Preface
The NCDOT Project Delivery Network (PDN) is a scalable support document for those involved with delivery and management of projects. This preface answers some of the typical questions regarding purpose and use of the PDN, alongside defining the common terms used throughout.

What is the purpose of the PDN?
The PDN was developed to provide consistency and transparency throughout the project delivery process, enabling project teams to improve reliability and efficiency. The PDN outlines the stages, activities, tasks, deliverables, and references to accomplish these ends.

Specifically, the PDN is to assist technical team members, led by a Project Manager (whether a project is led by NCDOT or a private engineering firm [PEF]/consultant), to realize the following:

- Maintain consistency via a logical progression of activities throughout the project initiation, environmental, and design phases.
- Streamline processes and procedures throughout the project development process.
- Identify team integration points to promote multidisciplinary collaboration at each stage of the process.
- Provide a systematic quality control/quality assurance (QC/QA) process.
- Define key project deliverables and activities to build an MS Project schedule that a Project Manager and project team use to advance project delivery.

How is a project delivered within the PDN?
The PDN takes a project through the following five stages (with each stage defined in terms of high-level goals that can be accomplished at any point in the stage and a milestone diamond(s) to assess the status of the project, review the project schedule, and memorialize when the stage is completed):

Stage 1: Project Initiation

- **Goal:** Develop an initial vision and conceptual layout and report (e.g., Express Design and the Project Scoping Report) sufficient to commence the subsequent environmental and design process.
- **Milestone:** Notice to Proceed (NTP) – M0965
  - Completed once the PEF/consultant has been given official notice to proceed for the work.
  - Enter the date of the notification.
  - If there is not a PEF on the project, enter the date that the internal team begins work. See the **PM Guide** for related information on NTP.
Stage 2: Alignment Defined

- **Goal:** Complete the needed survey, analyses, and design work to establish a horizontal and vertical roadway alignment, complete the environmental document, and progress design to develop the field inspection plan set that will include cross-discipline coordination and review for constructability considerations.
- **Milestone:** Field Inspection (FI) – M1006
  - Completed once the field inspection has been conducted.
  - Enter the date of the review meeting.

Stage 3: Plan-in-Hand

- **Goal:** Complete all design and finalize the right-of-way package (as soon as possible in the stage) to continue acquisition and relocation activities initiated in Stage 2.
- **Milestone:** Design Complete (DC) – M1007
  - Completed when all disciplines’ design work is submitted for the Plan-in-Hand review meeting.
  - Enter the date of the review meeting.

Stage 4: Plans, Specifications, & Estimate (PS&E) and Letting

- **Goal:** Finalize all plans, specifications, and estimates to be packaged for letting and prepare the project for advertisement
- **Milestone:** Let – Select milestone number based on project type.
  - Completed when the bids are opened.
  - Enter the date of bid opening.

Stage 5: Post-Letting/Construction

- **Goal:** Complete the necessary post-letting/construction activities to support the project’s construction phase. Refer to post design construction services and Stage 5 throughout the PDN for additional information.

What role does coordination play in the PDN?
Coordination is essential for project success. Led by the Project Manager, team integration and communication among disciplines on the project team and with outside stakeholders and consultants are necessary to deliver a successful project that meets project goals on schedule and within budget. One of the foundational elements of the PDN is that it can be used by multiple audiences (Divisions, Technical Units, PEFs/consultants, or contractors) to understand the roles and responsibilities of each team member.

Where will the project documentation be stored?
All documents related to the project will be stored electronically on the applicable project SharePoint site, following SharePoint Guidance and naming conventions. All final key documents for the project will be saved using the ATLAS Workbench to ensure they are tagged and named appropriately and can be found easily moving forward. The current version of the PDN now includes an ATLAS indicator associated with
certain deliverable tables that notes every final document(s) or data set(s) that must be uploaded to the ATLAS Workbench. All NCDOT and/or PEF/consultant team members will have access to the project SharePoint site. Team members can choose to be notified when documents pertaining to their tasks are uploaded.

**How is this PDN updated?**

The PDN is intended to be dynamic and continually improved upon, and over time, the processes described herein are updated to ensure process refinement and best practices. As such, NCDOT encourages suggestions and comments from users to improve the process or identify opportunities for further acceleration or streamlining. The Integrated Project Delivery (IPD) team has set up a formal process for submitting comments and suggestions as questions, markups, or live edits in a form linked near the location this PDN is available for download.

Submitted comments will be reviewed on a regular basis for incorporation into the document. While an update to the PDN can take place at any time depending on the critical nature of the change, updates are planned annually. This will be an opportunity for all users to review and update their processes.

**How are project stages and activities presented in the PDN?**

Each stage consists of multiple activities, consisting of five parts:

1. Activity identifier and brief heading (defined further below)
2. Brief overview of the activity
3. Reference list and links to commonly used documents that guide a user on completing the activity
4. Responsibility table that list all deliverables that may need to be developed/completed (defined further below)
5. Details for each task that provide a further description on how to apply the steps, processes, and reference materials to complete the activity
Activity Identifier

As identified on Figure 1, each activity has a unique “Activity Identifier” for tracking purposes in MS Project and for scoping purposes as the project evolves. The activity identifiers consist of the following:

- (Stage Number) (Unit/Discipline Designation) (Identifying Number)

Using Figure 1 as an example, the identifier is “2CS1”.

- The “2” indicates that the activity is completed in the Alignment Defined Stage (Stage 2).
- The “CS” identifies the Contract Standards & Development Unit as the lead for this activity.
- The “1” represents this as the first activity for that Unit in Stage 2.

Responsibility Table

The Responsibility Table for each activity identifies the deliverables, associated task(s), and the responsible party(ies) for each task(s). The listed order of tasks is not necessarily the chronological order for completion.
The Activity Leader is the member of the project team responsible for ensuring that the task is completed successfully, and the Additional Support is anyone other than the Activity Leader who has a responsibility for the task. The table is not intended to list all team members involved, and the Activity Leader may delegate the completion of specific tasks or deliverables to other team members.

**What is the PDN Activity Diagram?**

From the first project initiation activities through letting, the following figure (see next page) illustrates a “map” of all the PDN’s activities that could apply when delivering a project. The figure includes many unique features to guide the user.

- **The Discipline Legend:**
  - Denotes an individual color for each discipline that has an activity to complete.
  - Includes (as a separate downloadable file on the Project Management Connect Site) an interactive workflow that allows users via buttons (show all/hide all and by clicking on each discipline’s box) the ability to highlight specific paths for a discipline(s). This allows the user to isolate a discipline path(s) to better view relationships to related activities and milestones.

- **Milestones initiate and conclude each stage, denoted by diamonds.**

- **Each stage represents a series of activities that may need to be completed before moving onto the next stage.**
  - The activities are not laid out chronologically but are grouped by discipline. As such, the network requires collaboration, led by the Project Manager, to determine what activities apply and to define the logical relationships and order of activities for a specific project.
  - Of note, it may be advantageous to advance certain activities within a stage earlier or even advance activities in later stages to the current stage, if it is more efficient to deliver the project.

- **Each activity box is interactively linked to its associated section in the PDN.**
  - By clicking on an activity box, a user is directed to that section for further details.
  - The header of each section includes a “Back to PDN Overview” link that takes the user back to the diagram.
1CS1 Prepare Conceptual Construction Estimate

Overview
Develop conceptual construction cost estimates for all alternatives/alignments under consideration for a project.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- Construction Estimating Guide
- Preliminary Estimate Request Form
- Division Let Guidance
- Pre-Construction Finance Guide
- Division Engineer Approval for Cost Verification Memo

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual Construction Estimate</td>
<td>Provide Conceptual Design Stage Quantities</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Review Conceptual Estimates</td>
<td>X</td>
</tr>
<tr>
<td>Verified Conceptual Construction Cost Estimate</td>
<td>Provide Conceptual Design Stage Quantities – Selected Alternative</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Review Conceptual Estimates – Selected Alternative</td>
<td>X</td>
</tr>
<tr>
<td>Cost Verification Letter</td>
<td>Request Cost Verification Letter</td>
<td>X</td>
</tr>
</tbody>
</table>

Provide Conceptual Design Stage Quantities
For conceptual design stage quantities, the Project Lead:

- Requests a cost estimate from the Preliminary Estimates Section (for Central-let projects) or the appropriate Division staff (for Division-let projects $1 million and under).
- Submits the conceptual design stage quantities for each alternative/alignment on the Preliminary Estimate Request Form to the estimator.

Review Conceptual Estimates
The Preliminary Estimates Section (for Central-let projects) or the appropriate Division staff (for Division-let projects) prices the estimate, and the Project Lead reviews the conceptual estimates for each alternative/alignment, considering the following:

- Costs for each pay item are determined using historical bid data and backup projects of similar work in the market area.
Estimates are available as the project moves forward and can be part of the considerations for selecting the Least Environmentally Damaging Practical Alternative (LEDPA), if applicable.

Provide Conceptual Design Stage Quantities – Selected Alternative (if applicable)
The Project Lead provides the most current conceptual stage quantities for the selected alternative/alignment to the Preliminary Estimates Section (for Central-let projects) or the appropriate Division staff (for Division-let projects) on the Preliminary Estimate Request Form. This is to ensure one is working with the most up-to-date estimate, considering that:

- Quantities/cost may have changed depending on 1) the amount of time that has passed and 2) the number of design changes that may have been implemented since the last estimate request.
- Estimates are to be updated by submitting the Preliminary Estimate Request Form any time new quantities are available or every two years, whichever occurs first.

Review Conceptual Estimate – Selected Alternative
For the selected alternative/alignment, the Preliminary Estimates Section (for Central-let projects) or the appropriate Division staff (for Division-let projects) prices the estimate, and the Project Lead:

- Reviews the conceptual estimates to ensure there are no obvious errors in quantities or items.
- Includes a copy of the most recent estimate within the appendix of the Project Scoping Report (see 1FS3 for more information).

Request Cost Verification Letter
After satisfactory review, the Project Lead generates and distributes a Cost Verification Letter per the process detailed in the Division Engineer Approval for Cost Verification Memo.
2CS1 Prepare Initial Design Estimates

Overview
Develop the construction cost estimates for the Alignment Defined Stage, occurring just prior to the Field Inspection Review Meeting.

References
- Construction Estimating Guide
- Preliminary Estimate Request Form
- Division Let Guidance
- Pre-Construction Finance Guide
- Division Engineer Approval for Cost Verification Memo

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preliminary Estimates Section or Division Staff</td>
</tr>
<tr>
<td>Construction Cost Estimate</td>
<td>Provide Design Stage Quantities</td>
<td>X</td>
</tr>
<tr>
<td>Construction Cost Estimate</td>
<td>Review Estimate</td>
<td>X</td>
</tr>
<tr>
<td>Cost Verification Letter</td>
<td>Generate Cost Verification Letter</td>
<td>X</td>
</tr>
</tbody>
</table>

Provide Design Stage Quantities
The Project Manager provides the most current design stage quantities for the design documents to the Preliminary Estimates Section (for Central-let projects) or the appropriate Division staff (for Division-let projects $1 million and under) on the Preliminary Estimate Request Form. The estimator is to verify that the utility construction (PH 300) estimate quantities have been submitted by Utility staff (see 3UT2 for more information).

Review Estimate
The Preliminary Estimates Section or the appropriate Division staff prices the estimate and provides the documentation to the entire team, notifying the Project Manager when complete. The project team (led by the Project Manager and including the estimator) reviews the estimate to ensure there are no obvious errors in quantities or items.

As applicable, the Environmental Document Lead includes a copy of the most recent estimate within the appendix of the NEPA document.

Generate Cost Verification Letter
After satisfactory review, the Project Manager generates and distributes a Cost Verification Letter per the process detailed in the Division Engineer Approval for Cost Verification Memo.
3CS1 Prepare Plan-in-Hand Estimates

Overview

References
- Construction Estimating Guide
- Preliminary Estimate Request Form
- Division Let Guidance
- Pre-Construction Finance Guide
- Division Engineer Approval for Cost Verification Memo

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional Support</td>
</tr>
<tr>
<td>Construction Cost Estimate</td>
<td>Provide Design Stage Quantities</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Review Estimate</td>
<td>X</td>
</tr>
<tr>
<td>Cost Verification Letter</td>
<td>Generate Cost Verification Letter</td>
<td>X</td>
</tr>
</tbody>
</table>

Provide Design Stage Quantities
The Project Manager provides the most current design stage quantities for the design documents to the Preliminary Estimates Section (for Central-let projects) or the appropriate Division staff (for Division-let projects $1 million and under) on the Preliminary Estimate Request Form. The estimator is to verify that the utility construction (PH 300) estimate quantities have been submitted by Utility staff (see 3UT2 for more information).

Review Estimate
The Preliminary Estimates Section or the appropriate Division staff prices the estimate and provides the documentation to the entire team, notifying the Project Manager when complete. The project team (led by the Project Manager and including the estimator) reviews the estimate to ensure there are no obvious errors in quantities or items.

Request Cost Verification Letter
After satisfactory review, the Project Manager generates and distributes a Cost Verification Letter per the process detailed in the Division Engineer Approval for Cost Verification Memo.
4CS1 Complete PS&E Package and Advertise the Project

Overview
Finalize and review the final PS&E package for authorization of construction funds and project advertisement. While the Divisions may develop the PS&E package and assemble the proposal, the NC General Statute currently decides if the project is let at the division level or centrally in Raleigh.

References
- Roadway Standard Drawings
- Standard Specifications
- Plans Checklist
- Division PS&E Checklist
- APLUS
- Tentative Letting Lists (12-month and 13-month let lists)
- Let Plans Preparation – SharePoint Guidance
- Division Let Guidance
- NCDOT Bidding and Letting Section of the Connect Site
- Central Let Resources
- Pre-Construction Finance Guide

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Plan Review</td>
</tr>
<tr>
<td>Final Plans</td>
<td>Complete Pre-Bid Process</td>
<td>Engineer</td>
</tr>
<tr>
<td>Proposal</td>
<td>Complete Pre-Bid Process</td>
<td>Proposal Engineer</td>
</tr>
<tr>
<td>Confidential Engineer’s Estimate</td>
<td>Advertise the Project</td>
<td>Contract Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provisions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estimating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineer</td>
</tr>
</tbody>
</table>

Complete Pre-Bid Process
The pre-bid process covers several steps led by Contract Standards & Development staff or the equivalent Division staff. These steps are to prepare and approve the PS&E package (using the Division PS&E Checklist, as applicable) for advertisement and obtain authorization for construction funds.

Review Plans
To complete the plan review, the Plan Review Engineer or the Division’s Proposal Engineer:
- Reviews the plans and quantities for fatal flaws.
- Sends plan checking comments to the Project Manager, who post, sign, and date Final Plan files to the Let Preparation area of the project SharePoint site.
- Passes the PS&E package to the Proposal Engineer for completion.

November 2021
Establish Contract Times
The Contract Time Engineer or equivalent Division Lead reviews the temporary traffic control plans, Utilities by Others (UBO) Plans, environmental documents, and pay items and quantities to establish any intermediate contract times and the overall contract times. (This includes the Completion Dates.) This task runs concurrent with the Goal Setting Meeting, Generate Roadway Special Provisions, and Engineer’s Final Estimate tasks noted below.

Facilitate Goal Setting Meeting
The State Proposals Engineer or the Division Construction Engineer facilitates a meeting to establish the MBE, WBE, DBE participation goals based on federal and state regulations.

Generate Special Provisions
The Proposal Engineer reviews the plans and compiled estimate to provide special provisions for pay items not covered by the Standard Specifications (APLUS program initiated).

Generate Final Pay Items and Quantities
The Estimating Engineer or the Proposal Engineer reviews final pay items and quantities to generate the Confidential Engineer’s Estimate and generates the percentage breakdown cost for work activities to identify the major contract items.

Assemble Proposal
The Proposal Engineer assembles the standard special provisions, the project special provisions, and item sheets into the final proposal as described in the Central Let Resources and the Division Let Guidance.

Advertise the Project
When the PS&E package has been finalized and construction funding is authorized, the project is ready to be advertised. Central Let Resources and the Division Let Guidance provide more information on the authorization (including necessary federal approval, certification, coordination, and timing requirements), advertisement, document posting, and point of contact designation for both Central and Division-let projects.

Advertisement
For Central-let projects, the electronically signed and sealed plan files and the electronically signed and sealed proposal are posted to the NCDOT Bidding and Letting section of the Connect Site (4 weeks prior to the letting date and 8 weeks prior to the letting date for special projects).

For advertising a Division-let project, the Division Let Guidance provides more information on the advertisement process.

The NCDOT Bidding and Letting section of the Connect Site is the central repository for project letting information, including updated information for letting, newly advertised projects, addendums, and bid results.

Prepare Addendums
The State Plans and Standards Engineer or the Proposals Engineer (or designated point of contact for Division-let projects) field questions about projects currently advertised from contractors. Addendums to
the plans and proposal are developed, posted, and processed in accordance with Central Let Resources and the Division Let Guidance.
4CS2 Let, Award, and Execute

Overview
Let, award, and execute the project in accordance with Sections 102 and 103 of the Standard Specifications and the letting guidance for both Central and Division-let projects.

References
- Standard Specifications
- Tentative Letting Lists (12-month and 13-month let lists)
- Let Plans Preparation – SharePoint Guidance
- Division Let Guidance
- NCDOT Bidding and Letting Page
- Central Let Resources
- Letting Administration User Guide

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
<th>Activity Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Award Letter</td>
<td>Awarding and Executing a Contract</td>
<td>State Contract Officer or Division Contract Engineer (or designee)</td>
<td></td>
</tr>
<tr>
<td>Goal Confirmation Letter</td>
<td>Letting the Project</td>
<td>State Prequalification Engineer or Division Contract Engineer (or designee)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Awarding and Executing a Contract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Execution Letter</td>
<td>Awarding and Executing a Contract</td>
<td>Contract Office / Contract Engineer (or designee)</td>
<td></td>
</tr>
</tbody>
</table>

Letting the Project
On Let day, bids are received, verified as being responsive, and read aloud along with the Engineer’s Estimate. Central Highway Letting Date is the 3rd Tuesday of each month. Each Division has been assigned designated letting dates as detailed on the Division Letting Map in the Division Let Guidance. While different days may be set for special lettings, this is to be the exception and not the typical practice.

The letting process also includes several checks to verify the bids are responsive and the bidder is responsible to get a contract ready for award and execution, all of which follows the Central Let Resources and Division Let Guidance:

- Guidelines for bid openings
- Confirmation of documentation required to be included with the bids
- Process to review and verify the bids as responsive

Good Faith Effort Review Committee Meeting
The State Prequalification Engineer or Division Construction Engineer facilitates and records a meeting to review a submittal of Good Faith Effort should the project’s MBE/WBE/DBE goal not be met. The committee determines whether a Good Faith Effort was met or was not. If the bidder was found in Good Faith, a Goal Confirmation Letter is written to outline the revised goals of the contract.

Bid Review Committee Meeting
The State Contract Officer or Division Engineer (or designated individuals):
Facilitates and records a meeting to review the bid documents submitted with the bid, in addition to documents submitted after (e.g., letters of Interest, payment and performance bonds, certificate of insurance)

- Compares the bids with the Engineer’s Estimate to determine whether a contract is to be awarded.

**Awarding and Executing a Contract**

Following a proposal of award of the contract by the Bid Review Committee, the State Contract Officer or Division Contract Engineer (or designee) develops and issues the Award Letter along with the Goal Confirmation Letter, if needed, to the contractor via email or US mail.

Additionally, the State Contract Officer or Division Contract Engineer (or designee):

- Executes in Trns*port or AASHTOWARE Preconstruction (see Division Letting Administration User Guide for more information)
- Distributes executed contract as necessary and upload a copy of the executed contract (including Letters of Intent, Payment and Performance Bonds, Certificate of Insurance, and Non-Collusion, Debarment and Gift Ban Certification) and plans to the Construction Projects Team Site.
- Uploads the Award Letter, Goal Confirmation Letter, and Execution Letter and forms from the Bid Review and Good Faith Effort Committees.
5CS1 Construction Revisions

Overview
Incorporate construction revisions into the latest version of the Let Plans to address identified field issues and to efficiently update the plans, so construction work can continue to move forward using the latest design information.

References
- Roadway Design Manual
- Construction Revision Process Memorandum
- Construction Revision Distribution Memorandum

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Activity Leader</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Revision</td>
<td>Update the Plans</td>
<td>Project Manager</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Complete the Construction Revision Package</td>
<td>Roadway Design Lead</td>
<td>X</td>
</tr>
<tr>
<td>Updated Quantities</td>
<td>Update the Quantities and Special Provisions</td>
<td>Other Unit Design Lead (as identified)</td>
<td>X</td>
</tr>
<tr>
<td>Updated Special Provisions</td>
<td>Update the Quantities and Special Provisions</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Revision Letter</td>
<td>Complete the Construction Revision Package</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Request a Construction Revision
When a potential construction revision is identified, the Division representative (typically the Resident Engineer) sends a revision request to the Project Manager. Throughout the construction revision process, the Project Manager is to coordinate with the Division representative/Resident Engineer regarding completion timelines and to ensure the revisions meet expectations in the field.

Update the Plans
Upon receiving the request, the Project Manager coordinates with the requestor to understand the reason for the change and to determine next steps in completing the revision. This typically includes identifying the:

- Background details that led to the request
- Limitations involved
- Expectations and next steps (e.g., timing for processing the request, process to revise the plans)

The Project Manager considers both the complexity of the revision and timing for completing the work to direct the affected Design Leads on how to revise the current version of the Let Plans. The Project Manager leads the coordination efforts and establishes the deadlines to revise, review, and comment on the construction revision.

- For a simple revision, the Roadway Design Lead modifies the current Roadway Design Plans, allowing time for all affected Design Leads to review and comment on the proposed changes. The
Roadway Design Lead incorporates any comments/recommendations into the plans. Additional coordination may be needed to resolve any issues or conflicting information.

- If major revisions are needed, the Project Manager directs the affected Design Leads to revise their respective plans in parallel. Each Design Lead reviews the revisions, incorporating the changes into the Let Plans. Additional coordination may be needed to resolve any issues or conflicting information across the disciplines.

Typically, a construction revision package is issued with updated information from all affected disciplines. The Project Manager coordinates with each Design Lead to determine when he/she is to provide their portion for inclusion. However, based on Division needs and time required to issue the construction revision, the Project Manager may elect to distribute submittals from the Design Leads separately.

When a construction revision triggers a change to the right-of-way or an easement, the Project Manager notifies the Division Location & Surveys Team Lead that the current version of the Final ROW Series Plan Set needs to be updated. Any adjustments are included on both the Final ROW Series Plan Set and the Roadway Design Plan sheets. The Project Manager and Division ROW Office establish the deadline to acquire the new property based on when construction work is to occur in the impacted area.

**Update Quantities and Special Provisions**

In addition to updating the Let Plans, all affected Design Leads are to:

- Update their quantities, providing the net quantity adjustment (+ or -) to the Project Manager.
- Revise any special provisions, as needed, that are impacted by the construction revision.

**Complete the Construction Revision Package**

To complete the construction revision package, the Project Manager:

- Conducts a completeness check of the plans, quantities, and special provisions (if applicable). If the revision impacts a municipal or developer agreement, the Project Manager includes any engineering cost in the documentation.
- Uploads the files and PDFs for only the affected/modified sheets to the appropriate locations.
  - *Note:* The affected Design Lead creates the PDFs and seals their respective construction revision before uploading.
- Distributes a construction revision letter and right-of-way revision letter (if applicable) to the appropriate parties.

Contract Standards and Development or the Division Contracting Office distributes the revised plans in accordance with the process detailed in the *Construction Revision Distribution Memorandum.*
1EN1 Initiate Environmental Analysis

Ensure that all projects, federal or state funded, comply with relevant environmental laws, including the Clean Water Act, National Environmental Policy Act (NEPA), State Environmental Policy Act (SEPA), Section 4(f), Section 106, the Endangered Species Act, Section 6(f), Title VI of the Civil Rights Act, and Farmland Protection Policy Act.

At this stage it is very important to know the scope and schedule for the project as directed by the Project Lead. If the project is small and less complex (bridges) it may include a shorter duration for planning and design. In this case, environmental analysis may be accelerated and fully commence at 1EN1. If the project has many issues that involve more time for planning and design, then it is important to raise environmental “red flags” via an initial screening and the deeper dive for environmental analysis occurs at 2EN1. It is important to note that requests for Environmental Analysis Unit (EAU) actions start with a submittal via the Environmental Tracking & Coordination System (ETRACS). Other environmental analysis efforts may be led by Division environmental staff and use other informal request/coordinating processes. Ground disturbing projects are reviewed by an NCDOT Natural Environment Lead within the Division and/or EAU staff. Many of the EAU-related tasks contained herein can be led by Division environmental staff as long as NCDOT policies and regulatory requirements are fulfilled.

**Note:** Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, the Central Project Manager (from PMU), or someone in a similar role as tasked by a state or local agency.

References

- [2020 Section 106 Programmatic Agreement](#)
- [Programmatic Agreement Manual for Minor Transportation Projects in North Carolina](#)
- Historic Architecture Group Procedures and Work Products
- [Tribal Coordination Protocol](#)
- ETRACS System and Tutorial
- NRTR Scope Template and Guidance
- NRTR Procedures Manual
- Division ETRACS Request for Section 7 Surveys
- NCDOT Traffic Noise Policy
- NCDOT Traffic Noise Manual
- NCDOT Air Quality Handbook
- NCDOT Quality Management Manual

1EN1 Initiate Environmental Analysis
June 2021
Use of the references, development of deliverables, and applicability of the tasks listed below depend on the scope and schedule of the project, which is decided by the Project Lead prior to determination of requests going forward in this stage. This activity requires the development of a Project Study Area. If the Project Lead determines that this stage involves only a screening for possible environmental “red flags” then the following should occur:

- Prepare Project Initiation Letter or scope of project and distribute to groups in EAU
- Receive Feedback from groups in EAU
- If Feedback provides “red flags” from any group, then request a screening from that group

The screening helps to determine further the scope and schedule for the project.

**Review Draft Project Scoping Report**

Upon request of the Project Lead, groups in the EAU review the draft Project Scoping Report and provide comments to the Project Lead (see 1FS3 for related information).

**Receive Initial Request (ETRACS or Other Informal Means) for Human and Natural Environment Studies**

The Environmental Analysis Unit (EAU) receives requests from the Project Lead to begin human and natural environment studies as part of the Project Scoping Report (see 1FS3 for related information).

- Projects that are scheduled to receive Notice to Proceed within the next 12 months, have their requests prioritized.
- Projects scheduled for Notice to Proceed beyond the next 12 months, have their requests scheduled to begin 12 months before Notice to Proceed is anticipated.
The Project Lead ensures that, as appropriate, requests are sent to the following EAU human and natural environmental groups:

- Environmental Coordination and Permitting (ECAP) (for Natural Resources Technical Report, and WEX/WET File, Section 7 Surveys)
- Biological Surveys Group (BSG) (Section 7 Surveys (only for Division Managed Projects))
- Cultural Resources (Historic Architecture and Archaeology)
- Traffic Noise and Air Quality
- Public Involvement, Community Studies, and Visualization (PICSViz)

If a resource has potential to be impacted or requires more analysis to determine impacts, 2EN1 and 2EN2 provide details to complete the necessary tasks and deliverables.

The following tasks provide additional steps that each resource lead completes when a request is made.

**Determine Natural Resources Technical Report (NRTR) Needs**

Once a request has been received, the Natural Environment Lead determines whether the NRTR is to be developed in-house or if development is assigned to an on-call consultant. If determined that the NRTR is to be developed by an on-call consultant, then the Natural Environment Lead coordinates the scope of work and fee necessary for the NRTR in accordance with *NRTR Scope Template and Guidance*.

**Determine Section 7 Survey Needs**

Once a request is received, the Natural Environment Lead adds a Section 7 Survey Request to the project which populates the threatened and endangered (T&E) species for the county(ies) and notifies BSG. BSG/ECAP assigns the review of T&E species listed to a biologist. If BSG determines Section 7 surveys are needed, surveys may be done in-house or a separate scope of work and fee is prepared. Division requests Section 7 surveys when it is required for BSG to review and survey for terrestrial and aquatic animal species.

**Prepare and Send Landowner Notification Letter**

The landowner letter is sent to landowners within the study area prior to any field work.

- The landowner notification letter is sent out by Environmental Staff.
- The letter notifies landowners that NCDOT is beginning a project, and personnel may be on their property.
- If the project study area changes, a new landowner letter may be required.

**Complete Cultural Resource Screening**

For projects with a federal nexus, the Project Lead completes the Cultural Resources Screening Checklist for Section 106 provided in the 2020 *Section 106 Programmatic Agreement for the Transportation Projects Program in North Carolina*.

1EN1 Initiate Environmental Analysis

June 2021
Using the results of the checklist, or other requirements under state and federal environmental laws and regulations, the Project Lead determines if the project is subject to further historic preservation review.

- If additional review is required, the requester completes an request for a Historic Architecture and Archaeology review.
- The request is assigned to an appropriate Culture Resource Specialist and investigations begin.

Identification of Cultural Resources may be finalized during the Project Initiation stage or during the Alignment Defined stage.

Please note that the 2020 Section 106 Programmatic Agreement for the Transportation Program in North Carolina does not pertain to the Federal Railroad Administration, Federal Transit Administration, Federal Aviation Administration, or Locally Administered Program undertakings or state funded transportation projects without a Federal Nexus.

For state funded and locally administered project, separate guidance is under development.

**Determine Noise/Air Analyses Needs**

The Project Lead consults with the Traffic Noise and Air Quality (TNAQ) Group Leader to determine if a project needs a traffic noise or air quality analysis, the results of which are incorporated into the Project Scoping Report. If a traffic noise analysis is necessary, then Traffic Noise and Air Quality advises whether a Traffic Noise Report or a Design Noise Report should be scoped/prepared. A Traffic Noise Report is recommended when there is a high degree of confidence that noise abatement is unlikely, or when only preliminary design is being developed concurrently. A Design Noise Report is recommended when it is expected that noise abatement may be likely, and final designs are developed concurrently with the NEPA/SEPA document development.

If Traffic Noise and Air Quality Group Leader determines that a Traffic Noise Report (TNR) or Design Noise Report (DNR) is required and it to be developed by a consultant (through a Division contact, PMU contract, or Noise and Air on-call contract), then the firm develops a scope of work using the TNR Standard Scope Template or DNR Standard Scope Template for Traffic Noise and Air Quality Group Leader’s review. Once scope is finalized, Traffic Noise and Air Quality prepares in-house estimate and negotiates fee as appropriate with the consultant.

**Determine Community Analyses Needs**

The Project Lead submits a request for the any required Community Analyses. The Community Studies Group reviews the project and determines the level of Community Analyses appropriate for the project (Community Characteristics Report, Community Impact Assessment, Land Use Scenario Assessment, etc.) and develops a Community Screening for completing analyses.

**Complete QC/QA Procedures**

Environmental Staff is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist.
2EN1 Advance Natural Environment Tasks

The environmental analysis required for this activity are separated into the sub-activities of:

- Natural Resources Technical Report (NRTR) and WEX/WET File
- Biological Surveys

Task details and deliverables for these sub-activities are found in the corresponding sections below.

Overview: Natural Resources Technical Report (NRTR) and WEX/WET File

Coordinate review of the draft and final Natural Resources Technical Report (NRTR), WEX (a MicroStation file or shapefile of delineated, potentially jurisdictional waterbodies)/WET (a MicroStation file or shapefile of delineated, jurisdictional waters, and Jurisdictional Determination package if needed.

References

- NRTR Scope Template and Guidance
- NRTR Procedures Manual
- ETRACS System and Tutorial
- Division ETRACS Request for Section 7 Surveys

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRTR(^a)</td>
<td>Complete NRTR and WEX File</td>
<td>Natural Environment Lead</td>
</tr>
<tr>
<td>WEX File(^a)</td>
<td></td>
<td>Additional Support</td>
</tr>
<tr>
<td>Signed Jurisdictional Determination and Buffer Package</td>
<td>Conduct Agency Field Review (if needed) and Create WET File</td>
<td>X</td>
</tr>
<tr>
<td>WET File(^a)</td>
<td>Conduct Agency Field Review and Create WET File</td>
<td>X</td>
</tr>
<tr>
<td>Comments on NEPA/SEPA Document</td>
<td>Review NEPA/SEPA Document</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench.

Complete NRTR and WEX File

The NRTR, the WEX file, and any associated GIS deliverables are developed by the Natural Environment Lead using the NRTR Template and Guidance in conjunction with the NRTR Procedures Manual and Consultant GPS CADD Guidance.

The final NRTR and WEX file are placed on the ATLAS Workbench, with the Project Manager, Hydraulics Unit, Locations/Surveys Unit, Structures Management Unit, Utilities Unit, and Roadway Unit (and others as appropriate) being notified.
Complete Jurisdictional Determination and Buffer Package
The Preliminary Jurisdictional Determination and Buffer (if applicable) Package are part of the deliverables for an NRTR. The final package is placed on ATLAS Workbench and the Natural Environment Lead submits the package to the US Army Corps of Engineers (USACE) for review.

Conduct Agency Field Review (if needed) and Create WET File
The Natural Environment Lead:

- Coordinates the scheduling of a field review with the USACE, North Carolina Division of Water Resources (NCDWR), and consultant (if applicable). The Project Manager is notified of this meeting but is not required to attend.
- At the end of the field review, updates the WEX file and rename it the WET file.
- Updates the Jurisdictional Determination and Buffer (as appropriate) Package to be resubmitted to the USACE and NCDWR for signature.

The signed Jurisdictional Determination and Buffer Package and WET file are placed in ATLAS Workbench by the Natural Environment Lead.

Complete QC/QA Procedures
Environmental Staff is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist.

Review NEPA/SEPA Document
The NEPA/SEPA Lead or Project Manager coordinates the Natural Environment Lead, or team lead, to review the natural resources section(s) of NEPA/SEPA documents. This review is to:

- Focus on the accuracy of the information in the document.
- Ensure that avoidance and minimization measures have been captured.
- Ensure the Project Special Commitments (Green Sheets) agreements made with the agencies have been captured.

This coordination is tracked via an ETRACS request if involving EAU staff.
Overview: Biological Surveys
When necessary, complete surveys for federally listed threatened and endangered (T&E) species in areas of suitable habitat in the project study area and obtain a biological conclusion to ensure compliance with the Endangered Species Act of 1973 and Marine Mammal Protection Act.

References
- **USFWS Section 7 Consultation**

### Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Surveys</td>
<td>Initiate and Complete Biological Surveys</td>
<td>Biological Survey Lead</td>
</tr>
<tr>
<td>BSG Concurrence on Biological Conclusions</td>
<td>Review and Determine Biological Conclusions</td>
<td>Natural Environment Lead</td>
</tr>
<tr>
<td>Request USFWS or NMFS Concurrence on Species Determination</td>
<td>Review and Determine Biological Conclusions</td>
<td></td>
</tr>
<tr>
<td>Biological Assessment</td>
<td>Initiate Formal Section 7 Consultation</td>
<td>Biological Survey Lead</td>
</tr>
<tr>
<td>USFWS or NMFS Biological Opinion</td>
<td>Complete Section 7 Consultation</td>
<td>Natural Environment Lead</td>
</tr>
<tr>
<td>Comment on NEPA/SEPA Document (as needed)</td>
<td>Review NEPA/SEPA Document</td>
<td></td>
</tr>
</tbody>
</table>

* indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

### Initiate and Complete Biological Surveys
The Natural Environment Lead (e.g., Division Environmental Officer) assigns one or more of the following groups to conduct T&E surveys:
- On-call biological consultants
- In-house BSG biologists

### Review and Determine Biological Conclusions
To complete this task, the Biological Survey Lead is to:
- Reviews the T&E survey results
- Review and/or determine biological conclusions

If a determination other than “Unresolved” or “No Effect” is recommended for a federally listed T&E species, Natural Environment Lead sends a request for concurrence letter to the US Fish and Wildlife (USFWS) or the National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service (NMFS) to determine if consultation under Section 7 of the Endangered Species Act (ESA) or the Marine Mammal Protection Act is required. The USFWS has primary responsibility for terrestrial and freshwater organisms, while the responsibilities of the NMFS are mainly marine wildlife such as whales and anadromous fish such as salmon. However, the agencies share responsibility for some species that...
occur in both marine environments and freshwater or terrestrial habitats, such as sea turtles and Atlantic sturgeon.

Initiate Formal Section 7 Consultation
Biological Survey Lead coordinates with USFWS or NMFS to determine if formal or informal Section 7 Consultation is required.

- If it is determined that a project has a Biological Conclusion (BC) of “May Affect, Not Likely to Adversely Affect” (MANLAA) a listed species, Informal Consultation is required.
- If it is determined that a project has a “May Affect, Likely to Adversely Affect” (MALAA) BC or would “Adversely Affect” a listed species, Formal Consultation is required, which includes the development of a Biological Assessment by NCDOT and a Biological Opinion by USFWS or NMFS. The Biological Survey Lead develops the Biological Assessment with review and acceptance from Natural Environment Lead.

Complete Section 7 Consultation
Based on the Biological Assessment, USFWS or NMFS determines if any additional information is needed. Upon receipt of all required information, the agency develops the Biological Opinion. The USFWS or NMFS has 45 days to render the Biological Opinion once formal consultation is completed (90 days after initiation).

- The Biological Opinion may contain conditions that are required prior to construction, during construction, and post construction.
- The Biological Survey Lead or Natural Environment Lead ensures these commitments are included in the Project Commitments when they review the environmental document.

Complete QC/QA Procedures
Environmental Staff is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist.

Review NEPA/SEPA Document (as needed)
The NEPA/SEPA Lead or Project Manager coordinates with the Natural Environment Lead or Biological Survey Lead to review the natural resources section(s) of NEPA/SEPA documents. This review is to:

- Focus on the accuracy of the information in the document.
- Ensure that avoidance and minimization measures have been captured.
- Ensure the Project Special Commitments (Green Sheets) agreements made with the agencies have been captured.

This coordination is tracked via an ETRACS request if involving EAU staff.
2EN2 Advance Human Environment Tasks

The environmental analysis required for this activity are separated into the sub-activities of:

- Community Studies
- Cultural Resources
- Traffic Noise and Air Quality

Task details and deliverables for these sub-activities are found in the corresponding sections below.

Overview: Community Studies

Complete the Community Characteristics Report and the Indirect and Cumulative Effects report (if determined necessary in Stage 1) for the study area or study corridors to inform project decision making, design, and permitting. A Community Characteristic Report is only needed if community impacts influence alternative selection. Complete an Indirect and Cumulation Effect only if screening indicates an assessment is needed. Complete the Community Impact Assessment or Direct and Indirect Screening Tool based on the preliminary design for the preferred alternative, as well as the Land Use Scenario Assessment (if indicated), and document project decisions, commitments, recommendations, outstanding direct impacts, and potential future development areas.

References

- Community Characteristics Report / Community Impact Assessment
- Indirect and Cumulative Effects / Land Use Scenario Assessment Folder

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional Support</td>
</tr>
<tr>
<td>Community Characteristics Report A</td>
<td>Develop Community Characteristics Report</td>
<td>X</td>
</tr>
<tr>
<td>Indirect and Cumulative Effects Report A</td>
<td>Develop Indirect and Cumulative Effects Report</td>
<td>X</td>
</tr>
<tr>
<td>Community Impacts Assessment A</td>
<td>Develop Community Impact Assessment</td>
<td>X</td>
</tr>
<tr>
<td>Land Use Scenario Assessment A</td>
<td>Develop Land Use Scenario Assessment</td>
<td>X</td>
</tr>
<tr>
<td>Comments on NEPA/SEPA Document</td>
<td>Review NEPA/SEPA Document</td>
<td>X</td>
</tr>
</tbody>
</table>

* A indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Develop Community Characteristics Report

When understanding community resources and potential impacts can help in the development of project alternatives/alignments, particularly for projects in developed areas, a Community Characteristic Report is developed. The Community Studies Lead develops a Community Characteristics Report based on current templates, guidance, and tools maintained by Community Studies. The Community Studies Lead
identifies direct impact and develops demographic study areas based on the current project study area. For more complex or potentially controversial projects, the Project Manager may request that Community Studies direct on-call staff to develop the Community Characteristics Report (CCR) and coordinate with Public Involvement.

Generated materials are reviewed and approved by Community Studies with activities that include:

- Download the latest templates, guidance, and tools
- Develop Demographic Study Area (DSA) and Direct Community Impact Area (DCIA) in accordance with guidance
- Coordinate with Community Studies to approve DSA and DCIA
- Prepare and email input forms to area planners, schools, and emergency management personnel, and conduct telephone or in-person interviews as appropriate
- Assess project area demographics, ATLAS maps, satellite images and other data sources prior to conducting interviews and field visit
- Conduct field visit according to guidance
- Prepare draft CCR and submit via request to Community Studies for review and comment
- Revise CCR based on Community Studies comments and submit via email to Community Studies for final review
- Finalize CCR and submit via email to Community Studies for distribution, ATLAS upload and posting to ATLAS Workbench

**Develop Indirect and Cumulative Effects Report (if scoped)**

An Indirect and Cumulative Effects Screening Report (ICE) is often developed based on the findings of Transportation Impact Causing Activities (TICAs) in the Community Screening. The Community Studies Lead develops an Indirect and Cumulative Effects report based on current templates, guidance, and tools maintained by Community Studies. The Community Studies Lead also refines the Future Land Use Study Area (FLUSA) based on the current project study area. For projects in high growth areas or for Merger projects, the Project Manager may request that Community Studies direct contract staff to develop the ICE and coordinate with Mitigation and ICI.

Generated materials are reviewed and approved by Community Studies, with activities that include:

- Download the latest templates, guidance, and tools
- Develop the Future Land Use Study Area (FLUSA) in accordance with guidance
- Coordinate with Community Studies to approve the FLUSA
- Prepare and email input forms to area planners, utilities staff and other personnel, and conduct telephone or in-person interviews as appropriate
- Assess project area demographics and growth trends, ATLAS maps, satellite images and other data sources prior to conducting interviews and field visit
- Conduct field visit according to guidance
- Prepare draft ICE and submit via request to Community Studies for review and comments
- Revise ICE based on Community Studies comments and submit via email to Community Studies for final review
- Finalize ICE and submit via email to Community Studies for distribution, ATLAS upload and posting to ATLAS Workbench.
- Community Studies coordinates the ICE Matrix finding with Mitigation and ICI, and scopes a Land Use Scenario Assessment if warranted by permitting needs

**Develop Community Impacts Assessment**

To document the avoidance, minimization, and mitigation of impacts of a project alternative on community resources, as well as unresolved impacts remaining at preliminary design, a Community Impacts Assessment is prepared. The Community Studies Lead develops a Community Impact Assessment based on current templates, guidance, and tools maintained by Community Studies, and using the DCIA and DSA from the Community Characteristics Report (CCR), if one was prepared, or developing these areas if not. Projects following a standard schedule incorporate data from the CCR by reference. Projects that have experienced delays coordinate with Community Studies to determine if CCR data is to be updated. For more complex or potentially controversial projects, the Project Manager may request that Community Studies direct contract staff to develop the Community Impact Assessment and coordinate with Public Involvement and Office of Civil Rights.

Generated materials are reviewed and approved by Community Studies, with activities that include:

- Download the latest templates, guidance, and tools
- If no CCR was done, develop Demographic Study Area (DSA) and Direct Community Impact Area (DCIA) in accordance with guidance
- If newly developed, coordinate with Community Studies to approve the DSA and DCIA
- Prepare and email input forms to area planners, schools and emergency management personnel, and conduct telephone or in-person interviews as appropriate
- Assess project area demographics, ATLAS maps, satellite images and other data sources prior to conducting interviews and field visit in accordance with guidance
- Conduct field visit according to guidance
- Prepare draft CIA and submit via request to Community Studies for review and comments.
- Revise CIA based on Community Studies comments and submit via email to Community Studies for final review
- Finalize CIA and submit via email to Community Studies for distribution, ATLAS upload and posting to ATLAS Workbench.

Section 4(f) (recreational, not historic) and Section 6(f) resource presence are identified during Community Screening or by the CCR. If potential resource impacts to public parks, recreation areas, waterfowl and/or wildlife refuges are identified as part of the Community Impact Assessment, the NEPA/SEPA Lead and/or Project Manager coordinates with Federal Highway Administration about resources protected under Section 4(f) of the Department of Transportation Act (applies to federal projects only) or with NC Department of Environmental Quality about resources protected under Section 6(f) of the Land and Water Conservation Fund Act (applies to all projects), and cooperates with other stakeholders, as appropriate (see 2EP1 for related information).
Develop Land Use Scenario Assessment

If indicated by findings of the Indirect and Cumulative Effects matrix, or at the request of a permitting or resource agency (e.g., USACE, NCDWR, USFWS, etc.) the Community Studies Lead develops a Land Use Scenario Assessment (LUSA) report based on current templates, guidance, and tools maintained by Community Studies. The Community Studies Lead develops one or more Potential Development Areas (PDAs) within the Future Land Use Study Area (FLUSA). The purpose of a LUSA is to map and compare existing conditions within PDAs with future projections based on Build and No Build scenarios. For projects in high growth areas, or for Merger projects, the Project Manager may request that Community Studies direct contract staff to develop the LUSA and coordinate with Mitigation and ICI.

Generated materials are reviewed and approved by Community Studies, with activities that include:

- Download the latest templates, guidance, and tools
- Develop Probable Development Areas (PDAs) in accordance with guidance
- Coordinate with Community Studies to approve the PDAs
- Prepare and email input forms to area planners, development review staff and other personnel, and conduct telephone or in-person interviews as appropriate
- Assess project area development trends, development approvals and permits, ATLAS maps, satellite images and other data sources prior to conducting interviews and field visit
- Conduct field visit according to guidance
- Prepare draft LUSA and submit via request to Community Studies for review and comments
- Revise LUSA based on Community Studies comments and submit via email to Community Studies for final review
- Finalize LUSA and submit via email to Community Studies for distribution, ATLAS upload and posting to ATLAS Workbench
- Community Studies coordinates the LUSA findings with NCDOT Mitigation and ICI Group as needed for permitting

Complete QC/QA Procedures

Environmental Staff is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist.

Review NEPA/SEPA Document

The NEPA/SEPA Lead or Project Manager coordinates with Community Studies to review the relevant sections of NEPA or SEPA documents, as needed.

This review is to:

- Focus on the accuracy of the information in the document.
- Ensure that avoidance, minimization measures have been captured, and that any outstanding issues are document and adequacy explained.
- Ensure the Project Special Commitments (Green Sheets) agreements made with stakeholders have been captured.

This coordination is tracked via an ETRACS request is involving EAU staff.
Overview: Complete Cultural Resource Tasks

Determine the potential effects of projects to cultural resources, historic architecture, and archaeology, as required by Section 106 of the National Historic Preservation Act (applies to state and federal projects) and Section 4(f) (applies to federal projects only). Section 4(f) resources may also include publicly owned public parks and recreation lands and waterfowl and wildlife refuges, in addition to historic resources. These additional resource types are identified and discussed in the Community Impact Assessment.

References

- Programmatic Agreement Manual for Minor Transportation Projects in North Carolina
- Historic Architecture Group Procedures and Work Products
- Archaeology Work Products
- Tribal Coordination Protocol

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic Architecture and Landscapes No Survey Required Form A</td>
<td>• Complete Cultural Resource Screening</td>
<td>X</td>
</tr>
<tr>
<td>No Archaeological Survey Required Form A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Architecture and Landscapes Survey Required Form (if needed) A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeological Survey Required Form (if needed) A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeology Report</td>
<td>• Complete Archaeology Report</td>
<td>X</td>
</tr>
<tr>
<td>No National Register of Historic Places Eligible or Listed Archaeological Sites Present Form A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeology Assessment of Effects Required Form A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Architecture Building Inventory</td>
<td>• Complete Historic Architecture Building Inventory</td>
<td>X</td>
</tr>
<tr>
<td>No Historic Architecture and Landscapes Effects Required Form (if needed) A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Architecture and Landscapes Effects Required Form</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No National Register of Historic Places Eligible or Listed Historic Properties Present Form A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No National Register of Historic Places Eligible or Listed Archaeological Sites Affected Form A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No National Register of Historic Places Eligible or Listed Archaeological Sites Adversely Affected Form A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeological Adverse Effect Determination Form A</td>
<td>• Conduct Cultural Resource Effects Determination (Archaeological)</td>
<td>X</td>
</tr>
<tr>
<td>National Register of Historic Places Eligible or Listed Historic Properties Effects Determination Form A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No National Register of Historic Places Eligible or Listed Historic Properties Present Form</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No National Register of Historic Places Eligible or Listed Historic Properties Affected Form A</td>
<td>• Conduct Cultural Resource Effects Determination (Historic Architecture and Landscapes)</td>
<td>X</td>
</tr>
</tbody>
</table>

2EN2 Advance Human Environment Tasks
June 2021
Identify Section 4(f) and 6(f) Resources (if needed)

The Cultural Resource Specialist reviews the study area to determine if Historic Section 4(f) or Section 6(f) (see 2EP1 for related information) resources are present. The Project Manager determines if Section 6(f) resources are present and coordinates with PICSViz if present. Cultural Resources is involved if the Section 6(f) qualified to be included in the National Register of Historic Places (NRHP).

If present, the Project Manager and the Cultural Resources Specialist coordinate to determine if the project has the potential to impact these properties.

Complete Cultural Resource Screenings (if needed)

The Cultural Resources Specialists for Historic Architecture and Archaeology determines and document the discipline-specific Area of Potential Effects for the project based on the study area. Using the best available information, the Cultural Resources Specialists determine if there are any known or potential historic properties or archaeological sites that exist in the Area of Potential Effects and determines the need for further field surveys.

- The Cultural Resources Specialist may issue a No Survey Required Form or a Survey Required Form for historic architecture and archaeology and posts the forms to the project SharePoint site. The Historic Architecture Culture Resource Specialist may issue a Survey Required Form, and the Archaeological Culture Resource Specialist may issue a No Survey Required form or vice versa. The two Specialists may also issue the same form.
- If there is a known historic property(ies) or archaeological site(s) and the Cultural Resources Specialist can reasonably predict that the scope of the undertaking does not have the potential to effect the resource(s), the Cultural Resources Specialist may issue a No National Register of Historic Places Eligible or Listed Historic Properties Present or Affected Form or a No National Register of Historic Places Eligible or Listed Archaeological Sites Present or Affected Form.
- If the known historic property or archaeological site may be affected, the Cultural Resources Specialists issue an Historic Architecture and Landscapes Assessment of Effects Form or an Archaeology Assessment of Effects Required Form.

The Cultural Resources Specialists uploads the applicable form(s) to the ATLAS Workbench.

Complete Archaeology Report (if needed)

If the Cultural Resources Screening for archaeology determines that a survey is required, the Cultural Resources Specialist initiates a survey to identify currently unknown archaeological sites in accordance
with applicable guidelines, standards, and regulations. If archaeological sites are identified, the Cultural Resources Specialist evaluates the eligibility for listing on the National Register of Historic Places. In accordance with the *Tribal Coordination Protocol*, the Cultural Resources Specialist consults with the applicable Native American Tribes and incorporates their responses when evaluating the site’s eligibility.

- If the Cultural Resources Specialist determines that no sites are listed or eligible for listing in the National Register of Historic Places, a No National Register of Historic Places Eligible or Listed Archaeological Sites Present Form is issued.
- If the Cultural Resources Specialist determines that sites are listed or eligible for listing in the National Register of Historic Places, an Archaeology Assessment of Effects Required Form is issued.

The Cultural Resources Specialist uploads the applicable Cultural Resource Form to the ATLAS Workbench, notifying the Project Manager.

**Complete Historic Architecture Building Inventory (if needed)**

If the Cultural Resources Screening for historic architecture determines that a survey is required, the Cultural Resources Specialist for historic architecture initiates a survey to identify historic properties in accordance with the Historic Architecture Group Procedures and Work Products Manual and applicable guidelines, standards and regulations.

- If potential historic properties are identified, the Cultural Resources Specialist evaluates the eligibility for listing on the National Register of Historic Places. The Cultural Resources Specialist incorporates information provided by consulting parties and Native American Tribes when evaluating the properties eligibility.
- If properties are identified as being potentially eligible for listing on the National Register of Historic Places, the Cultural Resources Specialists has a full Evaluation Report completed.
- If no properties are identified as being potentially eligible for listing on the National Register of Historic Places, the Cultural Resources Specialists issues the No National Register of Historic Places Eligible or Listed Historic Properties Present or Affected Form.

The Cultural Resources Specialist uploads the applicable historic architecture form to the ATLAS Workbench, notifying the Project Manager.

**Complete Historic Architecture Eligibility Evaluation Report (if needed)**

If historic properties that are potentially eligible for listing on the National Register of Historic Places are identified during the Building Inventory, an Evaluation Report is completed. This report is submitted to the Historic Preservation Office and consulting parties for comments.

- If the Historic Preservation Office concurs that there are historic properties eligible for listing on the National Register of Historic Places, the Cultural Resources Specialist issues a Historic Architecture and Landscapes Assessment of Effects Form.
- If the Historic Preservation Office concurs that there are no historic properties eligible for listing on the National Register of Historic Places, the Cultural Resources Specialist issues a No National Register of Historic Places Eligible or Listed Historic Properties Present Form.
The Cultural Resources Specialist uploads the applicable historic architecture form to the ATLAS Workbench, notifying the Project Manager.

**Conduct Cultural Resource Effects Determination (if needed)**

**Archaeological Effects**
The Cultural Resources Specialist determines if the National Register of Historic Places listed or eligible sites are affected by the project.

- If National Register of Historic Places listed or eligible archaeological sites are present but not affected, the Cultural Resources Specialist issues a No National Register of Historic Places Eligible or Listed Archaeological Sites Present or Affected Form.
- If National Register of Historic Places eligible or listed archaeological sites are affected, Cultural Resources Specialist issues the Archaeological Adverse Effect Determination Form and follows the stipulations outlined in the Programmatic Agreement, including data recovery if needed.

The Cultural Resources Specialist uploads the applicable archaeological form to the ATLAS Workbench, notifying the Project Manager.

**Historic Architecture and Landscapes Effects (if needed)**
The Cultural Resources Specialist determines if National Register of Historic Places listed or eligible historic architecture sites are affected by the project. After an Historic Architecture and Landscapes Assessment of Effects Form is issued, the Project Manager ensures that the historic boundary is included on the design plans and requests an Effects meeting (led by the Cultural Resource Specialist) with the lead Federal Agency and Historic Preservation Office to request concurrence on affects to historic properties.

Following the meeting, the Cultural Resources Specialist issues a Historic Architecture and Landscapes Assessment of Effects Form and follows the stipulations outlined in the Programmatic Agreement.

The Cultural Resources Specialist uploads the applicable Cultural Resource Form to the ATLAS Workbench, notifying the Project Manager.

**Develop Section 106 MOA (if needed)**
After consultation has concluded with appropriate parties and it is determined that an Adverse Effect cannot be avoided, the Cultural Resources Specialist(s), for the affected resource(s), prepares a draft Finding of Adverse Effect for the lead federal agency so that the Advisory Council on Historic Preservation can be notified of the adverse effect finding. The lead federal agency reviews and distributes the Finding of Adverse Effect document to applicable parties.

The Cultural Resources Specialist(s) then works with the Historic Preservation Office, the lead federal agency, and other applicable parties to negotiate the terms of a Memorandum of Agreement (MOA) and uploads it to the ATLAS Workbench site.
Complete QC/QA Procedures
Environmental Staff is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist.

Review of NEPA/SEPA Document
The NEPA/SEPA Lead or Project Manager coordinates with the Cultural Resources Specialist(s) to review the relevant cultural resources discussions of NEPA/SEPA documents as needed. This review is to:

- Focus on the accuracy of the information in the document.
- Ensure that avoidance and minimization measures have been captured.
- Ensure the Project Special Commitments (Green Sheets) agreements made with the agencies have been captured.

This coordination is tracked via an ETRACS request if involving EAU Staff.
Overview: Traffic Noise and Air Quality

Complete the traffic noise analysis (Traffic Noise Report or Design Noise Report), Air Quality Report, and prerequisite deliverables and tasks, once alternatives/alignments are developed.

References

- NCDOT Traffic Noise Policy
- NCDOT Traffic Noise Manual
- NCDOT Air Quality Handbook

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Activity Leader</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right of Entry Letter</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Traffic Noise Report (or Design Noise Report)</td>
<td>Perform Noise Model Validation</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Complete the Traffic Noise Report (or Design Noise Report)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Air Quality Report</td>
<td>Prepare Air Quality Report</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

*indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Develop Traffic Noise Work Plan

The consultant or Traffic Noise and Air Quality team member develops a draft Traffic Noise Work Plan based on current templates and guidance included in the Traffic Noise Manual maintained by Traffic Noise and Air Quality group as defined in above references. The draft Traffic Noise Work Plan identifies items such as noise study areas, noise-sensitive receptors, and potential noise measurement locations.

- With the submission of the draft Traffic Noise Work Plan, a Traffic Noise and Air Quality team member submit a draft right of entry letter using the standard template.
- The work plan and right of entry letters are approved by the Traffic Noise and Air Quality Lead prior to any noise measurements or noise modeling.
- The Traffic Noise and Air Quality Lead then issues a right of entry letter.

Perform Noise Model Validation

The Traffic Noise and Air Quality Lead conducts validation of project models using the noise measurement results in accordance with the Traffic Noise Manual.

The Traffic Noise and Air Quality Lead uploads the final Traffic Noise Report or Design Noise Report to the ATLAS Workbench and notifies the NEPA/SEPA Lead and the Project Manager. The Traffic Noise and Air
Quality group supplies streamlined text for the environmental document, Noise Study Areas, and the location of long-term measurement sites to the NEPA/SEPA Lead for use in the environmental document.

**Complete the Traffic Noise Report or Design Noise Report**

The consultant or Traffic Noise and Air Quality Lead develops a draft Traffic Noise Report or Design Noise Report based on current templates and guidance maintained by Traffic Noise and Air Quality group and in accordance with the *Traffic Noise Manual*. The draft Traffic Noise Report or Design Noise Report evaluates the existing and no-build conditions, and the build conditions for each detailed study alternative/alignment. Abatement is considered for all impacted receptors.

- If the draft Traffic Noise Report or Design Noise Report is prepared by an on-call consultant, the Project Manager submits an request to Traffic Noise and Air Quality group to review the draft Traffic Noise Report or Design Noise Report.
- The on-call consultant revises the draft Traffic Noise Report or Design Noise Report based on Traffic Noise and Air Quality group comments.
- The revised Traffic Noise Report or Design Noise Report and a memo describing the response to each comment is submitted via ETRACS.
- Additional reviews and rounds of comments are prepared as necessary to finalize the Traffic Noise Report or Design Noise Report.

**Prepare Air Quality Report**

The Traffic Noise and Air Quality Lead completes the Air Quality Template to perform a Project-Level Air Quality Analysis, if required based on the type and extent of the project.

- Once Notice to Proceed has been issued, perform the air analysis and submit the draft Air Quality Report, as described in the 2020 NCDOT Air Quality Handbook, to the Traffic Noise and Air Quality group for review and comment.
- After the Traffic Noise and Air Quality group comments are received, prepare a final Air Quality Report.

The Traffic Noise and Air Quality group provides a draft of the streamlined project-level air quality text for use in the environmental document.

**Complete QC/QA Procedures**

Environmental Staff is to coordinate the applicable QC review following the NCDOT *Quality Management Manual* procedures and the respective QC Checklist.
3EN1 Complete Permit, Commitments, and Design Noise Report or Addendum

Overview
Apply for the required project permits once permit impact drawings have been completed and impacts are calculated, and a pre-application meeting (sometimes referred to as a pre-filing meeting) has been conducted with relevant agencies, and mitigation obligations have been secured for unavoidable impacts (if applicable). Prepare the Design Noise Report (if one is required and one has not yet been completed) or a Design Noise Report Addendum (if a Design Noise Report has been completed but updated design information or design changes require additional or new final design traffic noise analysis) and compile obligations from the environmental document, avoidance and minimization measures, Project Special Commitments, and completed Section 106 Memorandum of Agreement (MOA) and Section 7 consultation, as appropriate.

References
- Permit Application Timeline
- Permit Types and Due Dates
- Individual Permit Application Template
- e-PCN Worksheet
- NCDOT Traffic Noise Policy
- NCDOT Traffic Noise Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit Applications</td>
<td>Prepare Permit Applications</td>
<td>Natural Environment Lead (or Division Environmental Officer)</td>
</tr>
<tr>
<td>Design Noise Report or Design Noise Report Addendum, as applicable</td>
<td>Develop Design Noise Report or Design Noise Report Addendum, as applicable</td>
<td>Traffic Noise and Air Quality Group</td>
</tr>
</tbody>
</table>

A indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Complete Pre-Application Meeting and/or Pre-Filing Notification
The Natural Environment Lead coordinates with regulatory agencies and with appropriate design personnel to ensure permit drawings are prepared accurately. During this process, the pre-filing notification to NC Division of Water Resources should be submitted (this may have been completed prior to this stage as well). Based on the regulatory agency coordination, the Natural Environment Lead may need to coordinate a pre-application meeting with relevant regulatory personnel to review the proposed designs, impacts, avoidance and minimization measures, mitigation, anticipated applicable permits, commitments, and potential permit conditions.
Prepare Permit Applications

The Natural Environment Lead (or Division Environmental Officer) receives draft permit drawings for review of completeness, avoidance and minimization measures, and accurate capturing of impact type and location. Based on this information, the Natural Environment Lead submits applications for the following permits and others, as appropriate:

- Section 404: Nationwide, Regional General, or Individual Permit (USACE)
- Section 401: Water Quality Certification, General or Individual (NCDWR)
- Buffer Authorization (NCDWR)
- Coastal Area Management Act (CAMA) Permit (NC Division of Coastal Management)
- Section 10 Permit (USACE and US Coast Guard)
- Federal Energy Regulatory Commission (FERC) Coordination and Approval
- Bridge Permit or Exemption Approval (US Coast Guard)

Once the permit applications have been submitted to the appropriate agency(ies), the Natural Environment Lead notifies the Project Manager and the applicable units/disciplines.

Develop Design Noise Report or Design Noise Report Addendum

If a Traffic Noise Report was previously completed and abatement determination was incorrect or project delays require a re-evaluation, then the Traffic Noise and Air Quality Lead develops a draft Design Noise Report based on current templates and guidance maintained by Traffic Noise and Air Quality group and in accordance with the Traffic Noise Manual. The Design Noise Report evaluates the entire preferred/selected alternative/alignment, considers abatement for all impacted receptors and creates a noise wall envelope(s) in MicroStation for any noise wall(s) recommended in the Design Noise Report. (To be feasible and reasonable, a noise wall or berm must meet 5 criteria – 2 feasibility criteria and 3 reasonableness criteria. A wall or berm recommended in the approved Design Noise Report meet both feasibility and two of the three reasonableness criteria. The final reasonableness criteria, which is the public’s preference, is determined through the noise abatement balloting process conducted after the approval of the Design Noise Report. If a Design Noise Report recommends noise abatement, but it is only after the subsequent balloting process that abatement (walls or berms) are determined to be feasible and reasonable.)

- If the Design Noise Report is prepared by a consultant, the submits an request to the Traffic Noise and Air Quality group to review of the draft Design Noise Report.
- Traffic Noise and Air Quality Group provides comments on the draft Design Noise Report.
- The consultant revises the draft Design Noise Report based on the Traffic Noise and Air Quality group comments.
- The revised Design Noise Report and a memo describing the response to each comment is submitted via ETRACS.
- Additional reviews and rounds of comments are prepared as necessary to finalize the Design Noise Report.

When a draft Design Noise Report is submitted, the Traffic Noise and Air Quality group is responsible for circulating the Design Noise Report to all appropriate parties for inter-disciplinary review to identify
feasibility concerns. This includes Division, Utilities, Signing and Delineation, Geotech, Structures, and other appropriate parties to review for hydraulics and roadway.

If feasibility concerns are identified, Traffic Noise and Air Quality group works with the consultant team and the reviewing party to resolve.

If a Design Noise Report was previously completed and abatement was determined to be likely/recommended, then a review of the Design Noise Report and its noise wall recommendations must be reviewed in light of any additional final design information or design changes that have become available since the Design Noise Report was developed. The Traffic Noise and Air Quality group coordinates with appropriate inter-disciplinary review parties to verify that there are no feasibility concerns with the recommended noise walls in light of the final design information to be reflected in Right-of-Way Plan Set. If feasibility concerns are identified, then Traffic Noise Air Quality staff coordinates with appropriate parties (Division, Utilities, Signing and Delineation, Geotech, Structures, etc.) to resolve.

If resolution of these issues changes the noise wall recommendations from the Design Noise Report, then a Design Noise Report Addendum is prepared to document the new noise wall recommendations and the supporting reasons and analysis.

If resolution of these issues does not change the noise wall recommendations from the Design Noise Report, then a memo documenting this is prepared, stating that the Design Noise Report noise wall recommendations remain valid, and no further final design noise analysis is needed.

Complete QC/QA Procedures
Environmental Staff is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist.
3EN2 Determine Final Noise Abatement

Overview

Complete this step when noise abatement is recommended for a project based on the analysis done as part of the Design Noise Report or Design Noise Report Addendum. After approval of the Design Noise Report or Design Noise Report Addendum, and after all feasibility concerns have been thoroughly resolved and final design information that could affect recommended noise wall locations has been verified, conduct the balloting process (detailed in the *Traffic Noise Manual*) to determine whether the majority of owners and tenants who would benefit from a noise wall or berm support its construction. Prepare a memorandum that summarizes the public balloting process, results, and final determination of noise wall installation.

References

- NCDOT Traffic Noise Policy
- NCDOT Traffic Noise Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benfited Receptor Mailing List</td>
<td></td>
<td>Traffic and Air Quality Lead</td>
</tr>
<tr>
<td>Notice of Upcoming Ballot and/or Public Noise Meeting (optional)</td>
<td><em>Conduct Noise-Related Public Ballot Process</em></td>
<td>Traffic and Air Quality Team Member/On-call Consultant</td>
</tr>
<tr>
<td>Noise Ballots</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Noise Wall Balloting Results</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Conduct Noise-Related Public Ballot Process

The Traffic Noise and Air Quality group conducts the noise-abatement public ballot process detailed in the *Traffic Noise Manual*. The process determines the preference regarding noise barrier construction (for or against) of property owners and tenants of all benefited receptors (including properties represented by equivalent receptors).

Prepare Memorandum on Noise Wall Balloting Results

To prepare this memorandum, the Traffic Noise and Air Quality group:

- Upon completion of the balloting process, prepares the Memorandum on Noise Wall Balloting Results to documents which noise abatement measures are feasible and reasonable and are therefore to be implemented for a project; then notifies the Project Manager, FHWA, and other appropriate parties.
Uploads Memorandum on Noise Wall Balloting Results to ATLAS Workbench and provides it to the appropriate parties (e.g., the Roadway Design Lead, Structures Lead, and Geotechnical Design Geotechnical Engineer), notifying the Project Manager when complete.

**Complete QC/QA Procedures**

Environmental Staff is to coordinate the applicable QC review following the NCDOT *Quality Management Manual* procedures and the respective QC Checklist.
4EN1 Secure Environmental Permits

Overview
Coordinate with the agency representative for any additional information that is needed to issue the permit(s). Once the agency(ies) issues the permit(s), update the Project Special Commitments (Green Sheets) to include special permit conditions and prepare the permit package for distribution.

References
- Project Special Commitments (Green Sheets) Guidance

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit Package</td>
<td>Finalize Permit Package and Address Agency Comments</td>
<td>Natural Environment Lead, ECAP Team Leader</td>
</tr>
<tr>
<td>Project Special Commitments (Green Sheets)</td>
<td>Update Project Commitments</td>
<td>X</td>
</tr>
</tbody>
</table>

A indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Finalize Permit Package and Address Agency Comments
The Natural Environment Lead coordinates with the agency representative as necessary to finalize the needed permits for the project. These permits may include:

- Section 404: Nationwide, Regional General, or Individual Permit (USACE)
- Section 401: Water Quality Certification, General or Individual (NCDWR)
- Buffer Authorization (NCDWR)
- Coastal Area Management Act (CAMA) Permit (NC Division of Coastal Management)
- Section 10 Permit (USACE and US Coast Guard)
- Federal Energy Regulatory Commission (FERC) Coordination and Approval
- Bridge Permit or Exemption Approval (US Coast Guard)

Update Project Commitments
When the permits are received, the Natural Environment Lead reviews them for any additional permit conditions required by agencies. If there are additional permit conditions, the Natural Environment Lead ensures they are included in the Project Special Commitments (Green Sheets). The Natural Environment Lead also develops and uploads a permit package that includes project permits and notifies the Project Manager, Contract, Preconstruction Unit Heads, and Division.
5EN1 Environmental Compliance During Construction

Continue project coordination to help construction oversight staff ensure compliance with permits and other environmental commitments.
1EP1 Initiate Environmental Review

Overview
Assist with the development and/or review of Merger Pre-Screening, Merger Screening (if needed), Merger Concurrence Point 1 (CP 1) (if needed), Project Scoping Report, and Project Initiation processes in accordance with NCDOT Express Design/Scoping Report Guidance and NCDOT Merger Guidance.

Note: A “NEPA/SEPA Lead” (a subject matter expert in National Environmental Policy Act [NEPA] and North Carolina Environmental Policy Act [SEPA] documentation, which generally means Division Environmental Staff, Environmental Policy Unit staff, and/or consultants) is generally responsible for oversight of these tasks, in collaboration with a Project Lead and other relevant team members.

Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- NCDOT Merger Pre-Screening Guidance
- NCDOT Project Scoping Report Guidance
- NCDOT Project Initiation Form
- NCDOT Merger Guidance
- Merger Calendar
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merger Screening ^</td>
<td>• Complete Merger Pre-Screening</td>
<td>NEPA/SEPA Lead</td>
</tr>
<tr>
<td></td>
<td>• Schedule Merger Screening Meeting (if needed)</td>
<td>Environmental Policy Unit</td>
</tr>
<tr>
<td>Merger Plan (if needed) ^</td>
<td>• Coordinate and Review Merger Plan (if needed)</td>
<td>NEPA/SEPA Lead</td>
</tr>
<tr>
<td></td>
<td>• Review Merger CP1 Meeting Packet (if needed)</td>
<td>Project Lead and Environmental Policy Unit</td>
</tr>
<tr>
<td>Merger CP1 Meeting Packet</td>
<td>• Conduct Concurrence Point 1 (if needed)</td>
<td>Project Lead, NEPA/SEPA Lead, and Environmental Policy Unit</td>
</tr>
<tr>
<td>CP Documentation ^</td>
<td></td>
<td>Applicable Regulatory Agencies</td>
</tr>
</tbody>
</table>

^ indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Complete Merger Pre-Screening
Once there is enough data to support a valid Merger Screening effort, the NEPA/SEPA Lead completes the Merger Pre-Screening Form per current NCDOT guidance; the Environmental Policy Unit reviews the Form to ensure accuracy and validate the decision.
Upon completion, the NEPA/SEPA Lead and/or Environmental Policy Unit leads the following activities:

- If a project pre-screens out of the Merger Process with Environmental Policy Unit concurrence, document the decision and upload the form to the ATLAS Workbench.
- If a project pre-screens into the Merger Process, coordinate with Environmental Policy Unit to schedule a Merger Screening meeting and update/file the form.

The NEPA/SEPA Lead is responsible for ensuring the Merger Pre-Screening documentation is on the ATLAS Workbench.

**Schedule Merger Screening Meeting (if needed)**

If needed, the Environmental Policy Unit schedules and helps the Project Lead host a Merger Screening meeting, per NCDOT guidance. The NEPA/SEPA Lead works with the Environmental Policy Unit to support the Project Lead in consideration of:

- Relevant environmental regulations and permitting requirements
- Merger process requirements
- Meeting facilitation strategies where needed
- Production and review of a draft Merger Plan, if proceeding into Merger

**Coordinate and Review Merger Plan (if needed)**

If a project screens into the Merger Process, the Project Lead works with the NEPA/SEPA Lead to develop a Merger Plan, in coordination with the Environmental Policy Unit and per NCDOT guidance. Plan development is to be discussed during the Merger Screening Meeting to streamline and customize the Merger Process to benefit the project.

The Environmental Policy Unit reviews the Merger Plan prior to finalization and distribution to the Merger Team; the Plan can be posted to the project’s External Collaboration SharePoint site for consumption by the Merger Team. The Merger Plan is a living document, to be updated at each concurrence point, with the final versions of the Merger Plan posted to the ATLAS Workbench.

**Initiate Environmental Documentation**

The Project Lead coordinates with the NEPA/SEPA Lead as the Project Scoping Report is developed (see 1FS3 for related information). The NEPA/SEPA Lead provides both technical content and recommendations to be included in the Project Scoping Report. Since the Project Scoping Report outlines recommendations for project initiation activities, the NEPA/SEPA Lead and the Environmental Policy Unit are to review each Project Scoping Report for accuracy; these materials are relied upon for future environmental reviews and NEPA/SEPA documentation throughout the life of the project.

**Attend Project Initiation Meeting**

The NEPA/SEPA Lead attends the Project Initiation Meeting and is available to assist as the Project Manager takes over the project from the Project Lead prior to Notice to Proceed and beginning at the Alignment Defined Stage. The Environmental Policy Unit confirms the National Environmental Policy Act (NEPA) or State Environmental Policy Act (SEPA) class of action for the project (Categorical Exclusion, Minimum Criteria Determination Checklist, Environmental Assessment/Finding of No Significant Impact, or Environmental Impact Statement/Record of Decision).
Set Up Merger CP1 Meeting (if needed)
In general, the formal Merger Screening Meeting and CP 1 pre-meeting can be a combined meeting. The Project Lead coordinates closely with the Environmental Policy Unit and the NEPA/SEPA Lead to determine the appropriate format and content of any Screening and Concurrence meetings. The Project Manager is to consider the following when requesting a meeting:

- The request takes place 6 to 8 weeks in advance of the requested date.
- A calendar is posted with reserved dates each month for western and eastern Merger projects.

While it is expected that all Merger meetings be held in Raleigh on the selected dates so Merger Team members can plan accordingly, it is possible to have meetings on other dates or in other locations. For instance, some meetings may require a field visit and are held at a location near the project (e.g., Division office) and/or on-site. Also, some concurrence points may be achieved via informal coordination, without a meeting at all.

Review Merger CP1 Meeting Packet (if needed)
The Project Lead and NEPA/SEPA Lead coordinate to provide a draft CP1 packet to the Environmental Policy Unit for review. An important element of the CP1 packet is the project’s Purpose and Need statement. For a Purpose and Need statement that involves safety, the project team collaborates safety data with the Traffic Safety Unit/State Traffic Engineer (see 1TS1 for related information). As a foundational element of a project’s future decision-making, the Purpose and Need is to be thoroughly reviewed prior to regulatory agency review.

Host Merger CP1 Pre-Meeting (if needed)
Per NCDOT guidance, the Project Lead coordinates with the NEPA/SEPA Lead and the Environmental Policy Unit to host a pre-meeting with the Merger MOU signatory agencies:

- Pre-meetings include, at a minimum, NCDOT, Federal Highway Administration (FHWA) (for federal projects), US Army Corps of Engineers (USACE), and the North Carolina Division of Water Resources (NCDWR).
- All pre-meetings are scheduled a minimum of three weeks in advance of the respective concurrence point to allow adequate time to modify the Merger packet, if necessary.
- The project team is to solicit comments and encourage input at the pre-meeting, with the intent of producing a reliable Purpose and Need and a Study Area that can garner agency concurrence.

Conduct CP1 (if needed)
Per NCDOT Merger guidance, the Project Lead works with the NEPA/SEPA Lead and the Environmental Policy Unit to request concurrence from the relevant agencies on the project’s Study Area and its Purpose and Need. Once concurrence is received, a completed meeting summary and signature form is uploaded to the ATLAS Workbench, along with appropriate GIS files for the Study Area. These files are relied upon for future environmental reviews and NEPA/SEPA documentation throughout the life of the project.
Complete QC/QA Procedures
The NEPA/SEPA Lead is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
2EP1 Prepare Environmental Documentation

Prepare, assist, coordinate, and/or review all relevant environmental disciplines as projects navigate the NEPA/SEPA documentation and 404/NEPA Merger processes (as applicable for the project), including the quality control and quality assurance reviews of all relevant environmental documentation.

**Note:** For projects using the Merger Process, the following tasks are required for Merger Concurrence Points (CP) 1 through 4A, unless specifically noted below. The 404/NEPA Merger process supports NCDOT’s NEPA/SEPA documentation and decision-making efforts and are to be viewed as a more robust/structured version of the everyday non-Merger agency coordination efforts.

**References**
- NCDOT Environmental Policy Unit Policies, Procedures, and Guidance Documents
- NCDOT Merger Guidance
- NCDOT-FHWA CE Programmatic Agreement
- NCDOT Section 4(f) Guidance (In development)

**Deliverables**

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merger Preparation Materials</td>
<td>▪ Set Up Merger Concurrence Points (CP) Materials</td>
<td>NEPA/SEPA Lead and Environmental Policy Unit</td>
</tr>
<tr>
<td></td>
<td>▪ Review Merger Concurrence Point Materials</td>
<td>Project Manager and Environmental Policy Unit</td>
</tr>
<tr>
<td>Merger CP Outcomes</td>
<td>▪ Distribute Merger CP Meeting Materials and Conduct Meeting</td>
<td>NEPA/SEPA Lead and Project Manager</td>
</tr>
<tr>
<td>Comments on Merger Public Engagement Materials</td>
<td>▪ Review Merger Public Engagement Materials</td>
<td>Environmental Policy Unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public Involvement Staff</td>
</tr>
<tr>
<td>Approved NEPA/SEPA Documentation</td>
<td>▪ Prepare NEPA/SEPA Documentation</td>
<td>NEPA/SEPA Lead</td>
</tr>
<tr>
<td>Comments on Environmental Documents</td>
<td>▪ Review Environmental Documents</td>
<td>NEPA/SEPA Lead</td>
</tr>
<tr>
<td>Approved Section 4(f) Documentation</td>
<td>▪ Review Section 4(f) Documentation</td>
<td>NEPA/SEPA Lead</td>
</tr>
<tr>
<td>Annual CE Review and Report</td>
<td>▪ Provide Categorical Exclusions (CE) Compliance Review</td>
<td>Environmental Policy Unit</td>
</tr>
</tbody>
</table>

A indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

**Set Up Merger Concurrence Points**

All Merger concurrence points can be achieved via in-person meetings, online/teleconference, or coordinated via email. The project’s NEPA/SEPA Lead coordinates with the Environmental Policy Unit to maintain the Merger Plan and align it with the overall project schedule. As each Concurrence Point approaches, the Environmental Policy Unit’s activities begin when the Unit receives an ETRACS request to place a Merger CP on the Merger Calendar. This request takes place at least two months in advance of the requested date. Dates have been reserved each month for Merger meetings. A calendar is posted each year with selected dates for western and eastern projects.
While it is expected that all Merger meetings are held in Raleigh on the selected dates so Merger Team members can plan accordingly, it is possible to have meetings on other dates or in other locations. For instance, some meetings may require a field visit and are held at a location near the project (e.g., Division office) and/or on-site.

- For the Merger CP2A meeting, the project team may elect to schedule a field meeting to review the proposed major crossing structure locations and get a better idea of the quality of the impacted resources. If needed, the Project Manager is to coordinate the meeting date, time, and location with the Merger Team, notifying the Environmental Policy Unit as a courtesy.

**Review Merger Concurrency Point Materials**

In collaboration with the Project Manager and in accordance with the NCDOT Merger guidance, the NEPA/SEPA Lead provides the draft Merger Concurrency Point (CP) materials and submits it to the Environmental Policy Unit for review, which minimally includes the following for each Merger CP:

- Meeting purpose
- Project description, vicinity map, and study area figure
- Summary of Merger Process decisions to date
- Nearby STIP projects
- Project schedule
- Summary of public engagement (as applicable)
- Avoidance and minimization measures to date

For Merger CP2, the packet also includes:

- Summary of alternatives considered
- Summary of proposed detailed study alternatives

For Merger CP2A, the packet also includes:

- Water resources summary
- Major Hydraulic Crossings and Alignment Review

For Merger CP3 and CP4A, the packet also includes:

- Cost Estimates
- Impact summary
- Recommended least environmentally damaging practicable alternative (LEDPA)
- Avoidance and minimization measures summary for each concurrency point and for activities that have taken place since Merger CP3

**Host Merger CP Pre-Meeting**

Prior to a scheduled Merger meeting, the project team may host a call with the Merger MOU Signatory agencies to solicit questions and address agency concerns.

- Pre-meetings include, at a minimum, NCDOT, Federal Highway Administration (FHWA) (for federal projects), US Army Corps of Engineers (USACE), and the North Carolina Division of Water Resources (NCDWR).
All pre-meetings are scheduled a minimum of three weeks in advance of the respective Merger meeting to allow adequate time to modify the Merger packet, if necessary. Pre-meetings are required at Merger CP3 and are encouraged at Merger CP2, CP2A, and CP4A for complex projects. The project team is prepared to address concerns expressed at the pre-meeting prior to or at the Merger meeting (i.e., in the Merger packet or in the meeting presentation).

Distribute Merger CP Meeting Materials and Conduct Meeting
The Merger Process requires that the completed packet and relevant logistical information (e.g., meeting invitation, videoconference link, and/or teleconference number) is circulated to Merger Team members at least two weeks prior to the scheduled meeting date. The Environmental Policy Unit oversees the material distribution requirements, in addition to supporting the NEPA/SEPA Lead with securing audio and visual equipment, a conference call number, and video meeting link, initiating each at the beginning of the meeting.

The NEPA/SEPA Lead and/or Project Manager conduct the concurrence point coordination, with the Environmental Policy Unit and Division Environmental staff supporting the Project Team throughout.

Review Merger Public Engagement Materials
Public engagement (e.g. public meeting, newsletter) requirements for a project in the Merger process are detailed in NCDOT’s Merger Guidance. The Environmental Policy Unit and NCDOT Public Involvement staff review the draft public engagement materials in order to ensure compliance with the guidance and adhere to USACE permitting requirements.

Prepare the NEPA/SEPA Documentation
Due to the complexity and variability of NEPA/SEPA documentation, the guidance provided herein is simply an overview. In most cases NEPA/SEPA documentation is prepared by a consulting firm on behalf of NCDOT; in other cases, NCDOT staff prepares the environmental documentation in-house. While the documentation itself (Categorical Exclusion, Minimum Criteria Determination Checklist, Environmental Assessment/Finding of No Significant Impact, or Environmental Impact Statement/Record of Decision) is the culmination of the process, the analyses and documentation efforts are taking place throughout the project’s development, beginning in the Project Initiation Stage of the PDN.

The final NEPA/SEPA documentation is often referred to as NCDOT’s “decision document” because it presents the case for why a project is proceeding forward with action based on the identified needs, purpose, and in light of the relevant environmental and design constraints analyzed. The entirety of the PDN’s Project Initiation and Alignment Defined Stages build up to completion of the project’s NEPA/SEPA documentation.

The NEPA/SEPA Lead (typically Division Environmental or Environmental Policy Unit staff within NCDOT) oversees preparation of NEPA/SEPA documentation, including:

- Coordination with project team members to gain a full understanding of the project’s location and proposed actions.
- Evaluating the project’s potential impacts in accordance with state and federal environmental rules, regulations, and policies.
Ensuring transparency of NCDOT’s decision-making and environmental impact analysis processes, including public involvement and stakeholder input.

Preparing and coordinating approval of the environmental documentation in accordance with current NCDOT procedures; for example, many STIP projects are documented as Categorical Exclusions, so the current *FHWA-NCDOT CE Programmatic Agreement* governs the preparation of that documentation.

Upon approval of the NEPA/SEPA documentation, the NEPA/SEPA Lead coordinates with the Division Environmental staff or Environmental Policy Unit to:

- Inform the project team and upload the final document and supporting memos, determinations, correspondence, and technical studies to the ATLAS Workbench.
- Ensure the environmental documentation’s project commitments are included in the Green Sheet, communicated to the project team, and incorporated into the project’s plan set. (*Note: Environmental commitments that impact the project’s overall scope, schedule, or budget are to be coordinated with the Project Manager and the appropriate discipline leads prior to their inclusion.*)

### Review Environmental Documentation

The NEPA/SEPA Lead is responsible for coordinating with the Environmental Policy Unit to provide quality control reviews for NEPA (Environmental Assessments [EAs]/Findings of No Significant Impact [FONSIs], Environmental Impact Statements [EISs], and Records of Decision [RODs]) and SEPA documents. The Environmental Policy Unit and/or Division Environmental staff provide quality control reviews of NEPA Categorical Exclusion (CE) and SEPA Minimum Criteria Determination Checklist (MCDC) documentation.

Once requested, the Environmental Policy Unit and/or Division Environmental staff:

- Reviews the environmental documents (draft and final versions) and provides comments back to the preparer,
- Obtains federal agency review (as needed), and
- Ensures the final document(ation) is uploaded to the ATLAS Workbench.

NCDOT staff review and approval is directly tied to state/federal requirements and quality assurance processes. For example, the *FHWA NCDOT CE Agreement* states that NCDOT must rely on “qualified NCDOT staff to make CE approvals or certifications submitted to FHWA under this agreement. The NCDOT may not delegate its responsibility for CE approvals or certifications to third parties (i.e., consultants, local government staff, and other State agency staff).”

### Review Section 4(f) Documentation (if needed)

The NEPA/SEPA Lead is to work with the Environmental Policy Unit, EAU Community Studies staff, and/or Division Environmental staff to review, coordinate, and complete Section 4(f) documentation, as needed.

- Section 4(f) documentation is often completed with the draft environmental document and is necessary for USDOT agency administered (such as FHWA) projects that may impact a Section 4(f) recreational resource (the Environmental Analysis Unit’s Cultural Resources staff generally coordinates Section 4(f) documentation for historic resource impacts – see 2EN2 for related information).
The impact may involve *de minimis* or “programmatic use” coordination with FHWA and the local official with jurisdiction over the resource, or it may involve more complex Section 4(f) use evaluations.

This documentation is very project specific. A Section 4(f) use evaluation could become a driver for project decision-making and significantly affect project schedule. Potential 4(f) resources are to be identified during the Project Initiation Stage and be tracked throughout a project’s development. More information on this task is detailed on the Environmental Policy Unit website and in 2EN2.

**Provide Categorical Exclusion (CE) Compliance Review**

Under the terms of the *FHWA-NCDOT CE Programmatic Agreement*, the Environmental Policy Unit works collaboratively with FHWA to conduct an annual Compliance Review and Report of CEs completed by the various Units and Divisions. The review typically includes at least one CE from each Unit or Division that developed a CE within the calendar year and a total of at least 10 percent of completed CEs.

As part of the Report, the Environmental Policy Unit develops a list of CEs completed by Type, which is provided to FHWA. The Environmental Policy Unit develops and finalizes the Compliance Review Report, making it available to NCDOT staff and FHWA. NCDOT and FHWA then meet to review areas of improvement and best practices noted in the CE review and report, determining if trainings or other steps are needed to ensure continued improvement in CE development.
3EP1 Complete Right-of-Way Consultation

Conduct Consultation (a written summary to evaluate whether the prior NEPA/SEPA documentation remains valid) prior to executing right-of-way authorization if more than one year has passed since approval of the environmental document(ation) or if substantial project changes have occurred.

References

- NCDOT Consultation and Re-Evaluation Guidance
- NCDOT NEPA/SEPA Consultation Form

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCDOT NEPA/SEPA Consultation Form ^</td>
<td>Complete Right-of-Way Consultation (as applicable)</td>
<td>NEPA/SEPA Lead</td>
</tr>
</tbody>
</table>

^ indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Complete Right-of-Way Consultation (as applicable)

At least three months prior to requesting right-of-way authorization (see 3RW2 for related information), the Project Manager coordinates with the NEPA/SEPA Lead (typically Division Environmental or Environmental Policy Unit staff within NCDOT) to determine if a Consultation is required. The Consultation is completed in accordance with the current version of the NCDOT Consultation and Re-Evaluation Guidance and documented on the NCDOT NEPA/SEPA Consultation Form. The completed Consultation is distributed by the NEPA/SEPA Lead to the Project Manager and applicable project team members and uploaded to the ATLAS Workbench.
4EP1 Complete Construction Consultation

Conduct Consultation (a written summary to evaluate whether the prior NEPA/SEPA documentation remains valid) prior to executing construction authorization if more than one year has passed since approval of the environmental document(ation) or if substantial project changes have occurred.

References

- NCDOT Consultation and Re-Evaluation Guidance
- NCDOT NEPA/SEPA Consultation Form

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCDOT NEPA/SEPA Consultation Form[^]</td>
<td>Complete Construction Consultation (as applicable)</td>
<td>NEPA/SEPA Lead</td>
</tr>
</tbody>
</table>

[^] indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Complete Construction Consultation (as applicable)

At least three months prior to requesting construction authorization, the Project Manager coordinates with the NEPA/SEPA Lead (typically Division Environmental or Environmental Policy Unit staff within NCDOT) to determine if a Consultation is required. The Consultation is completed in accordance with the current version of the NCDOT Consultation and Re-Evaluation Guidance and documented on the NCDOT NEPA/SEPA Consultation Form. The completed Consultation is distributed by the NEPA/SEPA lead to the Project Manager and applicable project team members and uploaded to the ATLAS Workbench.
1FS1 Conduct Candidate Project Analysis

Overview
Assess Proposed Regional Transportation System Improvements design concept, scope, and estimated costs conducting additional studies (if needed) and develop the preliminary prioritization candidate project list.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- Candidate Project: Systems Planning to Programming Flow Chart (In development)
- Candidate Project Screening Tools (In development)
- Candidate Project Guidance (In development)
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Key Contact Sheet</td>
<td>Evaluate Candidate Project Scope and Costs</td>
<td>Project Sponsors (MPO, RPO, Highway Divisions)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transportation Planning Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division Corridor Development Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division Planning Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corridor Development Unit/Feasibility Studies Unit</td>
</tr>
<tr>
<td>Corridor/Feasibility/Planning and Environmental Linkage (PEL) Study</td>
<td>Compile Corridor/Feasibility/Planning and Environmental Linkage (PEL) Studies</td>
<td>Feasibility Studies Unit/Corridor Development Unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transportation Planning Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division Corridor Development Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division Planning Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Sponsors (MPO, RPO, Highway Divisions)</td>
</tr>
<tr>
<td>Preliminary Prioritization Candidate Project List</td>
<td>Develop and Submit Preliminary Prioritization Candidate Project List</td>
<td>Project Sponsors (MPO, RPO, Highway Divisions)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transportation Planning Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division Corridor Development Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division Planning Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corridor Development Unit/Feasibility Studies Unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>State Transportation Improvement Program Unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strategic Prioritization Office of Transportation</td>
</tr>
</tbody>
</table>

A indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Provide Proposed Regional Transportation System Improvements
It is anticipated that Proposed Regional Transportation System Improvements (from Comprehensive Transportation Plans, Metropolitan Transportation Plans, etc.) are provided to the Project Sponsors for consideration of candidate projects. These proposed system improvements, along with other identified potential projects, are evaluated to determine if there is a need to refine the design, concept, scope, and cost of the potential improvement as shown below.

1FS1 Conduct Candidate Project Analysis
June 2021
Evaluate Candidate Project Scope and Costs
An assessment of proposed regional transportation system improvement’s design, concept, scope, and estimated cost is completed to determine if additional work is needed to update/refine these elements. If additional work is needed, then the Project Sponsor can work with their partners to better define the proposed improvement and its associated costs. This additional work could include simple refinements or full corridor/feasibility/PEL studies. The benefit of this early assessment and potential additional work is to avoid advancement of projects through the Candidate Project process that have serious challenges in terms of buildability, permitting, or excessive, anticipated costs.

As part of this evaluation, a Project Key Contact Sheet for each project is developed identifying key agencies and individuals who have been or should be engaged in advancing the project through the project’s various phases.

Compile Corridor/Feasibility/Planning and Environmental Linkage (PEL) Studies
For any candidate project where it is identified that a full corridor/feasibility/PEL study is warranted, the Feasibility Studies/Corridor Development Units (FSU/CDU) can assist in the development of these studies. This effort occurs outside the normal Project Delivery Network process. The Feasibility Studies/Corridor Development Unit can provide any information on completed Systems Planning, Feasibility, or Corridor Studies to the Corridor Development Engineer, MPO/RPOs, or Highway Division staff for their use in developing candidate projects. Responses to these requests are anticipated to take five business days from receipt.

The Feasibility Studies/Corridor Development Unit is available to assist as the project is being evaluated prior to development of Express Designs as needed (see 1FS2 for related information).

Develop and Submit Preliminary Prioritization Candidate Project List
Understanding that long-range transportation planning identifies more system improvements than can be implemented during the time span of NCDOT’s current work programs, a Preliminary Prioritization Candidate Project List of those system improvement projects seen by the Project Sponsors as being the highest priority to address key long-range transportation plan objectives are encouraged to be developed and submitted to the Feasibility Studies/Corridor Development Units.

Working with the NCDOT business units and other stakeholders, Project Sponsors develop their own criteria for defining their highest priority projects. The benefit of this step is to provide a list of potential SPOT submittals to the FSU/CDU so they can begin preparing their workload to address potential Express Design assignments (as shown in 1FS2).

Complete QC/QA Procedures
The Feasibility Studies Unit/Corridor Development Unit Lead is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
1FS2 Complete Express Design

Overview
As the first in-take of projects from Project Sponsors (Metropolitan Planning Organizations (MPOs), Rural Planning Organizations (RPOs), and Highway Division offices) produce a consistent and reliable description of projects that includes a cost estimate, purpose and need statement, and high-level environmental screening.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- Express Design Project Scoping Report Process
- Candidate Project: Systems Planning to Programming Flow Chart (In development)
- Candidate Project Screening Tools (In development)
- Candidate Project Guidance (In development)
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Prioritization Design, Concept, &amp; Scope Sufficiency Form</td>
<td>Complete Pre-Prioritization Design Concept &amp; Scope Sufficiency Form</td>
<td>Project Sponsors (MPOs, RPOs, Highway Divisions)</td>
</tr>
<tr>
<td></td>
<td>Conduct Express Design Evaluation (Cost Estimate only or Full Express Design)</td>
<td>Feasibility Studies/Corridor Development Unit</td>
</tr>
<tr>
<td></td>
<td>Finalize Express Design Deliverables</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Submit the Express Design Evaluation</td>
<td></td>
</tr>
<tr>
<td>Express Design Evaluation Package (Cost Estimate only or Full Express Design)^A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^A indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Complete Pre-Prioritization Design Concept & Scope Sufficiency Form
Once projects have been identified as being of high priority for implementation through the Preliminary Prioritization Candidate Project List, they can be screened for adequacy of concept scope development and cost estimates through the submission of a Pre-Prioritization Design Concept & Scope Sufficiency Form. Projects not shown on the Preliminary Prioritization Candidate Project List can still be submitted on the sufficiency form. Once completed for a potential project improvement, the form is submitted to the Feasibility Studies/Corridor Development Unit for review.
Receive Pre-Prioritization Design Concept & Scope Sufficiency Form and Conduct Adequacy Evaluation

Once a Pre-Prioritization Design Concept & Scope Sufficiency Form is received by the Feasibility Studies/Corridor Development Unit, the form and potential project is be reviewed, and next steps are recommended. There are three potential recommendations:

- No further analysis,
- Recommend a cost estimate update, or
- Recommend conducting an Express Design.

The Feasibility Studies/Corridor Development Unit develops the parameters for adequacy of the evaluation.

Receive Project Express Design Evaluation Request

If the Project Sponsor decides that an Express Design is needed to fully evaluate a potential project, they send a Project Evaluation Request to the Feasibility Studies/Corridor Development Unit to request an Express Design Evaluation.

Note: It is anticipated that all projects have an Express Design Evaluation. As this process is being implemented, the Feasibility Studies/Corridor Development Unit focuses on ensuring that all candidate projects needing an Express Design Evaluation are developed and supplied to the Corridor Development Engineer to allow for the project to be reviewed using SPOT Online and reviewed to determine if the project is ready for prioritization submittal (see 1SP1 for related information).

If a project is submitted to the Strategic Prioritization Office (SPOT) and an Express Design Evaluation or similar study has not been initiated, then SPOT submits a Project Evaluation Request to the Feasibility Studies/Corridor Development Unit for inclusion into the Express Design Evaluation program.

Conduct Express Design Evaluation (Cost Estimate only or Full Express Design)

The Feasibility Studies/Corridor Development Unit performs Express Design Evaluations or Cost Estimate Evaluations on candidate projects as capacity permits.

To conduct a full Express Design Evaluation, the Feasibility Studies/Corridor Development Unit is to:

- Obtain the Long-Range Transportation Plan (LRTP) (Metropolitan Transportation Plan [MTP] or Comprehensive Transportation Plan [CTP])
- Coordinate with the Metropolitan and/or Rural Planning Organizations (MPOs/RPOs)/Division Engineer/Project Lead and possibly the impacted municipality or county
- Obtain existing traffic data (TPD) and perform appropriate level of capacity analysis in coordination with the Transportation Planning Division (see 1TP1 for related information)
- Coordinate with the Traffic Safety Planning Engineer to complete a Traffic Safety Screening Tool (see 1TS1 for related information)
- Coordinate with Traffic Management Unit (Congestion Management), as appropriate
- Conduct high-level environmental screening using ATLAS
- Conduct highway stormwater screening
- Prepare conceptual designs based on the Express Design
Prepare ITS cost estimates
- Coordinates the conceptual construction cost estimate with the Contract Standards and Development Unit (see 1CS1 for related information)
- Coordinate the preliminary estimate of utility relocation cost with the Utilities Coordinator (see 1UT1 for related information)
- Coordinate the conceptual right-of-way (ROW) cost estimate with the Central ROW Office (see 1RW1 for related information)

Finalize Express Design Deliverables
Following the Express Design Project Scoping Report Process, the Feasibility Studies/Corridor Development Unit compiles a package of information developed during the Express Design Evaluation, including conceptual design, cost estimates, and Express Design Summary.

The Feasibility Studies/Corridor Development Unit coordinates with the local MPOs/RPOs to ensure that the Final Express Design Evaluation Package is compatible with the local vision for the project. The Feasibility Studies/Corridor Development Unit revises the Express Design, if needed.

The Final Express Design Evaluation Package is uploaded to the ATLAS Workbench, which copies the document package to the Scoping Help SharePoint site.

Submit the Express Design Evaluation
The Feasibility Studies/Corridor Development Unit submits the Final Express Design Evaluation Package to SPOT, including the anticipated costs of the improvements. In addition, the Feasibility Studies/Corridor Development Unit notifies key NCDOT and MPO/RPO partners of the package being complete.

Complete QC/QA Procedures
The Feasibility Studies Unit/Corridor Development Unit Lead is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
1FS3 Complete Project Scoping Report

Overview

Begin when a project is programmed in the State Transportation Improvement Program (STIP) to validate and enhance project information developed in the earlier Express Design Evaluation. To do this the Feasibility Studies/Corridor Development Unit develops a Project Scoping Report that has more alternatives/alignments, details, and may engage key stakeholders in discussions of those options.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References

- Express Design Project Scoping Report Process
- Construction Contract Decision Matrix
- Candidate Project: Systems Planning to Programming Flow Chart (In development)
- Candidate Project Screening Tools (In development)
- Candidate Project Guidance (In development)
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Scoping Report Level-of-Detail Screening Form</td>
<td>Review/Update Information from the Express Design Evaluation</td>
<td>Feasibility Studies/Corridor Development Unit</td>
</tr>
<tr>
<td></td>
<td>Complete Project Scoping Level-of-Detail Evaluation</td>
<td></td>
</tr>
<tr>
<td>Project Scoping Report Package</td>
<td>Develop and Complete Project Scoping Report</td>
<td>Feasibility Studies/Corridor Development Unit</td>
</tr>
<tr>
<td></td>
<td>Assign Private Engineering Firm</td>
<td></td>
</tr>
<tr>
<td>Final Project Initiation Packet²</td>
<td>Compile Final Project Initiation Packet</td>
<td>Division Corridor Development Engineer</td>
</tr>
</tbody>
</table>

² indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Review/Update Information from the Express Design Evaluation

If, during prioritization (see 1SP1 for related information), a project is selected for programming in the STIP (see 1SI1 for related information), a review and update (if necessary) of the project data developed during the Express Design Evaluation is required. The Express Design Project Scoping Report Process is
used to update the Express Design Evaluation information, as appropriate, and provides more in-depth information in the Project Scoping Report to inform the Project Manager how the project is to proceed in the Aligned Defined Stage.

**Complete Project Scoping Level-of-Detail Evaluation**

Before development of the Project Scoping Report (PSR) can begin, a decision must be made to determine which tier of PSR is completed. The three tiers of PSRs are:

- **Streamlined PSR:** For small, straightforward projects, to include only a Screening Checklist and Project Initiation Form
- **Regular PSR:** Includes a Screening Checklist and Project Initiation Form, plus a more detailed Technical Report
- **Plus PSR:** Includes a Screening Checklist, Project Initiation Form, and Technical Report of the Regular PSR, plus Public Involvement Documentation and Resource Agency Documentation needed to define Merger Screening and document achieving Merger Concurrence Point 1

For each project that has received a sufficiently high Project Prioritization score to be considered for inclusion in the STIP, the Feasibility Studies/Corridor Development Unit completes the Project Scoping Report Level-of-Detail Screening Form. The form recommends the PSR level-of-effort commensurate with previous analysis for the project. The form, together with the supporting documentation, is reviewed by the Environmental Policy Unit and Project Lead. Should there be disagreement with the recommendation, they meet with the Feasibility Studies/Corridor Development Unit to resolve the discrepancy.

**Develop and Complete Project Scoping Report**

Following review and update (if necessary) of the Express Design Evaluation and Project Scoping Level-of-Detail Evaluation, the Feasibility Studies/Corridor Development Unit develops the Project Scoping Report Package as detailed in the *Express Design Project Scoping Report Process*.

To develop the package, the Feasibility Studies/Corridor Development Unit is to:

- Prepare the Project Scoping Screening Checklist
- Coordinate with the Traffic Safety Planning Engineer to complete a Project Scoping Report Traffic Safety Screening Tool (see 1TS1 for related information)
- Receive traffic forecast from the Transportation Planning Division (see 1TP1 for related information)
- Develop survey limits and request map (see 1LS1 for related information)
- Coordinate development of SUE level D with the Location & Survey Division Team Lead (see 1LS1 for related information)
- Coordinate the best available geospatial data from the Photogrammetry Unit (see 1PH1 and 1PH2 for related information)
- Coordinate with the Roadway Design Unit as appropriate (see 1RD1 for related information)
- Develop the Project Scoping Technical Report
- Complete the Construction Contract Decision Matrix
- Complete the NEPA/Section 404 Merger Pre-Screening Form (and Merger Screening meeting and Concurrence Point 1, if appropriate) (see 1EP1 for related information)
- Update the Project Initiation Form (Express Design Summary)
Coordinate with the Geotechnical Unit (GeoEnvironmental) to complete the GeoEnvironmental screening process (see 1GT1 for related information)

- Coordinate with the Geotechnical Unit to complete the Geotechnical Report for Planning (see 1GT1 for related information)
- Coordinate with the Environmental Analysis Unit (EAU) and Environmental Policy Unit (EPU) (see 1EN1 and 1EP1 for related information)
- Develop and initial Public Involvement Plan (PIP) in coordination with the Public Involvement Lead (see 1PI1 for related information)
- Initiate railroad coordination, if required for the project (see 1RR1 for related information)
- Prepare Coordination Log
- Coordinate with the Communications Group when the Project Scoping Report is complete to request comments (see 1CG1 for related information)

The Feasibility Studies/Corridor Development Unit uploads the Project Scoping Report Package to ATLAS Workbench, which copies the package to the Scoping Help SharePoint site.

**Compile Final Project Initiation Packet**

Throughout the Candidate Project process, a record of documents that have defined the project are compiled and maintained for ultimate delivery to the project development team. This includes an opportunity for public review and comment on all project planning materials included in the Final Project Initiation Packet. The Division Corridor Development Engineer compiles the packet and provides it to the Project Lead to move forward in the PDN process.

**Complete QC/QA Procedures**

The Feasibility Studies Unit/Corridor Development Unit Lead is to coordinate the applicable QC review following the NCDOT *Quality Management Manual* procedures and the respective QC Checklist before upload and distribution of all related deliverables.
1GT1 Complete Geotechnical and GeoEnvironmental Screening

Overview
Identify and complete an accurate depiction of historical and existing facilities within the project limits and identify geotechnical issues that complicate or lead to unusual construction. Recommend this stage be performed with Geotechnical Engineering Unit personnel for the historical perspective and to identify need of additional investigation and reports.

References
- Geotechnical Investigation and Recommendations Manual
- GeoEnvironmental Product Matrix
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical Input on Express Design</td>
<td>Provide Geotechnical Input on Express Design</td>
<td>GeoEnvironmental Project Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Geological Engineer</td>
</tr>
<tr>
<td>Geotechnical Report for Planning</td>
<td>Develop Geotechnical Report for Planning</td>
<td>Design Geotechnical Engineer</td>
</tr>
<tr>
<td>GeoEnvironmental Scoping Comments Report</td>
<td>Develop GeoEnvironmental Screening Report</td>
<td></td>
</tr>
</tbody>
</table>

Provide Geotechnical Input on Express Design
Led by the GeoEnvironmental Project Engineer and/or Project Geological Engineer, the geotechnical team identifies what major Geotechnical/GeoEnvironmental issues in study area are to be avoided. While input typically is not requested, it may originate from Transportation Planning Division for large projects, known existing conditions, or projects involving unique features, such as large and/or complex structures.

Develop Geotechnical Report for Planning
In accordance with the Geotechnical Investigation and Recommendations Manual, the geotechnical team:

- May provide pre-scoping comments followed by a formal screening report.
- Conduct a site visit with possible early borings when a large and/or complex bridge, three-sided culvert, or other unusual structure is a possibility or complete hand probes of areas of soft/organic soil in the study area that can be avoided by an alternative/alternate.
- Document findings and potential construction issues in the report.

Develop GeoEnvironmental Screening Report
To complete the screening report, the GeoEnvironmental Project Engineer is to:
- Conduct a desktop review of GIS database files and ATLAS links of the project study area for GeoEnvironmental sites of concern.
- Prepare a report that includes a map and shapefile of the noted sites of concern.

Complete QC/QA Procedures
The GeoEnvironmental Project Engineer is to coordinate the applicable QC review following the *NCDOT Quality Management Manual* procedures and the respective QC Checklist before upload and/or distribution of any deliverables.
2GT1 Prepare GeoEnvironmental Phase I Report

Overview

Develop the GeoEnvironmental Phase I Report. Recommend this stage be performed with Geotechnical Engineering Unit personnel for the historical perspective and to identify need of additional investigation and reports.

References

- NCDOT GeoEnvironmental Phase I Scope of Work
- NCDOT GeoEnvironmental Phase I Spreadsheet Template
- NCDOT GeoEnvironmental Phase I Template
- NCDOT GeoEnvironmental Product Matrix
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeoEnvironmental Phase I Report</td>
<td>Complete GeoEnvironmental Phase I Report and Related Materials</td>
<td>GeoEnvironmental Project Engineer</td>
</tr>
<tr>
<td>GeoEnvironmental Phase I Spreadsheet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeoEnvironmental GIS Shape File</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^ Indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Complete GeoEnvironmental Phase I Report and Related Materials

This task is to develop Phase I products in accordance with the guidelines and references linked above.

For the GeoEnvironmental Phase I Report, the GeoEnvironmental Project Engineer identifies sites of concern within the preferred alternative/alignment study limits via field reconnaissance, historical aerial review, and regulatory review. This information is included in the HazMat section of the environmental document or checklist.

To complete the GeoEnvironmental Phase I Spreadsheet, the GeoEnvironmental Project Engineer populates the spreadsheet template with details of sites of concern for upload into Geotech database.

The GeoEnvironmental Project Engineer develops the GeoEnvironmental GIS shape file, using the GIS template to populate details of sites of concern and uploads into the ATLAS workbench. Before upload and distribution, the GeoEnvironmental Project Engineer coordinates the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist.
2GT2 Conduct Subsurface Investigations and Provide Roadway Recommendations

Overview
Conduct subsurface investigation and provide design and construction recommendations as part of the development of the Design Recommendation Plan Set.

Note: This activity involves field work with equipment, which could be affected by weather, difficulty of access, property owners, moratoriums, traffic control and conflicts with existing traffic control, etc.

References
- Geotechnical Investigation and Recommendations Manual
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Subsurface Investigation Inventory Report with graphics</td>
<td>Provide Roadway Inventory and Recommendations</td>
<td></td>
</tr>
<tr>
<td>Right-of-Way Recommendation Memo</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Roadway Recommendation Report possibly with graphics</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Special Provisions</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Provide Roadway Inventory and Recommendations
This task is to conduct subsurface investigation to form the Subsurface Investigation Inventory Plan Set based on the Design Recommendation Plan Set (see 2RD1 for related information). In accordance with the Geotechnical Investigation and Recommendation Manual, the Geotechnical Engineering Unit completes a Roadway Subsurface Investigation Inventory Report (with graphics). The inventory requires the following roadway information:

- Plan view, profile, and cross sections
- Proposed roadway retaining wall locations, if known
- Proposed sound barrier locations, if known

The inventory is initiated when the Roadway Design Lead sends a request for recommendations, with a date information is needed by, and location of electronic plans to the appropriate geotechnical division: Geo_Pre-let_Div1-6@ncdot.gov, Geo_Pre-let_Div7-8@ncdot.gov or Geo_Pre-let_Div9-14@ncdot.gov.

From there, the geotechnical team:

2GT2 Conduct Subsurface Investigations and Provide Roadway Recommendations
June 2021
Assigns the work to an in-house field office or Private Engineering Firm.
- Holds a kickoff meeting and develops an investigation plan.
- Notifies 811 to locate utilities, where needed, and completes a field investigation
- Assigns samples for lab testing and compiles results.
- Enters field log data into gINT and post bore logs.
- Develops stratigraphy and complete graphics.

The geotechnical team summarizes results in the inventory report and lists soils present in the project area and geotechnical areas of special interest.

For the Roadway Recommendation Report (possibly with graphics), the Design Geotechnical Engineer or Project Geological Engineer completes Section I of recommendations, with the Project Geological Engineer completing Section II thru IV of recommendations.

The Geotechnical Engineering Unit provides a Right-of-Way Recommendations Memo to the Project Manager (for information) and the appropriate technical discipline/Unit Leads (for action), if the Roadway Recommendation Report is not available prior to development of the Field Inspection Plan Set. Items to be addressed are slope configuration, retaining wall type if known (anchors or soil nails require right-of-way, and special ditches in coastal plain to lower groundwater).

Additional Roadway Recommendation report content includes development of:

- Recommendation graphics,
- Geotechnical quantity summary (attached to report), and
- Geotechnical summary of quantities spreadsheet.

For Special Provisions, the Geotechnical Engineering Unit considers:

- Special handling of material.
- Ground Improvement
- Geotextile for Pavement Stabilization
- Reinforced Soil Slopes (RSS)
- Cellular Confinement Systems
- Rock Embankments
- Blasting or vibration requirements in addition to what is in the NCDOT Spec Book Transmit Inventory and Recommendation Report

The inventory and recommendation report are then QC’ed, following the NCDOT Quality Management Manual procedures and the respective QC Checklist, and uploaded to the project SharePoint site.
Overview
Conduct subsurface investigation of existing pavement and subgrade and provide recommendations for proposed pavement designs. Refer to the NCDOT Geotechnical Investigation and Recommendation Manual linked below.

Note: This activity involves field work with equipment, which could be affected by weather, difficulty of access, property owners, moratoriums, traffic control and conflicts with existing traffic control, etc.

References
- Geotechnical Investigation and Recommendations Manual
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverables</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement and Subgrade Investigation and Recommendations Report (PSIRR)</td>
<td>Pavement and Subgrade Investigation and Recommendations Report</td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional Support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geopavement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geopavement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervisor</td>
</tr>
</tbody>
</table>

Provide Pavement and Subgrade Investigation and Recommendations Report (PSIRR)
This task involves conducting subsurface investigation of existing pavement and subgrade, providing recommendations for proposed pavement designs (see 2PD1 for related information). In accordance with the Geotechnical Investigation and Recommendation Manual, the Geotechnical Engineering Unit receives a request from Pavement Design Engineer or Project Manager to begin work. The investigation requires the following roadway information: plan view, profile, and cross-section.

From there, the Geotechnical Engineering Unit:

- Develops an investigation plan and conducts a scoping meeting with the Private Engineering Firm.
- Notifies 811 to locate utilities, where needed, and completes a field investigation
- Assigns samples for lab testing and compiles results.
- Enters field log data into gINT and post bore logs.
- Develop graphics with pavement core photos.

The geotechnical team summarizes results that includes recommendations, a geotechnical quantity summary (attached to report), and geotechnical summary of quantities spreadsheet. The Pavement Design Investigation (PDI) Report is then QC’ed, following the NCDOT Quality Management Manual procedures and the respective QC Checklist, and provided to the Pavement Design Engineer (for action) and Project Manager (for information).
3GT1 Prepare GeoEnvironmental Phase II Report

Overview
Develop the GeoEnvironmental Phase II Report.

References
- GeoEnvironmental Report Standards
- Geophysical UST Rating
- Geotechnical Investigation and Recommendations Manual
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeoEnvironmental Phase II Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeoEnvironmental Right-of-Way Recommendations</td>
<td>• Develop GeoEnvironmental Phase II</td>
<td>GeoEnvironmental</td>
</tr>
<tr>
<td></td>
<td>Reporting</td>
<td>Project Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GeoEnvironmental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervisor</td>
</tr>
<tr>
<td>GeoEnvironmental Design and Environmental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conflict Memo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete GeoEnvironmental Phase II Reporting
The task of developing the Phase II report involves:

- Conduct geophysical survey to identify Underground Storage Tanks (USTs)
- Collecting samples from sites of concern to determine risk and potential impacts to the project.
- Completing the GeoEnvironmental right-of-way recommendations, where acquisition recommendations on sites of concern inform the Right-of-Way Plan Set and Phase II Investigation results.
- Coordinating the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution.

The GeoEnvironmental Project Engineer then prepares a GeoEnvironmental Design and Environmental Conflict Memo that is sent to the appropriate technical discipline/Unit lead (for action) and the Project Manager (for information), identifying conflicts discovered during the Phase II investigation.
3GT2 Conduct Subsurface Investigations and Provide Structures Recommendations

Overview
Conduct subsurface investigation and recommendations for proposed structures. This activity can be initiated in Stage 2 if all the following items are complete: Bridge Survey and Hydraulic Design Report (BSR), Culvert Survey and Hydraulic Design Report (CSR), retaining wall envelope with plan view, sound barrier wall envelope with plan view, and Traffic Management Plan with shoring locations.

Note: This activity involves field work with equipment, which could be affected by weather, difficulty of access, property owners, moratoriums, traffic control and conflicts with existing traffic control, etc.

References
- Geotechnical Investigation and Recommendations Manual
- Temporary Shoring Standard Provision
- Standard Temporary Shoring Detail 1801.01
- Standard Sound Barrier Wall Foundations
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverables</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional Support</td>
</tr>
<tr>
<td>Structure Subsurface Investigation Inventory</td>
<td>▪ Provide Structure Inventory and</td>
<td>Design Geotechnical</td>
</tr>
<tr>
<td>Report with graphics</td>
<td>Foundation Recommendations</td>
<td>Engineer</td>
</tr>
<tr>
<td>Design Scour Report</td>
<td>X</td>
<td>Project Geological</td>
</tr>
<tr>
<td>Inventory and Foundation Recommendation Report</td>
<td>X</td>
<td>Engineer</td>
</tr>
<tr>
<td>Structure Special Provisions</td>
<td>X</td>
<td>Regional Geotechnical</td>
</tr>
<tr>
<td>Retaining Wall Subsurface Investigation Inventory</td>
<td>▪ Provide Retaining Wall Inventory and</td>
<td>X</td>
</tr>
<tr>
<td>Graphics</td>
<td>Recommendations</td>
<td></td>
</tr>
<tr>
<td>Retaining Wall Recommendation Report</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Retaining Wall Special Provisions</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sound Barrier Subsurface Investigation Inventory</td>
<td>▪ Provide Sound Barrier Inventory and</td>
<td>X</td>
</tr>
<tr>
<td>Graphics</td>
<td>Recommendations</td>
<td></td>
</tr>
<tr>
<td>Sound Barrier Recommendations Report</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Temporary Shoring Recommendations</td>
<td>▪ Provide temporary shoring recommendation</td>
<td>X</td>
</tr>
</tbody>
</table>

June 2021
Provide Structure Inventory and Foundation Recommendations

In accordance with the *Geotechnical Investigation and Recommendation Manual*, the process to develop the necessary recommendations and documentation is initiated when the Structure Lead sends Preliminary General Drawing, a request for recommendations, date information is needed, and location of electronic plans to: Geo_Pre-let_Div1-6@ncdot.gov, Geo_Pre-let_Div7-8@ncdot.gov or Geo_Pre-let_Div9-14@ncdot.gov.

From there, the Geotechnical Engineering Unit:

- Assigns the work to an in-house field office or Private Engineering Firm.
- Holds a kickoff meeting and develops an investigation plan that includes a review of the theoretical scour from the Bridge Survey and Hydraulic Design Report (BSR) (see 2HY2 for related information).
- Notifies 811 to locate utilities, where needed, and completes a field investigation.
- Assigns samples for lab testing and compiles results.
- Enters field log data into gINT and post bore logs.
- Develops stratigraphy and complete graphics.
- Summarizes the results in the inventory, as necessary.

To complete a Design Scour Report, the Project Geological Engineer and/or the Design Geotechnical Engineer calculates geotechnically adjusted scour and develops the report.

For the Foundation Recommendation Report, the Geotechnical Engineering Unit or geotechnical firm is to:

- Determine most appropriate foundation type for each bent or culvert.
- Determine point of fixity for drilled shafts or piles.
- Prepare and send Load Request Letter based on preliminary foundation design to Geotechnical Engineering Unit for review. The Load Request Letter is sent to the Structures Management Unit or assigned Private Engineering Firm for action.

This task also includes developing special provisions, if needed.

The Inventory and Foundation Recommendation Report files are then QC’ed, following the *NCDOT Quality Management Manual* procedures and the respective QC Checklist, and sent to the originator of the request (for action) and the Hydraulics Unit and the Project Manager (for information).

Provide Retaining Wall Inventory and Recommendations

To complete subsurface investigations and providing recommendations for proposed retaining walls, the Roadway Design or Structures Lead (depending on the project) initiates the request for recommendations, date information is needed, and location of electronic plans to Geo_Pre-let_Div1-6@ncdot.gov, Geo_Pre-let_Div7-8@ncdot.gov or Geo_Pre-let_Div9-14@ncdot.gov. The Design Geotechnical Engineer, supported by the Project Geological Engineer, refers to the *Geotechnical Investigation and Recommendation Manual* when developing the recommendations and performs, if possible, the investigation during roadway subsurface investigation.
From there, the Geotechnical Engineering Unit:

- Assigns the work to an in-house field office or Private Engineering Firm.
- Holds a kickoff meeting and develops an investigation plan.
- Notifies 811 to locate utilities, where needed, and completes a field investigation.
- Assigns samples for lab testing and compiles results.
- Enters field log data into gINT and post bore logs.
- Develops stratigraphy and complete graphics.
- Summarizes the results in the inventory, as necessary.

To complete the Retaining Wall Recommendation Report (with details), the Design Geotechnical Engineer is to:

- Determine the most appropriate retaining wall for cut or fill site.
- Confirm no scour issues or recommend countermeasures.
- Check bearing capacity of soils as appropriate.
- Check global stability.
- Develop details.

This task also includes developing special provisions, if needed.

The Inventory and Recommendation Report files are then QC’ed, following the *NCDOT Quality Management Manual* procedures and the respective QC Checklist, and sent to the originator of the request (for action) and the Project Manager (for information).

**Provide Sound Barrier Inventory and Recommendations**

To complete subsurface investigations and provide recommendations for proposed sound barrier foundations, the Roadway Design Lead or Structures Lead (depending on the project) initiates the request for recommendations, date information is needed, and location of electronic plans to Geo_Pre-let_Div1-6@ncdot.gov, Geo_Pre-let_Div7-8@ncdot.gov or Geo_Pre-let_Div9-14@ncdot.gov. In accordance with the *Geotechnical Investigation and Recommendation Manual*, the Design Geotechnical Engineer develops the recommendations, including any sound barrier inventory graphics. This includes:

- Assigning the work to an in-house field office or Private Engineering Firm.
- Holding a kickoff meeting and developing an investigation plan.
- Notifying 811 to locate utilities, where needed, and completing a field investigation.
- Assigning samples for lab testing and compiling results.
- Entering field log data into gINT and post bore logs.
- Developing stratigraphy and completing graphics.
- Summarizing the results in the inventory, as necessary.

To complete the Sound Barrier Recommendation Report (with details), the Design Geotechnical Engineer is to determine the most appropriate foundation for cut or fill site.

The Design Geotechnical Engineer coordinates the QC review following the *NCDOT Quality Management Manual* procedures and the respective QC Checklist before upload and distribution.
The Inventory and Recommendation Report files are then sent to the originator of the request (for action) and the Project Manager (for information).

**Provide Temporary Shoring Recommendations**

Initiated by the Work Zone Traffic Control, a request for recommendations, date information is needed, and location of electronic plans are sent to Geo_Pre-let_Div1-6@ncdot.gov, Geo_Pre-let_Div7-8@ncdot.gov, or Geo_Pre-let_Div9-14@ncdot.gov. The Design Geotechnical Engineer then develops temporary shoring recommendations in accordance with the *Temporary Shoring Standard Provision*. This task is assigned to in-house staff and involves:

- Reviewing the proposed structures, Traffic Management Plan (TMP) with shoring locations, and subsurface information.
- Meet with staff from Work Zone Traffic Control and Structure Management Unit to discuss TMP and shoring on large or complicated phasing projects.
- Determining if standard shoring is appropriate.
- Developing temporary shoring recommendations, coordinating the QC review following the *NCDOT Quality Management Manual* procedures and the respective QC Checklist, and providing the recommendations to the originator of the request (for action) and the Project Manager (for information).
4GT1 Prepare GeoEnvironmental Phase III Reports

Overview
Prepare GeoEnvironmental Sites of Concern for Let by removing underground storage tanks, contaminated materials, and environmental monitoring wells in conflict with the project, documenting each in the GeoEnvironmental Phase III reports. Items that are not practicable to remove prior to project letting are to be addressed in a project special provision. Project Managers, Division, Geotechnical Offices, and North Carolina Department of Environmental Quality (NCDEQ) are recipients of these reports. The Environmental Protection Agency (EPA) also receive a report if a Superfund site is present.

References
- GeoEnvironmental Report Standards
- NCDOT GeoEnvironmental Product Matrix
- Geotechnical Investigation and Recommendations Manual
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underground Storage Tank Closure Report</td>
<td>Provide GeoEnvironmental Phase III Report</td>
<td>X</td>
</tr>
<tr>
<td>Environmental Groundwater Monitoring Well Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminated Soil Removal Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminated Materials Management Plan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide GeoEnvironmental Phase III Reports
The GeoEnvironmental Project Lead prepares the following reports and/or plans to complete the GeoEnvironmental Phase III Reporting. Each report is independent and may not be necessary on every project.

- Underground Storage Tank Closure Report
  - Remove USTs in conjunction with right-of-way.
  - Document the process, results, and future actions (if necessary) in the report.
  - Upload the report to project SharePoint site and inform the Project Manager, Right-of-Way, and NCDEQ, as required by regulation.

- Environmental Groundwater Monitoring Well Closure Report
  - Close monitoring wells in conflict with the project.
  - Document the process, results, and future actions (if necessary) in the report.
  - Upload the report to project SharePoint Site and inform the Project Manager, Right-of-Way, and NCDEQ, as required by regulation.

- Contaminated Soil Removal Report
- Remove contaminated soil prior to project letting if practical.
- Document the process, results, and future actions (if necessary) in the report.
- Upload the report to project SharePoint site and inform the Project Manager, Right-of-Way, and NCDEQ, as required by regulation.

- **Contaminated Materials Management Plan**
  - Remove other contaminated media prior to project letting if practical.
  - When it is not practical, develop a Materials Management Plan to describe materials handling during construction.
  - Develop project special provision(s) to be included in the contract that describe material handling, personal protective equipment (if needed), and any other processes necessary to construct the project.
  - Upload the plan to project SharePoint site and inform the Project Manager.
5GT1 Geotechnical Construction Support
Geotechnical Engineering provides the following support during the Construction Phase:

- Provides technical expertise and answers questions related to Geotechnical conditions and GeoEnvironmental hazards during the pre-construction meeting and throughout construction
- Completes Construction Revision (as needed): Perform construction revisions of the latest version of the Let Plans (see 5CS1 for related information) to address identified field issues
- Review working drawings and associated calculations for:
  - Drilled Pier Construction Plans
  - Crosshole Sonic Logging (CSL) Reports
  - Pile Driving Equipment Data Forms
  - Pile Driving Analyzer (PDA) Reports
  - Retaining Walls
  - Temporary Shoring
- Review blasting plans and monitor associated vibrations
- Complete settlement monitoring and field investigations for soft soils, undercuts, and underdrains
2HY1 Develop Preliminary Hydraulic Recommendations

Overview
Establish the hydraulic vision for the project regarding water quality and quantity management, including preliminary structure sizing where appropriate. A preliminary stormwater management plan (pSMP) is developed to comply with the Department’s statewide National Pollutant Discharge Elimination System (NPDES) stormwater permit, and a scalable Hydraulic Planning Report is prepared to identify discipline recommendations. If applicable for the project, support is provided for Merger meetings.

References
- Guidelines for Drainage Studies and Hydraulic Design
- Hydraulics Unit Web Page Content and Guidance Documents
- Hydraulics Planning Report Guidance
- Stormwater Management Plan Template
- NC SELDM Catalog Application
- Post-Construction Stormwater Program Post-Construction Stormwater Controls for Roadway and Non-Roadway Projects
- Stormwater Best Management Practices Toolbox
- BMP Decision Support Matrix
- Highway Floodplain Program
- U.S. Geological Survey Resources
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Stormwater Management Plan (pSMP)</td>
<td>Complete Preliminary Stormwater Management Plan (pSMP)</td>
<td>X</td>
</tr>
</tbody>
</table>

*A indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Complete Hydraulic Planning Report (HPR)
The Hydraulic Design Engineer completes the Hydraulic Planning Report in accordance with the Hydraulic Planning Report Guidance and scope of work. This allows the design team to identify and establish design parameters, assumptions, and any hydraulic considerations for the planning document and subsequent design phases. Completing the Hydraulic Planning Report reduces the amount of potential re-work and schedule delays for the project. The Hydraulic Design Engineer also:

- Coordinates the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before distribution.
- Prepares the Hydraulic Planning Report and delivers an electronic copy of the report to the Project Manager (for information) and the Hydraulics Reviewer (for action) to complete a review and QA audit.
- Revises and resubmits as needed to address the Hydraulics Reviewer’s comments.

The Project Manager reviews the report for recommendations that may impact the project’s scope, schedule, or budget or that may conflict with other disciplines/Units’ recommendations. The Project Manager initiates further coordination when appropriate.

The Hydraulic Design Engineer also provides the report to other technical disciplines/Units.

- The Roadway Design Lead is to use the report in the development of the Design Recommendation Plan Set (see 2RD1 for related information).
- The Structures Lead is to review and notify the Hydraulic Design Engineer and Project Manager of any concerns. If the report recommends retaining a hydraulic structure, the Structures Management Unit is to notify the Project Manager and Hydraulic Design Engineer if it recommends replacement of the structure due to structural deficiencies or other reasons.
- The recommendations from the Preliminary Hydraulic Recommendations table included in the report are to be presented during the Merger CP2A meeting (see 2EP1 for related information).
- The report provides general hydraulics information to both internal and external stakeholders and may aid in the development of scopes of work or labor estimates for later project phases.

Complete Preliminary Stormwater Management Plan (pSMP)

NCDOT’s statewide NPDES stormwater permit (NCS000250) requires projects that increase built-upon area to comply with the workflows presented in the Post Construction Stormwater Program (PCSP). The PCSP defines implementation of the BMP Toolbox and preparation of stormwater management plans (SMP). Most of the Department’s projects require the preparation of a SMP. An SMP helps to ensure NCDOT is in compliance with the statewide permit and to communicate with those preparing any applicable permits. SMPs are prepared in two phases as follows:

1. A preliminary SMP is prepared following the ‘General guidelines for filling out the pSMP’ which is located in the Overview tab of the Stormwater Management Plan Template Excel workbook. The primary objective of the pSMP is to establish the stormwater treatment goals for the project, which helps inform subsequent drainage design decisions as well as decisions by other disciplines such as Right-of-Way (RW), Utility Coordination and Design (UT), Geotechnical (GT), etc. NCDOT in partnership with the USGS has developed an application called the NC SELDM Catalog which is specifically designed to assist the engineer in establishing the stormwater treatment goals for the project. If the NC SELDM Catalog indicates a goal of implementing a stormwater control measure from the BMP Toolbox, then the BMP Decision Support Matrix may be used to refine the choice of control measures selected for the goal in conjunction with sound engineering judgement. Detailed instructions for running the NC SELDM Catalog application are included in the application along with a project example. Training videos for how to use the NC SELDM Catalog application are available through the NC Learning Center website (requires an NCID).
2. The final SMP is prepared in activity 3HY1. The final SMP serves to document the stormwater management decisions made for the project to comply with the NPDES stormwater permit, and when required, is included in applications for other permits such as the 404/401.

Provide Hydraulic Support
The Hydraulic Design Engineer provides support to the project team and other technical disciplines/Units. This allows any hydraulic concerns to be communicated during the early phases of the project. This support may include:

- Attending meetings and offering hydraulic expertise and recommendations related to the project.
- Responding to drainage-related questions and concerns.
- Coordinating with others to resolve conflicting recommendations among disciplines/Units.

For Merger projects (if applicable), the Hydraulic Design Engineer is to:

- Attend the Merger CP2 and CP2A meetings to respond to hydraulic, floodplain, or general stormwater management questions or concerns (see 2EP1 for related information).
- Attend other Merger meetings as needed to provide hydraulic information and recommendations and to identify potential issues related to the drainage design.
2HY2 Complete Drainage Design for Field Inspection

Overview
Review and provide comments on the Design Recommendation Plan Set and complete drainage design to be shown on the Field Inspection Plan Set.

References
- Guidelines for Drainage Studies and Hydraulic Design
- Hydraulics Unit Web Page Content and Guidance Documents
- Post-Construction Stormwater Program Post-Construction Stormwater Controls for Roadway and Non-Roadway Projects
- Stormwater Best Management Practices Toolbox
- BMP Decision Support Matrix
- Highway Floodplain Program
- U.S. Geological Survey Resources
- Guidance for Concurrence Point 4B Meetings and Plans
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydraulic Design</td>
</tr>
</tbody>
</table>
| Comments on Design Recommendations Plan Set(s) | ▪ Review Roadway Design Plans for Drainage Issues  
▪ Attend Design Recommendations Plan Set Review Meeting | | X |
| Hydraulics Pre-Design Meeting Documentation | ▪ Prepare for and Conduct Hydraulics Pre-Design Meeting | | X |
| Hydraulic Survey Reports for Major Structures | ▪ Complete Field Visit and Hydraulic Surveys  
▪ Request Additional Information  
▪ Prepare Major Structure Reports | | X |
| Drainage Plans for Merger CP4B Meeting and Minutes | ▪ Conduct Merger CP4B Meeting (if applicable for the project) | X |
| Drainage Plans for Field Inspection^ | ▪ Complete Drainage Designs for the Field Inspection Plan Set  
▪ Review Field Inspection Plan Set and Attend Field Inspection | | X |
| Railroad Drainage Submittals | ▪ Coordinate Railroad Drainage Design (if applicable for the project) | | X |

^ indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench
Review Roadway Design Plans for Drainage Issues
The Roadway Design Lead sends the Design Recommendation Plan Set to the Hydraulic Design Engineer for review. This allows the Roadway Design Lead to make any needed changes before conducting the rest of the tasks in this phase and helps to prevent schedule delays. The reviewers are to:

- Provide comments on the plans, identify potential drainage issues, and make recommendations that improve drainage conditions on the project. Minimally, the review is to include the items listed in Section 4.1 of the Guidelines for Drainage Studies and Hydraulic Design.
- Review subsequent roadway plan submittals to make sure comments have been addressed and no new concerns have been created.

Attend Design Recommendations Plan Set Review Meeting
After receiving the Design Recommendation Plan Set, the Hydraulic Design Engineer is to attend (if requested) the Design Recommendation Plan Set review meeting, which is further detailed in 2RD1.

Prepare for and Conduct Hydraulics Pre-Design Meeting
Prior to starting the drainage design, a Pre-Design Meeting should be conducted in accordance with the pre-design guidance provided in the Guidelines for Drainage Studies and Hydraulic Design to prevent schedule delays and limit re-work. For the Pre-Design Meeting, the Hydraulic Design Engineer is to:

- Complete Page 1 of Checklist for Drainage Study and Hydraulic Design which can be found in the Guidelines for Drainage Studies and Hydraulic Design manual. In preparation for the Hydraulics Pre-Design Meeting the engineer should prepare a list of questions addressing drainage design, assumptions and criteria.
- Schedule and conduct the Hydraulics Pre-Design Meeting with the NCDOT Hydraulics Staff, Division staff, or their designee in accordance with the Hydraulic Pre-Design Meeting Guidance which can be found in the Guidelines for Drainage Studies and Hydraulic Design manual.
- Prepare and submit for review/approval the Hydraulics Pre-Design Meeting Minutes to document decisions made during the meeting and follow-up tasks that need to be completed.

Complete Field Visit and Hydraulic Surveys
The hydraulic field visit and surveys are used to familiarize the Hydraulic Design Engineer(s) with the project area, identify and document existing drainage patterns and problems, and identify and obtain additional survey information needed to complete the drainage design. This task is used to try to prevent issues from arising during construction based on field conditions that vary from the final survey.

For this task, the Hydraulic Design Engineer:

- Conducts field surveys in accordance with Chapter 5 Field Reconnaissance and Survey of the Guidelines for Drainage Studies and Hydraulic Design.
- Incorporates field notes, photos, and documentation of surveys and data gathered into the drainage redlines, major structure reports, or separate documentation posted on the project SharePoint site.

Request Additional Information
The Hydraulic Design Engineer identifies and requests any additional information or revisions needed from other technical disciplines/Units. The Project Manager coordinates the requests, which may include:
Additional survey requests
- Subsurface investigation requests
- Existing pipe inspections
- Corrections to survey or WET/WEX files
- Special detail requests

Prepare Major Hydraulic Structure Reports

Major structure reports include the Bridge Survey and Hydraulic Design Reports (BSRs), Detour Survey and Hydraulic Design Reports (DSRs), and Culvert Survey and Hydraulic Design Reports (CSRs). Major hydraulic structure reports are used to facilitate efficient communication between the Hydraulic Design Engineer and other Discipline Leads. This reduces re-work and schedule delays by having agreement on Major Hydraulic Structure design elements and assumptions before the design begins. For this task, the Hydraulic Design Engineer is to refer to the Guidelines for Drainage Studies and Hydraulic Design when determining if a Bridge, Culvert, or Detour Survey Report is required.

The major hydraulic structure reports are used to document the hydraulic design and to provide information to others. For this task, the Hydraulic Design Engineer is to:

- Complete field reconnaissance and surveys at each major hydraulic structure prior to completing the report.
- Prepare and submit draft BSRs to the Project Manager (for information) and the Hydraulics Reviewer (for action).
  - The draft BSR is reviewed by the Hydraulics Reviewer, as coordinated with the Structures Lead, to determine if the proposed structure type, length, span arrangement, and other design information is acceptable.
  - The Structures Lead coordinates with the Regional Bridge Construction Engineer and the Area Construction Engineer on constructability issues and concerns.
- Prepare QC (in accordance with the NCDOT Quality Management Manual procedures and the respective QC Checklist) and submit major structure reports to the Project Manager (for information) and Hydraulics Reviewer and Structures Lead (for review).
  - Note: CSR submittals are to include a construction phasing plan.
- Revise and resubmit the major hydraulic structure reports upon receiving comments from the Hydraulics Reviewer.
- Upon notification that the report is approved, the report is sent to the NCDOT Hydraulics Staff or designee to sign the front of the report.

The Hydraulic Design Engineer is to distribute the approved major hydraulic structure reports (bridge and culverts) together with any construction phasing plan(s) to the Project Manager, Division Engineer, Area Bridge Engineer, Roadway Design Lead, Structures Lead, and Design Geotechnical Engineer. In addition to the above, CSRs are to be distributed with the construction phasing plan to the Roadside Environmental Engineer.

Conduct Merger CP4B Meeting (if applicable for the project)

If the project is following the Merger Process (see 2EP1 for related information), the Merger CP4B meeting is held after the CP4A meeting and while the drainage designs are being completed for the Field Inspection.
Plan Set. The Hydraulic Design Engineer presents the preliminary drainage design layouts to the agencies and obtains input, comments, and concerns from the team members. This keeps the appropriate agencies informed on the project and allows for easier permit reviews/approvals.

The Hydraulic Design Engineer is to:

- Notify the Hydraulics Reviewer of the preferred date and amount of time needed for the Merger CP4B meeting a minimum of two months prior to the preferred date for Central managed projects.
  - The Hydraulics Reviewer coordinates with the Environmental Policy Unit to schedule the meeting and notify attendees.
  - For non-central managed projects, follow the direction of the Project Manager for scheduling the meeting and inviting attendees.
- Prepare and submit Merger CP4B meeting plans for review to the Hydraulics Reviewer, Project Manager, and Environmental Analysis Unit or NEPA/SEPA Lead for central managed projects or as directed by the Project Manager/Division Environmental Officer for non-central managed projects.
  - It is recommended the CP4B plans be submitted for review at least five weeks prior to the scheduled Merger CP4B meeting to allow adequate time for review and revisions, if necessary.
  - The plans are to be developed in accordance with the *Guidance for Concurrence Point 4B Meetings and Plans*.
  - Review comments are returned to the Hydraulic Design Engineer.
- Revise and resubmit the Merger CP4B meeting plans as needed for approval.
  - Upon approval, the Hydraulic Reviewer provides the final meeting plans to the Environmental Policy Unit to post for team members to access.
  - Plans are to be posted at least two weeks prior to the meeting date.
- Conduct the Merger CP4B meeting in accordance with the Merger CP4B Meeting Guidance.
- Prepare meeting minutes in accordance with the Merger CP4B Meeting Guidance to document discussion and decisions made during the meeting.

**Complete Drainage Designs for the Field Inspection Plan Set**

The Hydraulic Design Engineer completes the Redline Drainage Plans in accordance with the project’s scope of work and *Guidelines for Drainage Studies and Hydraulic Design*. The field visit and hydraulic surveys are completed prior to completing the drainage designs. The design is documented on the Redline Drainage Plans.

Once complete, the Hydraulic Design Engineer:

- Coordinates the QC review following the NCDOT *Quality Management Manual* procedures and the respective QC Checklist before upload and distribution.
- Submits the Redline Drainage Plans along with all supporting documentation and calculations to the Project Manager (for information) and the Hydraulics Reviewer (for action) to complete a review and QA audit. The Redline Drainage Plans are to include the items specified in the redline guidance provided in the *Guidelines for Drainage Studies and Hydraulic Design*.
- Revises and resubmits the Redline Drainage Plans to address comments received from the Hydraulics Reviewer.
Upon approval of the Redline Drainage Plans, the Hydraulics Reviewer notifies the Project Manager (for information) and the Roadway Design Lead (for action) that the drainage design is ready for incorporation into the Field Inspection Plan Set.

**Review Field Inspection Plan Set and Attend Field Inspection**

The Hydraulic Design Engineer reviews the Field Inspection Plan Set prior to the meeting for any drafting errors or potential conflicts with the drainage design. The Hydraulic Design Engineer attends the Field Inspection Review Meeting. This allows design team members to voice concerns and potential issues to be addressed before the project is let, which leads to fewer change orders during construction. This task includes:

- Coordinating the QC review following the NCDOT *Quality Management Manual* procedures and the respective QC Checklist before upload and distribution.
- Responding to questions or concerns relating to the drainage design.
- Initiating discussion on drainage items that may need coordination.
- Participating in traffic control and phasing discussions as it relates to the drainage design.
- Obtaining information needed to complete environmental permit drawings, such as amount and type of clearing required and construction methods and impacts required for construction of major drainage structures (e.g., temporary work bridges, causeways, and work pads).

**Coordinate Railroad Drainage Design (if applicable for the project)**

If railroad drainage submittals are required for the project, the Hydraulic Design Engineer provides drainage plans, drainage calculations, and other drainage information requested by the Structures Lead or Project Manager, as needed for coordination with the applicable railroads for approval.

This information is supplied after the drainage design has been advanced. If the project schedule and expected timeframe for railroad review and approval allow, it is recommended this coordination take place after any necessary revisions from the Field Inspection Review Meeting have been incorporated.

The Hydraulic Design Engineer submits any required information to the Hydraulics Reviewer for review/comment, and upon approval, the Reviewer provides the information back to the requester (Structures Lead or Project Manager).
3HY1 Complete Hydraulic Design

Overview
Complete the final drainage designs to be shown on the Right-of-Way Plan Set and complete all required environmental permit drawings and Federal Emergency Management Agency (FEMA) compliance packages.

References
- Guidelines for Drainage Studies and Hydraulic Design
- Hydraulics Unit Web Page Content and Guidance Documents
- Post-Construction Stormwater Program Post-Construction Stormwater Controls for Roadway and Non-Roadway Projects
- Stormwater Best Management Practices Toolbox
- BMP Decision Support Matrix
- NCDOT’s Compliance Documentation Workflow for Rule 15A NCAC 04B .0109
- Highway Floodplain Program
- Guidance for Concurrence Point 4C Meetings and Plans
- Completing 3D Series Hydraulic Summary Plan Sheets
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Drainage Design</td>
<td>Complete Final Drainage Design</td>
<td>Hydraulic Design Engineer</td>
</tr>
<tr>
<td>FEMA Compliance Packages (MOA/CLOMR)*</td>
<td>Prepare and Submit FEMA Compliance Packages</td>
<td>X</td>
</tr>
<tr>
<td>Hydraulics Unit (Floodplain Management)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Summary Sheet(s)</td>
<td>Complete Drainage Summary Sheet(s)</td>
<td>X</td>
</tr>
<tr>
<td>Stormwater Management Plan*</td>
<td>Finalize Stormwater Management Plan</td>
<td>X</td>
</tr>
<tr>
<td>Environmental Permit Drawings*</td>
<td>Complete/Submit Environmental Permit Drawing Package</td>
<td>X</td>
</tr>
<tr>
<td>Merger CP4C Meeting Package and Minutes</td>
<td>Conduct Merger CP4C Meeting (if applicable for the project)</td>
<td>X</td>
</tr>
<tr>
<td>Project Manager (as applicable)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Complete Final Drainage Design
The final Redline Drainage Plans are completed after the Field Inspection Review Meeting and may require ongoing incorporation of drainage revisions due to field inspection comments, revisions to the roadway design plans during the Plan-in-Hand Stage, constructability concerns (notably those coming out of the Constructability Review), and/or utility conflicts. To complete this task, the Hydraulic Design Engineer is to:
 Coordinate the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution.

 Revise and resubmit the Redline Drainage Plans to the Roadway Design Lead and other affected disciplines/Units as directed by the Hydraulics Reviewer to complete a review and QA audit.

 Submit all revisions to the Project Manager (for information) and Hydraulics Reviewer (for action).
  • Revised submittals are to include an updated set of Redline Drainage Plans along with all supporting documentation and calculations necessary to review and approve the drainage revisions.
  • The Hydraulics Reviewer notifies the Project Manager (for information) and the Roadway Design Lead (for action) when the revisions have been approved and may be incorporated into the current roadway plans under this stage.
  • Upon final approval, the Hydraulic Design Engineer submits a final record set of updated Redline Drainage Plans, computations, and supplemental data (including photos) for archiving.

 Prepare and Submit FEMA Compliance Packages
 To complete this task, the Hydraulic Design Engineer:
  • Prepares any FEMA compliance packages needed for the project following the procedures for the type of FEMA compliance required.
  • Additional information on this process is included on the Hydraulics Unit’s Highway Floodplain Program website and in Chapter 15 of the Guidelines for Drainage Studies and Hydraulic Design.
  • Revises and resubmits documents to address comments from FEMA and/or FMP.
  • The Hydraulics Unit (Floodplain Management) uploads approval letters to the project SharePoint site and notifies the Roadway Design Lead, Hydraulics Reviewer, and Project Manager when approval is received.
  • Informs the Project Manager of plan changes and commitments resulting from FEMA and/or FMP review.

 Complete Drainage Summary Sheet(s)
 The Drainage Summary Sheets are completed after the Field Inspection Review Meeting is complete and may require ongoing incorporation of drainage revisions due to field inspection comments, revisions to the roadway design plans during the Plan-in-Hand Stage, constructability concerns (notably those coming out of the Constructability Review), and/or utility conflicts. These summary sheets provide approximate drainage structure elevations, types, and pipe sizes, which facilitate quantity take offs and allow other design units to coordinate and resolve possible conflicts.

 To complete this task, the Hydraulic Design Engineer is to:
  • Complete the Drainage Summary Sheets according to the guidance entitled Completing 3D Series Hydraulic Summary Plan Sheets and provide them to the Roadway Design Lead for incorporating into the current roadway design plans/Right-of-Way Plan Set.
  • Coordinate the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution.
  • Revise and resubmit the Drainage Summary Sheets to the Roadway Design Lead and other affected disciplines/Units as directed by the Hydraulics Reviewer to complete a review and QA audit.
Complete Stormwater Control Measure Summary Sheet

The stormwater control measure (SCM) Summary Sheet is auto-populated based on content entered in the Stormwater Management Plan. The purpose of the SCM Summary Sheet is to provide Roadside Environmental Field Operations Engineers a means to verify that the SCM was constructed and then enter the SCM into NCDOT’s Stormwater Control Management System for subsequent inspection and maintenance as required in the Department’s statewide NPDES stormwater permit (NCS000250).

The Hydraulic Design Engineer submits the SCM Summary Sheet concurrent with the Drainage Summary Sheet(s). The guidance document entitled Completing 3D Series Hydraulic Summary Plan Sheets provides additional information for preparing and submitting the SCM Summary Sheet.

Finalize Stormwater Management Plan

In activity 2HY1, the Hydraulic Design Engineer prepared a preliminary stormwater management plan (pSMP) that established the stormwater treatment goals for the project using the NC SELDM Catalog application and if necessary, the BMP Decision Support Matrix. In this activity (3HY1), the Hydraulic Design Engineer finalizes the SMP to document stormwater management decisions and whether the treatment goals were able to be achieved. For those situations where pSMP treatment goals could not be attained due to various constraints, the finalized SMP describes such constraints and the alternative management decisions that were made. This description defines the maximum extent practical stormwater management applied to the project in compliance with the NPDES permit Post-Construction Stormwater Program (PCSP). The SMP also serves to document compliance with Rule 15A NCAC 04B.0109 and is intended to ensure that stormwater discharges do not erode receiving channels.

The Hydraulic Design Engineer submits the finalized Stormwater Management Plan as compliance documentation with the NPDES stormwater permit (NCS000250) and, when required, for review as part of the Environmental Permit Drawing Package.

Complete/Submit Environmental Permit Drawing Package

The Hydraulic Design Engineer prepares the environmental permit drawing permit package used for the environmental permit application(s) in accordance with Guidelines For Drainage Studies and Hydraulic Design and the Guidance for Concurrence Point 4C Meetings and Plans document as follows:

- Obtain information needed from others.
  - The Structures Lead provides impact quantities for temporary and permanent bridge bents.
  - The Structures Lead coordination may be required to determine impacts due to temporary work pads, work bridges, causeways, etc.
  - Others are coordinated with depending on project specifics.
- Complete environmental permit drawings, including (as applicable to the project):
  - Wetland and surface water permit drawings
  - Buffer permit (NCDWR) drawings
  - Coastal Area Management Act (CAMA) (NC Division of Coastal Management) permit drawings
  - Federal Energy Regulatory Commission (FERC) permit drawings
- Coordinate the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution.
Submit the drawings with the Stormwater Management Plan to the Project Manager (for information), the Hydraulics Reviewer to complete a review and QA audit, the Roadway Design Lead, and Environmental Analysis Unit or NEPA/SEPA Lead (for action).

Revise and resubmit (as needed) to address comments received.

Conduct the Merger CP4C meeting (if required for the project; see Conduct Merger CP4C Meeting section below), incorporate any changes agreed to during the Merger CP4C meeting, and then resubmit the package to the Hydraulics Reviewer.

Provide CADD files of the impacts.
- The Utilities Coordinator uses these CADD files to complete their own permit drawings showing additional utility impacts.
- The Roadside Environmental Engineer uses these files to determine if additional impacts need to be included to account for erosion control measures, notifying the Hydraulic Design Engineer and Hydraulics Reviewer if additional impacts are needed.
- The Roadway Design Lead uses these files for a consistency review with the current roadway design plans.

Assist the Environmental Analysis Unit (Environmental Coordination and Permitting), as needed, for them to complete the environmental permit applications or respond to permitting agencies’ questions or concerns until necessary permits are secured.

Chapter 14 and Appendix P in the Guidelines for Drainage Studies and Hydraulic Design provides additional information on how to prepare these drawings.

Conduct Merger CP4C Meeting (if applicable for the project)

If the project is following the Merger Process (see 2EP1 for related information), the Merger CP4C meeting is held after the Merger CP4B meeting to present the approved Redline Drainage Plans and Environmental Permit Drawing Package to the agencies and allow for discussion of the environmental impacts. Other items that may be discussed are avoidance and minimization measures and changes from what was presented during the Merger CP4B meeting. The Merger CP4C meeting is held after approval of the Redline Drainage Plans, the combined field inspection, and submittal of the Environmental Permit Drawing Package.

The Hydraulic Design Engineer is to:

- Notify the Hydraulics Reviewer of the preferred date and amount of time needed for the Merger CP4C meeting a minimum of two months prior to the preferred date for central managed projects.
  - The Hydraulics Reviewer coordinates with the Environmental Policy Unit to schedule the meeting and notify attendees.
  - For non-central managed projects, follow the direction of the Project Manager for scheduling the meeting and inviting attendees.
- Prepare and submit Merger CP4C Environmental Permit Drawing Package to the Hydraulics Reviewer, Project Manager, and Environmental Analysis Unit or NEPA/SEPA Lead for central managed projects or as directed by the Project Manager/Division Environmental Officer for non-central managed projects.
  - The CP4C package should be submitted for review at least seven weeks prior to the scheduled Merger CP4C meeting to allow adequate time for review and revisions, if necessary.
The plans are to be developed in accordance with the *Guidance for Concurrence Point 4C Meetings and Plans*. Review comments are returned to the Hydraulic Design Engineer.  
- Revise and resubmit the Merger CP4C Environmental Permit Drawing Package as needed for approval.  
- Upon approval, the Hydraulic Reviewer provides the final Merger CP4C Environmental Permit Drawing Package to the Environmental Policy Unit to distribute to team members.  
- Plans are to be posted at least two weeks prior to the meeting date.  
- Conduct the Merger CP4C meeting in accordance with the Merger CP4C Meeting Guidance.  
- Prepare meeting minutes in accordance with the Guidance for Concurrence Point 4C Meetings and Plans to document discussion and decisions made during the meeting.
4HY1 Complete Any Open Hydraulic Tasks

The Hydraulic Designer is to complete any outstanding tasks from the previous stages. This includes submitting all outstanding deliverables with their appropriate QC checklist(s), ensuring all deliverables are current, continuing to work toward securing FEMA compliance and continuing to provide support to other disciplines/Units as needed to incorporate plan revisions and secure the permits.

The QA reviewer is to review all outstanding tasks to ensure that the design is in compliance with the Guidelines for Drainage Studies and Hydraulic Design and applicable standards, and deliverables are current and stored in the appropriate location.
5HY1 Hydraulic Construction Support

Overview
Provide timely reviews and technical expertise throughout the project’s construction phase as needed. The importance of this phase is to provide technical support to the resident engineer’s office.

References
- Guidelines for Drainage Studies and Hydraulic Design
- Hydraulics Unit Web Page content and guidance documents
- Field Guide For Post-Construction Stormwater BMPs
- Post-Construction Stormwater Program Post-Construction Stormwater Controls for Roadway and Non-Roadway Projects
- Stormwater Best Management Practices Toolbox
- Highway Floodplain Program
- CLEAR Program

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Investigation Documentation</td>
<td>Complete Drainage Investigation</td>
<td>X</td>
</tr>
<tr>
<td>Construction Support Documentation</td>
<td>Complete Hydraulic Construction Support</td>
<td>X</td>
</tr>
</tbody>
</table>

Complete Drainage Investigation
Upon request from Division staff, the Hydraulics Unit investigates and reviews drainage-related issues. The Hydraulic Design Engineer is to complete a drainage review, report findings, determine the Department’s responsibility in resolving the issue, and provide recommendations if warranted.

- Review may include a site investigation, compiling data including mapping, topography, and historical plans, the analysis of pre and post conditions, development of calculations, and analysis.
- For central-managed projects, submit findings and recommendations to the Hydraulics Unit for review and delivery to Division staff. For Division-managed projects, submit findings and recommendations as directed by Division staff.

Hydraulic Construction Support
Upon request from Division staff or the Hydraulics Unit, the Hydraulic Design Engineer provides the following support during the Construction Phase:

- Provides technical expertise and answers questions on the project’s hydraulic design including post-construction stormwater BMPs.
- Responds to requests for information (RFI) from the Contractor on behalf of the Division office.
- Completes drainage design component of a construction revision in accordance with 5CS1 and hydraulic references noted above.
- Reviews shop drawings for stormwater control measure devices as needed.
Throughout the hydraulic construction support process, Hydraulic Design Engineer may provide best practices or lessons learned to the CLEAR Program as needed.
5HY2 Review As-Builts

Overview
Provide timely reviews and technical certification of As-Built plans for structures located in FEMA regulated areas, natural stream design, and other items as deemed necessary by the Hydraulics Unit for FEMA NFIP, and NPDES compliance.

References
- Guidelines for Drainage Studies and Hydraulic Design
- Hydraulics Unit Web Page Content and Guidance Documents
- Highway Floodplain Program
- As-Built Certification Review Form
- As-Built FEMA Certifications SharePoint Site

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Highway Floodplain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program Engineer</td>
</tr>
<tr>
<td>As-Built Certification Package to NCFMP</td>
<td>Submit Final Certified As-Built Package to NCFMP</td>
<td>X</td>
</tr>
<tr>
<td>LOMR approval</td>
<td>Process LOMR Application to FEMA and Obtain Final LOMR Approval</td>
<td>X</td>
</tr>
</tbody>
</table>

Receive FEMA As-built Structure Drawings
To complete this task, the Highway Floodplain Program Engineer is to receive FEMA As-built Structure Drawings provided by Division or Construction Unit staff in accordance with procedures outlined in the NCDOT Construction Manual.

Review FEMA As-Built Structure Drawings
To complete this task, the Highway Floodplain Program Engineer is to follow the process outlined on the Highway Floodplain Program site and the As-Built FEMA Certifications SharePoint Site.

Submit Final Certified As-Built Package to NCFMP
To complete this task, the Highway Floodplain Program Engineer is to:

- Review the applicable as-built documents in accordance with As-Built Certification Review Form per Highway Floodplain Program.
- Address any follow-up issues, as applicable.

Process LOMR Application to FEMA and Obtain Final Approval
To complete this task, the Highway Floodplain Program Engineer is to follow the LOMR application and approval process as set forth in FEMA NFIP regulations, as applicable.
1IM1 Review for Complete Streets

Overview
Assess the Complete Streets Project Sheet for multimodal facilities and requested exemptions to identify all planned and existing facilities, in addition to facilities requested by the local municipality.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- Complete Streets Policy and Implementation Guide
- Complete Streets Project Sheet
- Integrated Mobility Division (IMD) Project Scoping and Design Concurrence Portal
- Bicycle and Pedestrian Crash Data
- Pedestrian and Bicycle Infrastructure Network GIS Data (ATLAS)

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Mobility Division Review/Scoping Memo</td>
<td>Conduct Project Review</td>
<td>X</td>
</tr>
<tr>
<td>Complete Streets Project Sheet*</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

* indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Conduct Project Review
Integrated Mobility Division staff complete an initial project review for implementation of pedestrian, bicycle, and public transportation accommodations using the Complete Streets Project Sheet when notified through the Smartsheet Portal. The request for project review is to include the items listed for the Project Initiation (Stage 1) selection on the Integrated Mobility Division (IMD) Project Scoping and Design Concurrence Portal.

Designated Integrated Mobility Division staff review the Complete Streets Project Sheet and provide a Scoping Memo in response to the request in accordance with the NCDOT Complete Streets Policy. Integrated Mobility Division staff review adopted state, regional, and local plans for bicycle, pedestrian, and transit accommodations in accordance with the identified project area context (as indicated by the AASHTO Greenbook). Specific recommendations may include reference to applicable design standards and the source (e.g. AASHTO, FHWA, and NACTO).

Integrated Mobility Division staff return the signed Complete Streets Project Sheet, unless exceptions need review by the Complete Streets Review Team. The Project Lead is responsible for uploaded the memo and signed Complete Streets Project Sheet to the project SharePoint site via the ATLAS Workbench. Further
coordination and consultation with Integrated Mobility Division staff continue to occur over the course of the project as it relates to facility design.

The Project Lead is responsible for reviewing the Scoping Memo to ensure enough detail has been provided by Integrated Mobility Division staff. Integrated Mobility Division staff stay engaged to ensure provisions from the Complete Streets Policy are implemented consistently for projects with significant physical and environmental constraints and ensure the Complete Streets Review Committee is engaged, if required.

For P6.0 projects (and forward), the Complete Streets Project Sheet have already been completed for the project. This sheet is attached when the project was submitted for scoring. However, if a Complete Streets Project Sheet has not yet been completed for a current project, one is to be completed and submitted at this stage. The Complete Streets Project Sheet must be filled out prior to requesting the initial project review and before moving onto Stage 2, Alignment Defined.
2IM1 Verify Complete Streets

Overview
Review the roadway design plans (e.g., the Design Recommendation Plan Set) to assess if the facility type is appropriate for the project’s design, matches the facilities from the Complete Streets Project Sheet, meets the design standards as dictated by the Complete Streets Policy, and adheres to the authoritative design standards of the NCDOT Complete Streets Policy.

References
- AASHTO Bicycle Design Guide
- AASHTO Pedestrian Design Guide
- Complete Streets Policy and Implementation Guide
- Roadway Design Manual
- Integrated Mobility Division (IMD) Project Scoping and Design Concurrence Portal
- FHWA Guidance
- NACTO Urban Design Guide

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrated Mobility Division Staff</td>
</tr>
</tbody>
</table>

Prepare Memo Confirming Review of the Roadway Design Plans for Compliance with Complete Streets Policy

The Roadway Design Lead initiates an Integrated Mobility Division design concurrence review by submitting a design review request to designated Integrated Mobility Division staff via the Smartsheet Portal. The request for project review is to include the items listed for the Alignment Defined (Stage 2) selection on the Integrated Mobility Division (IMD) Project Scoping and Design Concurrence Portal.

Integrated Mobility Division staff review the roadway design plans, coordinates with the project team, and returns an Integrated Mobility Division Design Concurrence Review Memo to the Roadway Design Lead (for action) and Project Manager (for information). The design concurrence review considers the context classification as well as transportation characteristics. The context classification of a roadway, together with its transportation characteristics, provides information about who the users are along the roadway, the regional and local travel demand of the roadway, and the challenges and opportunities of each roadway user.

The design concurrence review is also saved to the project SharePoint site by the Roadway Design Lead/Project Manager.
1LS1 Provide Photogrammetric Control and Initiate Surveys

Overview

Provide photogrammetric control in support of the Photogrammetry Unit, preliminary utility mapping in support of long-range transportation planning, and initiate base mapping surveys once project mapping limits have been completed and reviewed.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References

- Location & Surveys DTM Manual
- Location & Surveys GPS Guidelines
- Location & Surveys Coordinate Systems
- Location & Surveys CADD Mapping Standards
- Location & Surveys Hydro Manual
- Location & Surveys Baseline Guidelines
- Location & Surveys Traffic Signing Diagrams
- Location & Surveys SUE Guidelines
- Location & Surveys Procedure Memos
- Location & Surveys PropCon
- Location & Surveys File Naming Convention
- Location & Surveys Procedure Review Checklist
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location &amp; Surveys Division Team Lead</td>
</tr>
<tr>
<td>Photogrammetric Control for Preliminary/Planning Mapping (NC Grid Datum)</td>
<td>Complete Photogrammetric Control for Preliminary/Planning Mapping (NC Grid Datum)</td>
<td>X</td>
</tr>
<tr>
<td>SUE Level D Mapping</td>
<td>Complete SUE Level D</td>
<td>X</td>
</tr>
<tr>
<td>Final Mapping Limits Polygon*</td>
<td>Perform Independent Review of Mapping Limits Polygon</td>
<td>X</td>
</tr>
<tr>
<td>Photogrammetric Control for Final Survey Mapping (Local Datum)</td>
<td>Complete Photogrammetric Control for Final Survey Mapping (Local Datum)</td>
<td>X</td>
</tr>
</tbody>
</table>

* indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

1LS1 Provide Photogrammetric Control and Initiate Surveys
June 2021
Complete Photogrammetric Control for Preliminary/Planning Mapping (NC Grid Datum)

Photogrammetric control is critical to orient aerial photography onto the North Carolina State Plane Coordinate System. To complete this task, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Contact all property owners where aerial targets are placed, or those properties crossed to place an aerial target. Contacts are to be made by letter, phone, or in person and is to be documented using the Location and Surveys PropCon Database found at the Location & Surveys PropCon.
- Conform to Field Procedures, 6B.3-3 in the Location & Surveys GPS Guidelines, perform panel control target survey where panel targets are placed according to a panel plan provided by the Photogrammetry Unit.
- Process and develop panel control in accordance with Office Procedures, 6B.3-4 from the Location & Surveys GPS Guidelines.
- Provide panel control to the Photogrammetry Unit, considering:
  - Panel control text file (Grid Datum) for the Photogrammetry Unit to orient aerial photography.
  - Include northing, easting, and elevation projected onto the North Carolina State Plane Coordinate System.
- Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

Complete SUE Level D

Being that SUE Level D mapping may be useful for long-range planning and early design development, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Research and/or obtain existing utility records by contacting and coordinating with project utility owners in accordance with the Location & Surveys SUE Guidelines.
- Develop and provide a SUE Level D CADD file (NC Grid Datum) that maps existing utility records using the latest approved NCDOT MicroStation version.
- Provide the SUE LOS D CADD file to the Feasibility Studies Unit.
- Note: Ensure this deliverable conforms to the NCDOT CADD Mapping Standards, Procedure Memo PROC 2018-6, and Location & Surveys File Naming Convention.
- Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

Perform Independent Review of Mapping Limits Polygon

The mapping limits polygon defines the boundary for mapping and surveys that are needed for project development. To complete this task, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Review and evaluate mapping limits to confirm they are adequate for the proposed design and analysis, but not excessive to overburden resources. Further coordination with the Photogrammetry Unit and the Project Lead may be needed for this task.
- Revise and provide a mapping limits polygon that involves:
• Mapping final mapping limits using the latest approved NCDOT MicroStation version.
• Providing the final mapping limits CADD file to the Photogrammetry Unit and Project Lead.
□ Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

Complete Photogrammetric Control for Preliminary/Planning Mapping (Local Datum)

With photogrammetric control being critical to orient aerial photography onto a localized North Carolina State Plane Coordinate System, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

□ Develop a local project control network by establishing horizontal and vertical survey control using the current Nation Spatial Reference System (NSRS) projected onto the North Carolina State Plane Coordinate System. This process is to conform to the Location & Surveys GPS Guidelines and Location & Surveys Coordinate Systems White Paper.
□ Contact all property owners where aerial targets are placed, or those properties crossed to place an aerial target. Contacts are to be made by letter, phone, or in person and is to be documented using the Location and Surveys PropCon Database found at the Location & Surveys PropCon.
□ Conform to Field Procedures, 6B.3-3 in the Location & Surveys GPS Guidelines, perform panel control target surveys where panel targets are placed according to a panel plan provided by the Photogrammetry Unit.
□ Process and develop panel control in accordance with Office Procedures, 6B.3-4 from the Location & Surveys GPS Guidelines.
□ Provide panel control to the Photogrammetry Unit, considering:
  • Panel control text file (Local Datum) to the Photogrammetry Unit to orient aerial photography.
  • Include both Grid/Local northing, easting, and elevation projected onto the North Carolina State Plane Coordinate System.
□ Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.
2LS1 Complete Final Surveys

Overview

Provide complete surveys and mapping, including wetlands and jurisdictional streams, for the projects mapping limits in support of the design, right-of-way acquisition, and construction phases of the project.

References

- Location & Surveys DTM Manual
- Mobile and Terrestrial LiDAR Guidelines
- Location & Surveys GPS Guidelines
- Location & Surveys Coordinate Systems
- Location & Surveys CADD Mapping Standards
- Location & Surveys Hydro Manual
- Location & Surveys Baseline Guidelines
- Location & Surveys Traffic Signing Diagrams
- Location & Surveys SUE Guidelines
- Location & Surveys Procedure Memos
- Location & Surveys PropCon
- Location & Surveys Connect Site
- Location & Surveys Project Review Checklist
- Location & Surveys Wetland Procedures
- Location & Surveys File Naming Convention
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Surveys</td>
<td>• Complete Field Surveys and Project Mapping</td>
<td>Location &amp; Surveys Division Team Lead</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location &amp; Surveys Assistant Division Team Lead</td>
</tr>
<tr>
<td>Surveyed Wetlands</td>
<td>• Complete Wetland/Jurisdictional Stream Field</td>
<td>Location &amp; Surveys Division Team Lead</td>
</tr>
<tr>
<td></td>
<td>Surveys and Mapping</td>
<td>Location &amp; Surveys Assistant Division Team Lead</td>
</tr>
</tbody>
</table>

A indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Complete Field Surveys and Project Mapping

With accurate field surveys and mapping being the critical foundation for all subsequent design, right-of-way acquisition, and construction phases for a project, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Contact all property owners impacted by the mapping limits and those properties accessed to perform required surveys. Contacts are to be made by letter, phone, or in person and is to be documented using the Location and Surveys PropCon Database found at the Location & Surveys PropCon.
Establish the project’s primary control (Azimuth Pairs), secondary control (Baseline), and benchmarks (Vertical) in accordance with the Location & Surveys GPS Guidelines, Location & Surveys Baseline Guidelines, and Location & Surveys Coordinate Systems.

Conform to the NCDOT CADD Mapping Standards, complete planimetric classification that includes field classifying and labeling existing planimetric features in the Final Survey CADD File (2D) and map per the latest approved NCDOT MicroStation version.

Perform and/or obtain pavement and ground DTMs in accordance with the Location & Surveys DTM Manual and Mobile and Terrestrial LiDAR Guidelines. This includes developing the final DTM and TIN CADD file (3D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.

Perform hydrographic surveys in accordance with the Location & Surveys Hydro Manual that obtain field hydrographic features and are included in the Final Survey CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.

In accordance with the Location & Surveys SUE Guidelines, perform subsurface utility surveys (SUE LOS B) by:

- Obtaining subsurface utility LOS B data and including in the Final Survey CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.
- Providing the subsurface utility LOS B CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards to obtain linear footage.

Develop property mapping by performing courthouse research, reconning and locating monumentation, requesting the Right-of-Way Abstract, and investigating as-builts and maps according to records and monumentation. Incorporate into the Final Survey CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.

Develop right-of-way sheets (C-Series Only) by computing existing alignments (ELN) and compiling C-Series right-of-way sheets using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards. Complete in conformance with the Location & Surveys Baseline Guidelines, Location & Surveys Procedure Memos, and Location & Surveys Connect Site.

Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

Notify the project team, including the Project Manager, that all MicroStation base mapping files and deliverables have been updated and completed in accordance with the Location & Surveys Standard Procedures, Location & Surveys File Naming Convention and Location & Surveys Procedure Memo PROC 2018-6.

Complete Wetland/Jurisdictional Stream Field Surveys and Mapping

Required Wetland/Jurisdictional Stream Field Surveys and Mapping are critical for obtaining necessary agency permitting. For this task, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Perform the wetland/jurisdictional stream field surveys in accordance with the Location & Surveys Wetland Procedures to obtain field flag and nail locations delineating wetland boundaries and for identifying jurisdictional stream established by the project biologist.
- Develop wetland/jurisdictional stream mapping that conforms to the Location & Surveys Wetland Procedures and includes:

2LS1 Complete Final Surveys
June 2021
• A compiled field locations and development of a surveyed WEX or WET CADD file using the latest approved NCDOT MicroStation version and \textit{NCDOT CADD Mapping Standards}.
• Identified jurisdictional streams in the Final Survey CADD file (2D) using the latest approved NCDOT MicroStation version and \textit{NCDOT CADD Mapping Standards}.
• Complete the \textit{Location & Surveys Project Review Checklist (PRC)} found at the reference listed above and the \textit{QA/QC Checklist} located in the NCDOT Quality Management Manual.
• Notify the project team, including the Project Manager, that all wetland/jurisdictional stream mapping files and deliverables have been completed in accordance with the \textit{Location & Surveys Standard Procedures}, \textit{Location & Surveys File Naming Convention}, \textit{Location & Surveys Procedure Memo PROC 2018-6}, and \textit{Location & Surveys Wetland Procedures}. 
2LS2 Complete SUE Level A and ROW Advanced Acquisition Surveys

Overview
Complete SUE LOS A investigations for utility conflict resolutions. Provide field delineation and acquisition exhibits and/or descriptions in support of right-of-way (ROW) advanced acquisitions.

References
- Location & Surveys DTM Manual
- Mobile and Terrestrial LiDAR Guidelines
- Location & Surveys GPS Guidelines
- Location & Surveys Coordinate Systems
- Location & Surveys CADD Mapping Standards
- Location & Surveys Hydro Manual
- Location & Surveys Baseline Guidelines
- Location & Surveys Traffic Signing Diagrams
- Location & Surveys SUE Guidelines
- Location & Surveys Procedure Memos
- Location & Surveys PropCon
- Location & Surveys Connect Site
- Location & Surveys Project Review Checklist
- Location & Surveys Wetland Procedures
- Location & Surveys File Naming Convention
- Location and Surveys Unit Property Survey Manual
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUE Level A</td>
<td>Complete SUE Level A and Revise Mapping</td>
<td>Location &amp; Surveys Division Team Lead, Location &amp; Surveys Assistant Division Team Lead</td>
</tr>
<tr>
<td>ROW Advanced Acquisition Surveys</td>
<td>Complete ROW Advanced Acquisition Field Surveys</td>
<td>Location &amp; Surveys Division Team Lead, Location &amp; Surveys Assistant Division Team Lead</td>
</tr>
<tr>
<td></td>
<td>Complete ROW Advanced Acquisition Mapping</td>
<td>Location &amp; Surveys Division Team Lead, Location &amp; Surveys Assistant Division Team Lead</td>
</tr>
</tbody>
</table>

Complete SUE Level A and Revise Mapping
Accurate SUE Level A data is needed to minimize utility conflicts and avoid unnecessary costs and delays when relocating utilities. For this task, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Perform/obtain surface utility LOS A data and includes this data in the updated Final Survey CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.
Compile and deliver the SUE LOS A Certification Sheets to the SharePoint project folder in accordance with NCDOT Location & Surveys Standard Procedures, Location & Surveys SUE Guidelines, Location & Surveys File Naming Convention, Location & Surveys Procedure Memo PROC 2018-6, and Location & Surveys Baseline Guidelines.

Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

Complete ROW Advanced Acquisition Field Surveys
Accurate field delineation of proposed right-of-way and easements allows the Right-of-Way Agents and property owners to visualize impacts to affected parcels. To complete this task, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Collaborate with the Project Manager and Division Right-of-Way Agent to identify and prioritize all Advance Acquisition Parcels.
- Verify with the Division Right-of-Way Agent that all affected property owners have been contacted and Right-of-Entry has been granted.
- Complete field delineation of proposed right-of-way and easements across all affected project parcels in accordance with the Location & Surveys Baseline Guidelines.
- Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

Complete ROW Advanced Acquisition Mapping
Accurate advance acquisition exhibits and/or descriptions allow NCDOT to acquire property necessary for timely project construction. To accomplish this, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Collaborate with the Project Manager and Division Right-of-Way Agent to identify and prioritize all advance acquisition parcels requiring an exhibit and/or description.
- Compile and prepare an advance acquisition exhibit (PDF) and/or description (txt) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards. This exhibit and/or description is to conform to the Location & Surveys Procedure Memo PROC 2018-6 and Location and Surveys Unit Property Survey Manual.
- Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.
3LS1 Complete Additional Surveys and Initiate ROW Acquisition Surveys

Overview
Provide additional surveys and base mapping for the project’s revised mapping limits in support of the design, right-of-way acquisition and construction phases. Initiate right-of-way field delineation, metes and bounds descriptions, eminent domain exhibit maps and (ROW) reference file in support of right-of-way acquisitions.

References
- Location & Surveys DTM Manual
- Location & Surveys GPS Guidelines
- Location & Surveys Hydro Manual
- Location & Surveys Coordinate Systems
- Location & Surveys CADD Mapping Standards
- Location & Surveys Baseline Guidelines
- Location & Surveys Traffic Signing Diagrams
- Location & Surveys SUE Guidelines
- Location & Surveys Procedure Memos
- Location & Surveys Project Review Checklist
- Location and Surveys Unit Property Survey Manual
- Location & Surveys File Naming Convention
- Mobile and Terrestrial LiDAR Guidelines
- Location & Surveys Deed Description Memo
- Location & Surveys Row Procedure Memo
- Location & Surveys Procedure Memo PROC 2018-3
- Location & Surveys Procedure Memo PROC 2018-6
- Location & Surveys Procedure Memo PROC 2018-5
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Surveys</td>
<td>Complete Additional Field Surveys and Revise Project Mapping</td>
<td>Location &amp; Surveys Team Lead</td>
</tr>
</tbody>
</table>

Complete Additional Field Surveys and Revised Project Mapping
Building on the work done in 2LS1 and as needed for the project, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Collaborate with the Photogrammetry Unit for readily available mapping and/or additional flight control to fly and compile shell plan sheets.
- Coordinate with the appropriate disciplines/Units to obtain the Final Survey CADD File.
Contact all property owners impacted by the updated mapping limits and those properties accessed to perform required surveys. Contacts are to be made by letter, phone, or in person and is to be documented using the Location and Surveys PropCon Database found at the Location & Surveys PropCon.

Establish additional primary control (Azimuth Pairs), secondary control (Baseline) and benchmarks (Vertical) in accordance with the Location & Surveys GPS Guidelines, Location & Surveys Baseline Guidelines, and Location & Surveys Coordinate Systems.

In accordance with the NCDOT CADD Mapping Standards, update the planimetric classification that includes field classifying and labeling existing planimetric features in the updated Final Survey CADD file (2D) and map per the latest approved NCDOT MicroStation version.

Perform and/or obtain additional pavement and ground DTMs in accordance with the Location & Surveys DTM Manual and Mobile and Terrestrial LiDAR Guidelines. This includes developing an updated final DTM and TIN CADD file (3D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.

Perform additional hydrographic surveys in accordance with the Location & Surveys Hydro Manual that obtain field hydrographic features and are included in the Final Survey CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.

In accordance with the Location & Surveys SUE Guidelines, perform additional subsurface utility surveys (SUE LOS B) by:

- Obtaining subsurface utility LOS B data and including in the Final Survey CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.
- Providing the subsurface Utility LOS B CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards to obtain linear footage.

Update property mapping by performing additional courthouse research, reconning and locating monumentation, requesting the Right-of-Way Abstract, and investigating as-builts and maps according to records and monumentation. Incorporate into the Final Survey CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.

Update the right-of-way sheets (C-Series Only) by computing existing alignments (ELN) and compiling C-Series right-of-way sheets using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards. Complete in conformance with the Location & Surveys Baseline Guidelines, Location & Surveys Procedure Memos, and Location & Surveys Connect Site.

Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

Notify the project team, including the Project Manager, that all final base mapping files and deliverables have been updated in accordance with Location & Surveys Standard Procedures, Location & Surveys File Naming Convention and Location & Surveys Procedure Memo PROC 2018-6.

**Initiate ROW Acquisition Surveys**

In support of the ROW acquisition process in Stage 3, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, initiates:

- ROW field delineation
- ROW metes and bound descriptions
- Eminent domain exhibit maps
- ROW reference file

While these tasks and the related deliverables may be completed during Stage 3, task completion may also extend into Stage 4. Complete ROW Acquisition Surveys, 4LS1 provides additional details on each task and how to complete the related deliverables.
4LS1 Complete ROW Acquisition Surveys

Overview

Provide right-of-way field delineation, metes, and bounds descriptions, and eminent domain exhibit maps in support of right-of-way acquisitions. Prepare final right-of-way (ROW) CADD file for the final ROW Series Plan Set.

References

- Location & Surveys Baseline Guidelines
- Location & Surveys Deed Description Memo
- Location & Surveys Row Procedure Memo
- Location & Surveys CADD Mapping Standards
- Location and Surveys Unit Property Survey Manual
- Location & Surveys Procedure Memo PROC 2018-3
- Location & Surveys Project Review Checklist
- Location & Surveys Procedure Memo PROC 2018-6
- Location & Surveys Procedure Memo PROC 2018-5
- Location & Surveys File Naming Convention
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW Field Delineation</td>
<td>Complete ROW Field Delineation</td>
<td>Location &amp; Surveys Team Lead</td>
</tr>
<tr>
<td>ROW Metes and Bounds Descriptions</td>
<td>Complete ROW Metes and Bounds Descriptions</td>
<td>Location &amp; Surveys Assistant Team Lead</td>
</tr>
<tr>
<td>Eminent Domain Exhibit Maps</td>
<td>Complete Eminent Domain Exhibit Maps</td>
<td>X</td>
</tr>
<tr>
<td>ROW Reference File</td>
<td>Complete ROW Reference File</td>
<td>X</td>
</tr>
<tr>
<td>Final ROW Series Plan Set</td>
<td>Complete Final ROW Series Plan Set</td>
<td>X</td>
</tr>
</tbody>
</table>

Complete ROW Field Delineation

Accurate field delineation of proposed right-of-way and easements allows the ROW Agents and property owners to visualize impacts to affected parcels. For this task, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Verify that ROW authorization has been granted by the Board of Transportation and collaborate with the Project Manager and Division Right-of-Way Agent to prioritize staking of parcels.
- Contact all property owners identified in the ROW file for property acquisition and those properties that may need to be accessed to perform ROW surveys. Contacts are to be made by letter, phone, or in person and is to be documented using the Location and Surveys PropCon Database found at the Location & Surveys PropCon.
Perform field right-of-way delineation in accordance with the *Location & Surveys Baseline Guidelines*. This work includes:

- Computing and verifying plan locations of proposed right-of-way and easement monuments.
- Completing field delineation of proposed right-of-way and easement monumentation across all affected parcels in accordance with the set of plans used for acquisition.

Complete the *Location & Surveys Project Review Checklist (PRC)* found at the reference listed above and the *QA/QC Checklist* located in the NCDOT Quality Management Manual.

**Complete ROW Metes and Bounds Descriptions**

Accurate right-of-way metes and bounds descriptions allow NCDOT to acquire necessary property to construct the project. To do this, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Collaborate with the Project Manager (for information) and Division Right-of-Way Agent (for action) to prepare and provide ROW metes and bounds descriptions for the entire project.
- Complete the *Location & Surveys Project Review Checklist (PRC)* found at the reference listed above and the *QA/QC Checklist* located in the NCDOT Quality Management Manual.
- Provide ROW metes and bounds descriptions and sketch maps in PDF format to Project Manager (for information) and Division Right-of-Way (for action) in accordance with *Location & Surveys Deed Description Memo*.

**Complete Eminent Domain Exhibit Maps**

NCDOT uses eminent domain exhibits in the condemnation process for both mediation and as a courtroom exhibit. Exhibits are to be prepared in accordance with North Carolina General Statutes §136-106 and are on a strict schedule mandated by this statute. To support the preparation of these exhibits, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Compile and prepare an Eminent Domain Map using the latest approved NCDOT MicroStation version and *NCDOT CADD Mapping Standards*. Location and Surveys Unit (Project Data & Condemnation Group) modifies the Eminent Domain Map to produce an Eminent Domain Exhibit used by the Attorney General’s Office attorney to present NCDOT’s case.
- Collaborate with North Carolina Attorney General’s Office and Location and Surveys Unit (Project Data & Condemnation Group) to revise the Eminent Domain Map and/or Exhibit as required.
- Note: Ensure these deliverables conform to the *Location & Surveys Procedure Memo PROC 2018-6* and *Location and Surveys Unit Property Survey Manual*.
- Complete the *Location & Surveys Project Review Checklist (PRC)* found at the reference listed above and the *QA/QC Checklist* located in the NCDOT Quality Management Manual.

**Complete ROW Reference File**

The final ROW Reference CADD file (2D) is an accurate depiction of as-staked field monumentation. This CADD file is referenced as part of the Final Roadway Design Plans and is the basis of the Final ROW Series Plan Set. In accordance with the *Location & Surveys ROW Procedure Memo*, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:
- Retrieve the ROW Reference CADD file (2D) from the appropriate discipline/Unit.
- Modify the ROW Reference CADD file (2D) when the ROW revision letter is received.
  - Revision(s) may be requested by the Division Right-of-Way Agent as part of right-of-way negotiations, by the Project Designer resulting from a design revision, by the Resident Engineer resulting from a constructability issue, or by the surveyor in responsible charge during right-of-way delineation.
  - All right-of-way revisions are to be documented with a ROW Revision Memorandum by the Division Right-of-Way Agent with the Project Manager being informed upon completion.
- Collaborate with the Project Manager (for information) and Division Right-of-Way Agent (for action) on all right-of-way revisions and the ROW Reference CADD File (2D) modifications.
- Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

**Complete Final ROW Series Plan Set**

The Final ROW Series Plan Set provides information necessary for reestablishment of all permanent right-of-way, control of access, and easement monumentation by NCDOT or private surveyors. The plan set is prepared in accordance with North Carolina General Statutes §136-19.4A to address concerns of the North Carolina Board of Examiners for Engineers and Surveyors and the private surveying community. To complete the Final ROW Series Plan Set, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Prepare the Final ROW Series D, E, and RW Series Sheets using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.
- Modify the C-Series Right-of-Way Sheets if required. The C-Series Right-of-Way Sheets are located under the projects “Let Preparation” topic on the NCDOT Connect Preconstruction Site.
- Complete the Final ROW Series D, E, and RW Series Sheets using the Final Roadway Design Plans and ROW Reference CADD file (2D).
- Include the PLS seal of the surveyor in responsible charge of Right-of-Way Field Delineation on the Final ROW Series Plan Set sheets.
- Create a PDF version of all final ROW Series Plan Set sheets with the electronical signature of the surveyor in responsible charge.
- Upload the PDF version of the signed and sealed Final ROW Series Plan Set under the projects “Let Preparation – 150 Folder” on the project’s SharePoint site.
- Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.
5LS1 Provide Construction Support

Overview
The Location & Surveys Team Lead provides the following support during the Construction Phase:

- Provides Photogrammetric control for the compilation of earthwork quantities at various stages during the construction process.
- Provides UAV imagery for the compilation of earthwork quantities and monitoring construction progress.
- Provides as needed high accuracy monitoring of construction sites. This includes, but is not limited to:
  - MSE Walls
  - Structures
  - Earthwork
  - Pavement LiDAR Scans
- Provides as needed additional surveys for design modifications.
- Provides technical expertise and aids in the verification of the project’s survey control and/or current survey data/information. This includes, but is not limited to:
  - Attending the pre-construction meeting
  - Assisting with the verification of all project control
- Coordinates all ROW revisions on let projects following the Construction Revision process as defined in 5CS1.

References
- Location & Surveys DTM Manual
- Location & Surveys GPS Guidelines
- Location & Surveys Coordinate Systems
- Location & Surveys CADD Mapping Standards
- Location & Surveys Baseline Guidelines
- Location & Surveys Procedure Memos
- Location & Surveys Project Review Checklist
- Location and Surveys Unit Property Survey Manual
- Location & Surveys File Naming Convention
- Mobile and Terrestrial LiDAR Guidelines
- NCDOT Quality Management Manual
Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photogrammetric Control for Construction Panels</td>
<td>▪ Complete Photogrammetric Control for Construction Panels (Localized</td>
<td>Location &amp; Surveys</td>
</tr>
<tr>
<td>(Localized Datum)</td>
<td>Datum)</td>
<td>Team Lead</td>
</tr>
<tr>
<td>UAV Imagery</td>
<td>▪ Complete UAV Imagery</td>
<td>Location &amp; Surveys</td>
</tr>
<tr>
<td>Additional Surveys</td>
<td>▪ Complete Additional Field Surveys and Revise Project Mapping</td>
<td>Assistant Team Lead</td>
</tr>
<tr>
<td>ROW Field Delineation</td>
<td>▪ Complete ROW Field Delineation</td>
<td></td>
</tr>
<tr>
<td>ROW Metes and Bounds Descriptions</td>
<td>▪ Complete ROW Metes and Bounds Descriptions</td>
<td></td>
</tr>
<tr>
<td>ROW Reference File</td>
<td>▪ Modify ROW Reference File</td>
<td></td>
</tr>
<tr>
<td>Final ROW Series Plan Set</td>
<td>▪ Modify ROW Series Plan Set</td>
<td></td>
</tr>
</tbody>
</table>

Complete Photogrammetric Control for Construction Quantities (Local Datum)
With photogrammetric control being critical to orient aerial photography onto a localized North Carolina State Plane Coordinate System, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

▪ Develop a local project control network by establishing horizontal and vertical survey control using the current Nation Spatial Reference System (NSRS) projected onto the North Carolina State Plane Coordinate System. This process is to conform to the Location & Surveys GPS Guidelines and Location & Surveys Coordinate Systems White Paper.

▪ Conform to Field Procedures, 6B.3-3 in the Location & Surveys GPS Guidelines, perform panel control target surveys where panel targets are placed according to a panel plan provided by the Photogrammetry Unit.

▪ Process and develop panel control in accordance with Office Procedures, 6B.3-4 from the Location & Surveys GPS Guidelines.

▪ Provide panel control to the Photogrammetry Unit, considering:
  ▪ Panel control text file (Local Datum) to the Photogrammetry Unit to orient aerial photography.
  ▪ Include both Grid/Local northing, easting, and elevation projected onto the North Carolina State Plane Coordinate System.

▪ Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

Complete UAV Imagery
In development
Complete Additional Field Surveys and Revised Project Mapping

In providing information for design modifications, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Coordinate with the appropriate disciplines/Units to obtain the Final Survey CADD File.
- Contact all property owners impacted by the updated mapping limits and those properties accessed to perform required surveys. Contacts are to be made by letter, phone, or in person and is to be documented using the Location and Surveys PropCon Database found at the Location & Surveys PropCon.
- Establish additional primary control (Azimuth Pairs), secondary control (Baseline) and benchmarks (Vertical) in accordance with the Location & Surveys GPS Guidelines, Location & Surveys Baseline Guidelines, and Location & Surveys Coordinate Systems.
- In accordance with the NCDOT CADD Mapping Standards, update the planimetric classification that includes field classifying and labeling existing planimetric features in the updated Final Survey CADD file (2D) and map per the latest approved NCDOT MicroStation version.
- Perform and/or obtain additional pavement and ground DTMs in accordance with the Location & Surveys DTM Manual and Mobile and Terrestrial LiDAR Guidelines. This includes developing an updated final DTM and TIN CADD file (3D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.
- Perform additional hydrographic surveys in accordance with the Location & Surveys Hydro Manual that obtain field hydrographic features and are included in the Final Survey CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.
- In accordance with the Location & Surveys SUE Guidelines, perform additional subsurface utility surveys (SUE LOS B) by:
  - Obtaining subsurface utility LOS B data and including in the Final Survey CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.
  - Providing the subsurface utility LOS B CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards to obtain linear footage.
- Update property mapping by performing additional courthouse research, reconning and locating monumentation, requesting the Right-of-Way Abstract, and investigating as-builts and maps according to records and monumentation. Incorporate into the Final Survey CADD file (2D) using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.
- Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.
- Notify the project team, including the Project Manager, that all final base mapping files and deliverables have been updated in accordance with Location & Surveys Standard Procedures, Location & Surveys File Naming Convention, and Location & Surveys Procedure Memo PROC 2018-6.
Complete ROW Field Delineation
Accurate field delineation of proposed right-of-way and easements allows the ROW Agents and property owners to visualize impacts to affected parcels. For this task, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Verify that ROW authorization has been granted by the Board of Transportation and collaborate with the Project Manager and Division Right-of-Way Agent to prioritize staking of parcels.
- Contact all property owners identified in the ROW file for property acquisition and those properties that may need to be accessed to perform ROW surveys. Contacts are to be made by letter, phone, or in person and is to be documented using the Location and Surveys PropCon Database found at the Location & Surveys PropCon.
- Perform field right-of-way delineation in accordance with the Location & Surveys Baseline Guidelines. This work includes:
  - Computing and verifying plan locations of proposed right-of-way and easement monuments.
  - Completing field delineation of proposed right-of-way and easement monumentation across all affected parcels in accordance with the set of plans used for acquisition.
- Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

Complete ROW Metes and Bounds Descriptions
Accurate right-of-way metes and bounds descriptions allow NCDOT to acquire necessary property to construct the project. To do this, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Collaborate with the Project Manager (for information) and Division Right-of-Way Agent (for action) to prepare and provide as needed ROW metes and bounds descriptions.
- Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.
- Provide ROW metes and bounds descriptions and sketch maps in PDF format to Project Manager (for information) and Division Right-of-Way (for action) in accordance with Location & Surveys Deed Description Memo.

Modify ROW Reference File
The final ROW Reference CADD file (2D) is an accurate depiction of as-staked field monumentation. This CADD file is referenced as part of the Final Roadway Design Plans and is the basis of the Final ROW Series Plan Set. In accordance with the Location & Surveys ROW Procedure Memo, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Retrieve the ROW Reference CADD file (2D) from the appropriate discipline/Unit.
- Modify the ROW Reference CADD file (2D) when the ROW revision letter is received.
  - Revision(s) may be requested by the Division Right-of-Way Agent as part of right-of-way negotiations, by the Project Designer resulting from design modifications or by the Resident Engineer resulting from a constructability issue.
All right-of-way revisions are to be documented with a ROW Revision Memorandum by the Division Right-of-Way Agent with the Project Manager being informed upon completion.

- Collaborate with the Project Manager (for information) and Division Right-of-Way Agent (for action) on all right-of-way revisions and the ROW Reference CADD File (2D) modifications.
- Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

Modify ROW Series Plan Set

The Final ROW Series Plan Set provides information necessary for reestablishment of all permanent right-of-way control of access, and easement monumentation by NCDOT or private surveyors. The plan set is prepared in accordance with North Carolina General Statutes §136-19.4A to address concerns of the North Carolina Board of Examiners for Engineers and Surveyors and the private surveying community. To complete the ROW Series Plan Set, the Location & Survey Division Team Lead, with support from the Assistant Division Team Lead, is to:

- Modify the ROW Series D, E, and RW Series Sheets using the latest approved NCDOT MicroStation version and NCDOT CADD Mapping Standards.
- Modify the C-Series Right-of-Way Sheets if required. The C-Series Right-of-Way Sheets are located under the projects “Let Preparation” topic on the NCDOT Connect Preconstruction Site.
- Modify the ROW Series D, E, and RW Series Sheets using the Roadway Design Plans and ROW Reference CADD file (2D).
- Include the PLS seal of the surveyor in responsible charge of Right-of-Way Field Delineation on the ROW Series Plan Set sheets.
- Create a PDF version of all modified ROW Series Plan Set sheets with the electronical signature of the surveyor in responsible charge.
- Upload the modified PDF version of the signed and sealed ROW Series Plan Set under the projects “Let Preparation – 150 Folder” on the project’s SharePoint site.
- Complete the Location & Surveys Project Review Checklist (PRC) found at the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.
5LS2 Perform Verification of Right-of-Way and Surveys for As-Built Inventory

Overview
Provide verification of all permanent right-of-way, control of access and easement monumentation and timely reviews and technical expertise of certain as-built inventories at the time of project completion.

References
- Location & Surveys Baseline Guidelines
- Location & Surveys Row Procedure Memo
- Location & Surveys CADD Mapping Standards
- Location and Surveys Unit Property Survey Manual
- Location & Surveys Procedure Memo PROC 2018-3
- Location & Surveys Project Review Checklist
- Location & Surveys Procedure Memo PROC 2018-6
- Location & Surveys Procedure Memo PROC 2018-5
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verification of Final Monumentation</td>
<td>Complete Field Verification of Final Monumentation</td>
<td>Location &amp; Surveys Team Lead</td>
</tr>
<tr>
<td>As-Built Inventory</td>
<td>Complete Hydraulic Structure Inventory</td>
<td>Location &amp; Surveys Assistant Team Lead</td>
</tr>
<tr>
<td></td>
<td>Complete Other Inventory</td>
<td></td>
</tr>
</tbody>
</table>

Complete Field Verification of Final Monumentation
To complete this task, the Location & Surveys Team Lead is to:

- Perform verification of field monumentation in accordance with the Location & Surveys Baseline Guidelines. This work includes:
  - Computing and field verification of final right-of-way, control of access and easement monumentation in accordance with the final and recorded ROW Series Plan Set.
  - Complete the Location & Surveys Project Review Checklist (PRC) found a the reference listed above and the QA/QC Checklist located in the NCDOT Quality Management Manual.

Complete Hydraulic Structure Inventory
To complete this task, the Location & Surveys Team Lead is to:

- Perform field locations of as-built drainage structures to be added to NCDOT inventory.
- Submit inventory of all drainage structures in the required format.
- Complete the *Location & Surveys Project Review Checklist (PRC)* found at the reference listed above and the *QA/QC Checklist* located in the NCDOT *Quality Management Manual*.
- Additional in details *in development*.

**Complete Other Inventory**

*In development*
2PD1 Complete Pavement Design

Overview
Coordinate Geotechnical Pavement Design Investigation (PDI) with the Geotechnical Engineering Unit; evaluate condition of existing pavement; and produce the Final Pavement Design Memo that includes pavement designs for all roads, ramps, and loops (including minimum overlay requirements).

References
- NCDOT Pavement Design Procedure
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Pavement Design Memo</td>
<td>Coordinate Geotechnical Pavement Design Investigation (PDI)</td>
<td>Pavement Design Engineer  X</td>
</tr>
<tr>
<td></td>
<td>Evaluate Condition of Existing Pavement</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Review Traffic Forecast</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Determine Alternative Pavement Designs for New Locations and Widening</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Determine Treatment of Existing Pavement and Minimum Overlay Requirements</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Perform Life-Cycle Cost Analysis on Pavement Alternatives</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Prepare Pavement Review Package Presenting Alternatives</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Select Pavement Design Alternatives at Pavement Review Committee Meeting</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Determine if Shoulder Drains are Required</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Prepare Final Pavement Design Memo</td>
<td>Project Manager  X</td>
</tr>
</tbody>
</table>

Coordinate Geotechnical Pavement Design Investigation (PDI)
The Pavement Design Engineer coordinates with the Geotechnical Engineering Unit to determine if a PDI is required for the project.

- If so, ensure the project has a PDI scheduled.
  - If no PDI is scheduled, request that the Geotechnical Engineering Unit adds this to the list of PDIs to be performed.
  - Determine the estimated completion date of the PDI.
  - Determine if supplementary or preliminary PDI activities should be performed by the Materials & Tests Unit and/or a consultant to help accelerate the pavement design prior to receiving the full PDI from the Geotechnical Engineering Unit or to augment the data acquired during the PDI.
If no PDI is required, determine if a pavement investigation (a simplified PDI performed by the Materials & Tests Unit) is required.
  • If yes, schedule the Materials & Tests pavement investigation.
  • If no, use historical data (obtained from the pavement management system database, as-built construction drawings, old pavement design files, or conversations with Division personnel) for the pavement design.

Evaluate Condition of Existing Pavement
The Pavement Design Engineer reviews the pavement condition information contained in the pavement management system. This review includes:
  • Reviewing historical imagery of the roadway.
  • Reviewing as built and letting plans of previous projects (if available.)
  • Performing a site visit to verify the pavement condition and review pavement drainage and other considerations.
  • If required, performing Materials & Tests pavement investigation, including additional coring and/or dynamic cone penetration (DCP) testing and/or falling weight deflectometer (FWD) testing.

Review Traffic Forecast
To review the traffic forecast for reasonableness and completeness, the Pavement Design Engineer:
  • Obtains the most updated traffic forecast diagrams. These documents are produced by Transportation Planning Division/Technical Services Unit and are typically available on the respective project SharePoint site.
  • Determines if any supplementary traffic information is required.
    • If required, work with the Project Manager and/or the Division to obtain additional information not contained within the traffic forecasts or the Traffic Survey Group’s website.

Determine Alternative Pavement Designs for New Locations and Widening
The Pavement Design Engineer follows the Pavement Design Procedure to produce alternate pavement designs (as required) depending on project type, project length, traffic level, and complexity.

Determine Treatment of Existing Pavement and Minimum Overlay Requirements
Based on the information from the roadway design plans (in support of developing the Design Recommendation Plan Set; see 2RD1), traffic forecast, PDI, and pavement condition evaluations, the Pavement Design Engineer determines the minimum treatments required to ensure structural adequacy of the existing pavements.
  • The minimum treatments are included in the Pavement Review Package and in the Final Pavement Design Memo, as discussed below.
  • In cases of significant overlays, the Pavement Design Engineer coordinates with the Project Manager and Roadway Design Lead to verify if this is acceptable, or if other options need to be considered in order to meet roadway profile elevation/overhead clearance requirements.
Perform Life-Cycle Cost Analysis on Pavement Alternatives
Using the alternative pavement designs and existing treatment options proposed, the Pavement Design Engineer then:

- Calculates quantities,
- Obtains unit cost information from the Contract Standards and Development Unit or applicable Division estimating staff, and
- Calculates life-cycle costs per NCDOT’s Life-Cycle Cost policy.

Prepare Pavement Review Package Presenting Alternatives
The Pavement Design Engineer combines the current roadway design plans, traffic forecast, pavement condition, pavement design, geotechnical, and life-cycle cost information into a simplified package for review by the Pavement Review Committee. To ensure timely review, the Pavement Design Engineer is to consider the following:

- The Pavement Review Committee meets monthly.
- Email the Pavement Review Package to the committee one week before the meeting.
- Committee membership is defined in the NCDOT Pavement Design Procedure.

Select Pavement Design Alternatives at Pavement Review Committee Meeting
The Pavement Review Committee follows the NCDOT Pavement Selection policy to select the chosen alternative(s), considering all information in the pavement review package, as well as additional information brought up by Pavement Review Committee members.

Determine if Shoulder Drains are Required
The Pavement Design Engineer is to determine if shoulder drains are required for the project based on current roadway design plans (e.g., profile and cross section), project size, traffic level, and geotechnical information. For unique situations, the Pavement Design Engineer is to reach out to the Geotechnical Engineering Unit for input.

Prepare Final Pavement Design Memo
To complete the Pavement Design Memo, the Pavement Design Engineer summarizes all final pavement design determinations to include:

- The selected pavement designs for all alignments on the project.
- The selected treatment for existing pavement for all alignments on the project.
- Shoulder drains requirements, if needed for the project.

The Pavement Design Engineer also provides the Roadway Design Lead with any additional information, such as additional geotechnical information and quantities if available in the PDI. This information assists the Roadway Design Lead when developing the typical sections and quantity calculations.

- If design is provided by a Division, a Division representative is required to seal the plan sheets.
Complete QC/QA Procedures
The Pavement Design Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
3PD1 Verify Pavement Design

Overview
Verify that the Final Pavement Design Memo is still valid, review typical sections, and establish shoulder drain details, drain locations, and outlet locations.

References
- NCDOT Pavement Design Procedure
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional Support</td>
</tr>
<tr>
<td>Final Pavement Design Verification Memo</td>
<td>Review Pavement Design and Current Pavement Conditions</td>
<td>Pavement Design Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roadway Design Lead</td>
</tr>
<tr>
<td></td>
<td>Prepare Verification Memo</td>
<td>X</td>
</tr>
<tr>
<td>Typical Section Review Email</td>
<td>Prepare Email on Typical Section Issues</td>
<td>X</td>
</tr>
<tr>
<td>Shoulder Drain Memo</td>
<td>Prepare Complete Shoulder Drain Memo</td>
<td>X</td>
</tr>
</tbody>
</table>

Review Pavement Design and Current Pavement Conditions
For the initial step in verifying the Final Pavement Design Memo, the Pavement Design Engineer is to:

- Review the pavement design to verify adequacy based on current NCDOT specifications, current NCDOT pavement design procedures, updated traffic information (if any), current roadway design plans (including changes to the alignment configuration, profile, or cross section; the addition or removal of Y lines) and additional geotechnical information (if any).
- Review the updated pavement condition information contained in the pavement management system, which involves:
  - Review of any historical imagery of the roadway taken after the final pavement design was completed in 2PD1.
  - Review as built and letting plans of projects that have taken place on the roadway since the completion of the final pavement design (if any).
  - Perform a site visit to verify pavement condition, if required.
- Work with the Roadway Design Lead, Project Manager, and other relevant parties, to adjust the design as necessary.
  - In these cases, options that do not change the roadway elevation or cross slope as currently set in the Design Recommend Plan Set are to be used.

Prepare Verification Memo
The Pavement Design Engineer provides a memo that verifies the final pavement design as previously provided and/or includes any necessary modifications and updates. This includes:

- Providing pavement designs for newly added Y lines or temporary pavements.
- Adjusting pavement thicknesses to match curb and gutter elevations if paved shoulders were changed to curb and gutter by the Roadway Design Lead.
- Changing mix type due to an increase in traffic from an updated traffic forecast, etc.
- Changing treatment of existing pavement.

### Prepare Email on Typical Section Issues
For the Pavement Design Engineer to seal the typical sections and confirm that the pavement can be constructed to provide reliable and cost-effective performance, the Pavement Design Engineer:

- Reviews the typical sections to ensure accuracy/compliance to the Final Pavement Design Memo and the verification memo.
- Prepare email documentation on issues, coordinating with relevant parties to correct issues with the typical sections, if any.

### Complete Shoulder Drain Memo
For shoulder drains required on the project as determined under 2PD1, the Pavement Design Engineer is to:

- Select or develop the appropriate shoulder drain details by obtaining the most recent pavement profile, cross section, and plan information from the Roadway Design Unit.
- Determine shoulder drain locations and outlet locations based on the roadway’s geometry.
- Determine outlet locations based on the project topography and the locations of existing and/or proposed drainage structures.
- Prepare the Shoulder Drain Memo for the Roadway Design Lead to present as recommendations for the shoulder drain details, summarizing the locations of shoulder drains and outlet locations.

The Pavement Design Engineer coordinates this information with the Roadway Design Lead for use when developing the roadway design plans.

### Complete QC/QA Procedures
The Pavement Design Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
5PD1 Pavement Construction Support
The Pavement Design Engineer provides the following support during the Construction Phase:

- Provides technical expertise and answers questions on the project’s pavement design
- Completes Construction Revision (as needed): Perform construction revisions of the latest version of the Let Plans (see 5CS1 for related information) to address identified field issues
- Performs pavement test (as needed) when field questions arise regarding specifications
1PH1 Best Available Geospatial Data

Overview
Upon request, obtain, analyze, and provide best available orthoimagery, elevation data, and county GIS property data for the project area. If needed, provide more current data by flying the project area and delivering either an orthophoto with elevation data or small-scale topographic mapping with elevation data and an orthophoto or train customers who wish to obtain the data on their own.

**Note:** Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- Photogrammetry Resource Page
- NCDOT Quality Management Manual

**Deliverables**

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthoimagery</td>
<td>Obtain Orthoimagery</td>
<td>Project Lead</td>
</tr>
<tr>
<td>Elevation Data (NCDOT login)</td>
<td>Obtain Elevation Data (NCDOT or Custom)</td>
<td>Project Lead</td>
</tr>
<tr>
<td>County GIS Property Data</td>
<td>Obtain County GIS Property Data</td>
<td>Project Lead</td>
</tr>
<tr>
<td>Small-Scale Topographic Mapping</td>
<td>Provide More Current Mapping Product</td>
<td>Project Lead</td>
</tr>
</tbody>
</table>

Obtain Orthoimagery
The Project Lead can access orthoimagery (3-band RGB Color imagery at 0.5-foot GSD) on his/her own through the instructions provided on the Photogrammetry Resource Page or submit a request to the Photogrammetry Unit.

Obtain Elevation Data (NCDOT or Custom)
The Project Lead can obtain Quality Level 2 (QL2) Aerial LiDAR elevation data (Bare Earth or DEM) on his/her own or submit a request to the Photogrammetry Unit for LiDAR elevation data on the Photogrammetry Resource Page. Output from the tool is an ASCII formatted file with an *.DAT extension for use with Bentley MicroStation and Bentley Connect/ORD.

Obtain County GIS Property Data
The Project Lead submits a request to the Photogrammetry Unit for County GIS Property Data in a MicroStation or ArcGIS format. Alternatively, the Project Lead can download County GIS Property Data in an ArcGIS format from NCOneMap. The Photogrammetry Resource Page details the process used by Photogrammetry Unit staff to convert ArcGIS County Property Data to a MicroStation format.
Provide More Current Mapping Product
If the Project Lead determines that the best available geospatial data is obsolete, the Project Lead submits a request to the Photogrammetry Unit to obtain current mapping. The Photogrammetry Resource Page includes instructions on how to request photogrammetric mapping and the process used by Photogrammetry Unit to produce mapping. This work includes:

- Obtaining controlled aerial photography
- Compiling elevation data
- Creating the orthoimagery
- Compiling topographic mapping

Complete QC/QA Procedures
The Photogrammetry Assistant Unit Head is to coordinate the applicable QC review following the *NCDOT Quality Management Manual* procedures and the respective QC Checklist before upload and distribution.
1PH2 Compile Aerial Photography and Mapping

Overview

Upon request, obtain controlled aerial photography that covers the project mapping limits to ensure horizontal and vertical mapping accuracies are achieved. Use in-house staff or a Private Engineering Firm to perform aerotriangulation using ground survey control provided by the Location and Surveys Unit and airborne GNSS-IMU control, compiling planimetric and digital terrain mapping data, and creating a digital mosaic.

References

- Photogrammetry Resource Page
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled Aerial Photography</td>
<td>Schedule and Fly Project</td>
<td>Location and Survey Unit and Aviation Unit</td>
</tr>
<tr>
<td>Large Scale Planimetric Mapping</td>
<td>Providing Mapping Product</td>
<td></td>
</tr>
<tr>
<td>Elevation Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Mosaic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne Survey reports</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schedule and Fly Project

Controlled aerial photography requires coordination with both the Location and Surveys Unit and the Aviation Unit. This involves the following steps:

- Create a Flight and Ground Control Survey Plan that shows the proposed flight lines for the project with specific flying heights, forward overlap, and side overlap that optimally facilitates aerotriangulation to ensure horizontal and vertical mapping accuracies are achieved.
- Obtain ground control survey.
  - The Photogrammetry Unit creates a ground control plan that shows the approximate location of proposed ground control targets (panels).
  - The panel plan is submitted to the Location and Surveys Unit to layout out the panels and to survey coordinates for each panel point.
  - The Location and Surveys Unit localizes the control coordinates to the project control network.
- Upon notification of completion of the panels, the Photogrammetry Unit coordinates with the Aviation Unit to fly the project to obtain the aerial photography.
- After the project has been flown, the Photogrammetry Unit completes post-processing for both the aerial photography and the GNSS-IMU data that was collected during the flight.
Provide Mapping Product
Once the aerial photography is obtained and all data posted processed, the Photogrammetry Unit either
uses in-house staff or a Private Engineering Firm to complete the mapping product. The Photogrammetry
Unit is to localize all ancillary support data to the project control network. Aerotriangulation using the
ground surveyed panel coordinates is performed next to establish accurate exterior orientation
parameters for each photograph.

An Aerotriangulation Report is completed, sealed and certified by an NC PLS, if the work is contracted
with a Private Engineering Firm. The planimetric mapping and ground elevation data is also compiled, and
a digital mosaic completed, while the mapping is compiled.

Complete QC/QA Procedures
The Photogrammetry Assistant Unit Head is to coordinate the applicable QC review following the NCDOT
Quality Management Manual procedures and the respective QC Checklist before upload and distribution.
5PH1 Photogrammetry Construction Support

The Photogrammetry Unit provides the following support during the Construction Phase:

- Provides technical expertise and answers questions on the project’s imagery or data needs
- Complete construction earthwork quantity determinations (as requested)
1PI1 Initiate Public Engagement Tasks

Overview

Required as part of the environmental process, ensure stakeholder input is received and the public is informed on the project, providing transparency in the public engagement process.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References

- Public Involvement Guidelines
- Practitioners Guide
- Public Engagement Toolkit
- Public Engagement Toolkit - 3D Visualization
- Public Involvement Toolkit – Visualization Techniques
- Visualization Products
- Visualization Request Form

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPO/MPO CTP/LRTP Outreach Documentation ^</td>
<td>Outreach Before/During State Transportation Improvement Program (STIP) Development</td>
<td>Public Involvement Lead</td>
</tr>
<tr>
<td>Public Involvement Plan (PIP) ^</td>
<td>Develop the Public Involvement Plan (PIP)</td>
<td>X</td>
</tr>
</tbody>
</table>

^ indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Outreach Before/During State Transportation Improvement Program (STIP) Development

The Project Lead develops an Environmental Tracking and Coordination System (ETRACS) request to solicit Public Involvement support. The Public Involvement Lead then documents the following related to this task:

- Document and upload, to project files, both process-and project-specific Metropolitan and/or Rural Planning Organization (MPO/RPO) or local government public outreach efforts for NCDOT use and Title VI documentation.
- Document and upload, to project files, both process and project-specific Strategic Prioritization Office (SPOT) outreach efforts
- Upload, to project files, preliminary screenings prior to the Project Scoping Report that includes Community Studies’ Community Screenings for areas of potential concern and Public Involvement’s initial recommendations as part of the Public Involvement Plan (PIP). The PIP is to be scaled to the project and is reviewed prior to Notice to Proceed to determine if updates are needed.

**Conduct STIP Outreach**

The Public Involvement Lead assists in development of the State Transportation Improvement Program (STIP), including:

- Coordination on projects included at each level of the STIP.
- Communicating project schedules and specific outreach needs.

**Participate in the Project Initiation Meeting**

In collaboration with the Project Manager (when the project is transitioned to the Project Manager from the Project Lead), the Public Involvement Lead participates in the Project Initiation Meeting to address any future public engagement strategies, so that input on the stakeholder process is identified early. The level of public engagement and outreach needed on a project depends on several factors, including:

- Type, size, and duration of the project
- Complexity of the project and project area
- Significance of direct, indirect, cumulative, recurring, and disproportionate impacts
- Resource notability and sensitivity
- Number of partners and sources of potential funding
- Anticipated controversy
- Type of visualizations needed (e.g., illustrations, renderings, Photosimulations, animation, drone photography, etc.)

The availability of the Community Screening (see 1EN1 for related information) is foundational for the Public Involvement Lead to reference when identifying the level of public outreach and to further develop the PIP.

**Develop the Public Involvement Plan (PIP)**

The Project Lead sends an ETRACS request to Public Involvement to develop a draft Public Involvement Plan (PIP). The purpose of a PIP is for NCDOT staff, local and regional partners, and consultants/contractors to work in concert throughout a project when developing:

- an understanding of community resources and demographics,
- what information is to be exchanged between the stakeholders and NCDOT, and
- the best ways to engage and inform the public and stakeholders for decision making.

The Public Involvement Lead works with the project team to develop the draft PIP, which becomes a part of the Project Scoping Report (see 1FS3 for related information). At this stage, the draft PIP is to initially address the following project details, all of which are finalized as part of 2PI1.

- Project overview
- Goals and objectives for outreach on the project, in part based on findings in the Community Understanding Report and Project Sheet
- Key messages to be communicated to the public
- Project-specific or potentially controversial issues from local knowledge, the Community Understanding Report, project sheets, or Community Screening
- Potential for Environmental Justice, Limited English Proficiency, or other Title VI considerations
- Stakeholders and interested groups, including special populations such as the elderly, college students, or business owners
- Public engagement roles and responsibilities
- Commitments made to stakeholders in previous project phases
- Potential communication methods/outreach tools
- Preliminary schedule for public engagement activities
- Measures for evaluating the success of the public outreach program

As a dynamic document, the Public Involvement Lead, in collaboration with the Project Lead, updates the PIP throughout the design development process to reflect changes in the project’s scope, schedule or from stakeholder comments.

Determine Visualization Needs
Projects can benefit from visualizations in many steps during the planning of a project. It is essential to assess that need early in the planning stages. Visualization should be coordinated with the Public Involvement Lead to assess the appropriate products to incorporate into the PIP. The Visualization Team Lead may be consulted at this time.

A 1 to 6 month turnaround should be expected depending on the complexity of the project and the type of work requested. It is possible to expedite that timeframe, but it is project dependent. As with requesting work from other departments, the team is to plan ahead and allow for a minimum of 1 month for a finished product. Design files are required to create most visualization projects.
2PI1 Continue Public Engagement

Overview
During this phase, assist with project-specific public engagement activities to ensure a transparent process is followed as required under the National Environmental Policy Act (NEPA) and the State Environmental Policy Act (SEPA).

References
- Public Involvement Guidelines
- Practitioners Guide
- Public Engagement Toolkit
- Setting Up a Public Meeting

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td>Public Involvement Plan (PIP)</td>
<td>Finalize Public Involvement Plan (PIP)</td>
<td>Public Involvement Lead</td>
</tr>
<tr>
<td>Scoping Letter</td>
<td>Develop Project Scoping Letter</td>
<td>X</td>
</tr>
<tr>
<td>Mailing List</td>
<td>Compile Mailing List</td>
<td>X</td>
</tr>
<tr>
<td>Public Outreach Materials</td>
<td>Coordinate Public Outreach Event Notifications</td>
<td>X</td>
</tr>
<tr>
<td>Newsletter/Postcard Approval</td>
<td>Develop/Update Newsletter/Postcards</td>
<td>X</td>
</tr>
<tr>
<td>Environmental Document Comments</td>
<td>Review Environmental Document</td>
<td>X</td>
</tr>
<tr>
<td>Public Meeting/Public Hearings</td>
<td>Conduct Public Meetings and/or Public Hearing</td>
<td>X</td>
</tr>
</tbody>
</table>

A indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Finalize Public Involvement Plan (PIP)
The Project Manager sends an Environmental Tracking and Coordination System (ETRACS) request to Public Involvement to complete the final Public Involvement Plan (PIP). Based on the Project Scoping Report and Community Screening, as well as discussions with the Project Manager, Communications Lead and/or project team, Public Involvement update the PIP to include:

- Potential outreach methods best suited to the project
- Public meetings
- Local and elected public officials’ meetings
- Additional Public Involvement needs for Merger Projects
- Small group meetings to inform the public about the project

The updated PIP is reviewed and approved by the Project Manager and Environmental Analysis Unit (Public Involvement, Community Studies, and Visualization [PICSViz]).

These activities build upon the work to incorporate the PIP in the Project Initiation Stage.

2PI1 Continue Public Engagement
June 2021
Develop Project Scoping Letter
The Project Manager sends an ETRACS request to Public Involvement. In accordance with the *Public Involvement Guidelines*, the Private Engineering Firm/consultant prepares the project scoping letter and submits the letter, where it is reviewed to determine if updates are needed to the PIP and to assist with scheduling.

Compile Mailing List
Upon receipt of an ETRACS request for support, the Public Involvement Lead completes the following in accordance with the *Public Involvement Guidelines*.

- Review the project study area map and project mailing area
- Provide the draft mailing list to the assigned Private Engineering Firm or other consultant, who updates the mailing list through project duration.
- Ensure approved mailing list is uploaded to the project SharePoint site

Coordinate Public Outreach Event Notifications
Upon receipt of an ETRACS request for support, the Public Involvement Lead:

- Arranges meeting locations and facilities.
- Ensures the public is notified as to where and when the public meeting(s) is to occur.
- Collaborates with the Communications Office to release a press notice regarding each meeting. Note: The Communications Office also notify citizens of the public meetings using social media outlets (e.g., Facebook and Twitter) (see 2CG1 for related information).
- Uploads the project map and available documents to the NCDOT Public Meeting webpage and websites as appropriate.

Develop/Update Newsletter/Postcards
The Project Manager sends an ETRACS request to Public Involvement. During the project the Private Engineering Firm, or other consultant, may prepare a newsletter/postcard for distribution to persons on the project mailing list and to State officials. Public Involvement and Communications approves the newsletter/postcard prior to distribution; the Private Engineering Firm, or other consultant, is responsible for printing and distributing the newsletter.

Review Environmental Document
Prior to finalization of the environmental document, the Public Involvement Lead is to:

- Confirm the completed public involvement tasks have been accurately summarized in the environmental document.
- Identify and inform the Project Manager and Communication Group Lead of any public involvement Project Special Commitments (Green Sheets) required for the design and construction phases.

Conduct Public Meeting and/or Public Hearing
The Project Manager and Public Involvement Lead collaborate to set up and operate public meetings, and/or public hearings, in accordance with the Public Involvement, Community Studies, and Visualization [PICSViz]) procedures identified in *Setting Up a Public Meeting*.  

---

2PI1 Continue Public Engagement
June 2021
Complete Any Open Public Engagement Tasks

While there are no specific public engagement activities or tasks in the Plan-in-Hand and PS&E/Letting stages, Public Involvement remains an available resource if any meetings are required during final design or the construction stage, all in coordination with the Communications Group and the Project Manager.
1CG1 Review Project Scoping

Overview
As part of Project Initiation Stage, evaluate the project’s communication needs.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- NCDOT Programmatic Agreement Cultural Resources Screening Checklist
- Tribal Coordination Protocol

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Scoping Report Review Comments</td>
<td>Review Project Scoping Report</td>
<td>Comms PIO</td>
</tr>
</tbody>
</table>

Review Project Scoping Report
Via a request sent to the Public Involvement Lead from the Project Lead, for any project with an offsite detour or strong potential for controversy (or likelihood for complexity), the Public Involvement Team Lead reviews the current project scoping report and notifies the Feasibility Studies Unit and Public Information Officer (Comms PIO) of any issues or needs regarding communication for a project (see 1FS3 and 1PI1 for related information).

If necessary, the Comms PIO works with the Project Lead to start developing a Communications Plan with a timeline of specific deliverables for public outreach. The plan is a working document that is adjusted to meet different communication needs throughout the project.
2CG1 Assist with Public Engagement

Overview
Help to facilitate public meetings, assist with media interview requests, develop videos, create and coordinate development and admin for webpages, and review project notification needs or requirements.

References

- NCDOT Programmatic Agreement Cultural Resources Screening Checklist
- Tribal Coordination Protocol
- Project Special Commitments (Green Sheet) Guidance

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional Support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comms PIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public Involvement Lead</td>
</tr>
</tbody>
</table>

Create or Administer Outreach Materials
As coordinated with the Public Involvement Lead and the Project Manager, the Public Information Officer (Comms PIO) is available to provide media outreach or other public information dissemination work as needed. The Comms PIO can help facilitate several activities related to public outreach on the project, including:

- Assisting the Public Involvement Lead with review of newsletters, public meeting attendance, and interview requests.
- Review and coordination of efforts for creating and administering web pages
- Social media outreach
- Review of project-specific visualizations and video production in coordination with EAU (Public Involvement, Community Studies, and Visualization (PICSViz)).

Environmental Document Review
As coordinated with the Public Involvement Lead and the Project Manager, the Comms PIO reviews the draft environmental document to be better able to respond to media and public inquiries about a project’s potential environmental impacts and ensure public outreach-related Project Special Commitments (Green Sheets) during the project’s construction phase are noted.
4CG1 Prepare Construction Communications Activities

Overview
Outreach during construction is critical for safety and informing the public of road or lane closures if a traffic pattern is to change or if detours are needed. Prepare for construction outreach by incorporating construction milestones into the Communications Plan. The Project Manager/Resident Engineer notifies the PIO prior to the start of construction.

References
- NCDOT Statewide PI Plan
- NCDOT Social Media Policy
- Postcard Guidelines Procedures

Deliverables

<table>
<thead>
<tr>
<th>Deliverables</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Outreach Material (varies by need)</td>
<td>Identify Construction Outreach Needs</td>
<td>Comms PIO</td>
</tr>
<tr>
<td></td>
<td>Lead Interviews (if needed)</td>
<td>X</td>
</tr>
<tr>
<td>Construction Public Information Plan</td>
<td>Develop the Construction Public Information Plan</td>
<td>X</td>
</tr>
</tbody>
</table>

Identify Construction Outreach Needs
The Comms PIO works with the Project Manager and the Work Zone Traffic Control (WZTC) Project Engineer to ensure the necessary public informational campaign occurs during the construction phase. This involves a pro-active identification of media needs when the Comms PIO receives notice from the Project Manager/Resident Engineer that the project has been placed on the letting list.

Some items to consider include:

- Send notice on letting when road closures and/or lane shifts occur for projects with road closures and/or work zone issues.
- Outline when to use social media, public service announcements, local media, and other means to push communications out to interested parties.
- Develop/update/review the project website for accuracy.
- Provide legislative liaison support that communicates with state and federal legislative bodies.

Lead Interviews (if needed)
In coordination with the Project Manager, the Comms PIO may:

- Provide on-camera interviews, especially for Division projects.
- Hold news media briefings.
Develop the Construction Public Information Plan
In coordination with the Project Manager/Resident Engineer, the Comms PIO formalizes the informational campaign to stakeholders for use during construction. This is a formal or informal deliverable, depending on the scale of the project.
5CG1 Public Information During Construction

Overview
Implement strategies to keep the public and stakeholders informed of construction impacts, related time frames, and other pertinent information.

References
- NCDOT Statewide PI Plan
- NCDOT Social Media Policy
- Postcard Guidelines Procedures

Deliverables

<table>
<thead>
<tr>
<th>Deliverables</th>
<th>Task</th>
<th>Activity Leader</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Outreach Material</td>
<td>Revise Public Outreach Material</td>
<td>Comms PIO</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Disseminate Public Outreach Material</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Lead Interview</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revise Public Information Material
The Comms PIO works with the Project Manager/Resident Engineer and the Work Zone Traffic Control (WZTC) Project Engineer to ensure the required public information materials (e.g., construction schedules that relate to the duration and/or intensity of community disruptions) are being updated during the construction phase.

Disseminate Public Information Material
The Comms PIO distributes updated information material through a variety of means including:

- Media releases
- NCDOT website
- Social Media
- Community group websites or LISTSERVs
- Informational signs

Depending on the project, a range of resources may be needed to target local and/or regional travelers, affected property and business owners, and emergency services.

Lead Interviews (if needed)
In coordination with the Project Manager/Resident Engineer, the Comms PIO may:

- Provide on-camera interviews, especially for Division projects.
- Hold news media briefings.
Other Items
In coordination with the Project Manager/Resident Engineer, the Comms PIO may:

- Receive notice if a problem occurs in the field
- Circulate notice once construction is complete
1RD1 Initiate Roadway Coordination

Overview
Ensure that the Express Design is both consistent with the vision established for the corridor by internal and external stakeholders and represents sound roadway design principles and practices.

References
- American Association of State Highway Transportation Officials (AASHTO) A Policy on Geometric Design of Highways and Streets
- Roadway Design Manual
- Mapping & Surveys for Planning and Design Activities Guide
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments on Express Designs</td>
<td>Provide Roadway Input on Express Design</td>
<td>Roadway Design Engineer</td>
</tr>
<tr>
<td>Comments on Mapping Limits</td>
<td>Perform Independent Review of Mapping Limit Polygon</td>
<td>Roadway Design Engineer or Appropriate Division Personnel</td>
</tr>
</tbody>
</table>

Provide Roadway Input on Express Design
Considering the need for early coordination as an Express Design is developed (see 1FS2 for related information), the NCDOT Roadway Design Engineer is to engage as follows:

- Review the roadway design elements of the Express Design as provided by the Feasibility Studies Engineer by:
  - Evaluating the design to confirm design elements are in alignment with the AASHTO A Policy on Geometric Design of Highways and Streets and NCDOT’s Roadway Design Manual and Complete Streets Memo/Policy.
  - Evaluating the design to confirm it reflects any multimodal accommodations coordinated with municipalities, metropolitan or rural planning organizations, and/or that which is recommended by the NCDOT.
- Generate comments on the Express Design, considering that:
  - Comments are to focus on any issues that could adversely affect decision-making as they are being evaluated in the prioritization process.
  - Comments are submitted to Feasibility Studies Engineer in written format with all necessary accompanying documentation that assist in the comments being understood.

In all, the Roadway Design Engineer provides roadway design technical expertise during this activity that involves:

- Responding verbally or in writing, as appropriate, to questions or concerns that may arise about roadway design policies, practices, and/or procedures as the Express Design is being developed.
- Participating in meetings in which the Roadway Design Unit or Roadway Design Engineer is requested to attend.

**Perform Independent Review of Mapping Limits Polygon**
To perform this review task, the NCDOT Roadway Design Engineer or Division designee reviews mapping limits polygon for final surveys as provided by the Feasibility Studies Engineer to:

- Evaluate limits to check that they are sufficient for design, but not so excessive that it overburdens resources.
  - There are times where further coordination with Location and Surveys and/or Photogrammetry may be needed.
- Provide comments to the Feasibility Studies Engineer in written format with all accompanying documentation that assist in the comments being understood.
2RD1 Complete the Design Recommendation Plan Set

Overview
Complete the project’s Design Recommendation Plan Set and associated roadway tasks to establish the essential roadway design elements that facilitate multiple activities across multiple disciplines early in this stage. This activity provides needed data that is incorporated into the environmental document, serves as a visual aid during public engagement activities, and sets a foundation for coordination activities with other technical disciplines/Units, so that the technical leads can develop and advance their design recommendations and plans early.

References

- American Association of State Highway Transportation Officials (AASHTO) *A Policy on Geometric Design of Highways and Streets and Errata*
- *Roadway Design Manual*
- *Roadway Standard Drawings*
- *Roadway Design Consultant Coordination Guidelines* (In Development: The guidelines are being updated.)
- American Association of State Highway Transportation Officials (AASHTO) *Roadway Lighting Design Guide*
- *Location and Design Approval Procedures*
- *NCDOT Quality Management Manual*
Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved Design Criteria and Associated Typical Sections</td>
<td>Complete Design Criteria and Typical Sections</td>
<td>Roadway Design Plan Review Group Leader or Division Personnel</td>
</tr>
<tr>
<td>Design Public Meeting Maps</td>
<td></td>
<td>Roadway Design Lead</td>
</tr>
<tr>
<td>Design Recommendation Plan Set</td>
<td>Complete Design Recommendation Plan Set</td>
<td>Roadway Design Lead</td>
</tr>
<tr>
<td>Approved Design Exception</td>
<td>Formalize Design Exceptions</td>
<td>Technical Services Director or Division Engineer</td>
</tr>
<tr>
<td>Initial Lighting Assessment</td>
<td>Determine Lighting Needs and Owner</td>
<td>Roadway Lighting Design Engineer</td>
</tr>
<tr>
<td>Lighting Evaluation Report</td>
<td></td>
<td>Roadway Lighting Design Engineer</td>
</tr>
<tr>
<td>Agreement with Municipality for Lighting Ownership and Maintenance</td>
<td>Issue Location and Design Approval (LADA)</td>
<td>Technical Services Director or Division Engineer</td>
</tr>
<tr>
<td>Location and Design Approval Support Document</td>
<td></td>
<td>State Roadway Design Engineer or Division Team Lead</td>
</tr>
<tr>
<td>Location and Design Approval Letter (LADA)</td>
<td></td>
<td>State Roadway Design Engineer or Division Team Lead</td>
</tr>
</tbody>
</table>

Complete Design Criteria and Typical Sections

Coordination with municipalities, RPOs, and MPOs on Complete Streets elements to be incorporated into the project begins in the Project Initiation Stage. This information is captured in design criteria for the mainline and is provided in the Project Scoping Report. The Roadway Design Lead ensures this information is incorporated into the design criteria for the entire project (see 2IM1 for related information).

While the Roadway Design Lead may not perform all tasks associated with the development of the roadway designs, the Roadway Design Lead ultimately seals the final plans and, as such, has responsible charge for the roadway designs and documentation of design decisions. To determine design criteria and typical sections, the Roadway Design Lead completes the design criteria package and submits for approval.

- The design criteria and typical sections are generated in accordance with the *AASHTO A Policy on Geometric Design of Highways and Streets*, *AASHTO Roadside Design Guide*, *Roadway Design Manual*, and *NCDOT Standards*. Decisions made about elements that are considered non-standard are documented in written format.
- The design criteria and typical sections are submitted to the Roadway Design Unit or Division designee for review and comment.
The Roadway Design Review Engineer or Division designee then:

- Reviews the design criteria package to verify the appropriate references are used and values for each element are correct based on those references.
- Confirms consistency between the design criteria and typical sections.
- Provides comments and any associated documents to the Roadway Design Lead (for action) and Project Manager (for information). Once complete, a meeting can be requested to discuss concerns or gain clarity on statements.

The Roadway Design Plan Review Group Leader or appropriate Division personnel then issues design criteria approval, and once comments have been adequately resolved, the Roadway Design Plan Review Group Lead or appropriate Division personnel provides documentation of approval to the Roadway Design Lead and Project Manager.

**Complete the Design Recommendation Plan Set**

The development of final surveys is a coordinated effort between the Locations and Surveys and Photogrammetry leads or Units, which begins in the Project Initiation Stage. The final survey product is then delivered to the Roadway Design Lead prior to initiating the Design Recommendation Plan Set. The designs developed for this plan set is also be used to facilitate the completion of the environmental document.

To develop this plan set, the Roadway Design Lead develops the horizontal and vertical alignments for all affected roadways that involves:

- Developing the roadway designs to be in compliance with the approved design criteria, the *AASHTO A Policy on Geometric Design of Highways and Streets* and NCDOT’s Roadway Design policies, procedures, and practices as defined in the *Roadway Design Manual*.
- Coordinating with the other technical disciplines/Units (e.g., Hydraulics, Utilities, Geotechnical, Structures Management, etc.) and Division staff to verify that no new issues presented themselves based on the delivery of the final surveys.
- Evaluating the horizontal and vertical alignments to ensure each fits the context of the subject roadways.
- Design decisions deviating from the guidance in the previous bullet are to be thoroughly documented in written format.

Additionally, as part of this task, the Roadway Design Lead is to:

- Layout roadway and structural design elements, basing both on the following:
  - Roadway design elements identified in the Traffic Operations Analysis Technical Memorandum from the Congestion Management Project Engineer (see 2TM1 for related information).
  - Coordination with the Signing and Delineation Designer to ensure lane continuity is met and the proposed design can be signed in accordance with the *Manual on Uniform Traffic Control Devices* (MUTCD) (see 2SD1 for related information).
  - Structural design elements on the approved design criteria, recommendations from the Hydraulic Design Engineer (if bridging a body of water), the Rail Division and Structure Management Units (if bridging a railroad), and coordination with the Structures Lead on the bridge type.
Layout superelevation transitions that involve:

- Verifying that the superelevation transitions conform to the current AASHTO Policy on Geometric Design of Highways and Streets and NCDOT Standard Drawings.
- Coordinating with the Hydraulic Design Engineer to identify areas and address concerns where hydroplaning concerns exist.

Calculate vertical clearance, if applicable, and document the vertical clearance calculations in a format that is easy to understand and verify.

- Note: The minimum clearances for each structure over a roadway or railroad are provided in the approved design criteria.
- Vertical clearance calculations are generated to confirm they have been met.

Develop gore calculations, if applicable, and document the calculations in a format that is easy to understand and verify.

- Note: The gore calculations are generated to ensure the rollover limitations are not violated as detailed in the Roadway Design Manual.

Perform sight distance calculations as prescribed in the Roadway Design Manual documenting the calculations in a format that is easy to understand and verify.

3D Model Development
The Roadway Design Lead also generates a 3D Model, of the proposed design for the construction proposed by the project, and layout cross sections and limits of construction (slope stakes), considering:

- The cross sections and limits of construction are to be reflective of the 3D model.
- Design elements shown in the plan view are to be the same as the 3D model.

The appropriate version of software to be used is to be detailed in the scope of work.

Right-of-Way and Easement Layout
The Roadway Design Lead is to also layout initially proposed right-of-way and easements generated based on guidance in the Roadway Design Manual and in coordination with the appropriate technical discipline/Unit. Station and offset labels are not required for the Design Recommendation Plan Set.

Maintenance of Traffic Narrative
The Roadway Design Lead coordinates the development of the maintenance of traffic narrative, which is meant to be:

- A viable plan for maintenance of traffic conveyed in written format to demonstrate the project can be constructed as designed.
- The Work Zone Traffic Engineer is engaged early in the design process to discuss potential traffic management challenges and solutions (see 2TM2 for related information).

Public Involvement Engagement
For public engagement at this stage, the Roadway Design Lead develops design public meeting maps to conform with the public involvement and mapping guidelines (found in the Roadway Design Manual) and coordinates the QC review following the NCDOT Quality Management Manual procedures and the QC Checklist. The Roadway Design Lead coordinates with the Project Manager and Public Involvement Lead to set up a review meeting to confirm what is represented on the map conveys the intent of the project.
Attendees at the meeting are the Roadway Design Lead and representation from each of the following: the Division, Public Involvement Lead/Unit, Environmental Analysis Unit (Community Studies and Visualization), experts representing the technical disciplines/Units (including, but not limited to, Hydraulics, Utilities, Work Zone Traffic Control, and Structures Management) and any other relevant stakeholders (including, but not limited to, municipality, MPO/RPO).

Technical experts are to be either representatives from central technical units or appropriate Division designees. Once all comments from the review meeting are addressed and the maps updated, the Public Involvement Officer and/or Communications Group are notified so that the website can be updated (see 2PI1 for related information). The Project Manager is included on the correspondence.

After the Design Public Meeting has been held and the comment period closed, the Roadway Design Lead coordinates with the Project Manager to schedule a Post-Public Meeting Resolution Meeting to determine the best path forward to address the comments.

- Attendees to the meeting include those invited to the map review and anyone else who can provide feedback on the concerns from the public.
- The resolutions requiring revisions to the designs as presented to the public are incorporated into the plans.

**Potential Retaining Wall Location Evaluation**

To complete this subtask, the Roadway Design Lead evaluates roadway design information for potential locations where retaining walls are a cost-effective solution to reduce impacts. The evaluation includes coordination efforts with the Hydraulics Design Engineer, Design Geotechnical Engineer, Structures Lead, Utility Coordinator, and appropriate Division personnel. Of note:

- Where determined to be viable, the retaining wall locations are incorporated in the typical sections, plan sheets, and cross section sheets.
- Retaining wall envelopes are developed for each retaining wall location.

The Roadway Design Lead requests the retaining wall investigations and design recommendations from the Geotechnical Engineering Unit (see 3GT2 for related information). The Project Manager is included on the correspondence.

**Design Recommendation Plan Set Preparation**

The Roadway Design Lead is to lay out the title sheet, plan and profile sheets, and cross section sheets to include a title sheet that:

- Encompasses all the work proposed by the project,
- Contains an accurate description of the project limits and type of work, and
- Provides the design data used to establish the design criteria for the mainline.

The horizontal and vertical alignment data, along with the 3D model information, are transferred into plan, profile, and cross section sheets as prescribed in the *Roadway Design Manual*.

The Roadway Design Lead also incorporates the final pavement design into the typical sections upon receipt of the final pavement design recommendations in the final Pavement Design Memo (see 2PD1 for related information). Of note:
The pavement designs are evaluated to determine if any are incompatible with the proposed designs.

If concerns arise or the recommendations are incomplete, the Pavement Design Engineer is contacted for further discussion.

The final pavement designs are to be accurately reflected in the pavement schedule, typical sections, and paving details per the guidance in the Roadway Design Manual.

The Roadway Design Lead also develops an earthwork summary, which is all to be provided in the plans per the guidance in the Roadway Design Manual.

Lastly, the Roadway Design Lead completes the QC Checklist following the NCDOT Quality Management Manual procedures before upload and/or distribution of Design Recommendation Plan Set.

Design Recommendation Plan Set Review and Finalization

Since the character and complexity of each project is different, a determination of how to generate feedback on the Design Recommendation Plan Set should be made when the work is scoped. The Roadway Design Lead coordinates with the Project Manager to either distribute plans to the technical disciplines/Units and appropriate Division personnel for a comment period or schedule a Design Recommendation Plan Set Review Meeting. If a Design Recommendation Plan Set Review Meeting is to be held, the Roadway Design Lead (or assigned designee) distributes the plans to the technical disciplines/Units and appropriate Division personnel ahead of the meeting.

For roadway designs developed by a Private Engineering Firm/consultant firm, the NCDOT Roadway Design reviewer or Division designee is to use appropriate resources, including the applicable QA checklist in the Quality Management Manual to complete a quality assurance review. This review confirms the plan set is complete and in compliance with current NCDOT and Roadway Design Unit guidance, policies, and procedures.

From there, the Roadway Design Lead updates the plans based on comments from the Design Recommendation Plan Set Review Meeting, considering the following.

- Comments and recommendations from the review meeting are analyzed to determine if they are feasible.
- If results of the analyses do not provide a clear resolution, results are circulated to all relevant technical design Leads and Division personnel for a final determination.
- The designs and plans are updated to include all final recommendations.

The Roadway Design Lead distributes the updated plan set to the technical disciplines/units and/or appropriate Division personnel through the project SharePoint site. The Project Manager is included on the correspondence.

Formalize Design Exceptions

During the development of the Design Recommendation Plan Set, it may not be feasible to meet all the required design criteria. If it is determined that design element identified in the design exception checklist cannot be met, a formal design exception is required.
To complete this task, the Roadway Design Lead completes the design exception package and submits the package to State Roadway Design Engineer as follows:

- The design exception checklist is completed per the design exception guidance in the *Roadway Design Manual*.
- All pertinent data in the design exception request letter is completed and includes responses to all questions on the “Basis of the Exception”.
- The letter, checklist, and location of the design plans is submitted to the State Roadway Design Engineer or Division designee for review.

The State Roadway Design Engineer or Division designee then reviews the design exception package for accuracy and completeness, considering that:

- Written comments and associated documents are provided to the Roadway Design Lead (for action) and the Project Manager (for information).
- If deemed necessary, a meeting is held to ensure clarity of comments and responses.

Once comments have been adequately addressed, the State Roadway Design Engineer signs the document and forwards it to the Technical Services Director, who reviews the package and provides additional comments, if needed. If there are no comments, the Technical Services Director approves the design exception by signing the document.

**Determine Lighting Needs and Owner**

NCDOT-owned and maintained lighting systems are typically installed inside full control of access facilities. The exceptions are complex intersections, such as a roundabout or continuous flow intersection (CFI).

Prior to preparing a lighting evaluation, the Roadway Lighting Design Engineer is to refer to the *Roadway Lighting Policy* and NCHRP Report 152 as part of determining the warrant for an evaluation that assess:

- The access control of the interchange or corridor,
- If complex intersections (continuous flow, roundabout, etc.) are in the design, and/or
- If the night-to-day accident ratio for existing conditions at the interchange or along the corridor is met.

When a lighting evaluation is warranted, the Roadway Lighting Design Engineer is to:

- Prepare a lighting evaluation for the interchange or corridor in accordance with NCHRP Report 152.
- Prepare a Lighting Evaluation Map showing the result of all evaluated interchanges and/or continuous roadway sections within the project.
- Complete the QC review following the NCDOT *Quality Management Manual* and the QC Checklist before upload and/or distribution.

The Roadway Lighting Design Engineer provides the lighting evaluation and map to the NCDOT Roadway Lighting Team Lead for review. The results of the lighting evaluation are discussed at the next quarterly Lighting Committee meeting, with the approval to include lighting in the project being determined by the NCDOT Lighting Committee.
Where the lighting evaluation shows that lighting is not justified, the Division Engineer works with the affected municipality to determine if the municipality is interested in partnering with the NCDOT on including lighting in the project.

**Issue Location and Design Approval (LADA)**

To review and issue a Location and Design Approval, the State Roadway Design Engineer, or designee performs, a consistency review between the environmental document and the roadway design plans in accordance with the Location and Design Approval procedures. Upon review, a letter is drafted for the signature of the Technical Services Director, with supporting documentation attached. See the *Roadway Design Manual* for more background on the LADA process.
2RD2 Prepare for Field Inspection

Develop a coordinated set of design plans (the Field Inspection Plan Set) that can be used for the Field Inspection Review Meeting and a constructability review, so that all vested parties are able to review and discuss concerns that could impact how a project is built.

References

- *Roadway Design Manual*
- *Roadway Standard Drawings*
- *Roadway Design Consultant Coordination Guidelines* *(In Development: The guidelines are being updated.)*
- *NCDOT Quality Management Manual*

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Inspection Plan Set</td>
<td>Complete Field Inspection Plan Set</td>
<td>Roadway Design Lead</td>
</tr>
<tr>
<td>Quantities for Construction Estimate</td>
<td>X</td>
<td>Other Technical Discipline/Unit Leads</td>
</tr>
</tbody>
</table>

Complete Field Inspection Plan Set

To complete the Field Inspection Plan Set, the Roadway Design Lead incorporates input from several sources as follows.

Hydraulic Design Input

The relevant information in the completed major structure reports (e.g., the Bridge Survey and Hydraulic Design Reports (BSRs), Detour Survey and Hydraulic Design Reports (DSRs), and Culvert Survey and Hydraulic Design Reports (CSRs)) and the completed drainage plans for field inspection are evaluated to confirm consistency between the hydraulic design and the roadway design plans (see 2HY2 for related information). The Roadway Design Lead incorporates the hydraulic design, details, and quantities into the 3D model and the roadway design plan, profile, and cross section sheets per the guidance in the *Roadway Design Manual*.

The Roadway Design Lead discusses concerns about the intent and/or accuracy of the hydraulic design with the Hydraulics Design Engineer to determine possible solutions. If the recommended solution has the potential to jeopardize the scope, schedule, or budget, the Roadway Design Lead notifies the Project Manager, so that the Project Manager can determine what further coordination is needed.
Preliminary General Drawing Input
The preliminary general drawing is reviewed to ensure consistency with how the structure information relevant to the roadway design plans is shown per guidance in the *Roadway Design Manual* (see 2ST2 for related information).

The Roadway Design Lead discusses concerns about the intent and/or accuracy of the preliminary general drawing with Structures Lead and Hydraulics Design Engineer, if needed, to determine possible solutions. If the recommended solution has the potential to jeopardize the scope, schedule, or budget, the Roadway Design Lead notifies the Project Manager, so that the Project Manager can determine what further coordination is needed.

Geotechnical Slope and Roadway Input
The geotechnical slope and roadway recommendations are reviewed and incorporated into the roadway design, plan, profile, and cross section sheets, and the earthwork summary per the guidance in the *Roadway Design Manual* (see 2GT2 for related information).

The Roadway Design Lead discusses concerns about the intent and/or accuracy of the geotechnical slope and/or roadway recommendations with the Design Geotechnical Engineer to determine possible solutions. If the recommended solution has the potential to jeopardize the scope, schedule, or budget, the Roadway Design Lead notifies the Project Manager, so that the Project Manager can determine what further coordination is needed.

Work Zone Traffic Control Input
The maintenance of traffic narrative provided in the Design Recommendation Plan Set is further developed into concept plans for the traffic control plans. The roadway design plans are updated to reflect the concepts plans.

The Roadway Design Lead discusses concerns about the intent and/or accuracy of the traffic control concepts with the Work Zone Traffic Control (WZTC) Project Engineer to determine possible solutions (see 2TM2 for related information). If the recommended solution has the potential to jeopardize the scope, schedule, or budget, the Roadway Design Lead notifies the Project Manager, so that the Project Manager can determine what further coordination is needed.

Right-of-Way and Easement Layout Update
The Roadway Design Lead revises the initial right-of-way and easements provided in the Design Recommendation Plan Set by incorporating the completed drainage design for the field inspection plans (see 2HY2), geotechnical recommendations (see 2GT2), utility coordination (see 2UT1), temporary or permanent erosion and sediment control measures (see 2RE1), and signal poles (see 2SG1) per the guidance in the *Roadway Design Manual*.

- Station and offset information is included in the plan set at this stage.
- The appropriate discipline/Unit supplying the information listed in the bullet above and/or the Division are contacted if there are concerns with how to contain the impacts.

Construction Estimate Quantities
The Roadway Design Lead and other associated disciplines/Units develop quantities for pay items associated with the construction of the proposed designs per guidance in the *Roadway Design Manual*. 

2RD2 Prepare for Field Inspection
November 2021
The quantities are provided to the Project Manager, so that the Project Manager can request an updated construction cost estimate be generated by the Contract Standards and Development Unit (see 2CS1 for related information).

Field Inspection Plan Set QC Review, Review Meeting, and Finalization
The Roadway Design Lead completes the respective QC Checklist following the NCDOT Quality Management Manual procedures before upload and/or distribution of Field Inspection Plan Set.

Once the plans are complete, the Roadway Design Lead coordinates with the Project Manager and Division Construction Engineer to schedule the Field Inspection Review Meeting. The Roadway Design Lead distributes the plans to the technical disciplines/Units and/or appropriate Division personnel in advance of the meeting. The team confirms there is enough time to allow a thorough review from the Value Management Office prior to the Field Inspection Review Meeting.

For roadway designs developed by a Private Engineering Firm, the Roadway Design reviewer or Division designee uses appropriate means, including the applicable QA checklist in the Quality Management Manual to complete a quality assurance review. This review is to verify the plan set is complete and in compliance with current NCDOT and Roadway Design Unit guidance, policies, and procedures.

From there, the Roadway Design Lead updates the plans based on comments from the Field Inspection Review Meeting, considering the following.

- Comments and recommendations from the review meeting are analyzed to determine if they are feasible.
- If results of the analyses do not provide a clear resolution, results are circulated to all relevant designers and Division personnel for a final determination.
- The designs and plans are updated to include all final recommendations.

The Roadway Design Lead distributes the updated plan set to the technical disciplines/units and/or appropriate Division personnel through the project SharePoint site. The Project Manager is included on the correspondence.
3RD1 Complete Roadway Design

Overview
Evaluate and/or incorporate decisions from the field inspection, constructability review, and all remaining design recommendations from technical disciplines/Units into the plans, resulting in a set of plans with no major constructability or right-of-way issues.

References
- *Roadway Design Manual*
- *Roadway Standard Drawings*
- *Roadway Design Consultant Coordination Guidelines* (*In Development: The guidelines are being updated.*)
- *Standard Specifications for Roads and Structures*
- American Association of State Highway Transportation Officials (AASHTO) *Roadway Lighting Design Guide*
- *National Electrical Code (NEC)*
- *NCDOT Quality Management Manual*

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Activity Leader</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-of-Way Plan Set w/ Noise Wall Locations</td>
<td>• Complete the Right-of-Way Plan Set</td>
<td>Roadway Design Lead</td>
<td>Other Technical Discipline/Unit Leads (Roles noted in the descriptions below)</td>
</tr>
<tr>
<td>Quantities for Construction Estimate</td>
<td></td>
<td>Roadway Design Lead</td>
<td>Other Technical Discipline/Unit Leads (Roles noted in the descriptions below)</td>
</tr>
<tr>
<td>Roadway Design Plans Set for Permit Application</td>
<td>• Conduct Permit Drawing Consistency Review</td>
<td>Roadway Design Lead</td>
<td>Hydraulics Design Engineer</td>
</tr>
<tr>
<td>Photometric Layout</td>
<td></td>
<td>Roadway Lighting Design Engineer</td>
<td></td>
</tr>
<tr>
<td>Lighting Plans Prepared in MicroStation</td>
<td>• Complete Lighting Layout</td>
<td>Roadway Lighting Design Engineer</td>
<td></td>
</tr>
<tr>
<td>Voltage Drop Calculations</td>
<td></td>
<td>Roadway Lighting Design Engineer</td>
<td></td>
</tr>
<tr>
<td>Typical Sections for Pavement Design Review</td>
<td>• Submit/Review Typical Sections (Pavement Management)</td>
<td>Roadway Design Lead</td>
<td>Pavement Design Lead</td>
</tr>
</tbody>
</table>

Complete the Right-of-Way Plan Set
The other technical disciplines/Units continue to make minor adjustments to finalize their plans, and the approved design noise report is issued at the beginning of this Plan-in-Hand Stage. The Right-of-Way Plan Set is then used by the:
- Location and Surveys Unit for staking of proposed right-of-way and easements, and
Noise Wall Location Incorporation

The Roadway Design Lead obtains and incorporates approved noise wall locations from the Design Noise Report into the plan set per guidance in the Roadway Design Manual. The Design Noise Report is generated by the Environmental Analysis Unit (Traffic Noise and Air Quality) or their designee (see 3EN1 and 3EN2 for related information).

- Note: Anticipated revisions to the plans include potential modifications to the typical sections, plan sheets, 3D model, cross sections, slope stakes, and proposed right-of-way and/or easements.

If required, the Roadway Design Lead participates in coordination to resolve any conflicts the noise wall locations may present within the designs. Others engaged in this coordination include the Hydraulics Design Engineer, Design Geotechnical Engineer, Utility Coordinator, Structures Lead, Work Zone Traffic Control (WZTC) Project Design Engineer, and the appropriate Division personnel. If the recommended solution has the potential to jeopardize the scope, schedule, or budget, the Project Manager determines what further coordination is needed to obtain a final resolution.

Plan Set Compilation

The Roadway Design Lead receives final designs, plans, and/or results of coordination efforts from all or a portion of the disciplines/Units. This includes but is not limited to Hydraulics, Utilities, Work Zone Traffic Control, Structures Management, Signing and Delineation, Roadside Environmental, Geotechnical Engineering, and Rail Division. Their information is reviewed for consistency with the roadway design plans per the Roadway Design Manual.

- If there are concerns that need to be addressed, the appropriate lead is engaged to determine practicable solutions.
- If the recommended solution has the potential to jeopardize the scope, schedule, or budget, the Roadway Design Lead informs the Project Manager, so that the Project Manager can determine what further coordination is needed.

Construction Estimate Quantities

The Roadway Design Lead and other associated disciplines/Units update the quantities for pay items associated with the construction of the proposed designs per guidance in the Roadway Design Manual to reflect any design revisions and/or updated recommendations from other technical Units or the Division. The quantities are provided to the Project Manager, so that the Project Manager can coordinate an updated construction cost estimate generated by the Contract Standards and Development Unit (see 3CS1 for related information).

Plan Set QC Review, Review Meeting, and Finalization

The Roadway Design Lead completes the respective QC Checklist following the NCDOT Quality Management Manual procedures before upload and/or distribution of Right-of-Way Plan Set.

Once the Roadway Design Lead determines the Right-of-Way Plan Set is complete, the Roadway Design Lead distributes the plans to the technical disciplines/Units and/or appropriate Division personnel. The Project Team can evaluate the risk of releasing the Right-of-Way Plan Set for acquisition before the end of Stage 3 based on the schedule and the complexity of the project. These plans utilize the most current
design and recommendations from the other technical disciplines/Units. Right-of-way acquisition can begin once the Project Manager has authorization for funding.

After the other technical disciplines/Units have uploaded their completed plans and notified the Roadway Design Lead and Project Manager, the Project Manager coordinates the scheduling of the Plan-in-Hand Review Meeting. If needed (depending on the complexity of the project or if significant changes have occurred from the Alignment Defined Stage), the Roadway Design Lead and Project Manager determine the need for an additional Constructability Review (see 3VM1 for related information).

For roadway designs developed by a Private Engineering Firm, the Roadway Design reviewer or Division designee uses appropriate means, including the applicable QA checklist in the Quality Management Manual to complete a quality assurance review. This review is to ensure the plan set is complete and in compliance with current NCDOT and Roadway Design Unit guidance, policies, and procedures.

The Roadway Design Lead updates the plans based on comments from the Plan-in-Hand Review Meeting, considering the following.

- Comments and recommendations from the review meeting are analyzed to determine if they are feasible.
- If results of the analyses do not provide a clear resolution, results are circulated to all relevant engineers and Division personnel for a final determination.
- The designs and plans are updated to include all final recommendations.

The Roadway Design Lead notifies the Project Manager once the plan set is complete.

Conduct Permit Drawing Consistency Review

The development of environmental permit drawings is a critical component for obtaining approval from the appropriate environmental agencies prior to let. To complete this task, the Roadway Design Lead compares the draft environmental permit drawings with the current roadway design plans.

- Upon receipt of the draft environmental permit drawings from the Hydraulics Design Engineer, the Roadway Design Lead compares the plans to verify the impacts are the same.
- The elements under review include slope stakes, proposed right-of-way and easement impacts, clearing methodology, and the data associated with major hydraulic crossings.

The Roadway Design Lead provides written comments on any inconsistencies and provides all associated documents to the Hydraulics Design Engineer. If needed, the Roadway Design Lead coordinates with the Hydraulics Design Engineer and any other technical experts to resolve the concern.

Any resolution of inconsistencies requiring revisions to the roadway design are incorporated into the roadway design plans, and once inconsistencies are resolved, the Roadway Design Lead notifies the Environmental Analysis Unit (Environmental Coordination and Permitting) of the location of the roadway design plans. The Project Manager is included on the correspondence.

Complete Lighting Layout

If lighting is warranted or existing lighting conflicts with construction, the Roadway Lighting Design Engineer prepares and provides a photometric layout, including:
Luminaire variables and preliminary light pole locations determinations.
- Light Levels calculations.

The Roadway Lighting Design Engineer also prepares a lighting design package, including:
- Voltage drop calculations based on the system operating voltage and circuit loads.
- A Photometric layout replicated in MicroStation
- Determination of underpass lighting requirements.

All of this is done in coordination with the Roadway Design Lead, with the total number of lighting plan sheets provided to the Roadway Design Lead for inclusion in the roadway design plans’ index of sheets.

The Roadway Lighting Design Engineer prepares special provisions for any lighting items not included in the Standard Specifications for Roads and Structures.

Submit/Review Typical Sections (Pavement Management)
Once all design has been completed to the point where no more revisions are anticipated to the typical sections, the Roadway Design Lead provides typical section sheets to the Pavement Design Engineer for review (see 3PD1 for related information).

In updating the typical sections, the Roadway Design Lead evaluates the comments and/or corrections from the Pavement Design Engineer when updating to the typical section sheets.

- If there is uncertainty about a comment, the Pavement Design Engineer is engaged to resolve them.
- The agreed upon changes to the typical sections are made so that the plans are ready for seals and signatures as part of 4RD1.
4RD1 Finalize the Final PS&E Package

Overview
With right-of-way acquisition and utility relocations well underway, compile the Final Roadway Design Plans, Specifications, and Estimate (PS&E) with all other required documentation to assist the Contract Standards and Development Unit to develop the contract for the Advertisement and Letting Process.

References
- Roadway Design Manual
- Roadway Design Consultant Coordination Guidelines (In Development: The guidelines are being updated.)
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review Set of Final Plans</td>
<td>Complete Contract Package</td>
<td>X (Roles noted in the descriptions below)</td>
</tr>
<tr>
<td>Final Construction Quantities for Roadway Design Plans</td>
<td>Submit Contract/Final Plans</td>
<td>X (Roles noted in the descriptions below)</td>
</tr>
<tr>
<td>Sealed Contract Roadway Design Plans</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete the Contract Package
For compiling a complete contract package, the Roadway Design Lead updates the plans, as needed, for any design changes that occurred after the end of the Plan-in-Hand Stage. The process includes completing:

- The appropriate documentation required by the Contract Standards and Development Unit or Division Contract Engineer in proper format to either be included in the plans or provided as standalone documents.
- Items include the index of sheets, list of standard drawings, general notes, special provisions, relevant summary plan sheets summaries, quantities, and key documents.

The Roadway Design Lead completes the respective QC Checklist following the NCDOT Quality Management Manual procedures before upload and/or distribution of Final PS&E contract package.

For roadway designs developed by a Private Engineering Firm, the Roadway Design reviewer or Division designee is to use appropriate means, including the applicable QA checklist in the Quality Management Manual to complete a quality assurance review.

This review is to ensure the plan set is complete and in compliance with current NCDOT and Roadway Design Unit guidance, policies, and procedures.

The Roadway Design Lead notifies the Plan Review Engineer or the Division Contract Engineer, with a cc to the Project Manager, when the Roadway Design Review Plan Set and the contract documentation
have been placed on the project SharePoint site in the Let Preparation area. The Project Manager is included on the correspondence.

The Plan Review Engineer or the Division Contract Engineer provides comments to the Project Manager (for information) and Roadway Design Lead (for action). The Roadway Design Lead updates the plans and provides a response to all comments so that the group is aware of what has changed.

Submit Contract/Final Plans
Plan sheets are uploaded into DocuSign or equivalent software and sent to the Roadway Design Lead, Hydraulic Design Lead, and Pavement Design Engineer for dated seals and signatures.

Special detail sheets are uploaded to DocuSign and sent to the State Plans and Standards Engineer for dated seal and signature.

The Roadway Design Lead notifies the Plan Review Engineer or the Division Contract Engineer when the final sealed roadway design plan set/PS&E has been uploaded onto the project SharePoint site in the Let Preparation area. The Project Manager is included on the correspondence.
5RD1 Roadway Construction Support

The Roadway Design Lead provides the following support during the Construction Phase:

- Provides technical expertise and answers questions on the project’s roadway design
- Completes Construction Revision (as needed):
  - Performs construction revisions of the latest version of the Let Plans (see 5CS1 for related information) to address identified field issues
  - Coordinates the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and/or distribution
- Reviews contractor shop drawings, in coordination with identified technical disciplines/Units
2RE1 Initiate Erosion and Sediment Control Plans

Overview
Begin the design of the Erosion and Sediment Control Field Inspection Plans after approval, or concurrent with advancement, of the drainage design. Produce Erosion and Sediment Control (E&SC) plans for review at the Field Inspection Review Meeting and to identify sufficient right-of-way/easement needs for installation, maintenance, and removal of the measures. Determine additional permit needs.

References
- Roadside Environmental - Soil and Water Webpage
- NCDEQ Erosion and Sediment Control Planning and Design Manual
- BMP for Construction and Maintenance Activities
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Quality Worksheet (Form ESC-1)</td>
<td>Document Review and Surface Water Delineation for Design Requirements</td>
<td></td>
</tr>
<tr>
<td>Environmental Document Review (Form ESC-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Design Meeting Minutes</td>
<td>Conduct E&amp;SC Pre-Design Meeting</td>
<td></td>
</tr>
<tr>
<td>E&amp;SC Field Inspection Plans</td>
<td>Conduct E&amp;SC Project Site Visit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design E&amp;SC Field Inspection Plans for Clearing &amp; Grubbing and Final Construction Phases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design Pipe/Culvert Construction Sequences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review E&amp;SC Field Inspection Plan Set and Attend Field Inspection Review Meeting</td>
<td></td>
</tr>
<tr>
<td>ROW/Easement Request File</td>
<td>Develop ROW/Easement Request File</td>
<td></td>
</tr>
</tbody>
</table>

Document Review and Surface Water Delineation for Design Requirements
To complete this task, the E&SC Design Engineer is to:

- Provide a project investigation and watershed analysis by reviewing the project’s environmental documents for commitments related to E&SC design, mitigation, landscaping, and vegetation re-establishment.
- Complete and submit the Water Quality Worksheet (Form ESC-1) and Environmental Document Review (Form ESC-2) (both located on the Soil and Water webpage) to verify E&SC design.
requirements and to document environmental commitments to be addressed by the E&SC plans and other Roadside Environmental Unit operations.

The Water Quality Worksheet and Environmental Document Review are reviewed by Roadside Environmental Unit Reviewer and uploaded onto the project SharePoint site when complete.

Conduct E&SC Project Site Visit
The E&SC Design Engineer performs a site visit for familiarization with the area and to evaluate existing groundcover, soils, and jurisdictional features for E&SC design. This work includes:

- Comparing design file topography with existing field topography for discrepancies.
- Evaluating and noting any potential construction and maintenance issues for E&SC measures.
- Documenting and photographing current condition of noted jurisdictional streams and wetlands or other sensitive drainage features.
- Distributing the notes and photos to Roadside Environmental Unit Reviewer, uploading all onto the project SharePoint site.

Conduct E&SC Pre-Design Meeting
In conducting the meeting with the Roadside Environmental Unit staff after the site visit, the E&SC Design Engineer is to:

- Discuss E&SC design concept for the project, including potential design exceptions, any issues noted during the site visit, environmental commitments, and any current Division preferences or potential constructability conflicts.
- Submit draft meeting minutes for review and comment to attendees and other Units, as necessary.
- Submit final meeting minutes to attendees and upload onto the project SharePoint site.

Design E&SC Field Inspection Plans for Clearing & Grubbing and Final Construction Phases
For this portion of the plans, the E&SC Design Engineer is to design the clearing and grubbing and final construction phase E&SC plans in accordance with the Erosion and Sediment Control Design and Construction Manual and NCDEQ’s Erosion and Sediment Control Planning and Design Manual.

- For the Clearing and Grubbing E&SC plans, this work includes:
  - Delineating the watersheds that drain through the project and their discharge points based on existing topography and drainage features.
  - Designing any basins at existing outfalls and routing runoff with existing or temporary ditches with velocity controls, as needed.
  - Identifying and protecting jurisdictional features.
  - Delineating the Environmentally Sensitive Areas (ESA), as required.
  - Designing perimeter protection to contain runoff not conveyed to an E&SC basin.
  - Designing inlet protection for existing inlets and drainage inflow points.

- For the Final Construction Phase E&SC plans, this work includes:
  - Delineating watersheds that drain through the project and their discharge points based on proposed topography and drainage plans.
  - Designing basins at outfalls using proposed pipes and drainage channels.
Designing temporary ditches, as needed, to convey runoff to E&SC basins.
- Designing velocity controls for proposed drainage channels and temporary ditches.
- Incorporating clearing and grubbing E&SC plans, as practical.
- Designing perimeter protection to contain runoff not conveyed to an E&SC basin.
- Designing inlet protection for proposed inlets and other drainage inflow points.

The E&SC Field Inspection Plans is to show locations of E&SC measures and evaluate necessary temporary construction easement for the installation, maintenance, and removal of the measures.

The E&SC Design Engineer submits E&SC Field Inspection Plans to the Roadside Environmental Unit Reviewer (for action) and Project Manager (for information) along with all supporting documentation and calculations. The E&SC Design Engineer revises and resubmits the E&SC Field Inspection Plans until all comments are satisfactorily addressed.

The E&SC Design Engineer also completes the respective QC Checklist following the NCDOT Quality Management Manual procedures before upload and/or distribution of E&SC plans.

**Design Pipe/Culvert Construction Sequences**

When designing the pipe/culvert construction sequencing, the E&SC Design Engineer is to:

- Design construction sequence drawings and narratives, for pipes/culverts carrying jurisdictional streams sufficient to convey the stream through the project construction site, while maintaining separation from the work site.
- Design temporary drainage (e.g., pipes, channels, etc.) as needed to maintain stream passage during construction. Include designs for temporary pipes carrying jurisdictional streams that are needed for work zone traffic control and other construction activities.
- Incorporate pipe/culvert construction sequences into the clearing & grubbing phase E&SC plans.

The E&SC Design Engineer determines applicability of other permits or variances (e.g., NC Division of Water Resources Central Coastal Plain Capacity Use Area (CCPCUA) Permits, NC Department of Environmental Quality Trout Buffer Variance and High-Quality Waters (HQW) Variance, etc.) and begins application coordination as required.

**Review Field Inspection E&SC Plan Set and Attend Field Inspection**

The E&SC Design Engineer is to:

- Distribute the approved E&SC Field Inspection Plans to the appropriate Units/discipline leads (e.g., the Project Manager, Structures Management, Roadway Design, Division Construction, Utilities, Right-of-Way, Division Environmental Officer, REU Field Operations, Central Construction, etc.) for review and comment at the Field Inspection Review Meeting.
- Review the E&SC Field Inspection Plans prior to the Field Inspection Review Meeting noting any errors or conflicts with utilities or other construction activities.
- Attend the Field Inspection Review Meeting, respond to questions or concerns relating to the E&SC design, and note additional coordination or revisions needed due to traffic control, utilities, or temporary construction impacts (e.g., temporary work bridges, causeways, work pads, access or haul roads etc.).
Develop ROW/Easeement Request File

When developing the ROW/Easeement Request file, the E&SC Design Engineer:

- Delineates temporary construction easements that are necessary for the construction, maintenance, and removal of E&SC measures and adds additional easements on the E&SC Field Inspection Plans.
  - After review and acceptance from the Roadside Environmental Unit Reviewer, the preliminary easement request CADD file is to be submitted to the Roadway Design Lead for incorporation with the Field Inspection Plans.
- Coordinates with Roadway, Hydraulics, Right-of-Way, Utilities, and other disciplines/Units to identify and resolve conflicts or issues raised in the Field Inspection Review Meeting with the planned E&SC measures.

Once the necessary E&SC design changes are made and approved to address the conflicts, the E&SC Design Engineer produces a completed easement request CADD file, and distributes to the Right-of-Way team (for action), Roadway Design Lead, and the Project Manager (for information).
3RE1 Complete Erosion and Sediment Control Plans

Overview
Complete the erosion and sediment control (E&SC) plans. Complete application for additional permits related to E&SC.

References
- Roadside Environmental - Soil and Water Webpage
- NCDEQ Erosion and Sediment Control Planning and Design Manual
- BMP for Construction and Maintenance Activities
- NCDOT Quality Management Manual

Deliverables

| Deliverable                      | Task                                                                 | Responsible Party                      |
|---------------------------------|                                                                     |                                       |
| E&SC Plan Set                   | ▪ Complete E&SC plans for Clearing and Grubbing Construction Phase  | E&SC Design Engineer                  |
|                                 | ▪ Complete E&SC plans for Intermediate and Final Construction Phases| Roadside Environmental Unit Reviewer  |
|                                 | ▪ Calculate Matting Requirements for Ditches and Slopes             | X                                      |
|                                 | ▪ Add Details, Notes, and Vegetation Management Plans              | X                                      |
| Approved Applicable Permits/Variances | ▪ Apply for other Applicable Permits Related to the E&SC Plans | X                                      |

Complete E&SC Plans for Clearing and Grubbing Construction Phase
For this portion of the plans, the E&SC Design Engineer is to complete the design for the clearing and grubbing E&SC plans. This work includes revising E&SC Field Inspection Plans as necessary due to comments from the Field Inspection Review Meeting, design changes from other Units/disciplines, and utility conflicts.

Complete E&SC Plans for Intermediate and Final Construction Phases
For this portion of the plans, the E&SC Design Engineer completes the E&SC Final Construction Phase plans and any necessary intermediate phase E&SC plans in accordance with the Erosion and Sediment Control Design and Construction Manual and the NCDEQ Erosion and Sediment Control Planning and Design Manual. This work includes:

- Revising E&SC Field Inspection Plans as necessary due to comments from the Field Inspection Review Meeting, design changes from other Units/disciplines, and utility conflicts.
- Designing for temporary drainage associated with temporary traffic detours or construction activities that may not be captured in the clearing and grubbing or final phase E&SC plans.

3RE1 Complete Erosion and Sediment Control Plans
June 2021
- Additional ES&C designs determined to be necessary to capture construction stormwater runoff due to changes in drainage during mass grading.

Calculate Matting Requirements for Ditches and Slopes
To calculate matting requirements, the E&SC Design Engineer:

- Analyzes flow rates and determines stabilization requirements for channels with erosive velocities and slopes with potential for erosive failure throughout the project.
- Denotes stabilization using matting or other groundcover in a summary table or annotation on the E&SC plans.

Add Details, Notes, and Vegetation Management Plans
For this task, the E&SC Design Engineer:

- Completes the E&SC plans by incorporating appropriate title sheet information, required details, and notes on the E&SC plan sheets for project-specific environmental information into the plan.
- Adds project-specific vegetation management plans (e.g., reforestation, streambank reforestation, wetland grass or reforestation, etc.) or landscaping as required through permitting or project commitments to the E&SC plans.

Calculate Final E&SC Quantities and Develop Project Specific E&SC Special Provisions
The E&SC Design Engineer submits quantity calculations and develops project Special Provisions for all items in the E&SC plans not covered under the NCDOT Standard Specifications. This task involves calculating quantities for all E&SC items and applying maintenance factors for final quantities.

Complete QC/QA Procedures
The E&SC Design Engineer submits E&SC Plans to the Roadside Environmental Unit Reviewer (for action) and Project Manager (for information) along with all supporting documentation and calculations. The E&SC Design Engineer revises and resubmits the E&SC Field Inspection Plans until all comments are satisfactorily addressed.

Lastly, the E&SC Design Engineer completes the respective QC Checklist following the NCDOT Quality Management Manual procedures before upload and/or distribution of E&SC plans. All related information is uploaded to the project SharePoint site.

Apply for other Applicable Permits Related to the E&SC Plans
Applications for other project-specific required permits/variances (e.g., NC Department of Environmental Quality Trout Buffer, NC Division of Water Resources Central Coastal Plain Capacity Use Area (CCPCUA) Permits, NC Department of Environmental High Quality Waters (HQW), etc.) are to be submitted for approval by the regulatory agency (see 3HY1 and 3EN1 for related information).

The E&SC Design Engineer conducts any meetings with regulatory agencies and other appropriate design staff as necessary to secure approval for other permits related to E&SC. The E&SC Design Engineer makes modifications to the E&SC plans as needed and advises other Units/disciplines, the project manager, and construction staff of any construction management requirements or restrictions developed during this process.
4RE1 Finalize Erosion and Sediment Control Contract Package

Overview
Address any necessary design revisions and compile and submit the Erosion and Sediment Control Plans, Specifications, and Estimates along with any other required permits, vegetation management, landscaping or aesthetic enhancement documentation.

References
- Roadside Environmental - Soil and Water Webpage
- NCDEQ Erosion and Sediment Control Planning and Design Manual
- BMP for Construction and Maintenance Activities
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved E&amp;SC Contract Package</td>
<td>Complete E&amp;SC Contract Package</td>
<td>E&amp;SC Design Engineer</td>
</tr>
<tr>
<td>Approved Applicable Permits/Variances</td>
<td>Receive Approval for other Applicable Permits Related to the E&amp;SC Plans</td>
<td>E&amp;SC Design Engineer</td>
</tr>
</tbody>
</table>

Complete E&SC Contract Package
For compiling a complete contract package, the E&SC Designer updates the plans, as needed, for any design changes that occurred after the end of the Plan-in-Hand Stage. The process includes:

- Completing any necessary E&SC design changes required due to plan revisions from other Units and modification of details, provisions, and quantities that are affected, as well as any modifications due to conditions required by permits related to E&SC plans.
- Submittal of revisions for approval by the Roadside Environmental Unit Reviewer and final plan acceptance notification.
- Completion of the respective QC Checklist following the NCDOT Quality Management Manual procedures before upload and/or distribution of E&SC plans.
- Completion of any outstanding E&SC related tasks.

The E&SC Design Engineer notifies the Roadway Design Lead and Project Manager (for information) when the accepted E&SC plans and the contract documentation have been placed on the project SharePoint site in the Let Preparation area and the quantities have been entered into the quantities management system.

Receive Approval for other Applicable Permits Related to the E&SC Plans
The E&SC Design Engineer receives final approval for the applicable E&SC related permits and distributes the document to necessary parties for information and incorporates the approval into the Complete E&SC Contract Package.
5RE1 E&SC Construction Support
The E&SC Design Engineer provides the following support during the Construction Phase:

- Provides technical expertise, attends meetings, address requests for information and answers questions related to the project’s E&SC plans.
- Modifies the E&SC plans based on drainage changes or deficiencies noted by the Roadside Environmental Unit Field Operations Engineer or NCDOT construction staff that cannot be corrected by E&SC plan field revisions.
- Completes formal Construction Revisions (as needed): Perform construction revisions of the latest version of the Let Plans (see 5CS1 for related information) to address identified field issues and produces additional documentation and quantity estimates.
5RE2 NPDES Stormwater Construction Compliance Support
To complete this task, the E&SC Design Engineer is to:

- Notify the Roadside Environmental Operations Management Engineer of all impacts to NPDES regulated permanent stormwater controls, both temporary and permanent, associated with the project for status updates in the NCDOT SCMS database.
- Coordinates with the NCDOT Hydraulics Stormwater NPDES Permit Program to identify new or revised permanent stormwater control measures and ensure latest designs are supplied to the Roadside Environmental Operations Management Engineer for upload into the NCDOT SCMS database.

References

- Roadside Environmental - Soil and Water Webpage
1RR1 Identify Railroad Impacts

Overview
Determine impacts when the Rail Division Unit is contacted concerning a potential project rail corridor impact or invite the Rail Division Unit to a scoping or planning meeting.

References
- American Railway Engineering and Maintenance-of-Way Association (AREMA) Manual for Railway Engineering
- Federal Highway Administration (FHWA) Manual on Uniform Traffic Control Devices (MUTCD)
- FHWA Highway-Rail Crossing Handbook
- CSX Public Projects Manual
- Norfolk Southern (NS) Public Projects Manual
- Roadway Design Manual
- Rail Grade Separation Guidelines
- Complete Streets Memo/Policy
- Guidelines for Median Separations at Highway-Railway At-Grade Crossings
- State Maintained Road/Railroad Crossing Closure Procedures
- Summary of State Highway-Railroad Grade Separation Policies
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoping Response Letter</td>
<td>Determine a Finding of No Rail Impacts</td>
<td>Railroad Coordination Engineer</td>
</tr>
<tr>
<td></td>
<td>Determine a Finding of One or More Rail Impacts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Submit Scoping Letter</td>
<td></td>
</tr>
</tbody>
</table>

Determine a Finding of No Rail Impacts
To determine a “Finding of No Rail Impacts,” the Railroad Coordination Engineer is to:

- Examine rail corridor mapping to determine proximity of the project to nearest rail corridor(s) and determine whether the proposed project is not proximate to a rail corridor.
- In the event there is a no rail impact finding, review the project to determine if there is an abandoned corridor maintained by NCDOT or if there are other rail impacts that are not obvious (e.g., newly built tracks that only the Rail Division are familiar with).

If examinations result in a negative (or no) finding, the Railroad Coordination Engineer sends a “Finding of No Rail Impacts” to the Feasibility Studies/Corridor Development Unit Lead.
Determine a Finding of One or More Rail Impacts

To determine a “Finding of One or More Rail Impacts,” the Railroad Coordination Engineer, with support from Rail Division Staff, is to:

- Examine rail corridor mapping to determine proximity of the project in relationship to nearest rail corridor(s).
- Describe impacts if the proposed project crosses, shares right-of-way, or operationally impacts one or more rail corridors.
  - Impacts may include widening a roadway into railroad right-of-way; a Y-line that has an at-grade crossing or other improvement that impacts railroad right-of-way; or a new location projects that are proposed to be grade-separated (preferably over the railroad).

If examinations result in a positive finding, the Railroad Coordination Engineer sends a “Finding of One or More Rail Impacts” to the Feasibility Studies/Corridor Development Unit Lead.

Submit Scoping Response Letter

The Railroad Coordination Engineer provides a scoping response letter to the Feasibility Studies/Corridor Development Unit Lead (see 1FS3 for related information) that is also distributed internally within the Rail Division Unit. Details of the letter identify the railroad impacts and the appropriate Rail Discipline Lead(s) for coordination throughout the remainder of the project. Rail Discipline Leads have specialties in the areas of encroachment, crossing signals, roadway coordination, bridges (roadway over rail led by Structures Management Unit), and railroad design, including railroad bridges over roadway led by Rail Division.

Attend Meetings

The appropriate Rail Discipline Lead(s) attends or, in some cases, initiates planning-level meeting with other Units/disciplines or stakeholders.

- The Rail Discipline Lead(s), as requested, reviews the preliminary plans/Express Design, planning documents, or meeting summaries, providing written feedback to the Feasibility Studies/Corridor Development Unit Lead and Project Lead on any rail impacts.
- The Rail Discipline Lead(s) may also be invited to attend follow-up meetings as the project progresses.

Initiate Rail Outreach

Apart from meeting and plan reviews, the appropriate Rail Discipline Lead(s) also reaches out to any Class I Railroads and other partnering agencies to provide general project scope information and solicit future participation, feedback, or other requests for information to support a project.

Complete QC/QA Procedures

The Railroad Coordination Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
2RR1 Initiate Railroad Review

Overview
Initiate railroad review and design (if necessary) when there are identified rail corridor impacts on a project.

References
- American Railway Engineering and Maintenance-of-Way Association (AREMA) Manual for Railway Engineering
- Federal Highway Administration (FHWA) Manual on Uniform Traffic Control Devices (MUTCD)
- FHWA Highway-Rail Crossing Handbook
- CSX Public Projects Manual
- Norfolk Southern (NS) Public Projects Manual
- Roadway Design Manual
- Rail Grade Separation Guidelines
- Complete Streets Memo/Policy
- Guidelines for Median Separations at Highway-Railway At-Grade Crossings
- State Maintained Road/Railroad Crossing Closure Procedures
- Summary of State Highway-Railroad Grade Separation Policies
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td>Railroad Design Line and Grade</td>
<td>Approve Railroad Design Line and Grade</td>
<td>X</td>
</tr>
<tr>
<td>Railroad PE Agreement</td>
<td>Establish Railroad PE Agreement</td>
<td>X</td>
</tr>
<tr>
<td>Roadway Plans for Rail Review</td>
<td>Submit Roadway Plans for Rail Review</td>
<td>X</td>
</tr>
<tr>
<td>Crossing Scope for Off-Site Detour</td>
<td>Define Crossing Scope for Off-Site Detour</td>
<td>X</td>
</tr>
</tbody>
</table>

Approve Railroad Design Line and Grade

The Roadway Design Lead (or assigned design lead) and appropriate Rail Discipline Lead coordinate on the roadway design and rail design to establish the project footprint. The Railroad Design Reviewer receives the current railroad design plans from the consultant/Private Engineering Firm (PEF) for review and initial comments. Once revised, the appropriate Rail Discipline Lead submits the revised design to the appropriate railroad. The appropriate Rail Discipline Lead works with the railroad to obtain comments and coordinates with the Roadway Design Lead (for action), the Railroad Coordination Engineering (for information), and the Project Manager (for information) on required plan revisions necessary for railroad approval.
Establish Railroad PE Agreement
The Rail Encroachment Lead develops, coordinates, and executes a preliminary engineering agreement for any railroad encroachments. The exceptions are:

- Structures over/under the railroad, which are handled by the Structures Management Unit.
- City projects, which are generally handled by the municipality if it is a city project.

Submit Roadway Plans for Rail Review
The appropriate Rail Discipline Lead reviews the Design Recommendation Plan Set, providing initial comments at the associated review meeting. The appropriate Rail Discipline Lead submits the revised Design Recommendation Plan Set to the appropriate railroad. The appropriate Rail Discipline Lead works with the railroad to obtain comments and coordinates with the Roadway Design Lead (for action), the Railroad Coordination Engineer (for information), and the Project Manager (for information) on required plan revisions necessary for railroad approval.

Define Crossing Scope for Off-Site Detour
For all projects that impact a railroad crossing or contemplate a detour that divert traffic to another railroad crossing, the Rail Signals Lead is to review the temporary traffic control (TTC) plans (see 2TM1 for related information). The Rail Signals Lead receives the TTC plans from the Work Zone Traffic Control (WZTC) Project Engineer, with a notification to the Project Manager, for review and provides initial comments back.

The Work Zone Traffic Control (WZTC) Project Engineer revises the plans based on Rail Division review, resubmitting the plans to the Rail Signals Lead for submission to the appropriate railroad.

The Rail Signals Lead works with railroad to obtain comments and coordinates with the Work Zone Traffic Control (WZTC) Project Engineer (for action), the Railroad Coordination Engineer (for information), and Project Manager (for information) on necessary plan revisions.

Complete QC/QA Procedures
The appropriate Rail Discipline Lead(s) coordinates the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and/or distribution of any related deliverables.
3RR1 Complete Railroad Design and Agreements

Overview
Complete the railroad design and execute all necessary railroad agreements.

References
- American Railway Engineering and Maintenance-of-Way Association (AREMA) Manual for Railway Engineering
- Federal Highway Administration (FHWA) Manual on Uniform Traffic Control Devices (MUTCD)
- FHWA Highway-Rail Crossing Handbook
- CSX Public Projects Manual
- Norfolk Southern (NS) Public Projects Manual
- Roadway Design Manual
- Rail Grade Separation Guidelines
- Complete Streets Memo/Policy
- Guidelines for Median Separations at Highway-Railway At-Grade Crossings
- State Maintained Road/Railroad Crossing Closure Procedures
- Summary of State Highway-Railroad Grade Separation Policies
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Signal Planimetric</td>
<td>• Prepare Railroad Signal Planimetric and Complete Railroad Crossing Signal Design</td>
<td>Railroad Discipline Lead(s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Railroad Coordination Engineer</td>
</tr>
<tr>
<td>Railroad Crossing Signal Design</td>
<td>• Provide Final Railroad Design Plans to the Railroad</td>
<td>X</td>
</tr>
<tr>
<td>Railroad Design Plans</td>
<td>• Complete Railroad Agreements</td>
<td>X</td>
</tr>
<tr>
<td>Relevant Railroad Agreements</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Prepare Railroad Signal Planimetric and Complete Railroad Crossing Signal Design
The Rail Signals Lead receives the Field Inspection Plan Set, which includes advanced drainage design from the Hydraulics Design Engineer, that is used to prepare a planimetric for railroad signal locations.

The Rail Signals Lead sends the railroad planimetric and Authorization for Preliminary Engineering (A4PE) to the railroad to complete their final design for the railroad crossing signal plans. The Railroad sends the signal design back to the Rail Signals Lead, who complete an Approved for Construction (A4C) upon completion of the final signal design and informs the Railroad Coordination Engineer and Project Manager for information.

Provide Final Railroad Design Plans to the Railroad
The Rail Design Lead receives the current railroad design plans from the assigned design lead for review, providing initial comments on the plans. Once revised, the plans are resubmitted to the Rail Design Lead.
to be submitted to the appropriate railroad. The appropriate Rail Division Lead works with the railroad to obtain comments and coordinates with the Roadway Design Lead (or assigned design lead) on required plan revisions to either the Rail Division plans and/or the roadway design plans (if necessary) for railroad approval.

**Complete Railroad Agreements**
The Rail Encroachments Lead completes and coordinates a railroad agreement for any railroad encroachments, except for structures over/under the railroad, which are handled by the Structures Management Unit.

**Complete QC/QA Procedures**
The appropriate Rail Discipline Lead(s) coordinates the applicable QC review following the NCDOT *Quality Management Manual* procedures and the respective QC Checklist before upload and/or distribution of any related deliverables.
4RR1 Complete Railroad Coordination

Overview
Complete all railroad coordination. The other mechanism for continuing this task is getting involved in stakeholder meetings and coordination meetings.

References
- American Railway Engineering and Maintenance-of-Way Association (AREMA) Manual for Railway Engineering
- Federal Highway Administration (FHWA) Manual on Uniform Traffic Control Devices (MUTCD)
- Federal Highway Administration (FHWA) Highway-Rail Crossing Handbook
- CSX Public Projects Manual
- Norfolk Southern (NS) Public Projects Manual
- Roadway Design Manual
- Rail Grade Separation Guidelines
- Complete Streets Memo/Policy
- Guidelines for Median Separations at Highway-Railway At-Grade Crossings
- State Maintained Road/Railroad Crossing Closure Procedures
- Summary of State Highway-Railroad Grade Separation Policies
- Division Let Guidance
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Agreements</td>
<td>• Receive/Execute Relevant Railroad Agreements</td>
<td>Activity Leader: Railroad Discipline Lead(s); Additional Support: Railroad Coordination Engineer</td>
</tr>
<tr>
<td>Project Special Provisions</td>
<td>• Provide Project Special Provisions to Contract Standards</td>
<td>X</td>
</tr>
</tbody>
</table>

Receive/Execute Relevant Railroad Agreements
The Rail Encroachment Lead coordinates the execution of the final railroad agreement for the railroad encroachment (if needed), except for structures over/under the railroad, which are handled by the Structure Management Unit. The Rail Encroachment Lead then distributes the agreement to the Railroad Coordination Engineer and Project Manager when finalized.

Provide Project Special Provisions to Contract Standards
The appropriate Rail Division Lead provides any project-specific Special Provisions to the Contract Standards and Development Unit (for action) and the Railroad Coordination Engineer and Project Manager for information.
Issue Railroad Certification
Once all railroad work has been completed or arrangements for proper coordination during construction are included in the bid proposal, the Surfaces & Encroachments Manager in the Rail Division completes a railroad certification. Additional information on this certification is detailed in the Division Let Guidance for Division-let projects. The certification is retained for the project files and as a key document in the rail library.

Complete QC/QA Procedures
The appropriate Rail Discipline Lead(s) coordinates the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and/or distribution of any related deliverables.
5RR1 Railroad Construction Support

The Rail Division provides the following support during the Construction Phase:

- Provides technical expertise and answers questions related to railroad coordination and identified design during the pre-construction meeting and throughout construction
- Completes Construction Revision (as needed):
  - Perform construction revisions of the latest version of the Let Plans (see 5CS1 for related information) to address identified field issues
  - Review associated working drawings and associated calculations
  - Internal Construction Inquiry (ICI) initiated by NCDOT RCU or railroad partner
  - Construction Change Request (CCR) initiated by NCDOT RCU if changes are warranted after an ICI is processed, resulting in the Construction Revision (Rail calls them CREV’s) or a sketch bulletin
1RW1 Prepare Conceptual ROW Cost Estimate

Overview
Prepare conceptual right-of-way (ROW) cost estimates early in the planning process for inclusion with the conceptual construction estimate.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- Right-of-Way SharePoint Site

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
</table>

Develop Conceptual Right-of-Way Cost Estimate
The ROW estimate is a critical component of the larger project estimate being generated and compiled Preliminary Estimates Section (for Central-let projects) or the appropriate Division staff (for Division-let projects $1 million and under).

For Division-let projects/DPOC projects, the Division may generate ROW estimates with the support of consulting firms and/or Division ROW staff. The request includes the Express Design showing general limits of ROW to be acquired, along with a letter requesting the cost estimate, and the due date for the estimate.

For Central-let projects, a Project Manager may elect to follow the request information in the Interim 5W Guide and sends a ROW cost estimate request to the Central ROW Office. The request includes the Express Design showing general limits of ROW to be acquired, along with a letter requesting the cost estimate, and the due date for the estimate.

Upon receiving the request, the Appraisal Estimate Coordinator assigns the conceptual ROW cost estimate request to an in-house staff member or contracts with a qualified fee appraiser to perform the estimate.

- If a contracted appraiser is used, the Appraisal Estimate Coordinator sends the plans and the request to the appraiser and requests a signed contract to allow the contracted appraiser to perform the work.

As part of the estimate, the Appraiser includes:
- A completed appraiser worksheet (using the NCDOT Cost Estimate Detail Sheet)
- Completed Request for R/W Cost Estimate Form with relocation counts and labeled pictures of the parcels identified for relocation.
- Any Relocation EIS studies submitted to Central ROW for final approval per federal requirements.

**Review Estimate**
The Appraiser sends the conceptual ROW cost estimate to Appraisal Estimate Coordinator, who reviews the estimate and adds additional costs and multipliers to the estimate to account for the possibility of relocation, administrative adjustments, and condemnation/court costs.

**Generate Cost Verification Letter**
After satisfactory review, the Appraisal Estimate Coordinator sends the estimate to the Project Manager, who generates and distributes a Cost Verification Letter per the process detailed in the *Division Engineer Approval for Cost Verification Memo* (see 1CS1 for related information).
2RW1 Initiate Advance Acquisition ROW Tasks

Overview
Begin advanced acquisitions of project right-of-way (ROW) based on hardships, protective purchases, or complex relocation or utility issues associated with certain parcels.

References
- Right-of-Way SharePoint Site

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division Engineer’s Office</td>
</tr>
<tr>
<td>Advanced Acquisition Property</td>
<td>Review/Approve Advanced Acquisition</td>
<td>X</td>
</tr>
<tr>
<td>Owner Contacts</td>
<td>Requests</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Set Up Funding</td>
<td>X</td>
</tr>
<tr>
<td>Advanced Acquisition ROW</td>
<td>Contact Property Owners</td>
<td>X</td>
</tr>
<tr>
<td>Authorization</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Request Advanced Acquisition ROW</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Authorization</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Request Additional PE Funding</td>
<td>X</td>
</tr>
</tbody>
</table>

Verify Existing ROW
The Locations and Surveys Unit, along with the Division ROW Office, verify the existing ROW and assist in determining the acquisition areas on an early/advanced acquisition parcel, so as not to acquire land that is already in existing ROW limits.

Review/Approve Advanced Acquisition Requests
The Division ROW Office, the Division Engineer, or the Division Construction Engineer sends an Advanced Acquisition and Advanced Acquisition Hardship Requests to the Advanced Acquisition Review Committee for review and approval. In accordance with the ROW Manual, the request includes:

- A letter from the property owner requesting the hardship acquisition (if available), along with any documentation provided by the property owner to support the hardship case.
- Plans (if available) for review.
- An explanation of the issues, if the request is based on a complex relocation or utility issue.

Set Up Funding
Once approved, the Advanced Acquisition Review Committee requests funding either through Preliminary Engineering funding (for costs up to and including requesting an appraisal) or Right-of-Way/Utility (ROW) funding for one or more parcels. ROW funding must be available in order to settle or condemn an advanced acquisition parcel.
Contact Property Owners
The Acquisition Agent assigned to the parcel(s) begins the ROW acquisition process and contacts the appropriate property owners.

- If the parcel(s) in question is assigned to a Private Engineering Firm/ROW consultant, then a contract is executed by the Division finance section, with the assistance of the Division ROW Office.
- However, if this is performed out of the Central ROW Office, then the assigned Private Engineering Firm/ROW consultant signs a contract through the Consultant Coordinator in order to proceed.
- Assignment of parcels to Acquisition Agents is based on the current workload of the agents available to perform the work.

Request Advanced Acquisition ROW Authorization
If Preliminary Engineering funding was used to make initial contact and request the appraisal, the Acquisition Agent is to:

- Request ROW funding in the amount of the settlement, relocation, and recording fees in order to close/condemn on the parcel.
- This is typically done at settlement of a hardship acquisition and at settlement or condemnation of other advanced acquisition parcels.

Request Additional PE Funding
The Acquisition Agent requests additional Preliminary Engineering funds or authorized ROW funds for early/advanced acquisitions from the fiscal unit.

Verify Field Inspection Plans/Revise as Needed
Reviewing the Field Inspection Plan Set provides the project team insight into obvious oversights, such as missing driveways, missing improvements, etc. The Acquisition Agent, Project Manager, or Division ROW Office level handles this type of review prior to the Field Inspection Review Meeting.
2RW2/3RW1 Prepare ROW Cost Estimate

Overview
Prepare right-of-way (ROW) cost estimate (PH 200) and verify the estimate for inclusion with the initial design estimate (2CS1) and the Plan-in-Hand design estimate (3CS1).

References
- Right-of-Way SharePoint Site
- Right-of-Way Forms and NCPMA Plan Requests
- List of Qualified Appraisers

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
</table>
| ROW Cost Estimate (PH 200) | - Develop Right-of-Way Cost Estimate  
                          - Review Estimate | Central ROW Office  
                          X  
                          X  
                          Division, Roadway, or Outside Consultant Firm |

Develop Right-of-Way Cost Estimate

The ROW estimate is a critical component of the larger project estimate being generated and compiled Preliminary Estimates Section (for Central-let projects) or the appropriate Division staff (for Division-let projects $1 million and under).

For Division-let projects/DPOC projects, the Division may generate ROW estimates with the support of consulting firms and/or Division ROW staff. The request includes the Design Recommendation Plan Set (for 2RW2) or the Field Inspection Plan Set (for 3RW1) showing the ROW to be acquired, along with a letter requesting the cost estimate, and the due date for the estimate.

For Central-let projects, a Project Manager may elect to follow the request information in the Interim 5W Guide and sends a ROW cost estimate request to the Central ROW Office. The request includes the Design Recommendation Plan Set (for 2RW2) or the Field Inspection Plan Set (for 3RW1) showing the ROW to be acquired, along with a letter requesting the cost estimate, and the due date for the estimate.

Upon receiving the request, the Appraisal Estimate Coordinator assigns the conceptual ROW cost estimate request to an in-house staff member or contracts with a qualified fee appraiser to perform the estimate. If a contracted appraiser is used, the Appraisal Estimate Coordinator sends the plans and the request to the appraiser and requests a signed contract to allow the contracted appraiser to perform the work.

As part of the estimate, the Appraiser includes:
- A completed appraiser worksheet (using the NCDOT Cost Estimate Detail Sheet)
- Completed Request for R/W Cost Estimate Form with relocation counts and labeled pictures of the parcels identified for relocation.
- Any Relocation EIS studies submitted to Central ROW for final approval per federal requirements.
Review Estimate
The Appraiser sends the completed the ROW cost estimate to Appraisal Estimate Coordinator, who reviews the estimate and adds additional costs and multipliers to the estimate to account for the possibility of relocation, administrative adjustments, and condemnation/court costs.

Generate Cost Verification Letter
After satisfactory review, the Appraisal Estimate Coordinator sends the estimate to the Project Manager, who generates and distributes a Cost Verification Letter per the process detailed in the Division Engineer Approval for Cost Verification Memo. This is to be included with the initial design estimate (see 2CS1 for related information) or the Plan-in-Hand estimate (see 3CS1 for related information).
3RW2 Complete ROW Authorization Package

Overview
Although not solely performed by the ROW Unit, authorize right-of-way (ROW) as informed by letter from the Project Manager and after the NCDOT Board of Transportation approves the authorization.

References
- Right-of-Way SharePoint Site

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional Support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division or Resident Engineer’s Office</td>
</tr>
<tr>
<td>ROW Authorization Letter</td>
<td>Verify ROW Plans/Revise as Needed</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Receive Board Authorization</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Request ROW Delineation</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Submit ROW Authorization Letter</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ROW Cost Estimate</td>
<td>Develop ROW Cost Estimate</td>
<td>X</td>
</tr>
</tbody>
</table>

Verify ROW Plans/Revise as Needed
Upon final review of the Right-of-Way Plan Set (see 3RD1 for related information):
- Any request for revisions is sent through the Locations and Surveys Unit and the Division office for approval.
- The Project Manager submits the verified plans to the NCDOT Board of Transportation for approval.

Receive Board Authorization
The NCDOT Board of Transportation approves a project to move forward to ROW acquisition, and the Project Manager issues a formal letter authorizing ROW acquisition to the Locations and Surveys Unit and Central ROW Office.

Request ROW Delineation
As requested by the Project Manager, the Locations and Surveys Unit typically assists with determining the location of the ROW (see 4LS1 for related information). The Acquisition Agent can measure from back of ditch to back of ditch on the other side of the road for an estimate of State-maintained ROW.

Submit ROW Authorization Letter
After the project has been approved by the NCDOT Board of Transportation and the project funding for ROW is set up, the Project Manager issues a formal letter to the Locations and Surveys Unit and Central ROW Office authorizing ROW acquisition. The Central ROW office sends the ROW Authorization Letter to the appropriate Division ROW Office.

3RW2 Complete ROW Authorization Package
June 2021
Identify Early Acquisitions for Utilities and Displacements
Similar to 2RW1, the Division ROW Office or Central ROW Office reviews the Right-of-Way Plan Set for complex relocations due to utility relocations or complex displacements (such as a large business with lots of equipment and people to move) ahead of the ROW authorization to identify possible advanced acquisition.

- Preliminary Engineering funds may be requested, if not already available, and used for everything up through requesting an appraisal.
- The ROW project is to be authorized in order to use ROW funds when settling the claim or moving displaces or utilities.

Initiate Additional Advanced Acquisition Property Owner Contacts
The Acquisition Agent begins the advanced acquisition process of complex relocation or utility parcels and contacts the appropriate property owners. 2RW1 and 4RW1 provide additional information on this process.

Request Additional Advanced Acquisition ROW Authorization
If necessary, the Division ROW Office or the Central ROW Office requests funding to advanced acquisitions on complex relocation or utility parcels, or in an effort to acquire a property as a protective purchase in order to keep it from being developed prior to full ROW authorization on a project.
4RW1 Complete ROW Acquisitions and Relocations

Overview

Acquire right-of-way (ROW), complete the condemnation process for parcels not settled, and assist occupants through the relocation process.

References

- Right-of-Way SharePoint Site

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Central ROW Office</td>
</tr>
<tr>
<td>Negotiations</td>
<td>Commence Parcel Negotiations</td>
<td><strong>X</strong></td>
</tr>
<tr>
<td>Condemnation</td>
<td>Initiate Condemnation Activities</td>
<td><strong>X</strong></td>
</tr>
<tr>
<td>Relocations</td>
<td>Relocate Occupants</td>
<td></td>
</tr>
</tbody>
</table>

Commence Parcel Negotiation

In accordance with the ROW Manual, the following describes the parcel negotiation process led by either Central or Division ROW Office.

The first step is to create project parcel files in Division ROW Office or by the Private Engineer Firm/ROW consultant firm handling the acquisitions, ensuring all parcels are entered into SAP through the ROW Central Office.

To begin negotiations, an Acquisition Agent calls, mails a letter, or knocks on doors to initiate contacts with property owners. The formal initial contact where the project is located and its effects on the property are required to be made in person if the owner lives in the State.

To order appraisals and title requests, the Acquisition Agent sends an appraisal request to the Area Appraisal office where it is assigned to an Area Appraiser.

- The Area Appraiser handles the contract with a fee appraiser to perform the work or delegate the work to an in-house appraiser.
- The Acquisition Agent orders the title opinion through a local attorney’s office.
- The attorney researches the title and returns the title opinion back to the acquisition agent.
- The Acquisition Agent reviews the title opinion in order to ensure they are dealing with the proper owners of the property.

When submitting/reviewing/approving appraisals, the appraiser assigned to appraise a parcel follows the appraisal guidelines, and the completed appraisal is transmitted back to the Area Appraisal Office for review by either an in-house review appraiser or a fee review appraiser. The appraisal is approved by the Area Appraisal Office or the NCDOT State Appraiser.
An Acquisition Agent handles the step of meeting with property owners and making offers.

- If it is a small claim, the Acquisition Agent may be able to make an offer to the property owner upon initial contact with a claim report without an appraisal.
- Otherwise the Acquisition Agent receives the approved appraisal back from the Area Appraisal Office and can meet with the property owner again to make the acquisition offer.

The Acquisition Agent has to negotiate at least 30 days prior to requesting condemnation, unless an amicable settlement is reached, or the property owner asks the agent to go ahead and file the condemnation prior to the 30-day period ending. An agent can negotiate for longer than the required 30 days as the project time limits allow. If at all possible, a right of entry is obtained in order to allow work to begin on a parcel prior to the settlement funds or condemnation funds being disbursed to the property owner.

For settling ROW claims, the Acquisition Agent draws up the Deed and/or Easement agreements, presenting them to the property owner, or their representation, for the property owner’s signature. Once the Acquisition Agent has received the signed documents, they can put together a final report to send to their Project Manager or Division ROW Agent for approval. The Division ROW Agent sends the approved final report to the ROW Central Office Document Auditing section to begin the process of requesting a check.

Upon requesting a check (payment), the ROW Document Auditing section reviews the final report package for any errors, and works with the Division ROW office to resolve any errors. After the review is complete, the proper managerial signatures are obtained, prior to uploading the file into SAP, and requesting the check from the Fiscal Unit.

Once Fiscal has approved the check in SAP, and have cut the check, the check can be delivered either by the Acquisition Agent directly to the property owner, or by a closing attorney, depending on the amount of the check.

In closing a ROW Claim, the ROW deeds and easements are recorded in the Register of Deeds office in that particular County, either by the Acquisition Agent, or the closing attorney.

To complete relocation, a relocation agent follows 49 CFR 24 to ensure all residential and non-residential displacees are given every opportunity to claim all eligible relocation benefits under Federal and State law. Per State law, 49 CFR 24 is followed on all projects, whether they are Federally funded or not.

Recording of ROW typically happens at the closing of the ROW claim. The Acquisition Agent or the closing attorney can record the deed and easements.

To secure a ROW certification, the Division ROW Agent informs the Project Manager of the need to acquire additional ROW, if the design and construction improvements are not within existing ROW.

- If all construction activities are within the existing ROW, then the Division ROW Agent prepares the ROW Certification, signs for approval, and submits the ROW Certification to the ROW Central Office, Division Program Manager, Project Manager, and the Resident Engineer’s Office.
If a project requires additional ROW, the ROW Acquisition Agent collaborates with the Project Manager and Division ROW Agent to complete the ROW Certification Request (with or without delays of entry).

- In this process, the Division ROW Agent verifies that all parcels have been acquired or that a Right of Entry has been obtained. Parcels that have NOT been acquired are classified as a delay of entry parcel.
- The Division ROW Agent also verifies that all displacees have been relocated or are scheduled to be relocate before the construction begins. If occupants have NOT been relocated, this is a delay of entry parcel.

The next step is the approval of the ROW Certification, certifying that the project has all parcels cleared for construction activities.

- If all parcels are not cleared for the project to commence construction activities:
  - The lead Acquisition Agent provides a “Committed” timeline identifying the date each parcel is to be cleared and provides the Project Manager the delay of entry date for inclusion in the project specifications.
  - The Project Manager and Resident Engineer reviews and agrees to the delays of entry and forwards the ROW Certification request to the Division ROW Agent.
  - The Division ROW Agent signs the ROW Certification pending the delays of entry.
  - The Division ROW Agent sends the Certification to the Central ROW Office for approval. The Certification is then sent to Roadway and Construction.

For projects with ROW delays of entry:

- This task is used to track the status and progress of parcels needed for construction that have delays of entry on them after a project is advertised.
- The ROW Lead Agent continues the acquisition process to obtain either a signed ROW deed or easement, or an agreement for entry. All deadlines provided in the ROW Certification must be adhered to in order to prevent any and all ROW delay claims.

Once every parcel that was advertised with delays of entry has been cleared for construction, the Division ROW Agent prepares and submits a revised ROW Certification clearing the project of all delays of entry.

Lastly, the Central ROW Office staff sends the Final ROW Series Plan Set from the Location and Surveys Unit for recording (see 4LS1 for related information).

### Initiate Condemnation Activities

If standard parcel negotiations are unsuccessful, the following condemnation activities are initiated per Chapter 13 of the NCDOT ROW Manual.

- Obtain signed Frm10-F from Area Agent.
- Review title report, legal description, and ROW maps.
- Submit Final Report for Condemnation.
- Request check from the Fiscal Unit.
- Submit file and check to Attorney General (AG) Office.
- Complete meditation and/or trial, if necessary.
- Obtain consent judgment/property deed.

Relocate Occupants
Occupants are relocated per Chapter 15 of the *ROW Manual* and 49 CFR 24.
5RW1 Right-of-Way Construction Support

Assigned ROW staff provides the following support during the Construction Phase:

- Provides technical expertise and answers questions related to ROW acquisitions and ROW conditions during the pre-construction meeting and throughout construction.
- Completes Right-of-Way Revision (as needed) (see 5CS1 for related information):
  - When a construction revision triggers a change to the right-of-way or an easement, the Project Manager notifies the Division ROW Office that the current version of the Final ROW Series Plan Set needs to be updated.
  - Any adjustments are included on both the Final ROW Series Plan Set and the Roadway Design Plan sheets.
  - The Project Manager and Division ROW Office establish the deadline to acquire the new property based on when construction work is to occur in the impacted area.
2SD1 Initiate Signing and Delineation Design

Overview
Using the roadway model as a guide, develop a signing and delineation design for the project. Locate overhead and ground mounted type A and B-signs and establish pavement delineation in accordance with Manual of Uniform Traffic Control Devices (MUTCD), NCDOT Roadway Standard Drawings, and NCDOT Signing and Delineation Manual.

References
- Federal Highway Administration (FHWA) Manual on Uniform Traffic Control Devices (MUTCD)
- FHWA Standard Highway Signs and Markings
- Signing and Delineation Unit Website
- Signing and Delineation Procedure Manual
- Standard Specifications for Roads and Structures
- Traffic Engineering Practices, Policies, and Legal Authority (TEPPL)
- Roadway Standard Drawings
- Roadway Design Manual
- Construction Manual
- NC Supplement to the Manual on Uniform Traffic Control Devices
- Logo Manual
- American Association of State Highway Transportation Officials (AASHTO) Roadside Design Guide
- AASHTO A Policy on Geometric Design of Highways and Streets
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Signing and Delineation Strip Map</td>
<td>Complete Preliminary Signing and Delineation Layout</td>
<td>Signing and Delineation Designer X Regional Signing and Delineation Engineer X</td>
</tr>
<tr>
<td>Document Conflicts</td>
<td>Identify Conflicts with Utilities, Right-of-Way, Wall, and ITS Device Conflicts</td>
<td>Signing and Delineation Designer X Regional Signing and Delineation Engineer X</td>
</tr>
<tr>
<td>Plan Submittals</td>
<td>Distribute Plans</td>
<td>Signing and Delineation Designer X Regional Signing and Delineation Engineer X</td>
</tr>
</tbody>
</table>

Complete Preliminary Signing and Delineation Layout
The Signing and Delineation Designer is to develop the plans using NCDOT Roadway Standard Drawings, the MUTCD, TEPPL, and NCDOT Signing and Delineation Procedure Manual. Review the Traffic Operations Analysis Technical Memorandum and proposed lane configuration with the Roadway Design Lead to ensure lane continuity is met and the proposed design can be signed in accordance with the MUTCD on complex projects (see 2TM1 and 2RD1 for related information). QC review is required before distribution.
for all labels, callouts, notes, and information. In reference to Chapter 4 of the NCDOT Signing and Delineation Procedure Manual, the Signing and Delineation Designer is to complete the following:

- Develop Signing and Delineation Strip Map.
- Identify Overhead Sign locations (stations).
- Identify if a Work Zone Signing Staging plan is needed.
- Determine Cantilever or Full Span.
- Determine Barrier needs/foundation protection and guardrail.
- Determine sign messaging.
- Identify sign locations.
- Determine simple (guardrail) or break away support.

The Signing and Delineation Designer is to coordinate with the Signing and Delineation Unit, Division Office for approval of routing and sign messaging in accordance with MUTCD, TEPPL, FHWA, and AASHTO.

- Review for safety, operational, or other elements that may cause require roadway modifications (i.e. lane drops and option lanes.)
- Review for compliance with MUTCD, TEPPL and Roadway Standard Drawings.
- Review lane configuration and complex interchanges, exit only, lane drops, and option lanes.
- Replace, modify, or upgrade existing signs where necessary in accordance with MUTCD and TEPPL.
- Send plans and communicate with appropriate Division Traffic Engineer and Regional Traffic Engineer to acquire and review for combined comments with Signing and Delineation Unit staff (see 2TS1 for related information).

In reference to Chapter 5 of the NCDOT Signing and Delineation Procedure Manual, the Signing and Delineation Designer is to complete the following for delineation design:

- Acquire a pavement marking recommendation letter from Signing and Delineation Standards Section.
  - This letter can be found under the SharePoint site Preconstruction Projects file structure or by contacting the Signing and Delineation Standards Engineer.
- Base the striping plan on the roadway model.
- Ensure lane continuity (also see Chapter 2 of the NCDOT Signing and Delineation Manual).
- Note lane configurations, such as lane drops, lane reductions, and option lanes (additional signs may be required). Coordinate with the Roadway Design Lead, Congestion Management Project Engineer, and Division Traffic Engineer as required.
- Design lane widths and intersection layouts.
- Coordinate with the Signal Lead on stop bar and crosswalk locations.
- Locate and determine curb ramps types.

The Signing and Delineation Designer is to send plans and fully communicate with appropriate Division Traffic Engineer and Regional Traffic Engineer to acquire and review for combined comments with Signing and Delineation Unit staff.

For all submittals, the Signing and Delineation Designer is to upload the submittal onto the project SharePoint site.
Identify Conflicts with Utilities, Right-of-Way, Wall, and ITS Device Conflicts

The Signing and Delineation Designer is to consider placement of signing, considering that regulatory, warning and guide signs have a higher priority. Of note, the:

- Remaining signs shall only be installed where adequate spacing is available between other higher priority signs.
- Other signs shall not be installed in a position where they obscure the road users’ view of other traffic control devices.

Additionally, the Signing and Delineation Designer is to:

- Ensure there are no utility (e.g., gas, fiber), wall (e.g., retaining, noise), ITS device, or drainage (e.g., drop inlets) conflicts.
- Ensure the sign is visible and not obstructed by other roadway features (e.g., bridge, vertical/horizontal curvature).
- Determine if additional right-of-way is required.
- Document if signs are required to be adjusted due to conflicts.

Determine Signing Construction Limits

Signing construction limits can extend past construction limits. When completing this task, the Signing and Delineation Designer is to:

- Account for construction phasing for opening of portions of roadway.
- Ensure necessary routing is established throughout the project.
- Ensure all signs, including advanced and route continuity, are considered when reviewing overall signing plan.
- Coordinate with the Traffic Management Unit (Work Zone Traffic Control) if signs are located outside of the construction limits.

Submit Lane Continuity and Merging Recommendations

The Signing and Delineation Designer is to ensure lane continuity in reference to Section 2.7 of the NCDOT Signing and Delineation Procedure Manual. This includes review of the geometric layout to ensure that elements such as signing requirements, intersection operation, merging, exit only, lane/route continuity, end of freeway plans and temporary connection plans are sufficient for the safety of roadway users.

Distribute Plan Submittals

The Signing and Delineation Designer coordinates the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of any deliverables. Once the plans are QC’d, the Signing and Delineation Designer submits the plans to appropriate Division office and Regional Traffic Engineer staff for review and comment.
3SD1 Complete Signing and Delineation Design

Overview

Complete the signing and delineation plans in reference to NCDOT *Roadway Standard Drawings*, the MUTCD, TEPPL, and NCDOT *Signing and Delineation Procedure Manual*.

References

- Federal Highway Administration (FHWA) *Manual on Uniform Traffic Control Devices (MUTCD)*
- FHWA *Standard Highway Signs and Markings*
- *Signing and Delineation Unit Website*
- *Sign and Delineation Procedure Manual*
- *Standard Specifications for Roads and Structures*
- *Traffic Engineering Practices, Policies, and Legal Authority (TEPPL)*
- *Roadway Standard Drawings*
- *Roadway Design Manual*
- *Construction Manual*
- *NC Supplement to the Manual on Uniform Traffic Control Devices*
- *Logo Manual*
- American Association of State Highway Transportation Officials (AASHTO) *Roadside Design Guide*
- AASHTO *A Policy on Geometric Design of Highways and Streets*
- *NCDOT Quality Management Manual*

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved Strip Map</td>
<td>Complete Unsealed Signing and Delineation Plans</td>
<td>X</td>
</tr>
<tr>
<td>Overhead Sign Locations</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Three Way Check-QC/QA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Plans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sign Designs and Support Chart</td>
<td>Final Signing and Delineation Plans</td>
<td></td>
</tr>
<tr>
<td>Project Special Provisions</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Quantities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guardrail/Barrier Locations</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
- Providing approved strip map of the signing concept including labeled and stationed pavement markings and delineation
- Addressing all right-of-way, utility, drainage, retaining/noise wall conflicts, or provide a plan of action for addressing these conflicts.
- Providing one half-size hard copy and PDF in accordance with MUTCD, the NCDOT *Signing and Delineation Procedure Manual*, and NCDOT *Roadway Standard Drawings* (Sections 9 and 12) of the:
  - Proposed signing plan (including notes, sign and support designs, and stations)
  - List of guardrail/barrier locations
  - Compile and provide a list of all overhead sign locations to the Signing Project Engineer with coordinates
  - Proposed pavement marking plan, including notes, pavement marking stations, labels and proposed curb ramp locations and types
- Addressing comments by the Signing and Delineation Unit and the applicable Division from the previous design phase review.

The Signing and Delineation Designer is to upload the submittal onto the project SharePoint site.

**Final Signing and Delineation Plans**

To finalize the Signing and Delineation plans, the Signing and Delineation Designer is to:

- Perform a three-way check and appropriate QC/QA in accordance with Chapter 4 of the NCDOT *Signing and Delineation Procedure Manual*, the NCDOT *Quality Management Manual* procedures, and the respective QC Checklist. Ensure that the Signing and Delineation Unit and the applicable Division comments are addressed.
- Complete and submit final plans via an unsealed electronic submittal of final plans and sign designs in both DGN and PDF format.
- Complete and submit sign designs and support chart via an electronic copy of the sign designs with one design per PDF page (if required).
- Complete and submit quantities that include:
  - Electronic submittal of final quantity estimates for signing and pavement marking items.
  - Uploadable file for pay items in the appropriate format.
- Include approved sign and support designs (if revisions were made)
- Complete Special Provisions that are project specific and not included within the current NCDOT Standard Specifications.
- Complete and submit guardrail/barrier locations, if needed, prior to final plans.

Once reviewed and approved by the Signing and Delineation Unit, the Signing and Delineation Designer is to electronically submit sealed PDFs, using DocuSign (or other esignatures tool acceptable). The Signing and Delineation Designer is to upload the submittal onto the project SharePoint site. As appropriate, NCDOT staff also complete and submit a Private Engineering Firm evaluation at this time.
5SD1 Signing and Delineation Construction Support
The Signing and Delineation Designer provides the following support during the Construction Phase:

- Provides technical expertise and answers questions on the project’s signing and delineation plans and approach
- Coordinates requisition of all project signs in accordance with the Construction Manual
- Reviews contractor shop drawings, in coordination with the Structures Lead, for type A and B-signs
- Verifies all vertical elevations from the plans
- Completes Construction Revision (as needed):
  - Performs construction revisions of the latest version of the Let Plans (see 5CS1 for related information) to address identified field issues
  - Revises the plans as needed following the field verification of all vertical elevations
2SG1 Initiate Signal and ITS Design

Overview
Begin the activity as soon as the Signal Recommendations are received from the Regional Traffic Engineer. Ensure early coordination of Signal and ITS structures and equipment locations with Utilities to mitigate issues related to power and overhead/underground conflicts prior to signal/ITS construction. The specific efforts of this activity are separated into the sub-activities of:

- Complete Preliminary Signal Pole/Cabinet Locations
- Complete UMR Plans and ITS Device Diagrams

Task details and deliverables for these sub-activities are found in the corresponding sections below.

References

- Federal Highway Administration (FHWA) Manual on Uniform Traffic Control Devices (MUTCD)
- ITS and Signals Unit Design Manual Part 1 - Signal Design
- ITS and Signals Unit Design Manual Part 3 - ITS
- ITS & Signal Plan Guidelines
- Roadway Standard Drawings
- Standard Specifications for Roads and Structures
- NCDOT Quality Management Manual

Signal Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Pole/Cabinet Location Diagrams</td>
<td>Complete Preliminary Signal Pole/Cabinet Locations</td>
<td></td>
</tr>
</tbody>
</table>

Complete Preliminary Signal Pole/Cabinet Locations
To establish the preliminary signal pole/cabinet locations, the Signal/ITS Lead is to develop signal pole/cabinet location diagrams following the references noted herein. This includes:

- Where possible, locating poles outside the clear zone.
  - Where clear zone requirements cannot be met due to utility considerations or limited right-of-way, locate poles as far as is practical from the edge of pavement.
- Where mastarms are desired, designing for a maximum of 75-foot arm length.
  - If the arm length exceeds 75 feet, consult with the ITS and Signals Unit (Signal Design Section).
- Avoiding conflicts by coordinating with utility owners and other Units/disciplines, including utilities, roadway design, and hydraulics.
- Providing signal cabinet locations to ensure the availability of power at proposed locations.

For acceptance and transmittal, the Signal/ITS Lead is to:
Submit coordinated pole/cabinet locations to the ITS and Signals Unit (Signal Design Section) and Utilities Coordinator for review.
Transmit final accepted pole/cabinet locations to the ITS and Management Section, Utilities Coordinator, and the Project Manager.

Complete QC/QA Procedures

The Signals Lead is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution.

ITS Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Make Ready (UMR) Sheets and ITS Device Diagrams</td>
<td>Complete UMR Sheets and ITS Device Diagrams</td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITS Lead</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Complete UMR Plans and ITS Device Diagrams

To establish the UMR Plans and ITS device locations and diagrams, the ITS Lead is to finalize the boundaries of the project and develop a base map for the UMR plans. Develop (if applicable) ITS Device Location Diagrams following the references noted herein. This includes:

- Identifying, recording and mapping all roadways and driveways, cabinet and signal inventory numbers and all poles in which cable is to be attached aerially (UMR plan sheets).
- Developing a tree map, identifying proposed and all existing utility cable heights (UMR plan sheets).
- Avoiding conflicts by coordinating with utility owners and other Units/disciplines, including utilities, roadway design, and hydraulics.
- Providing device cabinet locations to ensure the availability of power at proposed locations. (ITS Device)
- Collaborate with the applicable utility company to identify closest power source. (ITS Device)

For acceptance and transmittal, the ITS Lead is to:

- Provide written responses to each related comment from the previous submittal of UMR plan sheets.
- Submit draft final UMR plans to utility companies for review and comment.
- Submit final UMR plans and request estimates from utility companies for utility work.
- Submit coordinated device locations to the ITS and Signals Management Section for review. (ITS Device)
- Transmit final accepted pole/cabinet locations to the ITS and Signals Management Section. (ITS Device)

Complete QC/QA Procedures

The ITS Lead is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution.
3SG1 Complete Signal and ITS Design

Overview
Following the Signal Recommendations, NCDOT ITS & Signal Plan Guidelines, and other references, complete signal, signal communications, and ITS designs. The specific design efforts of this activity are separated into the sub-activities of:

- Complete Signal Plans
- Complete ITS Plans

Task details and deliverables for these sub-activities are found in the corresponding sections below.

References

- Federal Highway Administration (FHWA) Manual on Uniform Traffic Control Devices (MUTCD)
- ITS and Signals Unit Design Manual Part 1 - Signal Design
- ITS and Signals Unit Design Manual Part 2 - Signals Management
- ITS and Signals Unit Design Manual Part 3 - ITS
- ITS & Signal Plan Guidelines
- National Electrical Safety Code
- National Electric Code
- Roadway Standard Drawings
- Standard Specifications for Roads and Structures
- ITSS Project Special Provisions – PSP – Current Version
- NCDOT Quality Management Manual

Signal Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Activity Leader</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Plan and Electrical Detail Sheets</td>
<td>Complete Signal Plan and Electrical Detail Sheets</td>
<td>Signal Lead</td>
<td>X</td>
</tr>
<tr>
<td>Quantity and Cost Estimates</td>
<td>Complete Quantity and Cost Estimates</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Project Special Provisions</td>
<td>Develop Project Special Provisions</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Project Documentation</td>
<td>Complete Project Documentation</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Complete Signal Plan and Electrical Detail Sheets
To complete this task, the Signal Lead is to submit the signal designs to the Project Manager and ITS and Signals Management Section. This includes:

- Using Signal Recommendations (provided by the Regional Traffic Engineer), NCDOT ITS and Signals Unit Design Manual, and NCDOT ITS & Signal Plan Guidelines, develop and submit the initial signal design package after completing QC.
- Electrical details are not required at this submittal.
To finalize the signal design and in submitting the electrical details, the Signal Lead is to:

- Provide a written response to each signal-related comment from the previous submittal.
- Revise the design in accordance with the responses.
- Ensure revisions conform to the Signal Recommendations (provided by the Regional Traffic Engineer), NCDOT ITS and Signals Unit Design Manual, and NCDOT ITS & Signal Plan Guidelines.
- Coordinate the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution.

Once all previous comments are addressed and the plans QC’ed, the Signal Lead is to submit plan sheets to the ITS and Signals Unit (Signal Design Section), uploading plans on the project SharePoint site.

Complete Quantity and Cost Estimates
To complete the quantity and cost estimate, the Signal Lead is to:

- Perform quantity takeoffs following the NCDOT ITS and Signals Unit Design Manual, NCDOT Standard Specifications for Roads and Structures, and the most recent ITS and Signals Unit pay item list.
- Use standard pay items when possible and coordinate with the appropriate Lead in the ITS and Signals Management Section when generic pay items are necessary.
- Develop cost estimates using recent bid data available on the NCDOT’s website and ITS and Signals Management Section resources.
- Submit the cost estimates to the appropriate Lead in the ITS and Signals Management Section.

Develop Project Special Provisions
The Signal or ITS Lead is to use the ITSS Project Special Provisions-PSP-Current Version and quantity list when preparing the project-related special provisions, submitting the special provisions to the ITS and Signals Management Section for review.

Once completed and accepted, the Signal or ITS Lead is to upload completed documents on the project SharePoint site.

Complete Project Documentation
The Signal Lead is to do the following concurrently with developing the signal plans and submittals:

- Submit Autoturn simulations for left-turning vehicles for all signal designs on the project.
- Provide signed clearance time calculations and clearance distances for all signal designs on the project.
- Provide metal pole elevations and calculations for metal pole heights.
  - Design for 17 feet of roadway clearance except when otherwise specified.
  - Provide standard strain pole selections and justifications.
- Provide documentation of latest counts per intersection and justification of phase selection.
- Provide copies of signal related email correspondence with the NCDOT or Municipal personnel, notes from any signal-related phone conversations, and any field notes.
- Provide a database or configuration file for each location.
• Ensure the file includes all the necessary programming entries to achieve the desired operation of the signal design for the location.
• Ensure the file is compatible with the local controller software that is being used and is able to be downloaded directly to the controller unit without conversion.
• Place all simulations, calculations, and other documentation in the project’s “Intelligent Traffic Systems and Signals” folder on the project SharePoint site.

**ITS Deliverables**

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Communications and Fiber Splice Sheets</td>
<td>Complete Signal Communications and Fiber Splice Sheets</td>
<td>IT Lead X Signal Lead</td>
</tr>
<tr>
<td>Electrical Service and Feeder Conductors</td>
<td>Complete Electrical Service to Devices</td>
<td>IT Lead X</td>
</tr>
<tr>
<td>Quantity and Cost Estimates</td>
<td>Complete Quantity and Cost Estimates</td>
<td>IT Lead X</td>
</tr>
<tr>
<td>Project Special Provisions</td>
<td>Develop Project Special Provisions</td>
<td>IT Lead X</td>
</tr>
</tbody>
</table>

**Complete Signal Communications and Fiber Splice Sheets**

When developing the plan package, the ITS Lead is to submit preliminary signal communications and fiber splice plans to the ITS and Signals Management Section for review. The ITS Lead is to reference the Signal Recommendations, NCDOT ITS and Signals Unit Design Manual, and NCDOT ITS & Signal Plan Guidelines when preparing these plans.

To finalize the plan package, the ITS Lead is to:

- Provide written responses to each signal communications-related and fiber splice comment from the previous submittal.
- Revise the design in accordance with the responses.
- Ensure revisions conform to the Signal Recommendations (provided by the Regional Traffic Engineer), NCDOT ITS and Signals Unit Design Manual, and NCDOT ITS & Signal Plan Guidelines.
- Coordinate the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution.

Once all previous comments are addressed and plans QC’ed, the ITS Lead uploads the plan sheets to the project SharePoint/ProjectWise site and notifies the ITS and Signals Management Section for review.

**Complete Electrical Service to Devices**

For Electrical Service and Feeder Conductors, the ITS Lead is to note power requirements for all devices. The ITS Lead is to reference the Roadway Standard Drawings, Standard Specifications for Roads and Structures, and the National Electrical Code.

To finalize electrical service to devices, the ITS Lead is to:

- Revise the design in accordance with the responses from the ITS and Signals Management Section.
Coordinate the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution.

**Complete Quantity and Cost Estimates**
3SG1 under the signal’s section details how to complete Quantity and Cost Estimates.

**Develop Project Special Provisions**
3SG1 under the signal’s section details how to develop the Project Special Provisions, in addition to using the *[ITSS Project Special Provisions-PSP-Current Version]*.
5SG1 Signal and ITS Construction Support

The Signal Lead and/or ITS Lead provides the following support during the Construction Phase:

- Provides technical expertise and answers questions related to signals and ITS design during the pre-construction meeting and throughout construction
- Completes Construction Revision (as needed): Perform applicable steps for a construction revision based on the latest version of the Let Plans (see 5CS1 for related information) to address identified field issues
- Reviews working/shop drawings
- Reviews associated materials submittals. This process includes:
  - The submittal package is sent by the contractor to the Signal or ITS Lead and other appropriate persons.
  - The submittal package is reviewed by the appropriate Group in the ITS and Signals Management Section.
  - The appropriate Group approves or rejects each item in the submittal package.
  - The completed submittal package is sent to the contractor and other appropriate persons.
- Completes ITS Testing: Conducts and completes successfully the following tests before acceptance of the signal system project:
  - Conducts site tests as described in the project’s Special Provisions
  - Conducts system testing as described in the project’s Special Provisions
  - Signs testing documents for approval (City and/or ITS Lead)
  - Starts the 60-day Observation Period upon the successful completion of all tests and punch-list items as described in the project’s Special Provisions (if applicable).

References

- Federal Highway Administration (FHWA) Manual on Uniform Traffic Control Devices (MUTCD)
- ITS and Signals Unit Design Manual Part 1 - Signal Design
- ITS and Signals Unit Design Manual Part 2 - Signals Management
- ITS and Signals Unit Design Manual Part 3 - ITS
- ITS & Signal Plan Guidelines
- National Electrical Safety Code
- National Electric Code
- Roadway Standard Drawings
- Standard Specifications for Roads and Structures
- ITSS Project Special Provisions – PSP – Current Version
- ITS and Signals Qualified Products List
- NCDOT Quality Management Manual
1SI1 Develop STIP

Overview
Prepare the State Transportation Improvement Program (STIP) to both communicate projects that NCDOT intends to work on during the next 10 years and to satisfy federal and state funding requirements.

References
- Federal Highway Regulation on State Transportation Improvement Program (STIP) Development and Regulation on Project Selection
- State Transportation Improvement Program (STIP) Guidance
- Federal Transit State Transportation Improvement Program (STIP) Regulations in 49 CFR 613
- Federal Transit State Transportation Improvement Program (STIP) Guidance
- State Transportation Improvement Program (STIP) Requirements (§ 136-189.11) and Development of Transportation System (§ 136-66.2) Around Municipalities
- Strategic Mobility Formula
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft State Transportation Improvement Program</td>
<td>Develop Draft STIP Details</td>
<td>X</td>
<td>STIP Regional Managers</td>
</tr>
<tr>
<td>Draft State Transportation Improvement Program website update, including interactive map</td>
<td>Publish Draft STIP</td>
<td>X</td>
<td>STIP Unit GIS Lead</td>
</tr>
<tr>
<td>Final State Transportation Improvement Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final State Transportation Improvement Program website update, including interactive map</td>
<td>Develop Final STIP</td>
<td>X</td>
<td>Program Manager – STIP Unit</td>
</tr>
<tr>
<td>Final State Transportation Improvement Program – Division Supplements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final State Transportation Improvement Program – MPO and RPO Supplements</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The development of the State Transportation Improvement Program (STIP) is closely connected with the Strategic Project Prioritization Process (see 1SP1).
Collect Public Input
As a steward of taxpayer dollars, NCDOT seeks input from the public on projects that the NCDOT intends to fund over the next 10 years. Prior to the submission of projects for evaluation in the Project Prioritization Process, NCDOT Divisions hold public input sessions to receive input on projects that are submitted. The Division Engineers consider this input when submitting projects through the Project Prioritization Process.

Following the release of the Draft STIP, NCDOT holds additional public comment opportunities to receive feedback on the Draft STIP. However, since the Strategic Transportation Investments (STI) law directs NCDOT to select projects for funding based on score, it is important to make sure the correct projects are submitted for evaluation.

This input process satisfies federal requirements that the public has an opportunity to comment on the STIP prior to approval by the Board of Transportation (see 1SP1 for related information).

- NCDOT Divisions, Metropolitan Planning Organizations (MPOs), and Rural Planning Organizations (RPOs) submit projects for evaluation in the Project Prioritization Process (managed by the SPOT office).
- Projects are reviewed and scored using the process, criteria, and weights approved the Board of Transportation (managed by the Strategic Prioritization Office or SPOT office).
- Project scores are then provided to the STIP Unit for programming in the STIP.

Develop Draft STIP Details
The STIP Unit develops the draft STIP details, including setting up the Draft STIP database that:

- Starts with most recent Board of Transportation-adopted STIP. This is used as the basis for the next Draft STIP.
- Adds 2 or 3 years to the end of the STIP in the STIP database. This accounts for the next 2 or 3 years, so the STIP remains 10 years in duration.
- Attributes all committed projects. Based on the most recent Board of Transportation-adopted STIP, all projects classified as committed (i.e., those that do not have to be reprioritized in the next prioritization cycle) are designated in the STIP database. Similarly, all projects that are subject to reprioritization in the next prioritization cycle are designated in the STIP database as well.

Next, the STIP Unit determines the STIP budget.
The STIP Unit works with Funds Administration Section within the Financial Management Division on a 10-year STIP Budget. The Funds Administration Section provides a forecasted 10-year STIP budget in a MS-Excel™ spreadsheet.

Discussions occur on estimated expenses for Preliminary Engineering, Congestion Mitigation Air Quality (CMAQ) projects, bonus allocation projects, Appalachian Development Highway System (ADHS) projects, and other programs, as these funds are allocated prior to the 40/30/30 split (40 percent Statewide Mobility, 30 percent Division Needs, 30 Percent Regional Impact) STI funding as documented in the Strategic Mobility Formula.

- Funds Administration Section also provides variance calculation, which compares previous authorizations in each of the 22 STI funding buckets (1 Statewide Mobility, 7 Regional Impacts, 14 Division Needs) to previous allocations.

- The STIP Unit receives certified county population from the State Demographer. This data is used in determining Regional Impact budget amounts for the seven funding regions.

### Add Projects to Draft STIP

Projects placed in the STIP prior to adding high-scoring projects from the prioritization process include:

- Interstate Maintenance projects (Statewide Mobility)
- Bridge replacement projects (All 22 STI funding buckets)
- Highway safety projects (All 22 STI funding buckets)
- Committed projects selected/funded from prior prioritization cycles (All 22 STI funding buckets)
- STBG-DA and TAP-DA projects selected by MPOs over 200,000 in population (Primarily Division Needs funding buckets)
- Rail-highway crossing projects (Division Needs funding buckets)
- Economic development projects (Division Needs funding buckets)

These projects are programmed in the STIP with information on phase (typically right-of-way, utilities, construction, and sometimes preliminary engineering), funding source and amount, and schedule. The process for which projects are programmed in the STIP is as follows.
Add Alternative Criteria Projects
The STIP Unit works with the:

- Chief Engineers Office on Interstate Maintenance Projects over the next 10 years. Projects are programmed in the Draft STIP. The funding source is initially set to National Highway Performance Program (NHPP) funds, although may be changed to National Highway Freight Program (NHFP) funding.
- Structures Management Unit on bridge projects over the next 10 years in the STIP. The projects are programmed in the Draft STIP. Funding source is determined by project location, using the most restrictive funds first, such as Surface Transportation Block Grant (STBG) Off-System Bridges and/or STBG less than 5,000 in population.
- Mobility and Safety Division, generally on a quarterly basis, for safety projects. These projects are added to the Draft STIP as received.
- Rail Division to add new rail-highway crossing projects to the Draft STIP.
- MPOs over 200,000 in population for STBG Direct Assistance (STBG-DA) and Transportation Alternatives Program-Direct Attributable (TAP-DA) projects that are to be added to the Draft STIP on a continual basis, as approved by the MPOs.
Perform 5/10-Year Analysis
Once all of the alternate criteria and committed projects are entered into the STIP database, the STIP Unit performs the “5/10-year analysis,” which is a comparison of the STIP budget to the programmed funds.

- Over the first 5 years of the STIP, NCDOT can program funds +/- 15 percent of the budget, as defined in the STI law. Funding for projects in the first 5 years of the STIP is considered committed. Projects in the last 5 years of the STIP are to be reprioritized in the next round to the STIP, competing with new projects for funding.
- Over the entire 10 years of the STIP, NCDOT can program funds +/- 10 percent of the budget.

The results of this initial analysis are used for determining available funding within the 22 buckets for projects selected during the latest prioritization cycle.

Select Statewide Mobility Projects
Using the statewide mobility scores provided by the SPOT office for eligible projects (see 1SP1 for related information), the STIP Unit selects and programs projects based on the scores in descending order, until the remaining statewide mobility funds in the Draft STIP are assigned.

Project schedules are determined based on:

- Available funding,
- Prioritization score,
- Project delivery estimate (preference is given to projects previously programmed in the STIP),
- Local knowledge, and
- Input from the Divisions.

Funding sources may initially be set to federal funding, using the most restrictive funding, but switched to state trust funds, as appropriate. This is meant to be an iterative process. As projects are added to the STIP, the STIP Unit engineers continually perform the 5/10-year analysis to make sure programmed projects in the statewide mobility category meet the 15 percent and 10 percent budgetary tests and adjust schedules, as needed.

In addition, the following constraints are considered as projects are programmed in the statewide mobility category:

- Statewide mobility corridor cap: No more than 10 percent of the funds projected to be allocated to the statewide strategic mobility category over any 5-year period may be assigned to any project or group of projects in the same corridor within a Division or within adjoining Divisions.
- Aviation projects: No more than $500,000 can be allocated to a single airport project per year.

Select Regional Impact Projects
After Statewide Mobility Projects are programmed, SPOT works with the Metropolitan or Rural Planning Organizations (MPOs/RPOs) and Divisions to assign points to Regional Impact Projects. SPOT then finalizes the Regional Impact Scores and the TIP Unit Programs Regional Impact Projects. Using the Regional Impact total scores provided by the Strategic Prioritization Office for eligible projects (incorporating local input points) (see 1SP1 for related information), the STIP Unit selects and programs projects based on the scores
in descending order for each of the seven funding regions, until the remaining Regional Impact funds in the Draft STIP are assigned.

The STIP Unit applies “normalization” as projects are selected, which allocates funding between highway and non-highway projects, based on minimum guarantees of funding (based on percentage).

The normalization process for each Region is as follows:

**Step 1: Non-Highway Only (Statewide Competition)**
- Determine 4 percent of total Regional Impact budget (10-year, adjusted).
- Determine how much in the 4 percent Non-Highway bucket is already allocated; the amount remaining is available for prioritization.
- Sort eligible Non-Highway projects by score in descending order.
- Select projects until all funding is allocated.

**Step 2: Highway Only (Regional Competition)**
- Within each region, subtract the amount of Non-Highway projects programmed (over 10 years).
- Set aside 6 percent of each Region’s allocation (10-year, adjusted).
- Determine how much of the remaining funding is already allocated; the amount remaining is available for prioritization.
- Within each Region, sort eligible Highway projects by score in descending order.
- Select projects until all funding is allocated.

**Step 3: All-Modes (Flex) (Regional Competition)**
- Determine the amount of funding set aside under Step 2 (10-year, adjusted from step 2).
- Within each Region, sort eligible Highway and Non-Highway projects by score in descending order.
- Select projects until all funding is allocated.

This is an iterative process. As projects are added to the STIP, the STIP Unit engineers continually perform the 5/10-year analysis to make sure programmed projects in each Region meet the 15 percent and 10 percent budgetary tests.

In addition, the following constraints are considered as projects are programmed in the Regional Impact category:
- Public Transportation projects: No more than 10 percent of a region’s funds can be allocated to public transportation projects (over the entire 10-year STIP).
- Light Rail and Commuter Rail projects: Total state funding for a commuter rail or light rail project shall not exceed the lesser of 10 percent of the distribution region allocation or 10 percent of the estimated total project costs used during the prioritization scoring process.
- Aviation project: No more than $300,000 can be spent on any single airport project per year

**Select Division Needs Projects**
After Statewide and Regional Projects are programmed into the STIP, the Divisions provide Local Input points for Division Needs Projects. Using the Division Needs total scores provided by the SPOT office for eligible projects (incorporating local input points), the STIP Unit selects and programs projects based on...
the scores in descending order for each of the 14 Divisions, until the remaining Division Needs funds in the Draft STIP are assigned.

The normalization process for each Division is as follows:

**Step 1: Non-Highway (Division Competition)**
- Determine 4 percent of total Division Needs budget (10-year, adjusted), then divide by 14.
- Determine for the amount of funding that is already allocated; the amount of funding remaining is available for prioritization.
- Within each Division, sort Non-Highway projects by score in descending order.
- Select projects until funding is allocated.

**Step 2: Highway Only (Division Competition)**
- Within each Division, subtract the amount of funding (4 percent) from Step 1 (over 10 years).
- Set aside 6 percent of each Division’s allocation (10-year, adjusted).
- Determine how much of the remaining funding is already committed to determine the amount remaining available for prioritization.
- Within each Division, sort highway projects by score in descending order.
- Select projects until funding is allocated.

**Step 3: All-Modes (Flex) (Division Competition)**
- Determine the amount of funding set aside under Step 2 (10-year, adjusted from step 2).
- Within each Division, sort Highway and Non-Highway projects by score in descending order.
- Select projects until funding is allocated.

Project schedules are determined based on:
- Available funding,
- Prioritization score,
- Project delivery estimate (preference is given to projects previously programmed in the STIP),
- Local knowledge, and
- Input from the Divisions.

Funding sources may initially be set to federal funding, using the most restrictive funding, but switched to state trust funds, as appropriate. This is meant to be an iterative process. As projects are added to the STIP, the STIP Unit engineers continually perform the 5/10-year analysis to make sure programmed projects in each Division meet the 15 percent and 10 percent budgetary tests and adjust schedules, as needed.

In addition, the following constraints are considered as projects are programmed in the Division Needs category:
- Aviation projects: No more than $18.5M can be allocated to aviation projects per year.
- Bicycle and pedestrians projects: No state funds shall be allocated to independent bicycle and pedestrian projects.
Publish Draft STIP
Once all levels of STIP projects have been finalized, the Draft STIP is presented to the Board of Transportation for approval. The STIP Unit works with the Communications Group to publish the Draft STIP. The Draft STIP is for 11 years (current year plus 10 years). To publish the Draft STIP:

- A PDF document from the STIP database is produced.
- The Draft STIP is typically released at a Board of Transportation meeting.
- The STIP website is updated with the Draft STIP and interactive map in coordination with the Communications Group (see 1CG1 for related information).

Develop Final STIP
To develop the Final STIP:

- Start with Draft STIP.
- Update schedules and funding, as needed.
- Perform 5/10-year analysis to ensure the Final STIP is within budgetary constraints defined in STI law.
- Add the Prologue to document.
- Add the public engagement documentation (see 1PI1 for related information).

The Final STIP is a 10-year document. The PDF document from the STIP database is produced, with minimal hard copies, and the Final STIP is presented to the Board of Transportation for approval.

Following the Board of Transportation approval:

- The STIP website is updated with Final STIP and interactive map.
- The STIP Unit sends Division, MPO, and RPO Supplements to respective organizations.
- Affected MPOs begin Air Quality Conformity Determination analysis (currently Metrolina region only).
- MPOs approve TIPs, notify STIP Unit as approved.

Upon all MPOs approving TIPs, the STIP Unit packages the Board of Transportation-approved STIP and MPO TIPs, sending to FHWA and FTA for approval. Once FHWA and FTA approve the new STIP, the new STIP becomes the official STIP.

Complete QC/QA Procedures
The Division of Planning is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
1SP1 Complete Project Prioritization

Overview
Develop a project prioritization score for each project and provide the final scores to the State Transportation Improvement Program (STIP) Unit for use and guidance in developing the STIP.

References
- Prioritization Resources SharePoint Page
- Prioritization Data SharePoint Page
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
<th>Activity Leader</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spreadsheet of Final Quantitative Scores for all Submitted Projects in 6 Modes</td>
<td>▪ Develop Project Prioritization Scores</td>
<td>SPOT Lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Release Pn.0 Data Scores and Statewide Mobility Project List</td>
<td>SPOT Lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Complete Regional Impact Project Public Comment Period</td>
<td>SPOT Lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Release Regional Impact Project List</td>
<td>SPOT Lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Complete Division Needs Project Public Comment Period</td>
<td>SPOT Lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map of Evaluated Projects with Scoring Data (and funded status when applicable)</td>
<td>▪ Develop GIS Map of Evaluated Projects</td>
<td>SPOT Lead</td>
<td>SPOT Lead</td>
<td>SPOT GIS Support</td>
</tr>
</tbody>
</table>

Develop Project Prioritization Scores
Project prioritization is developed on a regular cyclical basis (approximately every 2-3 years) in accordance with the Strategic Transportation Investments (STI) law (GS 126-189.10 and .11). For each prioritization cycle (Pn.0, where n equals the cycle number), the Strategic Prioritization Office (SPOT) develops the project prioritization scores. The SPOT Lead and staff follows the process detailed in the current version of the Prioritization n.0 Submittal Guidance and Resources found on the Prioritization Data SharePoint site.

After development of Pn.0 cycle’s release of SPOT Online in coordination with the NCDIT/GIS Unit; Metropolitan Planning Organizations (MPOs), Rural Planning Organizations (RPOs), and Division Engineers submit candidate projects during a submittal window into SPOT Online. SPOT Online captures project data and processes key scoring components. SPOT staff perform project data verification and calculate scores for each candidate project. As part of their review of the candidate projects, SPOT staff coordinate with the following Units, as appropriate:
For Highway Travel Time Savings: Congestion Management, Transportation Planning Division
Modal Divisions: Aviation, Ferry, Integrated Mobility Division (IMD)/ITRE, Rail
Traffic Safety

Once SPOT staff have verified the scoring data and calculated scores, the final spreadsheet is provided to the STIP Unit for Statewide Mobility programming (see 1SI1 for related information). The STIP Unit provides the draft Statewide Mobility projects back to SPOT staff for formatting and sharing with partners.

While the STIP Unit is programming candidate projects, SPOT organizes a committee to review 51 Local Input Point Methodologies from every MPO, RPO, and Division to review how each organization applies and assigns their local input points to the Regional Impact and Division Needs categories.

Release Pn.0 Data Scores and Draft STIP
SPOT staff work with the Communications Group to update the www.ncdot.gov website about the release of the Pn.0 quantitative scores (see 1CG1 for related information). SPOT staff develop a spreadsheet and map of the draft Statewide Mobility-funded projects. A mass email is generated and sent to all MPOs/RPOs/Divisions to inform them of the release.

Complete Regional Impact Project Public Comment Period
To complete this task, the SPOT staff:
- Work with the Chief Engineer’s Office and Public Involvement Unit to establish each Division’s public comment period for Regional Impact projects (see 1PI1 for related information).
- Assist each Division with spreadsheets and visuals and provide other support during each public comment period.
- Re-initialize the SPOT Online portal for the acceptance of Regional Local Input Points.
- Export the Regional Local Input Points results, then compile the new Regional Impact scores and pass the updated spreadsheet to the STIP Unit for draft Regional Impact programming.

Release Regional Impact Project List
SPOT staff work with the Communications Group to update the www.ncdot.gov website about the release of the Pn.0 regional scores. SPOT staff draft programmed Regional Impact projects into a spreadsheet and map. SPOT and the Communications Group generate a mass email and send to all the MPO/RPO/Divisions who submitted projects to let them know of the release.

Complete Division Needs Project Public Comment Period
Similar to the Regional Impact process, SPOT staff:
- Work with the Chief Engineer’s Office and Public Involvement Unit to establish public comment periods for each Division for Division Needs projects.
- Assist each Division with spreadsheets and visuals and provide other support during each public comment period.
- Re-initialize the SPOT Online portal for the acceptance of Division Needs Local Input Points.
Export the Division Needs Local Input Points results, then compile the new Division Needs scores and pass the updated spreadsheet to the STIP Unit for draft Division Needs programming.

Develop GIS Map of Evaluated Projects
SPOT develops a public-facing GIS map of all Pn.0 evaluated projects covering all six modes that is color coded by its draft funding status:

- Blue for Statewide Mobility
- Green for Regional Impact
- Orange for Division Needs
- Pink for evaluated but not funded.

The projects are attributed with key information including SPOTID, TIP number (if applicable), STI eligible category, location details, project description, specific improvement type, primary purpose, final project scores, and funding information (if applicable).

Complete QC/QA Procedures
The SPOT Lead is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
1SS1 Determine Affected Coordinated Corridors (if not a Significant Project)

Overview
Beginning the activity as soon as the project limits are set, determine all affected coordinated corridors is crucial to the scoping, design, and implementation of signal timing plans for the duration and completion of the project.

Note: For Significant Level 1 or Level 2 projects, follow 1TO1 for Traffic Systems Operations, which includes signal system timing and operations and traffic operations activities. 1TO1 includes steps to determine a project’s significance level.

References
- NCDOT Signals Map
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Affected Signal Systems and Signals</td>
<td>· Complete List of Affected Signal Systems</td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal System Engineer</td>
</tr>
<tr>
<td>Signal System Number(s) for New System(s)</td>
<td>· Complete List of Affected Signal Systems</td>
<td></td>
</tr>
</tbody>
</table>

Complete List of Affected Signal Systems
The Signal System Engineer prepares a list of the affected signal systems, which involves:

- Determining which signal systems, if any, are affected along the project corridor using the NCDOT Signals Map.
- Compiling a list of all affected signal system and the signals within those systems. This list includes:
  - Any new systems being constructed by the project or signals being added to existing systems by the project.
  - Identification of the party responsible for traffic operations along the corridor (i.e., NCDOT or Municipality).

The Signal Systems Engineer assigns a signal system number to any new system(s) being constructed by the project. The list is used for scoping to determine the number of signals impacted by the project that need to be retimed.
3SS1 Initiate Signal System Timing (if not a Significant Project)

Overview
Determine whether the staging and phasing of the construction necessitates and/or benefits from corresponding signal coordination changes. Construction phasing signal timing is only needed for high volume critical corridors. Confirm with the Signal Timing Engineer if construction phasing signal timing plans are needed.

Note: For Significant Level 1 or Level 2 projects, follow 3TO1 for Traffic Systems Operations, which includes signal system timing and operations and traffic operations activities.

References
- Signal System Timing and Operations Timeline and Process Documents
- List of Signals and Signal Systems (developed during Project Initiation)
- Work Zone Traffic Control (WZTC) Traffic Management Plan
- Traffic Data Request
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Signal Timing Phases</td>
<td>Construction Phasing Analysis</td>
<td>Signal System Engineer</td>
</tr>
<tr>
<td>Summary of Existing Signal System Operations</td>
<td>Develop Summary of Existing Signal System Operations</td>
<td>X</td>
</tr>
<tr>
<td>Existing Synchro and Tru-Traffic files</td>
<td>Develop Summary of Existing Signal System Operations</td>
<td>X</td>
</tr>
</tbody>
</table>

Construction Phasing Analysis
Based on the timing and phasing of construction, the WZTC Project Engineer coordinates with the Signal System Engineer to determine how many sets of construction-specific signal coordination phases are needed, along with the justification for each phase (see 2TM1 for related information). Potential justification may include:

- Long-term road closures and corresponding detours
- Long-term capacity reductions
- Elimination of high-volume traffic movements

The Division requests the Signal System Engineer to prepare construction phasing signal timing plans for a project. The Signal System Engineer works with the Signal Lead (see 3SG1 for related information) and Work Zone Traffic Control (WZTC) Project Engineer (see 3TM1 for related information) regarding temporary traffic patterns at signalized intersections.

Develop Summary of Existing Signal System Operations
The Signal System Engineer then gathers all available controller data and provides a summary of the overall existing signal system operations.
- Collect all signal plans including current, construction-specific, and final.
- Upload all signal timing databases to verify existing operations.
- Gather all available signal controller data, including vehicle detector logs, split monitor logs, and any high-resolution data and automated traffic signal performance metrics (ATSPM).
- Notify relevant engineer of any discrepancies between signal plans and current operation.
- Verify existing communications, schedule synchronicity, and overall intended operations are in place.

The Signal System Engineer prepares a Synchro file and a Tru-traffic file for each existing timing plan. The traffic volumes from the corridor-wide volume map are coded into the networks.

**Complete QC/QA Procedures**

The Signal System Engineer is to coordinate the applicable QC review following the NCDOT *Quality Management Manual* procedures and the respective QC Checklist before upload and/or distribution of any deliverables.
5SS1 Signal System Modeling, Analysis, Implementation and Fine-Tuning (if not a Significant Project)

Overview
For projects that require construction phasing, model the corridor using the latest approved version of *Synchro*. Fine-tune the model based on field observation. Implement and evaluate the signal timings during construction phases and after the roadway is open in the final traffic pattern.

*Note:* For Significant Level 1 or Level 2 projects, follow 5TO1 for Traffic Systems Operations, which includes signal system timing and operations and traffic operations activities.

References
- Signal System Timing and Operations Timeline and Process Documents
  - Signal System Timing Philosophy Manual
  - Project Review Checklist for Preliminary Submittal
  - Project Review Checklist for Final Submittal
  - Standard Practice for Tru-Traffic Travel Time Runs
  - Local Signal Software Programming Manuals
  - Central Signal Software User Manual
- Work Zone Traffic Control (WZTC) Traffic Management Plan
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchro Microsimulation Model(s)</td>
<td>Develop Synchro Microsimulation Model</td>
<td>Signal System Engineer X</td>
</tr>
<tr>
<td>Network Volume Overview Map</td>
<td>Develop Network Volume Overview Map</td>
<td>X</td>
</tr>
<tr>
<td>Signal Timing Databases</td>
<td>Develop Signal Timing Databases</td>
<td>X</td>
</tr>
<tr>
<td>Summary of Design Cycle Length and Schedules</td>
<td>Prepare Preliminary Signal Timing Report</td>
<td>X</td>
</tr>
<tr>
<td>“Before” Travel Time Runs</td>
<td>Perform “Before” Travel Time Runs</td>
<td>X</td>
</tr>
<tr>
<td>Implemented Signal Timing Plans</td>
<td>Implement &amp; Fine Tune Signal Timing Plans</td>
<td>X</td>
</tr>
<tr>
<td>“After” Travel Time Runs</td>
<td>Perform “After” Travel Time Runs</td>
<td>X</td>
</tr>
<tr>
<td>“Before” and “After” Travel Time Summary</td>
<td>Compare “Before” and “After” Travel Time Results</td>
<td>X</td>
</tr>
</tbody>
</table>

Develop Synchro Microsimulation Model
For the purposes of coordination optimization, the Signal System Engineer models the corridor using the latest approved version of the Synchro microsimulation software.

- Model the corridor following the Synchro guidelines in the PEF Project Review Checklist.
- Fine-tune the model based on field observations and Tru-Traffic travel time runs.
If there is to be construction phase signal coordination plans, each phase is modeled. Synchro models are to be reviewed by someone other than the design engineer.

**Develop Network Volume Overview Map**

The Signal System Engineer requests turning movements counts for critical intersections along the corridor from the Traffic Safety Unit. The Traffic Safety Unit sends the completed turning movement counts to the Signal System Engineer when completed (see 2TS1 for related information).

Using the traffic counts, the Signal System Engineer interpolates and volume-balances critical intersection turning movement counts to develop a corridor-wide volume map.

**Develop Signal Timing Databases**

To complete this task, the Signal System Engineer is to develop timing databases following the guidelines in the “PEF Project Review Checklist.”

If there are construction phase signal coordination plans, each phase is programmed. Timing databases shall be reviewed by someone other than the design engineer.

**Prepare Preliminary Signal Timing Report**

The Signal System Engineer summarizes the proposed timing plans and schedule for each timing plan according to the latest guidance from the PEF Project Review Checklist.

**Perform “Before” Travel Time Runs**

The Signal System Engineer collects “before” travel time runs in accordance with *Standard Practice for Travel Time Runs Guidelines*. “Before” travel time runs should be completed after traffic is in the pattern to be evaluated.

**Implement & Fine Tune Signal Timing Plans**

The Signal System Engineer implements the approved timing plans and install the signal timing database. The Signal System Engineer then fine tunes the timing plans according to actual traffic patterns. The Signal System Engineer prioritizes the Division concerns identified during scoping.

If there is to be construction phase signal coordination plans, each phase is implemented and fine tuned.

**Perform “After” Travel Time Runs**

The Signal System Engineer collects “after” travel time runs in accordance with *Standard Practice for Travel Time Runs Guidelines* after the implemented signal timing plans are installed.

If there is to be construction phase signal coordination plans, each phase requires “after” travel time runs to be collected.

**Compare “Before” and “After” Travel Time Run Results**

The Signal System Engineer runs a report summarizing the “before” and “after” travel time run results. The results are to be in accordance with the scope of work.
If there is to be construction phase signal coordination plans, each phase is compared to “pre-construction” travel time runs.

**Prepare Final Signal Timing Summary Report**
The Signal System Engineer summarizes the construction timing plans and schedule for each timing plan according to the latest guidance from the *PEF Project Review Checklist*.

**Complete QC/QA Procedures**
The Signal System Engineer is to coordinate the applicable QC review following the NCDOT *Quality Management Manual* procedures and the respective QC Checklist before upload and/or distribution of any deliverables.
1ST1 Initiate Structures Investigation

Overview
Provide technical input on Express Design, determine preliminary structure cost for new structures, and evaluate the condition of each existing structure to determine if replacement, rehabilitation, or widening is an option.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- NCDOT Spatial Data Viewer
- WIGINS Bridge Inspection & Inventory Software
- Candidate Project/Express Design

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structures Cost Estimate for Express Design</td>
<td>Structures Management Unit Field Operations Support, Division Bridge Maintenance</td>
</tr>
</tbody>
</table>

Gather Existing Structure Inspection Reports and Plans
When existing structures are in the project study area, the Project Lead identifies all bridge and culvert structures within the area. For existing structures, the Project Lead collects all related Bridge/Culvert Inspection Reports and any existing structure plans to determine if replacement or rehabilitation is necessary. This is all done in coordination with the Division Bridge Maintenance staff and Structures Management Unit’s Field Operations Engineer, considering the following.

- Obtain existing inspection reports by contacting Structures Management Unit (Inventory & Appraisal)
  - Use NCDOT Spatial Data Viewer with the structure layer to obtain the Bridge Number.
  - Provide Existing Bridge Numbers to Structures Management Unit (Inventory & Appraisal).
- Request Bridge Inspection Report from Structures Management Unit (Inventory & Appraisal).
- Request structure plans or as-built plans for existing bridge Structures Management Unit (Inventory & Appraisal).

Obtain Structures Input on Express Design
The Project Lead is to obtain input on structures for the Express Design. The Structures Management Unit’s Field Operations Engineer provides the following for all identified structures:
- Coordinate with the Division Bridge Maintenance staff
- Determine preliminary feasibility for the structure design and preliminary structure depth/clearance, considering:
  - Bridge widening may require smaller girder depths.
  - For Grade Separations – coordinate with the Roadway Design Unit for vertical and horizontal clearance requirements.
  - For Stream Crossings – coordinate with the Hydraulic Unit for span length and girder height.
- Determine the existing Bridge Numbers using the NCDOT Spatial Data Viewer and the structure layer
- If necessary, collect data from a field inspection of all structures within project area, which includes all bridges, culverts, pipes, and walls.
- Investigate and document current condition of all non-NBIS structures.
- Consult with the Structures Management Unit’s Field Operations Engineer and the Division to determine if replacement is necessary or if rehabilitation is required.

In coordination with the Structures Management Unit, the Project Lead provides a summary of the preliminary structure recommendations to the Feasibility Studies Unit for the Express Design (see 1FS2 for related information).
2ST1 Initiate Structures Design

Overview
Following the development of Design Recommendation Plan Set and the Bridge Survey Report, initiate and finalize structure-related scope and estimating in coordination with the Project Manager.

References
- Structures Management Unit Scoping Sheet
- NCDOT Scope and Manday Estimate Form
- American Association of State Highway Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Manual
- Structures Management Unit Design Manual
- Structures Management Unit Design Manual – Standard Letters/Policy Memos
- Structures Management Unit SharePoint Guidelines

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary / Final Scoping Sheet</td>
<td>Develop and Finalize Structure Scoping Sheet</td>
<td>Project Manager</td>
</tr>
<tr>
<td>Preliminary / Final Manday Estimate</td>
<td>Develop Preliminary Manday Estimate</td>
<td>Design Firm Structures Lead</td>
</tr>
<tr>
<td></td>
<td>Finalize Manday Estimate</td>
<td>Structures Management Unit Private Engineering Firm Coordination Group</td>
</tr>
<tr>
<td></td>
<td>Initiate NTP</td>
<td></td>
</tr>
</tbody>
</table>

Develop and Finalize Structure Scoping Sheet
After development of the Design Recommendation Plan Set (after Preliminary Plans and Bridge Survey and Hydraulic Design Reports (BSR) are finalized), the Design Firm Structures Lead develops the Structure Scoping Sheet. The Design Firm Structures Lead can coordinate with Structures Management Unit Private Engineering Firm (PEF) Coordination Group to develop the Structures Scoping Sheet. The Scoping sheet includes:
- Structure Data for each site
- Delivery Schedule for structure deliverables

Develop Preliminary Manday Estimate
To develop the Preliminary Manday Estimate, the Design Firm Structures Lead develops and submits an initial “blank” manday estimate to the Project Manager. The Project Manager sends the “blank” manday estimate and the Scoping Sheet to the Structures Management Unit PEF Coordination Group for preparation of the in-house estimate.
Finalize Manday Estimate
The final estimate for manday and cost are to be within an allowable tolerance (5% hours, 10% cost). If
negotiation is necessary, the Project Manager asks the Structures Management Unit PEF Coordination
Group to negotiate with the Design Firm Structures Lead.

After negotiation, and revisions to the estimates are made, the Structures Management Unit PEF
Coordination Group returns the final estimate to the Project Manager, and the consultant Design Firm
Structures Lead submits a final manday estimate to the Project Manager. Upon completion, the Project
Manager issues Notice to Proceed (NTP) and a purchase order (PO) number to the Design Firm.
2ST2 Develop Preliminary General Drawings

Overview
Complete and distribute the Preliminary General Drawings (PGDs) for all structures on the project.

References
- Structures Management Unit Scoping Sheet
- Structures Management Unit Estimate Sheet
- NCDOT Scope and Manday Estimate Form
- American Association of State Highway Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Manual
- Structures Management Unit Design Manual
- Structures Management Unit Design Manual – Standard Letters/Policy Memos
- Structures Management Unit SharePoint Guidelines
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft Preliminary General Drawings (PGDs) for Review</td>
<td>- Develop Draft Preliminary General Drawings (PGDs)</td>
<td>Design Firm Structures Lead</td>
</tr>
<tr>
<td></td>
<td>- Submit Draft PGD for Review to Structures Management Unit Private Engineering Firm Coordination Group</td>
<td>X</td>
</tr>
<tr>
<td>Preliminary Header Elevations (if required)</td>
<td>- Submit Draft PGDs to Project Manager for Review (Structures Management Unit Private Engineering Firm Coordination Group)</td>
<td>X</td>
</tr>
<tr>
<td>Final Preliminary General Drawings (PGDs) for Distribution</td>
<td>- Finalize and Distribute Final PGDs</td>
<td>Structures Management Unit Private Engineering Firm Coordination Group</td>
</tr>
</tbody>
</table>

Develop Draft Preliminary General Drawings (PGDs)
When developing the draft Preliminary General Drawings (PGDs), the Design Firm Structures Lead is to reference the current Roadway Design plans (i.e., the Design Recommendation Plan Set) and the Bridge Survey and Hydraulic Design Reports (BSR) and coordinate as needed with the project Design Geotechnical Engineer.

- For grade separations, determine bridge length, clearances, and girder type
  - Develop preliminary span lengths
  - Develop preliminary girder designs
  - Evaluate potential utility conflicts
  - Evaluate constructability, temporary access
- For stream crossings, verify span lengths provided in the BSR
  - Developing preliminary span lengths

Back to PDN Overview
Developing preliminary girder designs
- Evaluate potential jurisdictional impacts
- Evaluate constructability, temporary access

The Design Firm Structures Lead drafts the Profile and Plan sheet, Typical Section, and Location Sketch sheet as per Chapter 4 of the *Structure Management Unit Design Manual*.

**Submit Draft PGD for Review to Structures Management Unit Private Engineering Firm Coordination Group**

Following initial draft, the Design Firm Structures Lead uploads the draft PGDs to the project SharePoint site for review, which includes:

- Structures Management Unit Private Engineering Firm (PEF) Coordination Group
- Division (if applicable)
- Project Manager

The Design Firm Structures Lead is to allow up to 10 days for review comments.

If needed, the Design Firm Structures Lead develops the preliminary header elevations in accordance with Section 6.2.2.9 of the *Structures Management Unit Design Manual*.

**Finalize and Distribute Final PGDs**

After review and comments are returned to the Design Firm Structures Lead, and comments are addressed, the Design Firm Structures Lead submits the Final PGD to the Structures Management Unit PEF Coordination Group and the project team.

In coordination with the Project Manager, the Structures Management Unit PEF Coordination Group emails the Final PGD using the distribution list that includes the following:

- Area Bridge Construction Engineer
- Geotechnical Unit
- Hydraulic Unit
- Structures Management Unit
- Roadway Design Unit
- Transportation Mobility Unit
- Utilities Unit
- Construction Unit

The Final PGD package includes links for the following:

- Construction Unit Questionnaire
- Google Map of bridge
- Structure Inspection Report and existing bridge plans (if available)
- Bridge Survey Report
- Project Commitments
- Design Recommendation Plat Set
In coordination with the Project Manager, the Structures Management Unit PEF Coordination Group requests both the schedule for geotechnical foundation recommendations and feedback from Area Bridge Construction. The Design Firm Structures Lead provides the preliminary header elevations to the Area Bridge Construction Engineer for review, if needed.

**Complete QC/QA Procedures**
The Design Firm Structures Lead is to coordinate the applicable QC review following the NCDOT *Quality Management Manual* procedures and the respective QC Checklist before upload and distribution of all related deliverables.
3ST1 Complete Structures Design

Overview
Complete the structure design and draft plans for all structures. Coordination is involved with the Hydraulic Design Engineer, Environmental Analysis Unit (EAU) for environmental impacts and environmental permit drawings, and with the Design Geotechnical Engineer for foundation recommendations.

References
- Structures Management Unit Design Manual
- American Association of State Highway Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Manual
- Area Bridge Construction Engineer Questionnaire Response
- Request for Foundation Recommendations
- Geotechnical Load Request
- Structures Management Unit SharePoint Guidelines
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Activity Leader</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical Foundation Loads</td>
<td>Provide Geotechnical Foundation Loads</td>
<td>Design Firm Structures Lead</td>
<td>Structures Management Unit PEF Coordination Group, Geotechnical, Construction, Environ., Hydraulics</td>
</tr>
<tr>
<td>Access Drawings</td>
<td>Provide Access Drawings – Stream Crossings</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Permit Impacts</td>
<td>Provide Structure Permit Impacts</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vertical Abutment Wall Envelopes</td>
<td>Provide Vertical Abutment Wall Envelopes to Geotechnical Unit</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Final Structure Plans Review</td>
<td>Complete Final Structure Plans</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Provide Geotechnical Foundation Loads
After the distribution of Preliminary General Drawings (PGDs), the Design Firm Structures Lead coordinates with the Project Manager, Structures Management Unit PEF Coordination Group, and Geotechnical Engineering Unit as follows:
- Geotechnical Engineering Unit submits its Request for Loads to Structures Management Unit PEF Coordination Group
- Structures Management Unit PEF Coordination Group passes the request along to Design Firm Structures Lead
- Design Firm Structures Lead submits foundation loads to Structures Management Unit PEF Coordination Group
- Structures Management Unit PEF Coordination Group sends loads to Geotechnical Engineering Unit
- Geotechnical Engineering Unit post the Foundation Recommendations to the project SharePoint site.

**Provide Access Drawings – Stream Crossings**
For stream crossings and in coordination with the Hydraulic Design Engineer and Environmental Analysis Unit, the Design Firm Structures Lead provides the General Drawing of Site denoting access type (e.g., rock causeway, temporary work bridge) to the Hydraulic Design Engineer.

- For a rock causeway:
  - Provide area for the causeway.
  - Show staging for removal or construction.
  - Provide the Hydraulic Design Engineer with specific information required for Environmental Permit Drawings.
- For a temporary work bridge:
  - In most cases, assume 30-foot spans, 30-foot width for mainline, 20-foot width for fingers, and 16-inch pipe piles.
  - Provide area of piles for temporary impacts.
  - Show temporary bridge on the General Drawing.

**Provide Structure Permit Impacts (Wetlands, Surface Water, etc.)**
In order to establish structure permit impacts, the Design Firm Structures Lead is to coordinate with the Hydraulic Design Engineer and Environmental Analysis Unit (EAU) in calculating temporary and permanent structure impacts:

- For temporary structure impact for temporary work bridge: calculate area of pipe piles
- For permanent structure impacts for bridge: calculate area of piles, shafts, footings
  - Surface water
  - Wetlands
  - Environmentally sensitive areas

The Design Firm Structures Lead provides the General Drawing of Site and Impacts to the Hydraulic Design Engineer.

**Provide Vertical Abutment Wall Envelopes to Geotechnical Unit**
For structures with vertical abutment walls, the Design Firm Structures Lead develops the wall envelope, submitting the envelope to the Project Manager (for information) and to Structures Management Unit PEF Coordination Group for delivery to the Design Geotechnical Engineer for wall design.

**Complete Final Structure Plans**
In accordance with the *Structures Management Unit Design Manual*, the Design Firm Structures Lead develops the final structure design and associated plans that includes the following.
Structure Design

- Superstructure: Deck design (chart) — link slabs, integrals
  - Finalize bridge length and layout
  - A typical section
  - Girder design
    - Steel: studs, BFS, charpy v-notch, deflection, plate sizes, diaphragms
    - Concrete: stirrups, strand pattern, conc strength, diaphragms
  - Girder rating
  - Bearings
  - Joints
  - Rails
- Substructure
  - End Bent, caps, footings, piles
  - Bent: caps, columns, footings, piles, shafts
  - Geotech loads/coordination
  - Abutment walls
- Slopes
- Approach slabs

Structure Drawings

- General Drawing (Staging Sequence)
- BOM
- Rating (LRFR)
- Erection Sequence
- Typical section & details
- Plan of spans
- Closed drainage
- Framing plans
- Girder sheets
- Diaphragm details
- Bearings
- Deflections/camber
- Rail
- Sidewalk/median
- Guardrail attachment
- Joints
- Total Super BOM
- End bents
- Bents
- End Bent 2
- PS Conc Pile Std
- Sign attachments
- Electrical conduit system
- Fender system
- Navigational lighting conduit
- Slope protection
- App slabs
- Standard notes

Culvert Design

- Culvert length
- Culvert design
- LRFR rating
- Wing design

Culvert Drawings

- Location sketch
- Total quantities
- Rating sheet (LRFR)
- Profile along CL culvert
- Plans
- Guardrail attachment
- Section views (including sills if required)
- Wing details

Retaining Walls
- Envelopes (structure critical walls only)

Sound Barrier Walls
- Plans (ref standards)

**Complete QC/QA Procedures**
The Design Firm Structures Lead is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
4ST1 Finalize Structures Design PS&E

Overview
Submit Plans, Specifications, and Estimates (PS&E) to the Structures Management Unit PEF Coordination Group, who submits to Contract Standards and Development (CS&D) for letting.

References
- Structures Management Unit Design Manual
- Structures Management Unit SharePoint Guidelines
- Roadway Design/Structures Checklist
- Structures Working Days Guidelines
- Structures PSP Lineup Sheet
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design Firm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structures Lead</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geotechnical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roadway</td>
</tr>
<tr>
<td>Structures Final Plans</td>
<td><strong>Complete the Contract Package</strong></td>
<td>X</td>
</tr>
<tr>
<td>Structures Working Days</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Structures Project Special Provisions</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Structures Quantity Estimate (CSV)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Structure Design Files</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Bridge Construction Elevations</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Roadway Structures Checklist</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Wall Plans</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Final Plans</td>
<td><strong>Submit Contract/Final Plans to CS&amp;D</strong></td>
<td>X</td>
</tr>
</tbody>
</table>

Complete the Contract Package
For compiling a complete contract/PS&E package, the Design Firm Structures Lead updates the plans, as needed, for any design changes that occurred after the end of the (Final Plan Review) Plan-in-Hand Stage. The process includes completing:

- The appropriate documentation required by the Contract Standards and Development Unit or Division Contract Engineer in proper format to either be included in the plans or provided as standalone documents.
- Items include the index of sheets, final plans, special provisions, design files, quantities, and other key documents. Structures Quantity Estimate (CSV, PIQ tool), Structure Working Days.

The Design Firm Structures Lead completes the respective QC Checklist following the NCDOT Quality Management Manual procedures before upload and/or distribution of Final PS&E contract package.
For structures designs developed by a Private Engineering Firm (PEF)/consultant, the Structures Management Unit reviewer is to use appropriate means, including the applicable QA checklist in the *Quality Management Manual* to complete a quality assurance review. This review is to ensure the plan set is complete and in compliance with current NCDOT and Structures Management Unit guidance, policies, and procedures. Items to be reviewed include material quantities, notes, and references to project special provisions.

**Submit Contract/Final Plans to CS&D**

Plan sheets and other key documents are uploaded into SharePoint by the Design Firm Structures Lead and sent to the Structures Management Unit Project Management Group for final processing. The Structures Management Unit Project Management Group notifies the Plan Review Engineer or the Division Contract Engineer, with a cc to the Project Manager, when the PS&E package and the contract documentation have been placed on the project SharePoint site in the Let Preparation area.
5ST1 Structures Construction Support
The Design Firm Structures Lead and/or Structures Management Unit provides the following support during the Construction Phase:

- Provides technical expertise and answers questions related to the structures design during the pre-construction meeting and throughout the construction phase
- Completes Construction Plan Revision (as needed):
  - Perform construction revisions of the latest version of the Let Plans (see 5CS1 for related information) to address identified plan errors or field changes either initiated by NCDOT or Contractor.
- Review working drawings and associated calculations for:
  - Retaining Walls
  - Prestressed Girder fabrication issues
  - Steel girder fabrication issues
  - Metal bar railing fabrication
  - Stay In Place forms
  - Prestress girder strand release patterns
  - Temporary shoring design review
  - Temporary detour bridge design
  - Temporary work bridges
  - Crane capacities
  - Top-down construction sequence and equipment review
  - Railroad review and coordination for bridge construction
  - Overhead Sign assembly review

As construction progresses, items may also result in reviews to be completed by the Design Firm Structures Lead and/or Structures Management Unit. This may include, but is not limited to, the following:

- Pile issues (including bearing capacity, changes in subsurface conditions or refusal)
- Pile location changes and structure re-analysis for changed conditions
- Drilled shaft location changes
- Rebar material changes/issues
- Concrete mix design issues (strength reductions, admixtures)
- Bearing location issues/changes
- Girder erection issues/changes
- Girder camber/sweep issues
- Steel girder fit up issues (diaphragms, curved girders)
- Stay in place formwork
- Stirrup height/stud height
- Construction Elevations - buildup height issues
- Deck pour sequence changes/issues
- Deck steel forming issues
- Sidewalk issues/changes
- Barrier rail issues/changes
- Deck steel concrete cover issues
- Deck drain/ closed drain system installation
- Electrical conduit system, utilities added
- Lighting conduit in rails
- Protective fencing added
- Deck joint installation
- Aesthetics details
- Culvert headwall extensions
- Culvert formwork issues
- Retaining wall construction issues
- Sound barrier wall issues
1TM1 Complete Express Design Traffic Analysis

Overview
Obtain a preliminary evaluation of the traffic operations for a proposed project, both with and without the proposed project. The purpose of the evaluation is to utilize a simplified analysis method to determine the feasibility of proposed designs that complement the Express Design process in determining viable alternatives/alignments for proposed projects.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- Express Design Volume Development Tool (to be developed)
- Traffic Data Collection Request System
- Existing Count Map – Traffic Safety Search Data
- Existing Count Database – Traffic Safety Data Files
- NCDOT Express Design Traffic Analysis Guidelines (to be developed)
- NCDOT Express Design Traffic Analysis Scope and Manday Resources (to be developed)
- Guidelines for Determining Work Zone Level of Significance

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
<td>Congestion Management Unit or Feasibility Studies/Corridor Development Unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Congestion Management Unit or Feasibility Studies/Corridor Development Unit</td>
<td></td>
</tr>
<tr>
<td>Express Design Traffic Analysis Memorandum</td>
<td>Initiate/Scope Express Design Traffic Analysis</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Determine Alternatives for Analysis/Scope Analysis</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Initiate Traffic Volume Development Process</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Produce Express Design Traffic Volumes</td>
<td>X</td>
<td>Traffic Safety Unit</td>
</tr>
<tr>
<td></td>
<td>Develop Traffic Analysis</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Develop Express Design Traffic Analysis Summary</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Work Zone Level of Significance Documentation</td>
<td>Determine Level of Significance</td>
<td>Traffic Management Unit (Work Zone Traffic Control)</td>
<td></td>
</tr>
</tbody>
</table>
Initiate/Scope Express Design Traffic Operations Analysis

The traffic operations analysis includes the development of a simplified analysis and supports the development of the Express Design alternatives/alignments. The traffic operations analysis includes the analysis of recommended lane geometries, general storage lengths and the design configurations for selected Build alternatives/alignments that are included in the Express Design study.

To initiate the traffic operations analysis, the first step is to determine the level of analysis required. Determination of the level of projects is by the Congestion Management Section or Feasibility Studies/Corridor Development Unit. The level of analysis is based on the complexity of the project and how the project is scored in the Prioritization Process (see 1SP1 for related information). The following are the levels of traffic operations:

- **Level 0** – Low traffic volume locations where traffic operations are not critical to the design or analysis of the project. No detailed traffic analysis is required.
- **Level 1** - Level 1 analysis involves basic traffic operations that can be reviewed by use of macroscopic analysis tools where the design may not be critical in all locations. This type of analysis is typically done for projects that are identified in the Prioritization Process as corridor type projects. Traffic analysis software typically used for this type of analysis include Synchro, HCS or Sidra. Additionally, simplified spreadsheet analysis that utilizes critical lane volume analysis procedures may be utilized.
- **Level 2** - Level 2 analysis involves more complex traffic operations that can be best evaluated by use of microscopic analysis tools. This type of analysis is typically done for projects that are developed by the Congestion Management Team in the Prioritization Process. Traffic analysis software typically used for this analysis is TransModeler.
- **Level 3** – Level 3 analysis involves the highest complexity for traffic operations. These projects require evaluation by use of advanced methodology involving microscopic analysis tools. Typical projects may include (but are not limited to): Complex freeway system interchanges, new alignment projects (both freeway and arterial) that involve potential multiple travel routing, and multi-modal projects. Traffic analysis software typically used for this analysis is TransModeler.

The following table provides general guidance on the appropriate levels of analysis for each Specific Improvement Type (SIT) from the Prioritization Process:

<table>
<thead>
<tr>
<th>Prioritization Specific Improvement Type</th>
<th>Level 0</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Widen Existing Roadway</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - Upgrade Arterial to Freeway/Expressway</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - Upgrade Expressway to Freeway</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 - Upgrade Arterial to Superstreet</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5 - Construct Roadway on New Location</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6 - Widen Existing Roadway and Construct Part on New Location</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7 - Upgrade At-grade Intersection to Interchange or Grade Separation</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8 - Improve Interchange</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9 - Convert Grade Separation to Interchange</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Prioritization Specific Improvement Type                        | Level 0 | Level 1 | Level 2 | Level 3 |
---                                                   |   |   |   |   |
10 - Improve Intersection                             |   |   |   | X      |
11 - Access Management                                |   | X | X |   |
12 - Ramp Metering                                    | X | X |   |   |
13 - Citywide Signal System                           |   |   |   | X      |
14 - Closed Loop Signal System                        |   |   |   | X      |
15 - Install Cameras and DMS                          |   |   |   |   |
16 - Modernize Roadway                                | X | X |   |   |
17 - Upgrade Freeway to Interstate Standards          |   | X | X |   |
18 - Widen Existing Local (Non-State) Roadway         |   |   |   | X      |
19 - Improve Intersection on Local (Non-State) Roadway|   |   |   | X      |
20 - Convert Grade Separation to Interchange to Relieve Existing Congested Interchange |   | X |   |   |
21 - Realign Multiple Intersections                   |   |   |   | X      |
22 - Construct Auxiliary Lanes or Other Operational Improvements |   |   |   | X      |
23 - Construct Grade Separation at Highway / Railroad Crossing |   | X |   |   |
24 - Implement Road Diet to Improve Safety            |   | X | X |   |
25 - Improve Multiple Intersections along Corridor    |   |   |   | X      |
26 - Upgrade Roadway                                  | X | X |   |   |

Based on an understanding of the project goals, the Congestion Management Unit, Feasibility Study Unit and/or Corridor Development Unit determines the Level of Analysis and selects the software to be utilized for the analysis.

**Determine Alternatives for Analysis/Scope Analysis**

The first step in scoping the analysis is to discuss the proposed project and review the study area with the Congestion Management Engineer overseeing the study, the Traffic Analysis Engineer completing the study and the Feasibility Study Lead. The discussion includes:

- Determine locations for development of Express Design traffic volumes based on a review of the study area and the guidelines included in the *Express Design Traffic Analysis Guidelines*.
- Determine Design Year for analysis
- Determine source for determining growth rates
- Determine if separate No-Build and Build volumes are needed

The next step is to determine which alternatives/alignments are evaluated in the traffic analysis. The traffic analysis and roadway design alternatives/alignments should be coordinated to determine which discipline is the most critical. On some projects, the constraints of the design largely dictate the alternatives/alignments being considered and result in roadway design being the primary driver of the alternatives/alignments, while other projects have a specific operational goal where the traffic analysis is the primary driver. On select projects both disciplines are critical, and a more integrated and iterative level of analysis is required.
Based on the determination of which disciplines are critical, the range of alternatives/alignments to be developed are selected. For projects that include improvements to intersections, an informal Intersection Control Evaluation (ICE) is conducted for each intersection that is to be improved as part of the project. The number of alternatives/alignments for traffic analysis and roadway design may differ depending on which discipline is determined to be critical. For traffic critical projects, more alternatives/alignments may be evaluated for traffic operations with only the best options continuing to roadway design. Conversely, for roadway design critical projects the feasibility of certain alternatives/alignments is completed, and only a selection of feasible options are advanced for traffic operations.

Once the analysis level and alternatives/alignments are developed then the project is assigned to a prequalified individual (Traffic Analysis Engineer) to develop the traffic analysis scope for the project. The limits of the analysis and intersections to be included in the analysis is provided based on the steps described above. The traffic analysis typically includes the following analysis scenarios:

- Base Year No-Build (based on existing conditions)
- Future Year No-Build (based on existing conditions, without the proposed project but with any other fiscally constrained project(s) in place)
- Future Year Build for each alternative/alignments

Initiate Express Design Traffic Volumes Process

The Express Design Traffic Volumes (EDTV) are a simplified method of developing traffic volumes for use during the development of the Express Design phase of project development. The development of Express Design Traffic Volumes is suitable during Stage 1: Project Initiation. Beyond Stage 1 a project level traffic forecast should be utilized (see 1TP1 for related information).

Once the traffic analysis for the project has been scoped, the next step in the development of the EDTVs is to collect counts for each identified location. The volume development process utilizes 13-hour turning movement counts. The Traffic Analysis Engineer reviews available count databases to determine if any existing turning counts are available. Turning counts should typically be less than five years old to be utilized in the volume development process. The engineer should also review available resources, such as aerial photography or listings of recently completed projects to determine if the travel patterns contained in the previously collected count are adequate for the desired purpose.

If there are no suitable existing counts available, then a new 13-hour turning movement count needs to be ordered through the Mobility and Safety Information Section of the Transportation Mobility and Safety Division.

The Traffic Analysis Engineer also collects the required data to complete the analysis, including historic growth rates, projected growth rates and any project specific data to complete the volume development process.
Produce Express Design Traffic Volumes

The Traffic Analysis Engineer then develops the express design volumes for each location in accordance with procedure included in the *Express Design Traffic Analysis Guidelines*. Traffic volumes are ideally developed objectively and independently based upon available and approved data, such as official travel demand models, historic AADT estimates, and traffic data collection.

Once the Draft Express Design Traffic Volumes are developed, they are submitted to the Congestion Management Engineer for review. Following review, any comments are addressed, and the final traffic volumes are produced. The Final EDTVs are delivered via e-mail to the Project Lead and uploaded to the project SharePoint site.

Develop Analysis

The traffic operations analysis is to be completed in the prescribed software package in accordance with the *Express Design Traffic Analysis Guidelines*. The first step in the analysis process is to develop the Base Year and Future Year No-Build scenarios, with the following considerations.

- These may be developed and submitted separately from the Build analysis, if determined to be appropriate by the project team.
- Preliminary review and approval of the No-Build analysis may be helpful for projects where the build scenarios expand on the no-build analysis and help reduce re-analysis by identifying issues earlier in the process.

The next step is to develop the analysis of the Build alternatives/alignments. The Build analysis is typically accomplished in one of two ways, either the traffic analysis precedes the design, or the design precedes the traffic analysis.

- For projects where the traffic analysis precedes the design, a general design concept is identified for the traffic analysis and the purpose of the analysis is to develop the details of the design to meet the goals of the project.
  - The analysis determines the recommended design layout and provide the required lane configuration and storage lengths.
  - The design recommendations are then provided to the design team for incorporation into the project’s design plans.
  - If elements of the recommended design cannot be accommodated in the design due to constraints, then coordination is to occur between the design team and the traffic analysis team to determine how the design can be revised and still meet the project goals.
  - At the end of the process a comparison of the traffic analysis and design analysis occur to determine that they match.
- For projects where the design precedes the traffic analysis, a detailed design is developed and provided to the traffic analysis team for analysis.
  - The traffic analysis is developed based on the design provided and any locations where the design does not meet the project goals is identified and recommendations on design revisions are provided.
Additionally, any locations where the design provided exceeds what is needed to meet the goals of the project is noted and provided to the project’s design team (namely the Roadway Design Lead) to determine, through value engineering, if design revisions are warranted (see 1RD1, 2RD1, 1VM1, and 2VM1 for related information).

At the end of the process, a comparison of the traffic analysis and design analysis is used to determine that they match.

Once the Draft Express Design Traffic Analysis is developed, it is submitted to the Traffic Management Unit (Congestion Management Section) for review.

Develop Express Design Traffic Analysis Summary

After a review of the analysis and receiving approval from the Traffic Management Unit (Congestion Management), the analysis is finalized through the development of an Express Design Traffic Analysis Summary. The summary includes a brief description of the alternatives/alignments evaluated, a simplified reporting of the Measures of Effectiveness (MOE), and conclusions of the evaluation.

- To finalize the Summary, the final version is sealed by the Professional Engineer that was responsible of the analysis.
- The final Summary as well as the analysis files is delivered to the Project Lead and uploaded to the project SharePoint site by the Congestion Management Project Engineer or Project Design Engineer.

All of the requirements to develop and complete the summary are described in the Express Design Traffic Analysis Guidelines.

Determine Level of Significance

Referencing the Guidelines for Determining Work Zone Level of Significance, the Traffic Management Unit (Work Zone Traffic Control) or Transportation Planning Unit evaluates the following project characteristics to determine project/work zone level of significance:

- Category and project type
- Existing volumes and traffic lanes
- Total truck traffic (dual & TTST combined)
- US or NC route
- Project length

The determination of the level of significance can be determined based on the EDTV data; however, the determination should be revisited once the project level traffic forecast is completed (see 1TP1 for related information). The Transportation Planning Unit or Traffic Management Unit (Work Zone Traffic Control) documents the determination in the planning process and coordinates with the Traffic Operations Engineer (see 1TO1 for related information).
2TM1 Complete Traffic Analysis

Overview
Obtain a traffic operations analysis that evaluates the study area, both with and without the proposed project.

References
- Traffic Engineering Suite
- Capacity Analysis Guidelines
- Simulation Guidelines
- Guidelines for Determining Work Zone Level of Significance

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional Support</td>
</tr>
<tr>
<td>Traffic Operations Analysis Technical Memorandum</td>
<td>Initiate/Scope Traffic Operations Analysis</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Develop Analysis</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Complete the Traffic Operations Analysis Technical Memorandum</td>
<td>X</td>
</tr>
</tbody>
</table>

Initiate/Scope Traffic Operations Analysis

The traffic operations analysis is to develop the measures of effectiveness (MOEs), typically in the form of level of service (LOS), and is to support the environmental document’s purpose and need statement for projects that have congestion or mobility related needs. The traffic operations analysis also includes the development of recommended lane geometries, storage lengths, and the design configurations for the Design Recommendation Plan Set (see 2RD1 for related information) or any alternatives/alignments included in the study.

To initiate this analysis, the Traffic Management Unit (Congestion Management) determines the level of project complexity based on the levels of traffic operations:

- **Level 0** - Low traffic volume locations where traffic operations are not critical to the design or analysis of the project.
  - Typical projects include low volume bridge replacements and basic maintenance operations.
  - No detailed traffic analysis is required.
- **Level 1 (Basic)** - Level 1 analysis involves basic traffic operations that can be reviewed by use of macroscopic analysis tools.
  - Typical projects include simple intersection operation (unsignalized, signalized, roundabouts), basic corridor analysis, and freeway operations (including merge, diverge, weave) that are mostly under capacity.
Traffic Analysis Software typically used for this analysis include: Synchro, HCS, SIDRA.

- Level 2 (Intermediate) - Level 2 analysis involves more complex traffic operations that can be best evaluated reviewed by use of microscopic analysis tools.
  - Typical projects may include freeway operations near or above capacity, innovative intersections and corridors that include designs such as (but are not limited to) Reduced Conflict Intersections, Continuous Flow Intersections, Diverging Diamond Interchanges.
  - Traffic Analysis Software typically used for this analysis is TransModeler.

- Level 3 (Advanced) – Level 3 analysis involves the highest complex traffic operations. These projects require evaluation by use of advanced methodology involving microscopic analysis tools.
  - Typical projects may include (but are not limited to) complex freeway system interchanges, new alignment projects (both freeway and arterial) that involve potential multiple travel routing, and multi-modal projects.
  - Traffic Analysis Software typically used for this analysis is TransModeler.

Once a level of analysis is determined, the Traffic Management Unit (Congestion Management) verifies that the analysis is to be completed by an individual prequalified to perform the analysis. (Note: Prequalification for Congestion Management work codes is by individual, not by firm.)

Once the project is assigned, the Traffic Management Unit (Congestion Management) develops the scope of the work. The limits of the analysis and intersections to be included in the analysis are typically to match those included in the traffic forecast. The traffic analysis also typically includes the following scenarios:

- Base Year No-Build (based on existing conditions)
- Future Year No-Build (based on existing conditions, without the proposed project but with any other fiscally constrained project(s) in place)
- Future Year Build for each alternative/alignment
- Base Year Build may be analyzed for some projects considering:
  - If determined to be warranted by the Congestion Management Project Engineer or Regional Engineer.
  - Typically completed only for the recommended alternative/alignment.

The scoping of the analysis is completed in accordance with the Congestion Management Scope Templates, which is included in the Traffic Engineering Suite under the Scope and Estimate Resources section.

- Level 1 projects are to use the HCS/Synchro/Sidra scope template, and Level 2 and Level 3 projects are to use the TransModeler scope template.
- The scope template is attached to the overall scope for multi-discipline task orders and is not to be modified or renumbered as the tasks are tied to the inputs in the Scope and Manday Estimate spreadsheet.

Develop Analysis
The traffic operations analysis is to be completed in the prescribed software package in accordance with the Congestion Management Guidelines. Level 1 projects are to adhere the Capacity Analysis Guidelines, while Level 2 and 3 projects are to adhere to the Simulation Guidelines.
The first step in the analysis process is to develop the Base Year and Future Year No-Build scenarios, with the following considerations.

- These may be developed and submitted separately from the Build analysis, if determined to be appropriate by the project team.
- Preliminary review and approval of the No-Build analysis may be helpful in validating the Purpose and Need for the environmental document. Preliminary review and approval can also be beneficial for complex projects where the build scenarios expand on the no-build analysis and help reduce re-analysis by identifying issues earlier in the process.
- It is recommended that the Base Year and Future Year No-Build models for all Level 3 projects (and some Level 2 projects) be reviewed and approved prior to the development of Build scenarios.

The next step is to develop the analysis of the Build alternatives/alignments. The Build analysis is typically accomplished in one of two ways, either the traffic analysis precedes the design, or the design precedes the traffic analysis.

- For projects where the traffic analysis precedes the design, a general design concept is identified for the traffic analysis and the purpose of the analysis is to develop the details of the design to meet the goals of the project (typically a level of service/LOS target).
  - The analysis determines the recommended design layout and provide the required lane configuration and storage lengths.
  - The design recommendations are then provided to the design team for incorporation into the project’s design plans.
  - If elements of the recommended design cannot be accommodated in the design due to constraints, then coordination is to occur between the design team and the traffic analysis team to determine how the design can be revised and still meet the project goals.
  - At the end of the process a comparison of the traffic analysis and design analysis shall occur to determine that they match.

- For projects where the design precedes the traffic analysis, a detailed design is developed and provided to the traffic analysis team.
  - The traffic analysis is developed based on the design provided and any locations where the design does not meet the project goals is identified and recommendations on design revisions are provided.
  - Additionally, any locations where the design provided exceeds what is needed to meet the goals of the project is noted and provided to the project’s design team (namely the Roadway Design Lead) to determine, through value engineering, if design revisions are warranted (see 2RD1 and 2VM1 for related information).
  - At the end of the process, a comparison of the traffic analysis and design analysis is used to determine that they match.

**Complete the Traffic Operations Analysis Technical Memorandum**

After receiving approval from the Traffic Management Unit (Congestion Management), the analysis is to be finalized through a Traffic Operations Analysis Technical Memorandum.
To finalize the Memorandum, the final version is sealed by the North Carolina Professional Engineer that was in responsible charge of the analysis.

The final Memorandum is uploaded to the project SharePoint site by the Congestion Management Project Engineer, with a notification to the Roadway Design Lead and the Signing and Delineation Designer (see 2RD1 and 2SD1 for related information).

All of the requirements to develop and complete the technical memorandum are described in the *Capacity Analysis Guidelines* and *Simulation Guidelines*. 
2TM2 Initiate Transportation Management Plan

Overview
Begin this activity based on the Design Recommendation Plan Set in order to verify the overall transportation management strategy with the Division, identify any impacts to right-of-way, and identify all items that require coordination with other disciplines/Units for inclusion in the final Transportation Management Plan (TMP).

References
- American Association of State Highway and Transportation Officials (AASHTO) *A Policy on Geometric Design of Highways and Streets and all Errata*
- Federal Highway Administration (FHWA) *Manual on Uniform Traffic Control Devices (MUTCD)*
- Federal Highway Administration (FHWA) *Standard Highway Signs*
- Federal Highway Administration (FHWA) *Rule on Work Zone Safety and Mobility (23 CFR 630 Subpart J and K)*
- Transportation Research Board (TRB) *Highway Capacity Manual*
- *Roadway Design Manual*
- *Standard Specifications for Roads and Structures*
- *Roadway Standard Drawings*
- Supplement to the Manual on Uniform Traffic Control Devices (NCSMUTCD)
- *Guidelines for Transportation Management Plan Development*
- *Work Zone Traffic Control (WZTC) Design Manual*
- *Guidelines for the Use of Positive Protection in Work Zones*
- *Temporary Shoring Policies and Procedures*
- *Policy for Providing Temporary Pedestrian Accommodations in Work Zones*
- *Americans with Disabilities Act of 1990 (ADA)*
- *NCDOT Quality Management Manual*

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary Traffic Control (TTC) Concept Plans</td>
<td>▪ Complete Concept TTC Plans</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>▪ Lead TTC Concept Review Meeting</td>
<td>X</td>
</tr>
</tbody>
</table>

Complete Concept Temporary Traffic Control (TTC) Plans
The WZTC Project Engineer, with support from the Work Zone Traffic Control (WZTC) Project Design Engineer, develops the conceptual temporary traffic control (TTC) plans to demonstrate how traffic (motorists, pedestrians, and cyclists) is to be safely maintained during construction activities in a manner...
that does not overly degrade mobility, compromise worker safety, or prevent timely and efficient completion of the project. The plans are to include overview drawings, details, preliminary general notes, and written construction staging.

For this task, the WZTC Project Engineer is to:

- Facilitate resolution of constructability concerns and identify all areas where additional coordination with other disciplines/Units is needed.
- Review with and receive concurrence from Division construction staff and provide action items to other disciplines/Units responsible for temporary components of the Final TTC Plans (see 3TM1 for related information).

To prepare the concept plans, the WZTC Project Engineer, with support from the WZTC Project Design Engineering, is to:

- Analyze the Design Recommendation Plan Set (see 2RD1 for related information), Preliminary General Drawings (see 2ST2 for related information), and current hydraulics design (see 2HY1 and 2HY2 for related information), coordinating directly with each discipline/Unit to ensure the WZTC Project Engineer is reviewing the most up-to-date information.
- Initiate coordination with the Utilities Lead, Utilities Coordinator, and Utility Design Engineer to discuss any known issues regarding the construction of utilities constructed by the contractor or during the term of the highway construction.
- Initiate coordination with the Signing and Delineation Designer to discuss potential signing (notably for overhead signs, consequential guide signs, temporary regulatory signs that direct temporary traffic patterns).
- Perform a field review/site investigation.
- Determine work zone capacity, obtain hourly traffic counts or Annual Average Daily Traffic (AADT), and determine lane and road closure restrictions.
- Develop a transportation management strategy for vehicles and pedestrians.

The plans also include identifying several items for the plans that include:

- Proposed road closures and detours, including need and expected duration.
- Proposed temporary alignments and grades.
- Location and type of work zone positive protection.
- Locations of proposed temporary drainage.
- Location of proposed temporary shoring for the maintenance of traffic.
- Location and number of temporary signals and signal timing (see 2SG1 and 2SS1 for related information).

The WZTC Project Engineer is to also develop:

- Preliminary general notes, limited to proposed lane and road closure restrictions, as well as hauling restrictions.
- Written construction staging that aligns with the overview drawings and describes in broad terms, the construction that is taking place in each construction phase and how traffic is maintained in each phase.
The WZTC Project Engineer coordinates the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution.

**Lead TTC Concept Review Meeting**

After developing the TTC Concept Plans, the Regional WZTC Engineer, with support from the WZTC Project Design Engineering, is to schedule and lead a TTC concept review meeting with the following considerations:

- Set up the TTC review meeting with Division construction, Roadway Design Lead, Hydraulics Design Engineer, Structures Lead, and Regional Traffic Engineer.
  - For complex, significant projects, this meeting may also include the Construction Unit and Statewide Transportation Operation Center (STOC).
  - Depending upon the complexity of the project, it may be beneficial to conduct this meeting as part of the Field Inspection Review Meeting. Otherwise, conduct a separate meeting prior to the Field Inspection Review Meeting.
- Prior to meeting, provide the TTC Concept Plans and an agenda specifying points of discussion and items of further coordination.
- Submit meeting minutes, including action items and the further coordination required to complete Final TTC plans.
3TM1 Complete Transportation Management Plan

Overview
Begin this activity after Division concurrence with temporary traffic control (TTC) concept, where early and effective coordination with other disciplines/Units is needed to deliver a final Transportation Management Plan (TMP).

References
- American Association of State Highway and Transportation Officials (AASHTO) A Policy on Geometric Design of Highways and Streets and all Errata
- Federal Highway Administration (FHWA) Manual on Uniform Traffic Control Devices (MUTCD)
- Federal Highway Administration (FHWA) Standard Highway Signs
- Federal Highway Administration (FHWA) Rule on Work Zone Safety and Mobility (23 CFR 630 Subpart J and K)
- Transportation Research Board (TRB) Highway Capacity Manual
- Roadway Design Manual
- Standard Specifications for Roads and Structures
- Roadway Standard Drawings
- Supplement to the Manual on Uniform Traffic Control Devices (NCSMUTCD)
- Guidelines for Transportation Management Plan Development
- Work Zone Traffic Control (WZTC) Design Manual
- Guidelines for the Use of Positive Protection in Work Zones
- Temporary Shoring Policies and Procedures
- Policy for Providing Temporary Pedestrian Accommodations in Work Zones
- Americans with Disabilities Act of 1990 (ADA)
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td>Final Transportation Management Plan (TMP)</td>
<td>Complete Final TTC Plans</td>
<td>WZTC Project Engineer</td>
</tr>
<tr>
<td>Submittal</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Complete Final TTC Plans
To complete this task, the WZTC Project Engineer, with the support of the WZTC Project Design Engineer, advance the TMP by incorporating all previously agreed upon transportation management strategies and recommendations, completing the required coordination with other disciplines/Units and progressing to final plan format.
Upon receiving Division concurrence with the TTC concept, the WZTC Project Engineer is to directly coordinate with the previously identified disciplines/Units around several specific elements of design.

- Roadway Design Unit/Roadway Design Lead
  - Temporary shoring for staged embankment construction
  - Temporary alignments
  - Temporary pavement
  - Temporary guardrail, end units, guardrail to portable concrete barrier transitions, re-lapping of guardrail
- Structures Management Unit/Structures Lead
  - Temporary shoring for substructure construction
  - Staged bridge construction (construction joint locations)
  - Girder erection over open roads including need and location of shoring towers
  - Anchored portable concrete barriers on bridge decks
- Hydraulics Unit/Hydraulics Design Engineer and Roadside Environmental Unit/Roadside Environmental Engineer
  - Temporary drainage
  - Staged culvert construction
- Geotechnical Engineering Unit/Design Geotechnical Engineer
  - Temporary shoring
  - Temporary slopes
- ITS and Signals Unit/Signal Lead and Signal System Engineer
  - Temporary traffic patterns at signalized intersections
- Utilities Lead/Utilities Coordinator/Utilities Design Engineer
  - Relocation of utilities by the contractor
- Signing and Delineation Unit/Signing and Delineation Designer
  - Coordinate on development of intermediate signing plans (notably for overhead signs, consequential guide signs, temporary regulatory signs that direct temporary traffic patterns) for each phase of construction
- Regional Traffic Engineer
- Statewide Transportation Operations Center (STOC)
- Transportation Operations and Incident Management

The WZTC Project Engineer documents all coordination efforts, completing coordination with the identified disciplines/Units prior to Plan-in-Hand Review Meeting. Upon request, the WZTC Project Engineer also provides WZTC pay items, estimated quantities, and estimated cost for use by the Contract Standards and Development Unit to prepare the project for letting.

Concurrent with the on-going coordination, the WZTC Project Engineer is to progress the TMP for the PS&E phase, including:

- Title Sheet/Legend
- Final General Notes
- Final Phasing in phase/step format
- Detailed long-term temporary traffic patterns that align with final phasing including:
• Cut Sections at strategic locations that detail spatial relationship among traffic, traffic control devices, and construction
• Temporary Pavement Marking
• Channelization
• Delineation
• Positive Protection
• Work Zone Signing, including the location and messaging of Portable Changeable Message Signs
• Modifications to existing signing due to temporary traffic patterns
• Pedestrian accommodations
  ▪ Offsite detour details that include both Advance Warning and Trail Blazing Signs
  ▪ Special Details
    • Work Zone Speed Reduction Signing
    • Portable concrete barriers at Temporary Shoring
    • Special Sign Designs

The WZTC Project Engineer is to also submit the following items with the Final TMP:

  ▪ Draft version of TMP estimate of WZTC pay items and estimated quantities.

The WZTC Project Engineer coordinates the QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution.
STM1 Traffic Management Construction Support

The WZTC Project Engineer provides the following support during the Construction Phase:

- Provides technical expertise and answers questions on the project’s Transportation Management Plan (TMP) and associated Temporary Traffic Control (TTC) Plans
- Completes Construction Revision (as needed):
  - Performs construction revisions of the latest version of the Let Plans (see 5CS1 for related information) to address identified field issues
  - Coordinates the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and/or distribution
- Completes Work Zone Safety Audits for significant project and/or when crash severity is a concern or when the project receives public comments
- Reviews construction access point modifications
- Reviews changes in traffic control plan to accommodate contractor means and methods, utility constrains, or ROW issues that arise in construction
- Reviews value Engineering proposals from contractor
1TO1 Initiate Traffic Systems Operations Scoping

Overview
Determine project/work zone category of significance and complete the necessary tasks based on the identified category.

References
- Work Zone Levels of Significance
- NCDOT Signals Map
- Guidelines for Determining Work Zone Level of Significance
- Integrated Corridor Management (ICM) Project Process Outline (PPO)
- CCTV Camera and DMS Preliminary Siting Guidance
- Operational Risk Assessment Handbook (In development)
- Future Location of all Documents
- https://ncconnect.sharepoint.com/:f:/r/sites/trafficsystemsoperationsprojects/Shared%20Documents/References?csf=1&web=1&e=tqPQy2
- NCDOT Quality Management Manual

Determine Level of Significance
Referencing the Guidelines for Determining Work Zone Level of Significance, Traffic Management (Work Zone Traffic Control) or Transportation Planning documents the level of significance determination, coordinating the findings with the Traffic Operations Engineer (see 1TM1 for related information).

If a project is determined to be a significant project (either Category Level 1 or Level 2 or there is a level of significance after construction), the Traffic Operations Engineer initiates scoping of traffic systems operations strategies needed during and after construction. Determining all affected intelligent transportation system (ITS) devices and coordinating corridors are crucial to the scoping, design, and implementation of comprehensive incident management plans.

If a project is determined to be not significant (either Category Level 3 or Level 4), then Traffic Operations Engineer, as coordinated with others on the team, may determine that ITS device scoping be included in the project. Determining all affected coordinated corridors is crucial to the scoping, design, and implementation of signal timing plans for the duration and completion of the project. Also see 1SS1 for related information on non-significant projects.

Deliverables (if a Significant Project)

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional Support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Traffic Operations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineer</td>
</tr>
<tr>
<td>Operational Risk Assessment</td>
<td>Complete Operational Risk Assessment</td>
<td>X</td>
</tr>
<tr>
<td>Incident Management Alternate /</td>
<td>Develop Initial Incident Management</td>
<td>X</td>
</tr>
<tr>
<td>Detour Map</td>
<td>Alternate and Detour Options</td>
<td></td>
</tr>
<tr>
<td>Traffic Operations Strategies</td>
<td>Develop Initial Traffic Operation</td>
<td>X</td>
</tr>
<tr>
<td>Checklist</td>
<td>Strategies</td>
<td></td>
</tr>
</tbody>
</table>

1TO1 Initiate Traffic Systems Operations Scoping
June 2021
Complete Operational Risk Assessment

Operational Risk Assessments (ORA) are completed along with Planning Documents early in the project process. This allows for proper planning, analysis, coordination, and design of suggested mitigations within the report. It is expected that the Operational Risk Assessment is used to inform cost estimates for the preliminary engineering and construction phases, project schedules, and the design of the project.

Operations Risk Assessments are requested as part of the Integrated Project Delivery (IPD) process for the following STIP projects:

- Interstate (I-####) projects >$14M
- Rural (R-####, A-####, and X-####) projects >$100M
- Urban (U-####) projects >$100M
- Highway Safety (W-####, SI-####, and SF-####) projects >$70M

The estimate project costs are based on estimated construction costs before being assigned sub-TIP numbers.

Just because an ORA is requested and meets the thresholds above, does not mean that one is completed. Projects that do not present impacts or risks to the road network, do not require an ORA. For example, the Traffic Systems Operations Unit may determine the construction of a new ring freeway with relatively small impacts to existing traffic does not need an ORA.

For significant projects, the Operational Risk Assessment of an individual construction project considers safety, congestion, mobility, commerce (e.g. freight), and influence of other projects on the traffic operations of the surrounding road network. The Operational Risk Assessment suggests potential strategies to identified risks, including the order that construction projects are carried out. A key objective of the Operational Risk Assessment is to inform the project prioritization process and identify preferred project schedule from a traffic operations perspective.

The Traffic Operations Engineer sends a completed Operational Risk Assessment to the Feasibility Studies Unit and Strategic Prioritization Office for preferred phasing of the projects. The Operational Risk Assessment is also used to internally develop traffic operation strategies.

Develop Initial Incident Management Alternate and Detour Options

To ensure that incident management alternate and detour routes are included in the environmental document, the Traffic Operations Engineer develops an initial map detailing potential routes to help refine
the project limits (refer to the Integrated Corridor Management Project Process Outline for the alternative routes and/or detour routes for a project). The Traffic Operations Engineer:

- Includes any routes that need updated signal timing.
- Coordinates with the Feasibility Studies Unit to include in the project limits.
- Ensures the applicable Division(s) review the potential routes.

The Traffic Operations Engineer coordinates with the Environmental Analysis Unit if incident management alternate / detour routes are required. Typically permanent ITS devices on incident management detour routes are outside the normal project limits and need to be evaluated as part of the environment document.

The Signal Systems Engineer prepares the map in accordance with the Integrated Corridor Management Project Process Outline. After the map is complete, the Traffic Operations Engineer sends the map to the following units for their reference:

- Environmental Analysis Unit
- Feasibility Studies Unit
- The applicable Division(s)
- Traffic Management Unit (Work Zone Traffic Control)

Develop Initial Traffic Operation Strategies

The Traffic Operations Engineer could develop the following traffic operation strategies to address mobility and safety throughout the project limits to support the construction effort.

- Tow contracts
- Incident management alternate / detour route strategies
- Smart work zone technology
- Other means to improve the mobility and safety of the work zone or address concerns identified in the Operational Risk Assessment

The Traffic Operations Engineer coordinates with the applicable Division(s) on potential strategies to be used during construction, providing a checklist of items that may be feasible for the project.

Identify New ITS Devices and Incident Management Signal Equipment Upgrades

To determine signal equipment upgrades needed for incident management, the Traffic Operations Engineer:

- Determines which signal systems, if any, are affected along the project corridor or identifies/refines incident management alternate and/or detour routes using the NCDOT Signals Map.
- Compiles a list of all affected signal system and the signals within those systems. The list includes:
  • Any new systems being constructed by the project or signals being added to existing systems by the project.
  • The party responsible for traffic operations along the corridor (NCDOT or municipality).

The Signal System Engineer assigns a signal system number to any new system(s) being constructed by the project.
The Traffic Operations Engineer, in coordination with the ITS and Signals Unit (Signal Design Section and Regional ITS Section) and the Signal System Engineer, is to:

- Determine additional permanent ITS devices and locations.
- Provide a planning level map showing new and existing device locations for a corridor.

At this point, the Traffic Operations Engineer also:

- Finalizes the map, sending it to the appropriate Units or Sections included in the planning process.
- Sends the Planning Level ITS device map to the Environmental Analysis Unit to include in the project limits.

The Traffic Operations Engineer continues coordination with the Environmental Analysis Unit as the ITS device strategies are further refined on the incident management alternate / detour routes.

Develop Operational Strategy and ITS Scope Costs
For this task, the Traffic Operations Engineer develops a planning-level cost estimate for any traffic system operational strategies to be included in the conceptual construction estimate (see 1CS1 for related information). This could include:

- Tow contracts
- Integrated Corridor Management (ICM)
- Incident Management Assistance Patrol (IMAP)
- Traffic Management Center (TMC) resources.

The cost could also include:

- Incident management signal system upgrades
- Signal timing
- New permanent ITS devices
- NCDOT operational cost post-construction
- Any other additional equipment needed

The Traffic Operations Engineer submits the cost estimate to the Feasibility Studies/Corridor Development Unit Lead.

Complete QC/QA Procedures
The Traffic Operations Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and/or distribution of any deliverables.

Deliverables (if not a Significant Project)

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Level ITS Device Map</td>
<td>Identify New ITS Devices</td>
<td>X</td>
</tr>
<tr>
<td>Planning Level Estimate of Traffic Operations Scope</td>
<td>Develop ITS Scope Costs</td>
<td>X</td>
</tr>
</tbody>
</table>

1TO1 Initiate Traffic Systems Operations Scoping
June 2021
Identify New ITS Devices
In coordination with the ITS and Signals Unit (ITS Design Section), the Traffic Operations Engineer determines any additional ITS devices and locations. The Traffic Operations Engineer also provides a planning level map showing new and existing device locations for a corridor.

Develop ITS Scope Costs
For this task, the Traffic Operations Engineer develops a planning-level cost estimate for any traffic systems operational strategies to be included in the conceptual construction estimate (see 1CS1 for related information). This is to include new permanent ITS devices. The Traffic Operations Engineer submits the cost estimate to the Feasibility Studies/Corridor Development Unit Lead.

Complete QC/QA Procedures
The Traffic Operations Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and/or distribution of any deliverables.
2TO1 Initiate Transportation Operations Plan (if a Significant Project)

Overview
Work with Traffic Management Unit (Work Zone Traffic Control) and ITS and Signals Unit to develop the traffic operations portion of the Transportation Management Plan (TMP). Work Zone Traffic Control develops the temporary traffic control (TTC) plans / Maintenance of Traffic Plan and Traffic Systems Operations develops the plans for Travel Demand Management, signal retiming, integration of ITS devices supporting incident management alternate / detour routes, and Incident Management Plan.

References

- Guidelines for Transportation Management Plan Development
- Work Zone Traffic Control Design Manual
- Guidelines for the Use of Positive Protection in Work Zones
- Integrated Corridor Management (ICM) Project Process Outline (PPO)
- Incident Management Plan Guidelines
- Operational Risk Assessment Handbook (In development)
- Incident Management Assistance Patrol (IMAP) Resources for Significant Project (In Development)
- Future Location of all Documents
- https://ncconnect.sharepoint.com/:f:/r/sites/trafficsystemsoperationsprojects/Shared%20Documents/References?csf=1&web=1&e=tqPQy2
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated Operational Risk Assessment</td>
<td>Validate Operational Risk Assessment</td>
<td>Traffic Operation Engineer</td>
</tr>
<tr>
<td>Initial Incident Management (Quick Clearance) Strategies Recommendations</td>
<td>Initiate Incident Clearance Strategies and Incident Management Plan</td>
<td>X</td>
</tr>
<tr>
<td>Draft Signal Timing Plans</td>
<td>Prepare Signal System Coordination and Upgrades List</td>
<td>X</td>
</tr>
<tr>
<td>Integrated Corridor Management Decision Matrix</td>
<td>Develop Incident Management Alternate/Detour Route Response Plan</td>
<td>X</td>
</tr>
<tr>
<td>List of Smart Work zone equipment</td>
<td>Determine Level of Smart Work Zone Needs for Incident Management</td>
<td>X</td>
</tr>
<tr>
<td>Updated cost estimate</td>
<td>Prepare Detailed Traffic Operations and ITS Cost Estimate</td>
<td>X</td>
</tr>
<tr>
<td>Initial Stakeholder Meeting Minutes</td>
<td>Hold initial stakeholder meetings about Traffic Operation Strategies</td>
<td>X</td>
</tr>
</tbody>
</table>

Validate Operational Risk Assessment
After projects are selected and prioritized, the Traffic Operations Engineer determines if there are any effects that require changes to the traffic operation strategies. The Traffic Operations Engineer also
updates the Operational Risk Assessment, as needed, to include any updates to the project. The validation also is to update for changes to the project limits or the phasing of adjacent projects.

**Validate Traffic Operations Strategies**
Once the strategies are selected to mitigate the work zone impacts and the project risks are updated, the Traffic Operations Engineer develops a concept planning document that:

- Assigns leads for each strategy.
- Establishes the need and purpose of each strategy.
- Aligns milestones to ensure synchronization of the strategy development.

**Initiate Incident Clearance Strategies and Incident Management Plan**
The Traffic Operations Engineer coordinates with the applicable Division to provide a list of the incident clearance requirements for the project, which are to be administered by NCDOT and the contractor. The Traffic Operations Engineer:

- Determines requirement for type and management of tow contracts (e.g., DOT managed, contractor managed, etc.).
- Determines the expansion of Incident Management Assistance Patrol (IMAP) routes.
- Determines if any other means that assists in responding to and clearing incidents quickly are required for the project.

**Prepare Signal System Coordination Plans and Upgrades List**
The Signal System Engineer coordinates with the applicable Division to:

- Verify with the Signal/ITS Lead (see 2SG1 for related information) if the traffic signals along a potential incident management detour route may require equipment upgrades for NCDOT to communicate with the traffic signals.
- Develop draft signal timing plans along the incident management detour routes.
- Coordinate with the Signal/ITS Lead (see 2SG1 for related information) if updated signal plans are required to replace equipment or install a new signal.
- Coordinate with Signal/ITS Lead (see 2SG1 for related information) if traffic communication plans are required to include traffic signals in a centralized signal system software.

**Develop Incident Management Alternate/Detour Route Response Plan**
Using the Alternate/Detour Route Map, the Traffic Operations Engineer:

- Coordinates the development of the ITS and Signals plans, signal timing plans, and changeable trailblazers with the other Units.
- Develops response strategies.
- Conducts a field inspection to validate the selected incident management routes with Division and other required stakeholders.
- Develops the integration plan for the ITS devices and traveler information with coordinated signal system timing.
- Develops and validates an Integrated Corridor Management Decision Matrix or ruleset summarizing the responses for each scenario.
- Prepares an Integrated Corridor Management Decision Matrix or ruleset in accordance with the Integrated Corridor Management Project Process Outline.

**Determine Level of Smart Work Zone Needs for Incident Management**

If a Smart Work Zone is required, the Traffic Operations Engineer:

- Meets with Traffic Management Unit (Work Zone Traffic Control) to discuss options that can be incorporated into the Incident Management Plan.
- Adds the appropriate level of involvement of the State Traffic Operations Center in the operations and maintenance of smart work zone devices.

**Prepare Detailed Traffic Operations and ITS Cost Estimate**

Once the strategies are developed, the Traffic Operations Engineer prepares a refined estimate to include the cost to the NCDOT and the cost to the contractor. The Traffic Operations Engineer may include an operational cost estimate for the project after construction if items were identified. The estimate may include:

- Portable and temporary ITS devices
- IMAP expansion
- Tow contract management
- Traffic Management Center (TMC) operation
- ITS device installation

Some of these pay items are at NCDOT’s cost during and after construction, and others are included in the contractor’s construction cost estimate. The estimate is sent to the Project Manager, who reviews the estimate, and Contract Standards and Development Unit (see 2CS1 for related information).

**Hold Initial Stakeholder Meetings about Traffic Operations Strategies**

The Traffic Operations Engineer meets with project stakeholders to coordinate associated incident management efforts that need to occur during construction within their areas. These stakeholders could include:

- Municipal and/or county Law Enforcement
- Towing industry
- Municipal traffic engineers and/or signal engineers

The Traffic Operations Engineer prepares the meeting minutes and submits these minutes to the Project Manager and all meeting attendees.

**Complete QC/QA Procedures**

The Traffic Operations Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and/or distribution of any deliverables.
3TO1 Advance Transportation Operations Plan (if a Significant Project)

Overview
Finalize traffic operation plans and start discussions with outside agencies.

References
- Integrated Corridor Management (ICM) Project Process Outline (PPO)
- Incident Management Plan Guidelines
- Incident Management Assistance Patrol (IMAP) Resources for Significant Projects (In Development)
- Memorandum of Understanding (MOUs) with Municipalities and Emergency Responders (In Development)
- State Traffic Operations Center (STOC)/Traffic Management Center (TMC) Operator Training (In Development)
- Helping All Work Zones Keep Safe (HAWKS) Process Document (In Development)
- Tow Contract Document (In Development)
- Future Location of all Documents
  - https://ncconnect.sharepoint.com/:f:/r/sites/trafficsystemsoperationsprojects/Shared%20Documents/References?csf=1&web=1&e=tqPQy2
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements of Incident Management Plan</td>
<td>Submit Requirements for Incident Management Plan</td>
<td>X</td>
</tr>
<tr>
<td>Final Incident Management Alternate Detour Route Response Plan</td>
<td>Submit Incident Management Alternate / Detour Route Response Plan</td>
<td>X</td>
</tr>
<tr>
<td>Final Demand Management Plan</td>
<td>Submit Demand Management Plan</td>
<td>X</td>
</tr>
<tr>
<td>Draft Tow Contract Documents</td>
<td>Submit Tow Contract Documents</td>
<td>X</td>
</tr>
<tr>
<td>Draft Law Enforcement Memorandum of Understanding</td>
<td>Initiate Memorandum of Understanding (MOU)/Agreements with Law Enforcement/Municipalities</td>
<td>X</td>
</tr>
<tr>
<td>Draft Agreement with Municipalities</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Coordination Meeting with NCDOT Communications</td>
<td>Coordinate with NCDOT Communication on Public Information Plan</td>
<td>X</td>
</tr>
<tr>
<td>Final Equipment List</td>
<td>Develop Equipment Purchase Need for Construction</td>
<td>X</td>
</tr>
</tbody>
</table>
Update Construction-Phase Operations Cost Estimate
Using the final Transportation Management Plan (TMP), the Operational Plan, and the final equipment list, the Traffic Operations Engineer develops a final cost estimate for the project in coordination with other Units/Sections, as needed.

Submit Requirements for Incident Management Plan
The Traffic Operations Engineer:

- Prepares and submits the requirements of an incident management plan for the project.
- Coordinates with Traffic Management Unit (Work Zone Traffic Control) to include the relevant information on the temporary traffic control (TTC) plans or the Traffic Operations Plan (see the Incident Management Plan Guidelines and 3TM1 for related information).

If the project is to be let by the Division, the Traffic Operations Engineer coordinates with the Division to let equipment, tow contract, and hiring the Incident Management Assistance Patrol (IMAP) drivers. The Traffic Operations Engineer purchases the trucks and provides training for the IMAP drivers.

Submit Incident Management Alternate / Detour Route Response Plan
The Traffic Operations Engineer coordinates with the following leads regarding equipment and data required to be included on the respective plans:

- ITS Lead
- Signal Lead
- Signal System Engineer
- Signing and Delineation Designer

The Traffic Operations Engineer also coordinates with applicable Division and regional personnel.

The Signal System Engineer develops the signal timing plans for incident management detour routes and the thresholds for each plan. The Traffic Operations Engineer:

- Develops message sets for dynamic signs for each detour for each scenario using ITS device locations previously approved.
- Populates a decision matrix or rulesets for each response plan and plan sheets for device locations. The information is populated into tool for State Traffic Operations Center (STOC)/Traffic Management Center (TMC) operators to use during construction.
- Provides a list or chart of equipment needed for each scenario impacted by the detour route.
- Prepares a final response scenario in accordance with the Integrated Corridor Management Project Process Outline.

Submit Demand Management Plan
The Traffic Operations Engineer develops a demand management plan for the project regarding strategies for other alternative modes of transportation during construction (e.g., additional transit routes, ridesharing).
Submit Tow Contract Documents
The Traffic Operations Engineer prepares the draft tow contract documents based on the level of towing required for the project. The Traffic Operations Engineer coordinates with the applicable Division as needed.

Initiate Memorandum of Understanding (MOU)/Agreements with Law Enforcement/Municipalities
The Traffic Operations Engineer continues discussions with law enforcement regarding the project. The Traffic Operations Engineer prepares a draft memorandum of understanding summarizing the project commitments if needed.

The Traffic Operations Engineer continues discussions with the municipalities regarding the project. The Traffic Operations Engineer prepares a draft agreement summarizing the project commitments.

Coordinate with NCDOT Communications on Public Information Plan
If a project requires a Public Information Plan by Traffic Operations, the Traffic Operations Engineer coordinates with applicable Division, Traffic Management Unit (Work Zone Traffic Control), and the Communications Group using the information from the TMP before, during, and/or after construction.

Complete Final Traffic Operations Plan
The Traffic Operations Engineer prepares and submits the final Traffic Operations Plan for bidding or internal execution, which includes:

- A traffic response plan
- A tow contract
- A list of additional items to be included
- Items the contractor is responsible for
- Additional equipment needed for incident management

Develop Equipment Purchase Need for Construction
Using the TMP, the Traffic Operations Engineer determines if any additional equipment is needed to be purchased and included in the overall contract by outside agencies or the Division prior to construction. This list is provided to the Project Manager and Contract Letting for bidding and/or to the Division or region for internal execution. Potential equipment could include:

- Changeable message signs
- Portable closed caption televisions (CCTVs)
- IMAP vehicles
- Trailblazer signs
- Traffic signal equipment

The Traffic Operations Engineer provides a list to FHWA of any exceptions to procure equipment or devices that may be used on future projects.
Complete QC/QA Procedures
The Traffic Operations Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and/or distribution of any deliverables.
4TO1 Complete Transportation Operations Plan-Related Tasks (if a Significant Project)

Overview
Finalize the remaining tasks on the Transportation Management Plan (TMP) with outside agencies.

References
- Integrated Corridor Management (ICM) Project Process Outline (PPO)
- Incident Management Plan Guidelines
- Incident Management Assistance Patrol (IMAP) Resources for Significant Projects (In Development)
- Memorandum of Understanding (MOUs) with Municipalities and Emergency Responders (In Development)
- State Traffic Operations Center (STOC)/Traffic Management Center (TMC) Operator Training (In Development)
- Helping All Work Zones Keep Safe (HAWKS) Process Document (In Development)
- Memorandum of Understanding (MOUs) with Municipalities and Emergency Responders
- Future Location of all Documents
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Law Enforcement Memorandum of Understanding (MOUs)</td>
<td>Complete Law Enforcement Memorandums of Understanding</td>
<td>X</td>
</tr>
<tr>
<td>STOC Operators Training</td>
<td>Confirm available staffing for STOC/TMC</td>
<td>X</td>
</tr>
<tr>
<td>IMAP Procurement Schedule</td>
<td>Initiate IMAP Truck Purchases</td>
<td>X</td>
</tr>
</tbody>
</table>

Finalize Tow Contract Documents
The Traffic Operations Engineer finalizes the details of tow contracts.

Finalize Law Enforcement Memorandums of Understanding
The Traffic Operations Engineer finishes discussions with law enforcement regarding the terms of the memorandum of understanding (MOU). The Traffic Operations Engineer completes the MOU and has NCDOT and the law enforcement agency execute the MOU.

Confirm STOC/TMC Staffing
The Traffic Operations Engineer determines if available STOC/TMC staff is available for additional coverage needed during construction. If additional staff is needed, the Division coordinates with the Traffic Operations Engineer.
Details regarding the training the State Traffic Operations Center (STOC) operator tasks are still in development.

**Expand IMAP Coverage**
The Traffic Operations Engineer coordinates with the applicable Division to prepare a schedule to ensure IMAP Route expansion work zone for:

- Hiring Incident Management Assistance Patrol (IMAP) drivers
- Training IMAP drivers
- Purchasing IMAP vehicles for a project/transfer vehicle to construction work zone

**Verify Incident Management Alternate / Detour Route Response Plan**
The Signal System Engineer verifies the signal timing plans for incident management detour routes and the thresholds for each plan. The Traffic Operations Engineer:

- Verify if TIP schedules for adjacent projects impact alternate/detour routes.
- Verifies previously populated decision matrix or rulesets for each response plan and plan sheets for device locations. The information is populated into tool for State Traffic Operations Center (STOC)/Traffic Management Center (TMC) operators to use during construction.
- Verify list or chart of equipment needed for each scenario impacted by the detour route is still valid.
- Verifies that the final response scenario in accordance with the Integrated Corridor Management Project Process Outline.

**Complete QC/QA Procedures**
The Traffic Operations Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and/or distribution of any deliverables.
5TO1 Complete Transportation Operations Construction-Related Tasks (if a Significant Project)

Overview
Finalize the remaining tasks on the Transportation Management Plan (TMP) with outside agencies. Provide timely reviews and technical expertise throughout the project’s construction phase.

References
- Integrated Corridor Management (ICM) Project Process Outline (PPO)
- Incident Management Plan Guidelines
- Incident Management Assistance Patrol (IMAP) Resources for Significant Projects (In Development)
- State Traffic Operations Center (STOC)/ Traffic Management Center (TMC) Operator Training (In Development)
- Helping All Work Zones Keep Safe (HAWKS) Process Document (In Development)
- Future Location of all Documents
  - https://ncconnect.sharepoint.com/:f:/r/sites/trafficsystemsoperationsprojects/Shared%20Documents/References?csf=1&web=1&e=tqPQy2
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let Tow Contract</td>
<td>▪ Complete Tow Contract Documents</td>
<td>Traffic Operations Engineer</td>
</tr>
<tr>
<td>STOC/TMC Training</td>
<td>▪ Train STOC/TMC Staff</td>
<td>X</td>
</tr>
<tr>
<td>ATMS Integration into STOC</td>
<td>▪ Integrate ATMS STOC &amp; TMC operations</td>
<td>X</td>
</tr>
<tr>
<td>Expanded IMAP Coverage</td>
<td>▪ Finalize IMAP Expansion</td>
<td>X</td>
</tr>
<tr>
<td>Review Contractor submittals</td>
<td>▪ Review submittals provided by Contractor</td>
<td>X</td>
</tr>
<tr>
<td>After Action Review (AAR)</td>
<td>▪ Conduct After Action Review and implement improvements</td>
<td>X</td>
</tr>
</tbody>
</table>

Let Tow Contract
The Division lets the Tow Contract prior to any construction activity traffic impacts.

Train STOC/TMC Staff
The Traffic Operations Engineer coordinates any training needed for STOC/TMC staff for specific projects.

Advanced Traffic Management System (ATMS) Integration
Details regarding the Advanced Traffic Management System (ATMS) integration tasks are still in development.
Finalize IMAP Expansion
The Traffic Operations Engineer coordinates with the applicable Division to prepare a schedule for:

- Hiring Incident Management Assistance Patrol (IMAP) drivers
- Training IMAP drivers
- Purchasing IMAP vehicles for a project

Collaborate with Resident Engineer and Contractor
The Traffic Operations Engineer facilitates communication between the Resident Engineer and the Contractor during construction by:

- Reviewing documents provided by contractor
- Reviewing and coordinating details of the Incident Management Plan
- Reviewing Contractor ITS Device location/placement
- Testing ITS devices after installation
- Attending contractor maintenance of traffic meetings

The Traffic Operations Engineer coordinates with the Division as they manage the project.

After Action Review (AAR)
The Traffic Operations Engineer conducts an AAR after an incident occurs to review incident management project performance. Follow the policy and procedures on how to conduct an AAR. Any improvements identified in the AARs are to be addressed by the Traffic Operations Engineer.

Complete QC/QA Procedures
The Traffic Operations Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and/or distribution of any deliverables.
1TP1 Complete Traffic Forecast

Overview
Obtain an approved traffic forecast that provides the traffic data necessary for analysis.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- Project Level Traffic Forecasting Resource Page
- Traffic Forecasting Technical Policy Manual
- Traffic Forecasting Administrative Policy Manual
- Travel Demand Model Coverage Map
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved Traffic Forecast⁴</td>
<td>Initiate Traffic Forecast</td>
<td>Traffic Forecasting Project Manager</td>
</tr>
<tr>
<td></td>
<td>Scope Traffic Forecast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Produce Traffic Forecast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete and Deliver Traffic Forecast</td>
<td>Transportation Planning Division Planning Staff and Traffic Forecasting Group</td>
</tr>
</tbody>
</table>

⁴ indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Initiate a Traffic Forecast
The traffic forecast is prepared at the end of Stage 1, either concurrent with the Project Scoping Report or following its completion. The project-level traffic forecast is scheduled so that it is completed prior to the issuance of the Notice to Proceed, but not so early that it requires updating during Stage 2.

To initiate a traffic forecast, the Transportation Planning Division is typically contacted by the Project Lead from the:

- Feasibility Studies Unit for pre-environmental and pre-State Transportation Improvement Plan (STIP) planning and study (see 1FS2 for related information)
- Central Corridor Development Unit for pre-environmental and pre-STIP planning and study (see 1FS2 for related information)
- Divisions for the Transportation Improvement Program (TIP) project development
- Project Management for TIP project development
- Structures Management Unit for bridge replacement projects
- Rail Division, Engineering Coordination, and Safety Branch for railroad crossings/safety improvement projects

1TP1 Complete Traffic Forecast
June 2021
A Traffic Forecasting Project Manager and the project team review the project to determine if a traffic forecast is needed. If a traffic forecast is needed, an inquiry can be made about the current status of the project and the availability of a forecast with the State Traffic Forecast Engineer. If a forecast is not available, or in-progress, one may be requested.

To complete an inquiry:

- A standard Traffic Forecast Request Form (available on the Project Level Traffic Forecasting Resource Page) may be used to request a traffic forecast. However, all that is required is communicating a need for a traffic forecast with the Traffic Forecasting Group. The Traffic Request Form or the e-mail inquiry is sent to: TrafficForecast@ncdot.gov.
- The Traffic Forecasting Project Manager produces a map and traffic forecast scope and coordinates with the Transportation Planning Division and the larger project team regarding all aspects of the traffic forecast.

Scope a Traffic Forecast
As part of the scoping process, the Traffic Forecasting Project Manager, in coordination with the project team, determines the junctions and scenarios to be included in a traffic forecast.

Produce a Traffic Forecast
To produce a traffic forecast, the Traffic Forecaster:

- Collects existing and new traffic data needed
- Acquires the official Travel Demand Model (if available) in coordination with the Project Lead
  - Contact the Traffic Forecasting Group (TrafficForecast@ncdot.gov) for information on the availability of and how to acquire Official Travel Demand Models.
  - Also see the Travel Demand Model Coverage Map on the Connect NCDOT site to see what may be available.
- Develops the traffic forecast AADT estimates, truck percentages, and design factors
  - Traffic forecasts are ideally developed objectively and independently based upon available and approved data, such as official travel demand models, historic AADT estimates, and new traffic data collection.

Complete and Deliver a Traffic Forecast
To finalize the traffic forecast, the Traffic Forecasting Project Manager obtains traffic forecast approval from the Transportation Planning Division.

- To assure that a traffic forecast provides objective data that reasonably supports the project though the environmental process without substantial objection, it is provided to the Transportation Planning Division for TPD review and approval. The Traffic Forecast is sent to: TrafficForecast@ncdot.gov.
- After receiving approval from the Transportation Planning Division, the traffic forecast is delivered via e-mail to the Project Lead and uploaded to ATLAS.
Complete QC/QA Procedures
The Traffic Forecasting Project Manager is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
1TS1 Initiate Safety Planning Assessment

Overview
Ensure safety is considered early in the life of the project through screening and subsequent incorporation of safety data into project scoping and design decisions.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References
- Traffic Safety Screening Tool for Express Design (In Development)
- Traffic Safety Screening Tool for Project Scoping Reports (In Development)
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of Purpose and Need Statements Containing Safety</td>
<td>Review Purpose and Need Statements Containing Safety</td>
<td>Project Lead</td>
</tr>
</tbody>
</table>

Conduct Traffic Safety Review for Selected Feasibility Study, Corridor Study, or Express Design
Once the Project Lead runs the Traffic Safety Screening Tool for a selected study/design (see 1FS2 for related information), the Safety Planning Engineer:

- Gathers available safety data (e.g., crash data, available volumes (including non-motorists), roadway characteristics data, etc.) in the vicinity of the project limits, as defined in the project description, but may be extended farther based on specific project considerations.
- Summarizes this detail in a report with project safety-related considerations documented to inform project scoping decisions.
- Sends the report to the Project Lead to be included with the study/design.

Conduct Traffic Safety Review for Selected Project Scoping Reports
Once the Project Lead runs the Traffic Safety Screening Tool for a selected Project Scoping Report (see 1FS3 for related information), the Safety Planning Engineer:
Gathers available safety data (e.g., crash data, available volumes (including non-motorists), roadway characteristics data, etc.) in the vicinity of the project limits, as defined in the project description, but that may be extended farther based on specific project considerations.

- Summarizes this detail in a report with project safety-related considerations documented to inform project scoping decisions.
- Sends the report to the Project Lead to be included with the Project Scoping Report.

**Review Purpose and Need Statements Containing Safety**

For validating any Purpose and Need Statement that contains safety, the State Traffic Safety Engineer, specifically, sends a memo to the NEPA/SEPA Lead and Project Manager, who formally approves the statements regarding safety before it is used as a basis of the environmental document’s Purpose and Need.

- This step ensures NCDOT has safety data to defend safety as the Purpose and Need for a project.
- Purpose and Need Statements with no safety component do not need Traffic Safety Unit approval.

The Traffic Safety Unit is very involved in design concepts and design parameters to ensure improvements address any safety concerns identified in the project limits.

**Complete QC/QA Procedures**

The Safety Planning Engineer is to coordinate the applicable QC review following the NCDOT *Quality Management Manual* procedures and the respective QC Checklist before upload and/or distribution of any deliverables.
2TS1 Complete Safety Analysis and Operational Review

Overview
Ensure the project has adequately addressed any existing safety issues and ensure design elements important to traffic safety are considered.

References

- Federal Highway Administration (FHWA) Manual on Uniform Traffic Control Devices (MUTCD)
- American Association of State Highway and Transportation Officials (AASHTO) Highway Safety Manual (HSM)
- Development of Safety Performance Functions for North Carolina
- Updated and Regional Calibration Factors for Highway Safety Manual Crash Prediction Models
- Signal Recommendations Guidelines for Regional Traffic Engineers
- Traffic Safety Analysis Guidelines for NEPA documentation (In Development)

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Signal Recommendations</td>
<td>Provide Traffic Signal Recommendations</td>
<td>X</td>
</tr>
<tr>
<td>Safety Data and Analysis for Environmental Document</td>
<td>Provide Safety Data and Analysis for the Environmental Document</td>
<td>X</td>
</tr>
<tr>
<td>Roadway Plan Comment Memo</td>
<td>Review Roadway Plans</td>
<td>X</td>
</tr>
<tr>
<td>Signing and Delineation Plan Comment Memo</td>
<td>Review Signing and Delineation Plans</td>
<td>X</td>
</tr>
<tr>
<td>Comments on the Transportation Management Plan (TMP) and temporary traffic control (TTC) plans</td>
<td>Review Transportation Management Plan</td>
<td>X</td>
</tr>
</tbody>
</table>

Provide Traffic Signal Recommendations
In accordance with the Signal Recommendations Guidelines for Regional Traffic Engineers, the Regional Traffic Engineer reviews the available project information to determine if signalization is appropriate based on projected traffic volumes. To do this:

- The Regional Traffic Engineer consults with the assigned Division Traffic Engineer when making recommendations.
- The Regional Traffic Engineer reviews the traffic forecast and proposed intersection design (i.e., the most current roadway design plans; likely the Design Recommendation Plan Set) as inputs for decision making.
- Information on pedestrian volumes or activity is important to consider as pedestrian accommodations are also part of this review.
The Regional Traffic Engineer prepares a memo with signal recommendations that is sent to the Division, Roadway Design Lead, and the Signal Lead.

**Develop Traffic Safety Alternatives Analysis Report (CP2 / CP3)**

For merger projects (if applicable), the Safety Planning Engineer or Group prepares an analysis on projects where safety is in the environmental document’s Purpose and Need, or on projects where value is added in communicating the anticipated safety impacts of a project.

- The inputs needed for this analysis are the traffic forecast, the design criteria file, and the current roadway design files (likely the Design Recommendation Plan Set).
- The analysis uses Highway Safety Manual predictive modeling methodologies to predict the number of crashes along each alternative/alignment being considered, including the “do nothing”/no-build alternative.
- NCDOT-specific calibration factors for models found in the *Development of Safety Performance Functions for North Carolina* and *Updated and Regional Calibration Factors for Highway Safety Manual Crash Prediction Models* are to be used as part of the analysis.
- Design parameters (such as lane widths, shoulder widths and types, and curve radius) and projected traffic volumes are critical inputs. Traffic volumes are used to model the corridor from a safety perspective to give a sense for how each alternative/alignment may perform.

The Safety Planning Engineer summarizes the analysis in a report that outlines how each alternative/alignment is expected to impact safety and to help select the Least Environmentally Damaging Practicable Alternative (LEDPA). Limitations of the analysis are to be clearly outlined in the report. The Safety Planning Engineer provides the report to the NEPA/SEPA Lead and Project Manager.

**Provide Safety Data and Analysis for the Environmental Document**

Documentation of the existing safety conditions along the project area is typically required for inclusion within the Purpose and Need section of the environmental document and organized by the Safety Planning Engineer. This documentation could include:

- A five-year crash history,
- An explanation of the patterns of crashes that exist in the project area,
- How the project is expected to impact safety, and/or
- A high-level summary of the crash history in the project area.

**Review Roadway Plans**

The Regional Traffic Engineer’s Office reviews the current roadway design plans and traffic forecast, considering:

- General design concerns, such as pedestrian accommodations, lane continuity, typical section, and median breaks.
- Safety-related design recommendations submitted to the Roadway Design Lead and Project Manager in a memo.

**Review Signing and Delineation Plans**

The Regional Traffic Engineer’s Office reviews the current Signing and Delineation Plans, considering:
- General concerns related to signing and pavement markings/delineation.
- Safety-related signing/pavement marking recommendations submitted to the Signing and Delineation Designer (for action) and Project Manager (for information) in a memo (see 2SD1 for related information).

**Review Transportation Management Plan**

The Regional Traffic Engineer’s Office reviews the concept Transportation Management Plan (TMP) and participates in the temporary traffic control (TTC) concept review meeting. The Regional Traffic Engineer provides input on the following:

- Overall traffic operations and safety
- Appropriate temporary traffic control devices
- Proposed detours
- Proposed phased construction

Safety-related TTC comments are submitted to the Regional Work Zone Traffic Control (WZTC) Engineer and WZTC Project Design Engineer (see 2TM1 for related information).

When the document is ready in the Plan-in-Hand Stage, the Regional Traffic Engineer’s Office Reviews the final TMP, considering:

- Overall traffic operations and safety
- Temporary traffic control devices
- Detours
- Phased construction

Safety-related TTC comments are submitted to the Regional WZTC Engineer and WZTC Project Design Engineer (see 3TM1 for related information).
1UT1 Develop Initial Utility Relocation and Construction Estimates

Overview
Develop a preliminary estimate for both utility construction and relocation costs to establish the baseline estimate to be used for subsequent utility estimates.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

Additionally, because job titles within NCDOT overlap with job titles in the consulting firms, and because different project management centers within the Department divide project management and technical duties differently, this section clarifies who is filling each role as identified in the deliverable table and task descriptions below.

Utilities Coordinator
The Utilities Coordinator role is typically filled by a Professional Engineering Firm (PEF)/Consultant providing Utilities Coordination services for the project. The Utilities Coordinator coordinates the relocation activities of all utilities on the project but does not provide any design service for any utility.

If a utility is providing complete Utilities Construction Plans for inclusion in the contract, the Utilities Coordinator is responsible for the coordination and delivery to NCDOT of the deliverables assigned to the Utilities Design Engineer that are instead being produced by the utility. The Utilities Coordinator is not responsible for the production of those deliverables.

Utilities Design Engineer
The Utilities Design Engineer role is typically filled by Professional Engineering Firm (PEF)/Consultant providing Utilities Design Services for the project. This firm may or may not be the same firm providing Utilities Coordination Services. There may be more than one PEF providing Utilities Design Services, depending on the number and types of utilities included for construction in the contract and the areas of expertise of each firm.

The role of the Utilities Design Engineer is to design the relocation of the assigned utility facilities. The Utilities Coordinator coordinates the location of those facilities with the other utilities.

If a utility chooses to provide a complete design plan for inclusion in the project, the agreement with the utility should require the utility to complete the tasks expected of the Utilities Design Engineer. The Utilities Coordinator provides the deliverables to NCDOT.

Utilities Lead
The Utilities Lead is an NCDOT representative responsible for the oversight of the utility’s relocation effort and the technical review of the utility’s deliverables. Depending on the design center where the project is managed, this role may be filled by more than one person managing different portions of the relocation. The Department representatives and roles are to be clear in the scopes.
References

- Utilities Accommodation Manual
- Estimates, Materials & Approved Products for Utilities Work
- Utility Cost Estimate Request Form

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Utility Relocation Estimate</td>
<td>Develop Conceptual Utilities Cost Estimate</td>
<td>Utilities Coordinator</td>
</tr>
<tr>
<td>Preliminary Utility Construction Estimate</td>
<td>Review Estimate</td>
<td>Utilities Coordinator</td>
</tr>
</tbody>
</table>

Develop Conceptual Utilities Cost Estimate
The Utilities Coordinator visits the project site and inventories utility facilities on the project in accordance with the identified manuals and procedures.

Using the inventory of facilities and the utility estimating tools on the Estimates, Materials & Approved Products for Utilities Work resource page, the Utilities Coordinator provides a preliminary estimate to the Project Lead of the preliminary utilities construction costs and costs of possible utility relocations, including a short description of utilities observed. The Utilities Coordinator works with the Project Lead and Preliminary Estimates Section (for Central-let projects) or the appropriate Division staff (for Division-let projects) to adjust the utility construction estimate as part of the review and verification process (see 1CS1 and 1FS2 for related information).

Review Estimate
The Utilities Coordinator sends the two utilities cost estimate to the Utility Lead, who reviews the estimate, before sending to the Project Lead.

Generate Cost Verification Letter
After satisfactory review, the Utilities Coordinator works with the Project Lead, who generates and distributes a Cost Verification Letter per the process detailed in the Division Engineer Approval for Cost Verification Memo (see 1CS1 for related information).
1UT2 Initiate Utility Investigations

Overview
Inventory utility facilities in the project area. Identify utilities that are costly to relocate, have long design or construction times, or otherwise create risks for project construction or schedule if they are relocated.

References
- Utilities Accommodation Manual
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Risk Analysis and Inventory Report</td>
<td>• Initiate Utility Owner Contacts</td>
<td>Utilities Coordinator</td>
</tr>
<tr>
<td></td>
<td>• Conduct Preliminary Utility Investigations</td>
<td>Utilities Lead</td>
</tr>
<tr>
<td></td>
<td>• Submit Utility Risk Analysis and Inventory</td>
<td>Utilities Lead</td>
</tr>
<tr>
<td>Utility Project Outline</td>
<td>• Determine Utility Relocations</td>
<td>Utilities Coordinator</td>
</tr>
<tr>
<td>Utility Construction Requests</td>
<td>• Submit Utility Construction Requests</td>
<td>Utilities Coordinator</td>
</tr>
</tbody>
</table>

Initiate Utility Owner Contacts
The Utilities Coordinator is to meet with the utility owners to discuss utility facilities in the project study area and vicinity. These meetings are to be with employees of the utility who are familiar with the existing facilities and with plans for future facilities in the study area. These meetings are likely held individually with each utility at a location convenient for the utility employees. Other projects may be discussed in these meetings, if possible and appropriate.

In this meeting, the Utilities Coordinator:

- Explains the scope of the project and the location of all alternatives/alignments.
- Explains the projected schedule and expected project duration.
- Requests that the utility:
  - Provide a description of the type, size, and function of all facilities in the area of the project.
  - Identify critical facilities that have restrictions on service interruption for relocation or may be difficult to relocate. A facility may be difficult to relocate because of difficulty in acquiring property for the relocation of the facility, difficulty in coordination of outages with customers being served, or for other reasons, as well as difficulty in construction.
  - Identify facilities with a high cost of relocation.
  - Identify off-site work required to perform relocation on the project.
  - Provide a description of factors that may affect the project schedule, such as lengthy design times, need to establish a construction budget, long-lead times when ordering materials, or long times between construction of the new facilities and abandonment of the old facilities. Provide a preliminary estimation of durations for the relocation of critical facilities with the...
understanding that it is to be further refined as the overall project design develops and actual impacts identified and evaluated.

- Discusses the expected impact of each of the utility facilities on the project and the impact of the project on the utility facilities.

This meeting may also involve a site visit to verify and correlate information provided by the utilities and to search for previously unknown utilities.

**Conduct Preliminary Utility Investigations**

Using the information collected from the utilities, the Utilities Coordinator analyzes reasonably expected conflicts between existing and planned utilities and the project. For each alternative/alignment, the Utilities Coordinator is to:

- Provide an inventory of utilities encountered.
- Provide a preliminary estimate for utility relocation costs.
- Analyze risks to the project budget and schedule by identifying:
  - Facilities that can be relocated without significant burden to the utility.
  - Facilities that cannot be taken out of service at all or for more than a short period of time.
  - Facilities that are expensive to relocate because of size or conditions of the construction.
  - Facilities that have a long design or construction duration. Any other risk the relocation of the facilities could pose to the project.
- Identify facilities to avoid, and facilities that may be relocated, without significant burdens to the utility or the project.
- Provide relocation durations of critical facilities as provided by the utility owners, even if identified as a facility to avoid in case project conditions prohibit avoidance.
- Identify whether construction of utility relocation may be necessary outside of the study area.

**Submit Utility Risk Analysis and Inventory**

The Utilities Coordinator provides a Utility Risk Analysis and Inventory Report that:

- Provides an inventory of utilities and facilities in the study area.
- Includes the information provided by the utilities.
- Documents the analysis of budget and risk in each alternative/alignment.
- Makes recommendations to reduce risk or budget.

The Utilities Lead reviews the report and provides comments to the Utilities Coordinator, who updates the document.

The Utility Risk and Analysis Report is provided to the Project Manager and used by the project team to evaluate design alternatives/alignments. The report is also a guide to minimize the overall impact of utilities on the project.

**Determine Utility Relocations**

After the alternative/alignment to be constructed has been selected, the Utilities Coordinator revises and condenses the Utility Risk Analysis and Inventory Report into a Utility Project Outline for the selected alternative/alignment. The revised report is to include:
- A utility inventory for the alternative/alignment.
- An analysis of risks for the alternative/alignment.
- A projected budget.
- Opinion of likely cost responsibility (for budgeting purposes). This is not intended to require an analysis of data or documents.
- A preliminary schedule for the utility designs and relocations.
- Recommendations to the project designers on utilities to avoid.
- A strategy for the possible relocations.

The Utility Project Outline guides the project’s design team to avoid major utility impacts. The Utilities Lead reviews the report/outline and provides comments to the Utilities Coordinator, who updates the document.

Submit Utility Construction Requests

For this task, the Utilities Coordinator:

- Identifies utilities that may want construction of their facilities completed by the selected contractor and included as part of the project’s contract.
- Obtains a Utility Construction Request from each of these utilities describing the facilities likely to be in conflict or that may need early analysis.
- Identifies in the Utility Construction Request whether NCDOT is being requested to perform construction or both design and construction.

These requests are submitted concurrently with the Utility Project Outline.

Complete QC/QA Procedures

The Utility Coordinator is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
2UT1 Initiate Utility Coordination

Overview
Coordinate with utility owners to identify conflicts between their facilities and the project and develop resolution for those conflicts. Coordinate preliminary utility designs to conform with the Utilities Accommodation Manual, preventing conflicts among utilities where possible and determining utility easement requirements.

Note: Because job titles within NCDOT overlap with job titles in the consulting firms, and because different project management centers within the Department divide project management and technical duties differently, this section clarifies who is filling each role as identified in the deliverable table and task descriptions below.

Utilities Coordinator
The Utilities Coordinator role is typically filled by a Professional Engineering Firm (PEF)/Consultant providing Utilities Coordination services for the project. The Utilities Coordinator coordinates the relocation activities of all utilities on the project but does not provide any design service for any utility.

If a utility is providing complete Utilities Construction Plans for inclusion in the contract, the Utilities Coordinator is responsible for the coordination and delivery to NCDOT of the deliverables assigned to the Utilities Design Engineer that are instead being produced by the utility. The Utilities Coordinator is not responsible for the production of those deliverables.

Utilities Design Engineer
The Utilities Design Engineer role is typically filled by Professional Engineering Firm (PEF)/Consultant providing Utilities Design Services for the project. This firm may or may not be the same firm providing Utilities Coordination Services. There may be more than one PEF providing Utilities Design Services, depending on the number and types of utilities included for construction in the contract and the areas of expertise of each firm.

The role of the Utilities Design Engineer is to design the relocation of the assigned utility facilities. The Utilities Coordinator coordinates the location of those facilities with the other utilities.

If a utility chooses to provide a complete design plan for inclusion in the project, the agreement with the utility should require the utility to complete the tasks expected of the Utilities Design Engineer. The Utilities Coordinator provides the deliverables to NCDOT.

Utilities Lead
The Utilities Lead is an NCDOT representative responsible for the oversight of the utility’s relocation effort and the technical review of the utility’s deliverables. Depending on the design center where the project is managed, this role may be filled by more than one person managing different portions of the relocation. The Department representatives and roles are to be clear in the scopes.
References

- Utilities Accommodation Manual
- Dig Once Policy
- Utilities Connect Site
- NCDOT Quality Management Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Coordination Kickoff Meeting Minutes</td>
<td>• Provide Plans to Utility Owners</td>
<td>Utilities Coordinator, Utilities Design Engineer, Utilities Lead</td>
</tr>
<tr>
<td></td>
<td>• Identify Major Utility Conflicts and Relocation Impacts</td>
<td>Utilities Coordinator</td>
</tr>
<tr>
<td></td>
<td>• Conduct Utility Coordination Kickoff Meeting (All Utilities)</td>
<td>Utilities Design Engineer &amp; Utilities Lead</td>
</tr>
<tr>
<td>Routing Plan</td>
<td>• Initiate Cost Responsibility Analysis</td>
<td>Utilities Coordinator</td>
</tr>
<tr>
<td></td>
<td>• Receive Preliminary Utility Relocation Plans from Utility Owners</td>
<td>Utilities Design Engineer &amp; Utilities Lead</td>
</tr>
<tr>
<td></td>
<td>• Submit Routing Plan</td>
<td>Utilities Coordinator</td>
</tr>
<tr>
<td>Relocation Schedule</td>
<td>• Create Relocation Schedule</td>
<td>Utilities Coordinator, Utilities Lead</td>
</tr>
<tr>
<td>Preliminary Utility Construction Plans</td>
<td>• Submit Preliminary Utility Construction Plans</td>
<td>Utilities Design Engineer, Utilities Coordinator, Utilities Lead</td>
</tr>
<tr>
<td>Subsurface Utility Engineering (SUE) Level A Request</td>
<td>• Request Subsurface Utility Engineering (SUE) Level A</td>
<td>Utilities Design Engineer, Utilities Design Engineer &amp; Utilities Lead</td>
</tr>
<tr>
<td>Geotechnical Investigation (Trenchless) Request</td>
<td>• Request Geotechnical Investigation for Trenchless Utilities</td>
<td>Utilities Design Engineer, Utilities Design Engineer, Utilities Lead, Design Geotechnical Engineer</td>
</tr>
<tr>
<td>Utility Easement Request and Utility Parcel List</td>
<td>• Submit Required Utility Easements and Parcel List</td>
<td>Utilities Coordinator, Utilities Lead</td>
</tr>
</tbody>
</table>

Provide Plans to Utility Owners

The Utilities Coordinator provides a PDF and DGN set of the Design Recommendation Plan Set and the Utility Project Outline to the utility companies and their designated design representatives. The Utilities Coordinator requests that the utility companies:

- Review the plans for accuracy in the surveyed depiction of their facilities.
- Notify the Utilities Coordinator of facilities that are omitted or are inaccurately depicted.
- Analyze their facilities for conflicts with the project as designed.
- Consider options and schedule for relocation or mitigation of the conflicts.
- Notify the Utilities Coordinator of assistance or input required from NCDOT during the project, such as any additional notification required from the Department to request establishment of a budget or schedule for the relocation.

The Utilities Design Engineer reviews the plans provided by the Utilities Coordinator in cooperation with and on behalf of the utilities whose facilities the Utilities Design Engineer is scoped to design.
Identify Major Utility Conflicts and Relocation Impacts

To complete this task, the Utilities Coordinator is to:

- Review the plans to identify likely locations of conflicts.
- Document those conflicts on the Utilities Coordination Working Plans.
  - The Utilities Coordination Working Plans are to contain information on conflicts and proposed relocations for all utilities.
  - These plans also contain the information required by NCDOT to manage utilities within the project and are to be kept up-to-date and available to the project team at all times through the project SharePoint and ProjectWise sites.

The Utilities Coordinator consults with the Utilities Lead prior to the Utility Coordination Kickoff Meeting to agree on potential conflicts and guidance to be given to the utilities.

The Utilities Design Engineer then:

- Reviews the plans with the applicable utility companies for the facilities scoped for design.
- Identifies conflicts, proposes preliminary relocation designs or a plan to mitigate the conflicts, and secures approval from the owner.
- Provides this information to the Utilities Coordinator prior to the Utility Coordination Kickoff Meeting.
- Provides a Preliminary Relocation Schedule at the Kickoff Meeting including all activities necessary to facilitate completion of the required relocations.
  - If dependent on other utilities to perform their work first, such a joint-users, provide a duration for initiating work after notification of completion of required work by others and a duration for the completion of the relocation.
  - Durations should include all tasks necessary to take the impacted facilities out of service.
  - The Preliminary Relocation Schedule should be understood to be a baseline start for further refinement as the overall project design is developed.

If a Utilities Design Engineer has not been authorized at this point, the utility is responsible for providing this information at the Kickoff Meeting to the Utilities Coordinator.

Conduct Utility Coordination Kickoff Meeting (All Utilities)

The Utilities Coordinator schedules and conducts a Utility Coordination Kickoff Meeting to share information and plans with the utilities and to begin coordination among the utilities on relocation issues. The invitees to this meeting are to include all utility company contacts, the Utilities Lead, Division utilities personnel, the Utilities Design Engineer, the Project Manager, the Hydraulics Design Engineer, and the Signals/ITS Lead.

At this meeting and with assistance from the Utilities Lead, the Utilities Coordinator is to:

- Provide information to the utility companies about the project.
- Review the presumptive cost responsibility and establish which utility companies believe they have a compensable interest.
Discuss the project schedule, noting feedback from the utility companies about their design and relocation timeframes and the schedule they can meet.
- Elicit information about the risks the utilities believe they pose to the project.
- Discuss preliminary alignments for relocations.
- Inform utilities of their responsibilities under the Dig Once Policy. The Utilities Coordinator is responsible for administration of this policy on the project.
- Ask the utility companies to prepare preliminary plans and identify easement needs.
- Identify action items for NCDOT and the utility companies.

Initiate Cost Responsibility Analysis
The Utilities Coordinator uses the information from the survey and information provided by the utilities to initiate the Cost Responsibility Analysis. To do this, the Utilities Coordinator:

- Investigates documents provided by the utility companies.
- Prepares opinions on the relevance of those documents to any claims of compensable interest.

It is the responsibility of the utility companies to prove their claims of compensable interest. It is the responsibility of the Utilities Coordinator to review the claims and provide a recommendation to the Utilities Lead and the Project Manager on the merits of the claims.

Receive Preliminary Utility Relocation Plans from Utility Owners
To complete this task, the Utilities Coordinator is to:

- Receive preliminary relocation plans from the utility companies and from the Utilities Design Engineer.
- Review the plans to ensure compliance with the Utilities Accommodation Manual.
- Incorporate the relocation plans into the Utilities Coordination Working Plans.

Preliminary relocation plans from the utilities are not final designs. Instead, these plans are to show the scope and alignment of the relocation. The design is to be complete enough to determine easement requirements and environmental impacts from the proposed alignment and construction.

Place preliminary relocation plans on the SharePoint project site.

Submit Routing Plan
The Utilities Coordinator submits the Utilities Coordination Working Plans along with a description of important design decisions as Routing Plans. The purpose of the Utilities Coordination Working Plans is to plan utility relocations and share information about the relocations with NCDOT and the project team.

The Utilities Lead reviews the plan and provides comments to the Utilities Coordinator, including a review of the application of the Utilities Accommodation Manual, a constructability review, and a review of possible alternatives/alignments.

Create Relocation Schedule
The Utilities Coordinator creates a Utilities Relocation Schedule (in Microsoft Project) to be delivered initially after the Kickoff Meeting, concurrently with the Routing Plans, and after receipt and review of the
relocation agreements for use in guiding project scheduling and tracking relocation progress. This schedule is developed in consideration of:

- Utility work by others only.
- Important milestones in project completion, such as design time, relocation time, moratoria, acquisition of special materials, permitting, availability of right-of-way and easements, and construction staging.
- Information obtained from the utilities, the Right-of-Way Agents, project documents, and other sources, as needed.

The Utilities Coordinator maintains this schedule as conditions change and milestones are completed, coordinating this with the Project Manager and the larger project schedule. The project schedule delivery should be at the following milestones:

- Initial Schedule – Following the Kickoff Meeting with receipt of information obtained to date.
- Routing Plans Schedule – Further define and adjust the Initial Schedule with utility owner provided schedule submitted with the plans used to create the Routing Plans.
- Agreements Schedule – Further define and adjust the Routing Schedule with utility owner provided updates submitted with the relocation agreement applications. This schedule is intended to be included in the contract documents for contractor’s information for bidding.

The Utilities Lead reviews this schedule and provides comments to the Utilities Coordinator. The review includes the practicality of accomplishing the schedule.

Submit Preliminary Utility Construction Plans
The Utilities Design Engineer submits the Preliminary Utility Construction Plans for review by the Utilities Lead. These plans are to:

- Show routing and major design elements.
- Identify any needed easements outside of existing right-of-way.
- Provide draft Special Provisions, especially including any requested pay items for review.

For utilities designed under the control of the utility owner, but to be constructed as part of the project’s contract, the Utilities Coordinator coordinates submission of these items to the Utilities Lead for review. The review of plans and special provisions is to address constructability, risk assessment, compliance with policy, and contractibility.

Request Subsurface Utility Engineering (SUE) Level A
The Utilities Coordinator requests and compiles subsurface utility engineering (SUE) Level A requests from the designers of each of the utilities. To do this:

- Collaborate with the Utilities Lead to evaluate the need for each location.
- Create a final SUE request.

The Utilities Design Engineer submits this request to the Utilities Coordinator for aggregation with requests by other utilities.
Request Geotechnical Investigation for Trenchless Utilities
A Geotechnical Investigation is used to identify underground conditions along the trenchless installation for the purposes of bidding. The Utilities Design Engineer identifies locations for the geotechnical investigation along the planned location of all trenchless installations of utilities to be constructed. To do this, the Utilities Design Engineer is to:

- Identify the expected depth of the utility at each location.
- Collaborate with the Utilities Lead and the Design Geotechnical Engineer to create a final list of requested locations.

For utilities designed under the control of the utility owner, but to be constructed as part of the project’s contract, the Utilities Coordinator coordinates submission of this request to the Utilities Lead for review with the Design Geotechnical Engineer.

Submit Required Utility Easements and Parcel List
The Utilities Design Engineer prepares the easement needs for the facilities scoped for design and submits that request to the Utilities Coordinator.

The Utilities Coordinator then prepares the Utility Easement Request and Utility Parcel List, which includes:

- Obtaining concurrence from the Utilities Lead on the eligibility for each utility to request easements that are acquired by NCDOT.
- Vetting easements requested by the utility companies for compliance with NCDOT policy.
- Compiling all eligible easements requested.
  - Draw the compiled easements on the Utilities Working Plans and submit to the Utilities Lead for concurrence in the request.
  - After receiving concurrence, submit the easement request for inclusion in the plans.
- For utilities relocating in advance of the project’s contract, compiling a list of parcels containing any of those utilities in NCDOT-purchased easement or right-of-way.
  - List which utilities are occupying each parcel.
  - Determine the date each parcel is needed according to the schedule of utility construction on each parcel.

The Utilities Lead reviews the requested easements for compliance with the Utilities Accommodation Manual, for impact on property owners, and for possible economizations. The Utilities Coordinator confirms all approved easements are incorporated into the Field Inspection Plan Set (see 2RD2 for related information).

Complete QC/QA Procedures
The Utility Coordinator and/or Utilities Design Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
2UT2/3UT2 Prepare Utility Relocation and Construction Estimates

Overview
Prepare both utility relocation and construction cost estimates to support the project development process at both the Alignment Defined Stage (prior to the Environmental Document being approved) and Plan-in-Hand Stage (prior to the Right-of-Way Plan Set being finalized).

References
- Utilities Accommodation Manual
- Estimates, Materials & Approved Products for Utilities Work
- Utility Cost Estimate Request Form

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Relocation (PH 250) Estimate</td>
<td>• Prepare Utility Relocation Estimate</td>
<td>Utilities Coordinator</td>
</tr>
<tr>
<td>Utility Construction (PH 300) Estimate</td>
<td>• Prepare Construction Relocation Estimate</td>
<td>Utilities Design Engineer</td>
</tr>
</tbody>
</table>

Prepare Utility Relocation Estimate
Per a request from the Project Manager (or Roadway Design Lead) using the Utility Cost Estimate Request Form for relocation costs, the Utilities Coordinator prepares the project’s utility relocation estimate, referencing the resources and process detailed on the Estimates, Materials & Approved Products for Utilities Work resource page. The Utilities Coordinator prices the relocation work using the Utilities Cookbook Database or by coordinating cost directly with the impacted utility owners.

The Utilities Coordinator works with the Project Manager (or assigned) to assist in drafting any justification or additional information, if there is a difference in cost between the current and previous estimate.

Prepare Utility Construction Estimate
Per a request from the Project Manager (or assigned) using the Utility Cost Estimate Request Form for construction costs, the Utilities Design Engineer prepares the project’s utility construction estimate using historic bid data adjusted for project conditions and expected price increases.

The Utilities Design Engineer works with the Utilities Lead and Project Manager (or assigned) to assist in drafting any justification or additional information, if there is a difference in cost between the current and previous estimate. The Utilities Design Engineer is to ensure that utility construction pay items and quantities are included in the construction estimate request, as required.

Review Estimate
The Utilities Coordinator sends the two utilities cost estimate to the Utilities Lead, who reviews the estimate.
Generate Cost Verification Letter

After satisfactory review, the Utilities Coordinator sends the estimates to the Project Manager, who generates and distributes a Cost Verification Letter per the process detailed in the Division Engineer Approval for Cost Verification Memo (see 2CS1 and 3CS1 for related information).

Prior to the Right-of-Way Plan Set being finalized, this same process is used when developing the utility relocation and construction estimate during the Plan-in-Hand Stage under 3UT2.
3UT1 Advance Utility Coordination

Overview
Coordinate the final design of utilities and needs for environmental permitting.

References
- *Utilities Accommodation Manual*
- *Dig Once Policy*
- *Utilities Connect Site*
- *NCDOT Quality Management Manual*

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Agreement Plans</td>
<td>Submit Utility Agreement Plans</td>
<td>Utilities Design Engineer</td>
</tr>
<tr>
<td>Utility Agreement Plans</td>
<td>Initiate Utility Permits</td>
<td>Utilities Coordinator &amp; Utilities Lead</td>
</tr>
<tr>
<td>Utility Environmental Permit Plans and Narrative</td>
<td>Provide Permit Related Utility Impacts</td>
<td>Utilities Coordinator &amp; Utilities Lead</td>
</tr>
<tr>
<td>Cost Responsibility Analysis Report</td>
<td>Submit Cost Responsibility Analysis</td>
<td>Utilities Coordinator &amp; Utilities Lead</td>
</tr>
<tr>
<td>Final Utilities Coordination Working Plans</td>
<td>Submit Final Utility Coordination Working Plans</td>
<td>Utilities Coordinator &amp; Utilities Lead</td>
</tr>
</tbody>
</table>

Coordinate Service Acquisition for ITS and Signing
The Utilities Coordinator coordinates utility service acquisition for ITS, signing, and lighting along the project corridor as requested by those disciplines/Units.

Complete Dig Once Policy Agreements
If any utilities enter into agreement under the Dig Once Policy, the Utility Coordinator completes the processing of these agreements according to the Dig Once Policy.

Submit Utility Agreement Plans
The Utilities Design Engineer submits the Utility Construction Plans, Special Provisions, and draft quantities estimate for review by the Utilities Design Lead. This includes:

- Showing routing and major design elements.
- After receiving concurrence from the Utilities Lead, initiating the NC Department of Environmental Quality (DEQ) permitting process.

For utilities designed under the control of the utility owner, but to be constructed as part of the project’s contract, the Utilities Coordinator coordinates submission of these items to the Utilities Lead for review. The review of plans and Special Provisions is to address constructability, risk assessment, compliance with policy, and contractibility.

The Utilities Design Engineer or utility owner’s engineer is to address any comments and submit a set of Utility Agreement Plans.
The purpose of these plans is to be an attachment to the Utility Construction Agreement or Use and Occupancy Agreement. Special Provisions and agreement estimate are also required.

The Utilities Lead generates the appropriate agreement and submits it to the utility company for execution.

**Initiate Water and Sewer Permits**

The Utilities Design Engineer determines the need for water and sewer permits (Authorization to Construct for water and Sewer Extension Permit for sewer). It is expected that utility permits are to be obtained for all water and sewer work to be performed by the project’s contractor. The Utilities Design Engineer prepares the applications and assists the utility in submitting the applications to NC Department of Environmental Quality (DEQ) Public Water Supply Section and Division of Water Quality. The Utilities Lead may waive the utility permit requirement for a utility if it is clear a permit is not required under NCDEQ rules and the utility concurs, or may instead choose to require that the utility permit be obtained.

**Provide Permit-Related Utility Environmental Impacts**

The Utilities Coordinator uses the Utility Coordination Working Plans to create a set of Utilities Environmental Permit Drawings. These plans consist of an environmental narrative, plans showing impacts, utility profiles, and impact area charts. Not all components are required for all projects. As part of the plans, the Utilities Coordinator is to:

- Coordinate areas of utility impacts with areas of roadway impacts.
- Submit to the Utilities Lead to obtain concurrence.
- After obtaining concurrence, submit to the Utilities Lead and the 3EN1 Activity Leader(for action) and Project Manager (for information).

The Utilities Lead reviews the proposed construction methods, environmental impacts of the utility relocations, and consistency with the current roadway design plans. The Utilities Lead consults with the project’s Environmental Lead about proposed environmental impacts.

**Submit Cost Responsibility Analysis**

The Utilities Coordinator is to submit the Cost Responsibility Analysis Report, providing the recommendation for portion of cost responsibility for each utility and NCDOT. To do this, the Utilities Coordinator:

- Supports the recommendation with an analysis of the policy applied and evidence provided.
- Provides supporting documentation, including deeds, previous agreements, plans, and other evidence of compensable interest.

The Utilities Lead reviews the analysis and requests additional information (if needed), comments as required, and accepts the report when complete. The Utilities Coordinator files this completed report on the project SharePoint site. The Utilities Lead retains this report with the agreement documents.
Submit Final Utility Coordination Working Plans
The Utilities Coordinator submits the Final Utilities Coordination Working Plans, showing the alignments to be authorized for all utilities and the current Utilities Relocation Schedule with a description of important design decisions.

The Utilities Lead performs final review of the relocations that includes a review of the application of the Utilities Accommodation Manual, a constructability review, and a review of the relocation schedule. The Utilities Coordinator confirms easement information is incorporated into the Right-of-Way Plan Set (see 3RD1 for related information).

Complete QC/QA Procedures
The Utility Coordinator and/or Utilities Design Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
4UT1 Complete Utility Coordination

Overview
Facilitate the relocation of utilities being relocated by the utility owners.

References
- Utilities Accommodation Manual
- NCDOT Quality Management Manual
- Trns Port Pay Item List

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Activity Leader</td>
</tr>
<tr>
<td>Utilities by Others Plans and Special Provisions</td>
<td>▪ Complete Utilities by Others Plans</td>
<td>Utilities Coordinator</td>
</tr>
<tr>
<td>Utility Construction Plans (PS&amp;E)</td>
<td>▪ Complete Utility Construction Plans</td>
<td>Utilities Design Engineer</td>
</tr>
<tr>
<td>Water and Sewer Permits</td>
<td>▪ Receive Water and Sewer Permits</td>
<td>Utilities Design Engineer</td>
</tr>
<tr>
<td>Executed Utility Agreements</td>
<td>▪ Submit Utility Agreements for Authorization ▪ Execute Utility Agreements</td>
<td>Utilities Coordinator</td>
</tr>
<tr>
<td>Utility Authorizations</td>
<td>▪ Issue Utility Construction Authorization</td>
<td>Utilities Lead</td>
</tr>
<tr>
<td>Utility Certification</td>
<td>▪ Issue Utility Certification</td>
<td>Utilities Lead</td>
</tr>
</tbody>
</table>

Complete Utilities by Others Plans
The purpose of the Utilities by Others Plans is to convey information to the bidding contractors about the extent and timing of utility relocations and abandonments, performed by others, for use in developing the bid. The Utilities Coordinator uses the Utilities Coordination Working Plans and Authorized Relocation Plans to create Utilities by Others Plans and Special Provisions. The Utilities Coordinator:

▪ Creates the plans and special provisions in conformance with templates and guidance provided on the Utilities Connect site.
▪ Submits these plans and special provisions to the Utilities Lead (for action) and Project Manager (for information).

The Utilities Lead reviews the Utilities by Others Plans and Special Provisions. The review evaluates the information provided on owner, location, and schedule.

Complete Utility Construction Plans
The Utilities Design Engineer submits final Utility Construction Plans, Special Provisions, and quantity estimates with cost breakdown by responsible party and betterment to the Utilities Lead (for action) and Project Manager (for information). The Utilities Design Engineer also submits an advisory cost estimate (see 4UT3 for additional detail on this estimate). If the utilities are designed under the control of the
owner, but to be constructed as part of the project’s contract, the Utilities Coordinator is to coordinate submission of these items to the Utilities Lead for review.

The Utilities Lead reviews the plans, estimates, and special provisions and return comments.

**Receive Water and Sewer Permits**
The Utilities Design Engineer receives the Authorizations to Construct from NC Department of Environmental Quality (DEQ) Public Water Supply Section and Division of Water Quality. After receiving the Authorizations, the Utilities Design Engineer:

- Places them on the project SharePoint site.
- Notifies the Utilities Lead (for action) and Project Manager (for information).

The same process is used for utilities designed under the control of the owner, but to be constructed as part of the project’s contract.

**Submit Utility Agreements for Authorization**
The Utilities Coordinator receives the utility agreements and plans from the utility company. From there, the Utilities Coordinator:

- Reviews the plans for conformity with the *Utilities Accommodation Manual*.
- Reviews the estimates, if needed for the agreement.
- Attaches a cover letter stating that the relocations plans and materials were reviewed and complies with the *Utilities Accommodations Manual* and other applicable policies or recommends that the plans be approved with enumerated exceptions.
- Justifies recommended exceptions.
- Submits to the Utilities Lead (for action) and Project Manager (for information).
- Updates utility relocation schedule with updated dates and/or durations provided by the utility owner with the agreement application. See Create Relocation Schedule in 2UT1 for related information.

The Utilities Lead reviews the agreements for compliance with policy.

**Execute Utility Agreements**
After review, the Utilities Lead submits the utility agreements to the authorized NCDOT official for signature.

**Issue Utility Construction Authorization**
After execution of each utility agreement for construction by the utility, the Utilities Lead sends an authorization to the utility to begin construction.

**Issue Utility Certification**
The Utilities Lead completes the Utility Certification and submits it to the authorized NCDOT official for signature. The certification is retained for the project files and as a key document in the utilities library.
Complete QC/QA Procedures
The Utility Coordinator and/or Utilities Design Engineer is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
4UT2 Complete Utility Relocations by Owner

Overview
Support the Project Manager and Resident Engineer by maintaining contact with the utilities, maintaining the Utilities Relocation Schedule, and continuing coordination to resolve relocation issues until the relocations by the utilities are complete (see 5UT1 for additional information).

References
- Utilities Accommodation Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relocation Scheduling Conference</td>
<td>Hold Relocation Scheduling Conference</td>
<td>Utilities Coordinator</td>
</tr>
<tr>
<td>Updated Utilities Relocation Schedule</td>
<td>Maintain Contact with Utilities</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Update the Utilities Relocation Schedule</td>
<td>X</td>
</tr>
</tbody>
</table>

Hold Relocation Scheduling Conference
After receiving the Utility Authorization, the Utilities Coordinator schedules and holds the Relocation Scheduling Conference for each utility. The conference is to be attended by the utility company, the utility’s contractor, the Project Manager and Resident Engineer, and others as required. The Utilities Coordinator updates the Utilities Relocation Schedule.

Maintain Contact with Utilities
The Utilities Coordinator maintains weekly contact with the utilities during their relocation construction. The Utilities Coordinator monitors the progress of the relocations and determines if intervention is needed to keep the utility relocations on schedule. If intervention is needed, the Utilities Coordinator contacts and involves needed resources or makes recommendations/implements strategies to maintain the relocations to support the overall project schedule.

Update the Utilities Relocation Schedule
The Utilities Coordinator updates the Utilities Relocation Schedule weekly and distributes the schedule to the Resident Engineer, Utilities Lead, and Project Manager.

Continued Coordination
The Utilities Coordinator continues coordination with utilities to address issues that arise during the relocation phase of the project. The Utilities Design Engineer provides input, as necessary, to resolve issues involving the scoped utilities.
4UT3 Prepare Final Utility Construction Estimate

Overview
Prepare the final construction cost estimates at the time of finalizing the final PS&E package.

References
- Utilities Accommodation Manual
- Estimates, Materials & Approved Products for Utilities Work
- Utility Cost Estimate Request Form
- Trns Port Pay Item List

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Utility Construction (PH 300) Estimate</td>
<td>Prepare Final Utility Construction Estimate</td>
<td>Utilities Design Engineer</td>
</tr>
</tbody>
</table>

Prepare Final Utility Construction Estimate
As part of their efforts under 4UT1, the Utilities Lead reviews the plans, estimates, and special provisions and return comments. The Utilities Design Engineer enters the provided quantity estimates in the estimating system. The Utilities Lead then develops and enters prices for the estimate.

The Utilities Lead works with the Project Manager (or assigned) and Preliminary Estimates Section (for Central-let projects) or the appropriate Division staff (for Division-let projects) to adjust the estimate, as needed, when reviewing final pay items/quantities (see 4RD1 and 4CS1 for related information).
5UT1 Utility Construction Support

Overview
Support project construction by coordinating with utilities and reviewing utilities submittals to ensure relocations are completed on time and submittals are reviewed for compliance.

References
- Utilities Accommodation Manual
- Standard Specifications for Roads and Structures

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submittal Review Letter</td>
<td>Review Utilities Materials Submittals</td>
<td>Utilities Design Engineer X Utilities Coordinator X</td>
</tr>
</tbody>
</table>

Continue 4UT2 (as necessary)
The Utilities Coordinator and Utilities Design Engineer continue the tasks of 4UT2 after let, until all utility-constructed relocations are complete.

Review Utilities Materials Submittals
The Utilities Design Engineer reviews all submitted utility shop drawings and catalog cuts for compliance with the Standard Specifications for Roads and Structures and the project’s Special Provisions and plans. The Utilities Design Engineer submits a Submittal Review Letter to the Utilities Lead and Resident Engineer, approving or rejecting each utility submittal.

If the utilities were designed by an engineer hired by the utility company, the Utilities Lead is responsible for the review of submittals.
1VM1 Initiate CR-RAVE, CLEAR Activities, and Value Assessment Activities

Overview

Ensure that initial Constructability Review, Risk Assessment, and Value Engineering (CR-RAVE) tasks begin in this Stage 1 to inform the Express Design and Project Scoping Report. Also initiate the Communicate Lessons, Exchange Advice, Record (CLEAR) and Value Assessments (VA) tasks.

The major tasks of this Stage are defined as follows:

a) Constructability Review (CR) – support review of constructability considerations as part of project scope development.

b) Risk Assessment (RA) – support identification of potential issues (e.g., risks) that could jeopardize project delivery, including impacts to project scope, schedule, and budget goals.

c) Value Engineering (VE) – support the determination if a VE Study is required (or recommended) for state or federal projects that meet or exceed defined federal thresholds.

d) Communicate Lessons, Exchange Advice, Record (CLEAR) – support identification of relevant lessons learned (LLs) and best practices (BPs), to leverage past successes and errors to deliver project more efficiently. Value Management Office (VMO) maintains the CLEAR database, which contains Department wide LLs and BPs.

e) Value Assessment (VA) – support cost-saving ideas such as time savings, reduction in impacts, and improved constructability to aid in alternative design selection and scope development.

While CR-RAVE, CLEAR, and Value Assessments tasks include separate items, starting the items together allows the outcomes to inform each other since they typically overlap.

Note: Actions during the Project Initiation Stage may be led and completed by staff from several different NCDOT groups. Any person who has overall responsibility for a project during this Stage is referred to as the “Project Lead.” This lead could be the Feasibility Studies Engineer, the Corridor Development Engineer, the Division Planning Engineer, or someone in a similar role as tasked by a state or local agency.

References

- Value Management Office
  - Value Management Guidelines
- Constructability Review Program
  - Constructability Review Checklist
- Risk Assessment Program
  - Risk Management Guide
  - Risk Assessment Worksheet
- Value Engineering Program
  - Value Engineering Checklist
  - Value Engineering Schedule
- ArcGIS STIP and NHS Maps
- CLEAR Program
  - CLEAR SharePoint Site
- Value Assessment
  - Value Assessment Worksheet

1VM1 Initiate CR-RAVE, CLEAR Activities, and Value Assessment Activities
November 2021
 Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Activity Leader</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructability Review Checklist</td>
<td>Review Constructability Review Checklist</td>
<td>X</td>
<td>Division Construction Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Area Construction Engineer</td>
</tr>
<tr>
<td>Risk Assessment Worksheet</td>
<td>Conduct Risk Management Activities</td>
<td>X</td>
<td>Value Management Office Program Manager</td>
</tr>
<tr>
<td>Risk Assessment Study</td>
<td></td>
<td></td>
<td>Value Management Office Program Manager</td>
</tr>
<tr>
<td>Value Engineering (VE) Checklist</td>
<td>Determine if a Value Engineering Study is Needed (Available in ATLAS)</td>
<td>X</td>
<td>Value Management Office Program Manager</td>
</tr>
<tr>
<td>Value Engineering (VE) Schedule</td>
<td>Develop the Value Engineering Schedule</td>
<td></td>
<td>Value Management Office Program Manager</td>
</tr>
<tr>
<td>CLEAR Database Search</td>
<td>Search and Share Relevant LL and BP (CLEAR Database Search) with Project Team</td>
<td>X</td>
<td>Value Management Office Program Manager</td>
</tr>
<tr>
<td>Value Assessment</td>
<td>Conduct Value Assessment Activities</td>
<td>X</td>
<td>Value Assessment Consultant</td>
</tr>
<tr>
<td>Value Assessment Worksheet</td>
<td></td>
<td></td>
<td>Value Management Office Program Manager</td>
</tr>
</tbody>
</table>

* indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Review Constructability Review Checklist

The Project Lead reviews the project scope using the list of constructability considerations provided in the Constructability Review Checklist. Many of the items may not be able to be assessed at this stage of the project, but this gives the Project Lead an opportunity to consider the questions that should be reviewed as the scope is developed. If the Project Lead is unsure how to accommodate the construction impacts of a particular question, the Division Construction Engineer (DCE) or Area Construction Engineer (ACE) are contacted to optimize use of construction knowledge, methodology, and experience. VMO provides support as needed.

Conduct Risk Management Activities

The Project Lead conducts an early risk management review to identify potential issues that could jeopardize project delivery, with identified risks documented in the Project Scoping Report (see 1FS3 for related information). If the risk review reveals potential fatal flaws, the project is reassessed with support from assigned technical leads/Units either during drafting of the Project Scoping Report or during development of Design Recommendation Plan Set in Stage 1 (see 2RD1 for related information). VMO provides support as needed.

Per the Risk Management Guide, risks are captured in the Project Scoping Report and transferred to the Risk Assessment Worksheet (RAW) around the time of the project is transferred to the Project Manager. While a Risk Assessment Study is not required for every project, based on the severity of the risks, a Risk Assessment Study may be necessary to provide greater assurance that a project can maintain its scope,
schedule, and budget goals. Therefore, the Project Lead is to coordinate with the VMO to determine if a Risk Assessment Study is appropriate.

During this stage, the VMO supports the Project Lead by providing guidance for the *Risk Assessment Worksheet (RAW)* and/or facilitating a Risk Assessment Study in accordance with the *Value Management Guidelines*. If a Risk Assessment Study is deemed necessary, the VMO Program Manager:

- Gathers a team of experts from the applicable technical disciplines/Units.
- Develops an Implementation Plan.

From there, the Project Lead monitors and controls the identified project risks following the process and procedures detailed in the *Risk Management Guide*. The Project Lead transfers this responsibility to the Project Manager right before notice to proceed (NTP) or early in the Alignment Defined Stage.

**Determine if a Value Engineering Study is Needed**

As outlined in the *Value Engineering (VE) Checklist*, the Project Lead or Project Manager (depending on the timing of when the determination is made) establishes if a VE study is required or recommended for state or federal projects that meet or exceed the following thresholds:

- Any project on the National Highway System (NHS) that is $50 million, or
- Any project on the NHS that is $40 million or more for projects with structures, or
- Any project that is over $500 million regardless of NHS designation.

**Develop the Value Engineering Schedule**

Based on the information in the State Transportation Improvement Program (STIP), the VMO Program Manager develops a preliminary VE Studies Schedule and is responsible for maintaining and managing the VE Studies Schedule. The VMO Program Manager prepares a preliminary list of projects that require a VE Study based on project information in the STIP. However, as a project develops, changes (to scope, total project cost, schedule, or the project delivery method) may impact if a VE Study is required and the timing of when a VE Study is held. It is the responsibility of the Project Lead or Project Manager (depending on the timing of review) to review the monthly VE Study schedule and notify VMO if a project requiring a VE Study is missing from the schedule as well as if there is a **major change that triggers a required VE Study**, such as changes to a project’s scope, total project cost, schedule, or the project delivery method.

**Search and Share Relevant BP and LL (CLEAR Database Search) with Project Team**

VMO maintains the Communicate Lessons, Exchange Advice, Record (CLEAR) database (internal Knowledge Management tool), which contains lessons learned (LL) and best practices (BP) from across the Department. VMO provides support for searching the database, as well as connecting users to experts that provide input to find solutions and vet ideas.

The Project Lead and technical leads/Units can identify key words from the initial project documents (Project Initiation Form, Feasibility Study, etc.) and search the CLEAR portal to identify relevant LL and BP in order to leverage past successes and errors to deliver the project more efficiently. The outcomes of the search are then reviewed and vetted for applicability. Additional searches based on project location, type,
and areas of concern by discipline are performed as needed. The ultimate goal is to produce a better Project Scoping Report; not limited to a better and safer project, but a more design-friendly scope.

**Conduct Value Assessments Activities**

The Project Lead may utilize cost containment measures related to scoping and alternative design selection. This may include alignment, local agreements, and intersection treatment options, etc. These cost containment measures including cost savings amounts should be added to a Value Assessment Worksheet for the project.

The Project Lead will choose a VA Consultant to conduct a Value Assessment (VA) towards the end of this stage, to be conducted in Stage 2. The Project Lead should follow the *Sample Scope of Work* for Value Assessments.

The assessment should be completed by a Consultant not directly involved in the project. For an Urban project, the consultant must be prequalified for Urban Design. The VA Consultant Lead that conducts these workshop discussions are a multi-disciplined group of experts based on the primary design and construction elements of the project and assist in facilitating cost-containment recommendations. The teams should be tailored to expertise most critical for cost-containment design recommendations based on the specific project.

Once the VA Consultant is selected, the Project Lead should provide read access to project SharePoint site and project information with contributor access to Value Management Library to the VA Consultant. The VA Consultant Lead and Project Lead should review the project scope items and other project objectives in a pre-workshop meeting.

**Complete QC/QA Procedures**

The Value Management Office Program Manager is to coordinate the applicable QC review following the NCDOT *Quality Management Manual* procedures and the respective QC Checklist before upload and distribution of all related deliverables.
2VM1 Complete CR-RAVE Studies/Reviews, CLEAR Activities, and Conduct Value Assessment Activities

Overview

Building off the work started in Stage 1, ensure Constructability Review, Risk Assessment, and Value Engineering (CR-RAVE) studies and reviews are continuing forward, along with continuing the Value Assessment (VA) and Communicate Lessons, Exchange Advice, Record (CLEAR) tasks.

The major tasks of this Stage are defined as follows:

- a) Constructability Review (CR) – support review of constructability considerations as part of project scope development.
- b) Risk Assessment (RA) – support identification or further assessment of potential issues (e.g., risks) that could jeopardize project delivery, including impacts to project scope, schedule, and budget goals.
- c) Value Engineering (VE) – when applicable for the project, complete the VE Study for state or federal projects that meet or exceed established federal thresholds.
- d) Communicate Lessons, Exchange Advice, Record (CLEAR) – support identification of relevant lessons learned (LL) and best practices (BP) to leverage past successes and errors to deliver project more efficiently. Value Management Office (VMO) maintains the CLEAR database, which contains Department wide LLs and BPs.
- e) Value Assessment (VA) – advance cost-saving ideas such as time savings, reduction in impacts, and improved constructability to aid in alternative design selection and scope development.

While CR-RAVE, CLEAR, and Value Assessments tasks include separate items, advancing the items together allows the outcomes to inform each other since they typically overlap and may be combined (specifically for a Risk Assessment and VE Study).

References

- Value Management Office
  - Value Management Guidelines
- Constructability Review Program
  - Constructability Review Checklist
- Risk Assessment Program
  - Risk Management Guide
  - Risk Assessment Worksheet
- Value Engineering Program
  - Value Engineering Checklist
  - Value Engineering Schedule
- ArcGIS STIP and NHS Maps
- CLEAR Program
  - CLEAR SharePoint Site
- Value Assessment
  - Value Assessment Worksheet
Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
<th>Activity Leader</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Constructability Review Checklist</strong></td>
<td>▪ Complete Constructability Review Checklist</td>
<td>Project Manager</td>
<td>▪ Division Construction Engineer</td>
<td>▪ Area Construction Engineer</td>
</tr>
<tr>
<td></td>
<td>▪ Complete Constructability Review</td>
<td>Value Management Office Program Manager</td>
<td>▪ Value Management Office Program Manager</td>
<td>▪ Project Team</td>
</tr>
<tr>
<td><strong>Constructability Review Minutes/CR Log</strong></td>
<td>▪ Complete Constructability Review</td>
<td>Value Management Office Program Manager</td>
<td>▪ Value Management Office Program Manager</td>
<td>▪ Project Team</td>
</tr>
<tr>
<td><strong>Risk Assessment Worksheet</strong></td>
<td>▪ Update Risk Assessment Worksheet and Hold Risk Assessment Study</td>
<td>Project Manager</td>
<td>▪ Value Management Office Program Manager</td>
<td>▪ Project Team</td>
</tr>
<tr>
<td><strong>Risk Assessment Study</strong></td>
<td>▪ Hold Value Assessment and complete VA worksheet</td>
<td>Project Manager</td>
<td>▪ Value Management Office Program Manager</td>
<td>▪ Project Team</td>
</tr>
<tr>
<td><strong>Value Assessment</strong></td>
<td>▪ Hold Value Assessment and complete VA worksheet</td>
<td>Project Manager</td>
<td>▪ Value Management Office Program Manager</td>
<td>▪ Project Team</td>
</tr>
<tr>
<td><strong>Value Assessment Worksheet</strong></td>
<td>▪ Hold Value Assessment and complete VA worksheet</td>
<td>Project Manager</td>
<td>▪ Value Management Office Program Manager</td>
<td>▪ Project Team</td>
</tr>
<tr>
<td><strong>Value Engineering (VE) Study Report</strong></td>
<td>▪ Hold Value Engineering Study and Review Report</td>
<td>Project Manager</td>
<td>▪ Value Management Office Program Manager</td>
<td>▪ Project Team</td>
</tr>
<tr>
<td><strong>Final Dispositions (responses to recommendations)</strong></td>
<td>▪ Conduct CLEAR Activities</td>
<td>Project Manager or Other Technical Disciplines/Units</td>
<td>▪ Value Management Office Program Manager</td>
<td>▪ Project Team</td>
</tr>
<tr>
<td><strong>CLEAR Database Search</strong></td>
<td>▪ Conduct CLEAR Activities</td>
<td>Project Manager or Other Technical Disciplines/Units</td>
<td>▪ Value Management Office Program Manager</td>
<td>▪ Project Team</td>
</tr>
</tbody>
</table>

* A indicates that final document(s) or data set(s) must be uploaded to the ATLAS Workbench

Complete Constructability Review Checklist

In accordance with the Project Management Guide and Value Management Guidelines, the Project Manager, in collaboration with the Roadway Design Lead or another assigned technical disciplines/Units, evaluates the project using the list of constructability considerations provided in the Constructability Review Checklist. The Checklist is completed (all items assessed) by the end of this stage to make sure the project team has considered constructability issues as the design progresses. As construction issues/risks are identified and documented, the Project Manager or Roadway Design Lead is to contact the respective Division Construction Engineer (DCE) or Area Construction Engineer (ACE) to consult on their construction knowledge, methodology, and experience. VMO provides support as needed. The CR Checklist is to be uploaded to the Value Management Library in the Project SharePoint site under the topic Constructability Review.

Complete Constructability Review

Following a discussion with the DCE or ACE, the Project Manager in collaboration with the Roadway Design Lead or other technical disciplines/Units, may contact the Value Management Office (VMO) to set up a

2VM1 Complete CR-RAVE Studies/Reviews, CLEAR Activities, and Conduct Value Assessment Activities

November 2021
formal or informal Constructability Review (CR) in accordance with the Value Management Guidelines and the Project Management Guide. Any member of the project team can alert the Project Manager of the need for a Constructability Review based on aspects of their technical discipline.

A CR can help improve the design to include the impacts to construction. By assessing construction impacts early, consideration for the environmental permits can help mitigate the risk of a permit modification later in the process. Additionally, ROW, Utility, and easement impacts can be reviewed more completely. If a CR is deemed necessary, a log with suggested design implementations (CR Log) and general notes is documented during the review then distributed as meeting minutes to the attendees, including the Project Manager, and are referenced throughout project development. The CR Log is to be uploaded to the Project Site in the Value Management Library under the topic Constructability Review by the VMO Program Engineer. From there, the Project Manager works with all applicable technical disciplines/Unit leads to address constructability issues as review comments and recommendations are addressed within the project’s design documents and permit documents, if necessary.

**Update Risk Assessment Worksheet and Hold Risk Assessment Study**

The Project Manager, with support from the VMO Program Manager (if needed), continues risk management review to identify potential issues that could jeopardize project delivery. Per the Risk Management Guide and the Project Management Guide, the Project Manager begins this step by identifying additional risks not captured in the Project Scoping Report on the Risk Assessment Worksheet (RAW). If the project has a substantial change, it is beneficial to review the RAW and determine if the change elevates or diminishes project risks. The Project Manager initiates the review. If the risk review reveals potential fatal flaws, the project is reassessed with support from applicable technical disciplines/Units before a substantial part of the budget is spent. VMO provides support as needed.

While a Risk Assessment Study is not required for every project, based on the severity of the risks, a Risk Assessment Study may be necessary to provide greater assurance that a project can maintain its scope, schedule, and budget goals. Therefore, the Project Manager is to coordinate with the VMO to determine if a Risk Assessment Study is appropriate.

During this stage, the VMO supports the Project Manager by providing guidance for the Risk Assessment Worksheet (RAW) and/or facilitating a Risk Assessment Study in accordance with the Value Management Guidelines and the Project Management Guide. If a Risk Assessment Study is deemed necessary, the VMO Program Manager:

- Gathers a team of experts from the applicable technical disciplines/Units.
- Facilitates the development of the Risk Response Strategy.
- Develops an Implementation Plan.

From there, the Project Manager continually monitors and controls the identified project risks following the process and procedures detailed in the Risk Management Guidelines and the Project Management Guide. Of note, as the project moves forward, the Project Manager and team should be aware that different risks may be encountered from one stage to the next, which is why it is critical to engage the various technical disciplines/Units when identifying and documenting risks related to each stage of delivery. The RAW is to be uploaded into the Value Management Library of the Project SharePoint site under the Risk Assessment Topic.
Hold Value Engineering Study and Review Report

As outlined in the Value Engineering (VE) Checklist, or as listed on the VE Schedule, the Project Manager establishes if a VE study is required or recommended for state or federal projects that meet or exceed the following thresholds:

- Any project on the National Highway System (NHS) that is $50 million, or
- Any project on the NHS that is $40 million or more for projects with structures, or
- Any project that is over $500 million regardless of NHS designation.

If required (or recommended), the VE Study is scheduled as early as possible after notice to proceed (NTP) to maximize the opportunity to include recommendations into the Design Recommendation Plan Set. The VE Study is conducted pursuant to FHWA guidance and thresholds, where a multi-discipline team not currently involved with the project provides ideas for cost and process improvements. The VE Study requires initial input from the project team but is completed by the VMO (or VMO selected firm) in accordance with the Value Management Guidelines.

After the VE Study, the VMO (or VMO selected firm) prepares the VE Study Report, including VE recommendations, following the guidance defined in the Value Management Guidelines. Once prepared, the VE Report is submitted to the Project Manager and Roadway Design Lead to review with support from all applicable technical disciplines/Units leads, and final dispositions (responses to recommendations) are returned to the VMO. These documents are to be uploaded to the Project SharePoint site in the Value Management Library under the Value Engineering Topic.

The VMO records the dispositions in the VE Program Action Register, and the Project Manager works with all applicable technical disciplines/Units leads to implement the accepted recommendations into the project’s design documents and permitting documents, if necessary.

Revisit VE Threshold Requirements (As Needed)

As a project progresses from one stage to the next, changes (to scope, total project cost, schedule, or the project delivery method) may impact if a VE Study is required and the timing of when a VE Study is held. The Project Manager reviews the monthly VE Study schedule and notify VMO if a project requiring a VE Study is missing from the schedule as well as if there is a major change that triggers a required VE Study, such as changes to a project’s scope, total project cost, schedule, or the project delivery method.

Conduct CLEAR Activities

VMO maintains the Communicate Lessons, Exchange Advice, Record (CLEAR) database (internal Knowledge Management tool), which contains lessons learned (LL) and best practices (BP) from across the Department. VMO provides support for searching the database as well as connecting users to experts that provide input to find solutions and vet ideas.

The Project Manager and technical leads/Units identify key words from the Project Scoping Report and search the CLEAR portal to identify relevant LL and BP in order to leverage past successes and errors to deliver the project more efficiently. The outcomes of the search are then reviewed and vetted for applicability. Additional searches based on project location, type, and areas of concern by discipline are performed as needed. The ultimate goal is to produce better design documents; not limited to a better
and safer design, but a more comprehensive biddable contract, (i.e., more contractor-friendly bid package).

Any LL or BP developed during any CR-RAVE activities (any ideas, recommendations, and solutions) should be submitted into the CLEAR portal so other Project Teams can leverage successes and errors to deliver other projects more efficiently. LL and BPs should include any ideas, recommendations and solutions generated during CR-RAVE activities. These submissions can include everything from communication to improved designed documents, guidelines and standards and are not limited to better and safer designs but also more Contractor-friendly bid packages.

External consultants (PEFs) can submit any ideas, recommendations, and solutions through the form found here: Project Knowledge Sharing.

Conduct Value Assessment

During this stage, the VA Consultant identified in Stage 1, will conduct the VA and complete the VA Worksheet There may already be a VA Worksheet of cost saving ideas initially identified in Stage 1. This should be provided to the firm conducting the VA. The VA should be done early enough to allow sufficient time for the Project Team to incorporate changes into the project without impacting the project schedule. Based on the Cost-containment Guidance, the purpose of the Workshop is to evaluate the programmed purpose and need and scope and brainstorm cost saving ideas that would reduce the Construction, Utility, Right of Way, and future Maintenance Costs. The output from the VA is the VA Worksheet, directions on how to fill out the VA Worksheet, for consultant firms, Project Managers, and Division Engineers, can be found in the VA Worksheet SOP Video. Once the consultant firm completes the VA Worksheet it should be posted to the project SharePoint site in the Value Management Library under the Value Assessment topic.

The Project Manager will evaluate and review the ideas with the Project Team for feasibility, cost savings, and if the Project will still meet the original purpose and need. The Project Manager will then provide a final disposition of Accepted, Accepted as Modified, or Rejected. All rejected recommendations need to include a detailed explanation as to why the recommendation is rejected. The Division Engineer has an opportunity to provide comments in the VA Worksheet. Any cost savings identified may need to be included in the Cost Verification Memo (see Project Management Guide for related information).

*Note: A Value Assessment will not take the place of a required Value Engineering Study.

Complete QC/QA Procedures

The Value Management Office Program Manager is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
3VM1 Incorporate CR-RAVE Outcomes, Submit CLEAR Activities, and Implement Value Assessment Activities

Overview
As applicable, ensure outcomes from the Constructability Review, Risk Assessment Study, Value Assessment, and Value Engineering Study (CR-RAVE) activities are incorporated into the design. Additionally, ensure Communicate Lessons, Exchange Advice, Record (CLEAR) activities continue.

While CR-RAVE and CLEAR activities include separate items, considering the items together allows the outcomes to inform each other since they typically overlap and may be joined (especially a Risk Assessment and VE Study).

References
- Value Management Office
  - Value Management Guidelines
- Constructability Review Program
  - Constructability Review Checklist
- Risk Assessment Program
  - Risk Management Guide
  - Risk Assessment Worksheet
- Value Engineering Program
  - Value Engineering Checklist
  - Value Engineering Schedule
- ArcGIS STIP and NHS Maps
- CLEAR Program
  - CLEAR SharePoint Site
- Value Assessment
  - Value Assessment Worksheet
  - Value Assessment Worksheet SOP Video
  - Value Assessment Sample Scope of Work
- Project Management Guide
- NCDOT Quality Management Manual
- Project Knowledge Sharing

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
<th>Activity Leader</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructability Review Checklist</td>
<td>Incorporate Constructability Review Outcome</td>
<td>Project Manager</td>
<td></td>
<td>Division Construction Engineer, Area Construction Engineer, Value Management Office</td>
</tr>
<tr>
<td>Constructability Review Minutes/CR Log A</td>
<td>Complete Constructability Review</td>
<td>Value Management Office Program Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Assessment Worksheet</td>
<td></td>
<td>Project Manager</td>
<td></td>
<td>Value Management Office</td>
</tr>
</tbody>
</table>

3VM1 Incorporate CR-RAVE Outcomes, Submit CLEAR Activities, & Implement Value Assessment Activities 10 November 2021
Incorporate Constructability Review Outcome

In accordance with the Project Management Guide and Value Management Guidelines, the Project Manager, in collaboration with the Roadway Design Lead or other technical disciplines/Units, continues to review/reference the list of constructability considerations assessed in the Constructability Review Checklist, as well as the CR Log and meeting minutes from the Constructability Review (if one was held). The Project Manager continues to work with all applicable technical disciplines/Unit leads to address constructability issues by updating the project’s design documents and permit documents, if necessary. If any additional construction impacts arise, the Division Construction Engineer (DCE) or Area Construction Engineer (ACE) are contacted to optimize use of construction knowledge, methodology, and experience. VMO provides support as needed.

Complete Constructability Review (if needed)

As construction issues/risks are further identified or carried forward from previous assessments or reviews, the Project Manager or Roadway Design Lead is to contact the respective Division Construction Engineer (DCE) or Area Construction Engineer (ACE) to consult on their construction knowledge, methodology, and experience. Following a discussion with the DCE or ACE, the Project Manager, in collaboration with the Roadway Design Lead or other assigned technical disciplines/Units, may contact the Value Management Office (VMO) to set up a formal or informal Constructability Review (CR) regardless if one had been held during an earlier stage since multiple CRs can occur as the design develops.

Update and Monitor Risk Assessment Worksheet

The Project Manager, with support from the VMO Program Manager (if needed), continually revises the risk register and references the Risk Assessment Study Report (if a Study occurred) to continue to monitor and control project risks, all following the process and procedures detailed in the Risk Management Guide and the Project Management Guide. Of note, as the project moves forward, the Project Manager and team should be aware that different risks may be encountered from one stage to the next, which is why it is critical to engage the various technical disciplines/Units when identifying and documenting risks related to each stage of delivery.

---

3VM1 Incorporate CR-RAVE Outcomes, Submit CLEAR Activities, & Implement Value Assessment Activities 11 November 2021
Complete Risk Assessment Study (if needed)
Based on project scope and risk assessment data, the Project Manager may request an additional Risk Assessment Study from the VMO, which is completed following the process defined in the Value Management Guidelines.

Implement Value Engineering Recommendations
If a VE Study was held, the Project Manager makes sure the VE Study Report (prepared by VMO) was reviewed with support from all applicable technical disciplines/Units leads and final dispositions (responses to recommendations) were returned to the VMO Program Manager.

The VMO Program Manager makes sure the dispositions were recorded in the VE Program Action Register, and the Project Manager continues to work with all applicable technical disciplines/Unit leads as the accepted recommendations are incorporated into the project’s design documents, updating permit documents if necessary.

Revisit VE Threshold Requirements (if needed)
As a project progresses from one stage to the next, changes (to scope, total project cost, schedule, or the project delivery method) may impact if a VE Study is required per the thresholds listed in 1VM1 and 2VM1 as outlined in the Value Engineering (VE) Checklist. Changes may also impact the timing of when a VE Study is held. The Project Manager reviews the monthly VE Study schedule and notifies VMO if a project requiring a VE Study is missing from the schedule as well as if there is a major change to a project’s scope, total project cost, schedule, or the project delivery method that would warrant a study.

Submit LL and BP from Project Design and Development (CLEAR Submissions)
The Project Manager (or assigned NCDOT employee) continues to identify any lessons learned (LL) and best practices (BP) to submit into the CLEAR portal (by a NCDOT employee) so other Project Managers and applicable technical disciplines/Units can leverage successes and errors to deliver other projects more efficiently.

External consultants (PEFs) can submit submission through the form found here: Project Knowledge Sharing.

Implement Value Assessment Recommendations
The accepted recommendations from the VA should be implemented into the design of the project. Prior to the conclusion of this stage, the Project Team should do an additional review to identify any additional cost containment changes that can be made based on new information discovered since the VA. Additional changes/recommendations should be added to the VA Worksheet and may need to be included in the Cost Verification Memo (see Project Management Guide for related information).

Complete QC/QA Procedures
The Value Management Office Program Manager is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.

3VM1 Incorporate CR-RAVE Outcomes, Submit CLEAR Activities, & Implement Value Assessment Activities 12 November 2021
4VM1 Complete CR-RAVE, CLEAR and Complete Value Assessment Activities

Overview
As applicable, ensure outcomes from the Constructability Review, Risk Assessment Study, Cost- Value Assessment, and Value Engineering Study (CR-RAVE) activities are incorporated into the design. Additionally, ensure Communicate Lessons, Exchange Advice, Record (CLEAR) activities continue.

While CR-RAVE and CLEAR activities include separate items, considering the items together allows the outcomes to inform each other since they typically overlap and may be joined (specifically a Risk Assessment and VE Study).

References
- Value Management Office
  - Value Management Guidelines
- Constructability Review Program
  - Constructability Review Checklist
- Risk Assessment Program
  - Risk Management Guide
  - Risk Assessment Worksheet
- Value Engineering Program
  - Value Engineering Checklist
  - Value Engineering Schedule
- ArcGIS STIP and NHS Maps
- CLEAR Program
  - CLEAR SharePoint Site
- Value Assessment
  - Value Assessment Worksheet
  - Value Assessment Worksheet SOP Video
  - Value Assessment Sample Scope of Work
- Project Management Guide
- NCDOT Quality Management Manual
- Project Knowledge Sharing

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructability Review Minutes/CR Log</td>
<td>Complete Constructability Review Implementation Check</td>
<td>Value Management Office Program Manager</td>
</tr>
<tr>
<td>Risk Assessment Worksheet</td>
<td>Update and Monitor Risk Assessment Worksheet</td>
<td>Project Manager</td>
</tr>
<tr>
<td>Value Assessment</td>
<td>Complete Value Assessment Implementation Check</td>
<td>Project Manager</td>
</tr>
</tbody>
</table>

4VM1 Complete CR-RAVE, CLEAR and Complete Value Assessment Activities
November 2021
Complete Constructability Review Implementation Check

In accordance with the *Project Management Guide* and *Value Management Guidelines*, the Project Manager, in collaboration with the Roadway Design Lead or other technical disciplines/Units, reviews the list of constructability considerations assessed in the Constructability Review Checklist, as well as the CR Log and meeting minutes from the Constructability Review (if one was held) to make sure constructability issues have been addressed in the design package. If a Constructability Review was held, the action item log (located in the Value Management Library on the Project SharePoint site) should be updated to confirm which items have been implemented and noting reasons for any items that were not.

**Complete Constructability Review (if needed)**

As construction issues/risks are further identified or carried forward from previous assessments or reviews, the Project Manager or Roadway Design Lead is to contact the respective Division Construction Engineer (DCE) or Area Construction Engineer (ACE) to consult on their construction knowledge, methodology, and experience. Following a discussion with the DCE or ACE, the Project Manager may contact the VMO to set up a formal or informal Constructability Review (CR) regardless if one had been held during an earlier stage since multiple CRs can occur as the design develops.

**Update and Monitor Risk Assessment Worksheet**

The Project Manager, with support as needed from the VMO Program Manager, continually revises the risk register (as needed), and references the Risk Assessment Study Report to continue to monitor and control project risks, all following the process and procedures detailed in the *Risk Management Guide* and the *Project Management Guide*.

**Complete Risk Assessment Study (if needed)**

Based on project scope and risk assessment data, the Project Manager may request an additional Risk Assessment Study from the Value Management Office (VMO), which is completed following the process defined in the *Value Management Guidelines*.

**Complete Value Assessment Implementation Check**

The Project Manager confirms implementation of accepted recommendations and completes the Value Assessment Implementation Check on the VA Worksheet. Any cost savings identified may need to be included in the Cost Verification Memo (see *Project Management Guide* for related information).

**Complete Value Engineering Recommendation Implementation Check**

If a VE Study was held, the Project Manager confirms implementation of accepted recommendations, which is verified by VMO per FHWA requirements on the recommendation forms located in the Value Management Library.
Management Library on the Project SharePoint site. The VMO Program Manager records the implementation check in the VE Program Action Register.

**Revisit VE Threshold Requirements (if needed)**

As a project progresses from one stage to the next, changes (to scope, total project cost, schedule, or the project delivery method) may impact if a VE Study is required per the thresholds listed in 1VM1 and 2VM1 as outlined in the *Value Engineering (VE) Checklist*. Changes may also impact the timing of when a VE Study is held. The Project Manager reviews the monthly VE Study schedule and notifies VMO if a project requiring a VE Study is missing from the schedule as well as if there is a major change to a project’s scope, total project cost, schedule, or the project delivery method that would warrant a study.

**Submit LL and BP from Project Design and Development (CLEAR Submissions)**

The Project Manager (or assigned NCDOT employee) continues to identify any lessons learned (LLs) and best practices (BPs) to submit into the CLEAR portal (by an NCDOT employee) so other Project Managers and applicable technical disciplines/Units can leverage successes and errors to deliver other projects more efficiently.

External NCDOT personnel can submit submission through the form found here: [Project Knowledge Sharing](#).

**Complete QC/QA Procedures**

The Value Management Office Program Manager is to coordinate the applicable QC review following the NCDOT Quality Management Manual procedures and the respective QC Checklist before upload and distribution of all related deliverables.
5VM1 Value Management Construction Support

Overview

As applicable, ensure outcomes from the Constructability Review, Risk Assessment Study, and Value Engineering Study (CR-RAVE) and Value Assessment activities are incorporated during construction. Additionally, ensure Communicate Lessons, Exchange Advice, Record (CLEAR) activities continue.

Complete Value Engineering Proposal activities if necessary.

References

- Value Management Office
  - Value Management Guidelines
- Constructability Review Program
  - Constructability Review Checklist
- Risk Assessment Program
  - Risk Management Guide
  - Risk Assessment Worksheet
- CLEAR Program
  - CLEAR SharePoint Site
- Project Knowledge Sharing
- Value Engineering Proposal Program
- Standard Specifications for Roads and Structures
- Construction Manual

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
<th>Activity Leader</th>
<th>Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Assessment Worksheet</td>
<td>Update and Monitor Risk Assessment Worksheet</td>
<td>Project Manager/Resident Engineer</td>
<td>Value Management Office Program Manager</td>
<td></td>
</tr>
<tr>
<td>CLEAR Database Submissions</td>
<td>Submit LL and BP from throughout Project Design and Development (CLEAR Submissions)</td>
<td>Division Personnel</td>
<td>Value Management Office Program Manager</td>
<td></td>
</tr>
<tr>
<td>Value Engineering Proposal Memo</td>
<td>Compile Value Engineering Proposal Memo</td>
<td>Value Management Office Program Manager</td>
<td>CCU</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical Disciplines/Units, Resident Engineer</td>
<td></td>
</tr>
</tbody>
</table>

Update and Monitor Risk Assessment Worksheet

The Project Manager and Resident Engineer, with support as needed from the VMO Program Manager, continually revise the risk register (as needed), and reference the Risk Assessment Study Report (if a study occurred) to continue to monitor and control project risks, all following the process and procedures detailed in the Risk Management Guide and the Project Management Guide.

Submit LL and BP during Construction (CLEAR Submissions)

VMO maintains the Communicate Lessons, Exchange Advice, Record (CLEAR) database (internal Knowledge Management tool), which contains lessons learned (LL) and best practices (BP) from across
the Department. VMO provides support for submitting to the database as well as coordinating review by experts that provide input and vet ideas.

All NCDOT Employees can identify any lessons learned (LL) and best practices (BP) to submit into the CLEAR portal (by an NCDOT employee) so others can leverage successes and errors to deliver other projects more efficiently. These submissions can include everything from communication to improved designed documents and are not limited to better and safer designs, but also more contractor-friendly bid packages.

External NCDOT personnel can submit submission through the form found here: Project Knowledge Sharing.

Compile Value Engineering Proposal Memo

The purpose of the Value Engineering Proposal Program (VEPP) is to encourage contractors to develop Value Engineering ideas by utilizing their design and construction ingenuity, experience, and background. A Value Engineering Change Proposal (VEP) is a post-award proposal made by the construction contractor which includes any changes to work that may potentially result in cost or time savings, without impairing essential functions and characteristics of the project, such as: service life, safety, reliability, economy of operation, ease of maintenance, desired aesthetics, design, standardized features, and environmental

A contractor can submit a Value Engineering Proposal to the VMO at any time during construction. These proposals are to follow the guidelines in the Standard Specifications for Roads and Structures and Construction Manual. The Contractor submits a conceptual proposal shown through sketches, mark-ups on existing plan sheets, a short description, and breakdown of costs associated with the proposal. The VMO sends the preliminary submittal for review to the Resident Engineer, Technical Disciplines, and Project Manager. The Department uses the Preliminary Submittal to review the merit of the conceptual proposal prior to the Contractor spending time and money developing a more detailed Final Proposal.

Upon the approval of the preliminary review, the contractor submits a final proposal. The initial Proposal must include: design calculations, contract plan sheet modifications, contract document changes, and a cost savings estimate based on contract line items, all at the Contractor’s expense. VMO sends the final proposal to the Resident Engineer, Technical Disciplines, and Project Manager for review. Once the review is completed and a final decision made, the VMO prepares the Value Engineering Proposal memo, which is sent to the Resident Engineer to share with the contractor. The Resident Engineer is responsible for execution of any necessary Supplemental Agreements.
SVM2 Post Construction Assessment

Overview
The Post Construction Assessment brings together the design team, NCDOT personnel, and contractors to review lessons learned and best practices related to the construction of these projects to improve delivery of future projects.

References
- Value Management Office
  - Value Management Guidelines
- Risk Assessment Program
  - Risk Assessment Worksheet
- CLEAR Program
- Project Knowledge Sharing

Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Construction Assessment Summary</td>
<td>Summary of discussion generated by VMO and shared.</td>
<td>Value Management Office Program Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Team</td>
</tr>
</tbody>
</table>

Project Selection
Projects that should have a Post Construction Assessment can be identified by any member of the Project Team. The Project Team should inform the VMO as soon as they have determined that the project benefits from a Post Construction Assessment at the completion of the project.

Pre-Post Construction Assessment Meeting
The Value Management and internal Project Team define the topics that should be covered during the Post Construction Assessment. Topics should be focused on areas to capture lessons learned and best practices. Additionally, the group ensures all the right internal and external stakeholders are invited to make the assessment complete.

Submit Lessons Learned and Best Practices
Following the Post Construction Assessment, the lessons learned, and best practices generated from the discussion are submitted into the CLEAR database and routed to experts for vetting and implementation.