REFERENCE

CONTENTS

DESCRIPTION TITLE SHEET

LEGEND (SOIL & ROCK)

SITE PLAN

PROFILE BORE LOGS

SHEET NO.

5011.

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY NEW HANOVER

PROJECT DESCRIPTION NEW LOCATION NORTHWESTERN QUADRANT CONNECTION BETWEEN US 74 (EASTWOOD RD.) AND SR 1409 (MILITARY CUTOFF RD.)

SITE DESCRIPTION <u>EASTWOOD</u> STORMWATER BASIN RETAINING WALL

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	U-5710A	1	5

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES, THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 707-6550. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU INN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS,

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HINSELF AS TO CONDITIONS TO BE ENCOUNTERED OF PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- IES:
 THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT
 OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS
 OR CONTRACT FOR THE PROJECT.
 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS
 FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE
 CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL ZIMARINO, S.N. SMITH, R.E. PINTER, D.G.

INVESTIGATED BY __T.C. BOTTOMS DRAWN BY _S.N. ZIMARINO SUBMITTED BY <u>D.N.</u> ARGENBRIGHT DATE NOVEMBER 2019

PROJECT REFERENCE NO. SHEET NO.

U-5710A

2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS				
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.				
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.				
IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.				
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.				
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, <u>SUBANGULAR, SUBROUNDED</u> , OR <u>ROUNDED</u> .	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT				
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS	MINERALOGICAL COMPOSITION	CRYSTALLINE CRYSTALLINE CRYSTALLINE CRYSTALLINE	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND				
CLASS. (\$\(\sigma\) 35\(\chi\) PASSING "200) (\$\(\sigma\) 35\(\chi\) PASSING "200)	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAQLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (CR) WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC.	SURFACE. CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.				
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-0 A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-2-7 A-3-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM				
SYMBOL 0000000000	SLIGHTLY COMPRESSIBLE LL < 31	ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	OF SLOPE.				
7. PASSING	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.				
■10 50 MX GRANULAR SIL1- MUCK,	PERCENTAGE OF MATERIAL	CP) SHELL BEDS, ETC. WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT				
#40 30 MX 50 MX 51 MN PEAT SOILS PEAT SOILS SOILS PEAT	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK.				
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.				
PASSING *40 SOILS WITH	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE				
LL 40 MX 41 MN LITTLE OR P1 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN MODERATE HIGHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.				
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOULS	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE				
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.				
OF MAJOR GRAVEL, AND SAND GRAVEL AND SAND SOILS SOILS	$lacktright$ Static water level after $\underline{24}$ hours	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM				
CEN PATING	∇PW PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	PARENT MATERIAL.				
AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM,				
PI OF A-7-5 SUBGROUP IS ≤ LL - 30; PI OF A-7-6 SUBGROUP IS > LL - 30	-	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.				
CONSISTENCY OR DENSENESS RANGE OF STANDARD RANGE OF UNCONFINED	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.				
PRIMARY SOIL TYPE COMPACTNESS OR PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	<u>IF TESTED, WOULD YIELD SPT REFUSAL</u>	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO				
(N-VALUE) (TONS/FT ²) VERY LOOSE < 4	with soil description of rock structures Self-rock structures SLOPE INDICATOR	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	ITS LATERAL EXTENT.				
GENERALLT LOOSE 4 TO 10	SOIL SYMBOL OPT ONT TEST BORING INSTALLATION OPT ONT TEST BORING	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.				
MATERIAL DENSE 10 10 30 N/A	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT AUGER BORING TEST	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC ELEMENTS ARE DISCERNIBLE	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.				
(NON-COHESIVE) VERY DENSE > 50	THAN ROADWAY EMBANKMENT TEST	SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE				
VERY SOFT < 2 < 0.25 GENERALLY SOFT 2 TO 4 0.25 TO 0.5	- INFERRED SOIL BOUNDARY - CORE BORING SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	OF AN INTERVENING IMPERVIOUS STRATUM.				
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE ON DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF				
MATERIAL STIFF 8 TO 15 1 TO 2	A ALLUMIA CON POUNDARY A PIEZOMETER	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE				
HARD > 30 > 4	INSTRUCTION	ROCK HARDNESS	RUN AND EXPRESSED AS A PERCENTAGE. SAPPOLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT				
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES	ROCK.				
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO				
COARSE FINE	SHALLOW UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.				
BOULDER COBBLE GRAVEL SAND SAND SILI CLAY		MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT				
(CSE, SU.) (F SU.)	ABBRE VIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF				
GRAIN MM 305 75 2.0 0.25 0.005 0.005 SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL				
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 - DRY UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.				
SOIL MOISTURE SCALE FIELD MOISTURE CHIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY				
(ATTERBERG LIMITS) DESCRIPTION SOIDE TON TILES POISTONE BESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.				
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY				
LL LIQUID LIMIT	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.				
PLASTIC SEMISOLID; REQUIRES DRYING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING					
(PI) PLASTIC LIMIT ATTAIN OPTIMUM MOISTURE	HI HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS	BENCH MARK: ELEVATIONS REFERENCED TO FILE "U5710 MERGED TIN.+in" DATED 10/16/18				
- MOIST - (M) SOLIDAT OR NEAR OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	ELEVATION: FEET				
OM _ OPTIMUM MOISTURE SL _ SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	NOTES:				
- DRY - (D) REQUIRES ADDITIONAL WATER TO	X CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE	NOTESI				
ATTAIN OPTIMUM MOISTURE	CME-55 6° CONTINUOUS FLIGHT AUGER CORE SIZE:	THINLY LAMINATED < 0.008 FEET					
PLASTICITY	8* HOLLOW AUGERS	INDURATION	1				
PLASTICITY INDEX (PI) DRY STRENGTH	L CME-550	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS;					
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST UNGCARBIDE INSERTS	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.					
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	X CASING W/ ADVANCER POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE:					
COLOR	PORTABLE HOIST X TRICONE 2 15/6 STEEL TEETH HAND AUGER	BREAKS EASILY WHEN HIT WITH HAMMER.					
	TRICONE TUNGCARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.					
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	CORE BIT VANE SHEAR TEST	SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;					
		SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14				

		, , , , , , , , , , , , , , , , , , ,	 		 	 	, - - 				; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	 	 	 		 				REFERENCE NO -57/0A DESIGN	. SHEE
				PROF	<u> </u>	T-H	ROU	GH	BORINGS	} \$ <i>P</i> ,	ROJE C7	ED.	<u>ALO</u> /	V <i>G</i>	BASIN_	<u> </u> 			l		FE PLANS ACQUISITION
						 	-	- 													
 			;		- 		 				;; 		- 	 	;; !	 	;;; !	-	V.E	 i. =	2
					 - 	 	 	 - 	 	 - 				 	 	 					
			 		 - 	 	 	 - 	 	 			 	 	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 		 		
	 		 		 	 	 	1 1 1 1 1		 				1 1 1 1 1		 					
 					-		1 1 1	- - - - - - -	! ! ! ! !	- - - - - - - -				 		1	- 	 			i
	 		 		 		; ;;	 		 	 	 	<u> </u>	 		 					
 	 				1 1 1 1	B 10- 207	+9[_	! ! !		1 1 1 1			3-2 +72 5'LT	 		1 1 1 1					
			 		 	201	ETT	 		 		26) LT	 		 					
0				i 	- - - - - - - -		 	 - 	; !	 - 			- 	 	; 	 	 	; -			
5	- <u></u> -		<u> </u>	<u></u>	÷(5	<u> </u>	 	: 		 - 				<u> </u>	 	 				<u></u> -	
ο	1		L	OOSE BROWN	5				SAND, MOIS	T 				_(_ART_	FICIAL FILI						
<u> </u>					3			<u></u>		 ! !				/ /19		1			 		
5	VERY	LOOSE TO LOOSE	GRAY S	AND. MOIST	†o \(\frac{7}{3}		 	/19 SA 	TURATED (UND	I V I DE C	COASTAL P	LAIN)	0000 0000 01000 	 		 	- - - -				
0	 	VERY SOFT (; GRAY SAI	NDY AND SIL	TY WO			CLAY	WET (UNDIV	DED C	DASTAL PLA	IN)		1 1 1 1 1		 					
		† †	+		WO							 		†		1	-	 		 	
5		LOOSE TO	DENSE	GRAY SAND.	8			SATU	VIDNU - DETA	IDED C	DASTAL	I Ņ)	 	 				 	 		
)			 		4			 		 	·		 - 	 	 	1 1 1 1	 - 	 	 		
5	 		 					1 1 1 1 1		1 1 1 1				 		 					
			 		 	 	 	 		 				 		1					
10			 		 		 	 		 		 	 	 		 	 		N ONC _P	ACINI W	
5	 				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	 	1 1 1 1		1 1 1 1				1 1 1 1 1		AND PR	GROUNDLINE OPOSED WAL FROM WALL	L LAYOUT ENVELOPE (DRAWINGS	DATED	1
 ·					-i		†							; · · · · · · · · · · · ·		NOTE:	INFERRED S H THE BORI TED ONTO T	TRATIGRAPH	H¦IS DRAN BOTH	VN .	
	 !		; 	; 	 	 	 - 	 - 		 - 				 		PROJEC		HE PROFILE	<u>-</u>	 	
-				 	 - 	: ! ! !	: ! ! !	: ! ! !		: ! ! !				: - - 	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				 		
 	 		 			! ! !	! ! !														1
10			1		1	I I	1	<u>:</u> 1	1 1	1	1 1 1 1	1	1	I I	12	1	1 1	1	<u> </u>		į

GEOTECHNICAL BORING REPORT BORE LOG

BORE LOG					
WBS 50115.1.FS1 TIP U-5710A COUNTY NEW HANOVER	GEOLOGIST Zimarino, S. N.	WBS 50115.1.FS1	TIP U-5710A COUN	TY NEW HANOVER	GEOLOGIST Zimarino, S. N.
SITE DESCRIPTION EASTWOOD STORMWATER BASIN RETAINING WALL	GROUND WTR (ft)	SITE DESCRIPTION EASTWOOD	STORMWATER BASIN RETAINI	NG WALL	GROUND WTR (ft)
BORING NO. B-1 STATION 10+91 OFFSET 20 ft LT	ALIGNMENT -BASIN_W- 0 HR. N/A	BORING NO. B-2	STATION 11+72	OFFSET 26 ft LT	ALIGNMENT -BASIN_W- 0 HR. N/A
COLLAR ELEV. 25.1 ft TOTAL DEPTH 26.5 ft NORTHING 177,360	EASTING 2,353,777 24 HR. 7.9	COLLAR ELEV. 25.2 ft	TOTAL DEPTH 10.0 ft	NORTHING 177,390	EASTING 2,353,854 24 HR. 6.0
DRILL RIG/HAMMER EFF/DATE GF00075 CME-45C 89% 08/19/2019 DRILL METHOD Mux	Rotary HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF/DATE N/A		DRILL METHOD H	and Auger HAMMER TYPE N/A
DRILLER Smith, R. E. START DATE 10/24/19 COMP. DATE 10/24/19	SURFACE WATER DEPTH N/A	DRILLER Smith, R. E.	START DATE 10/24/19	COMP. DATE 10/24/19	SURFACE WATER DEPTH N/A
ELEV DRIVE ELEV DEPTH BLOW COUNT BLOWS PER FOOT SAMP.	SOIL AND ROCK DESCRIPTION	ELEV DRIVE DEPTH BLOW COUN	NT BLOWS PER FO		SOIL AND ROCK DESCRIPTION
(ft) (ft) (ft) (0.5ft 0.5ft 0.5ft 0 25 50 75 100 NO. MOI G	ELEV. (ft) DEPTH (ft)	(ft) (ft) (ft) 0.5ft 0.5ft (0.5ft 0 25 50	75 100 NO. MOI G	
30		30			_
					-
25 25.1 0.0	25.1 GROUND SURFACE 0.0	25			F 25.2 GROUND SURFACE 0.0
1 2 3 65	ARTIFICIAL FILL BROWN SAND, MOIST	1 1			ARTIFICIAL FILL BROWN SAND, MOIST
226 + 2.5 2 2 3	·				21.7
20 20.1 + 3.0 WOH 1 2 1	20.6 UNDIVIDED COASTAL PLAIN 4.5	20			LOOSE GRAY SAND, MOIST TO
17.6 T 7.5	GRAY SAND, MOIST TO SATURATED				SATURATED
15 15.1 10.0 2 2 5 7					15.2 10.0
6 2 1 43	14.0 11.1 GRAY SANDY CLAY, WET				Boring Terminated at Elevation 15.2 ft in Loose Sand
12.6 + 12.5 WOH WOH WOH WOH 12.5 1.1.1	·				
10 10.1 15.0 WOH WOH WOH	10.6 GRAY SILTY CLAY, WET 14.5				-
7.6 + 17.5	8.5 GRAY SAND, SATURATED 10.5				F
5 5.1 20.0 7 9 11 20					-
5 5 3					F
2.0 22.5 3 2 2 4					-
0 0.1 25.0 6 14 23	-1.4 26.5				<u>-</u>
+	Boring Terminated at Elevation -1.4 ft in				
	Dense Sand				
					E
					_
					_
					_
					_
					_
					-
1					-
					_
					- -
					- -
		‡			F
					-
		‡			<u> </u>
벵 ‡					-
1					F
					-
					F
		‡			F
					- -
ğ ‡					F