# **Project Special Provisions**(Version 12.1) # Signals and Intelligent Transportation Systems Prepared By: RJZ 25-May-12 # **Contents** | ١. | SIC | GNAL HEADS | 2 | |----|------------|---------------------------------------------------|------| | | 1.1. | MATERIALS | | | | A. | General: | | | | В. | Vehicle Signal Heads: | | | | C. | Signal Cable: | | | 2. | CO | OMMUNICATIONS SYSTEM SUPPORT EQUIPMENT | | | | 2.1. | DESCRIPTION | | | | 2.2. | MATERIALS | | | | 2.2.<br>A. | General: | | | | B. | Fiber-Optic Support Equipment | | | | 2.3. | MEASUREMENT AND PAYMENT | | | , | CO | | | | ٥. | | NTROLLERS WITH CABINETS | | | | 3.1. | MATERIALS – TYPE 2070L CONTROLLERS | | | | 3.2. | MATERIALS – GENERAL CABINETS | | | | 3.3. | MATERIALS - TYPE 170E CABINETS | | | | Α. | Type 170 E Cabinets General: | 7 | | | В. | Type 170 E Cabinet Electrical Requirements: | 7 | | | <i>C</i> . | Type 170 E Cabinet Physical Requirements: | . 13 | | | D. | Model 2018 Enhanced Conflict Monitor: | . 14 | | | 3.4. | MATERIALS – NEMA TS-2 TYPE I CABINETS | 22 | | | A. | NEMA TS-2 Type 1 Cabinets General: | 22 | | | B. | NEMA TS-2 Type Cabinet Physical Requirements: | .23 | | | <i>C</i> . | NEMA TS-2 Type 1 Cabinet Electrical Requirements: | 23 | | | 3.5. | MATERIALS – NEMA TS-2 DETECTOR CARDS AND RACKS | 27 | | | | | | #### 1. SIGNAL HEADS #### 1.1. MATERIALS #### A. General: Fabricate vehicle signal head housings and end caps from die-cast aluminum. Provide visor mounting screws, door latches, and hinge pins fabricated from stainless steel. Provide interior screws, fasteners, and metal parts fabricated from stainless steel or corrosion resistant material. Fabricate tunnel and traditional visors from sheet aluminum. Paint all surfaces inside and outside of signal housings and doors. Paint outside surfaces of tunnel and traditional visors, messenger cable mounting assemblies, pole and pedestal mounting assemblies, and pedestrian pushbutton housings. Have electrostatically-applied, fused-polyester paint in highway yellow (Federal Standard 595C, Color Chip Number 13538) a minimum of 2.5 to 3.5 mils thick. Do not apply paint to the latching hardware or rigid vehicle signal head mounting brackets for mast-arm attachments. Have the interior surfaces of tunnel and traditional visors painted an alkyd urea black synthetic baking enamel with a minimum gloss reflectance and meeting the requirements of MIL-E-10169, "Enamel Heat Resisting, Instrument Black." For pole mounting, provide side of pole mounting assemblies with framework and all other hardware necessary to make complete, watertight connections of the signal heads to the poles and pedestals. Fabricate the mounting assemblies and frames from aluminum with all necessary hardware, screws, washers, etc. to be stainless steel. Provide mounting fittings that match the positive locking device on the signal head with the serrations integrally cast into the brackets. Provide upper and lower pole plates that have a 1 ¼-inch vertical conduit entrance hubs with the hubs capped on the lower plate and 1 ½-inch horizontal hubs. Ensure that the assemblies provide rigid attachments to poles and pedestals so as to allow no twisting or swaying of the signal heads. Ensure that all raceways are free of sharp edges and protrusions, and can accommodate a minimum of ten Number 14 AWG conductors. For light emitting diode (LED) traffic signal modules, provide the following requirements for inclusion on the Department's Qualified Products List for traffic signal equipment. - 1. Sample submittal, - 2. Third-party independent laboratory testing results for each submitted module with evidence of testing and conformance with all of the Design Qualification Testing specified in section 6.4 of each of the following Institute of Transportation Engineers (ITE) specifications: - Vehicle Traffic Control Signal Heads Light Emitting Diode (LED) Circular Signal Supplement - Vehicle Traffic Control Signal Heads Light Emitting Diode (LED) Vehicle Arrow Traffic Signal Supplement - Pedestrian Traffic Control Signal Indications –Light Emitting Diode (LED) Signal Modules. (Note: The Department currently recognizes two approved independent testing laboratories. They are Intertek ETL Semko and Light Metrics, Incorporated with Garwood Laboratories. Independent laboratory tests from other laboratories may be considered as part of the QPL submittal at the discretion of the Department, 3. Evidence of conformance with the requirements of these specifications, Signals & Intelligent Transportation Systems - 4. A manufacturer's warranty statement in accordance with the required warranty, and - 5. Submittal of manufacturer's design and production documentation for the model, including but not limited to, electrical schematics, electronic component values, proprietary part numbers, bill of materials, and production electrical and photometric test parameters. - 6. Evidence of approval of the product to bear the Intertek ETL Verified product label for LED traffic signal modules. In addition to meeting the performance requirements for the minimum period of 60 months, provide a written warranty against defects in materials and workmanship for the modules for a period of 60 months after installation of the modules. During the warranty period, the manufacturer must provide new replacement modules within 45 days of receipt of modules that have failed at no cost to the State. Repaired or refurbished modules may not be used to fulfill the manufacturer's warranty obligations. Provide manufacturer's warranty documentation to the Department during evaluation of product for inclusion on Qualified Products List (QPL). # B. Vehicle Signal Heads: Comply with the ITE standard "Vehicle Traffic Control Signal Heads". Provide housings with provisions for attaching backplates. Provide visors that are 10 inches in length for 12-inch vehicle signal heads. Provide a termination block with one empty terminal for field wiring for each indication plus one empty terminal for the neutral conductor. Have all signal sections wired to the termination block. Provide barriers between the terminals that have terminal screws with a minimum Number 8 thread size and that will accommodate and secure spade lugs sized for a Number 10 terminal screw. Mount termination blocks in the yellow signal head sections on all in-line vehicle signal heads. Mount the termination block in the red section on five-section vehicle signal heads. Furnish vehicle signal head interconnecting brackets. Provide one-piece aluminum brackets less than 4.5 inches in height and with no threaded pipe connections. Provide hand holes on the bottom of the brackets to aid in installing wires to the signal heads. Lower brackets that carry no wires and are used only for connecting the bottom signal sections together may be flat in construction. For messenger cable mounting, provide messenger cable hangers, wire outlet bodies, balance adjusters, bottom caps, wire entrance fitting brackets, and all other hardware necessary to make complete, watertight connections of the vehicle signal heads to the messenger cable. Fabricate mounting assemblies from malleable iron or steel and provide serrated rings made of aluminum. Provide messenger cable hangers and balance adjusters that are galvanized before being painted. Fabricate balance adjuster eyebolt and eyebolt nut from stainless steel or galvanized malleable iron. Provide messenger cable hangers with U-bolt clamps. Fabricate washers, screws, bolts, clevis pins, cotter pins, nuts, and U-bolt clamps from stainless steel. Provide LED vehicular traffic signal modules (hereafter referred to as modules) that consist of an assembly that uses LEDs as the light source in lieu of an incandescent lamp for use in traffic signal sections. Use LEDs that are aluminum indium gallium phosphorus (AlInGaP) technology for red and yellow indications and indium gallium nitride (InGaN) for green indications. Install the ultra bright type LEDs that are rated for 100,000 hours of continuous operation from -40°F to +165°F. Design modules to have a minimum useful life of 60 months and to meet all parameters of this specification during this period of useful life. For the modules, provide spade terminals crimped to the lead wires and sized for a #10 screw connection to the existing terminal block in a standard signal head. Do not provide other types of crimped terminals with a spade adapter. Signals & Intelligent Transportation Systems Ensure the power supply is integral to the module assembly. On the back of the module, permanently mark the date of manufacture (month & year) or some other method of identifying date of manufacture. Tint the red, yellow and green lenses to correspond with the wavelength (chromaticity) of the LED. Transparent tinting films are unacceptable. Provide a lens that is integral to the unit with a smooth outer surface. # 1. LED Circular Signal Modules: Provide modules in the following configurations: 12-inch circular sections, and 8-inch circular sections. All makes and models of LED modules purchased for use on the State Highway System shall appear on the current NCDOT Traffic Signal Qualified Products List (QPL). Provide the manufacturer's model number and the product number (assigned by the Department) for each module that appears on the 2012 or most recent Qualified Products List. In addition, provide manufacturer's certification in accordance with Article 106-3 of the *Standard Specifications*, that each module meets or exceeds the ITE "Vehicle Traffic Control Signal Heads – Light Emitting Diode (LED) Circular Signal Supplement" dated June 27, 2005 (hereafter referred to as VTCSH Circular Supplement) and other requirements stated in this specification. Provide modules that meet the following requirements when tested under the procedures outlined in the VTCSH Circular Supplement: | Module Type | Max. Wattage at 165° F | Nominal Wattage at 77° F | | |------------------------|------------------------|--------------------------|--| | 12-inch red circular | 17 | 11 | | | 12-inch green circular | 15 | 15 | | For yellow circular signal modules, provide modules tested under the procedures outlined in the VTCSH Circular Supplement to insure power required at 77° F is 22 Watts or less for the 12-inch circular module. Note: Use a wattmeter having an accuracy of $\pm 1\%$ to measure the nominal wattage and maximum wattage of a circular traffic signal module. Power may also be derived from voltage, current and power factor measurements. ## 2. LED Arrow Signal Modules Provide 12-inch omnidirectional arrow signal modules. All makes and models of LED modules purchased for use on the State Highway System shall appear on the current NCDOT Traffic Signal Oualified Products List (OPL). Provide the manufacturer's model number and the product number (assigned by the Department) for each module that appears on the 2012 or most recent Qualified Products List. In addition, provide manufacturer's certification in accordance with Article 106-3 of the *Standard Specifications*, that each module meets or exceeds the requirements for 12-inch omnidirectional modules specified in the ITE "Vehicle Traffic Control Signal Heads – Light Emitting Diode (LED) Vehicle Arrow Traffic Signal Supplement" dated July 1, 2007 (hereafter referred to as VTCSH Arrow Supplement) and other requirements stated in this specification. Provide modules that meet the following requirements when tested under the procedures outlined in the VTCSH Arrow Supplement: | Module Type | Max. Wattage at 165° F | Nominal Wattage at 77° F | | |---------------------|------------------------|--------------------------|--| | 12-inch red arrow | 12 | 9 | | | 12-inch green arrow | 11 | 11 | | Signals & Intelligent Transportation Systems For yellow arrow signal modules, provide modules tested under the procedures outlined in the VTCSH Arrow Supplement to insure power required at 77° F is 12 Watts or less. Note: Use a wattmeter having an accuracy of $\pm 1\%$ to measure the nominal wattage and maximum wattage of an arrow traffic signal module. Power may also be derived from voltage, current and power factor measurements. ## C. Signal Cable: Furnish 16-4 and 16-7 signal cable that complies with IMSA specification 20-1 except provide the following conductor insulation colors: - For 16-4 cable: white, yellow, red, and green - For 16-7 cable: white, yellow, red, green, yellow with black stripe tracer, red with black stripe tracer, and green with black stripe tracer. Apply continuous stripe tracer on conductor insulation with a longitudinal or spiral pattern. Provide a ripcord to allow the cable jacket to be opened without using a cutter. IMSA specification 19-1 will not be acceptable. Provide a cable jacket labeled with the IMSA specification number and provide conductors constructed of stranded copper. ## 2. COMMUNICATIONS SYSTEM SUPPORT EQUIPMENT #### 2.1. DESCRIPTION Furnish communications system support equipment with all necessary hardware in accordance with the plans and specifications. #### 2.2. MATERIALS #### A. General: Furnish equipment with test probes/leads, batteries (for battery-operated units), line cords (for AC-operated units), and carrying cases. Provide operating instructions and maintenance manuals with each item. Before starting any system testing or training, furnish all communications system support equipment. # B. Fiber-Optic Support Equipment #### 1. SMFO Transceiver (For Emergency Restoration): Furnish SMFO transceivers identical to the type installed in the traffic signal controller cabinets to be used for emergency restoration of the system and the fiber-optic communications system. #### 2.3. MEASUREMENT AND PAYMENT Actual number of fiber-optic transceivers furnished and accepted. Payment will be made under: #### 3. CONTROLLERS WITH CABINETS #### 3.1. MATERIALS – TYPE 2070L CONTROLLERS Conform to CALTRANS *Transportation Electrical Equipment Specifications* (TEES) (dated August 16, 2002, plus Errata 1 dated October 27, 2003 and Errata 2 dated June 08, 2004) except as required herein. Version 12.1 5 print date; 05/25/12 Signals & Intelligent Transportation Systems Furnish Model 2070L controllers. Ensure that removal of the CPU module from the controller will place the intersection into flash. The Department will provide software at the beginning of the burning-in period. Contractor shall give 5 working days notice before needing software. Program software provided by the Department. Provide model 2070L controllers with the latest version of OS9 operating software and device drivers, composed of the unit chassis and at a minimum the following modules and assemblies: - MODEL 2070 1B, CPU Module, Single Board - MODEL 2070-2A, Field I/O Module (FI/O) - MODEL 2070-3B, Front Panel Module (FP), Display B (8x40) - MODEL 2070-4A, Power Supply Module, 10 AMP - MODEL 2070-7A, Async Serial Com Module (9-pin RS-232) Furnish one additional MODEL 2070-7A, Async Serial Com Module (9-pin RS-232) for all master controller locations. For each master location and central control center, furnish a U.S. Robotics V.92 or approved equivalent auto-dial/auto-answer external modem to accomplish the interface to the Department-furnished microcomputers. Include all necessary hardware to ensure telecommunications. #### 3.2. MATERIALS – GENERAL CABINETS Provide a moisture resistant coating on all circuit boards. Provide one 20 mm diameter radial lead UL-recognized metal oxide varistor (MOV) between each load switch field terminal and equipment ground. Electrical performance is outlined below. | PROPERTIES OF MOV SURGE PROTECTOR | | | | | |---------------------------------------------|---------------|--|--|--| | Maximum Continuous Applied Voltage at | 150 VAC (RMS) | | | | | 185° F | 200 VDC | | | | | Maximum Peak 8x20µs Current at 185° F | 6500 A | | | | | Maximum Energy Rating at 185° F | 80 Ј | | | | | Voltage Range 1 mA DC Test at 77° F | 212-268 V | | | | | Max. Clamping Voltage 8x20µs, 100A at 77° F | 395 V | | | | | Typical Capacitance (1 MHz) at 77° F | 1600 pF | | | | Provide a power line surge protector that is a two-stage device that will allow connection of the radio frequency interference filter between the stages of the device. Ensure that a maximum continuous current is at least 10A at 120V. Ensure that the device can withstand a minimum of 20 peak surge current occurrences at 20,000A for an 8x20 microsecond waveform. Provide a maximum clamp voltage of 395V at 20,000A with a nominal series inductance of 200µh. Ensure that the voltage does not exceed 395V. Provide devices that comply with the following: | Frequency (Hz) | Minimum Insertion Loss (dB) | |----------------|-----------------------------| | 60 | 0 | | 10,000 | 30 | | 50,000 | 55 | | 100,000 | 50 | | 500,000 | 50 | | 2,000,000 | 60 | | 5,000,000 | 40 | | 10,000,000 | 20 | | 20,000,000 | 25 | #### 3.3. MATERIALS – TYPE 170E CABINETS # A. Type 170 E Cabinets General: Conform to the city of Los Angeles' Specification No. 54-053-08, *Traffic Signal Cabinet Assembly Specification* (dated July 2008), except as required herein. Furnish model 336S pole mounted cabinets configured for 8 vehicle phases, 4 pedestrian phases, and 6 overlaps. When overlaps are required, provide auxiliary output files for the overlaps. Do not reassign load switches to accommodate overlaps unless shown on electrical details. Provide 336S pole mounted cabinets that are 46" high with 40" high internal rack assemblies. Furnish model 332 base mounted cabinets configured for 8 vehicle phases, 4 pedestrian phases, and 6 overlaps. When overlaps are required, provide auxiliary output files for the overlaps. Do not reassign load switches to accommodate overlaps unless shown on electrical details. Provide model 200 load switches, model 222 loop detector sensors, model 252 AC isolators, and model 242 DC isolators according to the electrical details. As a minimum, provide one (1) model 2018 conflict monitor, one (1) model 206L power supply unit, two (2) model 204 flashers, one (1) DC isolator (located in slot I14), and four (4) model 430 flash transfer relays (provide seven (7) model 430 flash transfer relays if auxiliary output file is installed) with each cabinet. # B. Type 170 E Cabinet Electrical Requirements: Provide a cabinet assembly designed to ensure that upon leaving any cabinet switch or conflict monitor initiated flashing operation, the controller starts up in the programmed start up phases and start up interval. Furnish two sets of non-fading cabinet wiring diagrams and schematics in a paper envelope or container and placed in the cabinet drawer. All AC+ power is subject to radio frequency signal suppression. Provide surge suppression in the cabinet for each type of cabinet device. Provide surge protection for the full capacity of the cabinet input file. Provide surge suppression devices that operate properly over a temperature range of -40° F to +185° F. Ensure the surge suppression devices provide both common and differential modes of protection. Provide a pluggable power line surge protector that is installed on the back of the PDA (power distribution assembly) chassis to filter and absorb power line noise and switching transients. Ensure the device incorporates LEDs for failure indication and provides a dry relay contact closure for the purpose of remote sensing. Ensure the device meets the following specifications: Peak Surge Current (Single pulse, 8x20µs).....20,000A Occurrences (8x20µs waveform)......10 minimum @ 20,000A Maximum Clamp Voltage.....395VAC Signals & Intelligent Transportation Systems | Operating Current | 15 amps | |-------------------|-----------------| | Response Time | < 5 nanoseconds | Provide a loop surge suppressor for each set of loop terminals in the cabinet. Ensure the device meets the following specifications: | Peak Surge Current (6 times, 8x20µs) | | |--------------------------------------|-----------------| | (Differential Mode) | 400A | | (Common Mode) | 1,000A | | Occurrences (8x20µs waveform) | 500 min @ 200A | | Maximum Clamp Voltage | | | (Differential Mode @400A) | 35V | | (Common Mode @1,000A) | 35V | | Response Time | < 5 nanoseconds | | Maximum Capacitance | 35 pF | Provide a data communications surge suppressor for each communications line entering or leaving the cabinet. Ensure the device meets the following specifications: | Peak Surge Current (Single pulse, 8x20µs) | 10,000A | |-------------------------------------------|-------------------------------| | Occurrences (8x20µs waveform) | 100 min @ 2,000A | | Maximum Clamp Voltage | Rated for equipment protected | | Response Time | < 1 nanosecond | | Maximum Capacitance | 1,500 pF | | Maximum Series Resistance | 15Ω | Provide a DC signal surge suppressor for each DC input channel in the cabinet. Ensure the device meets the following specifications: | Peak Surge Current (Single pulse, 8x20µs) | 10,000A | |-------------------------------------------|----------------| | Occurrences (8x20µs waveform) | 100 @ 2,000A | | Maximum Clamp Voltage | 30V | | Response Time | < 1 nanosecond | Provide a 120 VAC signal surge suppressor for each AC+ interconnect signal input. Ensure the device meets the following specifications: | Peak Surge Current (Single pulse, 8x20µs) | 20,000A | |-------------------------------------------|---------------------| | Maximum Clamp Voltage | 350VAC | | Response Time | < 200 nanoseconds | | Discharge Voltage | <200 Volts @ 1,000A | | Insulation Resistance | ≥100 MΩ | Provide conductors for surge protection wiring that are of sufficient size (ampacity) to withstand maximum overcurrents which could occur before protective device thresholds are attained and current flow is interrupted. Signals & Intelligent Transportation Systems If additional surge protected power outlets are needed to accommodate fiber transceivers, modems, etc., install a UL listed, industrial, heavy-duty type power outlet strip with a minimum rating of 15 A / 125 VAC, 60 Hz. Provide a strip that has a minimum of 3 grounded outlets. Ensure the power outlet strip plugs into one of the controller unit receptacles located on the rear of the PDA. Ensure power outlet strip is mounted securely; provide strain relief if necessary. Provide a door switch in the front and a door switch in the rear of the cabinet that will provide the controller unit with a Door Ajar alarm when either the front or the rear door is open. Ensure the door switches apply DC ground to the Input File when either the front door or the rear door is open. Furnish a fluorescent fixture in the rear across the top of the cabinet and another fluorescent fixture in the front across the top of the cabinet at a minimum. Ensure that the fixtures provide sufficient light to illuminate all terminals, labels, switches, and devices in the cabinet. Conveniently locate the fixtures so as not to interfere with a technician's ability to perform work on any devices or terminals in the cabinet. Provide a protective diffuser to cover exposed bulbs. Install 16 watt T-4 lamps in the fluorescent fixtures. Provide a door switch to provide power to each fixture when the respective door is open. Wire the fluorescent fixtures to the 15 amp ECB (equipment circuit breaker). Furnish a police panel with a police panel door. For model 336S cabinets, mount the police panel on the rear door. Ensure that the police panel door permits access to the police panel when the main door is closed. Ensure that no rainwater can enter the cabinet even with the police panel door open. Provide a police panel door hinged on the right side as viewed from the front. Provide a police panel door lock that is keyed to a standard police/fire call box key. In addition to the requirements of LA Specification No. 54-053-08, provide the police panel with a toggle switch connected to switch the intersection operation between normal stop-and-go operation (AUTO) and manual operation (MANUAL). Ensure that manual control can be implemented using inputs and software such that the controller provides full programmed clearance times for the yellow clearance and red clearance for each phase while under manual control. Provide a 1/4-inch locking phone jack in the police panel for a hand control to manually control the intersection. Provide sufficient room in the police panel for storage of a hand control and cord. For model 332 base mounted cabinets, ensure terminals J14-E and J14-K are wired together on the rear of the Input File. Connect TB9-12 (J14 Common) on the Input Panel to T1-2 (AC-) on the rear of the PDA. Provide detector test switches mounted at the top of the cabinet rack or other convenient location which may be used to place a call on each of eight phases based on the chart below. Provide three positions for each switch: On (place call), Off (normal detector operation), and Momentary On (place momentary call and return to normal detector operation after switch is released). Ensure that the switches are located such that the technician can read the controller display and observe the intersection. Connect detector test switches for cabinets as follows: | 332 Cabinet | | | | |------------------------|-----------|--|--| | Detector Call Switches | Terminals | | | | Phase I | II-W | | | | Phase 2 | [4-W | | | | Phase 3 | I5-W | | | | Phase 4 | I8-W | | | | Phase 5 | JI-W | | | | Phase 6 | J4-W | | | | Phase 7 | J5-W | | | | Phase 8 | J8-W | | | Provide the PCB 28/56 connector for the conflict monitor unit (CMU) with 28 independent contacts per side, dual-sided with 0.156 inch contact centers. Provide the PCB 28/56 connector contacts with solder eyelet terminations. Ensure all connections to the PCB 28/56 connector are soldered to the solder eyelet terminations. Ensure that all cabinets have the CMU connector wired according to the 332 cabinet connector pin assignments (include all wires for auxiliary output file connection). Wire pins 13, 16, R, and U of the CMU connector to a separate 4 pin plug, P1, as shown below. Provide a second plug, P2, which will mate with P1 and is wired to the auxiliary output file as shown below. Provide an additional plug, P3, which will mate with P1 and is wired to the pedestrian yellow circuits as shown below. When no auxiliary output file is installed in the cabinet, provide wires for the green and yellow inputs for channels 11, 12, 17, and 18, the red inputs for channels 17 and 18, and the wires for the P2 plug. Terminate the two-foot wires with ring type lugs, insulated, and bundled for optional use. | | P1 | | P2 | | P | 23 | |-----|----------|---------|----------|---------|----------|---------| | PIN | FUNCTION | CONN TO | FUNCTION | CONN TO | FUNCTION | CONN TO | | 1 | CH-9G | CMU-13 | OLA-GRN | A123 | 2P-YEL | 114 | | 2 | CH-9Y | CMU-16 | OLA-YEL | A122 | 4P-YEL | 105 | | 3 | CH-10G | CMU-R | OLB-GRN | A126 | 6P-YEL | 120 | | 4 | CH-10Y | CMU-U | OLB-YEL | A125 | 8P-YEL | 111 | Connect the P20 terminal assembly (red monitor board) to a connector installed on the front of the type 2018 enhanced conflict monitor through a 3-1/2 foot 20-wire ribbon cable. Ensure that the ribbon cable connector and the connector on the conflict monitor are keyed to ensure proper connection. Ensure that removal of the P20 ribbon cable will cause the conflict monitor to recognize a latching fault condition and place the cabinet into flashing operation. Wire the P20 connector to the traffic signal red displays to provide inputs to the conflict monitor as shown below. Ensure the pedestrian Don't Walk circuits are wired to channels 13 through 16 of the P20 connector. When no auxiliary output file is installed in the cabinet, provide wires for channels 9 through 12 reds. Terminate the two-foot wires with ring type lugs, insulated, and bundled for optional use. **U-5118EL**Signals & Intelligent Transportation Systems | Pin# | Function | Pin# | Function | |------|--------------------|------|---------------| | l | Channel 15 Red | 11 | Channel 9 Red | | 2 | Channel 16 Red | 12 | Channel 8 Red | | 3 | Channel 14 Red | 13 | Channel 7 Red | | 4 | GND | 14 | Channel 6 Red | | 5 | Channel 13 Red | 15 | Channel 5 Red | | 6 | Special Function 2 | 16 | Channel 4 Red | | 7 | Channel 12 Red | 17 | Channel 3 Red | | 8 | Special Function 1 | 18 | Channel 2 Red | | 9 | Channel 10 Red | 19 | Channel 1 Red | | 10 | Channel 11 Red | 20 | Red Enable | Ensure the controller unit outputs to the auxiliary output file are pre-wired to the C5 connector. When no auxiliary output file is installed in the cabinet, connect the C5 connector to a storage socket located on the Input Panel or on the rear of the PDA. In addition to the requirements of LA Specification No. 54-053-08, ensure relay K1 on the Power Distribution Assembly (PDA) is a four pole relay and K2 on the PDA is a two pole relay. Provide a two pole, ganged circuit breaker for the flash bus circuit. Ensure the flash bus circuit breaker is an inverse time circuit breaker rated for 10 amps at 120 VAC with a minimum of 10,000 RMS symmetrical amperes short circuit current rating. Do not provide the auxiliary switch feature on the flash bus circuit breaker. Ensure the ganged flash bus circuit breaker is certified by the circuit breaker manufacturer to provide gang tripping operation. Ensure auxiliary output files are wired as follows: | AUXILIARY OUTPUT FILE | | | | | |-----------------------|-------------------------------------------------------|--|--|--| | | TERMINAL BLOCK TA ASSIGNMENTS | | | | | POSITION | FUNCTION | | | | | 1 | Flasher Unit #1, Circuit 1/FTR1 (OLA, OLB)/FTR3 (OLE) | | | | | 2 | Flasher Unit #1, Circuit 2/FTR2 (OLC, OLD)/FTR3 (OLF) | | | | | 3 | Flash Transfer Relay Coils | | | | | 4 | AC - | | | | | 5 | Power Circuit 5 | | | | | 6 | Power Circuit 5 | | | | | 7 | Equipment Ground Bus | | | | | 8 | NC | | | | Provide four spare load resistors mounted in each cabinet. Ensure each load resistor is rated as shown in the table below. Wire one side of each load resistor to AC-. Connect the other side of each resistor to a separate terminal on a four (4) position terminal block. Mount the load resistors and terminal block either inside the back of Output File No. 1 or on the upper area of the Service Panel. | ACCEPTABLE LOAD RESISTOR VALUES | | | | | |---------------------------------|-----------|--|--|--| | VALUE (ohms) WATTAGE | | | | | | 1.5K – 1.9 K | 25W (min) | | | | | 2.0K - 3.0K | 10W (min) | | | | Provide Model 200 load switches, Model 204 flashers, Model 242 DC isolators, Model 252 AC isolators, and Model 206L power supply units that conform to CALTRANS' "Transportation Electrical Equipment Specifications" dated March 12, 2009 with Erratum 1. # C. Type 170 E Cabinet Physical Requirements: Do not mold, cast, or scribe the name "City of Los Angeles" on the outside of the cabinet door as specified in LA Specification No. 54-053-08. Do not provide a Communications Terminal Panel as specified in LA Specification No. 54-053-08. Do not provide terminal block TBB on the Service Panel. Do not provide Cabinet Verification Test Program software or associated test jigs as specified in LA Specification No. 54-053-08. Furnish unpainted, natural, aluminum cabinet shells. Ensure that all non-aluminum hardware on the cabinet is stainless steel or a Department approved non-corrosive alternate. Ensure the lifting eyes, gasket channels, police panel, and all supports welded to the enclosure and doors are fabricated from 0.125 inch minimum thickness aluminum sheet and meet the same standards as the cabinet and doors. Provide front and rear doors with latching handles that allow padlocking in the closed position. Furnish 0.75 inch minimum diameter stainless steel handles with a minimum 0.5 inch shank. Place the padlocking attachment at 4.0 inches from the handle shank center to clear the lock and key. Provide an additional 4.0 inches minimum gripping length. Provide Corbin #2 locks on the front and rear doors. Provide one (1) Corbin #2 and one (1) police master key with each cabinet. Ensure main door locks allow removal of keys in the locked position only. Provide a surge protection panel with 16 loop surge protection devices and designed to allow sufficient free space for wire connection/disconnection and surge protection device replacement. For model 332 cabinets, provide an additional 20 loop surge protection devices. Provide an additional Signals & Intelligent Transportation Systems two AC+ interconnect surge devices to protect one slot and eight DC surge protection devices to protect four slots. Provide no protection devices on slot I14. For base mounted cabinets, mount surge protection panels on the left side of the cabinet as viewed from the rear. Attach each panel to the cabinet rack assembly using bolts and make it easily removable. Mount the surge protection devices in vertical rows on each panel and connect the devices to one side of 12 position, double row terminal blocks with #8 screws. For each surge protection panel, terminate all grounds from the surge protection devices on a copper equipment ground bus attached to the surge protection panel. Wire the terminals to the rear of a standard input file using spade lugs for input file protection. Provide permanent labels that indicate the slot and the pins connected to each terminal that may be viewed from the rear cabinet door. Label and orient terminals so that each pair of inputs is next to each other. Indicate on the labeling the input file (I or J), the slot number (1-14) and the terminal pins of the input slots (either D & E for upper or J & K for lower). Provide a minimum 14 x 16 inch pull out, hinged top shelf located immediately below controller mounting section of the cabinet. Ensure the shelf is designed to fully expose the table surface outside the controller at a height approximately even with the bottom of the controller. Ensure the shelf has a storage bin interior which is a minimum of 1 inch deep and approximately the same dimensions as the shelf. Provide an access to the storage area by lifting the hinged top of the shelf. Fabricate the shelf and slide from aluminum or stainless steel and ensure the assembly can support the 2070L controller plus 15 pounds of additional weight. Ensure shelf has a locking mechanism to secure it in the fully extended position and does not inhibit the removal of the 2070L controller or removal of cards inside the controller when fully extended. Provide a locking mechanism that is easily released when the shelf is to be returned to its non-use position directly under the controller. #### D. Model 2018 Enhanced Conflict Monitor: Furnish Model 2018 Enhanced Conflict Monitors that provide monitoring of 18 channels. Ensure each channel consists of a green, yellow, and red field signal input. Ensure that the conflict monitor meets or exceeds CALTRANS' Transportation Electrical Equipment Specifications dated March 12, 2009 with Erratum 1 (hereafter referred to as CALTRANS' 2009 TEES) for a model 210 monitor unit and other requirements stated in this specification. Ensure the conflict monitor is provided with an 18 channel conflict programming card. Pin EE and Pin T of the conflict programming card shall be connected together. Pin 16 of the conflict programming card shall be floating. Ensure that the absence of the conflict programming card will cause the conflict monitor to trigger (enter into fault mode), and remain in the triggered state until the programming card is properly inserted and the conflict monitor is reset. Provide a conflict monitor that incorporates LED indicators into the front panel to dynamically display the status of the monitor under normal conditions and to provide a comprehensive review of field inputs with monitor status under fault conditions. Ensure that the monitor indicates the channels that were active during a conflict condition and the channels that experienced a failure for all other per channel fault conditions detected. Ensure that these indications and the status of each channel are retained until the Conflict Monitor is reset. Furnish LED indicators for the following: - AC Power (Green LED indicator) - VDC Failed (Red LED indicator) - WDT Error (Red LED indicator) - Conflict (Red LED indicator) Signals & Intelligent Transportation Systems - Red Fail (Red LED indicator) - Dual Indication (Red LED indicator) - Yellow/Clearance Failure (Red LED indicator) - PCA/PC Ajar (Red LED indicator) - Monitor Fail/Diagnostic Failure (Red LED indicator) - 54 Channel Status Indicators (1 Red, 1 Yellow, and 1 Green LED indicator for each of the 18 channels) Provide a switch to set the Red Fail fault timing. Ensure that when the switch is in the ON position the Red Fail fault timing value is set to 1350 +/- 150ms (2018 mode). Ensure that when the switch is in the OFF position the Red Fail fault timing value is set to 850 +/- 150ms (210 mode). Provide a switch to set the Watchdog fault timing. Ensure that when the switch is in the ON position the Watchdog fault timing value is set to 1.0 +/- 0.1s (2018 mode). Ensure that when the switch is in the OFF position the Watchdog fault timing value is set to 1.5 +/- 0.1s (210 mode). Provide a jumper or switch to set the AC line brown-out levels. Ensure that when the jumper is present or the switch is in the ON position the AC line dropout voltage threshold is 98 +/- 2 Vrms, the AC line restore voltage threshold is 103 +/- 2 Vrms, and the AC line brown-out timing value is set to 400 +/- 50ms (2018 mode). Ensure that when the jumper is not present or the switch is in the OFF position the AC line dropout voltage threshold is 92 +/- 2 Vrms, the AC line restore voltage threshold is 98 +/- 2 Vrms, and the AC line brown-out timing value is set to 80 +/- 17ms (210 mode). Provide a jumper or switch that will enable and disable the Watchdog Latch function. Ensure that when the jumper is not present or the switch is in the OFF position the Watchdog Latch function is disabled. In this mode of operation, a Watchdog fault will be reset following a power loss, brownout, or power interruption. Ensure that when the jumper is present or the switch is in the ON position the Watchdog Latch function is enabled. In this mode of operation, a Watchdog fault will be retained until a Reset command is issued. Provide a jumper that will reverse the active polarity for pin #EE (output relay common). Ensure that when the jumper is not present pin #EE (output relay common) will be considered 'Active' at a voltage greater than 70 Vrms and 'Not Active' at a voltage less than 50 Vrms (Caltrans mode). Ensure that when the jumper is present pin #EE (output relay common) will be considered 'Active' at a voltage less than 50 Vrms and 'Not Active' at a voltage greater than 70 Vrms (Failsafe mode). In addition to the connectors required by CALTRANS' 2009 TEES, provide the conflict monitor with a red interface connector mounted on the front of the monitor. Ensure the connector is a 20 pin, right angle, male connector with latching clip locks and polarizing keys. Ensure the right angle solder tails are designed for a 0.062" thick printed circuit board. Keying of the connector shall be between pins 3 and 5, and between 17 and 19. Ensure the connector has two rows of pins with the odd numbered pins on one row and the even pins on the other row. Ensure the connector pin row spacing is 0.10" and pitch is 0.10". Ensure the mating length of the connector pins is 0.24". Ensure the pins are finished with gold plating $30\mu$ " thick. Ensure the red interface connector pins on the monitor have the following functions: | Pin# | Function | Pin# | Function | |------|----------------|------|--------------------| | 1 | Channel 15 Red | 2 | Channel 16 Red | | 3 | Channel 14 Red | 4 | Chassis Ground | | 5 | Channel 13 Red | 6 | Special Function 2 | | 7 | Channel 12 Red | 8 | Special Function 1 | | 9 | Channel 10 Red | 10 | Channel 11 Red | | 11 | Channel 9 Red | 12 | Channel 8 Red | | 13 | Channel 7 Red | 14 | Channel 6 Red | | 15 | Channel 5 Red | 16 | Channel 4 Red | | 17 | Channel 3 Red | 18 | Channel 2 Red | | 19 | Channel 1 Red | 20 | Red Enable | Ensure that the removal of the P-20 red interface ribbon cable will cause the monitor to recognize a latching fault condition and place the cabinet into flashing operation. Provide Special Function 1 and Special Function 2 inputs to the unit which shall disable only Red Fail Monitoring when either input is sensed active. A Special Function input shall be sensed active when the input voltage exceeds 70 Vrms with a minimum duration of 550 ms. A Special Function input shall be sensed not active when the input voltage is less than 50 Vrms or the duration is less than 250 ms. A Special Function input is undefined by these specifications and may or may not be sensed active when the input voltage is between 50 Vrms and 70 Vrms or the duration is between 250 ms and 550 ms. Ensure the conflict monitor recognizes field signal inputs for each channel that meet the following requirements: #### Signals & Intelligent Transportation Systems - consider a Red input greater than 70 Vrms and with a duration of at least 500 ms as an "on" condition; - consider a Red input less than 50 Vrms or with a duration of less than 200 ms as an "off" condition (no valid signal); - consider a Red input between 50 Vrms and 70 Vrms or with a duration between 200 ms and 500 ms to be undefined by these specifications; - consider a Green or Yellow input greater than 25 Vrms and with a duration of at least 500 ms as an "on" condition; - consider a Green or Yellow input less than 15 Vrms or with a duration of less than 200 ms as an "off" condition; and - consider a Green or Yellow input between 15 Vrms and 25 Vrms or with a duration between 200 ms and 500 ms to be undefined by these specifications. Provide a conflict monitor that recognizes the faults specified by CALTRANS' 2009 TEES and the following additional faults. Ensure the conflict monitor will trigger upon detection of a fault and will remain in the triggered (in fault mode) state until the unit is reset at the front panel or through the external remote reset input for the following failures: - 1. Red Monitoring or Absence of Any Indication (Red Failure): A condition in which no "on" voltage signal is detected on any of the green, yellow, or red inputs to a given monitor channel. If a signal is not detected on at least one input (R, Y, or G) of a conflict monitor channel for a period greater than 1000 ms when used with a 170 controller and 1500 ms when used with a 2070L controller, ensure monitor will trigger and put the intersection into flash. If the absence of any indication condition lasts less that 750 ms when used with a 170 controller and 1200 ms when used with a 2070L controller, ensure conflict monitor will not trigger. Red fail monitoring shall be enabled on a per channel basis by the use of switches located on the conflict monitor. Have red monitoring occur when all of the following input conditions are in effect: - a) Red Enable input to monitor is active (Red Enable voltages are "on" at greater than 70 Vrms, off at less than 50 Vrms, undefined between 50 and 70 Vrms), and - b) Neither Special Function 1 nor Special Function 2 inputs are active. - c) Pin #EE (output relay common) is not active - 2. Short/Missing Yellow Indication Fault (Clearance Error): Yellow indication following a green is missing or shorter than 2.7 seconds (with ± 0.1-second accuracy). If a channel fails to detect an "on" signal at the Yellow input for a minimum of 2.7 seconds (± 0.1 second) following the detection of an "on" signal at a Green input for that channel, ensure that the monitor triggers and generates a clearance/short yellow error fault indication. Short/missing yellow (clearance) monitoring shall be enabled on a per channel basis by the use of switches located on the conflict monitor. This fault shall not occur when the channel is programmed for Yellow Inhibit, when the Red Enable signal is inactive or pin #EE (output relay common) is active. - 3. **Dual Indications on the Same Channel:** In this condition, more than one indication (R,Y,G) is detected as "on" at the same time on the same channel. If dual indications are detected for a period greater than 500 ms, ensure that the conflict monitor triggers and displays the proper failure indication (Dual Ind fault). If this condition is detected for less than 200 ms, ensure that the monitor does not trigger. G-Y-R dual indication monitoring shall be enabled on a per channel basis by the use of switches located on the conflict monitor. Version 12.1 17 print date: 05/25/12 - G-Y dual indication monitoring shall be enabled for all channels by use of a switch located on the conflict monitor. This fault shall not occur when the Red Enable signal is inactive or pin #EE (output relay common) is active. - 4. Configuration Settings Change: The configuration settings are comprised of (as a minimum) the permissive diode matrix, dual indication switches, yellow disable jumpers, any option switches, any option jumpers, and the Watchdog Enable switch. Ensure the conflict monitor compares the current configuration settings with the previous stored configuration settings on power-up, on reset, and periodically during operation. If any of the configuration settings are changed, ensure that the conflict monitor triggers and causes the program card indicator to flash. Ensure that configuration change faults are only reset by depressing and holding the front panel reset button for a minimum of three seconds. Ensure the external remote reset input does not reset configuration change faults. Ensure the conflict monitor will trigger and the AC Power indicator will flash at a rate of $2 \text{ Hz} \pm 20\%$ with a 50% duty cycle when the AC Line voltage falls below the "drop-out" level. Ensure the conflict monitor will resume normal operation when the AC Line voltage returns above the "restore" level. Ensure the AC Power indicator will remain illuminated when the AC voltage returns above the "restore" level. Should an AC Line power interruption occur while the monitor is in the fault mode, then upon restoration of AC Line power, the monitor will remain in the fault mode and the correct fault and channel indicators will be displayed. Provide a flash interval of at least 6 seconds and at most 10 seconds in duration following a power-up, an AC Line interruption, or a brownout restore. Ensure the conflict monitor will suspend all fault monitoring functions, close the Output relay contacts, and flash the AC indicator at a rate of $4 \text{ Hz} \pm 20\%$ with a 50% duty cycle during this interval. Ensure the termination of the flash interval after at least 6 seconds if the Watchdog input has made 5 transitions between the True and False state and the AC Line voltage is greater than the "restore" level. If the watchdog input has not made 5 transitions between the True and False state within $10 \pm 0.5$ seconds, the monitor shall enter a WDT error fault condition. Ensure the conflict monitor will monitor an intersection with a minimum of four approaches using the four-section Flashing Yellow Arrow (FYA) vehicle traffic signal as outlined by the NCHRP 3-54 research project for protected-permissive left turn signal displays. Ensure the conflict monitor will operate in the FYA mode and FYAc (Compact) mode as specified below to monitor each channel for the following fault conditions: Conflict, Red Fail, Dual Indication, and Clearance. Provide a switch to select between the FYA mode and FYAc mode. Provide a switch to select each FYA phase movement for monitoring. #### FYA mode | FYA Signal<br>Head | Phase 1 | Phase 3 | Phase 5 | Phase 7 | |--------------------------|------------------|-------------------|-------------------|-------------------| | Red Arrow | Channel 9 Red | Channel 10 Red | Channel 11 Red | Channel 12 Red | | Yellow Arrow | Channel 9 Yellow | Channel 10 Yellow | Channel 11 Yellow | Channel 12 Yellow | | Flashing<br>Yellow Arrow | Channel 9 Green | Channel 10 Green | Channel 11 Green | Channel 12 Green | | Green Arrow | Channel 1 Green | Channel 3 Green | Channel 5 Green | Channel 7 Green | #### FYAc mode | FYA Signal<br>Head | Phase 1 | Phase 3 | Phase 5 | Phase 7 | |--------------------------|------------------|------------------|------------------|-------------------| | Red Arrow | Channel 1 Red | Channel 3 Red | Channel 5 Red | Channel 7 Red | | Yellow Arrow | Channel I Yellow | Channel 3 Yellow | Channel 5 Yellow | Channel 7 Yellow | | Flashing<br>Yellow Arrow | Channel I Green | Channel 3 Green | Channel 5 Green | Channel 7 Green | | Green Arrow | Channel 9 Green | Channel 9 Yellow | Channel 10 Green | Channel 10 Yellow | Ensure that the conflict monitor will log at least nine of the most recent events detected by the monitor in non-volatile EEPROM memory (or equivalent). For each event, record at a minimum the time, date, type of event, status of each field signal indication with RMS voltage, and specific channels involved with the event. Ensure the conflict monitor will log the following events: monitor reset, configuration, previous fault, and AC line. Furnish the signal sequence log that shows all channel states (Greens, Yellows, and Reds) and the Red Enable State for a minimum of 2 seconds prior to the current fault trigger point. Ensure the display resolution of the inputs for the signal sequence log is not greater than 50 ms. Provide a RS-232C/D compliant port (DB-9 female connector) on the front panel of the conflict monitor in order to provide communications from the conflict monitor to the 170/2070L controller or to a Department-furnished laptop computer. Electrically isolate the port interface electronics from all monitor electronics, excluding Chassis Ground. Ensure that the controller can receive all event log information through a controller Asynchronous Communications Interface Adapter (Type 170E) or Async Serial Comm Module (2070L). Provide a Windows based graphic user interface software to communicate directly through the same monitor RS-232C/D compliant port to retrieve and view all event log information to a Department-furnished laptop computer. The RS-232C/D compliant port on the monitor shall allow the monitor to function as a DCE device with pin connections as follows: | Conflict M | Conflict Monitor RS-232C/D (DB-9 Female) Pinout | | | | | | |------------|-------------------------------------------------|-----|--|--|--|--| | Pin Number | Function | I/O | | | | | | 1 | DCD | O | | | | | | 2 | TX Data | Ō | | | | | | 3 | RX Data | Ĭ | | | | | | 4 | DTR | Ī | | | | | | 5 | Ground | - | | | | | | 6 | DSR | 0 | | | | | | 7 | CTS | I | | | | | | 8 | RTS | Ō | | | | | | 9 | NC | - | | | | | # MONITOR BOARD EDGE CONNECTOR | —————————————————————————————————————— | Function (Back Side) | Pin # | Function (Component Side) | |----------------------------------------|-----------------------------|-------|-------------------------------| | 1 | Channel 2 Green | A | Channel 2 Yellow | | 2 | Channel 13 Green | В | Channel 6 Green | | 3 | Channel 6 Yellow | С | Channel 15 Green | | 4 | Channel 4 Green | D | Channel 4 Yellow | | 5 | Channel 14 Green | E | Channel 8 Green | | 6 | Channel 8 Yellow | F | Channel 16 Green | | 7 | Channel 5 Green | H | Channel 5 Yellow | | 8 | Channel 13 Yellow | J | Channel 1 Green | | 9 | Channel 1 Yellow | K | Channel 15 Yellow | | 10 | Channel 7 Green | L | Channel 7 Yellow | | 11 | Channel 14 Yellow | M | Channel 3 Green | | 12 | Channel 3 Yellow | N | Channel 16 Yellow | | 13 | Channel 9 Green | P | Channel 17 Yellow | | 14 | Channel 17 Green | R | Channel 10 Green | | 15 | Channel 11 Yellow | S | Channel 11 Green | | 16 | Channel 9 Yellow | T | Channel 18 Yellow | | 17 | Channel 18 Green | U | Channel 10 Yellow | | | | | | | 18 | Channel 12 Yellow | V | Channel 12 Green | | 19 | Channel 17 Red | W | Channel 18 Red | | 20 | Chassis Ground | X | Not Assigned | | 21 | AC- | Y | DC Common | | 22 | Watchdog Timer | Z | External Test Reset | | 23 | +24VDC | AA | +24VDC | | 24 | Tied to Pin 25 | BB | Stop Time (Output) | | 25 | Tied to Pin 24 | CC | Not Assigned | | 26 | Not Assigned | DD | Not Assigned | | 27 | Relay Output, Side #3, N.O. | EE | Relay Output, Side #2, Common | | 28 | Relay Output, Side #1, N.C. | FF | AC+ | <sup>--</sup> Slotted for keying between Pins 17/U and 18/V # CONFLICT PROGRAM CARD PIN ASSIGNMENTS | Pin# | Function (Back Side) | Pin# | Function (Component Side) | |------|-----------------------|------|---------------------------| | 1 | Channel 2 Green | Α | Channel 1 Green | | 2 | Channel 3 Green | В | Channel 2 Green | | 3 | Channel 4 Green | C | Channel 3 Green | | 4 | Channel 5 Green | D | Channel 4 Green | | 5 | Channel 6 Green | E | Channel 5 Green | | 6 | Channel 7 Green | F | Channel 6 Green | | 7 | Channel 8 Green | Н | Channel 7 Green | | 8 | Channel 9 Green | J | Channel 8 Green | | 9 | Channel 10 Green | K | Channel 9 Green | | 10 | Channel 11 Green | L | Channel 10 Green | | 11 | Channel 12 Green | M | Channel 11 Green | | 12 | Channel 13 Green | N | Channel 12 Green | | 13 | Channel 14 Green | P | Channel 13 Green | | 14 | Channel 15 Green | R | Channel 14 Green | | 15 | Channel 16 Green | S | Channel 15 Green | | 16 | N/C | Ţ | PC AJAR | | 17 | Channel 1 Yellow | U | Channel 9 Yellow | | 18 | Channel 2 Yellow | V | Channel 10 Yellow | | 19 | Channel 3 Yellow | W | Channel 11 Yellow | | 20 | Channel 4 Yellow | X | Channel 12 Yellow | | 21 | Channel 5 Yellow | Y | Channel 13 Yellow | | 22 | Channel 6 Yellow | Z | Channel 14 Yellow | | 23 | Channel 7 Yellow | AA | Channel 15 Yellow | | 24 | Channel 8 Yellow | BB | Channel 16 Yellow | | | | | | | 25 | Channel 17 Green | CC | Channel 17 Yellow | | 26 | Channel 18 Green | DD | Channel 18 Yellow | | 27 | Channel 16 Green | EE | PC AJAR (Program Card) | | 28 | Yellow Inhibit Common | FF | Channel 17 Green | | | | | | <sup>--</sup> Slotted for keying between Pins 24/BB and 25/CC # B. NEMA TS-2 Type 1 Cabinet Physical Requirements: Provide a handle and three point latching mechanism designed to be disassembled using hand tools. Provide a shaft connecting the latching plate to the door handle by passing through the door within a bushing, bearing, or equivalent device. Provide a latching plate at least 3/16 inch thick and that mates securely with the lock bolt. Provide a lock bolt with a flat end (no bevel) and that has at least 1/4 inch of length in contact with the latching plate. Ensure that the handle and lock are positioned so that the lock does not lie in the path of the rotating handle as the door is unlatched and that the handle points down in the latched position. Provide continuous welds made from the inside wherever possible. On the exterior, provide smooth and flush joints. Ensure that no screws, bolts, or rivets protrude to outside of cabinet shell. Provide a main door opening that encompasses the full frontal area of the cabinet shell exclusive of the area reserved for plenums and flanges. Provide a rear door in base-mounted cabinets, unless otherwise specified. Ensure that the rear door complies with all requirements for the front door, except as follows: - Hinge the rear door on the left side as viewed from the rear of the cabinet shell facing the door. - No police compartment is required on a rear door. Ensure that the cabinet shell is sturdy and does not exhibit noticeable flexing, bending or distortion under normal conditions except that a minor amount of flexing is permitted in the main door and rear door only when the cabinet is open. In such case, the flexing must not result in permanent deformation of the door or damage to components mounted on the door. Ensure that pedestal-mounted cabinets have sufficient framing around the slipfitter attachment so that no noticeable flexing will occur at or about this point. Provide NEMA TS-2, Type 1 cabinets with 2 shelves. Ensure top shelf has an unobstructed depth of at least 12 inches for base-mounted cabinets. Ensure top shelf has an unobstructed shelf depth of at least 13 inches for pole-mounted cabinets. Locate the top shelf at least 12 inches below the top of the door opening. Provide a lower shelf for mounting detector racks, its associated BIU, and other auxiliary equipment. Locate the lower shelf at least 10 inches below the top shelf, and provide at least 13 inches of unobstructed shelf depth. Secure card racks and associated BIU connector housings to the shelf by a removable means. Place the rack so that the front of the rack is not obscured by any object and so that backpanel terminals are not obscured even when the rack is fully utilized. Provide a back panel hinged at the bottom for access during service. Provide a minimum 12 x 14 inch plastic envelope or container located in the cabinet so that it is convenient for service personnel. Furnish two sets of non-fading cabinet wiring diagrams and schematics in a paper envelope or container and placed in the plastic envelope or container. Do not locate permanently mounted equipment in such a way that will restrict access to terminals. #### C. NEMA TS-2 Type 1 Cabinet Electrical Requirements: Provide a neutral that is not connected to the earth ground or the logic ground anywhere within the cabinet. Ensure the earth ground bus and the neutral ground bus each have ten compression type terminals each of which can accommodate wires ranging from number 14 through number 4. Signals & Intelligent Transportation Systems Provide surge suppression in the cabinet and ensure that all devices operate over the temperature range of -40 to 185 degrees F. Provide a loop surge suppresser for each set of loop terminals in the cabinet. Use terminal mount or stud mount devices for terminating the loop surge suppresser. Ensure that the device can withstand a minimum of 25 peak surge current occurrences at 100A in differential and common modes for a 10x700 microsecond waveform. Ensure that the maximum breakover voltage is 170V and the maximum on-state clamping voltage is 30V. Provide a maximum response time less than 5 nanoseconds and an off-state leakage current less than $10 \,\mu\text{A}$ . Ensure that a nominal capacitance less than 220pf for both differential and common modes. Provide surge suppression on each communications line entering or leaving a cabinet. Ensure that the communications surge suppresser can withstand at least 80 occurrences of an 8x20 microsecond waveform at 2000A, or a 10x700 microsecond waveform at 400A. Provide a maximum clamping voltage suited to the equipment protected. Provide a maximum response time less than 1 nanosecond with a nominal capacitance less than 1500pf and a series resistance less than 15 $\Omega$ . Furnish a fluorescent fixture as required by NEMA TS-2 Specifications with a second lighting fixture mounted under the bottom shelf to light the terminals. Ensure that the second fixture is a fluorescent lighting fixture that complies with NEMA TS-2 Specifications or is a flexible gooseneck fixture containing a protected incandescent reflector bulb of at least 25 Watts. Furnish all bulbs. Ensure that the lamps are door switch actuated. Provide connector type harnesses for all equipment installed in the cabinet, including detector racks. Furnish a harness with connectors to adapt the NEMA TS-2, Type 2 controller "A" connector to the NEMA TS-2, Type 1 "A" connector furnished with the cabinet assembly. Tag all conductors that are likely to be disconnected from time to time with non-fading, permanent sleeve labels at the ends of the conductors. In cabinets that are not base mounted, have no terminals closer than 4 inches to the bottom of the cabinet. Fasten all wiring and harness supports to the cabinet with screws or other removable mechanical means. Do not use adhesives. Provide harnesses in the cabinet for non-permanently mounted equipment that are long enough to allow the equipment to be relocated in an upright position to the roof of the cabinet or to be located to the ground 1 foot below cabinet level. Do not locate terminals on the underside of shelves or at other places where they are not readily visible and accessible, or where they may be a hazard to personnel. Provide a clear plastic guard for exposed 120 volt AC terminals on the power panel and the rear of terminal facilities accessible from the rear door. Provide compression type earth grounds with 10 position terminal buses sized for four Number 14 AWG wires. Provide screw-type terminals for signal feed, detector lead-in, NEMA I/Os, backpanels, and interconnect terminals. Provide screw terminals for all other devices not defined by NEMA TS-2 Specifications. Ensure that wiring by the manufacturer is terminated either on double terminal strips with crimped-on lugs or soldered to rear terminals. Ensure that upon leaving any cabinet or malfunction management unit (MMU) initiated flashing operation, the controller reverts to its programmed start-up operation through the use of the START UP FLASH CALL feature. Do not require special controller software to implement the return from flash in the start up mode of operation. Wire one of the output relays of the MMU to apply a logic ground to the STOP TIME input for rings 1 and 2 when the MMU initiates flashing operation because Signals & Intelligent Transportation Systems of a sensed failure. Ensure that the MMU is interlocked within the cabinet control circuitry as to prevent normal signal operation with the MMU disconnected. Ensure that the 24Vdc supply to the load switches is disconnected when cabinet flashing operation is initialized. Provide a momentary pushbutton, or equivalent method, to apply 24Vdc to the load switches during cabinet flash for troubleshooting purposes. Unless otherwise required, provide switches that are heavy-duty toggle switches. Provide a technician panel mounted on the inside of the door with an EQUIPMENT POWER (ON/OFF) switch and an AUTO/FLASH switch. Ensure switches are protected against accidental activation by a flip-up switch guard that does not affect switch position when closed. Provide an EQUIPMENT POWER (ON/OFF) toggle switch that connects or disconnects protected equipment power to all devices in the cabinet and does not affect AC power to the flasher. Provide an AUTO/FLASH toggle switch which immediately places the intersection into flashing operation, disconnects the STOP TIME input generated by the MMU, and applies a logic ground to the LOCAL FLASH STATUS input of the MMU. When placed in the AUTO position, ensure that this switch causes the return of the intersection to normal operation at the programmed start up phases and intervals via the START-UP FLASH CALL feature of the controller unit. Provide a DETECTOR CHANNEL CALL three position detector test switch (on, normal, momentary on) installed for every detector channel in the detector racks. Provide four pedestrian detector test switches (on normal, momentary on) to the 4 pedestrian detector inputs of BIU no. 1. The switches may be installed on the door or on the non-door hinge side of the cabinet at the front of the cabinet. Provide a police compartment constructed such that neither water nor dust will enter the interior of the cabinet through the police compartment, even when the police compartment door is open. Provide a rigid enclosure over the terminals of its components. Do not use flexible guards. Provide a SIGNAL POWER (ON/OFF) switch, an AUTO/FLASH switch, and an AUTO/MANUAL switch. Provide a locking jack for an optional manual push-button. Provide a SIGNAL POWER (ON/OFF) toggle switch which, when in the "OFF" position, disconnects AC power to the field terminals, applies logic ground to the LOCAL FLASH STATUS input of the MMU, and disconnects the STOP TIME input generated by the MMU. Ensure that a means to prevent recognition of red failure by the malfunction management unit is used and the switch does not affect power to equipment in the cabinet. When the SIGNAL POWER switch is switched to the "ON" position, ensure controller reverts to the programmed start-up phases and intervals via the START-UP FLASH CALL feature of the controller unit. Provide an AUTO/FLASH toggle switch that immediately places the intersection into flashing operation, and applies logic ground to the MMU LOCAL FLASH STATUS input. When placed in the AUTO position, ensure this switch allows the return of the intersection to normal operation at the programmed startup phases and intervals via THE START-UP FLASH CALL feature of the controller unit. Provide an AUTO/MANUAL toggle switch that selects between normal operation (in the AUTO position) and manually controlled operation (in the MANUAL position). When in the MANUAL position, ensure that a logic ground is applied to the Manual Control Enable input of the controller. Ensure that only when a logic ground signal is applied to Manual Control Enable, the optional manual push-button can be used to advance the phases by applying and removing a logic ground signal to the Interval Advance input. Provide one flash transfer relay and flasher for each corresponding socket. Provide 2 spare terminals for each flasher circuit output. Provide 1 MMU and 1 cabinet DC power supply (shelf mounted) with all necessary harnesses wired to the appropriate cabinet/back panel termination points. Terminate unused MMU inputs. Provide BIUs with sockets and terminal facilities. BIUs 3 and 4 may be mounted in a rack separate from the back panel. Signals & Intelligent Transportation Systems Provide a minimum of 2 sets of loop terminals and a single earth ground terminal between the 2 sets of loop wire terminals for each slot in each detector rack provided. In cabinets with less than 16 loadbay positions, provide flash transfer relay circuits for load switches used to implement pedestrian signals that are brought out to separate terminals but not connected for flashing operation when pedestrian signals are assigned to the load switch channel. Ensure that the flash circuit inputs and outputs are available for easy connection to allow conversion of a pedestrian movement load switch for use as an overlap (vehicle phase) movement load switch. Provide a reserved flash transfer relay circuit for four vehicle movements and all necessary flash transfer relay input and output wiring and flash circuit wiring that can be made available at each pedestrian load switch position. Comply with the applicable tables for the type of cabinet furnished: TS-2 Type 1 Cabinet Configurations | | | 13-2 13 | pe i Cabii | net Configuration | 118 | | |--------------------------|----------------|----------------|--------------------|--------------------------------|------------------------|-----------------| | Cabinet<br>Configuration | LOAD<br>SWITCH | FLASH<br>RELAY | Flasher<br>Sockets | BIU'S REQUIRED<br>(BACK PANEL/ | DETECTOR<br>RACK TYPE/ | TS-2<br>Cabinet | | | SOCKETS | SOCKETS | | DETECTOR) | QUANTITY | Type* | | NC-I | 4 | 2 | 1 | 1/1 | 1/1 | 4** | | NC-2 | 8 | 4 | 1 | 1/1 | 2/1 | 5 | | NC-3 | 12 | 6 | 1 | 2/1 | 2/1 | 6 | | NC-3A | 12 | 6 | 1 | 2/2 | 2/2 | 6 | | NC-3B | 12 | 6 | 1 | 2/2 | 2/1 1/1 | 6 | | NC-4 | 12 | 6 | 1 | †3/1 | 2/1 | 6 | | NC-4A | 12 | 6 | 1 | †3/2 | 2/2 | 6 | | NC-4B | 12 | 6 | Ţ | †3/2 | 2/1 1/1 | 6 | | NC-5 | 12 | 6 | l | <b>‡</b> 4/1 | 2/1 | 6 | | NC-5A | 12 | 6 | 1 | <b>‡</b> 4/2 | 2/2 | 6 | | NC-5B | 12 | 6 | 1 | <b>‡</b> 4/2 | 2/1 1/1 | 6 | | NC-6 | 16 | 6 | l | 2/2 | 2/2 | 6 | | NC-6A | 16 | 6 | 1 | 2/2 | 2/1 1/1 | 6 | | NC-7 | 16 | 6 | 1 | †3/2 | 2/2 | 6 | | NC-7A | 16 | 6 | 1 | †3/2 | 2/1 1/1 | 6 | | NC-8 | 16 | 6 | 1 | ‡4/2 | 2/2 | 6 | | NC-8A | 16 | 6 | 1 | <b>‡</b> 4/2 | 2/1 1/1 | 6 | <sup>\*</sup>See NEMA TS-2-1998, Table 7-1 for actual dimensions. <sup>\*\*</sup>Type 5 cabinet may be substituted for four position base mount cabinet. <sup>†</sup> BIU 3 required along with BIU 1, BIU 2, and detector BIU(s). <sup>‡</sup> BIU 3 and BIU 4 required along with BIU 1, BIU 2, and detector BIU(s). | 16 Position L | oadbay | Cabinet | Phase | Assignments | |---------------|--------|---------|-------|-------------| |---------------|--------|---------|-------|-------------| | Dunge (O) | 1414 77 01077 011 | A COLONIED TO | Acaron To | 100:0:0:0 | Deser | |-----------|--------------------|-----------------|-------------|-------------|---------| | PHASE /OL | MALFUNCTION | Assigned To | Assigned To | Assigned to | Program | | Number | MANAGEMENT UNIT | LOAD SWITCH | FLASH RELAY | Flasher | Flash | | | CHANNEL ASSIGNMENT | POSITION NUMBER | NUMBER | CIRCUIT/ | Color | | 1 | 1 | 1 | 1 | 1 | R | | 2 | 2 | 2 | 1 | 2 | Y | | 3 | 3 | 3 | 2 | 1 | R | | 4 | 4 | 4 | 2 | 2 | R | | 5 | 5 | 5 | 3 | 2 | R | | 6 | 6 | 6 | 3 | 1 | Y | | _ 7 | 7 | 7 | 4 | 2 | R | | 8 | 8 | 8 | 4 | 1 | R | | 2 PED | 9 | 9 | - | - | D | | 4 PED | 10 | 10 | - | - | D | | 6 PED | 11 | 11 | - | - | D | | 8 PED | 12 | 12 | - | - | D | | O/L A | 13 | 13 | 5 | <u> </u> | R | | O/L B | 14 | 14 | 5 | 2 | R | | O/L C | 15 | 15 | 6 | i | R | | O/L D | 16 | 16 | 6 | 2 | R | Provide flasher circuits and flash transfer relay outputs and inputs that are brought out to terminals which provide a convenient means of changing flash color and flash circuit at each load switch position. Ensure that changing flash color of a given phase or overlap involves no more than moving three wires. Ensure that the selected phase or overlap flash color load switch output is easily movable to connect to the normally open flash transfer relay input assigned to the phase or overlap. Ensure that the common output of the flash transfer relay circuit assigned to the phase or overlap is easily movable to the selected field terminal (input) of the phase or overlap flash color. Ensure that the non-flashed load switch output is easily moved to provide power directly to the phase or overlap field terminal for that color. In cabinets requiring a Type 1 detector rack, route to and terminate on a conveniently located terminal block on the back panel or elsewhere in the cabinet, the eight unused detector BIU Vehicle Call inputs. Tie the 8 unused detector BIU Detector Status inputs to the logic ground. Provide detector racks and associated detector rack BIUs that are removable and replaceable from the cabinet either as a complete assembly or separately. Ensure that disconnection and reconnection of these units is through quick disconnect type connectors. #### 3.5. MATERIALS – NEMA TS-2 DETECTOR CARDS AND RACKS Furnish NEMA TS-2 multi-channel detector cards and racks. Provide cards that sequentially scan each of its channels. Provide channels with a minimum of eight sensitivity levels. On a multi-channel detector, ensure that it is possible to turn a channel off and disable its operation from the front panel. Ensure that detector units meet the requirements of NEMA TS-2 Specifications except as follows: - Class 2 vehicle output is maintained for a minimum of 4 minutes, and - Class 3 vehicle output is maintained for a minimum of 30 minutes, maximum 120 minutes. Signals & Intelligent Transportation Systems Where required, furnish detector cards equipped with required timing features. Provide a delay that is settable in one second increments (maximum) over the range of zero to thirty seconds. Provide an extend that is settable in 1/4 second increments (maximum) over the range of 0 to 15 seconds. Provide cards that can set both delay and extend timing for the same channel. If both timings are set, ensure that the delay operates first. After the delay condition has been satisfied, ensure that the extend timer operates normally and that it is not necessary to satisfy the delay timing for an actuation arriving during the extend portion. Ensure that two-channel detector cards operate normally with the same loop connected to both channels. Provide lightning and surge protection that is incorporated into the design of the detector. Ensure that each channel operates properly when used with the loop detector surge protector. In addition to NEMA TS-2 Specifications, ensure that each channel is capable of tuning to and operating on any loop system inductance within the range of 50 to 2,000 $\mu$ h. Ensure that the channel will operate properly even on a loop system that has a single-point short to earth ground. # ITS and Signals Unit Engineer's Estimate | TIP NO. : | U-5118EL | |---------------|--------------------------------------------------------------------------------| | COUNTY: | Wake | | TYPE OF WORK: | TRAFFIC SIGNAL PAY ITEMS | | LOCATION: | NC 98 at SR 1917 (Stony Hill Rd); SR 1002 (Aviation Pkwy.) at International Dr | | | | | | 05-1929 | 05-1550 | | | |--------------|---------|-------|----------------------------------------------------------------------------------------------------------|---------|---------|-------------|-------| | ITEM NUMBER | SECTION | UNITS | DESCRIPTION | Final | Final | <u>IT</u> S | TOTAL | | 7060000000-E | 1705 | LF | SIGNAL CABLE | 550 | 650 | | 1200 | | 7120000000-E | 1705 | EA | VEHICLE SIGNAL HEAD (12", 3 SECTION) | 7 | 4 | | 11 | | 7132000000-E | 1705 | EA | VEHICLE SIGNAL HEAD (12", 4 SECTION) | 1 | 1 | | 2 | | 7144000000-E | 1705 | EA | VEHICLE SIGNAL HEAD (12", 5 SECTION) | | 2 | | 2 | | 7252000000-E | 1710 | LF | MESSENGER CABLE (1/4") | | | 3170 | 3170 | | 7264000000-E | 1710 | LF | MESSENGER CABLE (3/8") | 435 | 255 | | 690 | | 7279000000-E | 1715 | LF | TRACER WIRE | | | 60 | 60 | | 7300000000-E | 1715 | LF | UNPAVED TRENCHING (1 conduit, 2 inch) | 845 | 625 | 15 | 1485 | | 7324000000-N | 1716 | EA | JUNCTION BOX (STANDARD SIZE) | 8 | | 2 | 10 | | 7360000000-N | 1720 | EA | WOOD POLE | 4 | 2 | | 6 | | 7372000000-N | 1721 | EA | GUY ASSEMBLY | 8 | 6 | | 14 | | 7408000000-E | 1722 | EA | 1" RISER WITH WEATHERHEAD | 1 | 1 | _ | 2 | | 7420000000-E | 1722 | EA | 2" RISER WITH WEATHERHEAD | 4 | 4 | | 8 | | 7432000000-E | 1722 | EA | 2" RISER WITH HEAT SHRINK TUBING | | | 1 | 1 | | 7444000000-E | 1725 | LF | INDUCTIVE LOOP SAWCUT | 350 | 515 | | 865 | | 7456000000-E | 1726 | LF | LEAD-IN CABLE (14-2) | 1400 | 1250 | | 2650 | | 7528000000-E | 1730 | LF | DROP CABLE | | | 3285 | 3285 | | 7540000000-N | 1731 | EA | SPLICE ENCLOSURE | | | 1 | 1 | | 7552000000-N | 1731 | EA | INTERCONNECT CENTER | | | 1 | 1 | | 7564100000-N | 1732 | EA | FIBER-OPTIC TRANSCEIVER, SELF-HEALING RING | | | 1 | 1 | | 7566000000-N | 1733 | EA | DELINEATOR MARKER | | | 2 | 2 | | 7574000000-N | SP | EA | FURNISH FIBER-OPTIC TRANSCEIVER | | | 1 | 1 | | 7684000000-N | 1750 | EA | SIGNAL CABINET FOUNDATION | 1 | 1 | | 2 | | 7756000000-N | 1751 | EA | CONTROLLER WITH CABINET (TYPE 2070L, BASE MOUNTED) | 1 | | | 1 | | 7780000000-N | 1751 | EΑ | DETECTOR CARD (TYPE 2070L) | 4 | | | 4 | | 7852000000-N | 1751 | EΑ | DETECTOR CARD (NEMA TS-2) | | 3 | | 3 | | 7901000000-N | 1753 | EA | CABINET BASE EXTENDER | 1 | | | 1 | | 7980000000-N | SP | EA | GENERIC SIGNAL ITEM (CONTROLLER WITH CABINET (NEMA TS-2, 2070 CONTROLLER, TYPE 1 CABINET, BASE MOUNTED)) | | 1 | | 1 |