

PROJECT LENGTH	Prepare	d in the Office of:
	DIVISION	OF HIGHWAYS
	1704 N. Greene	St., Greenville NC, 27834
	2012 STANDARD SPECIFICATIONS	
OF STATE PROJECT $17BP.2.R.69 = 0.068$ MILE		
STRUCTURE STATE PROJECT 17BP.2.R.69 = 0.025 MILE	RIGHT OF WAY DATE:	WILLIAM KINCANNON
LENGTH STATE PROJECT 17BP.2.R.69 = 0.093 MILE	OCTOBER 2016	PROJECT ENGINEER
	LETTING DATE: APRIL 2017	LANG JONES PROJECT DESIGN ENGINEER

STATE	STATE	PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	17	BP.2.R.69	1	
STAT	E PROJ. NO.	F. A. PROJ. NO.	DESCRIPT	ION

<pre>INPEX OF SUCTS 1 TITLE SHEET 1A IVPLX OF SHELL S, SUNHAAL VOILS, SUANDAHD DRAWINGS 1B COVENT TOVAL SWRDUS 2 TYPICAL SECTIONS 3 S, WARPY OF CONTITIES 5A S, WARPY OF DRAINAGE, GHAEDRAHL AND FARTEWORK 2 APPLICATION OF THE SHARP CONTINUES 54 PAN AND RECTLE SUCLT TWPI-TMMP2 TRAFFIC WAARGEMENT PLANS EC-ECS ERDSION CONTROL SHEETS 74 CRUSS-SUCLION SUMMARY 74 CRUSS-SUCCION SUMMARY 74 CRUSS-SUCCION SUMMARY 75 STRUCTURE FLANS (REIDGE) 31 STRUCTURE FLANS (REIDGE) </pre>	2012 - CORMANY ENGLISH STANSAMB DRAWINDS The Following Degarate Standards of costant in "Condery Stansore, Deckings" Desking Primer - V. S. September of Tendesprechtion - Bilerich, N. C., Darrett, Condry, S.M. Sinse C. S. Stansore, S. Stansore, S. Stansore, S. Stansore, S. S. S. Sansore, S.	GENERAL NOTES: GRADE LINE: GRADING AND SURFACING: THE GRADE LIN SURFACING AT MAY BE ADJUST DIRECTED BY T CLEARING:
		ANY RELOCATIO EXCEPT AS SHO RIGHT-OF-WAY MARKERS: All RIGHT-OF-

MAR-2017 09:17 PRO.IFCTS (Pitt + 86 \ PITT86 \ Pit + 86 \ An

HALT, EARTH, AND CONCRETE SHOULDER CONSTRUCTION ON THE HIGH SIDE OF ERELEVATED CURVES SHALL BE IN ACCORDANCE WITH STD. NO. 560.01. ERDRAINS SHALL BE CONSTRUCTED IN ACCORDANCE WITH STD. ND. 815.03 AT ATIONS DIRECTED BY ENGINEER. GUARDRAIL LOCATIONS SHOWN ON THE PLANS MAY BE ADJUSTED DURING STRUCTION AS DIRECTED BY THE ENGINEER. THE CONTRACTOR SHOULD SULT WITH THE ENGINEER PRIOR TO ORDERING GUARDRAIL MATERIAL. ENGINEER SHALL CHECK THE STRUCTURE END BENT PLANS, DETAILS, AND SS-SECTION PRIOR TO SETTING OF THE SLOPE STAKES FOR THE EMBANKMENT EXCAVATION APPROACHING A BRIDGE. RELOCATION OF EXISTING UTILITIES WILL BE ACCOMPLISHED BY OTHERS, MARKERS: RIGHT-OF-WAY MARKERS ON THIS PROJECT SHALL BE PLACED BY OTHERS.

ON: CURVES ON THIS PROJECT SHALL BE SUPERELEVATED IN ACCORDANCE WITH NO, 225.04 USING THE RATE OF SUPERELEVATION AND RUNOFF SHOWN ON PLANS. SUPERELEVATION IS TO BE REVOLVED ABOUT THE GRADE POINTS DWN ON THE TYPICAL SECTIONS.

ARING ON THIS PROJECT SHALL BE PERFORMED TO THE LIMITS ESTABLISHED METHOD II.

SURFACING: GRADE LINES SHOWN DENOTE THE FINISHED ELEVATION OF THE PROPOSED FACING AT GRADE POINTS SHOWN ON THE TYPICAL SECTIONS. GRADE LINES BE ADJUSTED AT THEIR BEGINNING AND ENDING AND AT STRUCTURES AS RECTED BY THE ENGINEER IN ORDER TO SECURE A PROPER TIE-IN.

2012 SPECIFICATIONS EFFECTIVE: 01-17-12 REVISED: 07/30/12

PROJECT REFERENCE NO. SHEET NO. I7BP.2.R.69 IA		
I7BP.2.R.69 IA	PROJECT REFERENCE NO.	SHEET NO.
	I7BP.2.R.69	IA

Note: Not to Scale *S.U.E. = Subsurface Utility Engineering

CONVENTIONAL PLAN SHEET SYMBO

BOUNDARIES AND PROPERTY:

State Line	
County Line	
Township Line	
City Line	
Reservation Line	· ·
Property Line	
Existing Iron Pin	 EIP
Property Corner	×
Property Monument	ECM
Parcel/Sequence Number	(123)
Existing Fence Line	_xxx
Proposed Woven Wire Fence	
Proposed Chain Link Fence	
Proposed Barbed Wire Fence	\longrightarrow
Existing Wetland Boundary	— — — WLB — — — —
Proposed Wetland Boundary	
Existing Endangered Animal Boundary	EAB
Existing Endangered Plant Boundary	ЕРВ
BUILDINGS AND OTHER CULTU	RE:
Gas Pump Vent or U/G Tank Cap	0
Sign	⊙ S
Well	O W
Small Mine	$\stackrel{\scriptstyle \leftarrow}{}$
Foundation	
Area Outline	
Cemetery	+
Building	
School	
Church	

HYDROLOGY:

Dam -

S\Pil7 S\Pil7

-2017 JECT

AAR AR

Stream or Body of Water	
Hydro, Pool or Reservoir	
Jurisdictional Stream	—JS
Buffer Zone 1	— — BZ 1 — — — — — — — — — — — — — — — — — —
Buffer Zone 2	BZ 2
Flow Arrow	~~~~
Disappearing Stream	
Spring	- C
Wetland	— ¥
Wetland Boundary	WLB
Proposed Lateral, Tail, Head Ditch	
False Sump	-

RAILRO

Standard C RR Signal A Switch RR Abando RR Disman *RIGHT* Baseline C Existing Rig Existing Rig Proposed R Proposed R Iron Pir

Iron Pir Proposed I Concret

Existing Co Proposed (

. Existing Ea

Proposed 1

Proposed 7

Proposed F

Proposed I Proposed ⁻

Proposed F Iron Pin

ROADS AND RELATED FEATURES:

Existing Ed Existing Cu Proposed S Proposed S Proposed C Existing Ma Proposed C Existing Ca Proposed C Equality Sy Pavement R *VEGETA* Single Tree Single Shru

Single Shru Hedge — Woods Line Orchard — Vineyard —

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS

DADS:	
Gauge	CSX TRANSPORTATION
Milepost	_ O MILEPOST 35
oned	
ntled	
OF WAY:	
Control Point	•
ght of Way Marker	\bigtriangleup
ght of Way Line	
Right of Way Line	
Right of Way Line with n and Cap Marker	
Right of Way Line with te or Granite Marker	
ontrol of Access	(<u>Ĉ</u>)
Control of Access	
asement Line	——————————————————————————————————————
Temporary Construction Easement –	E
Temporary Drainage Easement ——	TDE
Permanent Drainage Easement ——	PDE
Permanent Utility Easement	PUE
Temporary Utility Easement	TUE
Permanent Easement with n and Cap Marker	$\langle \! \diamond \! \rangle$

lge of Pavement				
urb				
Slope Stakes Cut		<u> </u>		
Slope Stakes Fill		<u>F</u>		
Curb Ramp		CF	\mathbb{P}	
etal Guardrail —————	т		T	_т
Guardrail	т_	_т	_Т	_т
able Guiderail ————	П			<u>Π</u>
Cable Guiderail				
/mbol		Q		
Removal	\boxtimes	\times	\times	X
ATION:				
e		£	}	
ub		දා		
	~~~~	~~~~	~~~~	~~~~
e	_ <u>```</u> `	$\underline{}$	ٮڔڹ	_^ <u>```</u>
	단	යි	යි	භි
		Viney	ard	

## **EXISTING STRUCTURES:**

MAJOR:	
Bridge, Tunnel or Box Culvert	CONC
Bridge Wing Wall, Head Wall and End Wall -	- ) CONC WW (
MINOR:	
Head and End Wall	CONC HW
Pipe Culvert	
Footbridge	≻
Drainage Box: Catch Basin, DI or JB	СВ
Paved Ditch Gutter	
Storm Sewer Manhole	S
Storm Sewer	s

## **UTILITIES:**

POWER:	
Existing Power Pole	
Proposed Power Pole	6
Existing Joint Use Pole	
Proposed Joint Use Pole	-0
Power Manhole	P
Power Line Tower	$\boxtimes$
Power Transformer	$\square$
U/G Power Cable Hand Hole	HH
H–Frame Pole	•—•
Recorded U/G Power Line	P
Designated U/G Power Line (S.U.E.*)	— — — P— -

## TELEPHONE:

Existing Telephone Pole	-•-
Proposed Telephone Pole	-0-
Telephone Manhole	$(\mathbb{T})$
Telephone Booth	)
Telephone Pedestal	T
Telephone Cell Tower	$\sqrt{\bullet}$
U/G Telephone Cable Hand Hole	H _H
Recorded U/G Telephone Cable	T
Designated U/G Telephone Cable (S.U.E.*) $-$	— — — T —
Recorded U/G Telephone Conduit	TC
Designated U/G Telephone Conduit (S.U.E.* <del>)</del>	— — — TC—
Recorded U/G Fiber Optics Cable	T FO
Designated U/G Fiber Optics Cable (S.U.E.* <del>)</del>	— — — T FO-

	PROJECT REFERENCE NO.	SHEET
	<i></i>	
_S		
W/ATED.		
Water Manholo		Ŵ
Water Mathole		$\mathbb{W}$
Water Valve		$\bigotimes$
Water Hydrapt		¢
Recorded LL/G Water Line		Ч w
Designated U/G Water Line (S U	<b>F</b> * <b>)</b>	
Above Ground Water Line	·· <b>-</b> · )	A/G Water
Above Ground water Line		
TV:		
TV Satellite Dish		$\ltimes$
TV Pedestal		C
TV Tower		$\bigotimes$
U/G TV Cable Hand Hole		HH
Recorded U/G TV Cable		TV
Designated U/G TV Cable (S.U.	E.*)	— — TV — — —
Recorded U/G Fiber Optic Cable		
Designated U/G Fiber Optic Cab	ole (S.U.E.*)—	— — TV FO — — —
GAS:		
Gas Valve		$\diamond$
Gas Meter		$\Diamond$
Recorded U/G Gas Line		G
Designated U/G Gas Line (S.U.E	.*)	G
Above Ground Gas Line		A/G Gas
SANITARY SEWER:		
Sanitary Sewer Manhole		$\oplus$
Sanitary Sewer Cleanout		Ĥ
U/G Sanitary Sewer Line ———		
Above Ground Sanitary Sewer	A/G	Sanitary Sewer
Recorded SS Forced Main Line		
Designated SS Forced Main Line	e (S.U.E.*) —	— — FSS — — —
		-
Utility role with Base		
Utility Located Object		$\odot$
		S
Utility Unknown U/G Line		?UTL
U/G Iank; Water, Gas, Oil		
A/G Tank; Water, Gas, Oil		
U/G Test Hole (S.U.E.*)		
Abandoned According to Utility	Records ——	AATUR
End of Information		E.O.I.



ITEM	SECT	QUANTITY	UNIT	ITEM DESCRIPTION	ITEM	SECT	QUANTITY	UNIT
/	800	/	LS	MOBILIZATION	31	SP	100	LF
2	801	/	LS	CONSTRUCTION SURVEYING	32	SP	5	LB
3	SP	/	LS	REINFORCED BRIDGE APPROACH FILL, -L- STA 12+62.00	33	1660	/	ACR
4	226	/	LS	GRADING	34	1661	50	LB
5	226	100	СҮ	UNDERCUT EXCAVATION	35	1661	0.2	TON
6	300	10	TON	FOUNDATION CONDITIONING MATERIAL, MINOR STRUCTURES				
7	300	20	SY	FOUNDATION CONDITIONING GEOTEXTILE				
8	310	40	LF	18" RC PIPE CULVERTS, CLASS III				
9	610	420	TON	ASPHALT CONCRETE BASE COURSE,TYPE B25.0B				
10	610	255	TON	ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 119.0B				
//	610	245	TON	ASPHALT CONCRETE SURFACE COURSE,TYPE S9.5B	36	402	/	LS
12	620	50	TON	ASPHALT BINDER FOR PLANT MIX,GRADE PG64-22	37	SP	2	ΕA
13	840	2	EA	MASONRY DRAINAGE STRUCTURES	38	412	/	LS
14	840	2	EA	FRAME WITH GRATE, STD 840.29	39	420	59.6	СҮ
15	846	26	LF	SHOULDER BERM GUTTER	40	422	/	LS
16	862	4	EA	GUARDRAIL ANCHOR UNITS, TYPE III	4/	425	8764	LB
17	862	4	EA	GUARDRAIL ANCHOR UNITS, TYPE 350	42	450	510	LF
18	862	25	LF	STEEL BM GUARDRAIL	43	450	910	LF
19	876	20	TON	RIP RAP, CLASS B	44	450	14	ΕA
20	1605	550	LF	TEMPORARY SILT FENCE	45	SP	210.5	LF
21	1610	10	TON	STONE FOR EROSION CONTROL, CLASS B	46	876	265	TON
22	1610	/	TON	SEDIMENT CONTROL STONE	47	876	315	SY
23	1615	/	ACRE	TEMPORARY MULCHING	48	430	/	LS
24	1620	50	LB	SEED FOR TEMPORARY SEEDING	48	430	1050	LF
25	1620	0.2	TON	FERTILIZER FOR TEMPORARY SEEDING	49	SP	/	LS
26	SP	100	LF	SAFETY FENCE				
27	1630	6	СҮ	SILT EXCAVATION				
28	1631	560	SY	MATTING FOR EROSION CONTROL				
29	1632	60	LF	1/4" HARDWARE CLOTH				
30	SP	50	SY	FLOATING TURBIDITY CURTAIN				

			8/1//44	
			87.	
St				
REVISIONS				
		T 86\PITT86\Pitt86_psh_3,dan		
		JECTS\Piltt\Pit	SERNAME\$\$\$\$	

## STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS SUMMARY OF QUANTITIES

PROJECT REFERENCE NO.	SHEET NO.
17BP.2.R.69	<u>3</u>

ITEM DESCRIPTION

WATTLE POLYACRYLAMIDE (PAM) SEEDING AND MULCHING SEED FOR REPAIR SEEDING FERTILIZER FOR REPAIR SEEDING

REMOVAL OF EXISTING STRUCTURE AT -L- STA 12+62.00 PDA TESTING UNCLASSIFIED STRUCTURE EXCAVATION CLASS A CONCRETE (BRIDGE) BRIDGE APPROACH SLABS REINFORCING STEEL (BRIDGE) HP 12 X 53 STEEL PILES HP 14 X 73 STEEL PILES PILE REDRIVES VERTICAL CONCRETE BARRIER RAIL RIP_RAP,CLASS_II(2'-0"THICK) GEOTEXTILE FOR DRAINAGE ELASTOMETRIC BEARINGS 3'-0" X 2'-0" PRESTRESSED CONCRETE CORED SLABS ASBESTOS ASSESSMENT

NOTE: Inv See	vert Elevatior e ″Standard	ns are f Specif	or Bid P ications F	urpose: For Rod	s only ar Ids and S	nd shall na Structures,	ot be used t , Section 30	for project 0–5″.	const	truction s	takeout. <b>J</b>	LIST	OF	PIPE	ST S, <i>E</i>	FATE DIVI	OF Ision <b>Alls</b>	NOR I OF 5, <i>et</i>	стн 7 н 7 <b>с. (</b> 2	CA IGHV <b>For</b>	ROL VAY <b>PI</b> I	LINA S <b>Pes</b>	48"	<b>3</b>	UNDEF	<b>R</b> )							P	roject referen 17BP.2.R.(	nce no. 69	sheet no. <u>3A</u>
STATION	N (LT,RT, OR CL) STRUCTURE NO.	ATION	EVATION	EVATION	RITICAL	DR (RCP, CSP,	AINAGE PIPE CAAP, HDPE, or F	YC)		COR ALUMI	RUGATED NUM PIPE		R.C. (CLAS	PIPE SS III)		R.C. (CLAS	PIPE SS IV)		ONTRACTOR DESIGN PIPE ONTRACTOR DESIGN PIPE		ENDWALL STD. 838.0 STD. 838.1 OR STD. 838.8 (UNLESS NOTED OTHERWIS	CE) CITURES CI	* TOTAL L.F. FOR PAY       ?     * UANTITY SHALL BE COL.       `A' + (1.3 X COL.'B')	D. 840.02	FRAME, GRATES AND HOOD STANDARD 840.03	CONCRETE TRANSITIONAL SECTION	E STD. 840.22	GRATES STD. 840.22 GRATE STD. 840.29	GRATE STD. 840.29 TWO GRATES STD. 840.29	. & SIZE	C.Y. STD 840.72	lG, C.Y. STD. 840.71		C.B. N.D.I. D.I. G.D.I. G.D.I. (N.S.	ABBREVIATION CATCH BASIN NARROW DRC DROP INLET GRATED DROP .) GRATED DROP (NARROW SLC	S PP_INLET INLET INLET JT)
SIZE	OCATIO	TOP ELEV	NVERT EI	INVERT EI	U 12" 15"	7 18" 24" 30	»" 36" 42" 48"	CCP CSP CAAP	1 DPE	12" 15" 18"	24" 36" 42	. 48″ 15″	8″ 24″ 3	0" 36" 42"	48″ 12″	15" 18" 24"	30″ 36″ 42′	" 48" (> SSV	LVERTS, C LVERTS, C	PIPE	CU. YDS.	RU 5.0')	A B	OR ST			TH GRAT	AE WITH	AE WITH AE WITH	0WS NO	CL. "B" (	PIPE PLU	N.FT.	J.B. M.H.	JUNCTION BC	X
THICKNESS OR GAUGE	- 10 KOM							VOT USE R VOT USE O		064 064 064	064 079	106						C. PIPE (CL	C. PIPE CUI	de drain de drain	C.P.	э.г. СН (0' ТН	IRU 10.0' ND ABOV	D. 840.01	TYPE OF GRATE	A BASIN	FRAME WI	RAME WI	(N.S.) FRAM (N.S.) FRAM	I. STD. 840 STEEL ELB	COLLARS	C & BRICK	EMOVAL L	T.B.J.B.	TRAFFIC BEARI	ng drop inlei ng junction box
									00									**" R. O	**" R. A	15" SIC 18" SIC	∞ 0	PER EA	5.0' TH 10.0' A	C.B. ST	E F G	CATCI DROP	G.D.I.	G.D.I. G.D.I.	G.D.I. G.D.I.	T.B.D.	CONO	CONO	PIPE R		REMARKS	
_L_ 11+88.40	LT 402	49.21	44.59																										1	1						
-L- 11+88.40	CL 402 403	3	44.59	14.29									24																							
-L- 11+88.40	RT 403	49.21																											1	1						
-L- 11+88.40	RT 403 404	1	44.29	12.78																																
-L- 11+88.40	RT 404 OUT	т	42.78										16																			_				
TOTALS													40																2	2						

"N" = DISTANCE FROM EDGE OF LANE TO FACE OF GUARDRAIL.

TOTAL SHOULDER WIDTH = DISTANCE FROM EDGE OF TRAVEL LANE TO SHOULDER BREAK POINT.

FLARE LENGTH = DISTANCE FROM LAST SECTION OF PARALLEL GUARDRAIL TO END OF GUARDRAIL.

W = TOTAL WIDTH OF FLARE FROM BEGINNING OF TAPER TO END OF GUARDRAIL.

G = GATING IMPACT ATTENUATOR TYPE 350NG = NON-GATING IMPACT ATTENUATOR TYPE 350

SURVEY	DEC STA			(WITH )	LENGTH ANCHOR DEDU	JCTIONS)	WARRAN	t point	"N" DIST.	TOTAL		TOTAL		,	ANCHORS			IMPACT ATTENUATC TYPE 350	R SINGLE	REMOVE AND	REMOVE AND	DEAAADVC		
LINE	BLG. STA.	LIND STA.	LOCATION	STRAIGHT	SHOP CURVED	DOUBLE FACED	APPROACH END	TRAILING END	E.O.L.	WIDTH	APPROACH END	TRAILING END	APPROACH END	TRAILING END	TYPE 350	TYPE III	CAT-1			NO. G N	G GUARDRAIL	EXISTING GUARDRAIL	EXISTING GUARDRAIL	KLWARKS
-L-	11+84.37	11+90.62	LT	6.25																				
-L-	11+84.37	11+90.62	RT	6.25																				
-L-	11+34.37	12+09.37	LT					12+09.37	3.92	6.92		50		1.0	1	1								
-L-	11+34.37	12+09.37	RT				12+09.37		3.92	6.92	50		1.0		1	1								
-L-	13+14.63	13+83.38	LT				13+14.63		3.92	6.92	50		1.0		1	1								
-L-	13+14.63	13+83.38	RT					13+14.63	3.92	6.92		50		1.0	1	1								
TOTAL				6.50											4	4								

## SUMMARY OF EARTHWORK IN CUBIC YARDS

LOCATION	UNCLASSIFIED STRUCTURE EXCAVATION	UNCLASSIFIED EXCAVATION	UNDERCUT	EMBT + %	BORROW	WASTE
-L- 10+81.35 - 11+98.27		8	0	90	82	0
-L- 13+27.27 - 15+69.65		0	0	233	233	0
UNDERCUT (CONTINGENCY)			100	120	120	100
UNCLASSIFIED STRUCTURE EXCAVATION	1200				-435	765
SUB TOTAL		8	100	443	0	865
SAY		10	100	445	0	865

## GUARDRAIL SUMMARY

LINE -L--L-TOTAL

NOTE:

![](_page_5_Picture_17.jpeg)

## PAVEMENT REMOVAL SUMMARY IN SQUARE YARDS

STATION – STATION	LOCATION	REMOVAL (SY)
$11+80.00\ -\ 12+41.25$	CL	122.46
$12+93.42\ -\ 13+38.10$	CL	89.85
		212.31
	SAY	213

APPROXIMATE QUANTITIES ONLY, UNCLASSIFIED EXCAVATION, BORROW EXCAVATION, FINE GRADING, CLEARING AND GRUBBING, BREAKING OF EXISTING PAVEMENT AND REMOVAL OF EXISTING PAVEMENT WILL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE FOR "GRADING."

![](_page_6_Figure_0.jpeg)

![](_page_7_Picture_0.jpeg)

![](_page_7_Picture_8.jpeg)

SHEET NO. TMP - 1

TMP-2

THE FOLLOWING ROADWAY STANDARDS AS APPEAR IN "ROADWAY STANDARD DRAWINGS"-HIGHWAY DESIGN BRANCH-N.C. DEPARTMENT OF TRANSPORTATION - RALEIGH, N.C. DATED JANUARY 2012 ARE APPLICABLE TO THIS PROJECT AND BY REFERENCE HEREBY ARE CONSIDERED A PART OF THESE PLANS:

## STD. NO.

1101.11 1110.01 1145.01

DIRECTION OF TRAFFIC FLOW DIRECTION OF PEDESTRIAN TRAFFIC FLOW NORTH ARROW - PROPOSED PVMT. ----- EXIST. PVMT.

## **INDEX OF SHEETS**

## TITLE

TITLE SHEET WITH VICINITY MAP & INDEX OF SHEETS, LIST OF APPLICABLE ROADWAY STANDARD DRAWINGS, AND LEGEND.

PROJECT NOTES, DETOUR AND PLANS.

## ROADWAY STANDARD DRAWINGS

## TITLE

1101.03 (SHT. 1 OF 9) TEMPORARY ROAD CLOSURES TRAFFIC CONTROL DESIGN TABLES STATIONARY WORK ZONE SIGNS BARRICADES (TYPE III)

## LEGEND

## GENERAL

WORK AREA

## TRAFFIC CONTROL DEVICES

BARRICADE (TYPE III)

APPROVED William ( Eincannon DATE: 3/20/200270BD483 SEAL

••

ROIE

E

SHEET NO.

TMP-1

## GENERAL NOTES

IMPLEMENT TRAFFIC CONTROL IN ACCORDANCE WITH THE ROADWAY STANDARD DRAWINGS LISTED ON TMP-1.

CHANGES MAY BE REQUIRED WHEN PHYSICAL DIMENSIONS IN THE DETAIL DRAWINGS, STANDARD DETAILS AND ROADWAY DETAILS ARE NOT ATTAINABLE TO MEET FIELD CONDITIONS, OR RESULT IN DUPLICATE, OR UNDESIRED OVERLAPPING OF DEVICES. MODIFICATION MAY INCLUDE: MOVING, SUPPLEMENTING, COVERING OR REMOVAL OF DEVICES, AS DIRECTED BY THE ENGINEER.

STATE FORCES WILL INSTALL AND MAINTAIN THE PROJECT DETOUR AND THE TYPE III BARRICADES AT THE PROJECT LIMITS. STATE FORCES WILL INSTALL PAINT AND MARKERS ON THE FINISHED PROJECT. CALL JIM EVANS AT 252-830-3493 FOR COORDINATION.

![](_page_8_Picture_4.jpeg)

I5-MAR-2017 09:17 G:\PROJECTS\PITT\F \$\$\$\$USERNAME\$\$\$\$

![](_page_8_Figure_7.jpeg)

![](_page_8_Figure_8.jpeg)

![](_page_8_Picture_9.jpeg)

		PR	OJ. REFERENCE NO.	SHEET NO.
			17BP.2.R.69	TMP-2
38%	{			
·3		1.1		
tet a	approx 20.1			
	The state of the s	JUIGE		
17BP.2.R.69				
	· •			
Greek				
کے	$\checkmark$	$\frown$		
$\langle \rangle$	•			
$\backslash$ $\sim$ /	n (	)		
	010			
	, x			
	$\left\langle \right\rangle$			
	,N			
	e de la companya de			
	900			
	.701.			
	ETOUR ROU	TE		
30″				
BARRICADE				
Booudigned by:	1			
CCAAEF7DCC0BD483	PRO	JECT	NOTF	s
NOFESSION T			· · · •	-
SEAL 7 33793	SCALE:         NONE           DATE:         03/09/17			
NGINEER NGINEER	DWG. BY: <u>J</u> DESIGN BY: J			
			CADD	

![](_page_9_Figure_0.jpeg)

1604.01	Railroad Erosion Control Detail	1632.01	Rock Inlet Sediment Trap Type A
1605.01	Temporary Silt Fence	1632.02	Rock Inlet Sediment Trap Type B
1606.01	Special Sediment Control Fence	1632.03	Rock Inlet Sediment Trap Type C
1607.01	Gravel Construction Entrance	1633.01	Temporary Rock Silt Check Type A
1622.01	<b>Temporary Berms and Slope Drains</b>	1633.02	Temporary Rock Silt Check Type B
1630.01	Riser Basin	1634.01	Temporary Rock Sediment Dam Type A
1630.02	Silt Basin Type B	1634.02	Temporary Rock Sediment Dam Type B
1630.03	Temporary Silt Ditch	1635.01	Rock Pipe Inlet Sediment Trap Type A
1630.04	Stilling Basin	1635.02	Rock Pipe Inlet Sediment Trap Type B
1630.05	Temporary Diversion	1640.01	Coir Fiber Baffle
1630.06	Special Stilling Basin	1645.01	Temporary Stream Crossing
1631.01	Matting Installation		<u> </u>

![](_page_10_Figure_0.jpeg)

TIMEFRAME EXCEPTIONS
NONE
NONE
IF SLOPES ARE IO' OR LESS IN LENGTH AND ARE NOT STEEPER THAN 2:1, 14 DAYS ARE ALLOWED.
7 DAYS FOR SLOPES GREATER THAN 50' IN LENGTH.
NONE, EXCEPT FOR PERIMETERS AND HOW ZONES

Std. [#]	Description	Symbol
1605.01	High Vis Temporary Silt Fence	
1632.03	Rock Inlet Sediment Trap Type C	
SP	Wattle with Polyacrylamide	
SP	Wattle	(
	Ditch Flow Line	

<u>17BP.2.R.69</u> <u>EC 2</u>	PROJECT REFERENCE NO.	SHEET NO.
	I7BP.2.R.69	EC 2
		•

NOTE: THE CONTRACTOR SHALL INSTALL WATTLES IN LOW AREAS OF SILT FENCE AS NEEDED OR AS DIRECTED BY THE ENGINEER.

NOTES:	ANY DEVIATION FROM OPTIONS GIVEN WILL REQUIRE PRIOR APPROVAL BY ENGINEER.
	ADDITIONAL EROSION CONTROL DEVICES MAY NEED TO BE INSTALLED AS DIRECTED BY THE ENGINEER.
	CONTRACTOR SHALL INSTALL SPECIAL SEDIMENT CONTROL FENCE OR WATTLES IN LOW AREAS OF SILT FENCE AS NEEDED OR DIRECTED BY THE ENGINEER.

![](_page_11_Figure_0.jpeg)

![](_page_11_Figure_2.jpeg)

USE MINIMUM 12 IN. DIAMETER COIR FIBER (COCONUT FIBER) WATTLE AND LENGTH OF 10 FT.

EXCAVATE A 1 TO 2 INCH TRENCH FOR WATTLE TO BE PLACED.

DO NOT PLACE WATTLE ON TOE OF SLOPE.

USE 2 FT. WOODEN STAKES WITH A 2 IN. BY 2 IN. NOMINAL CROSS SECTION. INSTALL A MINIMUM OF 2 UPSLOPE STAKES AND 4 DOWNSLOPE STAKES AT AN

ANGLE TO WEDGE WATTLE TO GROUND. PROVIDE STAPLES MADE OF 0.125 IN. DIAMETER STEEL WIRE FORMED INTO A U SHAPE NOT LESS THAN 12" IN LENGTH.

INSTALL STAPLES APPROXIMATELY EVERY 1 LINEAR FOOT ON BOTH SIDES OF WATTLE AND AT EACH END TO SECURE IT TO THE SOIL.

WATTLE INSTALLATION CAN BE ON OUTSIDE OF THE SILT FENCE AS DIRECTED. INSTALL TEMPORARY SILT FENCE IN ACCORDANCE WITH SECTION 1605 OF THE STANDARD SPECIFICATIONS.

![](_page_11_Figure_10.jpeg)

1633-01	[,] C
SEDIMENT CO	TN
STF	łU
NOTE USE CLASS FOR STRUCTU USE NO. 5 CONTROL STO	5 JF 7
	₹ 2′

1633.01

![](_page_11_Figure_13.jpeg)

	1			
	C			
NS				
RE				
		ſ		
	ă X	-		
	- 			
	0 1 9			
	tt8u			
	Pı			
	T86			
	I			
	36 \F			
	₩ ₩			
	LIA,	<i>(</i> 0		
	77/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	1 1 1 4	₩ ₩		
	17 ( 17 S	A A		
	) 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
	MAR PRC	 & &		
		↔ ↔		

## DIVISION OF HIGHWAYS STATE OF NORTH CAROLINA

## **CROSS-SECTION SUMMARY**

IN CUBIC YARDS

NOTE: EMBANKMENT COLUMN DOES NOT INCLUDE BACKFILL FOR UNDERCUT.

LOCATION (-L-)	UNCLASSIFIED EXCAVATION	UNDERCUT	EMBANKMENT								
11+00.00	0	0	0								
11+36.45	3	0	25								
11 + 72.90	3	0	41								
11+85.27	1	0	13								
11+88.40	0	0	3								
11+98.27	1	0	8								
BRIDGE											
13+27.27	0	0	0								
13+34.02	0	0	10								
13 + 82.84	0	0	100								
14+29.23	0	0	73								
14+50.00	0	0	10								
15+00.00	0	0	24								
15+50.00	0	0	16								

NOTE: Approximate quantities only. Unclassified Excavation, Borrow Excavation, Fine Grading, Clearing and Grubbing, and Removal of Existing Pavement will be paid for at the contract Lump Sum price for "Grading".

PROJ. REFERENCE NO.	SHEET NO.
L IIDF•2•K•09	<u>^-IA</u>

![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

_____

DESIGN DATA:

SPECIFICATIONS	A.A.S.H.T.O. (CURRENT)
LIVE LOAD	SEE PLANS
IMPACT ALLOWANCE	SEE A.A.S.H.T.O.
STRESS IN EXTREME FIBER OF	
STRUCTURAL STEEL - AASHTO M270 GRADE 36 -	20,000 LBS.PER SO.IN.
- AASHTO M270 GRADE 50W -	27,000 LBS.PER SQ.IN.
- AASHTO M270 GRADE 50 -	27,000 LBS.PER SO.IN.
REINFORCING STEEL IN TENSION	
GRADE 60	24,000 LBS.PER SQ.IN.
CONCRETE IN COMPRESSION	1,200 LBS.PER SQ.IN.
CONCRETE IN SHEAR	SEE A.A.S.H.T.O.
STRUCTURAL TIMBER - TREATED OR	
UNTREATED - EXTREME FIBER STRESS	1,800 LBS.PER SQ.IN.
COMPRESSION PERPENDICULAR TO GRAIN	
UF LIMBER	JID LOS. PER SU. IN.
EQUIVALENT FLUID PRESSURE OF EARTH	30 LBS.PER CU.FI.
	(MINIMUM)

### MATERIAL AND WORKMANSHIP:

EXCEPT AS MAY OTHERWISE BE SPECIFIED ON PLANS OR IN THE SPECIAL PROVISIONS, ALL MATERIAL AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE 2012 "STANDARD SPECIFICATIONS FOR ROADS AND STRUCTURES" OF THE N. C. DEPARTMENT OF TRANSPORTATION.

STEEL SHEET PILING FOR PERMANENT OR TEMPORARY APPLICATIONS SHALL BE HOT ROLLED.

### CONCRETE:

UNLESS OTHERWISE REQUIRED ON PLANS, CLASS A CONCRETE SHALL BE USED FOR ALL PORTIONS OF ALL STRUCTURES WITH THE EXCEPTION THAT: CLASS AA CONCRETE SHALL BE USED IN BRIDGE SUPERSTRUCTURES, ABUTMENT BACKWALLS, AND APPROACH SLABS; AND CLASS B CONCRETE SHALL BE USED FOR SLOPE PROTECTION AND RIP RAP.

### CONCRETE CHAMFERS:

UNLESS OTHERWISE NOTED ON THE PLANS, ALL EXPOSED CORNERS ON STRUCTURES SHALL BE CHAMFERED 3/4" WITH THE FOLLOWING EXCEPTIONS: TOP CORNERS OF CURBS MAY BE ROUNDED TO 1-1/2" RADIUS WHICH IS BUILT INTO CURB FORMS: CORNERS OF TRANSVERSE FLOOR EXPANSION JOINTS SHALL BE ROUNDED WITH A 1/4"FINISHING TOOL UNLESS OTHERWISE REQUIRED ON PLANS: AND CORNERS OF EXPANSION JOINTS IN THE ROADWAY FACES AND TOPS OF CURBS AND SIDEWALKS SHALL BE ROUNDED TO A 1/4" RADIUS WITH A FINISHING STONE OR TOOL UNLESS OTHERWISE REQUIRED ON PLANS.

### DOWELS:

+

DOWELS WHEN INDICATED ON PLANS AS FOR CULVERT EXTENSIONS, SHALL BE EMBEDDED AT LEAST 12" INTO THE OLD CONCRETE AND GROUTED INTO PLACE WITH 1:2 CEMENT MORTAR.

## STANDARD NOTES

### ALLOWANCE FOR DEAD LOAD DEFLECTION, SETTLEMENT, ETC. IN CASTING SUPERSTRUCTURES:

BRIDGES SHALL BE BUILT ON THE GRADE OR VERTICAL CURVE SHOWN ON PLANS. SLABS, CURBS AND PARAPETS SHALL CONFORM TO THE GRADE OR CURVE. ALL DIMENSIONS WHICH ARE GIVEN IN SECTION AND ARE AFFECTED BY DEAD LOAD DEFLECTIONS ARE DIMENSIONS AT CENTER LINE OF BEARING UNLESS OTHERWISE NOTED ON PLANS. IN SETTING FORMS FOR STEEL BEAM BRIDGES AND PRESTRESSED CONCRETE GIRDER BRIDGES, ADJUSTMENTS SHALL BE MADE DUE TO THE DEAD LOAD DEFLECTIONS FOR THE ELEVATIONS SHOWN. WHERE BLOCKS ARE SHOWN OVER BEAMS FOR BUILDING UP TO THE SLAB, THE VERTICAL DIMENSIONS OF THE BLOCKS SHALL BE ADJUSTED BETWEEN BEARINGS TO COMPENSATE FOR DEAD LOAD DEFLECTIONS, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER. WHERE BOTTOM OF SLAB IS IN LINE WITH BOTTOM OF TOP FLANGES, DEPTH OF SLAB BETWEEN BEARINGS SHALL BE ADJUSTED TO COMPENSATE FOR DEAD LOAD DEFLECTION, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER.

IN SETTING FALSEWORK AND FORMS FOR REINFORCED CONCRETE SPANS, AN ALLOWANCE SHALL BE MADE FOR DEAD LOAD DEFLECTIONS, SETTLEMENT OF FALSEWORK, AND PERMANENT CAMBER WHICH SHALL BE PROVIDED FOR IN ADDITION TO THE ELEVATIONS SHOWN. AFTER REMOVAL OF THE FALSEWORK, THE FINISHED STRUCTURES SHALL CONFORM TO THE PROFILE AND ELEVATIONS SHOWN ON THE PLANS AND CONSTRUCTION ELEVATIONS FURNISHED BY THE ENGINEER.

DETAILED DRAWINGS FOR FALSEWORK OR FORMS FOR BRIDGE SUPERSTRUCTURE AND ANY STRUCTURE OR PARTS OF A STRUCTURE AS NOTED ON THE PLANS SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL BEFORE CONSTRUCTION OF THE FALSEWORK OR FORMS IS STARTED.

### **REINFORCING STEEL:**

ALL REINFORCING STEEL SHALL BE DEFORMED. DIMENSIONS RELATIVE TO PLACEMENT OF REINFORCING ARE TO CENTERS OF BARS UNLESS OTHERWISE INDICATED IN THE PLANS. DIMENSIONS ON BAR DETAILS ARE TO CENTERS OF BARS OR ARE OUT TO OUT AS INDICATED ON PLANS.

WIRE BAR SUPPORTS SHALL BE PROVIDED FOR REINFORCING STEEL WHERE INDICATED ON THE PLANS. WHEN BAR SUPPORT PIECES ARE PLACED IN CONTINUOUS LINES, THEY SHALL BE SO PLACED THAT THE ENDS OF THE SUPPORTING WIRES SHALL BE LAPPED TO LOCK LEGS ON ADJOINING PIECES.

### STRUCTURAL STEEL:

AT THE CONTRACTOR'S OPTION, HE MAY SUBSTITUTE 7/8" Ø SHEAR STUDS FOR THE  $\frac{3}{4}$ " Ø STUDS SPECIFIED ON THE PLANS. THIS SUBSTITUTION SHALL BE MADE AT THE RATE OF 3 - 7/8" Ø STUDS FOR 4 - 3/4" Ø STUDS, AND STUD SPACING CHANGES SHALL BE MADE AS NECESSARY TO PROVIDE THE SAME EQUIVALENT NUMBER OF 7/8" Ø STUDS ALONG THE BEAM AS SHOWN FOR 3/4" Ø STUDS BASED ON THE RATIO OF 3 - 7/8" Ø STUDS FOR 4 - 3/4" Ø STUDS. STUDS OF THE LENGTH SPECIFIED ON THE PLANS MUST BE PROVIDED. THE MAXIMUM SPACING SHALL BE 2'-O".

EXCEPT AT THE INTERIOR SUPPORTS OF CONTINUOUS BEAMS WHERE THE COVER PLATE IS IN CONTACT WITH BEARING PLATE, THE CONTRACTOR MAY, AT HIS OPTION, SUBSTITUTE FOR THE COVER PLATES DESIGNATED ON THE PLANS COVER PLATES OF THE EQUIVALENT AREA PROVIDED THESE PLATES ARE AT LEAST 5/16" IN THICKNESS AND DO NOT EXCEED A WIDTH EQUAL TO THE FLANGE WIDTH LESS 2"OR A THICKNESS EQUAL TO 2 TIMES THE FLANGE THICKNESS. THE SIZE OF FILLET WELDS SHALL CONFORM TO THE REQUIREMENTS OF THE CURRENT ANSI/AASHTO/AWS "BRIDGE WELDING CODE". ELECTROSLAG WELDING WILL NOT BE PERMITTED. WITH THE SOLE EXCEPTION OF EDGES AT SURFACES WHICH BEAR ON OTHER SURFACES, ALL SHARP EDGES AND ENDS OF SHAPES AND PLATES SHALL BE SLIGHTLY ROUNDED BY SUITABLE MEANS TO A RADIUS OF APPROXIMATELY 1/16 INCH OR

EQUIVALENT FLAT SURFACE AT A SUITABLE ANGLE PRIOR TO PAINTING, GALVANIZING, OR METALLIZING.

HANDRAILS AND POSTS:

METAL STANDARDS AND FACES OF THE CONCRETE END POSTS FOR THE METAL RAIL SHALL BE SET NORMAL TO THE GRADE OF THE CURB. UNLESS OTHERWISE SHOWN ON PLANS. THE METAL RAIL AND TOPS OF CONCRETE POSTS USED WITH THE ALUMINUM RAIL SHALL BE BUILT PARALLEL TO THE GRADE OF THE CURB. METAL HANDRAILS SHALL BE IN ACCORDANCE WITH THE PLANS. RAILS SHALL BE AS MANUFACTURED FOR BRIDGE RAILING. CASTINGS SHALL BE OF A UNIFORM APPEARANCE. FINS AND OTHER DEFORMATIONS RESULTING FROM CASTING OR OTHERWISE SHALL BE REMOVED IN A MANNER SO THAT A UNIFORM COLORING OF THE COMPLETED CASTING SHALL BE OBTAINED. CASTINGS WITH DISCOLORATIONS OR OF NON-UNIFORM COLORING WILL NOT BE ACCEPTED. CERTIFIED MILL REPORTS ARE REQUIRED FOR METAL RAILS AND POSTS.

### SPECIAL NOTES:

GENERALLY, IN CASE OF DISCREPANCY, THIS STANDARD SHEET OF NOTES SHALL GOVERN OVER THE SPECIFICATIONS, BUT THE REMAINDER OF THE PLANS SHALL GOVERN OVER NOTES HEREON, AND SPECIAL PROVISIONS SHALL GOVERN OVER ALL. SEE SPECIFICATIONS ARTICLE 105-4.

## ENGLISH JANUARY, 1990

STD. NO. SN

![](_page_16_Figure_0.jpeg)

07-MAR-2017 11:31 S:\DPG1\Division2\17BP.2.R.69\Plans\17BP.2.R.69_SMU_ FinalPlans_730086.dgn pknewton

![](_page_17_Figure_0.jpeg)

							TOTAL	BILL C	)F	ΜΑΤ	ER	RIAL			_																																	
	REMOVAL OF EXISTING STRUCTURE	PDA TESTING	UNCLASSIFIED STRUCTURE EXCAVATION	CLASS A CONCRETE	BRIDGE APPROACH SLABS	REINFORCING STEEL	PILE DRIVING EQUIPMENT SETUP FOR HP 12 X 53 STEEL PILES	PILE DRIVING EQUIPMENT SETUP FOR HP 14 X 73 GALVANIZED STEEL PILES	HP STEI	HP 12 X 53 TEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		HP 12 X 53 STEEL PILES		14 X 73 LVANIZED EL PILES	PILE REDRIVES	VERTICAL CONCRETE BARRIER RAIL	RIP RAP CLASS II (2'-O"THICK)	GEOTEXTILE FOR DRAINAGE	ELASTOMERIC BEARINGS	3'-0 PRES CO CORE
	LUMP SUM	EACH	LUMP SUM	CU. YDS.	LUMP SUM	LBS.	EACH	EACH	NO.	LIN.FT.	NO.	LIN.FT.	EACH	LIN.FT.	TONS	SQ. YDS.	LUMP SUM	NO.																														
SUPERSTRUCTURE														210.5				30																														
END BENT 1			LUMP SUM	20.0		2449	5		5	5 255			3		130	145																																
BENT 1				9.8		1933		7			7	455	4																																			
BENT 2				9.8		1933		7			7	455	4																																			
END BENT 2			LUMP SUM	20.0		2449	5		5	255			3		135	150																																
TOTAL	LUMP SUM	2	LUMP SUM	59.6	LUMP SUM	8764	10	14	10	510	14	910	14	210.5	265	295	LUMP SUM	30																														

ı

+

DESIGN FREQUEN DESIGN DRAINAG BASE DI BASE HI	DISCHARGE CY OF DESIGN HIGH WATER E GE AREA SCHARGE (Q1OC GH WATER ELE	DISCHARGE LEVATION )) VATION	 950 CFS 25 YR. 45.4 9.0 SO.MI. 1,400 CFS 46.46

OVERTO FREQUE OVERTO

DRAWN BY :	A.K.PATEL	_ DATE :02/22/17
CHECKED BY :	P.K.NEWTON	DATE : 02/22/17

## HYDRAULIC DATA

## OVERTOPPING FLOOD DATA

OPPING DISCHARGE	= 3,000 CFS
ENCY OF OVERTOPPING FLOOD	= 500+ YR.
OPPING FLOOD ELEVATION	= 49.3
OPPING OCCURS AT SAG STA.1	0+81.00 -L-

THIS STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH ``HEC 18-EVALUATING SCOUR AT BRIDGES.''

FOR INTERIOR BENTS 1 AND 2, ONLY PARTIAL GALVANIZING OF THE PILES IS REQUIRED. SEE INTERIOR BENT SHEETS FOR REQUIRED GALVANIZED LENGTHS. PAYMENT FOR PARTIALLY GALVANIZED PILES WILL BE MADE UNDER THE CONTRACT UNIT PRICE FOR GALVANIZED STEEL PILES.

FOR EROSION CONTROL MEASURES, SEE EROSION CONTROL PLANS.

FOR ASBESTOS ASSESSMENT FOR BRIDGE DEMOLITION AND RENOVATION, SEE SPECIAL PROVISIONS.

FOR PILES, SEE GEOTECHNICAL SPECIAL PROVISIONS AND SECTION 450 OF THE STANDARD SPECIFICATIONS.

PILES AT END BENT NO.1 AND 2 ARE DESIGNED FOR A FACTORED RESISTANCE OF 55 TONS PER PILE.

DRIVE PILES AT END BENT NO.1 AND 2 TO A REQUIRED DRIVING RESISTANCE OF 93 TONS PER PILE.

PILES AT BENT NO.1 AND 2 ARE DESIGNED FOR A FACTORED RESISTANCE OF 90 TONS PER PILE.

DRIVE PILES AT BENT NO.1 AND 2 TO A REQUIRED DRIVING RESISTANCE OF 195 TONS PER PILE. THIS REQUIRED DRIVING RESISTANCE INCLUDES ADDITIONAL RESISTANCE FOR DOWNDRAG OR SCOUR.

IT HAS BEEN ESTIMATED THAT A HAMMER WITH AN EQUIVALENT RATED ENERGY IN THE RANGE OF 30 TO 45 FT-KIPS PER BLOW WILL BE REQUIRED TO DRIVE PILES AT END BENT NO.1 AND 2. THIS ESTIMATED ENRGY RANGE DOES NOT RELEASE THE CONTRACTOR FROM PROVIDING DRIVING EQUIPMENT IN ACCORDANCE WITH SUBARTICLE 450-3(D)(2) OF THE STANDARD SPECIFICATIONS.

IT HAS BEEN ESTIMATED THAT A HAMMER WITH AN EQUIVALENT RATED ENERGY IN THE RANGE OF 40 TO 60 FT-KIPS PER BLOW WILL BE REQUIRED TO DRIVE PILES AT BENT NO.1 AND 2. THIS ESTIMATED ENRGY RANGE DOES NOT RELEASE THE CONTRACTOR FROM PROVIDING DRIVING EQUIPMENT IN ACCORDANCE WITH SUBARTICLE 450-3(D)(2) OF THE STANDARD SPECIFICATIONS.

TESTING PILES WITH THE PDA DURING DRIVING, RESTRIKING OR REDRIVING MAY BE REQUIRED. THE ENGINEER WILL DETERMINE THE NEED FOR PDA TESTING. FOR PDA TESTING, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.

X 2'-O" TRESSED CRETE ) SLABS	ASBESTOS ASSESSMENT						
LIN.FT.	LUMP SUM						
1050							
1050	LUMP SUM	Р	ROJE	T NO. PIT	<u>178</u> T	P.2.R.	<u>69</u>
			ΤΑΤΙ	ON: 13	2+62	.00 -	L-
		SH	IEET 2 C	)F 2			
	TH CARO	10.	DEPA	state RTMENT	OF NORTH CAR	OLINA NSPORTA	TION
	SEAL		C				
		No	BRT	DGE OV	AL U	TTEN C	REEK
	DocuSigned by:	innt		ON SR	1251 E		
	P. Korey 1 4FFE39D1431B40 3/7/2017	<b>lewton</b> 17		NU 222	AND	SK 1250	J
	5/1/2011		). BY:	REVIS	IONS	DATE:	SHEET NO. S-2
DOCUMEN FIN	II NOT CONSIE AL UNLESS ALL TURES COMPLE				3		TOTAL SHEETS 17
AND LC	UNES COMFLE		6		ማ		<u> </u>

NCBDS

										STRE	ENGTH	I LIN	IIT S	ΓΑΤΕ				SE	RVICE	III	LIMIT	r sta	TE	
										MOMENT					SHEAR						MOMENT			
LEVEL		VEHICLE	WEIGHT (W) (TONS)	CONTROLLING LOAD RATING	MINIMUM RATING FACTORS (RF)	(RF) TONS = W X RF	TONS = W X RF LIVELOAD FACTORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	LIVELOAD FACTORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	COMMENT NUMBER
		HL-93(Inv)	N/A	1	1.018		1.75	0.284	2.53	25′	EL	12	0.591	1.02	25'	EL	1.2	0.80	0.284	2.34	25′	EL	12	
DESIGN	[	HL-93(0pr)	N⁄A		1.319		1.35	0.284	3.29	25′	EL	12	0.591	1.32	25′	EL	1.2	N/A						
LOAD	Ī	HS-20(Inv)	36.000	2	1.178	42.397	1.75	0.284	3.76	25′	EL	12	0.591	1.18	25′	EL	1.2	0.80	0.284	3.46	25′	EL	12	
RATING		HS-20(0pr)	36.000		1.527	54.959	1.35	0.284	4.87	25′	EL	12	0.591	1.53	25′	EL	1.2	NZA						
		SNSH	13.500		2.728	36.833	1.4	0.284	6.83	25′	EL	12	0.591	2.73	25′	EL	1.2	0.80	0.284	5.04	25′	EL	12	
		SNGARBS2	20.000		2.186	43.718	1.4	0.284	6.39	25′	EL	12	0.591	2.19	25′	EL	1.2	0.80	0.284	4.72	25′	EL	12	
		SNAGRIS2	22.000		2.141	47.107	1.4	0.284	6.83	25′	EL	12	0.591	2.14	25′	EL	1.2	0.80	0.284	5.04	25′	EL	12	
		SNCOTTS3	27.250		1.385	37.731	1.4	0.284	3.57	25′	EL	12	0.591	1.38	25′	EL	1.2	0.80	0.284	2.64	25′	EL	12	
	S S	SNAGGRS4	34.925		1.332	46.511	1.4	0.284	3.56	25′	EL	12	0.591	1.33	25′	EL	1.2	0.80	0.284	2.62	25′	EL	12	
		SNS5A	35.550		1.392	49.477	1.4	0.284	3.45	25′	EL	12	0.591	1.39	25′	EL	1.2	0.80	0.284	2.54	25′	EL	12	
		SNS6A	39.950		1.334	53 <b>.</b> 31	1.4	0.284	3.23	25′	EL	12	0.591	1.33	25′	EL	1.2	0.80	0.284	2.39	25′	EL	12	
ΙΕΘΔΙ		SNS7B	42.000		1.344	56.455	1.4	0.284	3.23	25′	EL	12	0.591	1.34	25′	EL	1.2	0.80	0.284	2.37	25′	EL	12	
LOAD		TNAGRIT3	33.000		1.634	53.934	1.4	0.284	4.55	25′	EL	12	0.591	1.63	25′	EL	1.2	0.80	0.284	3.36	25′	EL	12	
RAIING		TNT4A	33.075		1.483	49.049	1.4	0.284	3.95	25′	EL	12	0.591	1.48	25′	EL	1.2	0.80	0.284	2.92	25′	EL	12	
		TNT6A	41.600		1.398	58.138	1.4	0.284	3.71	25′	EL	12	0.591	1.4	25′	EL	1.2	0.80	0.284	2.74	25′	EL	12	
	ST	TNT7A	42.000		1.391	58.419	1.4	0.284	3.84	25′	EL	12	0.591	1.39	25′	EL	1.2	0.80	0.284	2.83	25′	EL	12	
	= [	TNT7B	42.000		1.343	56.385	1.4	0.284	3.46	25′	EL	12	0.591	1.34	25'	EL	1.2	0.80	0.284	2 <b>.</b> 55	25′	EL	12	
		TNAGRIT4	43.000		1.340	57.604	1.4	0.284	3.71	25′	EL	12	0.591	1.34	25'	EL	1.2	0.80	0.284	2.73	25′	EL	12	
		TNAGT5A	45.000		1.367	61.501	1.4	0.284	3.71	25′	EL	12	0.591	1.37	25'	EL	1.2	0.80	0.284	2.73	25′	EL	12	
		TNAGT5B	45.000	3	1.239	55.766	1.4	0.284	3.65	25′	EL	9.6	0.591	1.24	25′	EL	1.2	0.80	0.284	2.71	25′	EL	9.6	

<u>LRFR</u> SUMMARY

FOR SPAN 'A' OR 'C'

ASSEMBLED BY : A	P.K.NEWTON	DATE :	3/1/17
CHECKED BY : G.	W.DICKEY	DATE :	3/2/17
DRAWN BY : CVC CHECKED BY : DNS	6∕10 6∕10		

+

+

LOAD FACTORS:

DESIGN	LIMIT STATE	$\gamma_{\text{DC}}$	$\gamma_{D\mathbf{W}}$
LOAD RATING FACTORS	STRENGTH I	1.25	1.50
	SERVICE III	1.00	1.00

NOTES:

MINIMUM RATING FACTORS ARE BASED ON THE STRENGTH I AND SERVICE III LIMIT STATES. ALLOWABLE STRESSES FOR SERVICE III LIMIT STATE ARE AS REQUIRED FOR DESIGN.

### COMMENTS:

1. 2. 3.

4.

- CONTROLLING LOAD RATING
   CONTROLLING LOAD RATING
   DESIGN LOAD RATING (HL-93)
   DESIGN LOAD RATING (HS-20)
   JEGAL LOAD RATING **
   ** SEE CHART FOR VEHICLE TYPE
   GIRDER LOCATION
- I INTERIOR GIRDER EL - EXTERIOR LEFT GIRDER ER - EXTERIOR RIGHT GIRDER

![](_page_18_Figure_14.jpeg)

STD.NO.21LRFR1_90S_25L

		LOAD AN	D RE	SIST	ANCE	<u> </u>	CIOR	RAT	LNG	(LRF	-D)S	UMMA	RY F	OR I	- RES	IRES	SED	CON	CRET	E GI	RDEF	۲ <u>۲</u>		
						STRE	ENGTH	I LIN	AIT ST	ΤΑΤΕ				SE	ERVICE	III E	LIMI	t sta	ΤE					
										MOMENT					SHEAR						MOMENT			1
LEVEL		VEHICLE	WEIGHT (W) (TONS)	CONTROLLING LOAD RATING	MINIMUM RATING FACTORS (RF)	TONS = W X RF	L I VELOAD F AC TORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	L I VEL OAD F AC T ORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	COMMENT NUMBER
		HL-93(Inv)	N/A	1	1.055		1.75	0.275	1.23	55′	EL	27	0.523	1.23	55′	EL	5.4	0.80	0.275	1.05	55′	EL	27	
DESTGN		HL-93(0pr)	N/A		1.591		1.35	0.275	1.59	55′	EL	27	0.523	1.59	55′	EL	5.4	N/A						
LOAD		HS-20(Inv)	36.000	2	1.322	47.585	1.75	0.275	1.54	55′	EL	27	0.523	1.47	55′	EL	5.4	0.80	0.275	1.32	55′	EL	27	
RAIING		HS-20(0pr)	36.000		1.9	68.396	1.35	0.275	1.99	55′	EL	27	0.523	1.9	55′	EL	5.4	N/A						
		SNSH	13.500		2.776	37.476	1.4	0.275	4.04	55′	EL	27	0.523	4.17	55′	EL	5.4	0.80	0.275	2.78	55′	EL	27	
		SNGARBS2	20.000		2.155	43.095	1.4	0.275	3.14	55′	EL	27	0.523	3.02	55′	EL	5.4	0.80	0.275	2.15	55′	EL	27	
		SNAGRIS2	22.000		2.079	45.734	1.4	0.275	3.03	55′	EL	27	0.523	2.83	55′	EL	5.4	0.80	0.275	2.08	55′	EL	27	
		SNCOTTS3	27.250		1.384	37.708	1.4	0.275	2.01	55′	EL	27	0.523	2.09	55′	EL	5.4	0.80	0.275	1.38	55′	EL	27	
	SV	SNAGGRS4	34.925		1.189	41.527	1.4	0.275	1.73	55′	EL	27	0.523	1.77	55′	EL	5.4	0.80	0.275	1.19	55′	EL	27	
		SNS5A	35.550		1.16	41.255	1.4	0.275	1.69	55′	EL	27	0.523	1.82	55′	EL	5.4	0.80	0.275	1.16	55′	EL	27	
		SNS6A	39.950		1.079	43.102	1.4	0.275	1.57	55′	EL	27	0.523	1.68	55′	EL	5.4	0.80	0.275	1.08	55′	EL	27	
LECAL		SNS7B	42.000		1.028	43.175	1.4	0.275	1.5	55′	EL	27	0.523	1.67	55′	EL	5.4	0.80	0.275	1.03	55′	EL	27	
LOAD		TNAGRIT3	33.000		1.32	43.556	1.4	0.275	1.92	55′	EL	27	0.523	1.98	55′	EL	5.4	0.80	0.275	1.32	55′	EL	27	
RATING		TNT4A	33.075		1.33	43.979	1.4	0.275	1.94	55′	EL	27	0.523	1.91	55′	EL	5.4	0.80	0.275	1.33	55′	EL	27	
		TNT6A	41.600		1.101	45.811	1.4	0.275	1.6	55′	EL	27	0.523	1.83	55′	EL	5.4	0.80	0.275	1.10	55′	EL	27	
	ST	TNT7A	42.000		1.114	46.804	1.4	0.275	1.62	55′	EL	27	0.523	1.71	55′	EL	5.4	0.80	0.275	1.11	55′	EL	27	
	L	TNT7B	42.000		1.163	48.848	1.4	0.275	1.69	55′	EL	27	0.523	1.62	55′	EL	5.4	0.80	0.275	1.16	55′	EL	27	
		TNAGRIT4	43.000		1.101	47.33	1.4	0.275	1.6	55′	EL	27	0.523	1.56	55′	EL	5.4	0.80	0.275	1.10	55′	EL	27	
		TNAGT5A	45.000		1.031	46.405	1.4	0.275	1.5	55′	EL	27	0.523	1.58	55′	EL	5.4	0.80	0.275	1.03	55′	EL	27	
		TNAGT5B	45.000	3	1.013	45.582	1.4	0.275	1.47	55′	EL	27	0.523	1.48	55′	EL	5.4	0.80	0.275	1.01	55′	EL	27	

![](_page_19_Figure_1.jpeg)

<u>LRFR SUMMARY</u>

FOR SPAN 'B'

ASSEMBLED BY : 1	P.K.NEWTON	DATE :	3/1/17
CHECKED BY : G.	W.DICKEY	DATE :	3/2/17
DRAWN BY : CVC CHECKED BY : DNS	6710 6710		

+

+

LOAD FACTORS:

DESIGN	LIMIT STATE	$\gamma_{\text{DC}}$	$\gamma_{D\mathbf{W}}$
LOAD RATING FACTORS	STRENGTH I	1.25	1.50
	SERVICE III	1.00	1.00

NOTES:

MINIMUM RATING FACTORS ARE BASED ON THE STRENGTH I AND SERVICE III LIMIT STATES. ALLOWABLE STRESSES FOR SERVICE III LIMIT STATE ARE AS REQUIRED FOR DESIGN.

### COMMENTS:

1. 2. 3.

4.

- CONTROLLING LOAD RATING
   DESIGN LOAD RATING (HL-93)
   DESIGN LOAD RATING (HS-20)
  - 3 LEGAL LOAD RATING **
     ** SEE CHART FOR VEHICLE TYPE

## GIRDER LOCATION

I - INTERIOR GIRDER EL - EXTERIOR LEFT GIRDER ER - EXTERIOR RIGHT GIRDER

![](_page_19_Figure_16.jpeg)

4FFE39D1431D407							
3/7/2017			REVI	ISION	IS		SHEET NO.
OCLIMENT NOT CONSTDERED	N0.	BY:	DATE:	NO.	BY:	DATE:	S-4
FINAL UNLESS ALL	1			3			TOTAL SHEETS
SIGNATURES COMPLETED	2			4			17
					<u>Э1</u> Г		

STD.NO.21LRFR1_90S_55L

![](_page_20_Figure_0.jpeg)

pknewton

+

![](_page_20_Figure_4.jpeg)

STD. NO. 21" PCS2_30_90S

![](_page_21_Figure_0.jpeg)

ASSEMBLED BY :P.K.NEW	TON	DATE :	3/1/17
CHECKED BY : G.W.DIC	CKEY	DATE :	3/2/17
DRAWN BY : DGE 3/09	REV.	12/5/11	MAA/AAC
CHECKED BY : BCH 3/09	REV.	8/14	MAA/TMG

+

+

![](_page_21_Figure_3.jpeg)

PLAN OF UNIT

![](_page_21_Figure_5.jpeg)

STD. NO. 21" PCS_30_90S_25L

![](_page_22_Figure_0.jpeg)

07-MAR-2017 08:31 S:\DPG1\Division2\17BP.2.R.69\Plans\17BP.2.R.69_SMU_ FinalPlans_730086.dgn pknewton

+

18'-4"	18'-4"
OUTED DETAILS P.)	10-#5 B14 IN VERTICAL CONCRETE BARRIER RAIL
RLINE -	#5 S3 & #5 S4 •
12'' Ø VOIDS (TYP.EA. SLAB UNIT)	4" (TYP.) (TYP.)
1′-9″ SPLICE	
Ø L.R. TRANSVERSE NSIONING STRAND 2'' Ø HOLE (TYP.)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
GUTTERLINE	
€ ½″ EXP.JT. MAT′L.IN RAIL (TYP.)	#4 S2 #4 S2 VERTICAL CONCRETE BARRIER RAIL
RS (SPACED AS SHOWN IN DETAIL ``A'')(TYP.EA.UNIT)	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►
55'-0"	27'-6"
<u>Plan of unit</u>	

![](_page_22_Figure_5.jpeg)

STD.NO.21"PCS_30_90S_55L

		BAR TYPES
25' CORED SLAB UNIT	55' CORED SLAB UNIT	7" 6" AL
EXTERIOR UNIT     INTERIOR UNIT       BAR     NUMBER     SIZE     TYPE     LENGTH     WEIGHT     LENGTH     WEIGHT       B1     2     #4     STR     24'-8"     33     24'-8"     33	EXTERIOR UNITINTERIOR UNITBARNUMBERSIZETYPELENGTHWEIGHTLENGTHWEIGHTB74#4STR28'-3"7528'-3"75	AA SP
S1     8     #5     3     4'-3"     35     4'-3"     35	S1     8     #5     3     4'-3"     35     4'-3"     35	
S2         54         #4         3         5'-4"         192         5'-4"         192           * S3         34         #5         1         5'-7"         198	S2     114     #4     3     5'-4"     406     5'-4"     406       * S3     64     #5     1     5'-7"     373	
REINFORCING STEEL LBS. 260 260	REINFORCING STEEL LBS. 516 516	
* EPOXY COATED REINFORCING STEEL LBS. 198	* EPOXY COATED REINFORCING STEEL LBS. 373	
0.6" Ø L.R. STRANDS No. 9 9	0.6" Ø L.R. STRANDS No. 19 19	© ∳≥ RI SU IN
CORED SLABS REQUIRED     DEAD LOAD DEF       NUMBER LENGTH TOTAL LENGTH     21% C. S. LINTTO. 6% CL. P. S.	LECTION AND CAMBER     GRADE 270 STRANDS       TRAND     SPAN & OR C     SPAN B       0.6"ØL.R.	S1 1'-9''
25' UNIT       21 C. S. UNIT0.6 Ø L.R. S         EXTERIOR C.S. 4       25'-0"         TNTERTOR C.S. 16       25'-0"	TRAIND     (25'-0" UNITS)     (55'-0" UNITS)     AREA     0.217       LACE     1/4"     1/2"     ULTIMATE STRENGTH     55.000	- <u>S2 2'-8''</u> 万 ♂ PR
TOTAL     20     25'-0"     500'-0"     DEFLECTION DUE TO CONCRETE WEARING SURFACE	1/8"     1/2     1/2     1/2     1/2     58,600       1/8"     3/8"     ↓     APPLIED PRESTRESS     43,950	
55' UNIT     FINAL CAMBER       EXTERIOR C.S. 2     55'-0"       INTERIOR C.S. 2     55'-0"	1/8" + 1/8" +	J  I  I  I  GR    ALL BAR DIMENSIONS ARE OUT TO OUT  SH
INTERIOR C.S.     8     55'-0"     440'-0"       TOTAL     10     55'-0"     550'-0"		CO AN
CONCRETE RELEASE STRENGTH		FL. FO
UNIT PSI 25' UNTIS 4000		Ĩ-I I III FA
55' UNITS 4900	$\overline{}$	C BEARING PAD     UN     B     B     A
1'-0"		
		NU (1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1
		BEARING PAD - TYPE I -
		FIXED END
		(TYPE I - 60 REQ'D)
	$\frac{2^{1/2''}}{2''} = \frac{1}{2''} = \frac{2^{1/2''}}{ELASIONER IN}$	MERIC BEARING DETAILS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{ IUN  - }{ JOINT AT BENT}$	REE DERITINGS SHALE DE 30 DOROMETER HARDNESS.
FOAM JO	INT IS NOT USED)	2'-0"
	(THIS IS TO BE USED ONLY WHEN SLIP FORM IS USED)	4-#5 S3 6″ 4-#5 S3
$\begin{bmatrix} 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 $	2 1/2" EXP. JT. MAT'L HELD IN ACE WITH GALVANIZED NAILS.	FIELD BEND
	NOTE: OMIT EXP. JT. MAT'L.	
	JT. IN FIELD CUT	
	$\frac{\text{CHAMFER}}{34^{\prime\prime}} \qquad \frac{\text{CHAMFER}}{34^{\prime\prime}} \qquad \text{#5 S3}$	m FIELD
M. VAF	$\frac{3/4"}{CHAMFER} \qquad \frac{3/4"}{CHAMFER}$	CUT + + + + + + + + + + + + + + + + + + +
#5 S3 (SEE ``PLAN OF UNIT'' FOR SPACING)		
	VATION AT EXPANSION JOINTS	CONST. JT.
VFRTTCAL CONCRETE RARRTE	R RATI SECTION END VIEW	SIDE VIEW
	END	OF RAIL DETAILS
CHECKED BY: G.W.DICKEY DATE: 3/2/17 DRAWN BY: DGE 5/09		
CHECKED BY : BCH 6/09 REV. II/I4 MAA/TMG		

07-MAR-2017 08:31 S:\DPG1\Division2\17BP.2.R.69\Plans\17BP.2.R.69_SMU_ FinalPlans_730086.dgr pknewton

-

![](_page_23_Figure_4.jpeg)

![](_page_23_Figure_7.jpeg)

ALL PRESTRESSING STRANDS SHALL BE 7-WIRE LOW RELAXATION GRADE 270 STRANDS AND SHALL CONFORM TO AASHTO M203 EXCEPT FOR SAMPLING REQUIREMENTS WHICH SHALL BE IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

ALL REINFORCING STEEL CAST WITH THE CORED SLAB SECTIONS SHALL BE GRADE 60 AND SHALL BE INCLUDED IN THE UNIT PRICE BID FOR PRESTRESSED CONCRETE CORED SLABS.

RECESSES FOR TRANSVERSE STRANDS SHALL BE GROUTED AFTER THE TENSIONING OF THE STRANDS.

THE 21/2" & DOWEL HOLES AT FIXED ENDS OF SLAB SECTIONS SHALL BE FILLED WITH NON-SHRINK GROUT.

THE STANDARD SPECIFICATIONS.

WHEN CORED SLABS ARE CAST, AN INTERNAL HOLD-DOWN SYSTEM SHALL BE EMPLOYED TO PREVENT VOIDS FROM RISING OR MOVING SIDEWAYS.AT LEAST SIX WEEKS PRIOR TO CASTING CORED SLABS, THE CONTRACTOR SHALL SUBMIT TO THE ENGINEER FOR REVIEW AND COMMENT, DETAILED DRAWINGS OF THE PROPOSED HOLD-DOWN SYSTEM. IN ADDITION TO STRUCTURAL DETAILS, LOCATION AND SPACING OF THE HOLD-DOWNS SHALL BE INDICATED.

THE TRANSFER OF LOAD FROM THE ANCHORAGES TO THE CORED SLAB UNIT SHALL BE DONE WHEN THE CONCRETE HAS REACHED A COMPRESSIVE STRENGTH OF NOT LESS THAN THE REQUIRED STRENGTH SHOWN IN THE "CONCRETE RELEASE STRENGTH" TABLE.

ALL REINFORCING STEEL IN VERTICAL CONCRETE BARRIER RAILS SHALL BE EPOXY COATED.

PRESTRESSING STRANDS SHALL BE CUT FLUSH WITH THE CORED SLAB UNIT ENDS.

APPLY EPOXY PROTECTIVE COATING TO CORED SLAB UNIT ENDS.

GROOVED CONTRACTION JOINTS, 1/2" IN DEPTH, SHALL BE TOOLED IN ALL EXPOSED FACES OF THE BARRIER RAIL AND IN ACCORDANCE WITH ARTICLE 825-10(B) OF THE STANDARD SPECIFICATIONS. A CONTRACTION JOINT SHALL BE LOCATED AT EACH THIRD POINT BETWEEN BARRIER RAIL EXPANSION JOINTS. ONLY ONE CONTRACTION JOINT IS REQUIRED AT MIDPOINT OF BARRIER RAIL SEGMENTS LESS THAN 20 FEET IN LENGTH AND NO CONTRACTION JOINTS ARE REQUIRED FOR THOSE SEGMENTS LESS THAN 10 FEET IN LENGTH.

FLAME CUTTING OF THE TRANSVERSE POST-TENSIONING STRAND IS NOT ALLOWED.

FOR GROUT FOR STRUCTURES, SEE SPECIAL PROVISIONS.

THE PERMITTED THREADED INSERTS ARE DETAILED AS AN OPTION FOR THE CONTRACTOR TO ATTACH FALSEWORK AND FORMWORK DURING CONSTRUCTION. THE PERMITTED THREADED INSERTS IN THE EXTERIOR UNITS SHALL BE SIZED BY THE CONTRACTOR, SPACED AT 4'-O" CENTERS AND GALVANIZED IN ACCORDANCE WITH SECTION 1076 OF THE STANDARD SPECIFICATIONS. STAINLESS STEEL THREADED INSERTS MAY BE USED AS AN ALTERNATE.

THE PERMITTED THREADED INSERTS SHALL BE GROUTED BY THE CONTRACTOR IMMEDIATELY FOLLOWING REMOVAL OF THE FALSEWORK.

THE COST OF THE PERMITTED THREADED INSERTS SHALL BE INCLUDED IN THE PRICE BID FOR THE PRECAST UNITS.

BI	LL OF MATERIAL FOR VERTI	CAL CONCI	RETE	BARR	RIER R	AIL
BAR	BARS PER PAIR OF EXTERIOR UNITS	TOTAL NO.	SIZE	TYPE	LENGTH	WEIGHT
	25' UNIT					
<b>*</b> B8	20	40	<b>#</b> 5	STR	24'-7"	1026
<b>*</b> S4	68	136	#5	2	7'-2"	1017
	55' UNIT					
<b>*</b> B14	40	40	#5	STR	27'-1"	1130
<b>*</b> S4	128	128	<b>#</b> 5	2	7'-2"	957
<b>★</b> EPOX	Y COATED REINFORCING STEEL			LBS.		4130
CLASS	AA CONCRETE			CU.YDS.	1	26.9
TOTAL	VERTICAL CONCRETE BARRIER RAIL			LN.FT.		210.50

![](_page_23_Figure_25.jpeg)

0.6″Ø

![](_page_23_Figure_26.jpeg)

## NOTES

THE BACKER RODS SHALL CONFORM TO THE REQUIREMENTS OF TYPE M BOND BREAKER. SEE SECTION 1028 OF

LINE ASPI	HALT THICKNES	S & RAIL	. HEIGHT
	ASPHALT OVERLAY	THICKNESS	RAIL HEIGHT
	@ MID-SPA	AN	@ MID-SPAN
IITS	2 ⁵ ⁄8″		3′-85⁄8″
IITS	15⁄8″		3'-7 <mark>5/</mark> 8"

		PROJECT NO. <u>17BP.2.R.69</u> <u>PITT</u> COUNTY STATION: <u>12+62.00</u> -L- SHEET 4 OF 4
ANDS 0.6″ØL.R. 0.217 58,600 43,950	SEAL 26445 Docusigned by: P. Korey, Newton 4FF39D1431B407	DEPARTMENT OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH 3'-0'' X 1'-9'' PRESTRESSED CONCRETE CORED SLAB UNIT 90° SKEW
	3/7/2017	REVISIONS SHEET NO.
DOCUI F SIC	MENT NOT CONSIDERED INAL UNLESS ALL NATURES COMPLETED	NO.         BY:         DATE:         NO.         BY:         DATE:         S=0           1         3
		STD. NO. 21" PCS3_30_90S

![](_page_24_Figure_0.jpeg)

+

+

WITH AASHTO M111. THE ENGINEER.) ATTACHMENT, SEE SKETCH. SHARP POINTED TOOL.

THE VERTICAL REINFORCING BARS MAY BE SHIFTED SLIGHTLY IN THE VERTICAL CONCRETE BARRIER RAIL TO CLEAR ASSEMBLY BOLTS.

THE 1  $\frac{1}{4}$ " Ø HOLES SHALL BE FORMED OR DRILLED WITH A CORE BIT. IMPACT TOOLS WILL NOT BE PERMITTED. ANY CONCRETE DAMAGED BY THIS WORK SHALL BE REPAIRED TO THE SATISFACTION OF THE ENGINEER.

END OF SLAB

### NOTES

THE GUARDRAIL ANCHOR ASSEMBLY SHALL CONSIST OF A  $\frac{1}{4}$ " HOLD DOWN PLATE AND 7 -  $\frac{7}{8}$ " Ø BOLTS WITH NUTS AND WASHERS.

THE HOLD-DOWN PLATE SHALL CONFORM TO AASHTO M270 GRADE 36.AFTER FABRICATION, THE HOLD-DOWN PLATE SHALL BE HOT-DIP GALVANIZED IN ACCORDANCE

BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307 AND NUTS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M291. BOLTS, NUTS AND WASHERS SHALL BE GALVANIZED. (AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS, NUTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE  $\frac{7}{8}$ " Ø GALVANIZED BOLTS, NUTS AND WASHERS. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY

THE GUARDRAIL ANCHOR ASSEMBLY IS REQUIRED AT ALL POINTS WHERE APPROACH GUARDRAIL IS TO BE ATTACHED TO THE END OF BARRIER RAIL.FOR POINTS OF

AFTER INSTALLATION, THE EXPOSED THREAD OF THE BOLT SHALL BE BURRED WITH A

THE COST OF THE GUARDRAIL ANCHOR ASSEMBLY SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR VERTICAL CONCRETE BARRIER RAIL.

![](_page_24_Figure_15.jpeg)

![](_page_25_Figure_0.jpeg)

07-MAR-2017 08:31 S:\DPG1\Division2\17BP.2.R.69\Plans\17BP.2.R.69_SMU_ FinalPlans_730086.dgn pknewton

+

+

## NOTES

STIRRUPS IN CAP MAY BE SHIFTED AS NECESSARY TO CLEAR DOWELS.

THE CONCRETE IN THE SHADED AREA OF THE WING SHALL BE POURED AFTER THE

VERTICAL CONCRETE BARRIER RAIL IS CAST IF SLIP FORMING IS USED.

FOR PILE SPLICE DETAILS, SEE SHEET 4 OF 4.

FOR WING DETAILS, SEE SHEET 3 OF 4. PROJECT NO. 17BP.2.R.69 PITT COUNTY STATION: 12+62.00 -L-SHEET 1 OF 4 STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH H CARO OFESSION *** SEAL** 26445 SUBSTRUCTURE N CINEER OREY NEW END BENT No.1 DocuSigned by: P. Korey Newton 4FFE39D1431B407... 3/7/2017 SHEET NO. REVISIONS S-10 DATE: DATE: BY: DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED BY: NO. TOTAL SHEETS 17

STD.NO.EB_30_90S4

![](_page_26_Figure_0.jpeg)

07-MAR-2017 08:31 S:\DPG1\Division2\17BP.2.R.69\Plans\17BP.2.R.69_SMU_ FinalPlans_730086.dgn pknewton

+

+

## NOTES

STIRRUPS IN CAP MAY BE SHIFTED AS NECESSARY TO CLEAR DOWELS.

THE CONCRETE IN THE SHADED AREA OF THE WING SHALL BE POURED AFTER THE

VERTICAL CONCRETE BARRIER RAIL IS CAST IF SLIP FORMING IS USED.

FOR WING DETAILS, SEE SHEET 3 OF 4.

FOR PILE SPLICE DETAILS, SEE SHEET 4 OF 4.

PROJECT NO. 17BP.2.R.69 PITT COUNTY STATION: 12+62.00 -L-SHEET 2 OF 4 STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH H CARO OFESSION *** SEAL** 26445 SUBSTRUCTURE N CINEER OREY NEW END BENT No. 2 DocuSigned by: P. Korey Newton 4FFE39D1431B407... 3/7/2017 SHEET NO. REVISIONS S-11 DATE: DATE: BY: DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED BY: NO. TOTAL SHEETS 17 STD.NO.EB_30_90S4

![](_page_27_Figure_0.jpeg)

pknewton

+

STD.NO.EB_30_90S4

![](_page_28_Figure_0.jpeg)

pknewton

+

ES	BILL OF MATERIAL					
		FOF	R ON	IE E	ND BE	NT
	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
	B1	8	#9	1	38'-0"	1034
	B2	28	#4	STR	19'-1"	357
нк. С нк.	B3	9	#4	STR	2′-5″	15
× (4) ×						
	D1	20	<b>#</b> 6	STR	1'-6"	45
1′-3′′ Ι ΔΡ						
	H1	40	#4	2	9'-4"	249
$\mathbf{x}$						
	К1	16	#4	STR	2'-11"	31
	S1	46	#4	3	10'-5"	320
	<u>S2</u>	46	#4	4	3'-2"	97
	53	20	#4	5	6'-6"	87
	>/1	<b>5</b> 0	# 4	CTD	C/ 0//	21.4
1′-8″Ø		52	<del>*</del> 4	SIR	6-2	214
	REINF (FOR	ORCIN ONE E	NG STE ND BEN	EL IT)	2	449 LBS.
	CLASS	5 A C(	DNCRET	E BREA	AKDOWN	
		(FOR (	ONE ENI	D BEN	Τ)	
	POUR	#1 C 0	AP,LOW F WINC	/ER PA S & (	RT COLLARS	17.9 C.Y.
E OUT TO OUT.	POUR	#2 U	PPER P	ART O	)F	2.1 C.Y.
END BENT No 2	1	W	INGS			
HF 12 X 53 STEEL FILES					TC 4	
NU: 5 LIN. FI.= 275	TOTAL	L CLAS	SS A C	ONCRE	IE a	20.0 C.Y.
PILE REDRIVES 3						

![](_page_29_Figure_0.jpeg)

pknewton

+

	PILE VERTICAL OR VERTICAL OR VERTICAL OR VERTICAL OR VERTICAL OR VERTICAL OR VERTICAL OR VERTICAL OR VERTICAL OR VERTICAL OF UP OF
*4 U2	
ASSEMBLED BY : P.K.NEWTON DATE : CHECKED BY : G.W.DICKEY DATE : DRAWN BY : DGE 05/10 CHECKED BY : MKT 05/10 REV. 11/14	$\frac{END OF CAP VIEW}{(TYPICAL BOTH ENDS)}$

+

+

07-MAR-2017 08:31 S:\DPG1\Division2\17BP.2.R.69\Plans\17BP.2.R.69_SMU_ FinalPlans_730086.dgn pknewton

![](_page_30_Figure_2.jpeg)

_____

![](_page_30_Figure_3.jpeg)

		BILL OF MATERIAL						
				FOR	ONE	BENT		
<u> </u>	-3'' LAP	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT	
		B1	4	<b>#</b> 10	1	34'-10"	600	
	<b>Y</b>	B2	4	<b>#</b> 10	STR	32'-2"	554	
		B3	4	<b>#</b> 5	STR	32'-2"	134	
$\left( \bigcirc \right)$		B4	8	#4	STR	17'-4"	93	
((3))		B5	8	#4	STR	2'-11"	16	
		D1	40	<b>#</b> 6	STR	1'-6"	90	
2'-0"Ø								
	1	S1	32	<b>#</b> 5	2	8'-1"	270	
		S2	14	#4	3	7'-7″	71	
		U1	4	#4	4	5′-10″	16	
2'-10"	<u>U1</u>	U2	6	#4	4	5′-0″	20	
2'-0"	U2	U3	2	#9	4	10'-1"	69	
2′-9″	U3							
	1	REINFO (FOR	ORCING ONE E	STEEL BENT)			1933 LBS	
(4) CLASS A CONCRETE BREAKDOWN (FOR ONE BENT)								
TOTAL CLAS				OTAL CLASS A CONCRETE 9.8 C.Y.				
		HP 14 X 73 GALVANIZED STEEL PILES (FOR ONE BENT)				S		
		No.	, 7			LIN.	FT. 455	
UT.		PII	_E RED	RIVES			NO: 4	

•

STD.NO.14"HP_BT_30_90S_<60'

![](_page_31_Figure_0.jpeg)

ASSEMBLED BY : P.K.NEWT CHECKED BY : G.W.DICKEY	ON DATE : DATE :	3/1/17 3/2/17
DRAWN BY : REK 1/84 CHECKED BY : RDU 1/84	REV. 5/1/06R REV. 10/1/11 REV. 12/21/11	TLA/GM MAA/GM MAA/GM

+

+

٧0	TES	0				
OR	BERM	WIDTH	DIMENSIONS,	SEE	GENERAL	DRAWING.

ESTIMATED QUANTITIES					
<b>@</b>	RIP RAP CLASS II (2'-0" THICK)	GEOTEXTILE FOR DRAINAGE			
	TONS	SQUARE YARDS			
BENT 1	130	145			
BENT 2	135	150			

IND LINE	STATIO	PIT 0n:_1	T 2+	-62.	co .00 -	DUNTY -L-
SEAL 26445 Docusigned by: P. Korey, Newton 4FE39D1431B407	depa	RTMENT S		IORTH CARC TRAN ALEIGH NDAR DE	D D TATL	TION
3/7/2017		REVI	SIONS			SHEET NO.
DOCUMENT NOT CONSTDERED	NO. BY:	DATE:	NO.	BY:	DATE:	S-16
FINAL UNLESS ALL SIGNATURES COMPLETED	1 2		3 4			TOTAL SHEETS 17
			Ś	STD.	NO. RR	1 (Sht 2)

PROJECT NO. 17BP.2.R.69

![](_page_32_Figure_0.jpeg)

07-MAR-2017 08:31 S:\DPG1\Division2\17BP.2.R.69\Plans\17BP.2.R.69_SMU_ FinalPlans_730086.dgn pknewton

+

AND #78M STONE BACKFILL, SEE ROADWAY PLANS. BE PAVED. SEE ROADWAY PLANS.

![](_page_32_Figure_6.jpeg)

SPLICE LENGTHS				
BAR SIZE	EPOXY COATED	UNCOATED		
#4	2'-0"	1'-9″		
<b>#</b> 5	2'-6"	2'-2"		
<b>#</b> 6	3'-10"	2'-7"		

Z_NIN

SECTION N-N

STD. NO. BAS_30_90S