUL 000									MODE	RATELY	COMPRESSIB PRESSIBLE	BLE	LL = 31 - LL > 50	50	COASTAL PLA SEDIMENTARY				EDIMENTS CEMENTED INTO ROCK, BUT CK TYPE INCLUDES LIMESTONE, SAND
% PASSING 10 50						GRANULAR	SILT- CLAY	MUCK.				GE OF MATER			(CP)			SHELL BEDS, ETC.	HERING
	MX 50 MX 1 MX 25 MX 1		5 MX 35 MX 35 M	1х 36 МN 36 М	N 36 MN 36 MN	SOILS	SOILS	PEAT	ORGANIC MATERIAL	_	GRANULAR SOILS	SILT - CLAY SOILS	OTHE	MATERIAL	FRESH	ROCK F	RESH. CRYST		ITS MAY SHOW SLIGHT STAINING. ROCK
MATERIAL PASSING #40 LL PI	- 6 MX		11 MN 40 MX 41 M 0 MX 11 MN 11 M			LITT	s with 'Le or	HIGHLY	TRACE OF ORGANIC M LITTLE ORGANIC MAT MODERATELY ORGANIC HIGHLY ORGANIC	TER	2 - 3% 3 - 5% 5 - 10% > 10%	3 - 5% 5 - 12% 12 - 20% > 20%	TRACE LITTLE SOME HIGHLY	1 - 10% 10 - 20% 20 - 35% 35% AND ABOVE	VERY SLIGHT (V SLI.)	ROCK G CRYSTA	ALS ON A BRO	RESH, JOINTS STAINED OKEN SPECIMEN FACE	, SOME JOINTS MAY SHOW THIN CLAY C SHINE BRIGHTLY. ROCK RINGS UNDER F
GROUP INDEX	0	0 0	4 MX				erate NTS OF	ORGANIC				UND WATER			SLIGHT		CRYSTALLINE		AND DISCOLORATION EXTENDS INTO R
OF MAJOR GRA	INE FRAGS. AVEL, AND SAND		TY OR CLAYEY IVEL AND SAND	SILTY SOILS	CLAYEY SOILS	ORC	GANIC TTER	SOILS				BORE HOLE IMMEDIA		DRILLING	(SLI.)	1 INCH. CRYSTA	OPEN JOINT	S MAY CONTAIN CLAY. L AND DISCOLORED. C	. IN GRANITOID ROCKS SOME OCCASIONA RYSTALLINE ROCKS RING UNDER HAMME ISCOLORATION AND WEATHERING EFFECT
GEN. RATING			C00D	CAID	TO 0000	FAIR TO	POOD			PERC	CHED WATER, S	SATURATED ZONE, OF	WATER BEA	RING STRATA	(MOD.)	GRANITO	OID ROCKS, M	10ST FELDSPARS ARE	DULL AND DISCOLORED, SOME SHOW CLA SHOWS SIGNIFICANT LOSS OF STRENGTH
AS SUBGRADE		XCELLENT TO			TO POOR	POOR	POOR	UNSUITABLE		SPRI	NG OR SEEP						RESH ROCK.	HAMMER BLUWS AND	SHUWS SIGNIFICANT LUSS OF STRENGT
	P		SGROUP IS ≤ LL			> LL - 30					MISCELLA	ANEOUS SYMB	<u>) S</u>		MODERATELY SEVERE				OR STAINED. IN GRANITOID ROCKS,ALL KAOLINIZATION. ROCK SHOWS SEVERE L
			TNESS OR	RANGE O	STANDARD	RAN	GE OF UNC	ONFINED			25.00	225			(MOD. SEV.)	AND CA	AN BE EXCAV		ST'S PICK. ROCK GIVES 'CLUNK' SOUND
GENERALL		VERY	STENCY LOOSE	(N-	N RESISTENCE	LUMP	RESSIVE S		CALL ROADWAY EMB			DIP & DIP DIF DF ROCK STRU		SLOPE INDICATOR INSTALLATION	SEVERE (SEV.)	ALL RO REDUCE	OCK EXCEPT (ED IN STRENC	QUARTZ DISCOLORED (GTH TO STRONG SOIL.	DR STAINED. ROCK FABRIC CLEAR AND E IN GRANITOID ROCKS ALL FELDSPARS STRONG ROCK USUALLY REMAIN.
GRANULAR MATERIAL		MEDIU	IOSE 1 DENSE	10	TO 10 TO 30		N/A			ILL (AF		- 131 (111		CONE PENETROMETER		<u>IF TES</u>	TED. WOULD	YIELD SPT N VALUES	> 100 BPF
(NON-COHE)		VERY	NSE DENSE SOFT	>	TO 50 50 < 2		< 0.25		THAN ROADWA		4	AUGER BORING	•	TEST SOUNDING ROD	VERY SEVERE (V SEV.)	BUT MA REMAINI	ASS IS EFFEC	CTIVELY REDUCED TO ITE IS AN EXAMPLE O	DR STAINED. ROCK FABRIC ELEMENTS AN SOIL STATUS, WITH ONLY FRAGMENTS O F ROCK WEATHERED TO A DEGREE THAI
GENERALLY SILT-CLAY MATERIAL (COHESIVE)		MEDIU S	DFT M STIFF IFF STIFF	4 8	TO 4 TO 8 TO 15 TO 30		0.25 TO 0.5 TO 1 1 TO 2 2 TO 4	1.0 ?	THETTE INFERRED ROC				ill 🔶	TEST BORING WITH CORE - SPT N-VALUE	COMPLETE	ROCK R SCATTE	REDUCED TO S	SOIL. ROCK FABRIC N	MAIN. <u>IF TESTED, WOULD YIELD SPT N</u> DT DISCERNIBLE, OR DISCERNIBLE ONLY Y BE PRESENT AS DIKES OR STRINGER
		н	ARD	>	30		> 4	-				INSTALLATION		SIT N VALUE		ROCK HARDNESS			
			TEXTURE									NDATION SYME			VERY HARD			HED BY KNIFE OR SH	ARP PICK. BREAKING OF HAND SPECIMEN
U.S. STD. SIEVE OPENING (MM)	E SIZE		4 10 4.76 2.00	40 0.42	60 200 0.25 0.075					∠⊿ un!	ICLASSIFIED E ISUITABLE WA	ISTE L	ACCEPT	SIFIED EXCAVATION - ABLE, BUT NOT TO BE	HARD			WS OF THE GEOLOGIS	I'S PICK. NLY WITH DIFFICULTY. HARD HAMMER E
BOULDER	COB	BLE	GRAVEL	COARSE	FINE		SILT	CLAY	SHALLOW UNDERCUT			EXCAVATION - GRADABLE ROCK		N THE TOP 3 FEET OF MENT OR BACKFILL	THIN D	TO DET	FACH HAND SI	PECIMEN.	
(BLDR.) GRAIN MM		75	(GR.) 2.0	SAND (CSE. SD.)	SAND (F SD. 0.25		(SL.) 0.005	(CL.)	AR - AUGER REFUSAL		MED	REVIATIONS	VST ·	VANE SHEAR TEST	MODERATELY HARD	EXCAVA		D BLOW OF A GEOLOG	GOUGES OR GROOVES TO 0.25 INCHES D IST'S PICK. HAND SPECIMENS CAN BE D
SIZE IN.	12	3							BT - BORING TERMINATED CL CLAY	٥		- MICACEOUS - MODERATELY	γ-1	- WEATHERED UNIT WEIGHT	MEDIUM HARD				S DEEP BY FIRM PRESSURE OF KNIFE (PEICES 1 INCH MAXIMUM SIZE BY HARD
SOTI MO	DISTURE S		FIELD M						CPT - CONE PENETRATION CSE COARSE	N TEST		NON PLASTIC ORGANIC	γ _d - 1	DRY UNIT WEIGHT	0057	POINT (OF A GEOLOC	GIST'S PICK.	
	BERG LIM		- SATURA	PTION	GUIDE FOR F				DMT - DILATOMETER TES DPT - DYNAMIC PENETRA e - VOID RATIO		PMT - EST SAP	- PRESSUREMETER TI SAPROLITIC SAND, SANDY	S - B	MPLE ABBREVIATIONS ULK SPLIT SPOON	SOFT	FROM C	CHIPS TO SEV		KNIFE OR PICK. CAN BE EXCAVATED IN E BY MODERATE BLOWS OF A PICK POIN SURE.
	LIQUID	LIMIT	(SAT.)	FROM BELOW				F - FINE FOSS FOSSILIFEROUS FRAC FRACTURED, FRAC	TURES	SL SLI	SILT, SILTY SLIGHTLY TRICONE REFUSAL	ST - RS -	SHELBY TUBE	VERY SOFT	OR MOR FINGERN	RE IN THICKN	NESS CAN BE BROKEN	CAVATED READILY WITH POINT OF PICK. BY FINGER PRESSURE. CAN BE SCRATCI
RANGE <			- WET -	(W)	SEMISOLID; F ATTAIN OPTI			J	FRAGS FRAGMENTS HI HIGHLY			OISTURE CONTENT	CBR ·	CALIFORNIA BEARING RATIO		RACT	URE SP		BEDDING
	_ OPTIMUN	1 MOISTURE	- MOIST	- (M)	SOLID; AT OF	R NEAR O	PTIMUM MC	DISTURE		1		ON SUBJEC		CT T	TERM VERY WIDE WIDE MODERATE		3	<u>SPACING</u> E THAN 10 FEET B TO 10 FEET 1 TO 3 FEET	TERM VERY THICKLY BEDDED THICKLY BEDDED D THINLY BEDDED 0.
SL	_ SHRINKA	GE LIMIT	- DRY -	(D)	REQUIRES A			D	Х СМЕ-45С		CLAY BITS 6. CONTINUOU	JS FLIGHT AUGER	CORE SIZ		CLOSE VERY CLOS		ø.	16 TO 1 FOOT THAN 0.16 FEET	VERY THINLY BEDDED 0.0 THICKLY LAMINATED 0.0 THINLY LAMINATED 0.0
			PLA	STICITY					CME-55		8 HOLLOW A	UGERS	В					INDU	RATION
	PLASTICITY INDEX (PI) DRY STRENGTH					CME-550			FINGER BITS	□-N _		FOR SEDIMEN	TARY RC	JCKS, INDURA		NING OF MATERIAL BY CEMENTING, HE			
SLIGHT	LASTIC TLY PLAS ATELY PL			0-5 6-15 16-25			VERY LOW SLIGHT MEDIUM	I	VANE SHEAR TEST		TUNGCARBIE	DE INSERTS W/ ADVANCER	HAND TOO	DLS:		FRIABLE RUBBING WITH FINGER FREES NUMEROU GENTLE BLOW BY HAMMER DISINTEGRE			
	Y PLASTIC			6 OR MORE			HIGH		PORTABLE HOIST			2 15/16" STEEL TEETH		ID AUGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM S BREAKS EASILY WHEN HIT WITH HAN				
DECODIOTIO	NC 1444 -					VEL 1 01 - 5		C. CDAVI			TRICONE	* TUNGCARB.		INDING ROD	INDURA	TED			BREAK WITH HAMMER.
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.												E SHEAR TEST	EXTRE	MELY IN	NDURATED		R BLOWS REQUIRED TO BREAK SAMPL <s across="" grains.<="" td=""></s>		


SHEET NO.


2

PROJECT REFERENCE NO.

SF-360027

TERMS AND DEFINITIONS ED. AN INFERRED) SPT REFUSAL. 1 FOOT PER 60 IS OFTEN ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. ADUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. N VALUES > ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND CK THAT SURFACE. CLUDES GRANITE, CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. AL PLAIN IF TESTED. COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE. MAY NOT YIELD STONE, CEMENTED CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. $\underline{\text{DIKE}}$ - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK. RINGS UNDER DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL . NATINGS IF OPEN. DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH. AMMER BLOWS IF FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE ІСК ИР ТО SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. FELDSPAR FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. BLOWS. $\underline{\mathsf{FLOAT}}$ - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL. S. IN AY. ROCK HAS AS COMPARED FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM. FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD. ELDSPARS DULL OSS OF STRENGTH WHEN STRUCK. JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO VIDENT BUT ITS LATERAL EXTENT. ARE KAOLINIZED LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. RE DISCERNIBLE PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE STRONG ROCK T ONLY MINOR VALUES < 100 BPF OF AN INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK OUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SECMENTS EQUAL TO OR CREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE IN SMALL AND SAPROLITE IS RUN AND EXPRESSED AS A PERCENTAGE. SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT S REQUIRES SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO LOWS REQUIRED THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. $\underline{\text{SLICKENSIDE}}$ - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. EEP CAN BE ETACHED STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL R PICK POINT WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL BLOWS OF THE TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. $\underline{STRATA CORE RECOVERY (SREC.)}$ - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. FRAGMENTS IT. SMALL. THIN STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. PIECES 1 INCH ED READILY BY TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BL-3 THICKNESS N=977847.0199 E=2706541.7557 4 FEET ELEVATION: 26.48 FEET .5 - 4 FEET 6 - 1.5 FEET NOTES: 3 - Ø.16 FEET 08 - 0.03 FEET FIAD = FILLED IMMEDIATELY AFTER DRILLING 0.008 FEET AT, PRESSURE, ETC. TEEL PROBE: PROBE;

-

	i	i	1	i		REFERENCE NO) .	SH	EET NO.
	:	, , ,	, 			-360027			4
	1	1	1		ROADWAY ENGIN	DESIGN EER	- F	IYDRAULI ENGINEE	CS R
	1	1	1 1 1	1					
	1	1	1	1	IN	COMPLE	ге і	PLAN	IS
	4	/ 	L ! !			NOT USE FOR	R/W A	COUISITIC	0N
	1	1	1	1					
	1	1	1 1 1	1					
				<u>+</u>					
	1	1	1 		DOCUN	IENT NOT C	ONSIC	ERED	FINAL
	1		1		UNLESS	ALL SIGNA	TURES	6 COMF	PLETED
	+			+		 			
						1	VE	=z :	
	1	1	i i	1		1			
	 		 			 	 		30
	1	<u> </u>	·						
							I		
	1		1			 		i	20
1	+ '		 ,			L I I	L		
	1	1	1	1			1	i	
	-	1	1						10
	+	 	 	+					10
		1	1	1		1 	1 1		
	1		1 1 1				1	Ì	
	<u>+</u>								0
	1		1 1			 	1 1 1		
	1	1 1 1	1 1 1	1					
						, , ,	, , ,		10
	1	1	1 1 1	1					
	1					- 	i i	i i	
	1			1		1			_20
	+ 	 	 1 1						
	1	1	1 1				, 1 1	i i	
	1	1	1 1 1			1			_30
	±	! !	L	L				i-	
	1	1	1 	1		1			
	1		 						10
						, L ,			40
	1	1	1 						
			1						
	+			+			; 		_50
	1	1	1 			1			
	1	1	1	1			1	Ì	
	; 					 	, , ,		-60
	1		1 1 1			1			
	1	1	1	1		1 			
	1 1 1	1 1	1 1 1	1					_70
	I I		I I	 		1 		1	
	1						1	i	-80
	+			+			; 		-00
	1 1		1			 	1 1	}	
	1		1				1	i	00
	±	 !	L	L					<u> 90 </u>
	1 1 1	1 1	1 1	1					
	1			1			1	i	
	<u>+</u>	{			 	L I			1_00
	1		1 1						
	1			1			1	i	
	+		NOTE: GR	เป็นทุกา - เางศา	ד וו־דמקר	ALONG			_ 110
	1	I I	TAKÊN FR	OUNDLINE OM BRIDGI C DESIGN		AND ATED 12/	22/1-	, ;	
			1	1					
			NOTE: IN	FERRED S THE BORII D ONTO TI	IRATIGRAP	'HY IS DR ⊨BOTH	/AWN +		_120
	1 1		PROJECTE	υ υντο τι	HE PROFIL	!E			
	1	1 1 1	1 1 1	1					
	1	1	1	1		 	!		
	1	9				2	0		

GEOTECHNICAL BORING REPORT BORE LOG

14/80																											
	17BP.					FIP SF-360				GATES				GEOLOG	IST Zimarino,	S. N.	I	WBS	17BP.	1.R.77			TIF	• SF-36	60027	COUNT	Υ
SITE	DESCRI	PTION	BRID	DGE N	UMB	ER 27 ON -	L- (SR 1	428) C						1			GROUND WTR (ft)	SITE	DESCR	PTION	BRID	DGE NI	JMBEF	27 ON	-L- (SR 142	8) OVER	RAY
BORIN	ig no.	EB1-I	3		5	STATION	16+70			OFFSET	7 ft RT			ALIGNME	ENT -L-		0 HR. N/A	BOR	ing no.	EB1-I	В		ST	ATION	16+70		OF
COLL	AR ELE	V. 27	.0 ft		ר	TOTAL DEF	PTH 12	9.5 ft		NORTHIN	G 977,8	392		EASTING	2,706,493		24 HR. 2.9	COL	LAR ELE	V. 27	7.0 ft		то	TAL DE	PTH 129.5	5 ft	N
DRILL F	RIG/HAM	MER EF	F./DATE	E GFC	00075	CME-45C 849	% 08/21/20	017			DRILL I	METHOD	D Mu	d Rotary		HAMME	ER TYPE Automatic	DRILL	. RIG/HAM	MER EF	F./DATE	E GFC	0075 CN	/IE-45C 84	4% 08/21/2017		
	ER Ec		,	M.	S	START DAT	TE 02/0	7/18		COMP. DA	TE 02/	/07/18		SURFACE	E WATER DEP	TH N/A	4	DRIL	LER Ed			M.	ST	ART DA	TE 02/07/	18	C
ELEV	DRIVE ELEV	DEPTH	BLO	w co	JNT		BLOV	VS PEF	R FOOT		SAMP	. 🔨			SOIL AND RO			ELEV	DRIVE ELEV	DEPTH	BLO	W COL			BLOWS	PER FOO	Т
(ft)	(ft)	(ft)		0.5ft	0.5ft	t 0	25	50		75 100	NO.	моі		ELEV. (ft)		ONDLOC	DEPTH (ft)	(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25	50	75
30		_												_				-50							Mat	ch Line	
	1	-																	-51.0	78.0	4	5	8		3		:
	26.3	0.7	3	3	3	<u> </u>						+		27.0	GROUNI PAV	EMENT	ACE 0.0		-	-				· · Ī.	- 		
25	-	-		5	5	_ 6					-1			G	ROADWAY		KMENT SATURATED <u>3.0</u>	-55	-56.0	83.0						+	+
-	23.0	4.0	1	1	5									· · -	ALI	LUVIAL			-	-	3	5	10	•	15 • • • •		
20	-	-						-					N	GR	RAY CLAY WITH	WET	FRAGIMENTS,	-60	-	-							
_	19.0	8.0		1	2			.]		N	-					-61.0	88.0	5	6	9	· · ·			
		-						.					N	16.0			11.0		-	-							.
15	14.0	13.0													AN AND GRAY	TAL PLAI	IN	-65	-66.0	93.0				<u>⊢.</u> i			· -
		-	2	2	2	 ↓4	· · · ·	.							(YORKTOW					-	5	5	8	· · •	3		
10	1	-						.										-70	-	-				: : <u> </u> :			
	9.0	18.0	4	10	14			.			1			-				-70	-71.0	98.0	3	5	8	· · · · ·			
	4	-		10			24	.											-	-		Ĵ	Ŭ	· • • • 1	3		
5	4	-				· · /		.						_				-75	-	-				l · · i·	· · · · ·		÷
-	4.0	23.0	2	2	3		· · ·	· · ·	· · · ·										-76.0	_ 103.0	3	6	8	I . ∳ 1	 4		:
	-	-						.											-	-							
0	-1.0	28.0	_	_	-									_				-80	-81.0	108.0				<u> ; ; ;</u>			.
	-	-	5	7	8	15	5	.		 									-	-	4	4	6	· • 10			
-5	-	_						.										-85	-	-				· · ·			
-	-6.0	33.0	4	6	9														-86.0	113.0	3	5	9				•
	-	-						.											-	-				· · · [·			•
-10	-11.0	38.0												-10.0			IN	-90	-91.0	118.0				· · ·			
		-	2	2	2			.					N		RAY CLAY WITH WET (YORKTO	I SHELL F	FRAGMENTS,		-	-	4	5	7	· • • 12	2		
-15	1	-						.					N					-95	-	-				· · · [·	· · · · · ·		
	-16.0	43.0	2	2	3			.			1		N	-					-96.0	123.0	4	6	9	· · · ·			
	1	-	-	-	Ŭ		· · · · · ·	.	· · · · ·				N						-	-		Ŭ	Ŭ	:: !	15 • • • • •		
-20		-					• • •							_				-100	101.0	-							-
-	-21.0	- 40.0 -	2	3	3		· · · · · ·	· · ·	· · · · · · · ·										-101.0	- 120.0	3	4	7	 . . ●11			
-25	4	-						.											-	-							
-20	-26.0	53.0		4	F	_ - i					1			-					-	-							
	-	-	2	4	5	· ∳ 9 · ·	· · ·	· · ·	 				N						-	-							
-30	4	_						.					N	_					-	-							
-	-31.0	_ <u>58.0</u>	3	4	5		· · ·	· · ·					N						-	-							
		-						.					N						-	-							
-35	-36.0	63.0					· · · ·						N	-					-	-							
	-	-	3	4	6	- •10	• • •	•••	• • • •				N						-	-							
-40	1	L						.											-	_							
	-41.0	68.0	3	3	7			.			11		N	-					-	-							
	4	-					.	.	· · · · · · · ·				N						-	-							
-45		-					• • •							—					-	-							
F	-46.0	- 13.0	4	6	8	- \ - · ∮ 14	- 	· · ·	 	· · · ·										-							
F 0	4	-						.	 				N							-							
-50			I											_													

SHEET 5 OF 6

GATES				GEOLO	GIST Zimarino	, S. N.					
AYNOR SWA	AMP						GROUN	D WTR (ft)			
OFFSET 7	ft RT			ALIGNM	ENT -L-		0 HR.	N/A			
NORTHING	977,89	92		EASTIN	G 2,706,493		24 HR.	2.9			
	DRILL M	ETHOD	Mud	I Rotary		HAMME	R TYPE	Automatic			
COMP. DAT	E 02/0)7/18		SURFAC	E WATER DEF	PTH N/A	4				
75 100	SAMP. NO.	моі	L O G	SOIL AND ROCK DESCRIPTION							
							<u></u>				
			N	G	RAY CLAY WITH WET (YORKT)	H SHELL I	RAGME	NTS,			
			N		(co	ntinued)		•,			
			N								
· · · · ·											
			N								
			N								
			N								
			N								
· · · · ·											
			N								
			N								
			N								
			Y								
			N								
			N								
			N								
			N								
			N								
· · · · ·			\mathbf{N}								
			\mathbf{Z}								
			\mathbf{N}								
			\mathbf{N}								
			\bowtie	•							
				-102.5 B	oring Terminated	l at Elevat	ion -102.	129.5 5 ft in			
					SI	tiff Clay					
			F								
			-								
			-								
			-								

GEOTECHNICAL BORING REPORT BORE LOG

Ifty ELEV Ifty OB 0.581 0.581 0.591		STATION 17+40 TOTAL DEPTH 9 75 CME-45C 84% 08/21 02/21 START DATE 02/21	99.5 ft N	
BORING NO. EE2.B STATION 17+40 OFFSET 6 ft RT ALIGNMENT 1 0 HR. NA COLLAR ELEV. 27.2 ft TOTAL DEPTH 99.5 ft NORTHING 977,850 EASTING 270.549 24 HR. FIAD DRILL RGHAMMER FFDATE COULAR ELEV. 27.2 ft TOTAL DEPTH 99.5 ft NORTHING 977,850 EASTING 270.549 24 HR. FIAD DRILL RGHAMMER FFDATE COULAR ELEV. 27.2 ft DRILL RGHAMER FFDATE <th>E GF0007</th> <th>STATION 17+40 TOTAL DEPTH 9 75 CME-45C 84% 08/21 02/21 START DATE 02/21</th> <th>99.5 ft N</th>	E GF0007	STATION 17+40 TOTAL DEPTH 9 75 CME-45C 84% 08/21 02/21 START DATE 02/21	99.5 ft N	
COLLAR ELEV. 27.2 ft TOTAL DEPTH 99.5 ft NORTHING 977,850 EASTING 2,4 HR FIAD DBILL REMAINMER EFF DATE GROUND SCIE4-06 24% (0.921/2017) DBILL REFNOL WARKING HAMMER TYFE Australic DBILL REMAINER LE DBILL REMAINER LE DBILL REMAINER LE Sol AND ROCK DESCRIPTION DBILL REMAINER LE DBILL REMAINER TYS DBI	DW COUNT	TOTAL DEPTH S 75 CME-45C 84% 08/21 START DATE 02	99.5 ft 🛛 🖡	
DRILL RIGHAMMER EFF.DATE GOOD SCALE 45C 84% 082/12017 DRILL RE THOD Mud Robry HAMMER TYPE Adomaic DRILLER Smith, R.E. START DATE 02/07/18 COMP. DATE 02/08/18 SURFACE WATER DEPTH NA DRILLER Smith, R.E. START DATE 02/08/18 SURFACE WATER DEPTH NA 10 10 0.58<	DW COUNT	75 CME-45C 84% 08/21		
DRULER START DATE 02/07/18 COMP. DATE 02/07/18 SURFACE WATER DEPTH N/A LELV DRUE DEPTH BLOW COUNT BLOW SPERFOOT BAMP. 1 5 SOIL AND ROCK DESCRPTION DEPTH BLOW COUNT BLOW SPERFOOT BLOW SPERFOOT BLOW SPERFOOT BLOW SPERFOOT BLOW SPERFOOT DEPTH BLOW SPERFOOT SEE SPECFOOT SEE SPECFOOT SEE SPECFOOT SEE SPECFOOT SEE SPECFOOT	DW COUNT	START DATE 02	1/2017	
ELEV DRWE (m) DRWE (m) DEPTH (m) BLOW SPER FOOT (m) SAMP. SOL AND ROCK DESCRIPTION (m) ELEV DEPTH (m) ELEV				
100 (10) (00 0.56 0.56 0 25 50 75 100 NO. /MOI 6 ELEV. (0) DEPTH (0) (00 (01) (0		I I I BIO		
30	0.511 0.		OWS PER FOOT 50 75	
25 263 0.9 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 <td></td> <td></td> <td>50 75</td>			50 75	
26. 27.2 GROUND SURFACE 0.0 27.2 GROUND SURFACE 0.0 20 2.2 4.0 1 <td></td> <td></td> <td></td>				
25 28 Constrained by the second seco	+	<u> </u>	Match Line	
25 2 3 6	5 7	7		
232 40 -				
20 192 80 1 1 2 15 142 130 3 4 5 16 142 130 3 4 5 10 92 180 3 5 7 5 42 230 5 9 11 0 0.8 280 4 9 10 -5 59 330 5 8 14 -10 -109 380 4 3 3 -5 -59 330 5 8 14 -10 -109 380 4 3 3 -5 -59 330 5 8 14 -10 -109 380 4 3 3 -5 -59 330 5 8 14 -10 -109 380 4 3 3 -5 -59 330 5 8 14 -10 -109 380 4 3 3 -5 -59 330 5 8 14 -10 -109 380 4 3 3 -5 -59 330 5 8 14 -10 -109 380 4 3 3 -5 -59 330 5 8 14 -10 -109 380 4 3 3 -5 -59 330 5 8 14 -10 -109 380 4 3 3 -5 -59 330 5 8 14 -10 -109 380 4 3 3 -5 -59 330 5 8 14 -10 -109 380 4 3 3 -5 -59 380 4 4 3 3 -5 -59 -59 -59 -59 -59 -59 -59 -59 -59 -	6 7	7		
20 192 80				
15 1 1 1 2 3 4 5 10 92 18.0 3 5 7 - </td <td></td> <td></td> <td> </td>				
15 14.2 13.0 3 4 5 10 <t< td=""><td>6 6</td><td>6 · · · · · · ·</td><td>· · · · · · · </td></t<>	6 6	6 · · · · · · ·	· · · · · · ·	
15 142 130 10 <				
10 9.2 18.0 3 5 7 10 9.2 18.0 3 5 7 5 4.2 23.0 9 11 0 0.8 28.0 -0.0 -0.0 -0.0 -5 -5.9 33.0 -0 -0.0 -0.0 -0.0 -10 -10.9 38.0 4 3 3 -0 -0 -15 -15.9 43.0 2 2 3 -0 -0 -0 -15 -15.9 48.0 -0 <			<u></u>	
10 9.2 18.0 3 5 7 5 4.2 23.0 9 11 1.1		′ · · • •14 ·		
92 180 3 5 7 5 42 230 5 9 11 0 0.8 28.0 4 9 10 -5 -59 330 5 8 14 -10 -10.9 38.0 4 3 3 -15 -15.9 430 - -12 -20.9 48.0 - -20 -20.9 48.0 - -10				
5 42 230 5 9 11 0 -08 280 4 9 10 -5 -59 330 5 8 14 -10 -10.9 38.0 -4 3 3 -15 -15.9 43.0 2 2 3 -20 -20.9 48.0 -4 -4 -4	6 9			
5 4.2 23.0	+ +		· · · · · · ·	
0				
0 -0.8 -0.9 -0.8 -0.9 -0.9 -0.9 -0.0 -0.8 -0.9 -0.0 -0.8 -0.9 -0.0 -0.9 -0.0 -0.0 -0.9 -0.0 -0.0 -0.0 -0.9 -0.0 -0.				
-10 -10 -10 -10 -10 -15 -15 -20 -20 -20 -20 -20 -20 -20 -20				
-5 -5.9 -5.9 -5.9 -5.9 -5.9 -10				
-5 -5.9 33.0 -10 -10 -10.9 38.0 -10.9 38.0 -10.9 38.0 -10.9 -10.9 38.0 -10.9				
-10 -10.9 38.0 -10.9 38.0 -10.9 38.0 -15.9 43.0 -20.9 48.0 -20.9 48.0 -20.9 48.0 -5.0 1 1				
-10 -10 -10 -9 -38.0				
-10 -10.9 38.0				
-15 -15.9 43.0 2 2 3 -20 -20.9 48.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\frac{-25}{-25.9} + \frac{1}{53.0}$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
-30.9 + 58.0 + 5 + 4 + 5 + 4 + 5 + 4 + 5 + 4 + 5 + 5				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

SHEET 6 OF 6

AYNOR SWAM	1P					
					GROUN	ID WTR (ft)
OFFSET 6 ft	RT		ALIGNMENT -L-		0 HR.	N/A
NORTHING 9	977,850		EASTING 2,706,549		24 HR.	FIAD
	RILL METHOD	Mud	Rotary			Automatic
COMP. DATE			SURFACE WATER DEPT			
11	AMP.	L O G	SOIL AND ROC	K DESC	RIPTION	I
	<u>NO. /MOI</u>	G				
			-72.4 GRAY CLAY WITH WET (YORKTO) (con	WN FOF	RAGMEI	99.5