

ECS Southeast, LLP

Bridge Foundation Design Recommendations

Bridge No. 015 on SR 1147 (Nettle Knob Road) over South Beaver Creek

WBS No.: 17BP.11.R.161 TIP No.: N/A West Jefferson, Ashe County, North Carolina

ECS Project No. 09:29362

April 27, 2022

"Setting the Standard for Service"

April 27, 2022

Mr. Hardy Willis, P.E. Vaughn & Melton Consulting Engineers 1318-F Patton Avenue Asheville, North Carolina 28806

ECS Project No.:09:29362

Reference: Bridge Foundation Design Recommendations Bridge No. 015 on SR 1147 (Nettle Knob Road) over South Beaver Creek WBS Number: 17BP.11.R.161 TIP Number: N/A County: Ashe

Dear Mr. Willis:

ECS Southeast, LLP (ECS) is pleased to submit the Bridge Foundation Design Recommendations Report associated with design and construction of Bridge No. 015 on SR 1147 (Nettle Knob Road) over South Beaver Creek in West Jefferson, Ashe County, North Carolina. This work was performed in general accordance with ECS Proposal No. 09-28001PR, dated March 11, 2021.

Our design is based on NCDOT Standard Load Tables and project information provided to us by Vaughn & Melton. This report contains the foundation recommendations, the Structure Subsurface Investigation, and supporting calculations.

ECS Southeast, LLP appreciates the opportunity to assist you during this phase of the project. If you have questions concerning this report, please contact our office at 704-525-5152.

Respectfully,

ECS SOUTHEAST, LLP

DocuSigned by: kelly de Montbrun

Kelly N. de Montbrun. P.E. Senior Project Engineer KdeMontbrun@ecslimited.com

WBS No:	17BP.11.R.161	County:	Ashe	
FOUNDATIO	IN RECOMMENDATION NOTES ON PLANS			

1) FOR PILES, SEE PILES PROVISION AND SECTION 450 OF THE STANDARD SPECIFICATIONS.

2) FILL THE BOTTOM 3 FT OF HOLES FOR PILE EXCAVATION AT END BENT NO. 1, END BENT NO. 2, AND THE WING WALL PILE WITH CONCRETE AND THE REST OF HOLES WITH CLASS II OR III SELECT MATERIAL THAT MEETS SECTION 1016 OF THE STANDARD SPECIFICATIONS.

FOUNDATION RECOMMENDATION SPECIAL NOTES ON PLANS

- 1) DRILLED-IN PILES ARE REQUIRED FOR END BENT NO. 1. EXCAVATE HOLES TO A TIP ELEVATION NO HIGHER THAN 3,005 FT (LT) AND 3,001 FT (RT) WITH THE REQUIRED TIP RESISTANCE AND A PENETRATION OF AT LEAST 5 FT INTO WEATHERED ROCK / ROCK. FOR PILE EXCAVATION, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.
- 2) DRILLED-IN PILES ARE REQUIRED FOR END BENT NO. 2. EXCAVATE HOLES TO A TIP ELEVATION NO HIGHER THAN 3,002 FT (LT) AND 3,008 FT (RT) WITH THE REQUIRED TIP RESISTANCE AND A PENETRATION OF AT LEAST 5 FT INTO WEATHERED ROCK / ROCK. FOR PILE EXCAVATION, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.
- 3) A DRILLED-IN PILE IS REQUIRED FOR THE WING WALL AT END BENT NO. 2. EXCAVATE HOLE TO A TIP ELEVATION NO HIGHER THAN 3,002 FT AND A PENETRATION OF AT LEAST 5 FT INTO WEATHERED ROCK / ROCK. FOR PILE EXCAVATION, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.
- 4) PZ 27 SHEETING IS TO BE DRIVEN IN FRONT (STREAM SIDE) OF THE HP 12X53 PILES AT END BENT NO. 1 TO BE USED FOR A VERTICAL FACE.
- 5) SHEET PILES SHALL BE DRIVEN TO REFUSAL. REFUSAL IS ESTIMATED TO BE AT ELEVATION 3,010 FT (LT) AND 3,006 FT (RT) FOR END BENT NO. 1.
- 6) PZ 27 SHEETING IS TO BE DRIVEN IN FRONT (STREAM SIDE) OF THE HP 12X53 PILES AT END BENT NO. 2 TO BE USED FOR A VERTICAL FACE.
- 7) SHEET PILES SHALL BE DRIVEN TO REFUSAL. REFUSAL IS ESTIMATED TO BE AT ELEVATION 3,007 FT (LT) AND 3,013 FT (RT) FOR END BENT NO. 2.

WBS	No: 17BP.11.R.161	County: Ashe MMENTS CREATE A VERTICAL FACE AT END BENT NO. 1 AND END BENT NO. 2.		
FOU	NDATION RECOMMENDATION COMMENTS			
1)	2-27 SHEETING WILL BE USED TO CREATE A VERTICAL FACE A	AT END BENT NO. 1 AND END BENT NO. 2	2.	

- 2) CLASS II RIP RAP WILL ALSO BE USED FOR SCOUR PROTECTION AT END BENT NO. 1 AND END BENT NO. 2.
- 3) NO WAITING PERIOD IS REQUIRED AT EITHER END BENT PRIOR TO CONSTRUCTION.
- 4) AVERAGE PILE LENGTHS ARE BASED ON PLUMB PILES FROM THE BOTTOM OF CAP ELEVATION TO THE ANTICIPATED TIP ELEVATION, ROUNDED UP TO THE NEAREST 5 FEET.
- 5) PDA WILL NOT BE USED TO MONITOR DRIVING STRESSES AT END BENT NO. 1 AND END BENT NO. 2.
- 6) PROJECT SLOPES SHOULD BE DESIGNED AT A MAXIMUM INCLINATION OF 2H:1V.
- 7) BASED ON THE BORING LOGS, A GEOTECHNICALLY ADJUSTED SCOUR ELEVATION (GASE) OF 3,007 FT AT END BENT NO. 1 AND 3,009 FT AT END BENT NO. 2 IS RECOMMENDED FOR USE IN PREPARING THE BRIDGE SURVEY & HYDRAULIC DESIGN (BSR) REPORT.

		su	(Blank e	Y OF PIL ntries india	E INFORMAT	TION/IN applicable	STALLA	TION ^{re})				
					Driven Piles			Predrilling for Piles*		I	Drilled-In Piles	
Factored Resistance per Pile TONS	Pile Cut-Off (Top of Pile) Elevation FT	Estimated Pile Lenth per Pile FT	Scour Critical Elevation FT	Min Pile Tip (Tip No Higher Than) Elev FT	Required Driving Resistance (RDR)** per Pile TONS	Total Pile Redrives Quantity EACH	Predrilling Length per Pile Lin FT	Predrilling Elevation (Elev Not To Predrill Below) FT	Maximum Predrilling Dia INCHES	Pile Excavation (Bottom of Hole) Elev FT	Pile Exc Not In Soil per Pile Lin FT	Pile Exc In Soil per Pile Lin FT
70		15								3005.0	4.8	5.4
70	See Substructure	20								3001.0	5.3	8.9
70	Blanc	15								3002.0	4.8	8.2
70	r iaiis	10								3008.0	4.7	2.3
N/A		15								3002.0	5.9	6.3
uired for end be sistance + Fe	ents/bents with a p actored Downdr	redrilling length ag Load + Fa	and at the Co actored Dea	ntractor's option d Load + Non	n for end bents/bents w ninal Downdrag Re	with predrilling in $\frac{\Lambda}{2}$	nformation but Iominal Scou	no predrilling length TResistance				
	Factored Resistance per Pile TONS 70 70 70 70 70 0 N/A guired for end b sistance + Fo	Factored Resistance per Pile TONS Pile Cut-Off (Top of Pile) Elevation FT 70 See Substructure Plans 70 Pile Cut-Off 70 FT 70 Pile Cut-Off 70 FT 70 See Substructure Plans N/A Pile Cut-Off sistance + Factored Downdn	Factored Resistance per Pile TONS Pile Cut-Off (Top of Pile) Elevation FT Estimated Pile Lenth per Pile FT 70 See Substructure Plans 15 70 See Substructure Plans 15 70 Plans 15 70 N/A 15 10 15 10 N/A 15 10 sistance + Factored Downdrag Load + Factored	Factored Resistance per Pile TONS Pile Cut-Off (Top of Pile) Elevation FT Estimated Pile Lenth per Pile FT Scour Critical Elevation FT 70 70 70 70 70 N/A See Substructure Plans 15 20 15 10 15 10 15 70 70 N/A See Substructure Plans 15 10 15 70 70 N/A Pile Substructure Plans 15 10 15 90 15 10 15 15 10 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 16 15 15 17 15 15	SUMMARY OF PILL (Blank entries india) Factored Resistance per Pile TONS Pile Cut-Off (Top of Pile) Elevation FT Estimated Pile Lenth per Pile FT Scour Critical Elevation FT Min Pile Tip (Tip No Higher Than) Elev FT 70 See Substructure Plans 20 Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"C	SUMMARY OF PILE INFORMAT (Blank entries indicate item is not a (Blank entries indicate item is not a (Blank entries indicate item is not a (Blank entries indicate item is not a) Factored Resistance per Pile TONS Pile Cut-Off (Top of Pile) Elevation FT Estimated Pile Lenth per Pile FT Scour Critical Elevation FT Min Pile Tip (Tip No Higher Than) Elev FT Required Driving Resistance (RDR)** per Pile TONS 70 70 70 70 N/A 15	SUMMARY OF PILE INFORMATION/IN (Blank entries indicate item is not applicable Factored Resistance per Pile TONS Pile Cut-Off (Top of Pile) Elevation FT Estimated Pile Lenth per Pile FT Scour Critical Elevation FT Min Pile Tip (Tip No Higher Than) Elev (RDR)** per Pile FT Total Pile Redrives Quantity EACH 70 70 70 70 N/A 15 10 15 10 15 10 N/A 15 10 15 10 15 10 15 10 15 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	SUMMARY OF PILE INFORMATION/INSTALLA (Blank entries indicate item is not applicable to structure (Blank entries indicate item is not applicable to structure) Factored Resistance per Pile TONS Pile Cut-Off (Top of Pile) Elevation FT Estimated Pile Lenth per Pile Elevation FT Scour Critical Elevation FT Min Pile Tip (Tip No Higher Than) Elev FT Required Driving Resistance (RDR)** per Pile Countity FT Predrilling Length per Pile Lin FT 70 70 70 N/A See Substructure Plans 15 10 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 10 15 15 10 10 15 15 10 10 15 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	SUMMARY OF PILE INFORMATION/INSTALLATION (Blank entries indicate item is not applicable to structure) Factored Resistance per Pile TONS Pile Cut-Off (Top of Pile) Estimated Pile Lenth per Pile FT Scour Critical Elevation FT Driven Piles Predrilling Predrilling Elevation (Elev Not To Predrilling No Higher Than) Elev (RDR)** per Pile TONS Pile Redrives Quantity Elevation (Elev Not To Predrilling No Higher Than) Elev (RDR)** per Pile TONS Predrilling 15 Predrilling Elevation (Elev Not To Predrilling No Higher ToNS) 70 See Substructure Plans 15	SUMMARY OF PILE INFORMATION/INSTALLATION (Blank entries indicate item is not applicable to structure) Factored Pile Cut-Off (Top of Pile) Estimated Pile Lenth PT Scour Critical Elevation FT Driven Piles Predrilling Driving Resistance Predrilling Pile Redrives Quantity Predrilling Length Predrilling Lin FT Maximum Predrilling Length Predrilling Lin FT 70 70 70 70 70 70 70 70 70 70 70 70 70 7	SUMMARY OF PILE INFORMATION/INSTALLATION (Blank entries indicate item is not applicable to structure) Factored Resistance per Pile Pile Cut-Off (Top of Pile) Estimated Pile Lenth per Pile Ilevation FT Scour Critical Inper Pile Ilevation FT Driven Piles Predrilling Predrilling Predrilling Predrilling Predrilling Dia Illing FT Pile Excavation (Bottom of Hole) Elevation (Bottom of Hole) Elev IT ToNS Pile Required TONS Total Pile Required Inper Pile Ilevation (Elev Not To Predrilling Dia Illing Dinformation Dia Ill	SUMMARY OF PILE INFORMATION/INSTALLATION Gene and the problem of th

PILE DESIGN INFORMATION

(Blank entries indicate item is not applicable to structure)

End Bent/ Bent No, Pile(s) #-# (e.g., "Bent 1, Piles 1-5")	Factored Axial Load per Pile TONS	Factored Downdrag Load per Pile TONS	Factored Dead Load* per Pile TONS	Dynamic Resistance Factor	Nominal Downdrag Resistance per Pile TONS	Nominal Scour Resistance per Pile TONS	Scour Resistance Factor (Default = 1.00)
End Bent No. 1, Pile 1-7	70						
End Bent No. 2, Piles 1-7	70						

*Factored Dead Load is factored weight of pile above the ground line.

NOTES:

1. The Pile Foundation Tables are based on the bridge substructure design and foundation recommendations sealed by a North Carolina Professional Engineer (Michael J. Walko, #026917) on 4-27-2022.

Total Pile Driving Equipment Setup quantity (not shown in Pile Foundation Tables) equals the number of driven piles, i.e., the number of piles with a Required Driving Resistance.
 The Engineer will determine the need for PDA Testing and Pipe Pile Plates when PDAs or plates may be required.

CAROL HI CAROL	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH													
SEAL 20777 MG INE S GUN			FO	F UN TA	PILE	ΓΙΟΝ S								
SIGNATURE DATE			REV	ISIONS	;		SHEET NO.							
DOCUMENT NOT CONSIDERED	NO.	BY:	DATE:	NO.	BY:	DATE:	TOTAL							
FINAL UNLESS ALL	1			3			SHEETS							
SIGNATURES COMPLETED	2			4			1							

PROJECT NO. 17BP.11.R.161 ASHE

STATION: 13+93.07 -L-

COUNTY

REPLACE BRIDGE No. 015 ON SR 1147 (NETTLE KNOB ROAD) OVER SOUTH BEAVER CREEK

SUPPORTING DOCUMENTATION

STATE

N.C

STATE PROJECT REFERENCE NO

17BP.11.R.161

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY ASHE

PROJECT DESCRIPTION REPLACE BRIDGE NO. 15 ON ST 1147 (NETTLE KNOB ROAD) OVER SOUTH **BEAVER CREEK**

CONTENTS

17BP.11.R.16

REFERENCE:

SHEET NO. 1 2.2A 2B, 2C 3

4-18

DESCRIPTION TITLE SHEET LEGEND (SOIL & ROCK) SUPPLEMENTAL LEGEND (GSI) SITE PLAN BORE LOGS & CORE REPORTS

PERSONNEL A. BLACKMORE

GEOLOGIC EXPLORATION

SHEETS

21

NO.

1

INVESTIGATED BY ECS SOUTHEAST, LLP

DRAWN BY <u>K. DE MONTBRUN, P.E.</u>

CHECKED BY <u>M. WALKO, P.E.</u>

SUBMITTED BY ______ ECS_SOUTHEAST, LLP

DATE MARCH 2022

Prepared in the Office of: ECS SOUTHEAST, LLP 1812 CENTER PARK DRIVE, SUITE D CHARLOTTE, NC 28217 (704) 525-5152 [PHONE] (704) 357-0023 [FAX] NC REGISTERED ENGINERING FIRM # F-1078

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOLI TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEICH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENCINEERING UNIT AT 1999 TO7-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOCS, ROCK CORES AND SOLI TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVALIABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE, THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHT THE OBSERVED WATER LEVELS OR SOLI MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOLI MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITION INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS. METHOD. TIONS

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED. ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SIDE FOR MANY REASON RESULTING FROM THE ACTUAL CONDITIONS.

- NOTES: I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. 2. BY HANVIG REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY MAVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

NA

gn Envelope ID: D7CB11C ■	C5-1CE1-4B6C-9452-DCDE4A	SFF4BF	PROJECT REFERENCE NO. SHEET
			17BP.11.R.161 2
	NORTH CAROLI	NA DEPARTA	MENT OF TRANSPORTATION
SI	GEOTECHN	ICAL EN	IGINEERING UNIT
SOIL	AND ROCK LEG	GEND, TERMS (PAGE	<i>T</i> , <i>SYMBOLS, AND ABBREVIATIONS</i> <i>t</i> OF 2)
SOIL IS CONSIDERED UNCONSOLIDA	SOIL DESCRIPTION ATED, SEMI-CONSOLIDATED, OR WEATHERED EA	ARTH MATERIALS THAT CAN	CRADATION WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO
BE PENETRATED WITH A CONTINUO ACCORDING TO THE STANDARD PE IS BASED ON THE AASHTO SY	DUS FLIGHT POWER AUGER AND YIELD LESS ENETRATION TEST (AASHTO T 206,ASTM D15 YSTEM. BASIC DESCRIPTIONS GENERALLY INC	THAN 100 BLOWS PER FOOT 86). SOIL CLASSIFICATION LUDE THE FOLLOWING:	UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SA GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZE
CONSISTENCY, COLOR, TEXTURE, MOI AS MINERALOGICAL COMPOS VERY STIFF.GRAY.SILTY CLAY.	ISTURE, AASHTO CLASSIFICATION, AND OTHER SITION, ANGULARITY, STRUCTURE, PLASTICITY, MOIST WITH INTERBEDDED FINE SAND LAYERS.F	PERTINENT FACTORS SUCH ETC. FOR EXAMPLE. WGHLY PLASTIC.A-7-6	ANGULARITY OF GRAINS THE ANGULARITY OF ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:
SOIL LEGE		ATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED. MINERALOGICAL COMPOSITION
CLASS. (≤ 35% PASSING	RIALS SILI-CLAY MATERIALS *200) (> 35% PASSING *200)		MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.
CLASS. A-1-a A-1-b A-2-4 A	A-2-5 A-2-6 A-2-7 A-7-5 A-2-5 A-2-6 A-2-7 A-7-5 A-7-6	A-1, A-2 A-4, A-5 A-3 A-6, A-7	
SYMBOL			MODERATELY COMPRESSIBLE LL \$ 31 - 50 HIGHLY COMPRESSIBLE LL \$ 50
*10 50 MX *40 30 MX 50 MX 51 MN		RANULAR SILT- MUCK, SOILS SOILS PEAT	
*200 15 MX 25 MX 10 MX 35 MX 3 MATERIAL	35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN		ORGANIC MATERIAL SOILS OTHER MATERIAL TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITLE OF ORGANIC MATTER 2 - 5% 5% TRACE 1 - 10%
PASSING #40 LL 40 MX 4 PI 6 MY NP 10 MY 1	41 MN 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN	SOILS WITH LITTLE OR	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% 20% HIGHLY 35% AND
GROUP INDEX 0 0 0	4 MX 8 MX 12 MX 16 MX NO MX	MODERATE ORGANIC AMOUNTS OF SOILS	GROUND WATER
USUAL TYPES STONE FRAGS. OF MAJOR GRAVEL, AND SAND GRAVEL	TY OR CLAYEY SILTY CLAYEY WEL AND SAND SOILS SOILS	MATTER	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING ✓ STATIC WATER LEVEL AFTER ²⁴ HOURS
GEN. RATING CEN. RATING CEN. RATING	GOOD FAIR TO POOR	FAIR TO POOR UNSUITARI F	✓ PW PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA
AS SUBGRADE PI OF A-7-5 SUB	3GROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS >	PUUR 0.0000000000000000000000000000000000	O-MM- SPRING OR SEEP
CO	NSISTENCY OR DENSENESS	RANGE OF UNCONFINED	MISCELLANEOUS SYMBOLS
PRIMARY SOIL TYPE CONSI	PENETRATION RESISTENCE (N-VALUE)	COMPRESSIVE STRENGTH (TONS/FT ²)	ROADWAY EMBANKMENT (RE) 2000 JIP & DIP DIRECTION WITH SOIL DESCRIPTION DIP & CONCUSTRUCTURES
GENERALLY VERY GRANULAR MEDIUN	LOOSE < 4 DOSE 4 TO 10 M DENSE 10 TO 30	NZA	SUL SYMBOL SYMBOL SUL SYMBOL SUL SYMBOL SYMBOL
(NON-COHESIVE) VERY	ENSE 30 TO 50 DENSE > 50		THAN ROADWAY EMBANKMENT AUGER BORING CONE FENE
GENERALLY SC	(SOFT < 2 OFT 2 TO 4	< 0.25 0.25 TO 0.5	INFERRED SOIL BOUNDARY
SILT-CLAY MEDIUM MATERIAL ST (COHESIVE) VERY	M STIFF 4 TO 8 TIFF 8 TO 15 STIFF 15 TO 30	0.5 TO 1.0 1 TO 2 2 TO 4	
Н	ARD > 30	> 4	
U.S. STD. SIEVE SIZE	4 10 40 60 200	270	UNCLASSIFIED EXCAVATION -
	4.76 2.00 0.42 0.25 0.075 GRAVEL COARSE FINE	SILT CLAY	USED IN THE TOP 3 UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 UNDERCUT UNCLASSIFIED EXCAVATION - EMBANKMENT OR BACK
(BLDR.) (COB.)	(GR.) SAND (CSE. SD.) (F SD.)	(SL.) (CL.)	ABBREVIATIONS
ыкаім мм 305 75 SIZE IN. 12 3	2.0 0.25	۵.005 م.005 <u>م.</u>	HIN - HUUCH NELUSAL MELL- MELLIM VSI - VANE SHEAR BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MODE-N MODERATELY 7. INIT WFIGHT
SOIL MOISTURE SCALE	STURE - CORRELATION OF T		CPT - CONE PENETRATION TEST NP - NON PLASTIC $\dot{\gamma}_{ m d}$ - DRY UNIT WEIG CSE COARSE ORG ORGANIC
(ATTERBERG LIMITS)		ID. VERY WET LISUALLY	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVI DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK 0 - VIOL DATIO
	(SAT.) FROM BELOW	THE GROUND WATER TABLE	е - улы катто SL - заки, закит SS - SPLT SPOON F - FINE SL - SILT, SILTY ST - SHELBY TUBE FOSS, - FOSSILIFEROUS SL - SL GHTLY RG - RAAK
PLASTIC RANGE <	- WET - (W) SEMISOLID; RE ATTAIN OPTIM	QUIRES DRYING TO UM MOISTURE	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED FRAGS FRAGMENTS w - MOISTURE CONTENT CBR - CALIFORNIA
PLL PLASTIC LIMIT			HI HIGHLY V - VERY RATIO
OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT	- MUIST - (M) SOLID; AT OR	NEAR UPTIMUM MOISTURE	DRILL UNITS; ADVANCING TOOLS; HAMMER TYPE;
	- DRY - (D) REQUIRES ADD ATTAIN OPTIM	ITIONAL WATER TO UM MOISTURE	
	PLASTICITY		
NON PLASTIC	PLASTICITY INDEX (PI) 0-5	DRY STRENGTH VERY LOW	
SLIGHTLY PLASTIC MODERATELY PLASTIC	6-15 16-25 26 OR MORE	SLIGHT MEDIUM	VANE SHEAR TEST
		nion	PORTABLE HOIST X TRICONE STEEL TEETH X HAND AUGER TUNG,-CARB. GUINDING 2000
DESCRIPTIONS MAY INCLUDE COL	OR OR COLOR COMBINATIONS (TAN, RED, Y	ELLOW-BROWN, BLUE-GRAY).	X DIEDRICH D-50 X CORE BIT SUUNUING ROU
MODIFIERS SUCH AS LIGHT	T, DARK, STREAKED, ETC. ARE USED TO DES	CRIBE APPEARANCE.	

PROJECT REFERENCE NO.

17BP.11.R.161

SHEET NO.

2	Λ
L	A

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS (PAGE 2 OF 2)

HABO ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN DEPERFERENTED BY A SINGL OF WEATHERED ROCK	
SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 50 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN PEPEPERSENTED BY A JOING OF WEATHERED ROOM.	
BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN DEPERFECTIOR A ZONE OF WEATHERED ROCK	
	THAT CONTAIN SAND.
ACOCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY	MINERALS, OR HAVING
WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLA	ATE, ETC.
CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT SURFACE. SURFACE. SURFACE.	BOVE THE GROUND
ROCK (CR) WOLLS, GABBRO, SCHIST, ETC.	IM CARBONATE.
NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED. ROCK (NCR) ROCK TRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON BOCK TYPE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON BOCK TYPE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED. BOCK TYPE TO COARSE GRAIN METAMORPHIC FIL	SLOPE OR AT BOTTOM
COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE	CORE BARREL DIVIDED
KEATHERING Dike - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE	RE OF ADJACENT
FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER HAMMER IF CRYSTALLINE.	D FROM THE
VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN.	
(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	
SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI.) I INCH. OPEN JOINTS MAY CONTAIN CLAY, IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR SUBS RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.	NER
CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLA MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN FI DAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND	NES. DISLODGED EROM
(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS PARENT MATERIAL.	
WITH FRESH ROCK.	TED BY THE STREAM.
MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAQLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	D TRACED IN THE
(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES 'CLUNK' SOUND WHEN STRUCK.	CCURRED.
SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT	SMALL COMPARED TO
ISEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EPACHENES OF STORNE FORCE WILL BE PACHENES OF STORNE FOR USED FOR	IONS.
IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLING IN SOILS
VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAMEWING OF STRONG ROCK	VEL BY THE PRESENCE
(V SEV.) REMAINING, SAPHOLITE IS AN EXAMPLE OF HOLK WEATHERED TO A DEGREE THAT UNLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u> <u>RESIDUAL (RES.) SOIL</u> - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK	
COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.	BY TOTAL LENGTH OF AL LENGTH OF CORE
ROCK HARDNESS SAPRO ITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR	FABRIC OF THE PARENT
VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES ROCK.	
SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH WARD SECHAEN HARD SECHAEN TO DETACH WARD SECHAEN	HICKNESS AND LACED PARALLEL TO
MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	ION ALONG A FAULT
HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF	BLOWS (N OR BPF) OF
MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEDIORIST'S PICK.	N OF 1 FOOT INTO SOIL PENETRATION EQUAL
SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT, SMAIL, THIN TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.	VERED DIVIDED BY
PIECES CAN BE BROKEN BY FINGER PRESSURE.	ESCRIBED BY TOTAL
VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY EINGEPAUL	4 INCLES DIVIDED DI
TERM SPACING TERM THICKNESS BENUM MAKK:	
VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET FL FVATION	FEET
WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	· • • • •
CLOSE 0.16 TO I FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET NOTES:	_
VERY LLUSE LESS THAN ØJ6 FEET THICKLY LAMINATED Ø.008 - 0.03 FEET BORINGS LOCATED USING TRIMBLE GEO 7X HANDHELD UN	III.
INDURATION FILED IN AFTER DRILLING	
FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS: GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.	
EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE: SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14

ign Envelope ID: D7CB11C5-1CE1-4B6C-9452-DCDE4A5FF4BF		PROJEC	T REFERENCE NO.		SHEET NO.
		17BP	.11.R.16	51	2B
NORTH CAROLINA DEPART DIVISION O GEOTECHNICAL E SUBSURFACE	IMENT O DF HIGHV NGINE	F TRANSF VAYS EERING ESTIC	PORTATIO GUNIZ	^N T ON	
AASHTO LRFD Figure 10.4.6.4-1 - Determination of GSI for Jointed	CAL STRI SIGN SPA Rock Mass (Ma	ENGTH IN ECIFICATIO	DEX (GS. ONS (PAC 2000)	I) TABLE GE 1 OF	:S 2)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.	VERY GOOD Very rough, fresh unweathered surfaces	Surfaces Surfaces	ALL FAIR DE FAIR DE Smooth, moderately weathered and altered surfaces	<pre>POOR Slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments</pre>	V VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	90			N/A	N/A
BLOCKY - well interlocked un- disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets		70 60			
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets		e	50		
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity			TO 33	30	
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces				20	
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	N/A	N/A			10

n Envelope ID: D7CB11C5-1CE1-4B6C-9452-DCDE4A5FF4BF			PROJECT REF	FERENCE NO.		SHEET NO.
		1	7BP.1	1.R.16	1	2C
NORTH CAROLINA DEPAI DIVISION GEOTECHNICAL SUBSURFACE SUPPLEMENTAL LEGEND, GEOLOG	RTMEN OF HI ENGI IN	t of th GHWAYS INEER WES VES	RANSPOR RING TIGA TH INDE	RTATION UNIT 4 TI (EX (GSI)	DN TABLES	5
FROM AASHTO LRFD BRIDGE D. AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tector	ESIGN	SPECIF	ICATION geneous Rock	S (PAGE Masses (Mari	E 2 OF 2 nos and Hoek	?) , 2000)
GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos.P and Hoek E.,2000)						
From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more ealistic than giving GSI = 35. Note that the doek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis.	SURFACE CONDITIONS OF DISCONTINUITIES (Predominantly bedding planes)	VERY GOOD - Very Rough, fresh unweathered surfaces		FAIR - Smooth, moderately weathered and altered surfaces	POOR - Very smooth, occasionally slickensided surfaces with compact coatings or fillings with angular fragments	VERY POOR - Very smooth, slicken- sided or highly weathered surfaces with soft clay coatings or fillings
A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability.		70 60	A			
B. Sand- stone with thin inter- layers of siltstone amounts B. Sand- D. Siltstone or silty shale with sand- stone layers amounts	E. Weak si istone or clayey shale with sandstone layers		50 B 40	СІ	D E	
 C. D. E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H. 	t, sıltstone ed g an e			30	F 20	
G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers	f silty ø pockets med			¢		+ ¹⁰
→ Means deformation after tectonic disturbance						

GEOTECHNICAL BORING REPORT BORE LOG

COUNTY ASHE WBS 17BP.11.R.161 TIP N/A GEOLOGIST A. Blackmore SITE DESCRIPTION Bridge 015 on SR 1147 (Nettle Knob Road) over South Beaver Creek **GROUND WTR (ft)** OFFSET 12 ft LT **STATION** 13+79 ALIGNMENT -L-BORING NO. EB1-A 0 HR. N/A COLLAR ELEV. 3,018.3 ft TOTAL DEPTH 19.2 ft NORTHING 956,979 EASTING 1,273,298 24 HR. 4.3 DRILL RIG/HAMMER EFF./DATE GEO366 Diedrich D-50 68% 07/15/2020 DRILL METHOD Core Boring HAMMER TYPE Automatic DRILLER J. Messick START DATE 12/28/21 COMP. DATE 12/28/21 SURFACE WATER DEPTH N/A DRIVE **BLOW COUNT BLOWS PER FOOT** SAMP. L ELEV DEPTH 0 SOIL AND ROCK DESCRIPTION ELEV (ft) (ft) 100 0.5ft 0.5ft 0.5ft 0 25 50 75 NO. моі (ft) G ELEV. (ft) DEPTH (ft) 3020 3,018.3 GROUND SURFACE 0.0 3,018.3 00 ROADWAY EMBANKMENT 6 5 Μ ٠ Soft to Stiff, Brown, Fine to Coarse Sandy 3015 3,014.8 SILT (A-4), with trace rock fragments 3.5 10 1 -M-. . 3,012.8 5.5 3,012.3 6.0 ALLUVIAL . . 1 W Soft, Brown-Black, Fine to Coarse Sandy SILT (A-4), with trace mica . . 3010 3.009.8 3,009.8 8.5 100/0.4 009 100/0.4 WEATHERED ROCK 60/0.0 . . Brown (BIOTITE GNEISS) . . . CRYSTALLINE ROCK 3005 Gray (BIOTITE GNEISS) • 3000 2,999.1 19.2 Boring Terminated at Elevation 2,999.1 ft In Crystalline Rock (BIOTITE GNEISS) 1/21/22

SHEET 4

WBS	3 17BP.	11.R.1	61		TIP	N/A		С	OUNT	ΥA	SHE		kmore						
SITE	DESCR	IPTION	l Brid	lge 015 o	n SR 1	147 (I	Nettle Kn	ob Ro	ad) ov	er S	outh Bea	aver Creek							
BOR	ING NO.	EB1-	A		STA	ΓΙΟΝ	13+79			OF	FSET 1	2 ft LT	ALIGNMENT -L-		0 HR.	N/A			
COL	LAR ELE	EV. 3,	018.3	ft	тоти	AL DE	PTH 19.	.2 ft		NO	RTHING	956,979	EASTING 1,273,298	EASTING 1,273,298					
DRIL	L RIG/HAN	MMER E	FF./DA	TE GEO3	66 Diec	Irich D-	50 68% 07/	15/2020)			DRILL METHOD C	ore Boring	HAMM	ER TYPE	Automatic			
DRIL	LER J.	Messi	ck		STAF	RT DA	TE 12/2	8/21		со	MP. DA	FE 12/28/21	SURFACE WATER DE	PTH N	/A				
COR	E SIZE	NQ-2			τοτ	AL RU	N 10.0 f	t											
ELEV	RUN FL FV	DEPTH	RUN	DRILL	REC.	JN RQD	SAMP.	STR REC.	ATA RQD	ог									
(ft)	(ft)	(ft)	(ft)	(Min/ft)	(ft) %	(ft) %	NO.	(ft) %	(ft) %	Ğ	ELEV. (f	t)				DEPTH (ft)			
3009.1	3 000 1-	- 0.2		NL 00/0 0	(1.0)	(1.0)			(0.0)				Begin Coring @ 9.2 ft						
		- 5.2	5.0	1:03/1.0	(4.8) 96%	(4.8) 96%		(9.8) 98%	(9.8) 98%		3,009.1	Fresh, Hard, Gra	y BIOTITE GNEISS with Very	Wide Frac	ture Spaci	9.2 ng			
3005	2 004 1	-		1:27/1.0							-	R	EC = 98%, RQD = 98%, GSI	= 80-85					
	3,004.1	- 14.2	5.0	1:28/1.0	(5.0)	(5.0)					-								
2000	-	-		1:13/1.0	100%	100%					-								
3000	2,999.1	19.2		1:12/1.0 1:26/1.0						X	2,999.1	<u> </u>				19.2			
	-	-									-	Boring Terminate	d at Elevation 2,999.1 ft In Cr GNEISS)	ystalline Ro		E			
	-	-									-								
	-	-									-								
	-	-									-								
	-	-									-								
	-	-									-								
	-	_									-								
	-	-									-								
	-	_									_								
	_										_								
	-	[
	-	-									-								
	-	-									-								
	-	-									-								
	_	-									-								
	-	-									-								
	-	-									-								
	-	-									-								
	-	-									-								
	-	-									-								
1/22	-	-									-								
1/2	-	-									-								
.GDT	-	-									-								
DO	-										-								
z	-	-									-								
.GPJ	-	-									-								
GTR		-									-								
, GEO	-	-									-								
0.15	-	-									-								
N N N N N N N N N N N N N N N N N N N	-	L L									-								
ASH	-	_									-								
NGLE		_									-								
E SII	_	-									_								
Ö	-	L									_								
LOGO	-	_									-								
ž											-								

Ashe County Bridge 15

Rock Core Photographs: Boring - EB1-A

WBS	17BP.	11.R.1	61		Т	P	N/A				СС	DUN.	TY /	ASH	IE				GE	EOL	OG	IST	Α.	Black	more				
SITE	DESCR	IPTION	l Brid	ge 01	5 on S	R ′	1147	(Ne	ttle k	Knob	Roa	ad) o	ver S	Sout	h Bea	aver Cre	ek									GRC	DUN	D WT	R (ft)
BOR	ING NO.	EB1-	B		S	TA	TION	13	+53				OF	FSE	ET ´	18 ft RT			AL	IGN	IME	NT	-L-			ОН	R.		N/A
COL	LAR ELE	V. 3,	014.8	ft	Т	от	AL D	EPT	H 2	20.5 f	ť		NC	ORT	HING	956,9	976		EA	STI	NG	1,	273	259		24 H	R.		4.8
DRIL	RIG/HAI	MMER E	FF./DA	TE G	EO366	Died	drich [D-50 6	68% 0)7/15/2	2020					DRILL M	ИЕТНО	D (Core Bo	oring					HAM	MER TY	PE	Autom	atic
DRIL	LER J.	Messi	ck		S	TA	RT D	ATE	12	2/27/2	21		c	OMP	. DA	TE 12/2	27/21		SU	JRFA	ACE	E W/	ATE	r dei	PTH N	J/A			
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	BLC 0.5ft	0.5ft	UNT 0.5ft	0)	2	BLC 5	SWS	PER 50	FOO	от 75		100	SAMP. NO.	моі	L O I G	ELE	V. (ft)		SC)IL AI	ND RC	OCK DES	SCRIPTI	ON	DEF	<u>РТН (ft)</u>
3015 3010 3005 3000	3,014.8 3,011.3 3,008.8 3,006.3 3,006.3	- 0.0 - 3.5 - 6.0 - 8.5 - 11.5	3 2 2 73 60/0.0	5 1 10 27/0.2	12 2 16						- - - - - - - - - - - - - - - - - - -	· · · · · ·			 0/0.7 	,	м <u>w</u> w		3,014 3,010 3,000 3,000	4.8 0.8 7.8 6.3 3.3	M Sof	t, Gra	G ROA m De C ay, F e SA w Brov Gra	ROUN DWAY nse, G oarse AL ine to Ense, E ND (A /EATH wn (Bl(RYST ay (BIC	ID SURI FEMBAI Gray-Bro SAND (/ LUVIAL Coarse S Srown-Ta -2-4), wi IERED F DTITE G	ACE NKMEN Mn, Silty A-2-4) Sandy S an, Silty th little c SNEISS) ROCK NEISS)	Fine	to A-4) to 's	
2995	-	- - - -					· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·			 		 	· · ·				2,994	4.3									20.5
																						 Crys	stallin	e Roc	k (BIOTI	TE GNE	ISS)		

SITE DESCRIPTION Bridge 015 on SR 1147 (Nettle Knob Road) over South Beaver Creek BORING NO. EB1-B STATION 13+53 OFFSET 18 ft RT ALIGNMENT -L- COLLAR ELEV. 3,014.8 ft TOTAL DEPTH 20.5 ft NORTHING 956,976 EASTING 1,273,259	GROUN	ID WTR (ft)
BORING NO. EB1-B STATION 13+53 OFFSET 18 ft RT ALIGNMENT -L- COLLAR ELEV. 3,014.8 ft TOTAL DEPTH 20.5 ft NORTHING 956,976 EASTING 1,273,259	0 HR.	
COLLAR ELEV. 3,014.8 ft TOTAL DEPTH 20.5 ft NORTHING 956,976 EASTING 1,273,259		N/A
	24 HR.	4.8
DRILL RIG/HAMMER EFF./DATE GEO366 Diedrich D-50 68% 07/15/2020 DRILL METHOD Core Boring HAM	MER TYPE	Automatic
DRILLER J. Messick START DATE 12/27/21 COMP. DATE 12/27/21 SURFACE WATER DEPTH	I/A	
CORE SIZE NQ-2 TOTAL RUN 9.0 ft		
ELEV (ft) RUN ELEV (ft) DEPTH (ft) RUN (ft) DRILL RATE (min/ft) RUN (ft) RUN (ft) SAMP. (ft) STRATA REC. NO. L O (ft) DESCRIPTION AND REMARKS		DEPTH (ft)
3003.3 Begin Coring @ 11.5 ft		
3,003.3 11.5 3.0 N=60/0.0 (3.0) (9.0) 9.0) 3,003.3 CRYSTALLINE ROCK 2,35/1.0 2,35/1.0 100% 100% 100% Fresh, Hard, Gray BIOTITE GNEISS with Wide Fract	ire Spacing	11.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
2995		
2,994.3 20.5 4:48/1.0 5 2,994.3 Elevation 2,994.3 ft In Crystalline	Rock (BIOTIT	20.5 FE

Ashe County Bridge 15

Rock Core Photographs: Boring - EB1-B

End Run 1 14.5 ft

WB	3 17BP.	.11.R.1	61		TIP	N/A		C	OUNT	ΥA	SHE		GEOLOGIST A. Black	more		
SITE	DESCR		Brid	ge 015 o	n SR ′	1147 (1	Nettle Kn	ob Ro	ad) ov	ver S	outh Bea	aver Creek			GROUN	ID WTR (ft)
BOF	RING NO.	. EB2-	A		STA	ΓΙΟΝ	14+26			OF	FSET	14 ft LT	ALIGNMENT -L-		0 HR.	N/A
COL	LAR ELE	EV. 3,	017.1	ft	тот	AL DE	PTH 21.	0 ft		NO	RTHING	956,938	EASTING 1,273,326		24 HR.	Dry
DRIL	L RIG/HAI	MMER E	FF./DA	TE GEO3	66 Died	rich D-	50 68% 07/	15/2020)	1		DRILL METHOD C	ore Boring	HAMM	ER TYPE	Automatic
DRI	LLER J.	Messi	ck		STA	RT DA	TE 12/2	8/21		co	MP. DA	TE 12/28/21	SURFACE WATER DEF	, TH N/	A	
COF	RE SIZE	NQ-2			тот	AL RUI	N 10.0 f	t								
FI FV	RUN	DEPTH	RUN	DRILL	RI		SAMP	STR		L						
(ft)	ELEV (ft)	(ft)	(ft)	RATE (Min/ft)	(ft) %	(ft) %	NO.	(ft) %	(ft) %	O G	ELEV. (1	it)	DESCRIPTION AND REMARK	S		DEPTH (ft)
3006.	1												Begin Coring @ 11.0 ft			
3005	3,006.1	11.0	5.0	1:47/1.0 2:26/1.0	(5.0)	(5.0)		(9.9) 99%	(9.9) 99%	R	3,006.1	Fresh Hard Gra	CRYSTALLINE ROCK	/ide Fract	ure Spacir	11.0 na
	-	ŧ		2:13/1.0		10070		0070		P	-	Proof, Hard, Ord	FC = 99% ROD = 99% GSI =	80-85	are opuon	9
3000	3,001.1	16.0	50	2:15/1.0	(1 0)	(1 0)				P	-		-0 = 35%, $100 = 35%$, $001 =$	00-00		
3000		÷	0.0	2:56/1.0	98%	98%				P	-					
	2 006 1	21.0		2:50/1.0						P	-					21.0
	2,990.1	21.0		2.53/1.0							2,990.1	Boring Terminate	d at Elevation 2,996.1 ft In Crys	talline Ro	ock (BIOTI	TE
	-	ŧ									-		GNEISS)			
	-	ł									-	1) High N-values	in the alluvial layer due to cobb drilling	es encou	ntered dur	ing
		ŧ									-	2) A tri-cone bi	t was used to seat the casing a	fter SPT i	efusal was	5
	-	ŧ									-	enco	untered. Rock coring began at	11.0 feet		
	-	+									-					
	-	ŧ									-					
	-	ŧ									-					
	-	ŧ									-					
	-	ŧ									-					
		ŧ									-					
	-	ŧ									-					
	-	ŧ									-					
	-	F									-					
	-	ŧ									-					
	-	Ł									-					
	-	Ł									_					
	-	E									-					
		F									_					
	-	F									-					
N	-	Ŧ									-					
121/2		ŧ									-					
DT 1	-	ŧ									-					
DT.G		ŧ									-					
۵ ت	-	ŧ									-					
N L	-	ŧ									-					
TM.G		÷									-					
0	-	ŧ									-					
GE		ŧ									-					
NO.1		ŧ									-					
SHEI	-	Ł									-					
LE A	-	F									_					
SING	-	ŧ									-					
ORE (-	ŧ									-					
100		ŧ									-					
NCDC	-	ŧ									-					

Ashe County Bridge 15

Rock Core Photographs: Boring - EB2-A

SHEET 12

WBS	WBS 17BP.11.R.161					IP	N/A				С	OUN	ТΥ	AS	HE				GEOL	OGIS	T A. Black	nore			
SITE	DESCR	IPTION	l Brid	ge 01	5 on S	SR 1	1147 (Net	tle K	Knob	Roa	ad) c	over	Sou	th Be	eaver Ci	reek		•				GROUN		र (ft)
BORI	NG NO.	EB2-	·B		S	TA	TION	14	+11				0	FFS	BET	21 ft R	Г		ALIGN	NMEN	IT -L-		0 HR.		N/A
COLL	AR ELE	EV. 3,	017.7	ft	Т	от	AL DE	PTH	- 1	6.0 f	ť		N	OR	THIN	G 956,	935		EAST	ING	1,273,288		24 HR.		3.4
DRILL	RIG/HAI	MMER E	FF./DA	TE G	EO366	Diec	drich D-	50 6	8% 0)7/15/2	2020)				DRILL	METHO	DD (Core Boring			HAMM	ER TYPE	Automa	atic
DRILI	LER J.	Messi	ck		S	TAF	RT DA	TE	12	/27/2	21		С	OM	P. DA	TE 12	2/27/21		SURF		WATER DEP	TH N/	/A		
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	BLC 0.5ft	W CO 0.5ft	UNT 0.5ft	0)	25	BLC 5	ows	PER 50	FOC	DT 75		100	SAMF NO.	Р. МО	L O II G	ELEV. (ft)	:)	SOIL AND RO	CK DES	CRIPTION	DEP	'TH (ft)
ELEV (ft) 3015 3010 3005	ELEV (ft) 3,017.7- 3,014.2 3,012.7- 3,012.7- - - - - - - - - - - - - - - - - - -	DEPTH (ft) - 0.0 - 3.5 - 5.0 	0.5ft 5 3 60/0.0	0.5ft	0.5ft 5 2										100	SAME NO.			ELEV. (ft)	Borin C	GROUN ROADWAY se, Brown, Silty (/ CRYSTA Gray-White (E CRYSTA Gray-White (E rystalline Rock tri-cone bit was r SPT refusal w coring beg	CK DESC D SURF/ EMBANI (Fine to A-2-4) LLINE R BIOTITE at Elevati (BIOTITE as encourse an at 6.0	CRIPTION ACE KMENT Coarse SA OCK GNEISS) OCK GNEISS) OCK GNEISS) on 3,001.7 E GNEISS seat the c untered. R) feet.	DEP ND	<u>TH (ft)</u> 0.0 <u>5.0</u> 6.0 16.0

WB	S 17BF	.11.R.1	61		TIP	N/A		C	OUNT	ΥA	SHE			G	EOLOGI	ST A. Blac	kmore		
SIT	E DESCR	RIPTION	l Brid	ge 015 o	n SR 1	1147 (1	Nettle Kn	ob Ro	ad) ov	/er S	outh Bea	aver Cree	ek					GROUN	ID WTR (ft)
BO	ring no	. EB2-	В		STA	ΓΙΟΝ	14+11			OF	FSET 2	21 ft RT		A	LIGNME	NT -L-		0 HR.	N/A
CO	LLAR EL	EV. 3,	017.7	ft	тот	AL DE	PTH 16.	.0 ft		NO	RTHING	9 56,93	35	E	ASTING	1,273,288		24 HR.	3.4
DRI	LL RIG/HA	MMER E	FF./DA	TE GEO3	66 Diec	drich D-8	50 68% 07/	15/2020)			DRILL M	ETHOD C	Core B	oring		HAMM	ER TYPE	Automatic
DR	LLER J	. Messi	ck		STAF	rt da	TE 12/2	7/21		со	MP. DA	TE 12/2	7/21	S	URFACE	WATER DE	PTH N	Ά	
CO	RE SIZE	NQ-2			тоти	AL RUI	N 10.0 f	t											
ELE ^v (ft)	V RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	JN RQD (ft) %	SAMP. NO.	STR REC. (ft) %	ATA RQD (ft) %	L O G	ELEV. (1	it)		DES	CRIPTION	I AND REMAR	KS		DEPTH (ft)
3011	.7	60	50	5 44/4 0	(5.0)	(5.0)		(40.0)	(10.0)					В	egin Cor	ing @ 6.0 ft			
<u>3010</u> <u>3005</u>	3,006.7 3,006.7 3,001.7	<u>11.0</u>	5.0	5:11/1.0 6:47/1.0 6:08/1.0 7:40/1.0 6:38/1.0 6:28/1.0 6:28/1.0 9:58/1.0 2:15/1.0 1:57/1.0	(5.0) 100% (5.0) 100%	(5.0) 100% (5.0) 100%		(10.0) 100%	(10.0) 100%		- 3,011.7 - - - - - - - - - - - 3,001.7	Fres	h, Hard, Gra	iray-Wh	CRYSIA hite BIOTI SI 00%, RQE	LLINE ROCK TE GNEISS wi pacing D = 100%, GS	th Very Wi	de Fractur	e 6.0
NCDOT CORE SINGLE ASHENO.15_GEO_GTM.GPJ_NC_DOT.GDT_1/21/22												Boring	g Terminater	ed at E	Elevation 3 GI used to se red. Rock	,001.7 ft In Cry NEISS) eat the casing coring began a	stalline Ro	ock (BIOTI ⁻	ΓΕ ;

Ashe County Bridge 15

Rock Core Photographs: Boring - EB2-B

WBS	17BP.	11.R.1	61		TI	I A	N/A			С	OUN	ΤY	ASH	E				GEOLOGIST A. Blackmore		
SITE	DESCR	IPTION	l Brid	ge 01	5 on S	R 1	147 (N	lettle	e Knob	Ro	ad) c	ver	South	n Bea	ver Cre	ek		•	GROU	ND WTR (ft)
BOR	ING NO.	RW-	1		S	TAT	ION	14+5	55			0	FFSE	T 1	6 ft LT			ALIGNMENT -L-	0 HR.	Dry
COL	LAR ELE	EV. 3,	018.6	ft	Т	ΟΤΑ		РΤΗ	10.0	ft		N	ORTH	HING	956,9	13		EASTING 1,273,341	24 HR.	Dry
DRIL	_ RIG/HAI	MMER E	FF./DA	TE GI	EO366	Diedr	ich D-5	0 68%	6 07/15	/2020)					IETHO	DН	.S. Augers HAN	 MER TYPE	Automatic
DRIL	LER J.	Messi	ck		S	TAR		re ·	12/28/	21		С	OMP.	. DAT	E 12/2	28/21			N/A	
ELEV	DRIVE	DEPTH	BLC	W CO	UNT			E	BLOWS	PEF	RFOC)T			SAMP.		L			
(ft)	ELEV (ft)	(ft)	0.5ft	0.5ft	0.5ft	0		25		50		75		100	NO.	мо	G	SOIL AND ROCK DE ELEV. (ft)	SCRIPTION	DEPTH (ft)
3015 3010	ELEV (ft) 3,018.6 3,015.1 3,012.6 3,010.1 3,008.6 - - - - - - - - - - - - - - - - - - -		0.5ft 5 4 2 1 60/0.0	0.5ft 4 1 1	0.5ft		9								NO.	MOI M W Sat.		SOIL AND ROCK DE ELEV. (ft) 3,018.6 GROUND SUF ROADWAY EMBA Soft to Stiff, Brown-Black Sandy SILT (A-4), with trad 3,009.1 3,009.1 3,008.6 Boring Terminated w Penetration Test Refus 3,008.6 ft On Crystalline GNEISS)	FACE FACE NEMENT Fine to Coo e rock fragr Darse Sandy ROCK NEISS) th Standard at Elevati Rock (BIOT	0.0 arse ments

]
			GEOLOGIST A. Blackmore	
BURING NO. HA-1	STATION 15+01	OFFSET 39 tt RT	ALIGNMENT -L-	OHR. Dry
COLLAR ELEV. 3,031.1 ft	TOTAL DEPTH 4.0 ft	NORTHING 956,849	EASTING 1,273,311	24 HR. FIAD
DRILL RIG/HAMMER EFF./DATE N/A	1	DRILL METHOD Ha	nd Auger HAMM	ER TYPE N/A
DRILLER N/A	START DATE 12/29/21	COMP. DATE 12/29/21	SURFACE WATER DEPTH N	/A
LEV DRIVE DEPTH BLOW COUNT (ft) (ft) 0.5ft 0.5ft 0.5	T BLOWS PER FOO .5ft 0 25 50	T SAMP. ▼ L 0 75 100 NO. MOI G	SOIL AND ROCK DESC ELEV. (ft)	CRIPTION DEPTH (ft)
LLEV ELEV (ft) 0.5ft 0.5ft 0.5 0035 0036 0037 0030	I BLOWS PERFOR .5ft 0 25 50 I I I I I I I I I I I I I I I I I I I I I I I I I	75 100 NO. MOI G M M M M M	SOIL AND ROCK DESC ELEV. (ft) 3,031.1 GROUND SURF/ RESIDUAL Soft, Moist, Brown Fine to (3,028.1 Soft, Moist, Brown Fine to (Soft, Moist, Brown Fine	ACE 0.0 Coarse Sandy 3.0 ne to Coarse 4.0 Jer Refusal at ual Sandy SILT oil from 0.0 - 0.5 t several times depths.

WBS	17BP.	11.R.1	61		ТІ	IP	N/A		COUNT	Y AS	HE				GEOLOGIST A. Blackr	nore		
SITE [DESCR	PTION	Brid	ge 015	5 on S	R	1147 (Nettl	e Knob	Road) ov	ver Sou	uth Bea	ver Cre	ek				GROUN	D WTR (ft)
BORIN	IG NO.	HA-2			S	ΤА	TION 15+	50		OFF	SET 3	3 ft RT			ALIGNMENT -L-		0 HR.	Dry
COLL	AR ELE	V. 3,0)33.51	ft	т	от	AL DEPTH	2.5 ft		NOR	THING	956,8	07		EASTING 1,273,333		24 HR.	FIAD
DRILL	RIG/HAN	IMER E	FF./DA	TE N/	A							DRILL N	IETHO	DH	land Auger	HAMM	ER TYPE	N/A
DRILL	ER N/	Ά			S	ТА	RT DATE	12/29/2	21	COM	P. DAT	E 12/2	29/21		SURFACE WATER DEP	TH N/	/A	
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	BLC 0.5ft	W COU 0.5ft	JNT 0.5ft		0 25	BLOWS	PER FOO ⁻ 50	т 75	100	SAMP. NO.	моі	L O G	SOIL AND RO	CK DES	CRIPTION	DEPTH (ft)
3035													M		3,033.5 GROUNI 3,031.5 Very Soft, Moist, I 3,031.5 Very Stiff, Moist, I Sandy Very Stiff, Moist, I Sandy I Surficial Organic I (1) Surficial Organic I (2) Hand auger bori with similar	D SURF/ SIDUAL Brown Fi SILT (A- Brown Fi SILT (A- In Resid A-4) aden Se eet. ng offse refusal of Sing offse refusal of Sing offse Sing	ACE ne to Coars 4) ger Refusal oil from 0.0 t several tim depths.	0.0 e 2.0 at 5 SILT - 0.4 nes

Factored Pile Reaction (tons) Bridge Width CS Unit Length Factored Pile Reaction (kips) 25'-0" 106 53 59 30'-0" 118 63 35'-0" 126 66 40'-0" 132 70 45'-0" 140 27' 77 50'-0" 154 81 55'-0" 162 85 60'-0" 170 65'-0" 178 89 70'-0" 184 92 55 25'-0" 110 61 30'-0" 122 66 35'-0" 132 140 70 40'-0" 74 148 45'-0" 30' 50'-0" 162 81 85 170 55'-0" 60'-0" 180 90 188 94 65'-0" 97 70'-0" 194 25'-0" 92 46 51 30'-0" 102 35'-0" 110 55 59 40'-0" 118 45'-0" 122 61 (33) 67 134 50'-0" 55'-0" 142 71 74 148 60'-0" 78 65'-0" 156 70'-0" 162 81 48 25'-0" 96 108 54 30'-0" 58 35'-0" 116 40'-0" 122 61 65 130 45'-0" 36' 71 50'-0" 142 74 55'-0" 148 78 156 60'-0" 65'-0" 164 82 70'-0" 170 85 25'-0" 100 50 56 30'-0" 112 35'-0" 120 60 63 40'-0" 126 45'-0" 136 68 39' 73 146 50'-0" 77 55'-0" 154 81 60'-0" 162 170 85 65'-0" 70'-0" 176 88 Bridge Width Cap Length No. of Vertical Piles Pile Spacing Skew 60/120 38'-2' 5 8'-6" 5 27' 75/105 34'-3" 7'-6" 33'-0" 5 7'-6" 90 60/120 41'-8" 5 9'-6" 30' 75/105 37'-4" 5 8'-3" 36'-0" 5 8'-3" 90 60/120 45'-2" 7 7'-0" (33) 75/105 40'-6" 7 6'-0" 39'-0" 90 7 6'-0" 60/120 48'-7" 7 7'-6" 36' 75/105 43'-7" 7 6'-6" 42'-0" 7 6'-6" 90 60/120 52'-0" 7 8'-0" 39 75/105 46'-8" 7 7'-0"

End Bent Geometry and Loads

Ashe 15 1050

Factored Lond = 70 tons/pile

7 Vertical Piles @ 7'-0" Spacing

7

7'-0"

45'-0"

90

Michael J Walko, P.E.

From:	Garrett W. Powell <gwpowell@vaughnmelton.com></gwpowell@vaughnmelton.com>
Sent:	Tuesday, March 22, 2022 4:07 PM
То:	Michael J Walko, P.E.; Hardy L. Willis
Cc:	Ryan T. Shipman
Subject:	[EXTERNAL], RE: Ashe 15 Foundation Recommendations

Here are the revised cap elevations and revised top of pile cutoff elevations.

Bottom of Cap Elevations

		End Bent 1	End Bent 2	
Ì	Left	3016.0	3015.7	
	Right	3014.4	3014.2	
1	AVE	3015,2	3015.0	51

Top of pile cutoff elevations:

End Bent 1		End Ben	t 2
Pile	Elevation	Pile	Elevation
1	3016.87	1	3016.63
2	3016.65	2	3016.42
3	3016.44	3	3016.20
4	3016.22	4	3015.98
5	3016.00	5	3015.76
6	3015.78	6	3015.54
7	3015.56	7	3015.33

EB2 left wing brace pile 3016.73 with 2' Embed, Bottom of WINg Wall = 3014.7'

cher V:\WC\ 09:23 Wdcrut DGN: TIME:

GENERAL NOTES

ASSUMED LIVE LOAD = HL-93 OR ALTERNATE LOADING. THIS BRIDGE HAS BEEN DESIGNED IN ACCORDANCE WITH THE REQUIREMENTS OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. THIS BRIDGE IS LOCATED IN SEISMIC ZONE 1.

GENERAL DRAWING BRIDGE ON SR 1147

(NETTLE KNOB RD.) OVER SOUTH BEAVER CREEK BETWEEN US 221 AND LOWER NETTLE KNOB RD.

			REVIS	ION	١S		SHEET NO.
: WDC DA	TE: 01-2022 NO.	BY:	DATE:	NO.	BY:	DATE:	S-2
Y: PRG DA	TE: 01/2022 ปี			3			TOTAL SHEETS
R.OF RECORD: GWP DA	TE: 01/2022 🙎		(4			2

VBS	17BP.	.11.R.1	61		Т	IP N/A	NI_441_171	COUNT	Y ASHE		1		GEOLOGIST A. Blackmore	
	DESCR		N Brid	ige 01	5 on S	TATION	Nettle Knob	Road) ov	er South Be	aver Cri	eek		ALICAMENT	
			-A	ft	- Э т		DTU 10.2	F4	NOPTHIN	12 IL LI	270		EASTING 1 272 208	
		MMFR F	FF /DA	TE GE	E0366	Diedrich D-	50 68% 07/15/	2020			METHO		Core Boring	IFR TYPE Automatic
	ER J.	Messi	ck		s	TART DA	TE 12/28/2	2020	COMP. DA	TE 12/	28/21			
LEV	DRIVE	DEPTH	BLC	w col	UNT	Π	BLOWS	PER FOOT		SAMP.	V /	L		
(ft)	ELEV (ft)	(ft)	0,5ft	0.5fl	0.5ft	0	25	50	75 100	NO	MOI	G	SOIL AND ROCK DES	DEPTH (
						Boc	= 3015,	2						
020		-												
ľ	3,018.3	0.0	5	6	5	11		1			M	上旗	GROUND SURF/	ACE C
015	3-014-8	35			a (Anna Annana (), 19 A Phil		8 0.09.9	Bo	¢	0			Soft to Stiff, Brown, Fine to SILT (A-4), with trace roc	Coarse Sandy k fragments
	2 012 2	6.0	10	1	Î	1 2	0 00000 2 • 00000 0	****	10000-24-04 Decrementa		M		3.012.8	
010	0,012.0	2	1	1	1	•ż	1253	5559	2233	F-4	W		ALLUVIAL Soft, Brown-Black, Fine to	Coarse Sandy
	3,669.5	- 8-5	100/0.4			-			100/0.4	D+ 1		19	3.009.8 SILT (A-4), with trac WEATHERED RC	e mica 8 DCK / 9
	-		60/0.0			***	2 00003		00/0 0	6.1			Brown (BIOTITE GM CRYSTALLINE R	IEISS)
005	-											1	Gray (BIOTITE GN	EISS)
	1	i.				202	1 49.4 1	0301				5		
000	-	2				820	n paùs a s	0020	jaa a o			9	2 999 1	10
	-	- 12											Boring Terminated at Elevati Crystalline Rock (BIOTIT	on 2,999.1 It In E GNEISS)
	-					EB	-1 (LT)							
	-					hoal	IN DILES	A mur	mum					
	24 24					i jeren i	- Fries						C. A.	
	-					of 5'	into WR	Rock .	And to				- EST GTY	
	-					Anel	evation	below	Fixity				INSII = 3015.2 - 3009	1.8= 5,4
	-	-							r				Not IN Soil = 3009.8-3	3005 = 4.8
	-	-				L= B	oc -Tip	EL +1,0) Ember	1				
		-				2010	- 2-20	150 +	1.0					
	-					3 2012), G		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				a ₩1	
	-	-					1.2'						τ.	
	1													
									/					
	-	-				Ave	Pile Ler	5th=1:	5				6 	
	-							4						
	3													
	-	+				USE :	2005 FE	ForTi	p Elev.					
	-	-				0,10 - 1	<u> </u>					-		
	4				a									
	1											E		
	1												-	
	-													
	-													
	+													
	+											Ē		

Lateral Pile Deflection (inches)

LPile for Windows, Version 2019-11.006

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved

This copy of LPile is being used by:

ECS Southeast Charlotte, NC

Serial Number of Security Device: 562473626

This copy of LPile is licensed for exclusive use by:

ECS Carolinas, LLP, Charlotte, N

Use of this program by any entity other than ECS Carolinas, LLP, Charlotle, N is a violation of the software license agreement.

Files Used for Analysis

Path to file locations: \Users\mwalko\Downloads\

Name of input data file: EB1-A_REV.lp11d

Name of output report file: EB1-A_REV.lp11o

Name of plot output file: EB1-A_REV.lp11p

Name of runtime message file: EB1-A_REV.lp11r

Date and Time of Analysis

Date: March 28, 2022 Time: 14 37:16

Problem Title

Project Name: Ashe Bridge 15

Job Number 09-29362

Client: Vaughn & Melton

Engineer: ECS Southeast

Description: End Bent 1

Program Options and Settings

Computational Options:

- Conventional Analysis

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

 Maximum number of iter 	rations allowed	= 5	500
--	-----------------	-----	-----

- Deflection tolerance for convergence = 1.0000E-05 in Maximum allowable deflection = 100.0000 in Number of pile increments 100
- Number of pile increments

Loading Type and Number of Cycles of Loading

- Static loading specified
- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry Number of pile sections defined=1Total length of pile=15 000 ft Depth of ground surface below top of pile 0 0000 ft

Pile diameters used for p-y curve computations are defined using 2 points

p-y curves are computed using pile drameter values interpolated with depth over

the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches

1	0.000	12.0450
2	15.000	12.0450

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile	
Cross-sectional Shape	= Strong H-Pile
Length of section	= 15.000000 ft
Flange Width	= 12.045000 in
Section Depth	= 11.780000 in
Flange Thickness	= 0.435000 in
Web Thickness	= 0.435000 in
Section Area	= 15.500000 sq. in
Moment of Inertia	= 393.000000 in^4
Elastic Modulus	= 29000000. psi

Ground Slope and	Pile Ba	atter Ar	ngles
Ground Slope Angle	-	= 0.000	0.000 degrees radians
Pile Batter Angle	=	= 0.000	0 000 degrees radians

Soil and Rock Layering Information

The soil profile is modelled using 3 layers

Layer 1 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer		=	0.0000 ft
Distance from top of pile to bottom of lay	er		= 5,400000 fl
Effective unit weight at top of layer	=		42 600000 pcf
Effective unit weight at bottom of layer		=	42 600000 pcf
Friction angle at top of layer	=	28	000000 deg
Friction angle at bottom of layer	=	2	28 000000 deg
Subgrade k at top of layer	=	20) 000000 pci
Subgrade k at bottom of layer	=		20 000000 pci

Layer 2 is stiff clay with user-defined k-value

Distance from top of pile to top of layer 👘 5 400000 ft

Distance from top of pile to bottom of lay	/er	=	6.100000 ft
Effective unit weight at top of layer	=	100.0	00000 pcf
Effective unit weight at bottom of layer	=	100).000000 pcf
Undrained cohesion at top of layer	=		8000. psf
Undrained cohesion at bottom of layer		=	8000. psf
Epsilon-50 at top of layer	= 0	.0040)00
Epsilon-50 at bottom of layer	=	0.00	4000
Subgrade k at top of layer	÷	200	0. pci
Subgrade k at bottom of layer		20	000. pci

Layer 3 is strong rock (vuggy limestone)

Distance from top of pile to top of layer	Ξ	-	6.10)0000 ft
Distance from top of pile to bottom of layer		=	20	.000000 ft
Effective unit weight at top of layer	=	16	0.00	0000 pcf
Effective unit weight at bottom of layer	-	= '	160.0)00000 pcf
Uniaxial compressive strength at top of laye	эг	-	-	4000. psi
Uniaxial compressive strength at bottom of	lay	er	=	4000. psi

(Depth of the lowest soil layer extends 5,000 ft below the pile tip)

**** Warning - Possible Input Data Error ****

Values entered for effective unit weight of rock were outside the limits of 50 pcf to 150 pcf.

The maximum input value, in layer 1, for effective unit weight = 160.00 pcf

This data may be erroneous. Please check your data.

Summary of Input Soil Properties

Layer Soil Type Layer Effective Undrained Angle of Uniaxial Layer Name Depth Unit Wt. Cohesion Friction qu

Laye	r Name	Depth	Unit Wt.	Cohesion	Frictio	on qu	or	kpy
Num	. (p-y Curve Type) ft	pcf	psf	deg.	psi	krm	pci
1		0.00	42 6000		0000	ः चल्लास	20	0000
I	(Reese, et al.)	5.4000	42 6000	20	28.0000	205 - 12 7#	20.	20.0000
2	Stiff Clay w/o	5.4000	100.0000	8000.		20 0	0.00400	2000.
	Free Water, using k	6_100	0 100.000	008 00	0		0.0040	0 2000.
3	Strong Rock (Vuggy Limestone)	6_1000 20.00	160.0000 00 160.00	000		4000 400	0	27) 144

E50

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses

Pile-head Loading and Pile-head Fixity Conditions

Load Load No. Type	Condition 1	Condition 2 Force	Axial Thrust e, Ibs vs. Pile	Compute Top y Length	Run Analysis
1 1 V = 2 2 V =	3000. lbs M = 5000. lbs S =	0.0000 in-lbs 0.0000 in/in	150000. 150000.	No Y	Yes es
y = lateral deflec S = pile slope re R = rotational st Values of top y v specified shear Fhrust force is a Computation	tion normal to pile lative to original pi iffness applied to p /s. pile lengths car loading (Load Type ssumed to be actin s of Nominal Mome	axis le batter angle ile head be computed only es 1, 2, and 3). Ig axially for all pile ent Capacity and N	o for load types were batter angles.	with ng Stiffness	
xial thrust force	e values were dete	rmined from pile-h	ead loading con	ditions	
Number of Pile Section No	1:	= 1			
Moment-curvatu	re properties were	derived from elast	ic section prope	rties	
Layering	Correction Equival	ent Depths of Soil	& Rock Layers		
Top of Ei Layer T Layer Below No. Pile Head ft ft	quivalent op Depth Same L Below Type Grnd Surf Lay Above Rock	ayer Layeris As Rock or Ini er is Below foi ; Layer Ibs	F0 F1 legral Integral r Layer for Lay lbs	er	
1 0.00 2 5.4000	0.00 N.A. 0.2093 No	No 0.00 No 5132	5132. 20777		

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays. non-liquefied sands, and cemented c-phi soil.

Yes

N.A

N.A.

3

6.1000

6.1000 No

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1 Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	\equiv	3000.0 lbs
Applied moment at pile head	=	0.0 in-lbs
Axial thrust load on pile head	=	150000.0 lbs

Depth Deflect. Bending Shear Slope Total Bending Soil Res. Soil Spr. Distrib. X y Moment Force S Stress Stiffness p Es*H Lat. Load feet inches in-Ibs Ibs radians psi* Ib-in^2 Ib/inch Ib/inch Ib/inch

0.1500 0.04497 5631 2999.856E-04 9764 114E+10 -1.6189 648000 0.00 0.3000 0.0433 11257 2994.854E-04 9850.114E+10 -3.1269 129.6000 0.00 0.6000 0.0436 22471.2978.852E-04 9936.1.14E+10 -4.5245 194.4000 0.00 0.7500 0.03884 28051 2967.845E-04 10107.114E+10 -4.5812 255.200 0.00 0.0500 0.03732 33607.2953.8.40E-04 10192.114E+10 -6.5813 388.8000 0.00 1.5000 0.03732 33607.2953.8.40E-04 10192.114E+10 -9.0250 435.8000 0.00 1.5000 0.0338 35524 2821.828E-04 10361.114E+10 -9.0250 435.8000 0.00 1.5000 0.0338 5524 2822.8.22E-04 10445.114E+10 -10.6382 583.2000 0.00 1.5000 0.0238 50097.2902.8.20E-04 10451.114E+10 -10.6382 583.2000 0.00 1.5000 0.0248 66259 2840.7.93E-04 10581.114E+10 -12.832 842.4000 0.00 1.5000 0.02766 71653 2817.7.82E-04 10574.114E+10 -12.832 842.4000 0.00 1.9500 0.02766 76824.2794.7.74E-04 10855.114E+10 -12.832 842.4000 0.00 2.2000 0.02288 32039 2771.7.757E-04 10855.114E+10 -12.832 842.4000 0.00 2.5000 0.02268 76824.2794.7.74E-04 10195.114E+10 -13.145 972.000 0.00 2.2000 0.02238 32708 2774.7.74E-04 11045.114E+10 -13.145 972.000 0.00 2.5000 0.02139 387208 2747.74E-04 11045.114E+10 -13.1267 1166. 0.00 2.5000 0.01779 107418.2653.6383E-04 11042.114E+10 -13.1587 1166. 0.00 3.3000 0.01779 107418.2653.6383E-04 11292.114E+10 -13.1587 1166. 0.00 3.4500 0.01123 112355.2656.90E-04 11247.114E+10 -12.8086 1260.00 3.4500 0.01123 112685.2656.90 411292.114E+10 -13.1587 1166. 0.00 3.4500 0.01123 112685.2656.90E-04 11247.114E+10 -13.1587 1166. 0.00 3.4500 0.01123 112685.2656.90E-04 11247.114E+10 -13.1587 1166. 0.00 3.4500 0.01123 112685.2656.90E-04 11247.114E+10 -13.1587 1166. 0.00 3.4500 0.01124 12292.2566.50E-04 11399.114E+10 -13.1587 1165. 0.00 3.4500 0.01128 112655.2656.90E-04 11247.114E+10 -13.1587 1164.00 3.4500 0.01124 132652.2564 11592.114E+10 -13.856 1620.00 3.4500 0.01124 132652.2565.90E-04 11242.114E+10 -13.856 1620.00 3.5000 0.01124 12695.2556.50E-04 11592.114E+10 -13.856 1620.00 3.5000 0.01124 132652.2566.411529.114E+10 -13.826 1720.00 0.00 3.5000 0.0114 12695.2556.50E-04 11592.114E+10 -13.826 1720.00 0.00 3.5000 0.	1	0.00	0.04651	7.81E-07	30008.56E-04	9677.	1.14E+10	0.00	0.00 0.	00
0.3000 0.04343 11257 2994 8.54E-04 9836 1.14E+10 -3.1259 129.6000 0.00 0.4500 0.04188 16872 2987 8.352E-04 9936 1.14E+10 -4.5245 194.4000 0.00 0.500 0.03384 28611 2967 8.445E-04 10022 1.14E+10 -4.5245 194.4000 0.00 0.9000 0.03372 2953 8.34E-04 10127 1.14E+10 -4.0250 433.6000 0.00 1.5000 0.03381 39136 2938 8.34E-04 10277 1.14E+10 -9.0250 433.6000 0.00 1.5000 0.03383 50097 2902 8.282-04 10631 1.14E+10 -11.8447 7.13000 0.00 1.6000 0.02266 7563.2817 -7.782-04 10655 1.14E+10 -12.332 907.2000 0.00 2.0000 0.2298 82039 2771 -7.776-04 10855 1.14E+10 -13.237 7.102.00 0.2250		0.1500	0.04497	5631.	29998.56E-04	9764.	1.14E+10	-1.6189	64.8000	0.00
0.4500 0.04139 15872 2987. 8.52E-04 9936. 1.14E+10 -4.5245 194.4000 0.00 0.6000 0.04036 22471. 2978. 8.49E-04 10022. 1.14E+10 -5.8122 259.200 0.00 0.7500 0.0384 28051. 2967. 8.45E-04 10177. 1.14E+10 -8.0613 388.8000 0.00 1.5000 0.03283 50097. 2902. 8.20E-04 10445. 1.14E+10 -18.632 683.0000 0.00 1.5000 0.03283 50097. 2902. 8.20E-04 10445. 1.14E+10 -18.632 683.0000 0.00 1.5000 0.02848 66259. 2804. 7.93E-04 10693. 1.14E+10 -12.8032 802.4000 0.00 1.9500 0.02766 76824. 2794. -7.70E-04 10855. 1.14E+10 -13.145 972.000 0.00 2.6000 0.02248 66259. 2840. -7.93E-04 11095. 1.14E+10 -13.145 0.00 2.500 0.00249 82039. 27717.7E-04 10855. 1.14E+10 -13.1457 1166. 0.00		0.3000	0.04343	11257	2994 -8.54E-04	9850.	1.14E+10	-3.1269	129.6000	0.00
0.000 0.04036 22471. 2978. 8.49E-04 10022. 1.14E+10 -5.8122 259.2000 0.00 0.7500 0.03884 28051. 2967. 8.45E-04 10107. 1.14E+10 -6.9908 324.0000 0.00 1.0500 0.03581 39136. 2938. 8.34E-04 10277. 1.14E+10 -8.0813 388.8000 0.00 1.2000 0.03581 39136. 2938. 8.34E-04 10277. 1.14E+10 -9.8834 518.4000 0.00 1.5000 0.03581 39136. 2921. 8.28E-04 10361. 1.14E+10 -16.6382 583.2000 0.00 1.5000 0.02991 60912. 2862. 8.03E-04 10451. 1.14E+10 -11.8449 712.8000 0.00 1.6600 0.02991 60912. 2862. 8.03E-04 10651. 1.14E+10 -11.2913 648.000 0.00 1.6500 0.02967 67653. 2817. 7.82E-04 10528. 1.14E+10 -12.3013 777.6000 0.00 2.5000 0.02566 76824. 2794. 7.70E-04 10935. 1.14E+10 -12.8032 907.2000 0.00 2.5000 0.02499 82039. 2771. 7.57E-04 10935. 1.14E+10 -13.1145 972.0000 0.00 2.5000 0.0249 82039. 2771. 7.57E-04 10935. 1.14E+10 -13.2027 1102. 0.00 2.5000 0.0219 97407. 2700. 7.15E-04 11014. 1.14E+10 -13.1145 972.0000 0.00 2.5000 0.0219 97407. 2700. 7.15E-04 11014. 1.14E+10 -13.1145 972.0000 0.00 2.5000 0.0119 2331. 2723. 7.30E-04 11029. 1.14E+10 -13.1145 972.0000 0.00 2.5000 0.0119 2331. 2723. 7.30E-04 11029. 1.14E+10 -13.1145 972.0000 0.00 3.5000 0.01797 107418. 2663. 6.83E-04 11247. 1.14E+10 -13.1145 10.00 3.5000 0.01797 107418. 2663. 6.83E-04 11247. 1.14E+10 -13.1145 10.00 3.5000 0.0113 128895. 2566. 6.92E-04 11474. 1.14E+10 -12.3086 1226 0.00 3.1500 0.01539 11246. 2668. 6.58E-04 11585. 1.14E+10 -13.313 1565. 0.00 3.5000 0.01132 128695. 2566. 5.09E-04 1152. 1.14E+10 -13.313 1565. 0.00 3.5000 0.01102 13656. 2545 5.88E-04 11585. 1.14E+10 -13.313 1565. 0.00 3.5000 0.01102 13656. 2545 5.88E-04 11595. 1.14E+10 -9.7348 1750. 0.00 3.5000 0.01102 13656. 2545 5.88E-04 11595. 1.14E+10 -9.7348 1750. 0.00 3.5000 0.01102 13656. 2545 5.48E-04 11595. 1.14E+10 -9.7348 1750. 0.00 4.5000 0.0042 158424. 2471. 4.50E-04 12251. 1.14E+10 -9.7348 1750. 0.00 4.5000 0.0041 15935. 2435 4.42E-04 12951. 1.14E+10 -9.7488 1750. 0.00 5.5000 0.0041 18935. 2435 4.42E-04 12951. 1.14E+10 -9.7488 1750. 0.00 5.5000 0.0012 19971 147. 227E-04 12851. 1.14		0.4500	0.04189	16872	29878.52E-04	9936.	1.14E+10	-4.5245	194.4000	0.00
0.7500 0.03884 28051. 2967. 8.45E-04 10107. 1.14E+10 6.9908 324,0000 0.00 0.9000 0.03732 33607. 2953. 8.40E-04 10127. 1.14E+10 -8.0813 388.000 0.00 1.0500 0.03813 93136 2938. 8.34E-04 10277. 1.14E+10 -9.0250 453.6000 0.00 1.2000 0.0342 44633. 2921. 8.28E-04 10361. 1.14E+10 -10.6382 538.2000 0.00 1.5000 0.0316 5554 2882. 8.12E-04 10528. 1.14E+10 -11.2913 648.0000 0.00 1.5000 0.0291 60912 2862. 8.03E-04 10693. 1.14E+10 -12.913 648.0000 0.00 1.6500 0.0291 60912 2862. 8.03E-04 10693. 1.14E+10 -12.0313 77.6000 0.00 1.8000 0.0268 66259. 28407.93E-04 10763. 1.14E+10 -12.6632 842.4000 0.00 2.1000 0.0256 76824. 27947.70E-04 10855. 1.14E+10 -12.1632 907.2000 0.00 2.2000 0.0229 80203. 27717.57E-04 10935. 1.14E+10 -13.1145 972.0000 0.00 2.5000 0.02161 92331. 27237.30E-04 11092. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.02161 92331. 27237.30E-04 11092. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.02161 92331. 27237.30E-04 11092. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.0163 102436 6676. 6.99E-04 11247. 1.14E+10 -13.0190 1231. 0.00 3.0000 0.01799 107418. 26636.87E-04 11324. 1.14E+10 -13.0190 1231. 0.00 3.0000 0.01599 117246 26886.47E-04 11344. 1.14E+10 -12.1928 1426. 0.00 3.4500 0.01025 112692. 25866.28E-04 11548. 1.14E+10 -12.1928 1426. 0.00 3.4500 0.01026 13665. 25656.09E-04 11247. 1.14E+10 -11.3615. 0.00 3.4500 0.01026 1316685. 25656.09E-04 11247. 1.14E+10 -10.3615 1555. 0.00 3.4500 0.01021 13376. 25265.87E-04 11548. 1.14E+10 -10.3615 1555. 0.00 3.4500 0.01021 13376. 25265.67E-04 11522. 1.14E+10 -0.31131 1685. 0.00 4.0500 0.01021 14057. 25085.45E-04 11892. 1.14E+10 -9.7488 1750. 0.00 3.5000 0.01121 13376. 25265.87E-04 11809. 1.14E+10 -9.7488 1750. 0.00 3.5000 0.0126 131656. 25455.88E-04 11893. 1.14E+10 -9.7488 1750. 0.00 4.5000 0.00420 14924. 3.98E-04 12051. 1.14E+10 -4.8451 2233. 0.00 5.5000 0.00420 14924. 3.98E-04 12051. 1.14E+10 -4.8451 2203. 0.00 5.5000 0.00420 148482 4461. 4.75E-04 12210. 1.14E+10 -5.44479 2338. 0.00 5.5000 0.0054 163935. 2435. 4.25E-04 12		0 6000	0.04036	22471	2978 -8.49F-04	10022.	1.14E+10	-5.8122	259.2000	0.00
0.9000 0.0372 33607. 2953. 8.44E-04 10192. 1.14E+10 -8.0613 388.8000 0.00 1.0500 0.03581 39136. 2938. 8.34E-04 10277. 1.14E+10 -9.0250 453.8000 0.00 1.2000 0.0342 44633. 2921. 8.28E-04 10361. 1.14E+10 -10.6382 583.2000 0.00 1.3000 0.03283 50097. 2902. 8.20E-04 10445. 1.14E+10 -11.2913 648.000 0.00 1.6000 0.02981 66912. 2862. 8.03E-04 10611. 1.14E+10 -11.8449 712.8000 0.00 1.6000 0.02984 66259. 2840. 7.93E-04 10653. 1.14E+10 -12.0313 777.6000 0.00 1.9500 0.02566 76824. 2794. 7.70E-04 10855. 1.14E+10 -12.0332 907.2000 0.00 2.2000 0.02566 76824. 2794. 7.70E-04 10855. 1.14E+10 -12.0332 907.2000 0.00 2.2500 0.02169 22033. 2771. 7.57E-04 1935. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.02161 92331. 2723. 7.30E-04 11073. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.02161 92331. 2723. 7.30E-04 11074. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.02161 92331. 2723. 7.30E-04 11170. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.0145 92331. 2723. 7.30E-04 11170. 1.14E+10 -13.2102 1102. 0.00 3.1500 0.01658 112355 2630. 6.65E-04 11247. 1.14E+10 -13.0190 1231. 0.00 3.0000 0.01779 107418. 2653. 6.39E-04 11247. 1.14E+10 -12.0317 1361. 0.00 3.0000 0.0133 112246. 2666. 6.28E-04 11548. 1.14E+10 -12.0317 1361. 0.00 3.4500 0.01425 122092. 2586. 6.28E-04 11548. 1.14E+10 -12.1317 1361. 0.00 3.4500 0.01425 122092. 2586. 6.28E-04 11548. 1.14E+10 -11.3473 1555. 0.00 3.4500 0.01425 122092. 2586. 5.63E-04 11595. 1.14E+10 -10.3131 1685. 0.00 3.4500 0.0120 131666. 2545. 5.88E-04 11595. 1.14E+10 -0.8506 1620. 0.00 3.4500 0.0120 131666. 2545. 5.88E-04 11595. 1.14E+10 -0.8206 1620. 0.00 3.4500 0.0122 1310571. 2491. 5.22E-04 11707. 1.14E+10 -0.8206 1620. 0.00 3.4500 0.0024 15038. 2476. 4.99E-04 1251. 1.14E+10 -0.8425 1879. 0.00 4.5000 0.0026 154882 2441. 4.75E-04 12251. 1.14E+10 -0.8442 2333. 0.00 5.5000 0.0024 185424. 2447. 4.99E-04 12851. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.00264 153424. 2447. 4.99E-04 12281. 1.14E+10 -6.4943 2074. 0.00 5.5000 0.00264 1634935. 2435. 4.25E-04 12258. 1.14E+10 -6.4943 2074. 0.00 5.5000 0.00264 163935. 2435. 4.25		0.0000	0.03884	28051	2967 -845E-04	10107	1 14E+10	-6.9908	324,0000	0.00
1.0500 0.03581 39136. 2938. 8.34E-04 10277. 1.14E+10 -9.0250 453.6000 0.00 1.2000 0.03423 44633. 2921. 8.28E-04 10361. 1.14E+10 -9.8834 518.4000 0.00 1.5000 0.03366 55524. 2882. 8.12E-04 10558. 1.14E+10 -11.2913 648.0000 0.00 1.6500 0.02916 60912. 2862. 8.03E-04 10651. 1.14E+10 -11.8449 777.600 0.00 1.9500 0.02766 71663. 2817. -7.82E-04 10774. 1.14E+10 -12.632 842.4000 0.00 2.4000 0.02293 87208. 2774. -7.70E-04 10855. 1.14E+10 -13.145 972.000 0.00 2.4000 0.02293 87208. 2774. -7.44E-04 11092. 1.14E+10 -13.145 972.000 0.00 2.4000 0.0293 87407. 27007.15E-04 11375.114E+10 -13.145 7112. 0.00 2.5000 0.0213 97407. 27007.15E-04		0.000	0.00004	33607	2953 -8 40E-04	10192	1 14E+10	-8.0613	388.8000	0.00
1.2000 0.03432 44633, 2921. 8.28E-04 10361. 1.14E+10 -9.8834 518.4000 0.00 1.5000 0.03136 55524, 2882. 8.12E-04 10528. 1.14E+10 -11.2913 648.0000 0.00 1.6000 0.02991 60912. 2862. 8.03E-04 10518. 1.14E+10 -11.2913 648.0000 0.00 1.6000 0.02948 66259, 2840. 7.93E-04 10593. 1.14E+10 -12.8013 777.6000 0.00 1.9500 0.02706 71563. 2817. 7.82E-04 10774. 1.14E+10 -12.8013 297.2000 0.00 2.2500 0.02429 82039. 2771. 7.57E-04 10855. 1.14E+10 -12.9332 997.2000 0.00 2.2500 0.02429 82039. 2774. 7.70E-04 10855. 1.14E+10 -13.2137 1102. 0.00 2.2500 0.02419 9231, 2723. 7.30E-04 11092. 1.14E+10 -13.2137 1102. 0.00 2.500 0.0211 9231, 2723. 7.30E-04 11092. 1.14E+10 -13.2237 1102. 0.00 2.7000 0.02031 97407. 2700. 7.15E-04 11170. 1.14E+10 -13.2371 1102. 0.00 2.7000 0.02031 97407. 2700. 7.15E-04 11170. 1.14E+10 -13.2837 1106. 0.00 3.1500 0.01658 112355. 2630. 6.65E-04 11324. 1.14E+10 -12.8086 1296. 0.00 3.1500 0.01658 112355. 2630. 6.65E-04 11324. 1.14E+10 -12.8086 1296. 0.00 3.4500 0.0153 117246. 2608. 6.47E-04 11174. 1.14E+10 -12.8086 1296. 0.00 3.4500 0.01125 122902. 2586. 6.28E-04 11548. 1.14E+10 -12.8086 1296. 0.00 3.6000 0.01313 126895. 2565. 6.09E-04 11622. 1.14E+10 -11.7964 1490. 0.00 3.6000 0.01313 126895. 2565. 6.09E-04 11622. 1.14E+10 -11.3784 1490. 0.00 3.6000 0.01313 126895. 2565. 6.09E-04 11622. 1.14E+10 -11.3784 1555. 0.00 3.7500 0.0102 141057. 2508. 5.45E-04 11767. 1.14E+10 -9.7348 1750. 0.00 4.5000 0.00726 154882. 2461. 4.75E-04 12051. 1.14E+10 -9.7348 1750. 0.00 4.5000 0.00726 154882. 2461. 4.75E-04 12051. 1.14E+10 -8.4925 1879. 0.00 4.5000 0.00726 154882. 2461. 4.75E-04 12051. 1.14E+10 -8.4925 1879. 0.00 4.5000 0.00726 154882. 2461. 4.75E-04 12201. 1.14E+10 -8.4925 1879. 0.00 5.5000 0.00726 154882. 2461. 4.75E-04 12201. 1.14E+10 -9.7348 1944. 0.00 5.5000 0.00726 154882. 2461. 4.75E-04 12201. 1.14E+10 -9.7348 1750. 0.00 5.5000 0.00726 154882. 2		1.0500	0.03581	39136	2938 -8.34E-04	10277	1 14E+10	-9.0250	453,6000	0.00
1.3500 0.03283 50097, 2902. 8.20E-04 10445, 1.14E+10 -10.3382 583.2000 0.00 1.5000 0.02916 60912, 2862. 8.03E-04 10611, 1.14E+10 -11.2913 648.0000 0.00 1.6500 0.02916 60912, 2862. 8.03E-04 10611, 1.14E+10 -12.3013 777.6000 0.00 1.9500 0.02766 71663, 2817, -7.82E-04 10734, 1.14E+10 -12.3013 777.6000 0.00 2.4000 0.02266 76824, 774, -7.7E-04 10935, 1.14E+10 -13.2102 1037. 0.00 2.4000 0.02233 87208, 2747, -7.44E-04 11014, 1.14E+10 -13.2102 1037. 0.00 2.5500 0.02419 82031, 2720, -7.15E-04 1170, 1.14E+10 -13.1145 972.0000 0.00 2.6500 0.02131 97407, 2700, -7.15E-04 1170, 1.14E+10 -13.1145 972.0000 0.00 2.8500 0.01903 102436, 2676, -6.9E-04 1127, 1.14E+10 -13.1145 0.00 3.1500 0.01539 117246, 2630, -6.6E-04 11394, 1.1		1 2000	0.03432	44633	2921 -8 28E-04	10361	1.14E+10	-9.8834	518,4000	0.00
1.5000 0.03136 55524, 2082. 8.12E-04 10528. 1.14E+10 -11.2913 648.0000 0.00 1.6500 0.02991 60912. 2662. 8.03E-04 10693. 1.14E+10 -11.2819 77.6000 0.00 1.8000 0.02848 66259. 28407.93E-04 10693. 1.14E+10 -12.6632 842.4000 0.00 2.1000 0.02566 76824. 27947.70E-04 10655. 1.14E+10 -12.6632 842.4000 0.00 2.2500 0.02429 82039. 27717.57E-04 10935. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.02161 92331, 27237.30E-04 11092. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.02161 92331, 27237.30E-04 11092. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.02161 92331, 27237.30E-04 11092. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.02161 92331, 27237.30E-04 11092. 1.14E+10 -13.2109 1231. 0.00 3.6000 0.01779 107418. 26536.83E-04 11324. 1.14E+10 -13.0190 1231. 0.00 3.0000 0.01779 107418. 26536.82E-04 11399. 1.14E+10 -12.8086 1296. 0.00 3.1500 0.01658 112355. 26306.65E-04 11399. 1.14E+10 -12.8086 1296. 0.00 3.4500 0.01425 122092. 25865.28E-04 11548. 1.14E+10 -12.8171 1361. 0.00 3.6000 0.01123 126895. 26566.09E-04 11247. 1.14E+10 -11.3473 1555. 0.00 3.7500 0.01102 13656, 25455.88E-04 11695. 1.14E+10 -11.3473 1555. 0.00 3.7500 0.01102 13656, 25455.88E-04 11628. 1.14E+10 -10.8506 1620. 0.00 3.0000 0.01102 13656, 25456.39E-04 11391. 1.14E+10 -10.8506 1620. 0.00 4.0000 0.0095 145701. 24915.28E-04 11891. 1.14E+10 -7.8384 1750. 0.00 4.5000 0.0026 154882. 2461. 4.75E-04 12051. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.0026 154701. 24985.42E-04 11910. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.0026 154882. 2461. 4.75E-04 12051. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.0026 154882. 2461. 4.75E-04 12120. 1.14E+10 -7.8384 1944. 0.00 5.5000 0.0056 175701. 2405. 3.44E-04 12281. 1.14E+10 -7.8384 1944. 0.00 5.5000 0.0056 175701. 2405. 3.44E-04 12281. 1.14E+10 -7.8384 1944. 0.00 5.5000 0.0055 17731. 2405. 3.44E-04 12281. 1.14E+10 -7.8384 1944. 0.00 5.5000 0.0056 1787		1.2000	0.00402	50097	2902 -8 20F-04	10445	1 14E+10	-10 6382	583 2000	0.00
1.6500 0.0291 60912 2862 8.08±04 10631 1.14±+10 -11.8449 712.8000 0.00 1.8000 0.02848 66259 2840.7 7.93±04 10693 1.14±+10 -12.6332 842.4000 0.00 2.500 0.02429 82039 2771.7 7.77E-04 10855 1.14±+10 -13.1145 972.0000 0.00 2.4000 0.02293 87208 2774.7 -7.44±-04 11014 1.14±+10 -13.1145 972.0000 0.00 2.500 0.02161 92331 2732.7 7.75E-04 10935 1.14±+10 -13.1145 972.0000 0.00 2.600 0.02031 97407 2700.7.15E-04 11170.1 1.14±+10 -13.1587 1166. 0.00 2.600 0.01903 102436 2676.6 6.594-04 11324 1.14±+10 -12.8086 1296. 0.00 3.1500 0.01658 113255 2630.6 6.65E-04 11394 1.14±+10 -12.928 426. 0.00 3.4500 0.01425 122092.2566.5 6.65E-04		1 5000	0.03136	55524	2882 -8 12E-04	10528	1 14F+10	-11 2913	648.0000	0.00
1.8000 0.02848 66259 2840. 7.93E-04 10693. 1.14E+10 -12.3013 777.6000 0.00 2.1000 0.02266 71563. 2817. 7.82E-04 10695. 1.14E+10 -12.6322 842.4000 0.00 2.2000 0.0249 82039. 2771. 75E-04 10855. 1.14E+10 -13.1145 972.0000 0.00 2.4000 0.02293 87208. 2747. 7.44E-04 11014. 1.14E+10 -13.1145 972.0000 0.00 2.5000 0.02161 92331. 2720. 7.15E-04 11170. 1.14E+10 -13.1587 1166. 0.00 2.7000 0.003 102436. 2676.6.69E-04 11399.1 1.14E+10 -13.1587 1166. 0.00 3.0000 0.01779 107418. 2635.6.63E-04 11399.1 1.14E+10 -12.1928 1.14E 1.1387 1166. 0.00 3.4500 0.01425 122092. 2586.6.62E-04 11399.1 1.14E+10 -12.1928 1426. 0.00 3.4500 0.01425 122092. 2586.6.62E-04 11622. 1.14E+10 -10.3713		1.6500	0.00100	60912	2862 -8.03E-04	10611	1 14E+10	-11 8449	712 8000	0.00
1,9500 0.02706 71553 2817. 7.82E-04 10774. 1.14E+10 -12.6832 842.4000 0.00 2,2500 0.02429 82039. 2774. 7.78E-04 10855. 1.14E+10 -13.2102 1037. 0.00 2,2500 0.02161 92331. 2723. 7.30E-04 11092. 1.14E+10 -13.2102 1037. 0.00 2,5500 0.02161 92331. 2723. 7.30E-04 11092. 1.14E+10 -13.2237 1102. 0.00 2,5500 0.02161 92331. 2723. 7.30E-04 11092. 1.14E+10 -13.2237 1102. 0.00 2,5500 0.02161 92331. 2723. 7.30E-04 11092. 1.14E+10 -13.2102 1037. 0.00 2,5500 0.02161 92331. 2723. 7.30E-04 11092. 1.14E+10 -13.2102 1037. 0.00 2,5500 0.02161 92331. 2723. 7.30E-04 11092. 1.14E+10 -13.2102 1037. 0.00 3,6000 0.01779 107418. 2653. 6.83E-04 11324. 1.14E+10 -13.2108 1286. 0.00 3,1500 0.01658 112555. 2630. 6.65E-04 11394. 1.14E+10 -12.5137 1361. 0.00 3,6000 0.01339 117246. 2658. 6.47E-04 11474. 1.14E+10 -12.5137 1361. 0.00 3,6000 0.01313 126895. 2565. 6.09E-04 11622. 1.14E+10 -11.7964 1490. 0.00 3,6000 0.01313 126895. 2565. 6.09E-04 11622. 1.14E+10 -11.3473 1555. 0.00 3,7500 0.01206 131656. 2545 -5.88E-04 11695. 1.14E+10 -10.35113 1685. 0.00 4,0500 0.01002 141057. 2508. 5.45E-04 11839. 1.14E+10 -9.7348 1750. 0.00 4,000 0.00905 145701. 2491. 5.22E-04 11707. 1.14E+10 -9.7348 1750. 0.00 4,000 0.00905 145701. 2491. 5.22E-04 11910. 1.14E+10 -9.7348 1750. 0.00 4,000 0.0042 159424. 2447. 4.50E-04 12051. 1.14E+10 -7.1702 2009. 0.00 4,000 0.0042 159424. 2447. 4.50E-04 12120. 1.14E+10 -7.1702 2009. 0.00 4,000 0.0042 159424. 2447. 4.50E-04 12120. 1.14E+10 -5.8171 2138. 0.00 5,2500 0.00564 163935. 2435. 4.25E-04 12120. 1.14E+10 -5.8171 2138. 0.00 5,2500 0.00564 17310. 2405. 3.44E-04 12395. 1.14E+10 -3.8242 1233. 0.00 5,2500 0.00564 17310. 2405. 3.44E-04 12395. 1.14E+10 -3.8424 2333. 0.00 5,2500 0.00564 17310. 2405. 3.44E-04 12395. 1.14E+10 -3.8424 2333. 0.00 5,2500 0.00564 17310. 2405. 3.44E-04 12395. 1.14E+10 -3.8424 2333. 0.00 5,0500 0.00242 186113 2104 - 286E-04 12528. 1.14E+10 -3.24772 246240. 0.00 5,0500 0.0056 177310. 2405. 3.44E-04 12		1 8000	0.02331	66259	2840 -7 93E-04	10693	1.14E+10	-12 3013	777 6000	0.00
2.1000 0.02566 76824. 27947.70E-04 10855 1.14E+10 -12.9332 907.2000 0.00 2.2500 0.02429 82039. 27717.57E-04 10935 1.14E+10 -13.2102 1037. 0.00 2.4000 0.02293 87208. 27477.44E-04 11014. 1.14E+10 -13.2102 1037. 0.00 2.5000 0.0213 97407. 27007.15E-04 11092. 1.14E+10 -13.2102 1037. 0.00 2.7000 0.02031 97407. 27007.15E-04 11170. 1.14E+10 -13.2102 1037. 0.00 2.8500 0.01903 102436. 26766.99E-04 11247. 1.14E+10 -13.0190 1231. 0.00 3.0000 0.01779 107418. 26536.83E-04 11394. 1.14E+10 -12.8086 1296. 0.00 3.3000 0.01539 117246. 26086.47E-04 11474. 1.14E+10 -12.5317 1361. 0.00 3.3000 0.01539 117246. 26086.47E-04 11474. 1.14E+10 -12.5317 1361. 0.00 3.4500 0.01425 122092. 25866.28E-04 11548. 1.14E+10 -11.7964 1490. 0.00 3.6000 0.01313 126895. 25656.09E-04 11695. 1.14E+10 -11.3473 1555. 0.00 3.7500 0.01026 131656. 25455.88E-04 11695. 1.14E+10 -10.8506 1620. 0.00 3.9000 0.01102 136376. 25265.67E-04 11767. 1.14E+10 -10.8113 1685. 0.00 4.0500 0.0095 145701. 24915.22E-04 11910. 1.14E+10 -9.7348 1750. 0.00 4.5000 0.00131 150308. 2476. 4.99E-04 11931. 1.14E+10 -9.7348 1750. 0.00 4.5000 0.00421 159424. 2447. 4.50E-04 12051. 1.14E+10 -7.1702 2009. 0.00 4.5000 0.00421 159424. 2447. 4.50E-04 12120. 1.14E+10 -7.1702 2009. 0.00 4.5000 0.00420 172876. 2414371E-04 12327. 1.14E+10 -7.4834 1944. 0.00 4.5000 0.00420 172876. 2414371E-04 12327. 1.14E+10 -5.4817. 2138. 0.00 5.1000 0.00420 172876. 2414371E-04 12327. 1.14E+10 -5.4817. 2038. 0.00 5.5000 0.00242 186113 2104. 2.85E-04 12258. 1.14E+10 -5.4817. 2138. 0.00 5.5000 0.00124 18613. 2104. 2.85E-04 12268. 1.14E+10 -3178. 720000. 0.00 6.5000 0.00242 18613 2104. 245E-04 12258. 1.14E+10 -3178. 720000. 0.00 5.5000 0.00124 18613. 2104. 2.85E-04 12528. 1.14E+10 -3178. 7200000. 0.00 5.5000 0.00124 186450. 1575. 2.57E-04 12581. 1.14E+10 -3178. 7200000. 0.00 5.5000 0.00124 186450. 1575. 2.57E-04 12581. 1.14E+10 -3178. 7200000. 0.00 5.6000 1.35E-04 158529107E-04 12286. 1.14E+10 -308.258 7200000. 0.00 5.6000 1.35E-04 158529		1.0000	0.02040	71563	2817 _7.82F_04	10774	1.14E+10	-12 6632	842 4000	0.00
2.1000 0.02429 82039. 27717.57E-04 10035. 1.14E+10 -13.1145 972.0000 0.00 2.4000 0.02293 87208. 27477.44E-04 11014. 1.14E+10 -13.2102 1037. 0.00 2.5000 0.02161 92331. 27237.30E-04 11092. 1.14E+10 -13.2237 1102. 0.00 2.5000 0.01903 102436. 2676. 6.99E-04 11170. 1.14E+10 -13.0190 1231. 0.00 3.0000 0.01779 107418. 2653. 6.83E-04 11324. 1.14E+10 -13.0190 1231. 0.00 3.0000 0.01779 107418. 2653. 6.83E-04 11324. 1.14E+10 -12.8086 1296. 0.00 3.1500 0.01658 112355. 2630. 6.65E-04 11399. 1.14E+10 -12.1928 1426. 0.00 3.4500 0.01459 112292. 2586. 6.28E-04 11548. 1.14E+10 -11.7964 1490. 0.00 3.6000 0.01313 126895. 2565. 6.09E-04 11622. 1.14E+10 -11.7964 1490. 0.00 3.6000 0.01313 126895. 2565. 6.09E-04 11622. 1.14E+10 -11.3473 1555. 0.00 3.7500 0.01206 131656. 2545. 5.88E-04 11695. 1.14E+10 -10.8506 1620. 0.00 3.7500 0.01206 131656. 2545. 5.45E-04 11767. 1.14E+10 -10.8506 1620. 0.00 4.0000 0.00905 145701. 2491. 5.22E-04 11981. 1.14E+10 -9.7348 1750. 0.00 4.5000 0.00726 154882. 2461. 4.75E-04 12051. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.00564 163935. 2465. 4.29E-04 11981. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.00564 163935. 2465. 4.25E-04 12120. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.00564 163935. 2435. 4.25E-04 12120. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.00564 163935. 2435. 4.25E-04 12120. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.00564 163935. 2435. 4.25E-04 12120. 1.14E+10 -7.8384 1944. 0.00 5.5000 0.00272 154882. 2447. 3.98E-04 12327. 1.14E+10 -5.84712 2138. 0.00 5.40000 0.00564 163935. 2435. 4.25E-04 12120. 1.14E+10 -7.8384 1944. 0.00 5.5000 0.00297 181721. 2398. 3.15E-04 12258. 1.14E+10 -3.1451 2203. 0.00 5.40000 0.00564 163935. 2435. 4.25E-04 12395. 1.14E+10 -3.8442 2333. 0.00 5.5000 0.00297 181721. 2398. 3.15E-04 12325. 1.14E+10 -3.8442 2333. 0.00 5.5000 0.00297 181721. 2398. 3.15E-04 12355. 1.14E+10 -3.1451 2268. 0.00 5.5000 0.00124 189450. 1575. 2.57E-04 12581. 1.14E+10 -3.28422 1376. 0.00 6.5000 7.95E-04 188956842 -1.35E-04 12525. 1.14E+10 -3.8422 2333. 0.00 5.5000 0.00124 189450. 1575		2 1000	0.02700	76824	2794 -7 70F-04	10855	1.14E+10	-12 9332	907 2000	0.00
2.2000 0.02293 87208. 2747. 7.44E-04 11014. 1.14E+10 -13.2102 1037. 0.00 2.5500 0.02161 92331. 27237.30E-04 11092. 1.14E+10 -13.2207 1102. 0.00 2.7000 0.02031 97407. 27007.15E-04 11170. 1.14E+10 -13.2137 1102. 0.00 2.8500 0.01903 102436. 2676. 6.99E-04 11247. 1.14E+10 -13.0190 1231. 0.00 3.0000 0.01779 107418. 2653. 6.83E-04 11324. 1.14E+10 -12.8086 1296. 0.00 3.1500 0.01658 112355. 2630. 6.65E-04 11329. 1.14E+10 -12.5317 1361. 0.00 3.4500 0.01539 117246. 2608. 6.47E-04 11474. 1.14E+10 -12.5317 1361. 0.00 3.4500 0.01425 122092. 2586. 6.28E-04 11548. 1.14E+10 -11.7964 1490. 0.00 3.6000 0.01313 126895. 2565. 6.09E-04 11622. 1.14E+10 -11.3473 1555. 0.00 3.7500 0.01206 131656. 2545. 5.88E-04 11695. 1.14E+10 -11.3473 1555. 0.00 3.7500 0.01206 131656. 2545. 5.88E-04 11695. 1.14E+10 -0.3113 1685. 0.00 4.0500 0.01102 136376. 2526. 5.67E-04 11767. 1.14E+10 -0.3113 1685. 0.00 4.0500 0.0102 141057. 2508. 5.45E-04 11991. 1.14E+10 -9.7348 1750. 0.00 4.0500 0.00126 154882. 2461. 4.75E-04 12051. 1.14E+10 -9.7348 1750. 0.00 4.5000 0.00726 154882. 2461. 4.75E-04 12120. 1.14E+10 -7.1702 2009. 0.00 4.5000 0.00564 163935. 2435. 425E-04 11291. 1.14E+10 -7.1702 2009. 0.00 4.5000 0.00420 159424. 2447. 4.50E-04 12121. 1.14E+10 -7.14851 2203. 0.00 5.2500 0.0056 177310. 2405. 3.44E-04 12327. 1.14E+10 -5.1451 2203. 0.00 5.2500 0.0056 177310. 2405. 3.44E-04 12327. 1.14E+10 -5.1451 2203. 0.00 5.2500 0.0056 177310. 2405. 3.44E-04 12325. 1.14E+10 -3.8442 2333. 0.00 5.5500 0.00242 186113 2104. 2.86E-04 12529. 1.14E+10 -3.8442 2333. 0.00 5.5500 0.00124 189450. 1575. 2.57E-04 1268. 1.14E+10 -3178. 720000. 0.00 6.5000 0.00124 189450. 1575. 2.57E-04 1258. 1.14E+10 -3178. 7200000. 0.00 6.5000 0.00124 189450. 1575. 2.57E-04 1258. 1.14E+10 -3178. 7200000. 0.00 6.5000 0.00124 189450. 1575. 2.57E-04 1258. 1.14E+10 -3178. 7200000. 0.00 6.5000 0.00124 189450. 1575. 2.57E-04 1258. 1.14E+10 -308.258. 7200000. 0.00 6.5000 1.25E-05 128522 -12087. 5.99E-05 11647. 1.14E+10 -308.2587 7200000. 0.00 6.5000 7.7E-05 106698 -11054		2.1000	0.02000	82039	2771 _7 57E_04	10935	1.14E+10	-13 1145	972 0000	0.00
2.500 0.02261 92331, 2723, -7.30E-04 11092, 1.14E+10 -13.2237 1102, 0.00 2.7000 0.02031 97407, 2700, -7.15E-04 11170, 1.14E+10 -13.1587 1166, 0.00 2.8500 0.01903 102436, 2676, 6.99E-04 11247, 1.14E+10 -13.0190 1231, 0.00 3.0000 0.01779 107418, 2653, 6.83E-04 11324, 1.14E+10 -12.8086 1296, 0.00 3.1500 0.01658 11235, 2630, 6.65E-04 11399, 1.14E+10 -12.8086 1296, 0.00 3.4500 0.01425 122092, 2586, 6.28E-04 11474, 1.14E+10 -12.1928 1426, 0.00 3.4500 0.01425 122092, 2586, 6.28E-04 11548, 1.14E+10 -11.3473 1555, 0.00 3.7500 0.01206 131656, 2545, 5.88E-04 11695, 1.14E+10 -10.3656 1620, 0.00 3.9000 0.01102 136376, 2526, 5.67E-04 11767, 1.14E+10 -0.03113 1685, 0.00 4.0500 0.01002 141057, 2508, 5.45E-04 11767, 1.14E+10 -9.1266 1814, 0.00 4.0500 0.00276 154882 2461, 4.75E-04 11981, 1.14E+10 -9.1266 1814, 0.00 4.0500 0.00726 15482 2461, 4.75E-04 12051, 1.14E+10 -7.1702 2009, 0.00 4.6500 0.00276 154882 2461, 4.75E-04 12051, 1.14E+10 -7.1702 2009, 0.00 4.6500 0.00420 159424, 2447, 4.50E-04 12205, 1.14E+10 -7.8384 1944, 0.00 4.6500 0.00420 172876, 2414, 3.71E-04 12258, 1.14E+10 -5.8171 2138, 0.00 5.2500 0.00356 177310, 2405, 3.44E-04 12327, 1.14E+10 -5.8471 2138, 0.00 5.2500 0.00356 177310, 2405, 3.44E-04 12327, 1.14E+10 -3.8442 2333, 0.00 5.2500 0.00556 177310, 2405, 3.44E-04 12328, 1.14E+10 -3.8442 2333, 0.00 5.2500 0.00556 177310, 2405, 3.44E-04 12328, 1.14E+10 -264.7729 246240, 0.00 5.8500 0.00150 191921 1147, 2.27E-04 12651, 1.14E+10 -264.7729 246240, 0.00 5.8500 0.00150 191921 1147, 2.27E-04 1266, 1.14E+10 -3178, 7200000, 0.00 6.0000 0.00150 191921 1147, 2.27E-04 12651, 1.14E+10 -3.74842 2333, 0.00 5.4500 0.00150 191921 1147, 2.27E-04 12651, 1.14E+10 -3.74842 2333, 0.00 5.4500 0.00150 191921 1147, 2.27E-04 12651, 1.14E+10 -3.7442 2532, 0.00 5.4000 0.00150 191921 1147, 2.27E-04 12651, 1.14E+10 -3.7442 2532, 0.00 6.0000 0.00150 191921 1147, 2.27E-04 12651, 1.14E+10 -3.747, 7200000, 0.00 6.0000 5.25E-04 189450, 5.75, 2.57E-04 12252, 1.14E+10 -3.74842 2333, 0.00 5.4500 0.00150 191921, 1147, 2.27E-		2.2000	0.02423	87208	2747 _7 44F_04	11014	1.14E+10	-13 2102	1037	0.00
2.5000 0.02031 9740. 2700 -7.15E.04 11170. 114E+10 -13.1587 1166. 0.00 2.8500 0.01903 102436. 2676. 6.99E-04 11247. 1.14E+10 -13.1587 1166. 0.00 3.0000 0.01779 107418. 2653. 6.83E-04 11324. 1.14E+10 -12.8086 1296. 0.00 3.1500 0.01658 112355. 2630. 6.65E-04 11399. 1.14E+10 -12.5317 1361. 0.00 3.4500 0.01425 122092. 2586. 6.28E-04 11548. 1.14E+10 -11.7964 1490. 0.00 3.6000 0.01313 126895. 2565. 6.09E-04 11625. 1.14E+10 -11.7964 1490. 0.00 3.7500 0.01206 131656. 2545. 5.88E-04 11695. 1.14E+10 -11.3473 1555. 0.00 3.7500 0.01206 131656. 2545. 5.88E-04 11695. 1.14E+10 -10.8506 1620. 0.00 3.9000 0.01102 136376. 2526. 5.67E-04 11767. 1.14E+10 -0.8506 1620. 0.00 4.0500 0.01002 141057. 2508. 5.45E-04 11839. 1.14E+10 -0.3113 1685. 0.00 4.2000 0.00905 145701. 2491. 5.22E-04 11910. 1.14E+10 -9.7348 1750. 0.00 4.3500 0.00813 150308. 2476. 4.99E-04 11910. 1.14E+10 -9.7348 1750. 0.00 4.5000 0.00564 15832. 2461. 4.75E-04 12051. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.00564 15835. 2435. 4.25E-04 12190. 1.14E+10 -7.1702 2009. 0.00 4.8000 0.00564 15835. 2435. 4.25E-04 12190. 1.14E+10 -5.8171 2138. 0.00 5.1000 0.00420 172876. 2414. 3.71E-04 12258. 1.14E+10 -5.8171 2138. 0.00 5.2500 0.00356 177310. 2405. 3.44E-04 12259. 1.14E+10 -5.8171 2138. 0.00 5.2500 0.00242 186113 2104. 286E-04 12259. 1.14E+10 -3.8442 2233. 0.00 5.2500 0.00242 186113 2104. 2.86E-04 12529. 1.14E+10 -3.8442 2233. 0.00 5.5500 0.00242 186113 2104. 2.86E-04 12529. 1.14E+10 -3.8442 2233. 0.00 5.5500 0.00242 186113 2104. 2.86E-04 12529. 1.14E+10 -7.877. 220000. 0.00 6.0000 0.0012 193701 812.2344 -1.96E-04 12655. 1.14E+10 -378.7200000. 0.00 6.1500 7.95E-04 1949512193. 1.65E-04 12656. 1.14E+10 -3178.7200000. 0.00 6.1500 7.95E-04 1949512193. 1.65E-04 12651. 1.14E+10 -3178.7200000. 0.00 6.4500 3.07E-04 170032 -9937. 1.07E-04 12283 1.14E+10 -3178.7200000. 0.00 6.4500 3.07E-04 150179 -11543. 8.19E-05 11979 .1.14E+10 -354.4449 7200000 0.00 6.4500 3.07E-04 150179 -115438.19E-05 11979 .1.14E+10 -554.2414 7200000 0.00 6.9000 7.71E-05 106698 -11		2.4000	0.02255	07200.	2723 _7 30E_04	11092	1 14E+10	-13 2237	1102	0.00
2,700 0.02031 3740. 2,8500 0.01903 102436. 2676. 6.99E-04 11247. 1.14E+10 -13.0190 1231. 0.00 3,0000 0.01779 107418. 2653. 6.83E-04 11324. 1.14E+10 -12.8086 1296. 0.00 3,1500 0.01658 112355. 2630. 6.65E-04 11399. 1.14E+10 -12.928 1426. 0.00 3,4500 0.01425 122092. 2586. 6.28E-04 11548. 1.14E+10 -11.7964 1490. 0.00 3,6000 0.01313 126895. 2555. 6.09E-04 11622. 1.14E+10 -11.3473 1555. 0.00 3,7500 0.01206 131656. 2545. 5.88E-04 11695. 1.14E+10 -10.8506 1620. 0.00 3,9000 0.01102 136376. 2526. 5.67E-04 11767. 1.14E+10 -10.8506 1620. 0.00 4,0500 0.00905 145701. 2491. 5.22E-04 11910. 1.14E+10 -9.1266 1814. 0.00 4,0500 0.00915 145701. 2491. 5.22E-04 11910. 1.14E+10 -9.1266 1814. 0.00 4,0500 0.0095 145701. 2491. 5.22E-04 12051. 1.14E+10 -7.8384 1944. 0.00 4,5000 0.00726 154882 2461 -4.75E-04 12120. 1.14E+10 -7.8384 1944. 0.00 4,5000 0.00420 159424. 2447. 4.50E-04 12120. 1.14E+10 -7.8384 1944. 0.00 4,5000 0.00420 159424. 2447. 4.50E-04 12120. 1.14E+10 -7.8384 1944. 0.00 4,5000 0.00420 168419. 2424. 3.98E-04 12190. 1.14E+10 -5.1451 2203. 0.00 5,2500 0.00356 177310. 2405. 3.44E-04 12327. 1.14E+10 -3.8442 2333. 0.00 5,2500 0.00242 186113 21042.86E-04 12259. 1.14E+10 -3.8442 2333. 0.00 5,5000 0.00242 186113 21042.86E-04 1259. 1.14E+10 -32.29261 239760. 0.00 5,5000 0.00242 186113 21042.86E-04 1259. 1.14E+10 -3178. 7200000. 0.00 6,5000 0.00150 191921. 11472.27E-04 12618. 1.14E+10 -3178. 7200000. 0.00 6,5000 0.00150 191921. 11472.27E-04 12618. 1.14E+10 -3178. 7200000. 0.00 6,5000 0.00150 191921. 11472.27E-04 12618. 1.14E+10 -3178. 7200000. 0.00 6,5000 0.00121 193701 812.2344 -1.96E-04 1259. 1.14E+10 -328.9261 239760. 0.00 6,5000 0.00150 191921. 11472.27E-04 12618. 1.14E+10 -3178. 7200000. 0.00 6,5000 0.00121 193701 812.2344 -1.96E-04 12645. 1.14E+10 -3178. 7200000. 0.00 6,5000 5,5E-04 18695 -6942 -1.35E-04 12528. 1.14E+10 -3178. 7200000. 0.00 6,5000 7.71E-05 106698 -11864 -4.13E-05 11313. 1.14E+10 -554.8449 7200000. 0.00 6,5000 7.71E-05 126692 -1979 -1.41E-05 10701 1.14E+10 554.844		2.0000	0.02101	07/07	2700 _7 15E_04	11170	1.14E+10	-13 1587	1166	0.00
3.0000 0.01779 107418. 2653.685E-04 11324.14E+10 -12.8086 1296. 0.00 3.1500 0.01779 107418. 2653.685E-04 11399. 1.14E+10 -12.8086 1296. 0.00 3.3000 0.01539 117246. 2608.647E-04 11474. 1.14E+10 -12.5317 1361. 0.00 3.4500 0.01425 122092. 2586.628E-04 11548.1.14E+10 -11.7984 1490. 0.00 3.6000 0.01313 126895. 2565.609E-04 11622.1.14E+10 -11.3473 1555. 0.00 3.7500 0.01206 131656. 2545.558E-04 11695.1.14E+10 -11.8473 1555. 0.00 3.7500 0.0102 141057. 2508.545E-04 11767.1.14E+10 -10.8506 1620. 0.00 4.0500 0.0102 141057. 2508.545E-04 11839. 1.14E+10 -9.7348 1750. 0.00 4.0500 0.00905 145701. 2491.522E-04 11910. 1.14E+10 -9.7348 1750. 0.00 4.0500 0.00925 145701. 2491.522E-04 11910. 1.14E+10 -9.1266 1814. 0.00 4.5000 0.00642 159424. 2447.450E-04 12210. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.00564 163935. 2435.425E-04 12120. 1.14E+10 -7.8384 1944. 0.00 4.5000 0.00564 163935. 2435.425E-04 12120. 1.14E+10 -5.8171 2138. 0.00 5.2500 0.00364 163935. 2435.425E-04 12293. 1.14E+10 -5.8171 2138. 0.00 5.1000 0.00420 172876 2414.371E-04 12327. 1.14E+10 -5.8171 2138. 0.00 5.2500 0.00365 177310. 2405.344E-04 12395. 1.14E+10 -5.8171 2138. 0.00 5.000 0.00297 181721 2398.315E-04 12295. 1.14E+10 -3.8442 2333. 0.00 5.5000 0.00510 191921 1147.227E-04 12581. 1.14E+10 -322.9261 239760. 0.00 5.5000 0.00150 191921. 1147.227E-04 12581. 1.14E+10 -318422 2333. 0.00 5.5000 0.00510 191921. 1147.227E-04 12665. 1.14E+10 -31842 2333. 0.00 5.5000 0.00150 191921. 1147.227E-04 12665. 1.14E+10 -31842 2333. 0.00 5.5000 0.00150 191921. 1147.227E-04 12665. 1.14E+10 -318.7200000. 0.00 6.1000 7.95E-04 1949512193.165E-04 12665. 1.14E+10 -318.7200000. 0.00 6.1500 7.95E-04 1949512193.165E-04 12665. 1.14E+10 -318.7200000. 0.00 6.1500 7.95E-04 18695 -6942.1 35E-04 12588. 1.14E+10 -30.88295.720000. 0.00 6.1500 7.95E-04 1949512193.165E-04 12588. 1.14E+10 -30.82958.7200000. 0.00 6.5000 1.39E-04 150179 -11543.819E-05 11979. 1.14E+10 554.8449 7200000. 0.00 6.6000 1.39E-04 150179 -11543.819E-05 11979. 1.14E+10 554.8449 7200000. 0.00 6.900		2,7000	0.02001	102/36	2676 -6 99E-04	11247	1 14E+10	-13 0190	1231	0.00
3.1500 0.01658 112355. 2630. 6.66E-04 11391. 1.14E+10 -12.5317 1361. 0.00 3.3000 0.01539 117246. 2608. 6.47E-04 11474. 1.14E+10 -12.1928 1426. 0.00 3.4500 0.01425 122092 2586. 6.28E-04 11548. 1.14E+10 -11.7964 1490. 0.00 3.6000 0.01313 126895. 2565. 6.09E-04 11622. 1.14E+10 -11.3473 1555. 0.00 3.7500 0.01206 131656. 2545. 5.88E-04 11695. 1.14E+10 -0.8506 1620. 0.00 3.9000 0.01102 136376 2526. 5.67E-04 11767. 1.14E+10 -0.3113 1685. 0.00 4.0500 0.01002 141057. 2508. 5.45E-04 11767. 1.14E+10 -9.7348 1750. 0.00 4.0500 0.00905 145701 2491. 5.22E-04 11910. 1.14E+10 -9.7348 1750. 0.00 4.3500 0.00913 150308 2476. 4.99E-04 11981. 1.14E+10 -9.1266 1814. 0.00 4.5000 0.00726 154882 2461. 4.75E-04 12051. 1.14E+10 -7.7384 1944. 0.00 4.5000 0.00726 154882 2461. 4.75E-04 12120. 1.14E+10 -7.4384 1944. 0.00 4.5000 0.00564 15335. 2435. 4.25E-04 12120. 1.14E+10 -7.4384 1944. 0.00 4.5000 0.00564 15335. 2435. 4.25E-04 12120. 1.14E+10 -7.4384 2074. 0.00 4.9500 0.00420 172876. 24143.71E-04 12227. 1.14E+10 -5.8171 2138. 0.00 5.1000 0.00242 172876. 24143.71E-04 12327. 1.14E+10 -5.8171 2138. 0.00 5.2500 0.00356 177310 24053.44E-04 12325. 1.14E+10 -3.24451 2203. 0.00 5.4000 0.00271 186113 2104 -2.86E-04 12529. 1.14E+10 -3.24451 2208. 0.00 5.5500 0.00242 186113 2104 -2.86E-04 12529. 1.14E+10 -322.9261 23376. 0.00 5.5500 0.00242 186113 2104 -2.86E-04 12529. 1.14E+10 -322.9261 23376. 0.00 5.6500 0.00150 191921 1147 -2.27E-04 12665 1.14E+10 -3178 7200000. 0.00 6.1500 7.95E-04 18695. 6942 -1.35E-04 12665 1.14E+10 -210.6613 2527.0 0.00 6.1500 7.95E-04 18695. 6942 -1.35E-04 12656 1.14E+10 -210.6613 2527.0 0.00 6.1500 7.95E-04 18695. 6942 -1.35E-04 12665 1.14E+10 -210.6613 2527.0 0.00 6.1500 7.95E-04 18695. 6942 -1.35E-04 12665 1.14E+10 -210.6613 2527.0 0.00 6.1500 7.95E-04 18695. 6942 -1.35E-04 12665 1.14E+10 -210.6613 2527.0 0.00 6.1500 7.95E-04 18695. 6942 -1.35E-04 12665 1.14E+10 -3178 7200000. 0.00 6.1500 7.95E-04 18695. 6942 -1.35E-04 12665 1.14E+10 -3178 7200000. 0.00 6.1500 7.95E-04 18695. 6942 -1.35E-		3 0000	0.01505	102430.	2653 -6.83E-04	11324	1 14E+10	-12 8086	1296	0.00
$ \begin{array}{c} 3.1000 & 0.01639 & 11203. \\ 3.3000 & 0.01539 & 117246. \\ 2608 & 647E-04 & 11474 & 1.14E+10 & -12.1928 & 1426. \\ 0.00 \\ 3.4500 & 0.01425 & 122092 & 2586 & -6.28E-04 & 11638 & 1.14E+10 & -11.3473 & 1555 & 0.00 \\ 3.6000 & 0.01131 & 126895 & 2565 & -6.09E-04 & 11622 & 1.14E+10 & -11.3473 & 1555 & 0.00 \\ 3.7500 & 0.01206 & 131656 & 2545 & -5.88E-04 & 11895 & 1.14E+10 & -10.8506 & 1620 & 0.00 \\ 4.0500 & 0.01002 & 141057 & 2508 & -5.45E-04 & 11891 & 1.14E+10 & -9.7348 & 1750 & 0.00 \\ 4.0500 & 0.00905 & 145701 & 2491 & -5.22E-04 & 11910 & 1.14E+10 & -9.7348 & 1750 & 0.00 \\ 4.2000 & 0.00905 & 145701 & 2491 & -5.22E-04 & 11910 & 1.14E+10 & -9.1266 & 1814 & 0.00 \\ 4.3500 & 0.00915 & 145701 & 2491 & -5.22E-04 & 11910 & 1.14E+10 & -8.4925 & 1879 & 0.00 \\ 4.3500 & 0.00726 & 154882 & 2461 & -4.75E-04 & 12051 & 1.14E+10 & -7.4702 & 2009 & 0.00 \\ 4.5000 & 0.00726 & 154882 & 2461 & -4.75E-04 & 12201 & 1.14E+10 & -7.4702 & 2009 & 0.00 \\ 4.8000 & 0.00564 & 163935 & 2435 & -4.25E-04 & 12190 & 1.14E+10 & -5.8171 & 2138 & 0.00 \\ 5.1000 & 0.00420 & 172876 & 2414 & -3.71E-04 & 12327 & 1.14E+10 & -5.1451 & 2203 & 0.00 \\ 5.2000 & 0.00356 & 177310 & 2405 & -3.44E-04 & 12395 & 1.14E+10 & -5.1451 & 2208 & 0.00 \\ 5.4000 & 0.00297 & 181721 & 2398 & -3.15E-04 & 12395 & 1.14E+10 & -3.8442 & 2333 & 0.00 \\ 5.5000 & 0.00124 & 186113 & 2104 & -2.86E-04 & 12529 & 1.14E+10 & -3.8442 & 2333 & 0.00 \\ 5.5000 & 0.00124 & 186113 & 2104 & -2.86E-04 & 12529 & 1.14E+10 & -3178 & 7200000 & 0.00 \\ 6.0000 & 0.00112 & 193701 & 812 2344 & -1.96E-04 & 12665 & 1.14E+10 & -3178 & 7200000 & 0.00 \\ 6.0000 & 0.00112 & 193701 & 812 2344 & -1.96E-04 & 12665 & 1.14E+10 & -3178 & 7200000 & 0.00 \\ 6.5000 & 7.95E-04 & 158522 & -12087 & -5.99E-05 & 11647 & 1.14E+10 & -554 4449 & 7200000 & 0.00 \\ 6.5000 & 7.95E-04 & 158522 & -12087 & -5.99E-05 & 11647 & 1.14E+10 & -504.4729 & 246240 & 0.00 \\ 6.5000 & 1.39E-04 & 15079 & -11543 & -8.19E-05 & 11979 & 1.14E+10 & -504.4729 & 246240 & 0.00 \\ 6.6000 & 1.39E-04 & 150179 & -11543 & -8.19E-05 & 11979 & 1.14E+10 & -308 2958 & 720$		3 1500	0.01775	112355	2630 -6.65E-04	11300	1 14E+10	-12.5317	1361	0.00
$3.5000 \ 0.01425 \ 122092 \ 2586 \ 6.28E-04 \ 11548 \ 1.14E+10 \ -11.7964 \ 1490 \ 0.00 \ 3.6000 \ 0.01313 \ 126895 \ 2565 \ -6.09E-04 \ 11622 \ 1.14E+10 \ -11.3473 \ 1555 \ 0.00 \ 3.7500 \ 0.01206 \ 131656 \ 2545 \ -5.88E-04 \ 11695 \ 1.14E+10 \ -10.8506 \ 1620 \ 0.00 \ 3.9000 \ 0.01102 \ 136376 \ 2526 \ -5.67E-04 \ 11767 \ 1.14E+10 \ -10.3113 \ 1685 \ 0.00 \ 4.0500 \ 0.01002 \ 141057 \ 2508 \ -5.45E-04 \ 11839 \ 1.14E+10 \ -9.7348 \ 1750 \ 0.00 \ 4.0500 \ 0.00095 \ 145701 \ 2491 \ -5.22E-04 \ 11910 \ 1.14E+10 \ -9.7348 \ 1750 \ 0.00 \ 4.5000 \ 0.000726 \ 154882 \ 2461 \ -4.75E-04 \ 12051 \ 1.14E+10 \ -7.8384 \ 1944 \ 0.00 \ 4.5000 \ 0.00726 \ 154882 \ 2461 \ -4.75E-04 \ 12051 \ 1.14E+10 \ -7.8384 \ 1944 \ 0.00 \ 4.6500 \ 0.00642 \ 159424 \ 2447 \ -4.50E-04 \ 12120 \ 1.14E+10 \ -7.8384 \ 1944 \ 0.00 \ 4.6500 \ 0.00420 \ 158422 \ 2461 \ -4.75E-04 \ 12120 \ 1.14E+10 \ -7.8384 \ 1944 \ 0.00 \ 4.6500 \ 0.00420 \ 172876 \ 2414 \ -3.71E-04 \ 12258 \ 1.14E+10 \ -5.8171 \ 2138 \ 0.00 \ 5.1000 \ 0.00420 \ 172876 \ 2414 \ -3.71E-04 \ 12252 \ 1.14E+10 \ -5.8171 \ 2138 \ 0.00 \ 5.2500 \ 0.00297 \ 181721 \ 2398 \ -3.4E-04 \ 12252 \ 1.14E+10 \ -3.8442 \ 2333 \ 0.00 \ 5.5000 \ 0.00297 \ 181721 \ 2398 \ -3.4E-04 \ 12252 \ 1.14E+10 \ -3.2029261 \ 239760 \ 0.00 \ 5.8500 \ 0.00297 \ 181721 \ 2398 \ -3.4E-04 \ 12252 \ 1.14E+10 \ -3.2029261 \ 239760 \ 0.00 \ 5.5000 \ 0.00297 \ 181721 \ 2398 \ -3.5E-04 \ 12652 \ 1.14E+10 \ -3.2029261 \ 239760 \ 0.00 \ 5.5000 \ 0.00194 \ 189450 \ 1575 \ -2.57E-04 \ 12665 \ 1.14E+10 \ -317.8 \ 7200000 \ 0.00 \ 5.5500 \ 0.00194 \ 189450 \ 1575 \ -2.57E-04 \ 12665 \ 1.14E+10 \ -3.14E+10 \ -3.2029261 \ 239760 \ 0.00 \ 5.5500 \ 0.00194 \ 19951 \ -2.4224 \ -3.35E-04 \ 12665 \ 1.14E+10 \ -3.2029261 \ 239760 \ 0.00 \ 5.5500 \ 0.00194 \ 19951 \ -2.4224 \ -3.35E-04 \ 12665 \ 1.14E+10 \ -3.208.7 \ 200000 \ 0.00 \ 5.5500 \ 0.00194 \ 19951 \ -2.4256-04 \ 12665 \ 1.14E+10 \ -3.44851 \ 2268 \ 0.00 \ 0.00 \ 5.5500 \ 0.00194 \ 19951 \ -2.4256-04 \ 12665 \ 1.14E+10 \ -3.44851 \ 22624 \ 0.00 \ 0.00 \ 6.5500 \ 0.000 $		3 3000	0.01030	1172/6	2608 -6.47E-04	11474	1 14E+10	-12 1928	1426	0.00
3.6000 0.01313 126895 2565 6.026-04 11645 1.14E+10 -11.347 1565 0.00 0.01313 126895 2565 6.026-04 11695 1.14E+10 -11.347 1555 0.00 0.01206 131656 2545 -5.88E-04 11695 1.14E+10 -10.8506 1620 0.00 0.00102 141057 2508 -5.45E-04 11767 1.14E+10 -9.7348 1750 0.00 4.0500 0.00905 145701 2491 -5.22E-04 11910 1.14E+10 -9.1266 1814 0.00 4.3500 0.00813 150308 2476 -4.99E-04 11981 1.14E+10 -8.4925 1879 0.00 4.5000 0.00726 154882 2461 -4.75E-04 12051 1.14E+10 -7.8384 1944 0.00 4.6500 0.00642 159424 2447 -4.50E-04 12120 1.14E+10 -7.1702 2009 0.00 4.8000 0.00564 163335 2435 -4.2E-04 12190 1.14E+10 -7.1702 2009 0.00 4.8000 0.00564 163335 2435 -4.2E-04 12190 1.14E+10 -5.8171 2138 0.00 5.1000 0.00420 172876 2414 -3.71E-04 12252 1.14E+10 -5.8171 2138 0.00 5.2500 0.00356 177310 2405 -3.44E-04 12395 1.14E+10 -3.8442 2333 0.00 5.5500 0.00242 186113 2104 -2.86E-04 12529 1.14E+10 -3.8442 2333 0.00 5.5500 0.00242 186113 2104 -2.86E-04 12529 1.14E+10 -320.920 0.00 5.8500 0.00150 191921 1147 -2.27E-04 12651 1.14E+10 -320.9200 0.00 5.8500 0.00142 193701 812 2344 1.9E-04 12646 1.14E+10 -3178 7200000 0.00 5.8500 0.00151 191921 1147 -2.27E-04 12646 1.14E+10 -613 252720 0.00 6.3000 5.25E-04 189855 -6942 -1.35E-04 12646 1.14E+10 -613 252720 0.00 6.5500 0.00142 193701 812 2344 1.9E-04 12645 1.14E+10 -3178 7200000 0.00 6.5000 5.25E-04 185895 -6942 -1.35E-04 12646 1.14E+10 -613 252720 0.00 6.5000 5.25E-04 185895 -6942 -1.35E-04 12646 1.14E+10 -613 252720 0.00 6.5000 5.25E-04 185895 -6942 -1.35E-04 12646 1.14E+10 -613 252720 0.00 6.5000 5.25E-04 185895 -6942 -1.35E-04 12646 1.14E+10 -613 257720 0.00 6		3.4500	0.01005	12240.	2586 -6.28E-04	11548	1 14F+10	-11 7964	1490	0.00
3.7500 0.01206 131656 2545 -5.88E-04 11625. 1.14E+10 -10.8506 1620. 0.00 3.9000 0.01102 136376 2526 -5.67E-04 11777. 1.14E+10 -10.3113 1685. 0.00 4.0500 0.01002 141057 2508 -5.45E-04 11839. 1.14E+10 -9.7348 1750. 0.00 4.2000 0.00905 145701 2491 -5.22E-04 11910. 1.14E+10 -9.7348 1750. 0.00 4.2000 0.00726 154882 2461 -4.75E-04 12051. 1.14E+10 -9.1266 1814. 0.00 4.5000 0.00726 154882 2461 -4.75E-04 12051. 1.14E+10 -7.8384 1944. 0.00 4.6500 0.00642 159424 2447 -4.50E-04 12120. 1.14E+10 -7.1702 2009. 0.00 4.8000 0.00564 163935 2435 -4.25E-04 12190. 1.14E+10 -7.1702 2009. 0.00 4.8000 0.00564 163935 2435 -4.25E-04 12190. 1.14E+10 -5.8171 2138. 0.00 5.1000 0.00420 172876 2414 -3.71E-04 12327. 1.14E+10 -5.8171 2138. 0.00 5.2500 0.00356 177310 2405 -3.44E-04 12395. 1.14E+10 -5.1451 2203. 0.00 5.2500 0.00242 186113 2104 -2.86E-04 12529. 1.14E+10 -3.8442 2333. 0.00 5.5500 0.00242 186113 2104 -2.86E-04 12529. 1.14E+10 -3.8442 2333. 0.00 5.5500 0.00242 186113 2104 -2.86E-04 12529. 1.14E+10 -364.7729 246240. 0.00 5.6500 0.00150 191921 1147 -2.27E-04 12618 1.14E+10 -210.6613 252720 0.00 6.0000 0.00112 193701 8122344 -1.96E-04 12665 1.14E+10 -3178. 7200000. 0.00 6.0000 0.00112 193701 8122344 -1.96E-04 12526 1.14E+10 -3178. 7200000. 0.00 6.0000 0.00112 193701 8122344 -1.96E-04 12646. 1.14E+10 -3178. 7200000. 0.00 6.0000 0.00112 193701 8122344 -1.96E-04 12665 1.14E+10 -3178. 7200000. 0.00 6.0000 0.0012 193701 8122344 -1.96E-04 12645. 1.14E+10 -2098. 7200000. 0.00 6.0000 0.00112 193701 8122344 -1.96E-04 12645. 1.14E+10 -2098. 7200000. 0.00 6.0000 0.0012 193701 -2193 -1.65E-04 12625. 1.14E+10 -3178. 7200000 0.00 6.0000 7.95E-04 150179 -1.1543 -8.19E-05 11979 1.14E+10 -54.4749 7200000 0.00 6.5000 7.71E-05 106698 -11854 -4.13E-05 11313 1.14E+10 554.2611 7200000 0.00 6.9000 7.71E-05 106698 -11854 -4.13E-05 11979 1.14E+10 554.2611 7200000 0.00 7.5000 1.35E-04 55669 -11086 -2.61E-05 10993 1.14E+10 554.2611 7200000 0.00 7.5000 1.35E-04 55669 -11086 -2.61E-05 10993 1.14E+10 554.2611 7200000 0.00 7.5000 1.35E-04		3 6000	0.01423	126895	2565 -6.09E-04	11622	1.14E+10	-11 3473	1555	0.00
$\int 57 \text{ NG} = 0.01206 + 10306 + 2536 + 5.000 + 11767 + 1.14E+10 + 10.3013 + 1685 + 0.00 + 0.000 + 0.0102 + 141057 + 2508 + 5.45E-04 + 11767 + 1.14E+10 + 9.7348 + 1750 + 0.00 + 0.000 + 0.00005 + 145701 + 2491 + 5.22E-04 + 11910 + 1.14E+10 + 9.1266 + 1814 + 0.00 + 0.000 + 0.000726 + 154882 + 2461 + 4.75E-04 + 12051 + 1.14E+10 + 8.4925 + 1879 + 0.00 + 0.000 + 0.000726 + 154882 + 2461 + 4.75E-04 + 12051 + 1.14E+10 + 7.8384 + 1944 + 0.00 + 4.6500 + 0.00642 + 159424 + 2447 + 4.50E-04 + 12120 + 1.14E+10 + 7.1702 + 2009 + 0.00 + 4.6500 + 0.00564 + 163935 + 2435 + 4.25E-04 + 12190 + 1.14E+10 + 6.4943 + 2074 + 0.00 + 4.6500 + 0.00564 + 163935 + 2435 + 4.25E-04 + 12190 + 1.14E+10 + 6.4943 + 2074 + 0.00 + 4.9500 + 0.00490 + 168419 + 2424 + 3.98E-04 + 12258 + 1.14E+10 + 5.1451 + 2203 + 0.00 + 5.2500 + 0.00356 + 177310 + 2405 + 3.44E-04 + 12327 + 1.14E+10 + 5.1451 + 2268 + 0.00 + 5.2500 + 0.00242 + 186113 + 2104 + 2395 + 1.14E+10 + 3.8442 + 2333 + 0.00 + 5.5500 + 0.00242 + 186113 + 2104 + 2.65E-04 + 12529 + 1.14E+10 + 3.8442 + 2333 + 0.00 + 5.5500 + 0.00242 + 186113 + 2104 + 2.25E + 1.14E+10 + 3.8442 + 2333 + 0.00 + 5.5500 + 0.00150 + 191921 + 1147 + 2.27E-04 + 12581 + 1.14E+10 + 264.7729 + 246240 + 0.00 + 5.8500 + 0.00150 + 191921 + 1147 + 2.27E-04 + 12618 + 1.14E+10 + 210.6613 + 252720 + 0.00 + 6.0000 + 0.00150 + 191921 + 1147 + 2.27E-04 + 12646 + 1.14E+10 + 210.6613 + 252720 + 0.00 + 6.0000 + 0.00150 + 191921 + 1.145 + 0.41252 + 1.14E+10 + 210.6613 + 252720 + 0.00 + 6.0000 + 2.5500 + 1.05E + 0.412526 + 1.14E+10 + 2.00000 + 0.00 + 6.0000 + 0.00150 + 191921 + 1.147 + 2.27E-04 + 12646 + 1.14E+10 + 2.000613 + 2.52720 + 0.00 + 0.00 + 6.0000 + 0.00150 + 191921 + 1.145 + 0.41252 + 1.14E+10 + 2.00000 + 0.00 + 0.000 + 2.00000 + 2.0000 + 2.135E-04 + 12526 + 1.14E+10 + 2.00000 + 2.0000 + 0.00 + 0.000 + 2.0000 + 2.0000 + 0.000 + 2.00000 + 0.000 + 2.00000 + 0.000 + 1.2833 + 1.14E+10 + 0.554 + 449 + 7.00000 + 0.00 + 2.00000 + 2.00000 + 1.2852 + 1.2087 + 5.99E+05 + 111313 + 1.14E+10 + 3.082958 + 7.000000 + 0.00 + 2.00000 + 2.00000 + 0$		3 7500	0.01313	131656	2545 -5.88E-04	11695	1 14E+10	-10.8506	1620	0.00
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +		3 0000	0.01200	136376	2526 -5.67E-04	11767	1 14E+10	-10.3113	1685	0.00
$1.14E_{-10} = 0.00005 = 0.00005 = 0.00005 = 0.00005 = 0.00005 = 0.00005 = 0.00005 = 0.00005 = 0.00005 = 0.00005 = 0.0000000000$		4.0500	0.01102	141057	2508 -5 45E-04	11839	1 14E+10	-9 7348	1750	0.00
4.3500 0.00813 150308 2476 -4.99E-04 11981. 1.14E+10 -8.4925 1879. 0.00 4.5000 0.00726 154882 2461 -4.75E-04 12051. 1.14E+10 -7.1702 2009. 0.00 4.6500 0.00642 159424 2447 -4.50E-04 12120. 1.14E+10 -7.1702 2009. 0.00 4.8000 0.00564 163935 2435 -4.25E-04 12190. 1.14E+10 -6.4943 2074. 0.00 4.9500 0.00420 172876 2414 -3.71E-04 12258. 1.14E+10 -5.8171 2138. 0.00 5.1000 0.00420 172876 2414 -3.71E-04 12257. 1.14E+10 -5.1451 2203. 0.00 5.2500 0.00356 177310 2405 -3.44E-04 12395. 1.14E+10 -4.4851 2268. 0.00 5.4000 0.00297 181721 2398 -3.15E-04 12452. 1.14E+10 -3.8442 2333. 0.00 5.5500 0.00242 186113 2104 -2.86E-04 1259. 1.14E+10 -322.9261 239760. 0.00 5.7000 0.00194 189450. 1575 -2.57E-04 12581. 1.14E+10 -264.7729 246240 0.00 5.8500 0.00150 191921. 1147 -2.27E-04 12618. 1.14E+10 -264.7729 246240. 0.00 6.8500 0.00112 193701 812.2344 -1.96E-04 12665. 1.14E+10 -3178. 7200000. 0.00 6.1500 7.95E-04 194951 -2193 -1.65E-04 12665. 1.14E+10 -3178. 7200000. 0.00 6.3000 5.25E-04 18895 -6942 -1.35E-04 12526 1.14E+10 -3178. 7200000. 0.00 6.3000 5.25E-04 18895 -6942 -1.35E-04 12526 1.14E+10 -3178. 7200000. 0.00 6.4500 3.07E-04 170032 -9937 -1.07E-04 12283 1.14E+10 -2098. 7200000 0.00 6.4500 3.07E-04 150179 -11543 -8.19E-05 11979 1.14E+10 -554.4449 7200000 0.00 6.4500 1.39E-04 150179 -11543 -8.19E-05 11979 1.14E+10 -554.4449 7200000 0.00 6.5000 -7.71E-05 106698 -11854 -4.13E-05 11313 1.14E+10 554.5611 7200000 0.00 7.0500 1.36E-04 5569 -11086 -2.61E-05 10993 1.14E+10 545.2611 7200000 0.00 7.0500 1.36E-04 5569 -11086 -2.61E-05 10993 1.14E+10 545.2611 7200000 0.00		4.2000	0.01002	145701	2491 -5 22E-04	11910	1 14E+10	-9 1266	1814	0.00
4.5000 0.00726 154882 2461 -4.75E-04 12051. 1.14E+10 -7.8384 1944. 0.00 4.6500 0.00642 159424 2447. -4.50E-04 12120. 1.14E+10 -7.8384 1944. 0.00 4.6500 0.00642 159424 2447. -4.50E-04 12120. 1.14E+10 -7.702 2009. 0.00 4.8000 0.00564 163935 2435. -4.25E-04 12190. 1.14E+10 -6.4943 2074. 0.00 4.9500 0.00420 172876 2414. -3.71E-04 12327. 1.14E+10 -5.451 2203. 0.00 5.1000 0.00297 181721 2398. -3.15E-04 12462. 1.14E+10 -3.8442 2333. 0.00 5.500 0.00242 186113 2104. -2.86E-04 12529. 1.14E+10 -322.9261 239760. 0.00 5.500 0.00150 191921. 1147. -2.27E-04 12618. 1.14E+10 -161.2741 259200. 0.00 6.0000 0.0112 193701 812.2344<		4 3500	0.00303	150308	2476 -4 99F-04	11981	1 14E+10	-8 4925	1879	0.00
4 6500 0.00642 159424 2447 4.50E-04 12120 1.14E+10 -7.1702 2009 0.00 4 8000 0.00564 163935 2435 -4.25E-04 12190 1.14E+10 -7.1702 2009 0.00 4 9500 0.00490 168419 2424 -3.98E-04 12258 1.14E+10 -5.8171 2138 0.00 5 1000 0.00420 172876 2414 -3.71E-04 12327 1.14E+10 -5.1451 2203 0.00 5 2500 0.00297 181721 2398 -3.15E-04 12395 1.14E+10 -3.8442 2333 0.00 5 4000 0.00297 181721 2398 -3.15E-04 12529 1.14E+10 -3.8442 2333 0.00 5 5500 0.00194 189450 1575 -2.57E-04 12581 1.14E+10 -264.7729 246240 0.00 5 8500 0.0112 193701 812.2344 -1.96E-04 12665 1.14E+10 -61.2741 259200 0.00 6 1500 7.95E-04 194951 -2193 -1.65		4 5000	0.00726	154882	2461 -4 75E-04	12051	1 14E+10	-7.8384	1944	0.00
$137 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		4 6500	0.00642	159424	2447 -4 50E-04	12120	1 14E+10	-7.1702	2009	0.00
12100 - 0.00304 - 100303 - 2100 - 12100 - 12100 - 112100 - 1112 - 10 - 10		4 8000	0.00564	163935	2435 -4 25E-04	12190	1.14E+10	-6.4943	2074	0.00
$\int 51000 0.00420 172876 2414 -3.71E-04 12327 1.14E+10 -5.1451 2203 0.00 0.0055 0.00356 177310 2405 -3.44E-04 12395 1.14E+10 -4.4851 2268 0.00 0.00297 181721 2398 -3.15E-04 12462 1.14E+10 -3.8442 2333 0.00 0.005 0.00242 186113 2104 -2.86E-04 12529 1.14E+10 -3.22.9261 239760 0.00 0.005 0.00194 189450 1575 -2.57E-04 12581 1.14E+10 -264.7729 246240 0.00 0.005 0.00194 189450 1575 -2.57E-04 12581 1.14E+10 -264.7729 246240 0.00 0.005 0.00150 191921 1147 -2.27E-04 12618 1.14E+10 -210.6613 252720 0.00 0.005 0.00150 191921 1147 -2.27E-04 12645 1.14E+10 -3178 7200000 0.00 0.00 0.005 0.005 0.55500 0.00122 193701 812.2344 -1.96E-04 12665 1.14E+10 -3178 7200000 0.00 0.00 0.005 0.005 0.00150 194951 -2193 -1.65E-04 12526 1.14E+10 -2098 7200000 0.00 0.00 0.005 0.005 0.00150 194951 -2193 -1.07E-04 12283 1.14E+10 -1230 7200000 0.00 0.00 0.005 0.0015 0.00150 0.00150 0.00150 0.00150 0.00150 0.00150 0.00150 0.00150 0.00150 0.00150 0.005 0.00150 0.000150 0.000000 0.00$		4 9500	0.00004	168/19	2424 -3 98F-04	12258	1 14E+10	-5 8171	2138	0.00
5.1000 0.00420 172010 2447. 0.11204 1221. 11412410 0.44851 2268 0.00 5.2500 0.00297 181721 2398 -3.15E-04 12395. 1.14E+10 -4.4851 2268 0.00 5.4000 0.00297 181721 2398 -3.15E-04 12462. 1.14E+10 -3.8442 2333 0.00 5.5500 0.00242 186113 2104 -2.86E-04 12529 1.14E+10 -3.8442 2337.00 0.00 5.7000 0.00194 189450 1575 -2.57E-04 12581 1.14E+10 -264.7729 246240 0.00 5.8500 0.00150 191921 1147 -2.27E-04 12618 1.14E+10 -210.6613 252720 0.00 6.0000 0.00112 193701 812.2344 -1.96E-04 12665 1.14E+10 -3178 7200000 0.00 6.3000 5.25E-04 185895 -6942 -1.35E-04 12526 1.14E+10 -1230 7200000 0.00 6.4500 3.07E-04 150179 -11543		5 1000	0.00420	172876	2414 -371F-04	12327	1.14E+10	-5 1451	2203	0.00
54000 0.00297 181721 2398 -3.15E-04 12462 1.14E+10 -3.8442 2333 0.00 55500 0.00242 186113 2104 -2.86E-04 12529 1.14E+10 -3.8442 2333 0.00 57000 0.00194 189450 1575 -2.57E-04 12581 1.14E+10 -264.7729 246240 0.00 58500 0.00150 191921 1147 -2.27E-04 12618 1.14E+10 -210.6613 252720 0.00 60000 0.00112 193701 812.2344 -1.96E-04 12646 1.14E+10 -210.6613 252720 0.00 61500 7.95E-04 194951 -2193 -1.65E-04 12645 1.14E+10 -3178 7200000 0.00 63000 5.25E-04 185895 -6942 -1.35E-04 12526 1.14E+10 -2193 7200000 0.00 64500 3.07E-04 170032 -9937 -1.07E-04 12283 1.14E+10 -1230 7200000 0.00 65000 -25E-05 128522 -12087 <t< td=""><td></td><td>5 2500</td><td>0.00356</td><td>177310</td><td>2405 -344E-04</td><td>12395</td><td>1.14E+10</td><td>-4 4851</td><td>2268</td><td>0.00</td></t<>		5 2500	0.00356	177310	2405 -344E-04	12395	1.14E+10	-4 4851	2268	0.00
5 5000 0 00242 186113 2104 -2 86E-04 12529 1.14E+10 -322.9261 239760 0.00 5 7000 0.00194 189450 1575 -2 57E-04 12581 1.14E+10 -264.7729 246240 0.00 5 8500 0 00150 191921 1147 -2 27E-04 12618 1.14E+10 -210.6613 252720 0.00 6 0000 0 00112 193701 812 2344 -1.96E-04 12646 1.14E+10 -210.6613 252720 0.00 6 1500 7 95E-04 194951 -2193 -1.65E-04 12646 1.14E+10 -3178 7200000 0.00 6 3000 5 25E-04 185895 -6942 -1.35E-04 12233 1.14E+10 -2098 7200000 0.00 6 4500 3.07E-04 170032 -9937 -1.07E-04 12283 1.14E+10 -1230 7200000 0.00 6 6000 1 39E-04 150179 -11543 -8.19E-05 11979 1.14E+10 -554.4449 7200000 0.00 6 5000 -771E-05 106698 <t< td=""><td></td><td>5 4000</td><td>0.00000</td><td>181721</td><td>2398 -3 15E-04</td><td>12462</td><td>1.14F+10</td><td>-3.8442</td><td>2333</td><td>0.00</td></t<>		5 4000	0.00000	181721	2398 -3 15E-04	12462	1.14F+10	-3.8442	2333	0.00
57000 0.00194 189450 1575 -2 57E-04 12581 1.14E+10 -264.7729 246240 0.00 58500 0.00150 191921 1147 -2 27E-04 12618 1.14E+10 -264.7729 246240 0.00 60000 0.00112 193701 812.2344 -1.96E-04 12646 1.14E+10 -210.6613 252720 0.00 61500 7.95E-04 194951 -2193 -1.65E-04 12665 1.14E+10 -3178 7200000 0.00 63000 5.25E-04 185895 -6942 -1.35E-04 12265 1.14E+10 -2098 7200000 0.00 64500 3.07E-04 170032 -9937 -1.07E-04 12283 1.14E+10 -1230 7200000 0.00 64500 1.39E-04 150179 -11543 -8.19E-05 11979 1.14E+10 -554.4449 7200000 0.00 65000 -771E-05 126698 -11854 -4.13E-05 11313 1.14E+10 308.2958 7200000 0.00 70500 1.36E-04 85869 -1108		5 5500	0 00237	186113	2104 -2.86E-04	12529	1.14E+10	-322,9261	239760	0.00
58500 0.00134 105400 10140 201204 12011 1142+10 201210 0.00 58500 0.00150 191921 1147 -2 27E-04 12618 1.14E+10 -210.6613 252720 0.00 60000 0.00112 193701 812.2344 -1.96E-04 12646 1.14E+10 -161.2741 259200 0.00 61500 7.95E-04 194951 -2193 -1.65E-04 12665 1.14E+10 -3178 7200000 0.00 63000 5.25E-04 185895 -6942 -1.35E-04 12526 1.14E+10 -2098 7200000 0.00 64500 3.07E-04 170032 -9937 -1.07E-04 12283 1.14E+10 -1230 7200000 0.00 64500 1.39E-04 150179 -11543 -8.19E-05 11979 1.14E+10 -554.4449 7200000 0.00 65000 -771E-05 126698 -11854 -4.13E-05 11313 1.14E+10 308.2958 7200000 0.00 70500 1.36E-04 85869 -11086 -2.61E-05 </td <td></td> <td>5 7000</td> <td>0.00242</td> <td>189450</td> <td>1575 -2 57E-04</td> <td>12581</td> <td>1 14E+10</td> <td>-264 7729</td> <td>246240</td> <td>0.00</td>		5 7000	0.00242	189450	1575 -2 57E-04	12581	1 14E+10	-264 7729	246240	0.00
6 0000 0 00112 193701 812.2344 -1 96E-04 12646 1.14E+10 -161.2741 259200 0.00 6 1500 7 95E-04 194951 -2193 -1.65E-04 12646 1.14E+10 -3178 7200000 0.00 6 3000 5 25E-04 185895 -6942 -1.35E-04 12526 1.14E+10 -2098 7200000 0.00 6 4500 3.07E-04 170032 -9937 -107E-04 12283 1.14E+10 -1230 7200000 0.00 6 6000 1 39E-04 150179 -11543 -8.19E-05 11979 1.14E+10 -554.4449 7200000 0.00 6 6000 1 25E-05 128522 -12087 -5 99E-05 11647 1.14E+10 -50.0006 7200000 0.00 6 9000 -7 71E-05 106698 -11854 -4 13E-05 11313 1.14E+10 308.2958 7200000 0.00 7 0500 1 36E-04 85869 -11086 -2 61E-05 10993 1 14E+10 545 2611 7200000 0.00 7 2000 -17 1E-04 66802		5 8500	0.00154	103430	1147 _2 27E-04	12618	1.14E+10	-210 6613	252720	0.00
6 1500 7 95E-04 194951 -2193 -1 65E-04 12665 1.14E+10 -3178 7200000 0.00 6 3000 5 25E-04 185895 -6942 -1 35E-04 12526 1.14E+10 -3178 7200000 0.00 6 4500 3.07E-04 170032 -9937 -1 07E-04 12283 1.14E+10 -1230 7200000 0.00 6 6000 1.39E-04 150179 -11543 -8.19E-05 11979 1.14E+10 -554.4449 7200000 0.00 6 6000 1.25E-05 128522 -12087 -5.99E-05 11647 1.14E+10 -50.0006 7200000 0.00 6 9000 -7.71E-05 106698 -11854 -4.13E-05 11313 1.14E+10 308.2958 7200000 0.00 7 0500 1.36E-04 85869 -11086 -2.61E-05 10993 1.14E+10 545.2611 7200000 0.00 7 2000 -171E-04 66802 -9979 -1.41E-05 10701 1.14E+10 645.815 7200000 0.00 <td></td> <td>6 0000</td> <td>0.00130</td> <td>103701</td> <td>812 2344 -1 96E-04</td> <td>1264</td> <td>6 1 14F+1</td> <td>0 -161 274</td> <td>41 259200</td> <td>0.00</td>		6 0000	0.00130	103701	812 2344 -1 96E-04	1264	6 1 14F+1	0 -161 274	41 259200	0.00
6 3000 5 25E-04 185895 -6942 -1 35E-04 12526 1.14E+10 -2098 7200000 0.00 6 4500 3.07E-04 170032 -9937 -1 07E-04 12283 1.14E+10 -1230 7200000 0.00 6 6000 1.39E-04 150179 -11543 -8.19E-05 11979 1.14E+10 -554.4449 7200000 0.00 6 7500 1.25E-05 128522 -12087 -5.99E-05 11647 1.14E+10 -50.0006 7200000 0.00 6 9000 -7.71E-05 106698 -11854 -4.13E-05 11313 1.14E+10 308.2958 7200000 0.00 7 0500 1.36E-04 85869 -11086 -2.61E-05 10993 1.14E+10 545.2611 7200000 0.00 7 2000 -1.71E-04 66802 -9979 -1.41E-05 10701 1.14E+10 645.815 7200000 0.00		6 1500	7 95E-04	194951	-2193 -1 65E-04	12665	1 14F+10	-3178	7200000	0.00
6 4500 3.07E-04 170032 -9937 -1 07E-04 12283 1.14E+10 -1230 7200000 0.00 6 6000 1.39E-04 150179 -11543 -8.19E-05 11979 1.14E+10 -554.4449 7200000 0.00 6 7500 1.25E-05 128522 -12087 -5.99E-05 11647 1.14E+10 -50.0006 7200000 0.00 6 9000 -7.71E-05 106698 -11854 -4.13E-05 11313 1.14E+10 308.2958 7200000 0.00 7 0500 1.36E-04 85869 -11086 -2.61E-05 10993 1.14E+10 545.2611 7200000 0.00 7 2000 -1.71E-04 66802 -9979 -1.41E-05 10701 1.14E+10 645.8515 7200000 0.00		6 3000	5 25E-04	185895	-6942 -1.35E-04	12526	1.14E+10	-2098	7200000	0.00
Ist Ng 6 6000 1 39E-04 150179 -11543 -8.19E-05 11979 1.14E+10 -554.4449 7200000 0.00 6 6000 1 25E-05 128522 -12087 -5 99E-05 11647 1.14E+10 -50.0006 7200000 0.00 6 6000 -7 71E-05 106698 -11854 -4 13E-05 11313 1.14E+10 308.2958 7200000 0.00 7 0500 1 36E-04 85869 -11086 -2 61E-05 10993 1 14E+10 545 2611 7200000 0.00 7 2000 -1 71E-04 66802 -9979 -1 41E-05 10701 1 14E+10 684 5815 7200000 0.00		6 4500	3 07E-04	170032	-9937 -1 07E-04	12283	1.14F+10	-1230	7200000	0.00
151 Neg 6 7500 1 25E-05 128522 -12087 -5 99E-05 11647 1 14E+10 -50.0006 7200000 0 00 6 9000 -7 71E-05 106698 -11854 -4 13E-05 11313 1.14E+10 308.2958 7200000 0 00 7 0500 1 36E-04 85869 -11086 -2 61E-05 10993 1 14E+10 545 2611 7200000 0 00 7 2000 -1 71E-04 66802 -9979 -1 41E-05 10701 1 14E+10 684 5815 7200000 0 00	French	6 6000	1 39E-04	150179	-11543 -8.19E-05	11970) 1.14F+10	-554 444	9 7200000	0.00
6 9000 -7 71E-05 106698 -11854 -4 13E-05 11313 1-14E+10 308.2958 7200000 0.00 7 0500 1 36E-04 \$5869 -11086 -2 61E-05 10993 1 14E+10 545.2611 7200000 0.00 7 2000 -1 71E-04 66802 -9979 -1 41E-05 10701 1 14E+10 684 5815 7200000 0.00	15T Neg	6 7500	1 25E-05	128522	-12087 -5.99E-05	1164	7. 1.14F+10	-50.0006	5 7200000	0.00
7 0500 -1 36E-04 65869 -11086 -2 61E-05 10993 1 14E+10 545 2611 7200000 0 00 7 2000 -1 71E-04 66802 -9979 -1 41E-05 10701 1 14E+10 684 5815 7200000 0 00		6 9000	7 71E-05	106698	-11854 -4 13E-05	1131	3 1 14F+10	308 295	8 7200000	0.00
7 2000 -1 71E-04 66802 -9979 -1 41E-05 10701 1 14E+10 684 5815 7200000 0 00		7 0500	-1 36E-04	85860	-11086 -2.61E-05	10993	1 14F+10	545 2611	2 7200000	0.00
		7 2000	-1 71E-04	66802	-9979 -1 41E-05	10701	1 14E+10	684 5815	7200000	0.00

May	7 0500 4 075 04	10051	0000 4005 00		747 0005 700000	0.00
1100	7.3500 -1.8/E-04	49951.	-86904.86E-06	10443. 1.14E+10	747.9385 7200000	0.00
NEY	7.5000 -1.89E-04	35520	-7338. 1.89E-00	10222. 1.14E+10	704.4946 7200000	0.00
~	7.6500 -1.80E-04	23533	-6010. 6.56E-06	10038. 1.14E+10	720.0009 7200000	0.00
	7.8000 -1.65E-04	13880	-4/68 9.51E-06	9890. 1.14E+10 C	00.0026 7200000.	0.00
	7 9500 -1 46E-04	0300	-3048 I I I E-US	9//0. 1.14E+10 0		0.00
	8 1000 -1 25E-04	740,3554	-26/3. 11/E-05	9089, 1.14E+10	200.0623 7200000	0.00
	8.2500 -1.04E-04	-3264	-1849. 1-15E-05	9727. 1.14E+10 4	13.0000 7200000	0.00
	8.4000 -8.37E-05	-5921	-11/3. 1.0/E-00	9/08. 1 14E+10 3	34.0002 7200000	0.00
	8.5500 -6.52E-05	-/4940	037.2032 9.09E-00	9/92. 1.14E+10	200.0437 7200000.	0.00
	8 / UUU -4.88E-US	-02212	20.0203 0.435-00	9005. 1.14E+10	120 2054 7200000	0.00
	0.0000 -0.40E-00	-0314. 1	(4.4/21 /.14E-00	9000. 1.14E+10 0700 1.14E+10	02.5145 7200000	0.00
	9.0000 -2.312-03	-7900 Z	15 6660 1 65E 06	9799. 1,14E+10	92.0140 7200000. 54.9710 7200000	0.00
	9 1000 -1 37E-00	-7290, 4	10.0009 4.000-00	9709. 1.14E+10 0776 1.14E+10	25.5267 7200000.	0.00
	9.3000 -0.38E-00	-0402. 4	14 1769 0 60E 06	9770. 1.14E+10 0762 1.14E+10	25.3267 7200000.	0.00
	9.4000 -0.03E-07	-0040. 0	14.1700 Z.0ZE-00	9702. 1.14E+10 0749 1.14E+10	12 1600 7200000	0.00
	9.0000 3.04E-00	-4013 D	75 1196 1 16E 06	9740 1.14E+10 0724 1.14E+10	-12.1009 7200000.	0.00
	97500 5,05E-00	-3/21. 4	10.1100 1.10E-U0	9734. 1.14E+10 0700 1.14E+10	-22.0075 7200000.	0.00
	9.9000 7.21E-00 10.0500 7.03E-06	-2903. 4	20.0317 0.345-07	9722. 1.14E+10 9711 11/E+10	-20.0224 7200000.	0.00
	10.0000 7.900-00	1555 3	816 8000 -6 21E-08	9701 11/E+10	-32 1736 7200000	0.00
	10.2000 0.04L-00	-1037 2	260.0957 -2.67E-07	9693 1 14E+10	-30 8422 7200000	0.00
	10.5000 7.77E-00	-619 0090	206 8398 -3 98E-0	7 9687 1 14E+1	0 -28 3311 7200000	0.00
	10.6500 6.28E-06	-292 4733	158 7372 -4 70E-0	7 9682 1 14E+1	0 -25,1162 7200000	0.00
	10.8000 5.39E-06	-47.3015	116 7209 -4.96E-07	9678. 1.14E+10	-21.5686 7200000.	0.00
	10.9500 4 49E-06	127,9900	81.1385 -4.90E-07	9679. 1.14E+10	-17.9673 7200000.	0.00
	11.1000 3.63E-06	245.0619	51.9076 -4.61E-07	9681. 1.14E+10	-14.5115 7200000.	0.00
	11.2500 2.83E-06	315,1060	28.6462 -4.16E-07	9682, 1.14E+10	-11,3344 7200000.	0.00
	11.4000 2.13E-06	348.4131	10.7812 -3.64E-07	9683. 1.14E+10	-8.5156 7200000.	0.00
	11.5500 1.52E-06	354.1147	-2.3667 -3.09E-07	9683. 1.14E+10	-6.0930 7200000.	0.00
	11.7000 1.02E-06	340.0597	-11.5162 -2.54E-07	9683. 1.14E+10	-4.0731 7200000.	0.00
	11.8500 6.10E-07	312.7932	-17.3780 -2.02E-07	9682. 1.14E+10	-2.4399 7200000.	0.00
	12.0000 2.91E-07	277.6081	-20.6201 -1.56E-07	9682. 1.14E+10	-1.1624 7200000.	0.00
	12.1500 5.01E-08	238.6450	-21.8467 -1.15E-07	9681. 1.14E+10	-0.2005 7200000.	0.00
	12.3000 -1,22E-07	199.0219	-21.5863 -8.02E-08	9680. 1.14E+10	0.4899 720000.	0.00
	12.4500 -2.39E-07	160.9778	-20.2866 -5.18E-08	9680. 1.14E+10	0.9541 7200000	0.00
	12.6000 -3.09E-07	126.0180	-18.3163 -2.91E-08	9679. 1.14E+10) 1.2352 7200000	0.00
	12,7500 -3.43E-07	95.0549	-15,9689 -1.16E-08	9679. 1.14E+10	1.3730 7200000	0.00
	12,9000 -3.51E-07	68.5362	-13,4708 1.29E-09	9678. 1.14E+10	1.4027 7200000	0.00
	13.0500 -3.39E-07	46.5594	-10.9893 1.04E-08	9678. 1.14E+10	1.3545 7200000.	0.00
	13.2000 -3.13E-07	28.9692	-8.6423 1.63E-08	9678. 1.14E+10	1.2533 7200000	0.00
	13.3500 -2.80E-07	15.4384	-6.5070 1.98E-08	9678. 1.14E+10	1.1192 7200000	0.00
	13,5000 -2,42E-07	5.5333	-4,6289 2.15E-08	9678 1.14E+10	0.9675 7200000	0,00
	13.6500 -2.02E-07	-1.2372	-3.0295 218E-08	9677. 1.14E+10	0.8096 7200000	0.00
	13 8000 -1 63E-07	-5.3846	-1.7131 2.13E-08	9678 1.14E+10	0.6530 7200000	0.00
	13 9500 -1 26E-07	-7 4159	-0.6730 2.03E-08	9678 1.14E+10	0.5026 7200000	0.00
	14 1000 -9 02E-08	-7.8184	0 1039 1 91E-08	9678. 1.14E+10	0.3606 7200000	0.00
	14 2500 -5 69E-08	-7.0522	0.6332 1.79E-08	9678. 114E+10	0.2275 7200000	0.00
	14 4000 -2 56E-08	-5 5486	0 9302 1 69E-08	9678 1.14E+10	0.1024 7200000	0.00
	14 5500 4 09E-09	-3 7128	1.0076 1.62E-08	9677 1 14E+10	-0.01634 7200000	0.00
	14 7000 3 27E-08	-1.9298	0 8751 1 58E-08	9677 1 14E+10	-0 1309 /200000	0 00
	14 8500 6 08E-08	-0.5708	0.5384 1.56E-08	9677 1 14E+10	-0.2433 /200000	0.00
	15 UUUD 8 87E-08	0.00	0.00 1.558-08 9	10// 114E+10 -0	-3550 3600000 0	00

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1

Pile-head deflection =	00)465	50942 inche:	S
Computed stope at pile head	-	- ()	00085598 r	adians
Malamum bending moment	-		194951 in	ich-lbs

Maximum shear force=-12087. lbsDepth of maximum bending moment=6.15000000 feet below pile headDepth of maximum shear force=6.75000000 feet below pile headNumber of iterations=6Number of zero deflection points=4

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Pile-head Rotation (Loading Type 2)

Shear force at pile head	=	5000.0 lbs
Rotation of pile head	=	0.000E+00 radians
Axial load at pile head	=	150000.0 lbs

(Zero slope for this load indicates fixed-head conditions)

Depth	Deflect.	Bending	Shear	Slope	Total B	lending Soi	l Res. Soi	I Spr. Disti	rib_
Х	y Mor	nent Fo	rce S	S Stress	Stiffnes	ss p	Es*H La	t. Load	
feet	inches ir	n-Ibs Ibs	s radia	ans psi*	lb-in^2	lb/inch It	o/inch lb/	inch	
0.00	0.01989	-201950	5000	0.00 1	2772 1	14E+10	0.00 0	00 0.0	0
0 1500	0.01987	-192946	4999	-3.12E-05	12634	. 1.14E+10	-0.7152	64.8000	0.00
0.3000	0.01978	-183936.	4997.	-6.09E-05	12496	1.14E+10	-1.4243	129.6000	0.00
0.4500	0.01965	-174922.	4994.	-8.93E-05	12358	1.14E+10	-2.1218	194.4000	0.00
0.6000	0.01946	-165908.	4990.	-1.16E-04	12220	. 1.14E+10	-2.8023	259.2000	0.00
0.7500	0.01923	-156896.	4984.	-1.42E-04	12082	. 1.14E+10	-3.4610	324.0000	0.00
0.9000	0.01895	-147889.	4977.	-1.66E-04	11944	. 1.14E+10	-4.0932	388.8000	0.00
1.0500	0.01863	-138888.	4969.	-1.88E-04	11806	. 1.14E+10	-4.6950	453.6000	0.00
1.2000	0.01827	-129897.	4961.	-2.10E-04	11668	. 1.14E+10	-5.2623	518.4000	0.00
1.3500	0.01788	-120917.	4951.	-2.29E-04	11530	. 1.14E+10	-5.7919	583.2000	0.00
1.5000	0.01745	-111951.	4940.	-2.48E-04	11393	. 1.14E+10	-6.2806	648,0000	0.00
1.6500	0.01698	-103000	4928	-2.65E-04	11256	. 1,14E+10	-6.7257	712,8000	0.00
1.8000	0.01649	-94067.	4916.	-2.80E-04	11119.	1.14E+10	-7.1248	777.6000	0.00
1.9500	0.01597	-85153.	4902.	-2.95E-04	10982.	1.14E+10	-7.4762	842.4000	0.00
2.1000	0.01543	-76260.	4889.	-3.07E-04	10846.	1.14E+10	-7.7780	907.2000	0.00
2.2500	0.01487	-67388.	4874.	-3.19E-04	10710.	1.14E+10	-8.0290	972.0000	0.00
2 4000	0.01429	-58540.	4860.	-3.29E-04	10575.	1.14E+10	-8.2284	1037	0.00
2.5500	0.01369	-49715	4845.	-3.37E-04	10439.	1.14E+10	-8.3757	1102	0.00
2 7000	0.01307	-40916	4830.	-3.44E-04	10304.	1.14E+10	-8.4706	1166	0.00
2 8500	0.01245	-32143	4814.	-3.50E-04	10170.	1,14E+10	-8.5134	1231	0.00
3 0000	0 01181	-23395	4799.	-3.54E-04	10036.	1.14E+10	-8.5045	1296	0.00
3 1500	0.01117	-14675	4784.	-3.57E-04	9902.	1.14E+10	-8.4450	1361	0.00
3.3000	0.01053	-5981	4769	-3.59E-04	9769.	1.14E+10	-8.3359	1426	0.00
3 4500	0 00988	2687	4754	-3.59E-04	9719	1.14E+10	-8 1790	1490	0 00
3 6000	0 00923	11327	4739	-3.58E-04	9851.	1.14E+10	-7.9761	1555	0.00
3 7500	0 00859	19942	4725	-3.56E-04	9983.	1.14E+10	-7:7296	1620	0.00
3 9000	0.00795	28530	4/12	-3.52E-04	10115	1-14E+10	-7 4421	1685	0.00
4 0500	0.00732	37093	4698	-3.4/E-04	10246	1 14E+10	-/ 1100	1750	0.00
4 2000	0.00670	45632	4686	-3 40E-04	10377	1 14E+10	-6/564	1070	0.00
4 3500	0.00610	54146	46/4	-3.32E-04	10507	1.14E+10	-6.3652	1879	0.00
4 5000	0.00551	62638	4663	-3.23E-04	10637	1 14E+10	-5 9470	1944	0.00
4 6500	0.00493	71108	4653	-3 13E-04	10/07	1 14E+10	-0 0002	2009	0.00
4 8000	0.00438	/955/	4643	-3 UIE-04	11000	1.145+10	-2 04/4	2074	0.00
4 9500	0.00385	87986	4035	-20/E-U4	11155	1 145 - 10	-4 0/0/	2100	0.00
5 1000	0.00335	90390	4027	-2/3E-U4	1100	1 14E+10	-4 US00 2 6164	2203	0.00
o 2500	0.00587	104790	40ZU	-2 0/E-04	11203	1 142+10	-0.0104	2200	0.00

5.4000 0.00242 113167. 4614. -2.40E-04 11412. 1.14E+10 -3.1386 2333. 0.00 0.00201 121529. 4370. -2.21E-04 11540. 1.14E+10 -267.2411 239760 0.00 5.5500 3930. -2.01E-04 5.7000 0.00163 129020. 11655. 1.14E+10 -222.3576 246240. 0.00 5.8500 0.00128 135785. 3568 -1.81E-04 11758. 1.14E+10 -179.8813 252720 0.00 6.0000 9.76E-04 141961 3279. -1.59E-04 11853. 1.14E+10 -140.4853 259200 0.00 6.1500 7.10E-04 147676. 595.7897 -1.36E-04 11940. 1.14E+10 -2841 7200000 0.00 6.3000 4.87E-04 144179 -3715. -1.13E-04 11887. 1.14E+10 -1948. 7200000 0.00 6.4500 3.05E-04 134364. -6565, -9.07E-05 11736 1.14E+10 -1219. 7200000 0.00 6,6000 1,61E-04 120592. -8241. -7.05E-05 11525. 1.14E+10 -642.7483 7200000. 0.00 ISTNEG 6.7500 5.09E-05 104734. -9003. -5.27E-05 11282 1.14E+10 -203,5248 7200000 0.00 6.9000 -2.92E-05 -9081. -3.75E-05 11029 1.14E+10 116.6017 7200000 0.00 88211 -8673. -2.48E-05 10782. 1.14E+10 336.4199 0.00 7.0500 -8.41E-05 72062. 7200000. -7944. -1.46E-05 10551. 1.14E+10 474.2932 0.00 7.2000 -1.19E-04 57001. 7200000. 7.3500 -1.37E-04 43473. -7024. -6.71E-06 10344. 1.14E+10 547.3487 7200000. 0.00 -6018. -7.76E-07 10163, 1.14E+10 570.9691 7.5000 -1.43E-04 31717. 7200000 0.00 -5001. 3.45E-06 7.6500 -1.40E-04 21810. 10012. 1 14E+10 558.5226 7200000 0.00 MAXNEG -4029. 6.26E-06 9888. 1.14E+10 521.2752 7200000 7.8000 -1.30E-04 13711. 0.00 7 9500 -1 17E-04 7301. -3139. 7.92E-06 9789. 1.14E+10 468.4361 7200000 0.00 8.1000 -1.02E-04 2408 -2350. 8.68E-06 9714. 1.14E+10 407.2948 7200000 0.00 8.2500 -8.59E-05 -1165. -1675. 8.78E-06 9695. 1.14E+10 343.4150 7200000 0.00 8.4000 -7.02E-05 -3626. -1113. 8.40E-06 9733. 1.14E+10 280.8603 7200000. 0.00 8.5500 -5.56E-05 -5176. -659.9679 7.71E-06 9757. 1.14E+10 222.4285 7200000 0.00 8.7000 -4,25E-05 -6006. -306.8875 6.82E-06 9769. 1.14E+10 169.8829 0.00 7200000 8.8500 -3,10E-05 -6285. -42.2427 5.85E-06 9774. 1.14E+10 124.1668 7200000 0.00 -6161. 146.5451 4.87E-06 9772 1.14E+10 85.5974 7200000 0.00 9.0000 -2.14E-05 9 1500 -1 35E-05 -5760. 272.2132 3.93E-06 9766. 1.14E+10 54.0339 7200000 0.00 9.3000 -7.26E-06 -5183. 346.9620 9757 1.14E+10 29.0202 7200000. 0.00 3.06E-06 9.4500 -2.48E-06 -4512 381.9906 1.14E+10 9.9005 7200000 0.00 2.30E-06 9747 1.14E+10 -4.0879 7200000 0.00 9.6000 1.02E-06 -3809 387.2219 1.64E-06 9736. -3119_ 371.1727 1.09E-06 9725. 1.14E+10 -13.7446 7200000, 0.00 9.7500 3.44E-06 9.9000 4.96E-06 -2474. 340.9336 6.53E-07 9715. 1.14E+10 -19.8543 7200000. 0.00 -1892. 302,2289 3.08E-07 9706. 1.14E+10 -23.1510 7200000. 10.0500 5.79E-06 0.00 -1386. 259.5266 4.96E-08 9699, 1.14E+10 -24.2960 7200000. 0.00 10.2000 6.07E-06 9692. 1.14E+10 -23.8650 7200000 0.00 10.3500 5.97E-06 -958.0107 216.1817 -1.36E-07 9687. 1.14E+10 -22.3447 7200000 0.00 10.5000 5.59E-06 -607.4880 174.5929 -2.59E-07 10.6500 5.03E-06 -329.3364 136.3624 -3.33E-07 9682. 1.14E+10 -20.1336 7200000 0.00 10.8000 4.39E-06 -116.4035 102.4490 -3.68E-07 9679 114E+10 -17 5480 7200000 0.00 9678 1.14E+10 -14.8300 7200000 0.00 10.9500 371E-06 39.6788 73.3088 -3.74E-07 9680, 1,14E+10 -12,1571 7200000 0.00 11.1000 3.04E-06 147.7102 49.0204 -3.60E-07 -9.6522 9681 1.14E+10 11 2500 2.41E-06 216.3463 29.3919 -3.31E-07 7200000 0.00 9681 1.14E+10 -7.3934 11,4000 1.85E-06 253.6998 14.0509 -2.94E-07 7200000 0.00 2.5162 -2.53E-07 9682, 1.14E+10 -5.4230 7200000 0.00 11.5500 1.36E-06 267.0881 9681 1.14E+10 -3.7563 11.7000 9.39E-07 262.8946 -5.7451 -2.11E-07 7200000 0.00 9681 1.14E+10 -2.3886 7200000 0.00 246.5195 -11.2755 -1.70E-07 11.8500 5.97E-07 -1_3012 9681. 1.14E+10 222.3949 -14.5962 -1.33E-07 7200000 0.00 12 0000 3 25E-07 9680 1.14E+10 -0.4667 0.00 194.0451 -16.1873 -1.01E-07 7200000 12 1500 1 17E-07 164.1750 -16.4748 -7.23E-08 9680 1_14E+10 0.1472 7200000 0.00 12 3000 -3 68E-08 9679 1.14E+10 0.5743 7200000 12.4500 -1.44E-07 134 7747 -15.8255 -4 87E-08 0.00 12 6000 -2 12E-07 107 2296 -14.5452 -2 96E-08 9679 1 14E+10 0.8482 7200000 0_00 9679 1 14E+10 12 7500 -2 50E-07 82 4281 -12 8816 -1 46E-08 1 0002 7200000 0 00 12 9000 -2 65E-07 60.8638 -11 0288 -3 28E-09 9678 1.14E+10 1.0584 7200000 0.00 9678 1.14E+10 -9 1335 4 90E-09 1.0474 7200000 0.00 13 0500 -2 62E-07 42 7261 -7 3018 1 05E-08 9678 1,14E+10 0 9879 7200000 0 0 0 13 2000 -2 47E-07 27 9804 1,14E+10 0 8965 7200000 13 3500 -2 24E-07 16.4341 -5,6058 1,40E-08 9678 0.00 1_14E+10 0.7864 7200000 -4.0912 1.59E-08 9678 0.00 13 5000 -1 97E-07 7 7919 1_14E+10 9677 0.6675 7200000 0 00 13 6500 -1 67E-07 1 6972 -27827 167E-08 0 5466 7200000 -1 6900 1 66E-08 1 14E+10 0 00 13 8000 -1 37E-07 -2 2348 9677 9677 1 14E+10 0.4283 7200000 0 00 13 9500 -1 07E-07 -4 3956 -0 8125 1 61E-08 14 1000 -7 87E-08 -5 1686 -0 1436 1 53E-08 9677 1 14E+10 0 3150 7200000 0.00 9677 1.14E+10 0 2075 7200000 0.00 14 2500 -5 19E-08 -4 9208 0 3267 1 45E-08 0 6086 1 38E-08 9677 1 14E+10 0 1057 7200000 0.00 14 4000 -2 64E-08 -4 0003

```
Fixed End.

15T Nog= 6.9' (EL 3008.3)

Mox Nog= 7.5' (EL 3007.7)

Say POF = 3008 FE

Min Tip for Fixity = 3006 FE
```

5' into WR/Rock= 3005 Ft

USE 3005 Ft for tip elev.

14.5500	-2.10E-09	-2.7373	0.7113	1.33E-08	9677.	1.14E+10	0.00839	7200000.	0.00
14.7000	2.15E-08	-1.4470	0.6416	1.30E-08	9677.	1.14E+10	-0.08580	7200000.	0.00
14.8500	4.46E-08	-0.4346	0.4039	1.28E-08	9677.	1.14E+10	-0.1783	7200000.	0.00
15.0000	6.76E-08	0.00	0.00 1.	28E-08	9677. 1.	14E+10	-0.2704 36	500000.	0.00

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 2:

Pile-head deflection	=	0.01	989398	8 inches	5		
Computed slope at pile hea	d	=	0.000)000 rad	lians		
Maximum bending moment		=	-201	1950. in	ch-lbs		
Maximum shear force	=		-9081.	. Ibs			
Depth of maximum bending	mor	nent	= (0.00000	0 feet b	elow pile	head
Depth of maximum shear fo	rce	=	6.900	000000	feet belo	ow pile he	ead
Number of iterations	=		6				
Number of zero deflection p	oints	3 =	4	4			

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, Ibs, and Load 2 = Moment, M, in-Ibs Load Type 2: Load 1 = Shear, V, Ibs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, Ibs, and Load 2 = Rot. Stiffness, R, in-Ibs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-Ibs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load LoadLoadAxialPile-headPile-headMax MomentCase TypePile-headTypePile-headLoadingDeflectionRotationin PileNo. 1Load 12Load 2IbsinchesradiansIbsin-Ibs1V, Ib3000. M, in-Ib0.00150000.0.04651-8.56E-04-12087.194951.2V, Ib5000. S, rad0.00150000.0.019890.00-9081.-201950.

Maximum pile-head deflection = 0.0465094193 inches Maximum pile-head rotation = -0.0008559795 radians = -0.049044 deg.

The analysis ended normally

DocuSign Envelope ID: D7CB11C5-1CE1-4B6C-9452-DCDE4A5FF4BF

GEOTECHNICAL BORING REPORT BORE LOG

Wess TIP INA COUNTY COUNTY County CROUNDY CROUND WTF SITE DESCRIPTION Site 015 on SR 1147 (Neitle Knock Road) over South Beaver Creek GROUND WTF OHR. CILLAR REV. 3.014.81 TOTAL DEPTH 20.5 ft NORTHING 956.976 EASTING 1.273.259 24 HR. DRILL RIGHAMMER EFF.JOATE GEOVON DO. DRILL RIGHAMMER EFF.JOATE GEOVON THE 20.576 DRILL RIGHAMMER THE CEONSO Dealth (JS 0000) DRILL RIGHAMMER THE DECONSOLOGING DRILL RIGHAMER THE DECONSOLOGING DRILL RIGHAMER THE DECONSOLOGING DRILL RIGHAMER T	GEOLOGIST A. Blackmore GROUND WTR (ft ALIGNMENT -L- 0 HR. N/A EASTING 1,273,259 24 HR. 4.8
SITE DESCRIPTION GROUND WT BORING NO. EB1-B STATION 13+53 OFFSET 18 ft RT ALLGNMENT -L. GROUND WT BORING NO. EB1-B STATION 13+53 OFFSET 18 ft RT ALLGNMENT -L. OHR. COLLAR FLEV. 3.014.8 ft TOTAL DEPTH 20.5 ft NORTHING 966,976 EASTING 1,273.259 24 HR. DRULE (RIGNAMMER FF.DATE GEOSE backed b-50.88% 0775/5200 ORILL METHOD Core Boring HAMMER TYPE Autor DRUL (RIGNAMMER FF.DATE GEOSE backed b-50.88% 0775/5200 DRILL METHOD Core Boring HAMMER TYPE Autor DRUL (RIGNAMMER FF.DATE GEOSE backed b-50.88% 0775/5200 DRILL METHOD SURFACE WATER DEPTH NA EVEN.00 3016 DRIL (RIGNAMMER FF.DATE GEOSE backed b-50.88% 0775/5200 DRILL METHOD SURFACE WATER DEPTH NA DURO ACC BESCRETTOR 3017 DRIL (RIGNAMMER FF.DATE GEOSE backed b-50.98% 0775/5200 GOOLABA ELEV.00 SOLA AD ROCK DESCRETTOR SOLA AD ROCK DESCRETTOR 3018 301748 0.00 3 to a GROUND SUBERACE SOLA AD ROCK DESCRETTOR 3018 3018 2 to a GROUND TE DEPTH 20.51 GROUND SUBERACE SOLA AD ROCK DESCRETTOR 3018 3018<	GROUND WTR (ft ALIGNMENT -L- CASTING 1,273,259 24 HR. 4.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ALIGNMENT -L- 0 HR. N/A EASTING 1,273,259 24 HR. 4.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EASTING 1,273,259 24 HR. 4.8
DRILL (Information Part 6: 60:0360 Develop Line Part Part 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	
DRILLEN J. Messick START DATE 12/27/21 COMP, DATE 12/27/21 SURFACE WATER DEPTH NA Lev DPM BLOWS PERFOOT BLOWS PERFOOT Sold All on Rock DESCRIPTION Sold All Rock DESCRIPTION 00 0 0 0 0 0 0 BLOWS PERFOOT Sold All on Rock DESCRIPTION DEP 01 0.04 0 0 0 0 0 0 Sold All on Rock DESCRIPTION DEP 011 3.013 3 1/2 1/2 1/2 0 1/2 1/2 0	re Boring HAMMER TYPE Automatic
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SURFACE WATER DEPTH N/A
$\frac{1}{2004} = \frac{1}{30143} = \frac{1}{35} = \frac{1}{2} = \frac{1}{1} = \frac{1}{1$	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (
$\frac{10}{30083} \frac{35}{60} \frac{2}{2} \frac{1}{12} \frac{2}{2} \frac{1}{30083} \frac{2}{60} \frac{1}{2} \frac{1}{12} \frac{2}{12} \frac{1}{30083} \frac{1}{60} \frac{1}{2} \frac{1}{12} \frac{2}{12} \frac{1}{12} 1$	3.014.8 GROUND SURFACE 0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Medium Dense, Gray-Brown, Silty Fine to Coarse SAND (A-2-4) 4,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Soft, Gray, Fine to Coarse Sandy SILT (A-4) 3.007.8 Medium Dansa Brown Lon Silly Line to
$\frac{3003.3 \times 11.5}{2000.0}$ $\frac{11.5}{2000.0}$ \frac	3,006.3 Coarse SAND (A-2-4), with little cobbles / 8. WEATHERED ROCK
EB-I (RT) $EB-I (RT)$ $DR:II IN Piles A MINIMUM of 5' into WR/Rock And to An elevation below Fixty EB-T pEL+1.0 Embed = 3015.2 - 3001 + 1.0 = 15.2' Say Ave Pile Leigth = 30'$	3,003,3 Brown (BIOTITE GNEISS) 11 CRYSTALLINE ROCK Gray (BIOTITE GNEISS)
EB-I (RT) $EB-I (RT)$ $DRILL IN Piles A MINIMUM of 5' into WR/Rock And to An elevation below Fixty EB-T, PEL+1.0 Embed = 3015.2 - 3001 + 1.0 = 15.2' Say Ave Pile Length, = 30'$	
EB-1 (RT) $EB-1 (RT)$ $DR:II IN Piles A Minimum of 5' into WR/Rock And to An elevation below Fixty L=Boc-TipEL+1.0 Embed = 3015.2 - 3001 + 1.0 = 15.2' Say Ave Pile Lempth = 30'$	2,994.3
EB-I (RT) DRILL IN Piles A MINIMUM of 5' into WR/RUCK And to An elevation below Fixity L=Boc-TipEL+1.0 Embed = 3015.2 - 3001 +1.0 = 15.2' Say Ave Pile Lempth = 20'	Boring Terminated at Elevation 2,994 3 ft In Crystalline Rock (BIOTITE GNEISS)
DRIII IN Piles A Minimum of 5' into WR/Rock And to an elevation below Fixity L=Boc-TipEL+1.0 Embed = 3015.2 - 3001 +1.0 = 15.2' Say Ave Pile Length. = 20'	
of 5' into WR/Ruck And to An elevation below Fixity L=Boc-TipEL+1.0Embed = 3015.2-3001+1.0=15.2' Say Ave Pile Length = 30'	EST QTY
to an elevation below Fixity L=Boc-TipEL+1.0 Embed = 3015.2 - 3001 +1.0 = 15.2' Say Ave Pile Lemith = 20'	IN Soil = 3015.2-3006.3= 8.9'
Fixity L=Boc-TipEL+1.0Embed = 3015.2 - 3001 +1.0 = 15.2' Say Ave Pile Lempth = 20'	Not IN Sul = 3006.3 - 3001 = 5.3'
L=Boc-TipEL+1.0Embed = 3015.2-3001+1.0=15.2' Say Ave Pile Length = 20'	
= 3015.2 - 3001 +1.0 = 15.2' Say Ave Pile Lerrith = 20'	
Say Ave Pile Lergth = 30'	
LUST BOOL FL Fur T.D. Flow	
USE 3001 FE for Tip Elev	

1111111111111	9	11/1///////////////////////////////////
	Taul Mill	
	A CONTRACTOR	
	off ag	
	1000	
	and the second	
	中心口口口用	
Layer 1, 0 to 7.4 ft = Sand (Reese)		
	PLACES.	
	1-12,7-10	
	1. 20 DE	
	11 0 11	
	1.40.41.41	
	10	
	SULFER .	
	5 9 4 4	
	1. 31	
	PALSE II	
laver 7 7 4 to 8 9 ft = Sand (Reese)	2.1.1.2.198	
Layer 2, 7.4 (0 0.5 It - Sand (Reese)	and the second second	
	1111	
	15 332	
	Data taria	
	CESIG(T)	
	1000 -200	
	S. Swelling	
Laver 3, 8,9 to 11.9 ft = Mod, Stf. Clay w/o Fr. Wat.	Constant State	
	- 10 M	
	019101MW	
	0.000	
	1201-076	
	16421	
	- 46 S.L.	
	1000	
	APRES 44	
	11.2.4.01	
	19 10 Carl	
	1570 ungen	
	1.1.1.1.1.1	
	TATES INT	
	C THE REAL	
	3	
Layer 4, 11.9 to 20 ft = Vuggy Limestone		
LPile 2019.11.0	6, © 2019) by Ensoft, Inc.

LPile for Windows, Version 2019-11.006

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved

This copy of LPile is being used by:

ECS Southeast Charlotte, NC

Serial Number of Security Device: 562473626

This copy of LPile is licensed for exclusive use by:

ECS Carolinas, LLP, Charlotte, N

Use of this program by any entity other than ECS Carolinas, LLP, Charlotte, N is a violation of the software license agreement.

Files Used for Analysis

Path to file locations: \Users\mwalko\Downloads\

Name of input data file: EB1-B_REV.lp11d

Name of output report file: EB1-B_REV.lp11o

Name of plot output file: EB1-B_REV.lp11p

Name of runtime message file: EB1-B_REV.lp11r

Date and Time of Analysis

Date: March 28, 2022 Time: 14 39 20

Problem Title

Project Name Ashe Bridge 15

Job Number 09-29362

Client: Vaughn & Melton

Engineer: ECS Southeast

Description: End Bent 1

Program Options and Settings

Computational Options:

- Conventional Analysis

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed= 500- Deflection tolerance for convergence= 1.0000E-05 in- Maximum allowable deflection= 100.0000 in
- Deflection tolerance for convergence Maximum allowable deflection = 100.0 = 100.0

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined		=	1
Total length of pile	=	15_000 f	t
Depth of ground surface below top of	pile	=	0_0000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over

the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches

1	0.000	12.0450
2	15.000	12.0450

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile	
Cross-sectional Shape	= Strong H-Pile
Length of section	= 15.000000 ft
Flange Width	= 12.045000 in
Section Depth	= 11.780000 in
Flange Thickness	= 0.435000 in
Web Thickness	= 0.435000 in
Section Area	= 15.500000 sq. in
Moment of Inertia	= 393.000000 in^4
Elastic Modulus	= 29000000. psi

Ground Slope and	Pile Ba	atter Ar	ngles
Ground Slope Angle	=	= 0.000	0.000 degrees radians
Pile Batter Angle	=	= 0.000	0.000 degrees radians

Soil and Rock Layering Information

The soil profile is modelled using 4 layers

Layer 1 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer		=	0.0000 ft
Distance from top of pile to bottom of lay	er	=	7.400000 ft
Effective unit weight at top of layer	Ξ	42	.600000 pcf
Effective unit weight at bottom of layer		= 4	12 600000 pcf
Friction angle at top of layer	=	28.0	00000 deg.
Friction angle at bottom of layer	=	28	.000000 deg.
Subgrade k at top of layer	=	20.0	00000 pci
Subgrade k at bottom of layer	=	20	.000000 pci

Layer 2 is sand, p-y criteria by Reese et al . 1974

Distance from top	of pile to top of layer	= 7 400000 ft
-------------------	-------------------------	---------------

Distance from top of pile to bottom of laye	Эľ		=	8.900000) ft
Effective unit weight at top of layer		=	57.6	00000 pc	:f
Effective unit weight at bottom of layer			= 57	.600000	pcl
Friction angle at top of layer	Ξ		32.000)000 deg.	
Friction angle at bottom of layer		=	32.0	00000 de	g.
Subgrade k at top of layer	=		60.00	0000 pci	
Subgrade k at bottom of layer		=	60.0)00000 pc	ci

Layer 3 is stiff clay with user-defined k-value

Distance from top of pile to top of layer	= 8.900	000 ft
Distance from top of pile to bottom of lay	er = 11.9	00000 ft
Effective unit weight at top of layer	= 100.0000)00 pcf
Effective unit weight at bottom of layer	= 100.00	0000 pcf
Undrained cohesion at top of layer	= 800	0. psf
Undrained cohesion at bottom of layer	= 80)00. psf
Epsilon-50 at top of layer	= 0.004000	
Epsilon-50 at bottom of layer	= 0.00400	0
Subgrade k at top of layer	= 2000. p	ci
Subgrade k at bottom of layer	= 2000.	pci

Layer 4 is strong rock (vuggy limestone)

Distance from top of pile to top of layer	=	1	1.90	0000 ft
Distance from top of pile to bottom of layer		Ξ	20.0)00000 ft
Effective unit weight at top of layer	=	160	.000	000 pcf
Effective unit weight at bottom of layer	=	16	60.00	00000 pcf
Uniaxial compressive strength at top of laye	er	=		4000. psi
Uniaxial compressive strength at bottom of	laye	er	=	4000. psi

(Depth of the lowest soil layer extends 5.000 ft below the pile tip)

**** Warning - Possible Input Data Error ****

Values entered for effective unit weight of rock were outside the limits of 50 pcf to 150 pcf.

The maximum input value, in layer 1, for effective unit weight = 160.00 pcf

This data may be erroneous. Please check your data.

Summary of Input Soil Properties

Layei Layei Num	Soil Type Name (p-y Curve Typ	Layer Depth be) ft	Effective Unit Wt pcf	Undra Cohe psf	ained Angle sion Frictio deg	e of on psi	Uniaxial qu krm	E50 or pc	kpy i
1	Sand	0.00	42.6000		28.0000			20.000)0
	(Reese, et al.)	7 4000	42.6000		28,0000	- 1		20 (0000
2	Sand	7 4000	57.6000		32.0000	**		60,00	000
	(Reese et al.)	8.9000	57.6000		32 0000			60 (0000
3	Stiff Clay w/o	8 9000	100 0000	80	00		0 00	400	2000
	Free Water using I	k 11.90	00 100 00	00(8000		- C	00400	2000

4 Strong Rock 11.9000 160.0000 - - 4000. - - (Vuggy Limestone) 20.0000 160.0000 - - 4000. - -

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 2

Load	Lo	ad	Condition		Condition	Axial Thru	st Compute	eTopy Ru	n Analysis
No.	Тур	be	1	2	Fo	rce, lbs vs.	Pile Length		
*****	****								
1	1	V =	3000. lbs	M =	0.0000 in-lb	s 15000	0. No	Yes	
2	2	V =	5000. lbs	S =	0.0000 in/in	150000	. No	Yes	

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with

specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Layering Correction Equivalent Depths of Soil & Rock Layers

Top of Equivalent

Layer Top Depth Same Layer Layer is F0 F1 Layer Below Below Type As Rock or Integral Integral No Pile Head Grnd Surf Layer is Below for Layer for Layer ft ft Above Rock Layer Ibs Ibs

1 0 00 0 00 NA No 0 00 11262 2 7 4000 6 5477 Yes No 11262 8336

3	8.9000	0.7644	No	No	19598.	113906.
4	11.9000	11.9000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n_ Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	3000.0 lbs
Applied moment at pile head	10	0.0 in-lbs
Axial thrust load on pile head	=	150000.0 lbs

De X fee	pth t ii	Deflect. y Moi nches ii	Bending ment For n-Ibs Ibs	Shear ce S radia	Slope S Stress ans psi*	Total E Stiffne Ib-in^2	Bending So ess p Ib/inch I	il Res. So Es*H La b/inch Ib/	il Spr. Distr at. Load /inch	ib.
0	.00	0.1186	5.37E-07	3000.	-0.00151	9677.	1.14E+10	0.00	0.00 0.0	00
0.1	500	0.1159	5808.	2998.	-0.00151	9766.	1.14E+10	-2.5050	38.9118	0.00
0.3	3000	0.1132	11607.	2991.	-0.00151	9855.	1.14E+10	-5.1596	82.0720	0.00
0.4	1500	0.1104	17389.	2979.	-0.00151	9944.	1.14E+10	-7.8905	128.5939	0.00
0.6	6000	0.1077	23144.	2962.	-0.00150	10032.	1.14E+10	-10.6763	178.3656	0.00
0.7	7500	0.1050	28865.	2941.	-0.00150	10120.	1.14E+10	-13.4669	230,7723	0.00
0.9	9000	0.1023	34540.	2914.	-0.00149	10207.	1.14E+10	-16.1834	284.6178	0.00
1.0)500	0.09967	40161.	2882.	-0.00149	10293.	1.14E+10	-18.7943	339.4314	0.00
1.2	2000	0.09699	45720.	2846.	-0.00148	10378.	1.14E+10	-21.3005	395.2886	0 00
13	3500	0.09434	51208.	2806.	-0.00147	10462.	1.14E+10	-23.6000	450 3036	0 00
1.5	5000	0.09169	56617.	2762.	-0.00146	10545.	1.14E+10	-25.6425	503.3815	0_00
1.6	6500	0.08907	61940.	2714.	-0.00145	10627.	1.14E+10	-27.7076	559.9667	0.00
1.8	3000	0.08646	67171.	2662.	-0.00144	10707.	1.14E+10	-29.5208	614.6220	0.00
1.9	9500	0.08386	72304.	2608.	-0.00143	10785.	1.14E+10	-31.0314	666,0324	0.00
2.1	000	0.08129	77333.	2551.	-0.00142	10863.	1_14E+10	-32.4309	718.0757	0.00
2.2	2500	0.07875	82254.	2491.	-0.00141	10938.	1.14E+10	-33.6631	769,4800	0.00
24	1000	0.07622	87062	2430	-0.00140	11012.	1.14E+10	-34.5714	816 4178	0.00
25	500	0.07372	91754	2367	-0.00138	11084	1.14E+10	-35.2011	859 4807	0.00
2.7	7000	0.07125	96329	2303	-0.00137	11154	1.14E+10	-35.6724	901_2321	0 00
2.8	3500	0.06880	100784.	2239.	-0.00135	11222	1.14E+10	-35.7758	935.9847	0.00
3.0	0000	0.06638	105118.	2175.	-0.00134	11288	1.14E+10	-35.4894	962,3132	0,00
3 1	500	0 06399	109333	2111	-0.00132	11353	1.14E+10	-35.6703	1003	0.00
33	3000	0 06164	113428	2046	-0.00130	11416	1.14E+10	-35 61/3	1040	0 00
34	500	0.05931	117403	1983.	-0.00128	11477	1 14E+10	-35 2530	1070	0.00
36	6000	0 05702	121258	1920	-0.00126	11536	1 14E+10	-34 5705	1091	0 00
37	'500	0 05476	124996	1858	-0.00124	11593	1 14E+10	-33 5668	1103	0 00
3 9	9000	0 05254	128620	1799	-0.00122	11648	1 14E+10	-32 2444	1105	0 00
4 ()500	0_05036	132134	1742	-0.00120	11/02	1 14E+10	-31 1807	1115	0.00
4 2	2000	0 04821	135542	1685	-0.00118	11/55	1 14E+10	-31 8100	1188	0.00
43	3500	0 04610	138840	1628	-0.00116	11805	1 14E+10	-32 3387	1263	0.00
4 5	0000	0 04403	142028	1569	-0.00114	11854	1 14E+10	-32 /631	1339	0.00
46	500	0.04200	145104	1510	-0.00112	11901	1 145+10	-33 0797	1418	0.00
48	5000	0.04002	148066	1450	-0.00109	11946	1 14E+10	-33 2000	1487	0.00
4 5	1500-	0.03807	150915	1390	-0.00107	11880	1 148+10	-33.97.87	1070	0.00

	5.1000	0.03617	153648.	13300.00104	12032. 1.14E+10 -33.7684 1681. 0.0	0
	5.2500	0.03431	156266.	12680.00102	12072. 1.14E+10 -34.4278 1806. 0.0	0
	5.4000	0.03249	158765.	12069.96E-04	12110. 1.14E+10 -35.0208 1940, 0.0	00
	5.5500	0.03073	161145.	11429.70E-04	12147 1.14E+10 -35.5439 2082 0.0	00
	5.7000	0.02900	163402.	10789.45E-04	12181 114E+10 -35.9941 2234 0.0)0
	5.8500	0.02732	165535.	10139.19E-04	12214. 1.14E+10 -36.3684 2396 0.0)0
	6.0000	0.02569	167544.	947.1028 -8.92E-0	12245. 1.14E+10 -36.6639 2568 U).00
	6.1500	0.02411	169427	882.0746 -8.66E-0	122/4. 1.14E+10 -35.5897 2657 U).00
	6.3000	0.02258	1/118/.	819.3198 -8.39E-0	1230 .14E+10 -34.1379 2722 U	0.00
	6.4500	0.02109	1742529.	709.2099 -0.12E-0	12320 14E+10 -32 0310 - 27 00 0 12340 - 1.14E+10 - 31 1340 - 2851 0	
	0.0000 6.7500	0.01900	174000.	701.0020 -7.04E-0 647 1460 -7.57E 0	12349. 114E+10 -311349 2031 (12371 114E+10 -205057 - 2016 (
	6,0000	0.01603	177007	505 2733 -7 20E-0	12391 114E+10 -28.0397 2310 0	0.00
	7 0500	0.01035	178316	5/6 2129 _7 01E-0	12410 1 14E+10 -26 4721 -3046	00 0
	7 2000	0.01300	179442	499 9783 -6.72E-0	12427. 1.14E+10 -24.8997 3110 ().00
	7.3500	0.01322	180479	456.5731 -6.44E-0	12443. 1.14E+10 -23.3283 3175. ().00
	7 5000	0.01209	181433.	400.5399 -6.15E-0	12458. 1.14E+10 -38.9309 5796. (0.00
	7.6500	0.01101	182253.	330.7859 -5.87E-0	12470. 1.14E+10 -38.5735 6307. 0	00.0
	7.8000	0.00998	182941.	261.8051 -5.58E-0	12481. 1.14E+10 -38.0718 6867. (00.0
	7.9500	0.00900	183497.	193.8588 -5.29E-0	12489. 1.14E+10 -37.4240 7484. (00.0
	8.1000	0.00807	183924.	127.2112 -5.00E-0	12496. 1.14E+10 -36.6289 8165. (00.0
	8.2500	0.00720	184225.	62.1278 -4.71E-04	12501. 1.14E+10 -35.6860 8920. 0	,00
	8.4000	0.00638	184402.	-1.1259 -4.42E-04	12503. 1.14E+10 -34.5958 9761. 0.	00
	8.5500	0.00561	184459.	-62.2860 -4.13E-04	12504. 1.14E+10 -33.3598 10702 (0,00
	8.7000	0.00489	184401.	-119.9013 -3.83E-0	12503. 1.14E+10 -30.6572 11275	0.00
	8.8500	0.00423	184235.	-171.7516 -3.54E-0	12501. 1.14E+10 -26.9543 11470	0.00
	9.0000	0.00362	183974.	-626.7447 -3.25E-0	12497. 1.14E+10 -478.5936 238079.	0.00
	9,1500	0.00306	182154.	-1480, -2.96E-04	12469. 1.14E+10 -469.0296 275988 0	0.00
	9.3000	0.00255	178807.	-2314, -2.08E-04	122418. 1.14E+10 -457.6967 323043 (12242 114E+10 445.0732 382468 (00.0
	9.4500	0.00209	167691	-31272.40E-04 3977 2.13E 04	12343. $1.14E+10 - 443.0732 - 30240012247 - 1.14E+10 - 388 7569 - 414720 - (1)$	0.00
	9.0000	0.00109	160127	-36772.13E-04 -4506 -1.87E-04	12131 1.14E+10 -310.6725 421200 (0.00
	9.7000	0.00100	151559	-5003 -1.63E-04	12000 1.14F+10 -240.8145 427680	0.00
	10.0500	7.42E-04	142205.	-53811.39E-04	11857. 1.14E+10 -179.0871 434160	0.00
	10.2000	5_12E-04	132264	-56551.18E-04	11704. 1.14E+10 -125.3047 440640.	0.00
	10.3500	3.19E-04	121911	-58399.76E-05	11546. 114E+10 -79.2018 447120	0.00
ISTINE	10.5000	1.60E-04	111297.	-5946 -7 92E-05	11383 1.14E+10 -40.4430 453600 0	0.00
	10.6500	3.38E-05	100547	-59916.25E-05	11218 1.14E+10 -8.6311 460080 0	00.0
	10.8000	-6.44E-05	89765.	-5983 -4 74E-05	11053. 1.14E+10 16.6841 466560 0	00.0
	10.9500	-1.37E-04	79033	-59363.41E-05	10889. 1.14E+10 35.9995 473040 C	00.0
	11.1000	-1.87E-04	68414.	-5859 -2.25E-05	10726. 1.14E+10 49.8524 479520 0	0.00
	11.2500	-2.18E-04	57954	-5761 -1.25E-05	10566. 1.14E+10 58.8150 486000 0	00.00
	11.4000	-2.32E-04	47682.	-56514.14E-06	10408 1.14E+10 63.4910 492480 0	1.00
h	11 5500	-2.33E-04	37614.	-5536. Z.6UE-06	10204 1 14E+10 62 5349 505440 0	
MAX	11.2500	2 055 04	19003	-0421 7 70E-00	9955 114E+10 582420 511920 0	00
NL9	12 0000	-2.03E-04	8621	-4606 1 35E-05	9810 1 14E+10 726 9278 7200000 0	00
-	12.0000	-1.02L-04	1505	-3389 1 43E-05	9700 1 14E+10 624 8952 7200000 0	00
	12,3000	-1.30E-04	-3587	-2358 1.41E-05	9732 1 14E+10 521 1516 7200000 0	00
	12.4500	-1.05E-04	-6991	-1509 1 33E-05	9785 1 14E+10 421 4874 7200000 0	00
	12.6000	-8.24E-05	-9028	-833.2599 1.20E-0	9816 1_14E+10 329 7729 7200000	0.00
	12 7500	-6.21E-05	-9997	-312 9719 1.05E-0	9831 1 14E+10 248 3249 7200000	0.00
	12 9000	-4 46E-05	-10161	70 9411 8 93E-0	9833 1 14E+10 178 2451 7200000	0 00
	13.0500	-2.99E-05	-9747	339 1094 7 36E-0	9827 1 14E+10 119 7196 7200000	0,00
	13.2000	-1 81E-05	-8944	511 9067 5.88E-0	9814 1 14E+10 72 2773 7200000	0.00
	13,3500	-8.75E-06	-7907	608.4613 4.55E-0	9799 1.14E+10 35.0056 7200000	0.00
	13,5000	-1.68E-06	-6756	646 0191 3 39E-0	9781 1 14E+10 6 7252 7200000 (00 L
	13,6500	3.47E-06	-5583	639 5862 2 42E-0	9763 1 14E+10 -13 8728 7200000	0.00
	13,8000	/ U3E-06	-4455	640,0000 1,01E 0	9740 F14E+10 -281220 /200000	0.00
	13 9500	9 33E-06	-3417	- 542 9062 - LUTE-0	9730 I 14E±10 373039 720000 9716 1 17E±10 .728039 720000	0.00
	14-1000	TU/E-05	-2001	470 30C0 0 30E-0	3710 FIGETIV 42.0028 7200000	O MC

14.2500 1.13E-05 -1722. 392.0953 2.05E-07 9704. 1.14E+10 -45.0564 7200000. 0.00 14.4000 1.14E-05 -1089, 310.5482 -1.73E-08 9694, 1.14E+10 -45.5515 7200000. 0.00 14.5500 1.12E-05 -604.2200 229.2249 -1.51E-07 9687. 1.14E+10 -44.8078 7200000. 0.00 14.7000 1.08E-05 -264.1501 149.8586 -2.20E-07 9681. 1.14E+10 -43.3770 7200000. 0.00 14.8500 1.04E-05 -64.6103 73.3382 -2.46E-07 9678. 1.14E+10 -41.6458 7200000. 0.00 15.0000 9.96E-06 0.00 0.00 -2.51E-07 9677. 1.14E+10 -39.8411 3600000. 0.00

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

0.11	859284 inch	es
= -	0.00150947	radians
=	184459.	inch-lbs
=	-5991. lbs	
noment	= 8.5500	0000 feet below pile head
ce =	10.6500000	00 feet below pile head
=	9	
ints =	2	
	= 0.11; = - = noment ce = = ints =	: 0.11859284 inch = -0.00150947 = 184459. = -5991. lbs noment = 8.5500 ce = 10.6500000 = 9 ints = 2

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Pile-head Rotation (Loading Type 2)

Shear force at pile head	=	5000.0 lbs
Rotation of pile head	=	0.000E+00 radians
Axial load at pile head	=	150000.0 lbs

(Zero slope for this load indicates fixed-head conditions)

Deflect.	Bending	Shear Slop	e Total I	Bending Soi	Res Soil	Spr. Distrit	C
y Mor	ment For	ce S S	tress Stiffne	ss p l	Es*H Lat	Load	
nches ir	n-lbs lbs	radians	psi* Ib-in^2	Ib/inch It	p/inch lb/i	nch	
0.05698	-268130	5000 0.0	0 13786	1 14F+10	0.00 0	00 0.00	
0.05694	-259125	49984.16	E-05 13648	3. 1.14E+10	-2.0498	64.8000	0.00
0.05683	-250114.	49938.18	E-05 13510). 1.14F+10	-4.0915	129.6000	0.00
0.05664	-241107	4983 -1.21	E-04 13372	2. 1.14F+10	-6.1175	194,4000	0.00
0.05639	-232109	49711.58	E-04 13234	I. 1.14E+10	-8.1204	259.2000	0.00
0.05607	-223127.	49541.94	E-04 13097	1.14E+10	-10.0934	324,0000	0.00
0.05569	-214169.	49342.28	E-04 12959). 1.14E+10	-12 0298	388.8000	0.00
0.05525	-205240.	49112.62	E-04 12823	1 14E+10	-13 9235	453.6000	0.00
0.05475	-196348.	48842.93	E-04 12686	5. 1.14E+10	-15 7685	518 4000	0.00
0.05420	-187499	48543.24	E-04 12551	1.14E+10	-17 5595	583.2000	0.00
0.05359	-178698.	48213.53	E-04 12416	1 14E+10	-19 2912	648 0000	0 00
0.05293	-169952.	47853.80	E-04 12282	1 14E+10	-20 9590	712 8000	0 00
0.05222	-161267.	47464.06	E-04 12149	1 14E+10	-22 5583	777 6000	0.00
0.05146	-152649.	47044.31	E-04 12017	1 14E+10	-24 0852	842 4000	0 00
0.05067	-144101.	46594 54	E-04 11886	1 14E+10	-25 5360	907 2000	0 00
0.04983	-135631	46124 77	E-04 11756	1.14E+10	-26 9072	972 0000	0 00
0.04895	-127241	4562 -4 97	E-04 11627	1 14E+10	-28 1958	1037	0 00
0.04804	-118938	4510 -5 17	E-04 11500	1 14E+10	-29 3991	1102	0 00
0 04709	-110725	4457 -5 35	E-04 11374	1 14E+10	-30 5148	1166	0 00
0.04611	-102606	4401 -5 52	E-04 11250	1 14E+10	-30 7785	1201	0.00
0.04510	-94582	4346 -5 678	E-04 11127	1 14E+10	-30 4895	1217	0 00
	Deflect. y Mor nches ir 0.05698 0.05694 0.05683 0.05664 0.05639 0.05669 0.05525 0.05475 0.05420 0.05359 0.05222 0.05146 0.05067 0.05222 0.05146 0.05067 0.04983 0.04895 0.04895 0.04804 0.04709 0.04510	Deflect. Bending y Y y Moment Fornches nches in-lbs lbs 0.05698 -268130. 0.05694 0.05694 -259125. 0.05683 0.05694 -259125. 0.05664 0.05664 -241107. 0.05669 0.05667 -223127. 0.05569 0.05525 -205240. 0.05525 0.05525 -205240. 0.05475 0.05475 196348. 0.05293 0.05293 -169952. 0.05222 0.05220 -161267. 0.05146 0.05223 -152649. 0.05067 0.05067 -144101. 0.04895 0.05067 -144101. 0.04895 0.05293 -135631. 0.04895 0.05446 -118938. 0.04709 0.04804 -118938. 0.04709 0.04510 -94582	Deflect. Bending Shear Slop y Moment Force S S nches in-lbs lbs radians 0.05698 -268130. 5000. 0.0 0.05694 -259125. 4998. -4.16 0.05664 -241107. 4983. -1.21 0.05664 -241107. 4983. -1.21 0.05669 -232109. 4971. -1.58 0.05669 -214169. 4934. -2.28 0.05525 -205240. 4911. -2.62 0.05525 -205240. 4911. -2.62 0.05420 -187499. 4854. -3.24 0.05529 -178698. 4821. -3.53 0.05222 -161267. 4746. -4.06 0.05146 -152649. 4704. -4.31 0.05067 -144101. 4659. -4.54 0.04893 -135631. 4612. -4.77 0.4895 -127241. 4	Deflect. Bending Shear Slope Total Force S Stress Stiffne nches in-lbs lbs radians psi* lb-in^2 0.05698 -268130. 5000. 0.00 13786. 13648 0.05694 -259125. 4998. -4.16E-05 13648 0.05664 -259125. 4998. -4.16E-05 13648 0.05663 -250114. 4993. -8.18E-05 13510 0.05664 -241107. 4983. -1.21E-04 13372 0.05669 -214169. 4934. -2.28E-04 12956 0.05525 -205240. 4911. -2.62E-04 12823 0.055475 -196348. 4884. -2.93E-04 12823 0.05420 -187499 4854. -3.24E-04 12823 0.05223 -169952. 4785. -3.80E-04 12446 0.05224 -161267. 4746. -4.06E-04 12149 0.05146 -152649.	Deflect. Bending Shear Slope Total Bending Soi y Moment Force S Stress Stiffness p nches in-lbs Ibs radians psi* Ib-in^2 Ib/inch Ik 0.05698 -268130. 5000. 0.00 13786. 1.14E+10 0.05694 -259125. 4998. -4.16E-05 13648. 1.14E+10 0.05664 -241107. 4983. -1.21E-04 13372. 1.14E+10 0.05667 -223127. 4954. -1.94E-04 13097. 1.14E+10 0.05569 -214169. 4934. -2.28E-04 12959. 1.14E+10 0.05525 -205240. 4911. -2.62E-04 12823. 1.4E+10 0.05420 -187499 4854. -3.24E-04 12823. 1.4E+10 0.05223 -169952. 4785. -3.80E-04 12282. 1.4E+10 0.05222 -161267. 4746. -4.06E-04 12149. </td <td>Deflect. Bending Shear Slope Total Bending Soil Res Soil y Moment Force S Stress Stiffness p Es*H Lat nches in-lbs lbs radians psi* lb-in^2 lb/inch lb/inch lb/inch lb/inch lb/inch 0.05698 -268130. 5000. 0.00 13786. 1.14E+10 -2.0498 0.05683 -250114. 4993. -8.18E-05 13510. 1.14E+10 -4.0915 0.05664 -241107. 4983. -1.21E-04 13372. 1.14E+10 -6.1175 0.05607 -223127. 4954. -1.94E-04 13097 1.14E+10 -10.0934 0.05525 -205240. 4911. -2.62E-04 12823 1.14E+10 -13 9235 0.05420 -187499 4854. -3.24E-04 12251. 1.14E+10 -19 2912 0.05293 -169952. 4785. -3.80E-04 12282.<td>Deflect. Bending Shear Slope Total Bending Soil Res Soil Spr. Distribution y Moment Force S Stress Stiffness p Es*H Lat. Load nches in-lbs Ibs radians psi* Ib-in^2 Ib/inch Ib/inch Ib/inch 0.05698 -268130. 5000. 0.00 13786. 1.14E+10 -0.00 0.00 0.00 0.05694 -259125. 4998. -4.16E-05 13648. 1.14E+10 -2.0498 64.8000 0.05664 -241107. 4983. -1.21E-04 13372. 1.14E+10 -6.1175 194.4000 0.05669 -214169. 4934. -2.28E-04 12959. 1.14E+10 -8.1204 259.2000 0.05525 -205240. 4911. -2.62E-04 12823. 1.4E+10 -13.9235 453.6000 0.05420 -187499 4854. -3.24E-04 12823. 1.4E+10 -17.5595 583.2000 <</td></td>	Deflect. Bending Shear Slope Total Bending Soil Res Soil y Moment Force S Stress Stiffness p Es*H Lat nches in-lbs lbs radians psi* lb-in^2 lb/inch lb/inch lb/inch lb/inch lb/inch 0.05698 -268130. 5000. 0.00 13786. 1.14E+10 -2.0498 0.05683 -250114. 4993. -8.18E-05 13510. 1.14E+10 -4.0915 0.05664 -241107. 4983. -1.21E-04 13372. 1.14E+10 -6.1175 0.05607 -223127. 4954. -1.94E-04 13097 1.14E+10 -10.0934 0.05525 -205240. 4911. -2.62E-04 12823 1.14E+10 -13 9235 0.05420 -187499 4854. -3.24E-04 12251. 1.14E+10 -19 2912 0.05293 -169952. 4785. -3.80E-04 12282. <td>Deflect. Bending Shear Slope Total Bending Soil Res Soil Spr. Distribution y Moment Force S Stress Stiffness p Es*H Lat. Load nches in-lbs Ibs radians psi* Ib-in^2 Ib/inch Ib/inch Ib/inch 0.05698 -268130. 5000. 0.00 13786. 1.14E+10 -0.00 0.00 0.00 0.05694 -259125. 4998. -4.16E-05 13648. 1.14E+10 -2.0498 64.8000 0.05664 -241107. 4983. -1.21E-04 13372. 1.14E+10 -6.1175 194.4000 0.05669 -214169. 4934. -2.28E-04 12959. 1.14E+10 -8.1204 259.2000 0.05525 -205240. 4911. -2.62E-04 12823. 1.4E+10 -13.9235 453.6000 0.05420 -187499 4854. -3.24E-04 12823. 1.4E+10 -17.5595 583.2000 <</td>	Deflect. Bending Shear Slope Total Bending Soil Res Soil Spr. Distribution y Moment Force S Stress Stiffness p Es*H Lat. Load nches in-lbs Ibs radians psi* Ib-in^2 Ib/inch Ib/inch Ib/inch 0.05698 -268130. 5000. 0.00 13786. 1.14E+10 -0.00 0.00 0.00 0.05694 -259125. 4998. -4.16E-05 13648. 1.14E+10 -2.0498 64.8000 0.05664 -241107. 4983. -1.21E-04 13372. 1.14E+10 -6.1175 194.4000 0.05669 -214169. 4934. -2.28E-04 12959. 1.14E+10 -8.1204 259.2000 0.05525 -205240. 4911. -2.62E-04 12823. 1.4E+10 -13.9235 453.6000 0.05420 -187499 4854. -3.24E-04 12823. 1.4E+10 -17.5595 583.2000 <

MAX

	3.1500	0.04407	-86653.	42915.82E-04	11005	1.14E+10	-30.5905	1249.	0.00	
	3.3000	0.04301	-78819.	42365.95E-04	10885.	1.14E+10	-30.4862	1276	0.00	
	3.4500	0.04193	-71081.	41826.07E-04	10767.	1.14E+10	-30.1114	1293	0.00	
	3.6000	0.04083	-63438.	4128 -6 17E-04	10650.	1.14E+10	-29.4612	1299.	0.00	
	3.7500	0.03971	-55887.	40766.27E-04	10534.	1.14E+10	-28.5349	1294.	0,00	
	3.9000	0.03807	-48426.	4U260.33E-U4	10420.	1 14E+10	-27.3305	1276	0.00	E. col E.ol
	4.0500	0.03742	-4100Z.	39770.42E-04	10307	1 14E+10	-20.4041	1270.5	0.00	lixed cha
	4.2000	0.03620	-33701.	39290.40E-04	10195.	1 14E+10	-27.0049	1344	0.00	15-1 (51 2
	4.5000	0.03309	10//1	3830 6 56E 04	0075	1.145+10	28 1/58	1410.	0.00	15T Neg= 11,3 (EL 3003.9)
	4.5000	0.03331	-12416	3779 -6.59E-04	9868	1.14E+10	-20.1430	1571	0.00	
	4 8000	0.03154	-5483	3727 -6.60E-04	9761	1 14E+10	-20.3370	1648	0.00	MAX Neg = 11,9' (EL 3003.3)
	4 9500	0.03035	1358	3675 -6.60E-04	9698	1 14E+10	-20.07.04	1726	0.00	9
	5 1000	0.02916	8103	3622 -6.60E-04	9802	1.14E+10 -	29 6260	1829	0.00	
	5.2500	0.02798	14753.	35686.58E-04	9903	1.14F+10	-30.4117	1957	0.00	
	5.4000	0.02679	21303.	35126.55E-04	10004	1.14E+10	-31 1462	2092	0.00	SAV POF = 3003 FE
	5.5500	0.02562	27751.	3456 -6.51E-04	10103.	1.14E+10	-31.8257	2236	0.00	ong 101 - 0000 10
	5.7000	0.02445	34095	33986.46E-04	10200	1.14E+10	-32.4463	2389.	0.00	M. T. F. E. L. & Prove FL
	5.8500	0.02329	40333.	33396.40E-04	10295.	1.14E+10	-32.7017	2527.	0.00	MIN IP FOR MARY - SOOT IC
	6.0000	0.02214	46463.	32816.34E-04	10389.	1.14E+10	-31.8885	2592.	0.00	
	6.1500	0.02101	52487.	32256.26E-04	10482.	1.14E+10	-31_0123	2657.	0.00	
	6.3000	0.01989	58409.	3170 -6.17E-04	10573_	1.14E+10	-30.0770	2722.	0.00	
	6.4500	0.01879	64231.	31166.07E-04	10662	1_14E+10	-29.0868	2786.	0.00	5 into WR/Rock = 3001 Ft
	6.6000	0.01771	69956.	30655.97E-04	10749	1.14E+10	-28.0463	2851.	0.00	
	6.7500	0.01664	75587.	30155.85E-04	10836	1.14E+10	-26.9598	2916.	0.00	
	6.9000	0.01560	81127.	29685.73E-04	10921	1,14E+10	-25.8324	2981	0.00	
	7.0500	0.01458	86581.	29225.60E-04	11004	1.14E+10	-24.6689	3046.	0.00	LIST 3001 FE AS TO Flavlation
	7.2000	0.01358	91950.	28795.45E-04	11087.	1.14E+10	-23.4745	3110	0.00	USE SECTIC AS IN CLEVATORS
	7.3500	0.01262	97240.	28385.31E-04	11168	1.14E+10	-22.2546	3175	0:00	
	7.5000	0.01167	102453.	27845.15E-04	11247.	1,14E+10	-38.1122	5876.	0.00	
	7.6500	0.01076	107539.	27154.98E-04	11325.	1.14E+10	-38.0485	6363	0.00	
	7.8000	0.00988	112497.	26474.81E-04	11401.	1.14E+10	-37.8472	6894.	0.00	
	7.9500	0.00903	11/32/.	25794.63E-04	114/5.	1.14E+10	-37.5049	/4/4.	0.00	
	0.1000 8.2500	0.00022	126610	20124.44E-04 2446 4 24E 04	11047	1.14E+10	-37.0100	0010	0.00	
	8 4000	0.00743	131065	24404.24E-04 2381 / 0/E 0/	11686	1.14E+10	35 6086	0010.	0.00	
	8 5500	0.000003	135399	2318 _3.83E_04	11752	1 14E+10	-31 6833	10/30	0.00	
	8 7000	0.00530	139616	2257 -3.61E-04	11817	1 14E+10	-34.0033	11275	0.00	
	8.8500	0.00468	143718	2200 -3.39E-04	11880	1.14E+10	-29 8278	11270	0.00	
	9.0000	0.00409	147718	17293.16E-04	11941	1 14F+10	-493 6215	217139	0.00	
	9.1500	0.00354	150112.	846.4188 -2.92E-04	11978	3. 1.14E+1(-486.7244	4 247152	0.0	0
	9.3000	0.00304	150923.	-22.2930 -2.68E-04	11990	1.14E+10	-478.5110	283297	0.0	0
	9.4500	0.00258	150177.	-874.9847 -2.45E-04	11979) 1.14E+1(0 -468.9241	1 327311	0.0	0
	9.6000	0.00216	147905	-1709 -2,21E-04	11944	1 14E+10	-457 8940	381593	0.00	
	9.7500	0.00178	144143.	-2497 -1.98E-04	11886	1 14E+10	-417 2457	421200	0.00	
	9.9000	0.00145	139024.	-3182 -1.76E-04	11808	1_14E+10	-343,8694	427680	0.00	
	10.0500	0.00115	132784	-3741 -1.54E-04	11712	1_14E+10	-277_6077	434160	0.00	
	10.2000	8.92E-04	125639	-4188 -1 34E-04	11603	1 14E+10	-218.4534	440640	0.00)
	10.3500	6.70E-04	117781	-4534 -1 15E-04	11482	1 14E+10	-166 3096	447120	0.00)
	10 5000	4.80E-04	109379	-4792 -9.66E-05	11354	1_14E+10	-120 9990	453600	0.00)
	10 6500	3.22E-04	100580	-4975 -8.00E-05	11219	1.14E+10	-82 2729	460080	0 00	
Le also	10.8000	1.92E-04	91511	-5094 -6.48E-05	11080	1 14E+10	-49 8186	466560	0 00	
1517129	10 9500	8,85E-05	82276	-5160 -511E-05	10938	1 14E+10	-23 26/4	473040	0.00	
	11,1000	0-20E-00	72903	-3183 -388E-U3	10796	1.14E+10	-Z ZUTU	479520	0.00	
	11 2000	-J. IJE-UJ	03039 54257	-0172 -2 0UE-U0 5137 1 97E 05	10510	1 14E+10	13:0431	400000	0.00	
	11 5500	-3 Z/E-U0	04007 15155	-0107 -107E-00	10260	1 14C+10	20 3000	43240U 108060		
	11 7000	-1 32E-04	36058	-5022 -4 46E-06	10230	1 14E+10	37 0230	505440	0.00	
	11 8500	-1 35E-04	27079	-4954 5.27E-07	10092	1 14E+10	38 3236	511920	0.00	
10.1	12 0000	-1 30E-04	18223	-4452 4 10F-06	9957	1 14E+10	519 8194	7200000	0.00	
THEX	12 1500	-1 20E-04	11051	-3552 6 42E-06	9847	1 14E+10	479 9072	7200000	0.00	
NUJ										

12.3000	-1.07E-04	5433.	-2735.	7.72E-06	9761.	1.14E+10	427.4287	7200000.	0.00
12.4500	-9.22E-05	1200.	-2019.	8.24E-06	9696.	1.14E+10	368.7722	7200000.	0.00
12.6000	-7.72E-05	-1839.	-1409.	8.19E-06	9706.	1.14E+10	308.7515	7200000.	0.00
12.7500	-6.27E-05	-3877	905.3157	7.74E-06	9737	1.14E+10	250.8219	7200000.	0.00
12.9000	-4.93E-05	-5102	502.0052	7.03E-06	9756	. 1.14E+10	0 197.3009	7200000.	0.00
13.0500	-3.74E-05	-5688	189.8109	6.18E-06	9765	. 1.14E+10	0 149.5817	7200000.	0.00
13.2000	-2.71E-05	-5789.	42.3102	5.27E-06	9766.	1.14E+10	108.3306	7200000.	0.00
13.3500	-1.84E-05	-5538.	206.1037	4.38E-06	9762	1.14E+1(73.6622	7200000.	0.00
13.5000	-1.13E-05	-5049.	313.1623	3.54E-06	9755	1,14E+1() 45.2918	7200000.	0.00
13.6500	-5.67E-06	-4413.	374.3217	2.79E-06	9745	. 1.14E+10	22.6631	7200000.	0.00
13.8000	-1.26E-06	-3703.	399.2658	2.15E-06	9734	. 1.14E+1(5.0526	7200000.	0.00
13.9500	2.09E-06	-2977.	396.3010	1.63E-06	9723	. 1.14E+1(-8.3469	7200000.	0.00
14.1000	4.59E-06	-2277.	372.2636	1.21E-06	9712	. 1.14E+1(-18.3613	7200000.	0.00
14.2500	6.45E-06	-1637.	332.5311	9.02E-07	9703	. 1.14E+10	-25.7860	7200000.	0.00
14.4000	7.84E-06	-1081.	281.1097	6.87E-07	9694	. 1.14E+1(-31.3489	7200000.	0.00
14.5500	8.92E-06	-625.6910	220.781	1 5.53E-07	968	87 1.14E+	10 -35.682	8 7200000	. 0.00
14.7000	9.83E-06	-286.2269	153.291	9 4.81E-07	968	32. 1.14E+	10 -39.305	2 7200000	. 0.00
14.8500	1.07E-05	-74.0995	79.5753	4.52E-07	9679). 1.14E+1	0 -42.6022	7200000.	0.00
15.0000	1.15E-05	0.00	0.00 4.	46E-07 9	677. 1	.14E+10 -	45.8148 36	600000.	0.00

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 2:

Pile-head deflection	=	0.05	5697601 inches
Computed slope at pile hea	d	=	0.000000 radians
Maximum bending moment		=	-268130. inch-lbs
Maximum shear force	=		-5183. lbs
Depth of maximum bending	mor	nent	t = 0.000000 feet below pile head
Depth of maximum shear fo	rce	=	11.10000000 feet below pile head
Number of iterations	=		7
Number of zero deflection p	oints	5 =	2

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot, Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load LoadLoadAxialPile-headPile-headMax MomentCase TypePile-headTypePile-headLoadingDeflectionRotationin PileNo. 1Load 12Load 2IbsinchesradiansIbsin-Ibs1V. Ib3000M, in-Ib0.001500000 1186-0.00151-5991184459

2 V. lb 5000 S, rad 0.00 150000 0.05698 0.00 -5183 -268130

Maximum pile-head deflection = 0 1185928444 inches Maximum pile-head rotation = -0.0015094699 radians = -0.086486 deg

The analysis ended normally

DocuSign Envelope ID: D7CB11C5-1CE1-4B6C-9452-DCDE4A5FF4BF

GEOTECHNICAL BORING REPORT BORE LOG

WB:	5 17BP.	11.R.1	61		ТІ	IP N/A	COUNT	Y ASHE				GEOLOGIST A. Blackmore		
SITE	DESCR	IPTION	Brid	ge 01	5 on S	R 1147 (Nettle Knob	Road) ov	er South Be	aver Cre	eek			GROUN	D WTR (ft)
BOF	RING NO.	EB2-	A		S	TATION 14+26		OFFSET	14 ft LT			ALIGNMENT -L-	0 HR.	N/A
COL	LAR ELE	EV. 3,0	017.1	ft	т	OTAL DEPTH 21.0 f	t	NORTHING	9 56,9	938		EASTING 1,273,326	24 HR.	Dry
DRIL	L RIG/HAM	MMER E	FF./DA	TE GE	EO366 [Diedrich D-50 68% 07/15/2	2020		DRILL	иетно	D C	ore Boring HAMM	ER TYPE	Automatic
DRI	LER J.	Messi	ck		ST	TART DATE 12/28/2	1	COMP. DA	TE 12/	28/21		SURFACE WATER DEPTH N	/Α	
ELE∨ (ſl)	DRIVE ELEV (fl)	DEPTH (fl)	BLC 0.5ft	0.51L	JNT 0.5fl	BLOWS 0 25	PER FOOT	75 100	SAMP, NO	мот	L O G	SOIL AND ROCK DES	CRIPTION	DEPTH (fl)
3020	3,017,1	0.0	-11	-	T	BOC = 3015.0) 					3.017.1 GROUND SURF	ACE	0.0
3015	1		-3	4	5	• \$ 9	2.5.55	5 3 4 4 9	0	M		Soft to Stiff, Brown, Fine to	Coarse Sa	ndy
3010	3,013.6 3,011.1 3,008.6 3,006.8	- 3.5 6.0 - 8.5 - 10.3	6 1 15	2 1 85/0.4	1			100/0.9	8.2	M M Sal.		3,009.1 3,006.8 Very Dense, Brown-Tan, Sifty Tronget Statute Content of Statute Content	k fragment	
3005 3000			60/0.0					50/0.0*			アンアンアン	3.005.1 CRYSTALLINE R Gray (BIOTITE GN CRYSTALLINE R Gray (BIOTITE GN Gray (BIOTITE GN) OCK EISS) OCK EISS)	
						EB-2 (LT Drill in Piles M of 5' Into W An elevation L=BOC-Tip EL = 3015.0 - 30 Ave Pile Le USE 3002 Ft) A min R/Ruck below +1.0 5 +1.0 5 +1.0 5 +1.0 5 +1.0 5 +1.0 5 To T	Imum And to Fixity need 0 = 14.0' 15' P Elev				Boring Terminated at Elevati Crystalline Rock (BIOTT 1) High N-values in the allux cobbles encountered du 2) A tri-cone bit was used to after SPT refusal was encou coring began at 11. <u>Est Qty</u> IN Soil = 3015, 8 - 300 Not IN Soil = 3006.8 - 300	in 2,996.1 E GNEISS vial layer du ring drilling seat the c: untered. R 0 feet.	1. In) Jue to asing tock 8.2 4.8 1 4.8

Lateral Pile Deflection (inches)

LPile for Windows, Version 2019-11.006

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved

This copy of LPile is being used by:

ECS Southeast Charlotte, NC

Serial Number of Security Device: 562473626

This copy of LPile is licensed for exclusive use by:

ECS Carolinas, LLP, Charlotte, N

Use of this program by any entity other than ECS Carolinas, LLP, Charlotte, N is a violation of the software license agreement.

Files Used for Analysis

Path to file locations: \Users\mwalko\Downloads\

Name of input data file: EB2-A_REV.lp11d

Name of output report file: EB2-A_REV lp11o

Name of plot output file: EB2-A_REV.lp11p

Name of runtime message file: EB2-A_REV_lp11r

Date and Time of Analysis

Date March 28, 2022 Time: 14:41:05

Problem Title

Project Name Ashe Bridge 15

Job Number 09-29362

Client: Vaughn & Melton

Engineer: ECS Southeast

Description: End Bent 2

Program Options and Settings

Computational Options:

- Conventional Analysis

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed= 500- Deflection tolerance for convergence= 1.0000E-05 in- Maximum allowable deflection= 100.0000 in
- Maximum allowable deflection = 100.0 Number of pile increments = 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry Number of pile sections defined=1Total length of pile=15.000 ft Depth of ground surface below top of pile 0.0000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over

the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	12.0450
2	15.000	12.0450

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile	
Cross-sectional Shape	= Strong H-Pile
Length of section	= 15.000000 ft
Flange Width	= 12.045000 in
Section Depth	= 11.780000 in
Flange Thickness	= 0.435000 in
Web Thickness	= 0.435000 in
Section Area	= 15.500000 sq. in
Moment of Inertia	= 393.000000 in^4
Elastic Modulus	= 29000000. psi

Ground	I Slope	and Pile	Batter	Angles	
--------	---------	----------	--------	--------	--

Ground Slope Angle	=	= 0.000	0.000 degrees radians
Pile Batter Angle	Ξ	= 0.000	0.000 degrees radians

Soil and Rock Layering Information

The soil profile is modelled using 2 layers

Layer 1 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	-	= 0.0000 ft
Distance from top of pile to bottom of lay	er	= 8.200000 ft
Effective unit weight at top of layer	=	42.600000 pcf
Effective unit weight at bottom of layer	-	= 42.600000 pcf
Friction angle at top of layer	= 2	8.000000 deg
Friction angle at bottom of layer	=	28.000000 deg.
Subgrade k at top of layer	= 2	20.000000 pci
Subgrade k at bottom of layer	=	20.000000 pci

Layer 2 is strong rock (vuggy limestone)

Distance from top of pile to top of layer 🛛 🚊 8_200000 ft

Distance from top of pile to bottom of layer	Ξ	20.	000000 ft
Effective unit weight at top of layer =	16	0.00)000 pcf
Effective unit weight at bottom of layer =	. 1	160.0	00000 pcf
Uniaxial compressive strength at top of layer	2	=	4000. psi
Uniaxial compressive strength at bottom of laye	er	=	4000. psi

(Depth of the lowest soil layer extends 5.000 ft below the pile tip)

**** Warning - Possible Input Data Error ****

Values entered for effective unit weight of rock were outside the limits of 50 pcf to 150 pcf.

The maximum input value, in layer 1, for effective unit weight = 160.00 pcf

This data may be erroneous. Please check your data.

Summary of Input Soil Properties

Layer Layer Num	Soil Type Name . (p-y Curve Type	Layer Depth) ft	Effective Unit Wt. pcf	Angle of Friction deg.	Uniaxi qu psi	al kpy pci
1	Sand	0.00	42.6000	28.0000		20.0000
	(Reese, et al.)	8.2000	42.6000	28.0000	-	20.0000
2	Strong Rock	8.2000	160.000	0	4000	222
	(Vuggy Limestone)	20.0	000 160.0	0000	40	00. 🛥

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 2

Load	Lo	ad	Condition		Condition	Axial Thrust	Compute	Top y Run A	nalysis
No	о Туре		1		Fo	orce, Ibs vs. Pile	e Length		
*****							985 - 500 March 1997		
1	1	V =	3000 lbs	M =	0.0000 in-lt	os 150000	No	Yes	
2	2	V =	5000 lbs	S =	0.0000 in/in	150000	No	Yes	

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top yivs ipile lengths can be computed only for load types with

specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Layering Correction Equivalent Depths of Soil & Rock Layers

	Top of	Equiva	lent				
	Layer	Top D	epth S	ame Laye	r Layer is	5 F0	F1
Layer	Belov	/ Be	elow	Type As	Rock or	Integral	Integral
No.	Pile He	ad Gri	nd Surf	Layer	is Below	v for Laye	er for Layer
	ft	ft	Above	Rock La	iyer Ibs	s Ibs	
1	0.00	0.0	0 N.	A. No	0.	00 147;	31.
2	8.2000	8.2	000	No `	Yes I	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

> Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	3000.0 lbs
Applied moment at pile head	1	0.0 in-lbs
Axial thrust load on pile head	2	150000.0 lbs

Depth Deflect Bending Shear Slope Total Bending Soil Res. Soil Spr Distrib X y Moment Force S Stress Stiffness p Es*H Lat Load feet inches in-Ibs Ibs radians psi* Ib-in^2 Ib/inch Ib/inch Ib/inch

0.00	0 08703 -	2.44E-07	3000.	-0.00126	9677	1 14E+10	0.00	0 00	0 00
0 1500	0.08477	5740.	2998.	-0.00126	9765.	1 14E+10	-2 3058	48 9632	0 00
0 3000	0 08250	11473	2992.	-0.00126	9853	1 14E+10	-4 7336	103 2797	0 00
0 4500	0 08024	17190	2981	-0 00126	9941	114E+10	-7 2126	161 8066	0 00
0 6000	0 07798	22882	2966	-0 00125	10028	1 14E+10	-9 7326	224 6633	0.00
	0.7500	0.07572	28542.	29460.00125	10115.	1,14E+10	-12.2492	291,1676	0.00
-----------	-----------	-----------	---------	------------------	--------	----------	-----------	-----------	------
	0.9000	0.07348	34162.	29220.00124	10201.	1.14E+10	-14.6844	359.7121	0.00
	1.0500	0.07125	39732.	28930.00124	10286.	1.14E+10	-17.0101	429.7518	0.00
	1.2000	0.06902	45245.	28600.00123	10371.	1.14E+10	-19.2303	501.4933	0.00
	1.3500	0.06681	50694.	28240.00122	10454.	1.14E+10	-21.2482	572.4475	0.00
	1.5000	0.06462	56072.	27840.00122	10537	1_14E+10	-23.0178	641.1940	0.00
	1.6500	0.06244	61374.	27410.00121	10618.	1.14E+10	-24.7251	712.8000	0.00
	1.8000	0.06027	66592	26950.00120	10698.	1.14E+10	-26.0386	777 6000	0.00
	1.9500	0.05813	71723.	26480.00119	10777.	1.14E+10	-27.2053	842.4000	0.00
	2.1000	0.05601	76763.	25980.00117	10854.	1.14E+10	-28.2279	907.2000	0.00
	2.2500	0.05391	81709.	25460.00116	10930.	1.14E+10	-29.1095	972.0000	0.00
	2.4000	0.05183	86556.	24930.00115	11004.	1.14E+10	-29.8531	1037	0.00
	2.5500	0.04977	91303.	24390.00113	11077.	1.14E+10	-30.4622	1102	0.00
	2.7000	0.04775	95948.	23840.00112	11148.	1.14E+10	-30.8722	1164.	0.00
	2.8500	0.04575	100488.	2328, -0.00110	11217	1.14E+10	-30.6851	1207	0.00
	3.0000	0.04378	104925	22730.00109	11285.	1.14E+10	-30.1317	1239	0.00
	3.1500	0.04183	109259.	2219 -0.00107	11352.	1.14E+10	-29.9399	1288	0.00
	3.3000	0.03992	113492.	2166 -0.00105	11417.	1.14E+10	-29.5184	1331.	0.00
	3.4500	0.03804	117625.	21130.00103	11480.	1.14E+10	-28.8081	1363.	0.00
	3.6000	0.03620	121659.	20620.00102	11542.	1.14E+10	-27.8108	1383.	0.00
	3.7500	0.03439	125598.	20139.96E-04	11602.	1.14E+10	-26.5341	1389	0.00
	3,9000	0.03261	129445	19679.76E-04	11661.	1.14E+10	-24.9917	1379	0_00
	4.0500	0.03088	133206	1923 -9.55E-04	11719.	1.14E+10	-23,7071	1382	0.00
	4.2000	0.02918	136885.	1880 -9.34E-04	11775.	1.14E+10	-23.9241	1476	0.00
	4.3500	0.02751	140480.	18379.12E-04	11830.	1.14E+10	-24.0414	1573.	0.00
	4.5000	0.02589	143991.	17948.89E-04	11884.	1.14E+10	-24.0570	1672.	0.00
	4.6500	0.02431	147418.	17518.66E-04	11937.	1.14E+10	-23.9695	1775.	0.00
	4.8000	0.02277	150761.	17088.43E-04	11988.	1.14E+10	-23,7783	1879.	0.00
	4.9500	0.02128	154021.	16658.19E-04	12038.	1.14E+10	-23.4837	1987.	0.00
	5.1000	0.01983	157198.	16237.94E-04	12086.	1.14E+10	-23.4297	2127	0.00
	5.2500	0.01842	160293.	1581, -7.69E-04	12134.	1.14E+10	-23.2087	2268	0.00
	5.4000	0.01706	163305.	1540, -7.44E-04	12180.	1.14E+10	-22.1072	2333.	0.00
	5.5500	0.01574	166239.	15017.17E-04	12225.	1.14E+10	-20.9696	2398.	0.00
	5.7000	0.01448	169098.	1465, -6.91E-04	12269	1.14E+10	-19.8019	2462	0.00
	5,8500	0.01326	171885.	14306.64E-04	12311	1.14E+10	-18.6104	2527	0.00
	6.0000	0.01208	174605.	13986.37E-04	12353	1 14E+10	-17,4014	2592	0.00
	6.1500	0.01096	177261	1368 -6.09E-04	12394.	1.14E+10	-16,1814	2657	0.00
	6.3000	0.00989	179857.	13405.81E-04	12434.	1,14E+10	-14,9569	2722	0.00
	6.4500	0.00887	182397.	13145.52E-04	12473.	1 14E+10	-13.7344	2786	0.00
	6.6000	0.00790	184884.	12905.23E-04	12511	1.14E+10	-12.5206	2851	0.00
	6.7500	0.00699	187323.	12694.94E-04	12548.	1_14E+10	-11 3223	2916	0.00
	6.9000	0.00613	189718	12494.64E-04	12585	1_14E+10	-10,1463	2981	0.00
	7.0500	0.00532	192071	12324.34E-04	12621	1_14E+10	-8.9994	3046	0.00
	7 2000	0.00457	194388	1217 -4.03E-04	12656	1_14E+10	-7:8887	3110	0.00
	7 3500	0.00387	196670	1204 -3 72E-04	12691	1 14E+10	-6,8212	3175	0.00
	7 5000	0.00322	198922.	11923.41E-04	12726	1.14E+10	-5.8041	3240	0,00
	7.6500	0.00264	201146.	11833.10E-04	12760.	1_14E+10	-4.8446	3305	0.00
	7.8000	0.00211	203347	1175278E-04	12794	1_14E+10	-3.9499	3370	0.00
	7_9500	0.00164	205525	1168 -2 45E-04	12827	1 14E+10	-3 1275	3434	0.00
	8,1000	0.00123	207685.	1163 -2 13E-04	12860	1 14E+10	-2 3848	3499	0,00
	8,2500	8_73E-04	209829.	-19831.80E-04	12893	1_14E+10	-3493	7200000	0.00
	8.4000	5.80E-04	200644	-7213 -1 47E-04	12752	1 14E+10	-2318	7200000	0 00
	8 5500	3.43E-04	183940.	-10534 -1.17E-04	12496	1.14E+10	-1372	7200000	0.00
ISTNED	8_7000	1 59E-04	162783.	-12340 -8 96E-05	12172	1 14E+10	-634 052	5 7200000	0 00
, , , -]	8.8500	2.04E-05	139566	-12984 -6.57E-05	11816	1.14E+10	-81 5493	3 7200000	0.00
	9.0000	-7:81E-05	116078	-12776 -4 55E-05	11456	1 14E+10) 312 248	1 7200000	0 00
	9 1500	-1.44E-04	93596	-11978 -2 90E-05	11112	1_14E+10	574 0488	3 7200000	0,00
	9.3000	-1 82E-04	72971	-10805 -1 58E-05	10796	1_14E+10	729 417	1 7200000	0.00
	9 4500	-2 00E-04	54706	-9427 -573E-06	10516	1 14E+10	801.8069	7200000	0.00
	9 6000	-2 03E-04	39036	-7975 1 67E-06	10276	1 14E+10	811 9883	7200000	0 00
MAXING	9 7 5 0 0	-194E-04	25996	-6544 6 80E-06	10076	1 14E+10	7777796	7200000	0.00

9.9000	-1.79E-04	15475.	-5201. 1	1.01E-05	9915.	1.14E+10	714.0098	7200000.	0.00
10.0500	-1.58E-04	7266.	-3989. 1	1.19E-05	9789.	1.14E+10	632.6431	7200000.	0.00
10.2000	-1.36E-04	1106.	-2931. 1	1.25E-05	9694	1.14E+10	543.0143	7200000.	0.00
10.3500	-1.13E-04	-3294.	-2036. 1	1.24E-05	9728.	1.14E+10	452,1272	7200000.	0.00
10.5000	-9.12E-05	-6228.	-1300. 1	1.16E-05	9773.	1_14E+10	364.9852	7200000	0.00
10.6500	-7.12E-05	-7981	715.3116	1.05E-05	9800	1.14E+10	0 284.9259	7200000	0.00
10.8000	-5.35E-05	-8809	266.3307	9.16E-06	9812	1.14E+1	0 213.9417	7200000	0.00
10.9500	-3.82E-05	-8944.	63.8942	7.76E-06	9814.	1.14E+10	152.9749	7200000.	0.00
11.1000	-2.55E-05	-8583.	293.5327	6.38E-06	9809	1.14E+1(0 102,1790	7200000.	0.00
11.2500	-1.53E-05	-7891.	440.5231	5.08E-06	9798.	1_14E+1(0 61 1437	7200000	0.00
11.4000	-7.27E-06	-7000.	521.7259	3.90E-06	9785.	1.14E+10	29.0817	7200000.	0.00
11.5500	-1.24E-06	-6015.	552.3813	2.87E-06	9770.	1.14E+1() 4.9799	7200000.	0.00
11.7000	3.07E-06	-5013.	545.8095	2.00E-06	9754.	1_14E+1(-12,2820	7200000.	0.00
11.8500	5.96E-06	-4051.	513.2970	1.29E-06	9740.	1.14E+1(-23.8431	7200000.	0.00
12.0000	7.70E-06	-3166. 4	464.1206	7.16E-07	9726.	1.14E+1(-30.7974	7200000.	0.00
12.1500	8.54E-06	-2381, 4	405.6665	2.78E-07	9714.	1.14E+1(-34,1515	7200000.	0.00
12.3000	8.70E-06	-1706.	343.6115	-4,49E-08	9704	1.14E+1(34 7985 -34	7200000	0.00
12.4500	8.38E-06	-1144. 1	282.1378	-2.70E-07	9695.	1,14E+1(-33.5056	7200000.	0.00
12.6000	7.73E-06	-689.9908	224.161	7 -4.15E-07	7 968	8. 1.14E+	-10 -30.912	3 720000	0.00
12.7500	6.88E-06	-336.4511	171.5593	7 -4.96E-07	7 968	3. 1.14E+	10 -27.534	3 720000	0.00
12.9000	5.94E-06	-72.1082	125.3824	-5.28E-07	9679	9. 1.14E+1	10 -23.773	8 7200000	. 0.00
13.0500	4.98E-06	115.2107	86.0479	-5.25E-07	9679	9 1.14E+1	10 -19.931	2 7200000	. 0.00
13.2000	4.05E-06	237.9475	53.5121	-4.97E-07	968′	1.14E+1	10 -16.219	7 7200000	. 0.00
13.3500	3.19E-06	308.1224	27.4135	-4.54E-07	9682	2 1 14E+1	10 -12 778	7 7200000	0.00
13.5000	2.42E-06	336.8810	7.1933	-4.03E-07	9683	1 14E+1	0 -9.6882	7200000.	0.00
13.6500	1.75E-06	334.2357	-7.8086	-3.50E-07	9683	. 1.14E+1	0 -6.9807	7200000,	0.00
13.8000	1.16E-06	308.9588	-18.2791	-2.99E-07	9682	2. 1.14E+1	10 -4.6532	7200000.	0.00
13.9500	6.69E-07	268.5923	-24.8764	-2.53E-07	9682	2 1.14E+1	10 -2.6771	7200000	0.00
14.1000	2.52E-07	219.5404	-28.1917	-2.15E-07	968	1. 1.14E+1	10 -1.0065	7200000	0.00
14.2500	-1.04E-07	167.2182	-28.7244	-1.84E-07	9680). 1.14E+1	10 0.4146	7200000	0.00
14.4000	-4.11E-07	116.2321	-26.8704	-1.62E-07	9679	9. 1.14E+'	10 1.6454	7200000.	0.00
14.5500	-6.86E-07	70.5721	-22.9198	-1.47E-07	9679	. 1.14E+1	0 2,7441	7200000.	0.00
14.7000	-9.41E-07	33.8000	-17.0638	-1.39E-07	9678	. 1.14E+1	0 3.7626	7200000.	0.00
14.8500	-1.19E-06	9.2172	-9.4092 -	-1.35E-07	9678.	1.14E+10	4.7426	7200000.	0.00
15.0000	-1.43E-06	0.00	0.00 -1.3	35E-07 S	9677. 1	.14E+10	5.7121 36	00000	0.00

* The above values of total stress are combined axial and bending stresses

Output Summary for Load Case No. 1:

Pile-head deflection=0.08703500 inchesComputed slope at pile head=-0.00126031 radiansMaximum bending moment=209829. inch-lbsMaximum shear force=-12984. lbsDepth of maximum bending moment=8.25000000 feet below pile headDepth of maximum shear force=8.85000000 feet below pile headNumber of iterations=6Number of zero deflection points=3

Computed Values of Pile Loading and Deflection

for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Pile-head Rotation (Loading Type 2)

Shear force at pile head	=	5000 0 lbs
Rotation of pile head		0 000E+00 radians

Axial load at pile head

= 150000.0 lbs

(Zero slope for this load indicates fixed-head conditions)

Depth	Deflect.	Bending	Shear Slope	Total Bending Soil Res. Soil Spr. Distrib.	
Х	y Mon	nent For	ce S Stress	Stiffness p Es*H Lat Load	
feet	inches in	i-lbs lbs	radians psi*	Ib-in^2 Ib/inch Ib/inch Ib/inch	
	0.04004	040400		2470 1 145:10 0.00 0.00 0.00	
0.00	0.04004	-24810Z.		12241 1 14E+10 0.00 0.00 0.00	h
0.1500	0.04000	-239097	49993.00E-00 4005 7.55E.05	13203 1 1/E±10 2 8727 129 6000 0.0) IU
0.3000	0.03990	-230000.	49907.00E-00 4088 111E-04	13065 1 1/E+10 -4 2908 194 4000 0.0	0
0.4000	0.03975	-221075.	4900 -1.11E-04 4979 -1.45E-04	12927 1 14E+10 -5 6878 259 2000 0.0	0
0.0000	0.03930	-203070	4968 -1 78E-04	12789 1 14E+10 -7 0572 324 0000 0 0	0
0.7500	0.03321	-203070.	4954 -2 10F-04	12652 1 14E+10 -8.3931 388 8000 0.0	0
1.0500	0.03000	-185123	4938 -2 39F-04	12514 1.14E+10 -9.6900 453.6000 0.0	0
1 2000	0.03800	-176182	4919 -2.68E-04	12377 1.14E+10 -10.9426 518.4000 0.0	00
1.3500	0.03749	-167269	4898 -2.95E-04	12241. 1.14E+10 -12 1460 583.2000 0.0	00
1.5000	0.03693	-158388.	48753.21E-04	12105. 1.14E+10 -13.2958 648.0000 0.0	00
1.6500	0.03633	-149544	48513.45E-04	11969. 1.14E+10 -14.3878 712.8000 0.0	00
1.8000	0.03569	-140740.	4824 -3.68E-04	11834. 1.14E+10 -15.4182 777.6000 0.0	00
1.9500	0.03501	-131980.	4795 -3.90E-04	11700, 1,14E+10 -16.3836 842.4000 0.0	00
2.1000	0.03429	-123267	47654.10E-04	11566. 1.14E+10 -17.2810 907.2000 0.0	00
2.2500	0.03353	-114605.	47334.29E-04	11434. 1.14E+10 -18.1077 972.0000 0.0)(
2.4000	0.03275	-105997	47004.46E-04	11302. 1.14E+10 -18.8611 1037. 0.00	
2.5500	0.03193	-97445.	46654.62E-04	11171. 1.14E+10 -19.5395 1102. 0.00	
2.7000	0.03108	-88953.	46294.77E-04	11041. 1.14E+10 -20.1410 1166. 0.00	
2.8500	0.03021	-80522.	45934.90E-04	10911. 1.14E+10 -20.6643 1231 0.00	
3.0000	0.02932	-72154.	45555.02E-04	10783. 1.14E+10 -21.1085 1296. 0.00	
3.1500	0.02840	-63852.	45175.13E-04	10656. 1.14E+10 -21.4728 1361 0.00	
3.3000	0.02747	-55617.	44785.22E-04	10530. 1.14E+10 -21.7569 1426. 0.00	
3.4500	0.02652	-47450.	44395.30E-04	10405. 1.14E+10 -21.9608 1490. 0.00	
3.6000	0.02556	-39352.	43995.37E-04	10280. 1.14E+10 -22.0848 1555. 0.00	
3.7500	0.02459	-31323.	43595.43E-04	10157. 1.14E+10 -22.1294 1620. 0.00	
3.9000	0.02361	-23366.	4320 -5.47E-04	10035 1.14E+10 -21.0284 1603. 0.00	
4.0500	0.02262	-154/5.	4283 -5.50E-04	9915, 1.14E+10 -19.9140 1505, 0.00	
4.2000	0.02163	-/040.	4247 -0.02E-04	9795 14E+10 -20.1009 1000 0.00	
4.3500	0.02003	7900	4211 -0.000-04	9079 1 14E+10 -20.3707 1770. 0.00	
4.0000	0.01904	15/38	41740.02E-04 4137 5 50E-04	901/ 11/F+10 -20.4984 1979 0.00	
4.0000	0.01765	23000	4100 -547E-04	10030 1 14E+10 -20 3381 2074 0 00	
4.0000	0.01703	20000.	4064 -5.43E-04	10145 1 14E+10 -19 8073 2138 0 00	
5 1000	0.01007	37925	4029 -5.38E-04	10259 1 14E+10 -19 2165 2203 0.00	
5 2500	0.01474	45291	3995 -5.31E-04	10371 114F+10 -18.5692 2268. 0.00	
5.4000	0.01379	52594	3962 -5.23E-04	10483 114E+10 -17.8693 2333. 0.00	
5.5500	0.01285	59838	3931 -5 14E-04	10594 1 14E+10 -17 1209 2398 0.00	
5.7000	0.01194	67023	3901 -5.04E-04	10705 1 14E+10 -16.3285 2462. 0.00	
5.8500	0.01104	74153.	3872 -4 93E-04	10814 114E+10 -15.4969 2527 0.00	
6.0000	0.01016	81229	3845 -4.81E-04	10922 1 14E+10 -14 6309 2592 0.00	
6,1500	0,00931	88255	3819 -4.68E-04	11030 1 14E+10 -13 7358 2657 0.00	
6.3000	0.00848	95232	3796 -4 53E-04	11137 1 14E+10 -12 8171 2722 0.00	
6.4500	0.00767	102163	3773 -4 38E-04	11243 114E+10 -118807 2786 0.00	
6.6000	0,00690	109052	3753 -4 21E-04	11349 114E+10 -10.9325 2851 0.00	
6 7500	0,00616	115901	3734 -4 03E-04	11454 114E+10 -9 9788 2916 0.00	
6,9000	0,00545	122712	3717 -3.84E-04	11558 114E+10 -9.0264 2981 0.00	
7.0500	0.00478	129489	3701 -3 64E-04	11662 114E+10 -8.0818 3046 0.00	
7_2000	0 00414	136234	3688 -3 43E-04	11/65 114E+10 -/1524 3110 0.00	
7.3500	0 00354	142951	3676 -3 21E-04	11868 1 14E+10 -6 2454 3175 0 00	
7.5000	0.00298	149641	3665 -2 98E-04	119/1 1.14E+10 -5.3684 -3240 U.UU	
7.6500	0.00247	156307	3656 -274E-04	12073 114E+10 -4.5293 3305 0.00	
1 8000	0.00200	102901	3049 -Z 49E-U4	TZT75 TT4E+T0 -07004 0070 0.00	

12276. 1.14E+10 -2.9979 3434. 0.00 7.9500 0.00157 169577. 3643 -2.23E-04 0.00 8.1000 0.00119 176186. 3638 -1.95E-04 12377 1.14E+10 -2.3225 3499 0.00 12478. 1.14E+10 -3473. 7200000. 8.2500 8.68E-04 182780. 510.2155 -1.67E-04 0.00 -4753 -1.38E-04 12407. 1.14E+10 -2375. 7200000 8.4000 5.94E-04 178113. 0.00 -8223. -1.11E-04 12217 1.14E+10 7200000 8.5500 3.70E-04 165743 -1480. -10251. -8.64E-05 1.14E+10 -773 1133 7200000 0.00 8.7000 1.93E-04 148570 11954. Fixed End 1ST Neg 8.8500 5.88E-05 128887 -11158. -6.45E-05 11653 1.14E+10 -235.2303 7200000 0.00 IST Neg= 9.0' (EL 3006.0) MAXMEg= 9.6' (EL 3005,4) 0.00 9.0000 -3.90E-05 108436. -11229 -4 58E-05 11339 1.14E+10 156.0901 7200000. 0.00 9.1500 -1.06E-04 88486. -10707 -3.02E-05 11033. 1.14E+10 424.1039 7200000. 10749 1.14E+10 591.4971 7200000. 0.00 9.3000 -1.48E-04 69906. -9793. -1.77E-05 1.14E+10 679.3973 0.00 9.4500 -1.70E-04 53240. -8649. -8.00E-06 10493. 7200000. 10272. 1.14E+10 706.7566 7200000. 0.00 9.6000 -1.77E-04 38772. -7402 -7.38E-07 26593. -6145, 4.42E-06 10085 114E+10 690.0263 7200000. 0.00 9.7500 -1.73E-04 121 N 19 9.9000 -1.61E-04 0.00 16649. -4945. 7.84E-06 9933. 1.14E+10 643.0557 7200000. 10.0500 -1.44E-04 8787. -3847. 9.85E-06 9812. 1.14E+10 577.1531 7200000. 0.00 SAY POF = 3005 FE 10.2000 -1.25E-04 2795. -2876 1.08E-05 9720 1 14E+10 501.2584 7200000. 0.00 -2045 1.09E-05 9702. 1.14E+10 422.1854 7200000. 0.00 10.3500 -1.06E-04 -1573 Min Tip For Lateral = 3003 FE -1355. 1.04E-05 9748. 1.14E+10 344.9013 7200000. 0.00 10.5000 -8.62E-05 -4573. 0.00 10.6500 -6.82E-05 -6456, -798.8100 9.50E-06 9776. 1.14E+10 272.8178 7200000. -7454. -366.0059 8.40E-06 9792 1.14E+10 208.0756 7200000. 0.00 10.8000 -5.20E-05 -7778. -42.1088 7.20E-06 9797, 1.14E+10 151.8100 7200000. 0.00 10.9500 -3.80E-05 11.1000 -2.61E-05 -7610. 188.4704 5.99E-06 9794, 1.14E+10 104.3891 7200000 0.00 5' into wR/Rock = 3002 FE 11.2500 -1.64E-05 -7103 341.4799 4.82E-06 9786 1.14E+10 65.6215 7200000. 0.00 11.4000 -8.73E-06 9775, 1.14E+10 34.9309 7200000 0.00 -6383. 431.9771 3.76E-06 11.5500 -2.87E-06 -5550. 473.7637 2.82E-06 9762 1.14E+10 11,4986 7200000. 0.00 1.14E+10 -5.6228 7200000. 0.00 11.7000 1.41E-06 -4679, 479.0519 2.01E-06 9749. USE 3002 FE ASTIP Elevation 1.14E+10 -17.4236 7200000 0.00 11.8500 4.36E-06 -3826. 458.3101 1.34E-06 9736. 1_14E+10 -24.8735 0.00 12.0000 6.22E-06 -3030, 420.2427 7,95E-07 9724. 7200000 9713. 1.14E+10 -28.8780 0.00 12.1500 7.22E-06 -2314 371.8664 3.73E-07 7200000. 12.3000 7.56E-06 -1691, 318.6498 5.72E-08 9703. 1.14E+10 -30.2515 7200000 0.00 9695. 1.14E+10 -29.7018 0.00 12.4500 7.43E-06 -1167. 264.6919 -1.68E-07 7200000. 9689. 1-14E+10 -27.8254 7200000. 0.00 12.6000 6.96E-06 -738.2748 212.9175 -3.19E-07 9684 1.14E+10 -25.1094 0.00 12.7500 6.28E-06 -399.9986 165.2761 -4.09E-07 7200000. 9680. 1.14E+10 -21.9386 7200000 0.00 12.9000 5.48E-06 -143.0599 122.9329 -4.52E-07 13.0500 4.65E-06 42.8037 86.4434 -4.60E-07 9678. 1.14E+10 -18.6052 7200000. 0.00 13.2000 3.83E-06 168.3846 55.9104 -4.43E-07 9680. 1.14E+10 -15.3204 7200000 0.00 13.3500 3.06E-06 9681 1.14E+10 -12.2271 0.00 244.3203 31 1177 -4 10E-07 7200000. 7200000. 0.00 280.6298 11.6429 -3.69E-07 9682. 1.14E+10 -9.4116 13.5000 2.35E-06 -6.9152 7200000. 0.00 286.4338 -3.0513 -3.24E-07 9682 1.14E+10 13.6500 1.73E-06 -4.7446 7200000 0.00 269.8202 -13.5451 -2.80E-07 9682 1 14E+10 13.8000 1.19E-06 13.9500 7.20E-07 237.8227 -20.4079 -2.40E-07 9681 1.14E+10 -2.8807 7200000. 0.00 0.00 14.1000 3.22E-07 196.4814 -24.1592 -2.06E-07 9680 1 14E+10 -1.2874 7200000. 9680 114E+10 0.00 14.2500 -2.07E-08 150.9607 -25.2434 -1.78E-07 0.08261 7200000 0.00 105.7013 -24.0163 -1 58E-07 9679 114E+10 1.2809 7200000. 14.4000 -3.20E-07 0.00 64.5875 -20.7403 -1.45E-07 9678 1 14E+10 2.3590 7200000 14.5500 -5,90E-07 -15 5899 -1 37E-07 9678 1 14E+10 3.3637 7200000 0.00 14.7000 -8.41E-07 31.1142 14.8500 -1,08E-06 8.5379 -8.6629 -1.34E-07 9678 1 14E+10 4.3330 7200000 0.00 9677 1 14E+10 5 2925 3600000

0.00

* The above values of total stress are combined axial and bending stresses

0.00 -1.33E-07

Output Summary for Load Case No. 2

0.00

15.0000 -1.32E-06

Pile-head deflection	=	0.04003708 inches
Computed slope at pile hea	d	= 0.000000 radians
Maximum bending moment		= -248102 inch-lbs
Maximum shear force	Ξ	= -11229 lbs
Depth of maximum bending	mor	oment = 0 000000 feet below pile head
Depth of maximum shear fo	rce	e = 9 00000000 feet below pile head
Number of iterations	=	6

Number of zero deflection points =

Summary of Pile-head Responses for Conventional Analyses

3

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, Ibs, and Load 2 = Moment, M, in-Ibs Load Type 2: Load 1 = Shear, V, Ibs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, Ibs, and Load 2 = Rot. Stiffness, R, in-Ibs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-Ibs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load Load	d	Load	,	Axial	Pile-head	d Pile-hea	d Max S	ihear Max	Moment
Case Typ	e Pile-h	iead Ty	pe Pile-	head	Loading	Deflection	Rotatic	n in Pile	in Pile
No. 1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs	
1 V.Ib	3000.	M, in-Ib	0.00	15000	0.0.00	703 -0.00	126 -1	2984. 2	09829.
2 V, lb	5000.	S, rad	0.00	15000	0. 0.04	004 0.0	00 -112	229248	102.

Maximum pile-head deflection = 0.0870349991 inches Maximum pile-head rotation = -0.0012603057 radians = -0.072210 deg.

The analysis ended normally.

DocuSign Envelope ID: D7CB11C5-1CE1-4B6C-9452-DCDE4A5FF4BF

GEOTECHNICAL BORING REPORT BORE LOG

W	BS	17BP.	11 R.1	61		TI	P N/A	COUNT	Y ASHE				GEOLOGIST A. Blackmore		
SI	TE	DESCR	IPTION	Brid	ge 01	5 on S	R 1147 (Nettle Knob	Nettle Knob Road) over South Bea						GROUN	ID WTR (ft)
B	ORI	NG NO.	EB2-	В		ST	TATION 14+11		OFFSET 21 ft RT				ALIGNMENT -L-	0 HR.	N/A
C	OLL	AR ELE	V . 3,0	017.7 ·	ft	тс	DTAL DEPTH 16.0 f	1	NORTHING	956,9	935		EASTING 1,273,288	24 HR.	3.4
DF	RILL	RIG/HAN	MER E	FF./DA	TE G	EO366 E	Diedrich D-50 68% 07/15/2	2020			NETHO	D C	ore Boring HAMM	ER TYPE	Automatic
DF	RILI	LER J.	Messi	ck		ST	ART DATE 12/27/2	1	COMP. DA	TE 12/	27/21		SURFACE WATER DEPTH N/	A	
ELI (f	EV (l)	DRIVE ELEV (fl)	DEPTH (íl)	BLC 0.5ft	0.5ft	JNT 0.5ft	BLOWS 1 0 25 5	PER FOOT	75 100	SAMP NO	мо	L O I G	SOIL AND ROCK DESC	CRIPTION	DEPTH (fl)
30	20	3.017.7-	0.0				Boc = 3015	,0					3,017.7 GROUND SURFA	ACE	0.0
30	15	30142	35	5	5	5	1 0 1 1 1 1 1	1000		0	M V		- ROADWAY EMBAN Loose, Brown, Silty Fine to (A-2-4)	KMENT Coarse SA	ND
-	_	3,012.7-	5.0	3	4	2	- <u>6</u>			2.3	М		3,012.7	500	5.0
30	10 05			60/0,0								アンシン	- Gray-White (BIOTITE - CRYSTALLINE R Gray-White (BIOTITE - Gray-White (BIOTITE -	DCK <u>GNEISS)</u> DCK GNEISS)	
	ŀ											22	- 3.001.7 - Boring Terminated at Elevati - Crystalline Rock (BIOTIT	on 3,001.7 E GNEISS	16.0 ft In
							EB-2 (1 DRILLIN Piles of 5' Into WRI An elevation	A mir A mir IRUCK below	And to Fixity				1) A tri-cone bit was used lo after SPT refusal was encou coring began at 6.0 EST QTY IN SOIL = 3015.0 - 3010 Not INSOIL = 3012.7-	seat the contract R intered R feet	asing ock 2.3′ 4,7′
							L= BOC- TIP EL 3015.0-30 Ave Pile Len USE 3008 FE	+1.0 E 08 +1. gth= 10 for Til	mbed 0 = 8.0' 0' > Elev.						

		/////	//////
Layer 1, 0 to 2.3 ft = Sand (Reese)			
	a second to		
	- Logien		
	THE AL		
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
	and the second second		
	1		
	and the second		
ayer 2, 2.3 to 20 ft = Vuggy Limestone	1.000		
	15 15 11 1		
	Constitution in the		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Station 19		
L Dile 2019	11.06. © 2019 by En	soft, Inc.	

Bending Moment (in-kips)

LPile for Windows, Version 2019-11.006

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved

This copy of LPile is being used by:

ECS Southeast Charlotte, NC

Serial Number of Security Device: 562473626

This copy of LPile is licensed for exclusive use by:

ECS Carolinas, LLP, Charlotte, N

Use of this program by any entity other than ECS Carolinas, LLP, Charlotte, N is a violation of the software license agreement.

Files Used for Analysis

Path to file locations: \Users\mwalko\Downloads\

Name of input data file: EB2-B_REV.lp11d

Name of output report file: EB2-B_REV.lp11o

Name of plot output file: EB2-B_REV.lp11p

Name of runtime message file: EB2-B_REV.lp11r

Date and Time of Analysis

.....

Date: March 28, 2022 Time: 14:42:46

Problem Title

Project Name: Ashe Bridge 15

Job Number 09-29362

Client: Vaughn & Melton

Engineer: ECS Southeast

Description: End Bent 2

Program Options and Settings

Computational Options:

- Conventional Analysis

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed 500 =
- = 1.0000E-05 in
- Maximum number of iterations direct = 1.0000E-05 Deflection tolerance for convergence = 1.0000E-05 = 100.0000 in
- Number of pile increments E. 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Propert	ies and C	Geometry	1
Number of pile sections defined		=	1
Total length of pile	Ξ	15 000) ft
Depth of ground surface below top	of pile	=	0 0000 ft

Pile diameters used for p-y curve computations are defined using 2 points

p-y curves are computed using pile diameter values interpolated with depth over

the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	12.0450
2	15.000	12.0450

Input Structural Properties for Pile Sections.

Pile Section No. 1:

Section 1 is an elastic pile	
Cross-sectional Shape	= Strong H-Pile
Length of section	= 15.000000 ft
Flange Width	= 12.045000 in
Section Depth	= 11.780000 in
Flange Thickness	= 0.435000 in
Web Thickness	= 0.435000 in
Section Area	= 15.500000 sq. in
Moment of Inertia	= 393.000000 in^4
Elastic Modulus	= 29000000. psi

Ground Slope and	Pile B	atter Angles
Ground Slope Angle	=	= 0.000 degrees 0.000 radians
Pile Batter Angle	30	= 0.000 degrees 0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 2 layers

Layer 1 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer		=	0.0000 ft
Distance from top of pile to bottom of laye	er	=	2,300000 ft
Effective unit weight at lop of layer	=	4	2 600000 pcf
Effective unit weight at bottom of layer		=	42 600000 pcf
Friction angle at top of layer	=	28 (000000 deg
Friction angle at bottom of layer	=	28	8 000000 deg
Subgrade k at top of layer	Ξ	20	000000 pci
Subgrade k at bottom of layer	=	2	0 000000 pci

Layer 2 is strong rock (vuggy limestone)

Distance from top of pile to top of layer 💿 2 300000 ft

Distance from top of pile to bottom of layer	=	: 2	20.000000 ft
Effective unit weight at top of layer =	1	60.0	00000 pcf
Effective unit weight at bottom of layer	=	160).000000 pcf
Uniaxial compressive strength at top of layer		=	4000. psi
Uniaxial compressive strength at bottom of lay	er	=	4000. psi

(Depth of the lowest soil layer extends 5.000 ft below the pile tip)

**** Warning - Possible Input Data Error ****

Values entered for effective unit weight of rock were outside the limits of 50 pcf to 150 pcf.

The maximum input value, in layer 1, for effective unit weight = 160.00 pcf

This data may be erroneous. Please check your data.

Summary of Input Soil Properties

Layer Layer Num	r Soil Type r Name . (p-y Curve Type	Layer Depth) ft	Effective Unit Wt. pcf	Angle of Friction deg.	Uniaxi qu psi	al kpy pci
1	Sand	0.00	42.6000	28.0000		20.0000
	(Reese, et al.)	2.3000	42.6000	28.0000	-	20.0000
2	Strong Rock	2.300	160.000	0	4000.	399
	(Vuggy Limestone)	20.0	000 160.0	0000	40	00

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 2

Load	Lc	ad	Condition		Condition	Axial Thrust	Compute	Top y Run Analysis
No	Тур	e	1	2	Force,	lbs vs Pile	Length	

1	1	V =	3000 lbs	M =	0 0000 in-lbs	150000	No	Yes
2	2	\vee =	5000. lbs	S =	0 0000 in/in	150000	No	Yes

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs pile lengths can be computed only for load types with

specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Layering Correction Equivalent Depths of Soil & Rock Layers

Layer No.	Top of Ec Layer To Below Pile Head ft ft	uivalent op Depth Below Grnd St Aboy	Same Type urf La ve Roo	Layer La e As Ro yer is ck Layer	ayeris ockorl Belowf Ibs	F0 ntegral for Layer lbs	F1 Integral for Layer
1	0.00	0.00	N.A.	No	0.00	928.795	52
2	2.3000	2.3000	No	Yes	N.A	. N.	A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

> Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	÷.	3000 0 lbs
Applied moment at pile head	≘<	0 0 in-lbs
Axial thrust load on pile head	=	150000_0 lbs

Depth Deflect Bending Shear Slope Total Bending Soil Res. Soil Spr. Distrib. X y Moment Force S Stress Stiffness p Es*H Lat. Load feet inches in-lbs Ibs radians psi* Ib-in^2 Ib/inch Ib/inch Ib/inch

0.00	0.00501 -:	2 14E-08	3000	-194E-04	9677	1 14E+10	0 00	0.00	0.00
0.1500	0 00466	5452	3000.	-194E-04	9761	1 14E+10	-0 1677	64.8000	0.00
0.3000	0 00431	10904	2999	-1_93E-04	9845	1_14E+10	-0.3103	129.6000	0.00
0 4500	0.00396	16354	2999	-1 90E-04	9928	1 14E+10	-0 4281	194 4000	0 00
0 6000	0 00362	21802	2998	-1 87E-04	10012	1 14E+10	-0 5218	259 2000) 0.00

	0 7500	0.00329	27248	2997 -1 84F-0	4 10095	1 14F+10	-0 5921	324.0000	0.00
	0.9000	0.00296	32690	29961 79E-0	4 10178.	1.14E+10	-0.6400	388.8000	0.00
	1.0500	0.00265	38129.	29951.73E-0	4 10262.	1.14E+10	-0.6667	453.6000	0.00
	1.2000	0.00234	43565.	29931.67E-0	4 10345.	1.14E+10	-0.6738	518.4000	0.00
	1.3500	0.00205	48996	2992 -1.59E-0	4 10428.	1.14E+10	-0.6628	583.2000	0.00
	1.5000	0.00177	54423.	2991 -1.51E-0	4 10511	1.14E+10	-0.6356	648.0000	0.00
	1.6500	0.00150	59845	29901.42E-0	4 10595.	1.14E+10	-0.5944	712.8000	0.00
	1.8000	0.00125	65263	29891.32E-0	4 10678	1.14E+10	-0.5415	777.6000	0.00
	1.9500	0.00102	/06//	2988 -1.22E-U	4 10/60.	1.14E+10	-0.4795	842.4000	0.00
	2.1000	8.16E-04	76086	2987 -1 TUE-U	10043.	1.14E+10	-0.4111	907.2000	0.00
	2.2000	0.200-04	86800	1315 8/3E(10920. 15 11000	1.14E+10	-0.3353	720000	0.00
	2,4000	3.25E-04	86269	-15267.06E-()5 10000.)5 10999	1 14E+10	-1300	7200000	0.00
	2 7000	2 10E-04	81433	-3452, -5.74E-()5 10925.	1.14E+10	-840.1640	7200000.	0.00
1ST	2.8500	1.18E-04	73872	-46344.51E-()5 10809.	1.14E+10	-473.3366	7200000.	0.00
Neg	3.0000	4.76E-05	64775	-52323.42E-()5 10670.	1.14E+10	-190.5124	7200000.	0.00
	3.1500	-4.66E-06	55057	-53862.47E-)5 10521.	1.14E+10	18.6538	7200000	0.00
	3.3000	-4.13E-05	45397.	-5221 -1.68E-	05 10373.	1.14E+10	165.2126	7200000	0.00
	3.4500	-6.50E-05	36271.	-48381.03E-	05 10233.	1.14E+10	260.1483	7200000.	0.00
	3.6000	-7.85E-05	27986.	-43215.25E-	06 10106.	1.14E+10	313.8389	7200000.	0.00
	3.7500	-8.39E-05	20717	-37371.40E-)6 9995.	1.14E+10	335.7054	7200000.	0.00
MAY	3.9000	-8.35E-05	14534	-3134 1.38E-0	16 9900. c 0800	1.14E+10	334.0143	7200000.	0.00
PSU	4.0500	-7.89E-05	9433. 5255	-2049 3.28E-U	0 9022. 6 0750	1.14E+10	286.8503	7200000	0.00
4	4.2000	-6 30E-05	2206	-2007 4.44L-0	6 9711	1.14E+10	251 8155	7200000	0.00
	4.5000	-5.36E-05	-127.1600	-1103 5.20E	-06 9679	. 1.14E+10	214.2721	7200000.	0.00
	4.6500	-4.42E-05	-1766.	-750.5651 5.05E	-06 9704	. 1.14E+10	176.8733	3 7200000.	0.00
	4.8000	-3.54E-05	-2832	-464.0446 4.69E	-06 9721	. 1.14E+10	141.4828	3 7200000.	0.00
	4.9500	-2.73E-05	-3439.	-238.3287 4.20E	-06 9730	. 1.14E+10	109.3126	5 7200000.	0.00
	5.1000	-2.03E-05	-3692	-66.9994 3.63E-	06 9734	1.14E+10	81.0533	7200000.	0.00
	5.2500	-1.42E-05	-3682.	57.2419 3.05E-	06 9734	1.14E+10	56.9925	7200000.	0.00
	5.4000	-9.28E-06	-3488.	141.9423 2.48E	-06 9731	1.14E+10	37.1191	7200000.	0.00
	5.5500	-5.30E-06	-31/3	194.4400 1.96E	-06 9720	. 1.14E+10 1.14E+10	21.Z11/ 9.0122	7200000.	0.00
	5.7000	-2.23E-00	-2709	221.0010 1.49E	-00 9720 .06 971/	. 1.14E+10	-0.2161	7200000.	0.00
	6.0000	1.66E-06	-1964	223.2053 7.37E	-07 9708	1.14E+10	-6.6425	7200000.	0.00
	6.1500	2.71E-06	-1573	207.4746 4.58E	-07 9702	1.14E+10	-10.8360	7200000.	0.00
	6.3000	3.31E-06	-1217	185.8052 2.38E	-07 9696	. 1.14E+10	-13.2411	7200000.	0.00
	6.4500	3.57E-06	-904,0247	161,0522 7.04	E-08 969	1.14E+1	10 -14.262	2 7200000.	0.00
	6.6000	3.56E-06	-637.2353	135.3863 -5.13	E-08 968	37. 1.14E+1	10 -14.255	54 7200000	0.00
	6.7500	3.38E-06	-416 6061	110.3850 -1.34	E-07 968	34. 1.14E+´	10 -13.523	39 7200000	0.00
	6.9000	3.08E-06	-239 7767	87.1266 -1.86	E-07 968	1. 1.14E+1	0 -12.318	7 /200000.	0.00
	7.0500	2,71E-06	-102.8496	0 00.2831 -2.13	2-U/ 96/	9. 1.14E+1 1.14E+10	0 2460	7200000. 7200000	0.00
	7.2000	2.31E-06	-1.0424	48.2000 -2.22E	-07 9077	1 14E±10	-9.2400	7200000	0.00
	7 5000	1.53E-06	117 8694	20 5927 -2 01	-07 967	9 1.14F+1	0 -6.1345	7200000	0.00
	7.6500	1.19E-06	145.0502	10.7940 -1.80	E-07 968	0 1 14E+1	0 -4.7530	7200000.	0.00
	7.8000	8.84E-07	156.8251	3.3334 -1.57E	-07 9680) 1.14E+10	-3.5365	7200000.	0.00
	7 9500	6 25E-07	157 1352	-2 0978 -1 32E	-07 9680) 1.14E+1(-2.4983	7200000	0.00
	8 1000	4 10E-07	149 3441	-5.8212 -1.08E	-07 9680) 1 14E+1(-1.6388	7200000	0.00
	8 2500	2 37E-07	136 2370	-8 1503 -8 50E	-08 9680) 1 14E+1(-0.9491	7200000	0.00
	8_4000	1 04E-07	120 0491	-9.3773 -6.48E	-08 9679) 1 14E+10) -0.4143	7200000	0.00
	8.5500	4 02E-09	102 5136	-97647 -472E	-08 9679	1 14E+10	0.01609	7200000	0.00
	8 /000	-6 64E-08	84 9217	-9 5402 -3 24E	08 9679	1 14E+10	0 4507	7200000	0.00
	0.0000	-1 13E-07	52 0000	-0 0900 -2 UJE	-UO 90/0 -08 0670	1 14E+10	0.450/	7200000	0.00
	9 1500	-1 40E-07	30 1376	-1 5014 -1 UOE	-00 9070 _09 9678	1 14E≁10 1 14F+10	0.6057	7200000	0.00
	9.3000	-1.52E-07	27 9271	-5 8474 1 85F	.09 9678	1_14F+10	0.6082	7200000	0.00
	9 4500	-1 45E-07	18 3860	-4.7789 5.51F	-09 9678	1_14E+10	0.5790	7200000	0 00
	9 6000	-1 32E-07	10 7202	-3 7817 7 81E	09 9678	1 14E+10	0 5289	7200000	0.00
	9 7500	-1 17E-07	4 7676	-2 8857 9 03E-	09 9677	1 14E+10	0 4666	7200000	0 00

9.9000	-9.97E-08	0.3267	-2.1067	9.43E-09	9677.	1.14E+10	0.3989	7200000.	0.00
10.0500	-8.27E-08	-2.8218	-1.4500	9.23E-09	9677.	1.14E+10	0.3308	7200000.	0.00
10.2000	-6.65E-08	-4.8983	-0.9129	8.62E-09	9677.	1.14E+10	0.2659	7200000.	0.00
10.3500	-5.17E-08	-6.1129	-0.4876	7.75E-09	9678.	1.14E+10	0.2066	7200000.	0.00
10.5000	-3.86E-08	-6.6579	-0,1628	6.75E-09	9678.	1.14E+10	0.1543	7200000.	0.00
10.6500	-2.74E-08	-6.7028	0.07453	5.69E-09	9678.	1.14E+10	0.1095	7200000.	0.00
10.8000	-1.81E-08	-6.3927	0.2381	4.66E-09	9678.	1.14E+10	0.07231	7200000.	0.00
10.9500	-1.06E-08	-5,8480	0.3414	3.69E-09	9678.	1.14E+10	0.04241	7200000	0.00
11.1000	-4.79E-09	-5.1657	0,3968	2.82E-09	9677.	1.14E+10	0.01916	7200000.	0.00
11.2500	-4.47E-10	-4.4211	0.4156	2.06E-09	9677	1.14E+10	0.00179	7200000.	0.00
11.4000	2.64E-09	-3.6706	0.4077	1.42E-09	9677.	1.14E+10	-0.01056	7200000.	0.00
11.5500	4.68E-09	-2.9540	0.3814	9.02E-10	9677.	1.14E+10	-0.01873	7200000.	0.00
11,7000	5.89E-09	-2.2981	0.3433	4.87E-10	9677.	1.14E+10	-0.02354	7200000.	0.00
11.8500	6.44E-09	-1.7183	0.2990	1.70E-10	9677.	1.14E+10	-0.02574	7200000.	0.00
12.0000	6.50E-09	-1.2219	0.2524	-6.24E-11	9677.	1.14E+10	-0.02599	7200000.	0.00
12.1500	6.21E-09	-0.8096	0.2067	-2.23E-10	9677.	1.14E+10	-0.02485	7200000.	0.00
12,3000	5.70E-09	-0.4778	0.1638	-3.24E-10	9677.	1.14E+10	-0.02278	7200000.	0.00
12.4500	5.04E-09	-0.2197	0.1251	-3.80E-10	9677	1.14E+10	-0.02017	7200000.	0.00
12.6000	4.33E-09	-0.02706	0.09140	-3.99E-10	9677.	1.14E+10	-0.01732	2 7200000.	0.00
12.7500	3.61E-09	0.1095	0.06283	-3.92E-10	9677.	1.14E+10	-0.01443	7200000.	0.00
12.9000	2.92E-09	0.1993	0.03934	-3.68E-10	9677.	1.14E+10	-0.01166	7200000.	0.00
13.0500	2.28E-09	0.2513	0.02063	-3.33E-10	9677.	1.14E+10	-0.00913	7200000.	0.00
13.2000	1.72E-09	0.2738	0.00623	-2.91E-10	9677.	1.14E+10	-0.00688	7200000.	0.00
13.3500	1.23E-09	0.2739	-0.00440	-2.48E-10	9677.	1.14E+10	-0.00494	7200000.	0.00
13.5000	8_27E-10	0.2581	-0.01182	-2.06E-10	9677.	1.14E+10	-0.00331	7200000.	0.00
13.6500	4.93E-10	0.2315	-0.01657	-1.67E-10	9677.	1.14E+10	-0.00197	7200000.	0.00
13.8000	2.25E-10	0.1985	-0.01916	-1.33E-10	9677.	1.14E+10	-9.01E-04	7200000.	0.00
13.9500	1.38E-11	0.1626	-0.02002	-1.05E-10	9677.	1.14E+10	-5.51E-05	5 7200000.	0.00
14.1000	-1.52E-10	0.1265	-0.01953	-8.18E-11	9677.	1.14E+10	6.06E-04	7200000.	0.00
14.2500	-2.81E-10	0.09232	-0.01797	'-6.46E-11	9677.	1.14E+10	0.00112	2 7200000.	0.00
14.4000	-3.84E-10	0.06181	-0.01558	3 -5.24E-11	9677.	1.14E+10	0.00154	4 7200000.	0.00
14.5500	-4.69E-10	0.03627	-0.01250) -4.46E-11	9677.	1.14E+10	0.00188	3 7200000.	0.00
14.7000	-5.45E-10	0.01682	-0.00885	5 -4.05E-11	9677.	1.14E+10	0.00218	3 7200000	0.00
14.8500	-6.15E-10	0.00442	-0.00468	3 -3.88E-11	9677.	1.14E+10	0.00246	5 7200000.	0.00
15.0000	-6.84E-10	0.00	0.00 -3	.84E-11	9677 1.	14E+10 0	.00274 3	600000	0.00

Â.

* The above values of total stress are combined axial and bending stresses.

Oulput Summary for Load Case No. 1

Pile-head deflection	=	0.005	50069	93 inch	nes		
Computed slope at pile hea	d	= -(0.000)19428	3 radian	S	
Maximum bending moment		=	8	6890	inch-lbs	6	
Maximum shear force	Ξ		-538	6 Ibs			
Depth of maximum bending	moi	ment	=	2,4000)0000 fe	et belo	w pile head
Depth of maximum shear fo	rce	=	3 15	500000)0 feet b	below p	ile head
Number of iterations	=		6				
Number of zero deflection p	oints	5 =		5			

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Pile-head Rotation (Loading Type 2)

Shear force at pile head	1	5000 0 lbs
Rotation of pile head	122	0.000E+00 radians

Axial load at pile head

= 150000.0 lbs

(Zero slope for this load indicates fixed-head conditions)

	Depth X feet i	Deflect. y Mon inches in	Bending nent For n-Ibs Ibs	Shear Slope To ce S Stress radians psi*	tal Bending Soil Res. Soil Spr. Distrib. Stiffness p Es*H Lat. Load Ib-in^2 Ib/inch Ib/inch Ib/inch
	0.00	0.00214	-95818.	5000. 0.00 11	46. 1.14E+10 0.00 0.00 0.00
	0.1500	0.00213	-86816	5000 -1.44E-05	11008. 1.14E+10 -0.07654 64.8000 0.00
	0.3000	0.00209	-77810	50002.74E-05	10870. 1.14E+10 -0.1503 129.6000 0.00
	0.4500	0.00203	-68802.	49993.90E-05	10732. 1.14E+10 -0.2190 194.4000 0.00
	0.6000	0.00195	-59791	49994.92E-05	10594. 1.14E+10 -0.2804 259.2000 0.00 LST
	0.7500	0.00185	-50779.	4998 -5.79E-05	10456. 1.14E+10 -0.3331 324.0000 0.00
	0.9000	0.00174	-41766	49986.52E-05	10317. 1.14E+10 -0.3756 388.8000 0.00
	1.0500	0.00162	-32752	49977.11E-05	10179. 1.14E+10 -0.4072 453.6000 0.00 MA
	1.2000	0.00148	-23738	4996 -7.55E-05	10041. 1.14E+10 -0.4272 518.4000 0.00
	1.3500	0.00134	-14725.	4996 -7.86E-05	9903. 1.14E+10 -0.4354 583.2000 0.00
	1.5000	0.00120	-5712.	49958.02E-05	9765. 1.14E+10 -0.4321 648.0000 0.00
	1.6500	0.00106	3300	49948.04E-05	9728. 1.14E+10 -0.4178 712.8000 0.00
	1.8000	9.11E-04	12310	49937.91E-05	9866. 1.14E+10 -0.3935 777.6000 0.00
	1.9500	7.70E-04	21318.	49937.65E-05	10004. 1.14E+10 -0.3605 842.4000 0.00
	2.1000	6.36E-04	30324	49927.24E-05	10142. 1.14E+10 -0.3203 907.2000 0.00 γγ
	2.2500	5.10E-04	39328.	49916.69E-05	10280. 1.14E+10 -0.2751 972.0000 0.00
	2.4000	3.95E-04	48330.	3570 -6.00E-05	10418. 1.14E+10 -1579. 7200000. 0.00
	2,5500	2.94E-04	52214.	10935.21E-05	10478. 1.14E+10 -1174. 7200000. 0.00
	2.7000	2.07E-04	52292.	-710.0953 -4.38E-05	10479. 1.14E+10 -829.0846 7200000 0.00
	2.8500	1.36E-04	49681	-19453.57E-05	10439. 1.14E+10 -543.4531 7200000. 0.00
	3.0000	7.86E-05	45308.	-2717 -2.82E-05	10372. 1.14E+10 -314.3165 7200000. 0.00
ISTNER	3.1500	3.42E-05	39914	-31232.15E-05	10289. 1.14E+10 -136.7014 7200000. 0.00
121111	3.3000	1.12E-06	34076	-32501.57E-05	10200. 1.14E+10 -4.4743 7200000. 0.00
	3.4500	-2.23E-05	28221.	-31741.08E-05	10110. 1.14E+10 89.0039 7200000. 0.00
	3.6000	-3.76E-05	22654	-29596.74E-06	10025. 1.14E+10 150.3903 7200000. 0.00
	3_7500	-4.65E-05	17573.	-26563.56E-06	9947. 1.14E+10 186.0158 7200000. 0.00
	3.9000	-5.04E-05	13094	-23071.14E-06	9878. 1.14E+10 201.6580 /200000. 0.00
	4.0500	-5.06E-05	9268	-1943. 6.27E-07	9819. 1.14E+10 202.4100 7200000. 0.00
MAX	4 2000	-4.82E-05	6097	-1588. 1.84E-06	9//1. 1.14E+10 192.6229 /200000 0.00
NEG	4.3500	-4.40E-05	3551	-1256. 2.60E-06	9/32. 1.14E+10 175.9020 7200000. 0.00
	4.5000	-3.88E-05	15/3	958.3384 3.01E-06	9702: 1.14E+10 155.1437 7200000. 0.00
	4.6500	-3.31E-05	98.9149	-099.3724 3-14E-00	9679, 1.14E+10 152.5962 7200000. 0.00
	4.8000	-Z./DE-UD	-940 9994	-401.0900 007E-00	$9092, 1.14\pm10, 983510, 7200000, 0.00$
	4,9000	-Z,ZTE-00	- 1000, -	161 2534 2 58E 06	9702 1.14E+10 68.6265 7200000. 0.00
	5.1000	- 1.72E-00	-203711-	101.3034 2.30E-00	9709, 114E+10 08.0203 7200000, 0.00
	5.2000	-1.20E-00	2231	25 208/ 1 80E-06	9712 114E+10 36 3294 7200000 0.00
	5 5500	5 00E-00	2127	79 5753 1 55E-06	9710 114E+10 23 9782 7200000 0.00
	5,7000	3.51E 06	10/5	113 7965 1 23E-06	9707 1 14E+10 14 0455 7200000 0.00
	5.8500	-1.58E-06	-1718-	132 1297 9 37F-07	9704 1 14E+10 6 3247 7200000 0.00
	6 0000	1 30E-00	-1/70	138 3236 6 85E-07	9700 1 14E+10 0 5574 7200000 0 00
	6 1500	8.85E-07	-1220	135.6409 4.72E-07	9696 1 14E+10 -3.5382 7200000 0.00
	6 3000	1.56E-06	-981 9712	126 8349 2 99E-07	9692 1 14E+10 -6 2462 7200000 0 00
	6.4500	1.96E-06	-763 8470	114 1594 1.61E-07	9689 1.14E+10 -7.8376 7200000 0.00
	6 6000	2 14E-06	-571 0841	99.4013 5.53E-08	9686 1.14E+10 -8.5604 7200000 0.00
	6 7500	2 14E-00	-406 0323	83 9266 -2 19E-08	9684 1 14E+10 -8.6337 7200000 0.00
	6 9000	2 06E-06	-268 9365	68 7354 -7 52E-08	9682 1.14F+10 -8.2454 7200000 0.00
	7.0500	1.89E-06	-158 5443	54-5185 -1.09E-07	9680 1.14E+10 -7.5512 7200000 0.00
	7 2000	1.67E-06	-72 6112	41.7133 -1.27E-07	9679 1.14E+10 -6.6767 7200000 0.00
	7.3500	1.43E-06	-8.3076	30.5565 -1.34E-07	9678 114E+10 -57197 7200000 0.00
	7.5000	1 19E-06	37 4645	21 1309 -1 31F-07	9678 1 14E+10 -4 7532 7200000 0 00
	7 6500	9.57E-07	67 8345	13 4065 -1 23E-07	9678 1 14E+10 -3 8294 7200000 0 00
	7 8000	7 46E-07	85 7945	7 2758 -1 11E-07	9679 114E+10 -29826 7200000 000

Fixed End IST Neg = 3.5' (EL 3011,5) MAXNeg = 4.1' (EL 3010.9) SAY POF = 3011 FE Min Tip For lateral = 3009 FE ⁰ 5' into WR/ Rock = 3008 FE

USE 3008 AS TIP Elevation

7.9500	5.58E-07	94.0871	2.5813 -9.66E-08	9679. 1.14E+10	-2.2334 7200000	0.00
8.1000	3.98E-07	95.1393	-0.8609 -8.17E-08	9679. 1.14E+10	-1.5913 7200000.	0.00
8.2500	2.64E-07	91.0318	-3,2446 -6.70E-08	9679. 1.14E+10	-1.0573 7200000.	0.00
8,4000	1.57E-07	83,4948	-4.7603 -5.32E-08	9679, 1,14E+10	-0.6268 7200000.	0.00
8.5500	7.28E-08	73.9235	-5.5865 -4.08E-08	9679, 1.14E+10	-0.2912 7200000.	0.00
8 7000	9.94E-09	63 4055	-5.8844 -2.99E-08	9678 1.14E+10	-0.03977 7200000	0.00
8 8500	-3 49E-08	52 7559	-5.7945 -2.07E-08	9678. 1.14E+10	0.1396 7200000	0.00
9 0000	-6 47E-08	42 5563	-5 4358 -1 32E-08	9678. 1.14E+10	0.2590 7200000.	0.00
9.1500	-8.25E-08	33 1941	-4 9057 -7 24F-09	9678. 1.14E+10	0.3300 7200000.	0.00
9 3000	-9 08E-08	24 8995	-4 2819 -2 65E-09	9678 1.14E+10	0.3632 7200000.	0.00
9.4500	-9 20E-08	17 7808	-3.6236 7.19E-10	9678 114E+10	0.3682 7200000	0.00
9 6000	-8.82E-08	11 8542	-2 9747 3 06E-09	9678 1 14E+10	0.3529 7200000.	0.00
9.0000		7 0703	-2.3654 4.55E-09	9678 1 14F+10	0.3241 7200000	0.00
0 0000	7 19 09	2 2262	1 8152 5 38E-00	9677 1 1/F+10	0.2873 7200000	0.00
9.9000 10.0500	6 17E 00	0.5302	1 33/6 5 68E 00	0677 11/F+10	0.2467 7200000	0.00
10.0000	5 1/E 00	1 1711	-1.0040 0.00E-00	0677 1 1/E+10	0.2407 7200000.	0.00
10.2000	-0.14E-00	2 0000	-0.9270 5.01E-09	0677 1 1/E-10	0.2000 7200000.	0.00
10.5000	-4 TUE-00	-2.0090	-0.3934 3.27E-09	9077 1.14L+10	0.1003 7200000.	0.00
10.0000	-3.24E-00	-3.0103	-0.3274 4.70E-09	9077 1.14L+10	0.1230 7200000.	0.00
10.0000	-2.43E-00	-3.9900	-0.1231 4.10E-09	0677 1 1/E+10	0.03737 7200000.	0.00
10.8000	-1./4E-08	-4.0000	0.02727 3.33E-09	9077. 1.14E+10	0.00906 7200000.	0.00
10.9500	-1.16E-08	-3.8945	0.1319 2.902-09	9077. 1.14E+10 0677. 1.14E+10	0.04039 7200000.	0.00
11 1000	-6.98E-09	-3.5823	0.1990 Z.31E-09	9677 1.14E+10	0.02/94 /200000	0.00
11,2500	-3,34E-09	-3.1794	0.2361 1.77E-09	9677. 1.14E+10	0.01335 7200000	0.00
11.4000	-5.97E-10	-2.7331	0.2503 1.31E-09	9677. 1.14E+10	0.00239 7200000	0.00
11.5500	1.37E-09	-2.2790	0.2475 9.12E-10	9677. 1.14E+10	-0.00547 7200000.	0.00
11/000	2.68E-09	-1.8425	0.2330 5.86E-10	9677. 1.14E+10	-0.01074 7200000	0.00
11.8500	3.48E-09	-1.4407	0.2108 3.27E-10	9677. 1.14E+10	-0.01391 7200000	0.00
12:0000	3.86E-09	-1.0839	0.1844 1.2/E-10	9677. 1.14E+10	-0.01544 /200000	0.00
12 1500	3.94E-09	-0.7771	0.1563 -1.95E-11	9677. 1.14E+10	-0.015/4 /200000.	0.00
12.3000	3.79E-09	-0.5212	0.1285 -1.22E-10	9677. 1.14E+10	-0.01516 /200000.	0.00
12.4500	3.50E-09	-0.3145	0.1022 -1.88E-10	9677. 1.14E+10	-0.01399 7200000.	0.00
12.6000	3.11E-09	-0.1531	0.07844 -2.25E-10	9677. 1.14E+10	-0.01245 7200000.	0.00
12.7500	2.69E-09	-0.03202	0.05756 -2.40E-10	9677. 1.14E+10	-0.01075 7200000.	0.00
12.9000	2.25E-09	0.05424	0.03978 -2.38E-10	9677. 1.14E+10	-0.00900 7200000.	0.00
13.0500	1 83E-09	0.1113	0.02509 -2.25E-10	9677. 114E+10	-0.00732 7200000	0.00
13.2000	1.44E-09	0.1447	0.01331 -2.05E-10	9677. 1.14E+10	-0.00577 7200000.	0.00
13.3500	1 09E-09	0.1593	0.00418 -1.81E-10	9677 1.14E+10	-0.00438 7200000	0 00
13.5000	7 92E-10	0.1598	-0.00261 -1.55E-10	9677. 1.14E+10	-0.00317 7200000	0.00
13.6500	5.35E-10	0,1500	-0.00738 -1.31E-10	9677 1 14E+10	-0.00214 7200000.	0.00
13.8000	3.21E-10	0.1333	-0.01046 -1.09E-10	9677 1 14E+10	-0.00128 7200000.	0.00
13.9500	1.44E-10	0.1124	-0.01214 -8.91E-11	9677 1 14E+10	-5.77E-04 7200000.	0.00
14,1000	0.00 0	.08966 -(0.01266 -7.31E-11	9677. 1.14E+10 \$	9.71E-07 7200000.	0.00
14 2500	-1,19E-10	0.06690	-0.01223 -6.08E-11	9677. 1.14E+10	4.77E-04 7200000	0.00
14.4000	-2_19E-10	0.04568	-0.01101 -5.19E-11	9677 1.14E+10	8.76E-04 7200000	0.00
14,5500	-3 06E-10	0.02730	-0.00912 -4.61E-11	9677 1.14E+10	0.00122 7200000-	0.00
14 7000	-3 85E-10	0.01288	-0.00663 -4.30E-11	9677 1.14E+10	0.00154 7200000	0.00
14,8500	-4,61E-10	0.00346	-0.00358 -4.17E-11	9677 1.14E+10	0.00184 7200000	0.00
15.0000	-5.35E-10	0.00	0.00 -4.14E-11 9	677 1.14E+10 0	.00214 3600000	0.00

* The above values of total stress are combined axial and bending stresses

Oulput Summary for Load Case No. 2:

Pile-head deflection	=	0,002	213978 inches
Computed slope at pile hea	d		0.000000 radians
Maximum bending moment		=	-95818 inch-lbs
Maximum shear force	=		5000 lbs
Depth of maximum bending	mor	ment	= 0.000000 feet below pile head
Depth of maximum shear fo	rce	=	0 000000 feet below pile head
Number of iterations	=		6

Number of zero deflection points = 5

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, Ibs, and Load 2 = Moment, M, in-Ibs Load Type 2: Load 1 = Shear, V, Ibs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, Ibs, and Load 2 = Rot. Stiffness, R, in-Ibs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-Ibs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load Load	5	Load		Axial	Pile-head	d Pile-head	i Max S	Shear Ma	ax Moment
Case Type	e Pile-h	lead Ty	/pe Pile	-head	Loading	Deflection	Rotatio	on in Pi	le in Pile
No. 1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs	
1 V, Ib 2 V, Ib	3000. 5000.	M, in-lb S, rad	0.00 0.00	15000 15000	00. 0.00 00. 0.00	501 -1.94E 214 0.0	E-04 10 50	-5386.)0095	86890. 5818.

Maximum pile-head deflection = 0.0050069271 inches Maximum pile-head rotation = -0.0001942779 radians = -0.011131 deg.

The analysis ended normally,

DocuSign Envelope ID: D7CB11C5-1CE1-4B6C-9452-DCDE4A5FF4BF

HENO 15

GEOTECHNICAL BORING REPORT **BORE LOG**

