

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

PAT MCCRORY GOVERNOR

ANTHONY J. TATA SECRETARY

April 03, 2013

MEMORANDUM TO: 2002 ROADWAY DESIGN MANUAL HOLDERS

FROM:

ROBERT MCKEITHAN PUBLICATIONS ENGINEER

SUBJECT: 2002 ROADWAY DESIGN MANUAL REVISION No. 7

The following are The Revisions and New Guidelines to Part I of the Roadway Design Manual. Please insert these Revisions in your Manual in the appropriate place. The 2002 Roadway Design Manual has been updated and is available on the web at:

https://inside.ncdot.gov/stage/connect/projects/Roadway/Pages/Roadway-Design-Manual.aspx

If you have any questions and comments about this revision or the Roadway Design Manual, Please contact Robert McKeithan (rmckeithan@ncdot.gov) or Edward Morrison (emmorrison@ncdot.gov) of the Transportation Program Management Unit.

REVISION NO. 7

Part I - Roadway Design Manual

1. Chapter 1 - Section 2A, Figure 1 Interstates, Freeways, Expressways, Other Four Lane Facilities

NOTE: Criteria for Roadway Typical Section and Slopes

2. Chapter 3 - Section 1E, Index of Sheets

NOTE: Changes to Trans. Management Plans and Pavement Marking Plans

3. Chapter 7 - Section 1, Sight Distances At railroads For Unsignalized Crossing

NOTE: 2001 Greenbook reference Changed to 2004

4. Chapter 7 - Section 1H, Sight Distances At railroads For Unsignalized Crossing

NOTE: Charts and Engineering drawings are being put back in the manual

5. Chapter 7 - Section 6, Typical Median Separated Island Detail

NOTE: Clarification of Minimum flat surface requirement

6. Chapter 8 - Sections 1, 6 & 15, Interchanges

NOTE: 2001 Greenbook reference Changed to 2004

7. Chapter 8 - Section 1, Figure 1 Design Widths of Pavements for Turning Roadways

NOTE: 2001 Greenbook reference Changed to 2004

8. Chapter 8 - Section 3, Guide Values for Ramp Design Speed

NOTE: Minimum Radius Charts Added

9. Chapter 8 - Section 8, Figure 1 Recommended Minimum Ramp Terminal Spacing

NOTE: Recommended Minimum Ramp Terminal Spacing Figure Added

10. Chapter 8 - Section 11, Acceleration and Deceleration Lanes

NOTE: Minimum Lengths for Entrance Exit Terminals Charts Added

RM

Attachments

- **PROJECT COST REDUCTION GUIDELINES (continued)**1-1Eb) Recheck need for detour structure. Is it possible to close road? Can a precast
box culvert be used to allow closing of a road in a minimum amount of time? Can a Portable Detour Structure be used?
 - c) Consider submitting project for a Value Engineering study if the construction cost exceeds \$2,000,000 and the design has not progressed past the right-ofway stage.

HOW TO SELECT A TYPICAL SECTION

For assistance in selecting a typical section, a brief explanation is provided for the major considerations that are directly or indirectly affected by the design criteria. Study each of these carefully before you begin to select a typical section.

The typical section should be based on sound engineering principles with primary emphasis being placed on the type of facility, traffic volumes, terrain, availability of right of

way, grading, guardrail construction and economics. On projects of major importance and where a significant savings can be realized, several design combinations should be considered. After the most feasible of the design combinations are chosen, an analysis should be made to select a typical section that will provide a safe and economical highway. An analysis in the early stages of design may determine that it is necessary to revise the typical section to:

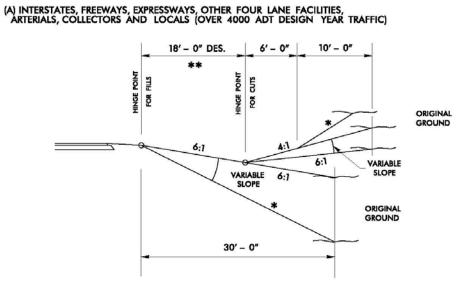
- 1) Reduce right of way takings.
- 2) Improve grading operations.
- 3) Utilize waste material to flatten slopes which will provide greater roadside clearances and may sometimes eliminate the need for guardrail.
- 4) Reduce wetland taking in environmentally sensitive areas.

CRITERIA FOR ROADWAY TYPICAL SECTION AND SLOPES 1-2A

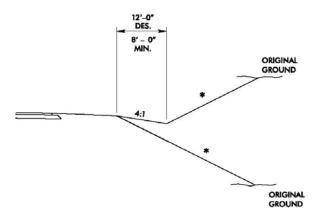
STANDARD METHOD OF CONSTRUCTING CUT AND FILL SLOPES

(A) Interstates, Freeways, Expressways and other four-lane facilities

See 1-2A, F-1 (A).


(B) Collectors and Locals (4000 ADT or less Design Year Traffic)

See 1-2A, F-1(B).


NOTE: These guidelines (A and B) apply to new construction, not 3-R Projects or subdivision roads.

1-2

<u>1 - 2A</u> F - 1

(B) COLLECTORS AND LOCALS (4000 ADT OR LESS DESIGN YEAR TRAFFIC)

- * THE STEEPEST PRACTICAL SLOPES AS DETERMINED BY THE GEOTECHNICAL UNIT SHOULD BE UTILIZED INTERSTATE SIDE SLOPES SHOULD NOT BE STEEPER THAN 2:1 EXCEPT IN ROCK EXCAVATION FREEWAYS AND EXPRESSWAYS SHOULD NOT BE STEEPER THAN 1 1/2:1 TO 2:1.
- ** 12' 0" MIN. ARTERIALS, COLLECTORS, LOCAL OVER 4000 ADT 15' – 0" MIN. INTERSTATE, FREEWAY, EXPRESSWAY, FOUR LANE A GUARDRAIL STUDY WILL BE REQUIRED FOR FILL SLOPES STEEPER THAN 3:1 SEE HIGHWAY DESIGN MANUAL, PART I, CHAPTER 3 FOR SHOULDER WIDTHS, SEE HIGHWAY DESIGN MANUAL, PART I, CHAPTER 1–4B, F–1.

TWO FOOT MINIMUM DITCH DEPTH REQUIRED TO COVER DRIVEWAY PIPE

CHAPTER SEVEN

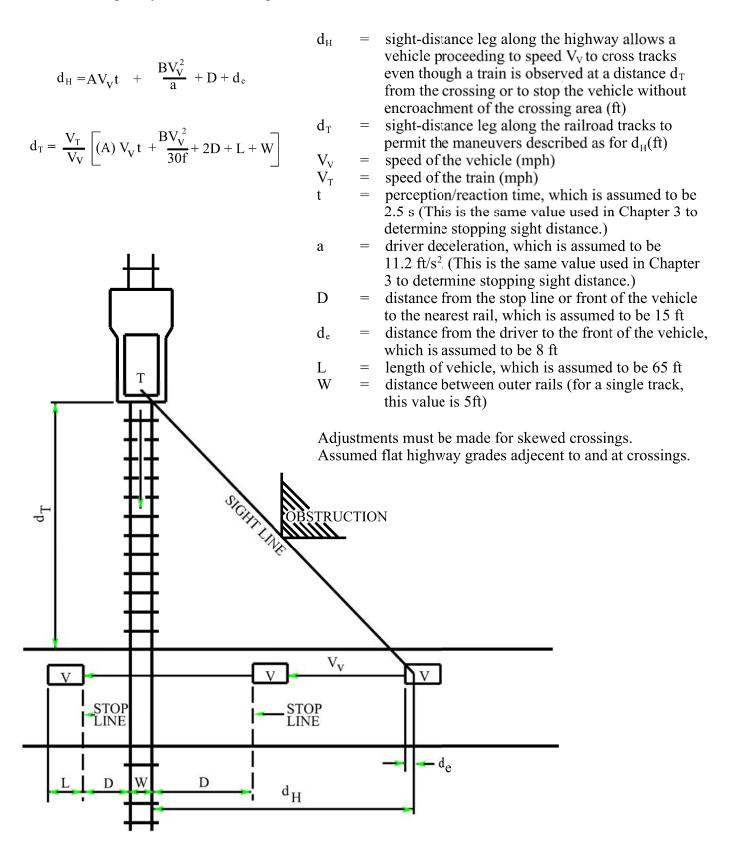
RAILROADS

SIGHT DISTANCES AT RAILROADS FOR UNSIGNALIZED CROSSING

The sight distance at railroad crossings is of utmost importance. When the exposure index does not merit grade separations or railroad signals, Section 7-1F, Figure 1, to provide safe stopping sight distances. If physical barriers exist and it is not economically feasible to provide the required distances, it shall be discussed with the Assistant State Roadway Design Engineer.

NOTE: Section 7-1F, Figure 1 is based on conditions of a 65' truck crossing a single set of tracks at 90°. This allows for a margin of safety for conditions using other design vehicles. If it is determined by the designer that a small number of trucks will be using the facility, consideration may be given to reducing the sight distance.

For Additional Information See:

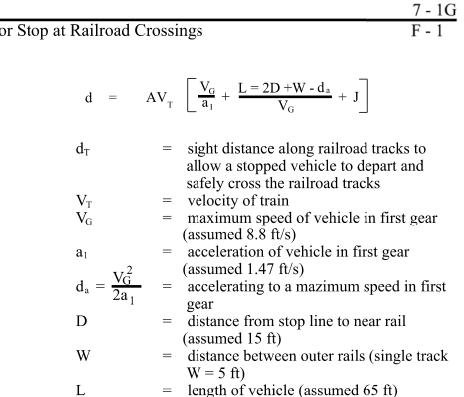

- A. <u>Roadway Standard Drawings</u>, Std. No. 1205.11 Pavement Markings for Railroad Crossings
- B. Chapter 18 of The Policy and Procedure Manual.
- C. <u>Railroad-Highway Grade Crossing Handbook</u> "Report No. FHWA TS 86 215, September, 1986"
- D. <u>A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS</u> (2004), Ch 9.
- E. For Federal Highway-Rail Grade Crossing Relevant web links, go to: "http://safety.fhwa.dot.gov/fourthlevel/prof_res_hiwaygreadexing_links.htm".

REV. DATE : 03/02/11 REV. NO. 7

7-1

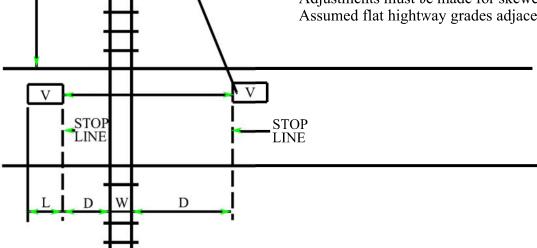
FIGURE 1

Railroad - Highway Grade Crossings


CASE A: MOVING VEHICLE TO SAFELY CROSS OR STOP AT RAILROAD CROSSING

REV. DATE : 3/02/11 REV. NO. 7

FIGURE 1


 d_{T}

Moving Vehicle to Safely Cross or Stop at Railroad Crossings

= perception/reaction time (assumed 2.0 s)

Adjustments must be made for skewed crossings. Assumed flat hightway grades adjacent to and at crossings.

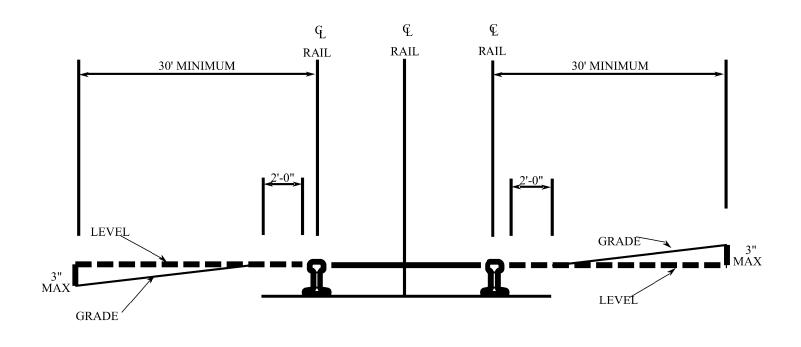
J

CASE B: DEPARTURE OF VEHICLE FROM STOPPED POSITION TO CROSS SINGLE RAILROAD TRACK

REV. DATE: 3/02/11 REV. NO. 7

SIGHT DISTANCES AT RAILROADS FOR UNSIGNALIZED CROSSING (Continued)

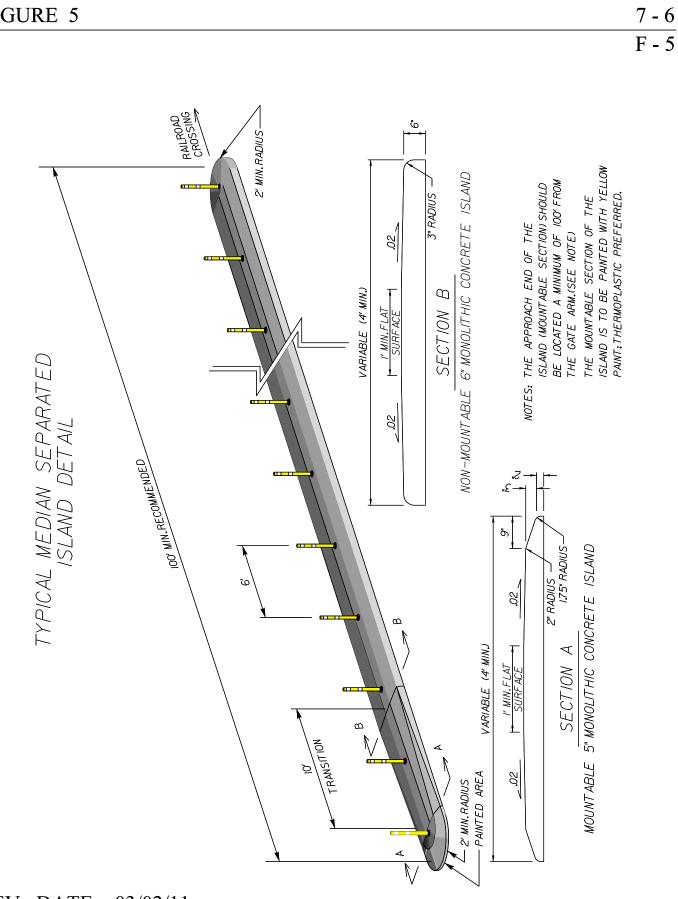
				US Cust	omary				
	Case B				Cas	se A			
Train	Departure				Moving	Vehicle			
Speed	from stop			١	/ehicle Sp	eed (mph)		
(mph)	0	10	20	30	40	50	60	70	80
			Di	stance alc	ong railroa	d from cro	ssing, d_T	(ft)	
10	240	146	106	99	100	105	111	118	126
20	480	293	212	198	200	209	222	236	252
30	721	439	318	297	300	314	333	355	378
40	961	585	424	396	401	419	444	473	504
50	1201	732	530	494	501	524	555	591	630
60	1441	878	636	593	601	628	666	709	756
70	1681	1024	742	692	701	733	777	828	882
80	1921	1171	848	791	801	838	888	946	1008
90	2162	1317	954	890	901	943	999	1064	1134
			Dis	stance alo	ng highwa	y from cro	ossing, d _H	(ft)	
		69	135	220	324	447	589	751	931


Required design sight distance for combination of highway and train vehicle speeds; 65-ft truck crossing a single set of tracks at 90°.

NOTE:

See Section 7-1F, Figure 1 for "Case A" – MOVING VEHICLE TO SAFETY CROSS OR STOP AT RAILROAD CROSSING and Section 7-1G, Figure 1 for "Case B" – DEPARTURE OF VEHICLE FROM STOPPED POSITION TO CROSS SINGLE RAILROAD TRACK.

FOR ADDITIONAL INFORMATION, SEE <u>A POLICY ON GEOMETRIC DESIGN OF</u> HIGHWAYS AND STREETS (2004), Ch 9.


PART 1

NOTE: To prevent drivers of low-clearence vehicles from becoming caught on the tracks, the crossing surface should be at the same plane as the top of the rails for a distance of 2' outside the rails. The surface of the highway should not be more than 3" higher or lower than the top of nearest rail at a point 30' from the rail unless track superelevation makes a different level appropriate, as shown in the figure above.

FOR ADDITIONAL INFORMATION, SEE <u>A POLICY ON GEOMETRIC</u> OF HIGHWAY AND STREETS (2004), Ch 9.

PART I

ROADWAY DESIGN MANUAL FIGURE 5

REV. DATE: 03/02/11 REV. NO. 7

Г

DESIGN WIDTHS OF PAVEMENTS FOR TURNING ROADWAYS 8 - 1 F - 1

<u> </u>		
F	_	1

				US Cus	stomary				
				Pav	ement Wid	th (ft)			
		Case I			Case II			Case III	
Radius on inner edge of pavement	n inner One-lane, c dge of -no provis		lane, one-way operation- provision for passing a stalled vehicle		e, one-way o ovision for p stalled vehic	assing a		ne operatior way or two	
			Design traffic conditions			nditions			
R (ft)	А	В	С	А	В	С	А	В	С
50	18	18	23	20	26	30	31	36	45
75	16	17	20	19	23	27	29	33	38
100	15	16	18	18	22	25	28	31	35
150	14	15	17	18	21	23	26	29	32
200	13	15	16	17	20	22	26	28	30
300	13	15	15	17	20	22	25	28	29
400	13	15	15	17	19	21	25	27	28
500	12	15	15	17	19	21	25	27	28
Tangent	12	14	14	17	18	20	24	26	26
			ath moaiti	cation reg		ge treatmer	It		
No stabiliz shoulder	zed	None			None			None	
Sloping c	urb	None			None			None	
Vertical co one s two s	side	Add 1 ft Add 2 ft			None Add 1 ft			Add 1 ft Add 2 ft	
Stabilized shoulder, one or both sides Lane width for conditions B on tangent m be reduced to ft where shou is 4 ft or wide		ns B & C ent may ed to 12 shoulder	Deduct shoulder width; minimum pavement width as under Case I				Deduct 2 where sh is 4 ft or	noulder	
Note:	 A = predominantly P vehicles, but some condiseration for SU trucks B = sufficent SU vehicles to govern design, but some consideration semitrailer combination trucks C = sufficent bus and combination-trucks to govern design 								

RAMP DESIGN (continued)

Ramp design speeds should approximate the low volume running speed on the intersecting highways. This design speed is not always practicable and lower design speeds may be necessary.

GUIDE VALUES FOR RAMP DESIGN SPEED

GUIDE VALUES FOR RAMP DESIGN SPEED AS RELATED TO HIGHWAY DESIGN SPEED

Highway design speed (mph)	30	35	40	45	50	55	60	65	70	75
Ramp design speed (mph) Upper range (85%)	25	30	35	40	45	48	50	55	60	65
Middle range (70%) Lower range (50%)	20 15	25 18	30 20	33 23	35 25	40 28	45 30	45 30	50 35	55 40
Corresponding minimum radius (feet)				<u>charts</u> <u>Thru</u>						

NOTE: Ramp design speeds above 30 mph seldom are applicable to loops. For highway design speeds of more than 50 mph, the loop design speed should not be less than 25 mph (150' radius). For additional information, see <u>A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (2004), ch. 10</u>.

Desirable curvatures for normal 50 mph design speeds in the vicinity of the gore areas are as follows:

		Rural E			3 to 5 de					
		Rural E	Entrance		3 to 5 deg	grees				
		Urban	Exit		4 to 6 de	grees				
		Urban	Entrance		3 to 6 de	grees				
CHART 1				US C	CUSTOM	ARY				C-1
е	V_d = 15 mph	V_d = 20 mph	V_d = 25 mph	V_d = 30 mph	V_d = 35 mph	V_d = 40 mph	V_d = 45 mph	V_d = 50 mph	V_d = 55 mph	V_d = 60 mph

е	V_d = 15 mph	V_d = 20 mph	V_d = 25 mph	V_d = 30 mph	V_d = 35 mph	V_d = 40 mph	V_d = 45 mph	V_d = 50 mph	V_d = 55 mph	V_d = 60 mph
(%)	R (ft)									
1.5	796	1410	2050	2830	3730	4770	5930	7220	8650	10300
2.0	506	902	1340	1880	2490	3220	4040	4940	5950	7080
2.2	399	723	1110	1580	2120	2760	3480	4280	5180	6190
2.2 2.4	271	513	838	1270	1760	2340	2980	3690	4500	5410
2.6	201	388	650	1000	1420	1930	2490	3130	3870	4700
2.8	157	308	524	817	1170	1620	2100	2660	3310	4060
2.6 2.8 3.0	127	251	433	681	982	1370	1800	2290	2860	3530
3.2	105	209	363	576	835	1180	1550	1980	2490	3090
3.4	88	175	307	490	714	1010	1340	1720	2170	2700
3.6	73	147	259	416	610	865	1150	1480	1880	2350
3.8	61	122	215	348	512	730	970	1260	1600	2010
4.0	42	86	154	250	371	533	711	926	1190	1500

Note: Use of e_{max} = 4% should be limited to urban conditions.

Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{max} = 4\%$

REV. DATE: 06/15/11 REVISION 7 8-3

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$v_{d} = V_{d} = V_{d}$
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	V_d = 15 n $R_{(ff)}$ 868
	hdt
$\begin{array}{c} V_{II} \\ R_{I} $	V_d = 20 mph $R(\text{ft})$ 1580
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V_d = 25 mph R (ft) 2290
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V_d = 30 mph $R_{(ff)}$ 3130
	V_d = 35 mph R (ft) 4100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_d = 40 mph $R(t)$ 5230
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_d
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V_d
$F_d = 55 \text{ mph} 1$ $F_d = 55 \text{ mph} 1$ $F_d = 55 \text{ mph} 1$ $R (tf)$ R	V_d
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20
$ \begin{array}{c} \mathbf{x} = 6^{0}6 \\ 7^{730} \\ 7^{730} \\ 7^{730} \\ 5^{710} \\ 5^{770} \\ 5^{720}$	V_d
$V_d = 70 \text{ mph} \\ V_d = 70 \text{ mph} \\ 14500 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 22910 \\ 23150 \\ 33120$	V_{a}
$V_d = 75 \text{ mph} \\ V_d = 75 \text{ mph} \\ V_d = 75 \text{ mph} \\ V_d = 75 \text{ mph} \\ 12000 \\ 112000 \\ 12000 \\ 12000 \\ 12000 \\ 12000 \\ 12000 \\ 12000 \\ 12000 \\ 12000 \\ 12000 \\ 12000 \\ 12000 \\ 12000 \\ 12000 \\ 3360 \\ 12000 \\ 3360 \\ 12000 \\ 3360$	V_d
$V_d = 80 \text{ mph} \begin{pmatrix} \mathbf{C-3} \\ 8800 \\ 17800 \\ 17800 \\ 17800 \\ 113000 \\ 113000 \\ 113000 \\ 113000 \\ 113000 \\ 113000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 11000 \\ 3050 \\ 3050 \\ 11000 \\ 3050$	V_d

GUIDE VALUES FOR RAMP DESIGN SPEED (continued)

8-3

HART 2

US CUSTOMARY

C-2

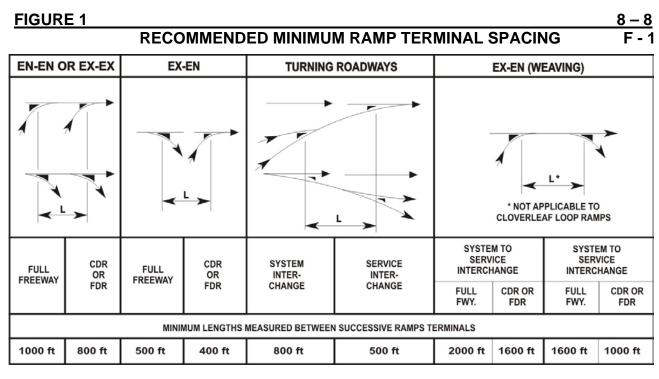
Minimum Radii for Design Superelevation Rates, Design Speeds, and *e*_{max} = 8% (Continued)

REV. DATE: 06/15/11 **REVISION 7**

GUIDE VALUES FOR R	AMP DESIC	IN SPEED (continued)	8-3
	0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CHART (%) 2.2
	344556667~ 6482604820	567 567 476 308 308 308 308 308 308 308 308 308 308	$f_{d} = 15 \text{ mph}$ $R_{(ff)}$ 694 625
7	1124 1124 1124 1124 1124 1124 1124 1124	1010 8416 8416 8416 8416 8416 8416 8416 8416	nph
Minimum Radii for Design Superelevation Rates, Design	2240 2221 188 163 163 126	1460 1230 1230 1140 1140 1140 1140 1140 1140 1140 11	V_d = 25 mph $R_{(tt)}$ 2420 1780 1600
Radii fo	357 374 297 279 279 279 279 279 279 279 279 279	12000 12000 1690 11200 12000 12000 12000 12000 12000 12000 120000	mph
r Design	500 4463 4463 3418 3418 3418 3418 3418 3418 3418 341	22640 22230 120000 1200000000	mph
Superele	6622 6633 5713 5714 477 410	3350 3020 22450 22450 22450 22450 22450 22250 22450 1900 115000 115000 1	문 말 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
vation R	893 893 820 748 625 540	4160 34160 34160 3520 3520 225670 225670 225670 225670 22570 22570 22570 22570 22570 22570 22570 22570 22570 22570 22570 22570 1920 1920 115290 11520	I D M
ates, Des	1170 1080 1040 992 993 854 854 854	46050 46050 4280 33700 22740 22740 22740 22740 22740 22740 22740 22740 22740 22740 22740 22740 22740 1187500 118750 118750 1187500 1187500 1187500 1187500 1	0000 mph
S	14440 1340 1290 1290 1190 1190 1130 1010 877	5650 5120 5120 5120 5120 5120 5120 5120 51	nph
peeds, and <i>e</i> _{max}	1630 1630 1570 1450 1320 1320 1090	7130 6650 6650 4910 4910 4910 4910 4910 4910 4910 491	mph
11	1990 1930 1930 1870 1740 1670 1670 1510 1400	22180 22180	nph
10% (Continued)	23300 2250 2190 2010 1990 1910 1820 1630	82010 8200 820	nph
nued)	267 2670 2540 2540 2410 2340 2340 2340 2360 1970	10100 8580 8580 8580 8580 8580 8580 8580	hdt
	3040 2910 2910 2710 2710 2550 2370	101200 101200 9550 9550 9550 9550 9570 9570 9570 95	V_d = 80 mpt $R_{(ff)}$ 18000 13500 12200

REV. DATE: 06/15/11 **REVISION 7**

4 ^{dq}


REV. DATE :	06/15/11
REVISION 7	

GUIDE VALUE	ES FOR RAM	<u>AP DESIGN</u>	SPEED (cor	ntinued)		<u>8-3</u>	
	1218 1112 1218 1218 1218 1218 1218 1218		80 80 80 80 80 80	6555554444 0864208642	43864208642005 0864208642005		
Exhib	344445555654 44479255874	105 70 4 7 1 8 8 9 0 5 0 5 70 4 7 1 1 5 0 5 0 5	1172 1172 1172 1178 1178 1178 1178 1178	303 2786 2787 2787 2787 2787 2787 2787 2787	950 531 5574 5574 574 574 574 574 574 574 574 5	$V_d = 15 \text{ mph}$ R (ft)	
Exhibit 3-29.	1124 927 880 880 880	1136 1496 1496 1496 1496 1496 1496 1496 149	222 222 227 227 227 222 210 210	542 3415 3415 359 359 359 359 359 359 359 359 359 35	1250 11250 1130 1030 863 863 799 799 643 649 574	V_d = 20 mph R (ft)	
Minimur	12210 1184 1184 1184 1192 1199	2228 2250 2281 2288 2270 2288 2270 2278 2278 2278 2278	336 336 336 336 336 351 351 351 351 351 351 351 351 351 351	518 558 558 558 514 518 518 518 518 518 518 518 518 518 518	1820 1820 1640 1500 1570 1270 1170 1170 1020 1020 1020 895 895 845	V_d = 25 mph R (ft)	
n Radii f	3020 2296 2252 247 247 247 233 188	4 4 5 2 3 4 4 5 2 3 4 6 3 3 4 6 3 3 4 6 3 3 4 6 3 3 4 6 3 3 3 4 6 3 3 3 4 6 3 3 3 4 6 3 3 4 6 6 6 6	488 555 555 555 555 555 555 555 555 555	1110 1050 948 904 724 754 754	2490 2250 2260 1890 1740 1620 1410 1410 1320 1250 1180	V_d = 30 mph R (ft)	
or Design	443 443 368 351 272 272	4 4 4 5 5 5 5 5 5 6 6 3 4 4 4 5 5 5 7 5 6 5 3 4 9 5 5 7 9 5 7 9 5 7 9 5 7 9 5 7 7 5 7 5	822 822 858 858 858 858 858 858 858 858	1460 1320 1260 1260 1260 1260 1090 1090 1090 1050 1050 1050	32300 22650 22650 22690 2270 2280 2120 1970 1970 1970 1970 1970 1970 1970 197	V_d = 35 mph R (ft)	
1 Superel	3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	840 671 671 671 671 671 671 671 671 671 671	11200 11150 1070 1030 964 928 897 868	1870 1780 1610 1540 1540 1470 1410 1350 1350	4140 3750 3420 2910 2700 2700 22520 22520 22520 22520 22520 22520 22520 22520 22520 22520	$V_{d} = 40 \text{ mph}$ R (ft)	
evation I	758 758 707 757 757 757 500 500 500	1070 903 910 910 910 910 910 910 910 910 910 910	14500 13400 11250 1120 1130 1130 1130	2330 2110 22110 1920 1860 1620 1620	56910 4640 36000 2750 2750 2750 2600 2750 2600 2750 2600 2750 2600 2750 2600 2750 2600 2750 2600 2750 2600 2750 2750 2750 2750 2750 2750 2750 27	$\frac{UST}{R_{d}}$	
Minimum Radii for Design Superelevation Rates, Design	951 922 892 763 763 641	1320 1220 1220 1120 1170 11140 1010 1010	1840 1770 1650 1590 1490 1400 1400 1360	2840 2700 2450 2340 2160 2180 1980 1910	8370 5640 4370 4380 3360 3360 3360 3360 3360 3160 3360	OMARY imph V_d = 50 mph t) R (ft)	
S	1210 1110 1110 1070 904 904 807	1550 1250 1250 1250 1250	22210 2060 1990 1860 1750 1750 1750	3400 3240 2810 2810 2700 2490 2300 2300	9990 6730 5260 5260 4870 4250 4270 3790 3790	V_d = 55 mph R (ft)	
peeds, and	1460 1480 1390 1350 1270 1120 1120 1120 1120	1910 1810 1710 1580 1540	263 24540 2250 2250 2020 2020 1970 1970	4020 3830 34650 3190 3330 29060 2830 2830 2830	11800 8740 7240 6170 6170 5740 5370 4470 4470 4470	V_d = 60 mph R (ft)	
e _{max} = 12	1720 1640 1640 1560 1560 1410 1410 1220	22210 2015 2040 1980 1800 1800 1800	3010 2810 2720 2720 2750 2400 2330 2330 2270	4560 4340 3790 3200 3230 3110	13200 98240 89240 89510 5480 5060 5060 5060 5060 5060	V_d = 65 mph R (ft)	
12% (Continued)	1990 1990 1900 1860 1780 1780 1680 1680 1680	2530 2460 2340 2180 2180 2080 2080 2080	3410 31300 3000 2810 2810 2670 2600	5130 4890 44670 4410 38050 38050 38050 38050 38050 38050	14800 111000 9980 8420 7270 6800 6300 6300 5400	V_d = 70 mph R (ft)	
inued)	22280 22190 21150 22110 2020 2020 1970 1970 1970 1970	2880 2740 2670 2670 2490 2490 2380 2330	37850 37850 3700 3700 3700 3700 3700 3700 3700 37	5750 52490 5220 4810 4820 4480 4480 4480 4480 4480 4480 448	16400 112300 11200 10200 97380 8700 8710 8110 7140 6740 6740 6740	V_d = 75 mph R (ft)	
	2600 2550 2460 2410 2370 2320 2330 2330 2130	3260 3180 3030 2960 2890 2890 2890 2710 2710 2710 2710	4330 4190 3940 3820 3720 3720 3510 3510 3510 3510 3510 3510 3510 351	6420 6120 5850 5810 5380 5170 4980 4880 4880 4830 4470	18100 12400 12400 10500 9010 8440 7500 7500 7100 740	$V_d = 80 \text{ mph}$ $R(\mathfrak{k})$) ח

PART 1

ARRANGEMENT FOR SUCCESSIVE RAMP TERMINALS

8-8

ARRANGEMENT FOR SUCCESSIVE RAMP TERMINALS

NOTES:

FDR – FREEWAY DISTRIBUTOR CDR – COLLECTOR DISTRIBUTOR EN - ENTRANCE EX – EXIT

THE RECOMMENDATIONS ARE BASED ON OPERATIONAL EXPERIENCE AND NEED FOR FLEXIBILITY AND ADEQUATE SIGNING. THEY SHOULD BE CHECKED IN ACCORDANCE WITH THE PROCEDURE OUTLINED IN THE HIGHWAY CAPACITY MANUAL (4) AND THE LARGER OF THE VALUES IS SUGGESTED FOR USE. ALSO, A PROCEDURE FOR MEASURING THE LENGTH OF THE WEAVING SECTION IS GIVEN IN CHAPTER 24 OF THE 2000 HIGHAY CAPACITY MANUAL (4) THE "L" DISTANCES NOTED IN THE FIGURES ABOVE ARE BETWEEN LIKE POINTS, NOT NECESSARILY "PHYSICAL" GORES. A MINMUM DISTANCE OF 270 FT IS RECOMMENDED BETWEEN THE END OF THE TAPER FOR THE FIRST ON RAMP AND THE THEROETICAL GORE FOR THE SUCCEDING ON RAMP FOR THE EN-EN (SIMILAR FOR EX-EN)

FUTURE GUIDELINES

(This section has been reserved for future guidelines.)

MEDIAN DESIGNS IN INTERCHANGE AREAS

8-10

8-9

The median width of a facility should not be reduced through an interchange on either the mainline or the intersecting highway (-Y- Line), if the median is continuous. (See Chapter 1-6 in Part I of this manual.)

Traffic islands on -Y- Lines within the interchange should be provided for highways with four or more lanes. On facilities with three lanes, a 4 foot painted island should be provided. The justification of a left turn lane on the -Y- Line is discussed in 8-15 of this Chapter.

ACCELERATION AND DECELERATION LANES

Typically on new facilities angular type exit and parallel type entrance ramps should be utilized. When adding or reconstructing an interchange on an existing facility, the designer should maintain the exit and entrance type if a definite pattern has been established on the freeway segment.

Parallel type entrance lanes should be used in locations where existing interchanges facilities are being up-graded and where right of way is at a premium. See Chapter 8-11, Figures 1-2 of this manual for sample deceleration and acceleration lanes. For additional information see <u>Roadway Standard Drawings</u>, Std. No. 225.03.

The designer should provide sufficient length to enable a driver to make the necessary change between the speed of operation on the highway and the speed on the turning roadway in a safe and comfortable manner. The following Figures and Tables show the appropriate method for obtaining the desirable length of a speed change lane, and how the AASHTO values should be applied to the standard entrance and exit types.

CHART 1	WITHFLAT	GRADES C	GRADES OF TWO PERCENT OR LESS							
			US	Custom	ary					
	Accel	eration leng	gth, L (ft) fo	r design s	speed of e	xit curve	VN (mpł	n)		
Highway	G 1	Stop cond		20 rage runn	25 ing speed	30 on exit c	35 urve, <i>V</i> 'a	40	45	50
design speed, V (mph)	Speed reached, Va (mph)	0	14	18	22	26	30	36	40	44
30	23	180	140	-	-	-	-	-	-	-
35	27	280	220	160	-	-	-	-	-	-
40	31	360	300	270	210	120	-	-	-	-
45	35	560	490	440	380	280	160	-	-	-
50	39	720	660	610	550	450	350	130	-	-
55	43	960	900	810	780	670	550	320	150	-
60	47	1200	1140	1100	1020	910	800	550	420	180
65	50	1410	1350	1310	1220	1120	1000	770	600	370
70	53	1620	1560	1520	1420	1350	1230	1000	820	580
75	55	1790	1730	1630	1580	1510	1420	1160	1040	780
V	=	design sp	eed of high	way (mph)					
V_a	=	average r	unning spee	d on high	way (mpł	1)				
VN	=	design sp	eed of exit o	curve (mp	h)					
V'_a	=	average r	unning spee	d on exit	curve (mp	oh)				

MINIMUM ACCELERATION LENGTHS FOR ENTRANCE TERMINALS CHART 1 WITH FLAT GRADES OF TWO PERCENT OR LESS

 \sim

ACCELERATION AND DECELERATION LANES (continued)

CHART 2		CELERATION LEN S OF TWO PERCE			(IT TER	MINALS	5 WITH			C-2
		US	Custor	nary						
	Deceleration	n length, L (ft) for	desigr	n speed	of exit	curve V	/N (mph	l)		
Highway		Stop condition	15	20	25	30	35	40	45	50
design	Speed	For ave	erage r	unning	speed	on exit o	curve, V	'a (mp	h)	
speed, V (mph)	reached, Va (mph)	0	14	18	22	26	30	36	40	44
30	28	235	200	170	140	-	-	_	_	_
35	32	280	250	210	185	-	-	-	-	-
40	36	320	295	265	235	185	155	-	-	-
45	40	385	350	325	295	250	220	-	-	-
50	44	435	405	385	355	315	2852	225	175	-
55	48	480	455	440	410	380	350	285	235	-
60	52	530	500	480	460	430	405	350	300	240
65	55	570	540	520	500	470	440	390	340	280
70	58	615	590	570	550	520	490	440	390	340
75	61	660	635	620	600	575	535	490	440	390
V	=	design speed of (mph) average running	-	-	hway					
V_a	=	(mph)	, specu	on ing	ii way					
VN	=	design speed of	exit cu	rve (m	ph)					
V'_a	=	average running	speed	on exit	t curve	(mph)				

MINIMUM DECELERATION LENGTHS FOR EVIT TERMINALS WITH

PART 1

CHAPTER EIGHT

INTERCHANGES

The information contained in this chapter pertains to the design of ramp connections only. The designer should be familiar with Chapter 10 of the 2004 "<u>A Policy on Geometric</u> <u>Design of Highways and Streets</u>" before beginning the design of any interchange.

The configuration of an interchange should allow all movements to operate at an acceptable level of service as defined in the 1998 "<u>Highway Capacity Manual</u>". The Project Engineer should approve a preliminary design of the interchange before final surveys begin.

CONTROL OF ACCESS AT INTERCHANGES

Control of access along Y lines at interchanges is needed for a minimum of 1000' beyond the ramp intersections. If for some reason this is not practical, we should provide full control of access for 350' and then use a raised island to eliminate left turns for the remaining 650'.

LOOP DESIGN

8-1

TYPICAL SECTION:

2'-6" curb and gutter is placed on the inside of all loops. Pavement widths should be designed to meet <u>Design Widths of Pavements for Turning Roadways</u> see 8-1 Figure 1. Case II (Provision for passing a stalled vehicle).

LOOP DESIGN (Continued)

SHOULDERS:

See Chapter 1-4D of this manual for width of usable shoulder on outside of loops.

ALIGNMENT:

- Freeways 150' to 250' radii unless conditions warrant otherwise. On interstate, loops should be designed for a 30 mph design speed where feasible. (230' radii minimum for 30 mph design speed).
- Expressways A 150' radius is acceptable on highways with a 50 mph or less design speed.

Appropriate deceleration and acceleration lanes should be provided for all loops. See Part 1, Section 8-7, Table 1 of this manual. For additional information, see <u>A POLICY ON</u> <u>GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (2004)</u>, ch. 10, for acceleration and deceleration lane lengths.

RAMP DESIGN

8-2

TYPICAL SECTION:

Pavement width is normally 14 feet, but where traffic volumes or truck percentages are high, the designer should consider using a width of 16 feet. On the interstate system, the pavement width should be 16 feet.

SHOULDERS:

See Chapter 1-4E of this manual for width of usable shoulder. Paved shoulders are required on both sides.

ALIGNMENT:

Ramp alignments should be designed to provide room for future loop placement in the quadrants where loops could be placed to eliminate left turns from the Y line onto the ramp. Use a minimum of 170' to 250' radii for the future loop. Accommodate for the future loop lane under the bridge as well.

SIGHT DISTANCE AT DIAMOND RAMP TERMINALS

See the sight line and geometric measurements. For additional information, see <u>A</u> <u>POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (2004), ch. 5</u>. Detail of Measurement of Sight Distance at Ramp Terminals.

With reduced handrail offsets specified in the <u>Bridge Policy</u> (see Chapter 6-1 of this Manual), horizontal sight distance has become a more critical element of interchange design. The more narrow bridge restricts the horizontal sight line, so that now the ramp terminal location, Y-line grade, and handrail offset must be considered in combination to attain the required sight distance across the bridge. Each interchange design must be individually studied to achieve the most cost effective combination of bridge width, ramp terminal location, and Y-line grade. A 6' minimum handrail offset will be used on interchange bridges.

There are four basic options available to the designer for providing the required horizontal sight distances.

- 1. Design the Y-line grade to enable the driver to see over the bridge handrail and guardrail if present. (Chapter 8-7, Table 1 provides K values for Y-Line grades that will enable the ramp vehicle driver to see over the bridge handrail.)
- 2. Increase the bridge handrail offset and allow the horizontal sight line to fall inside the handrail. (Chapter 8-7, Table 1 provides K values for Y-Line grades that will allow a clear sight line inside the bridge handrail.)
- 3. Use the minimum handrail offset required by the <u>Bridge Policy</u> (see Chapter 6-1 of this Manual) and locate the ramp terminal a sufficient distance from the bridge end to provide the required sight distance. (The grade on Chapter 8-7, Table 2 shows the distance required from the end of bridge to ramp terminal that provides required horizontal sight distance with various bridge handrail offset distances. Conversely, this graph can show the available horizontal sight distance with set ramp terminals and handrail offset distances. This graph may also be use to derive combinations of handrail offsets and ramp terminal locations that may be necessary in an economic analysis of the interchange layout.)

4. Consider designing grades with the mainline carried over the Y-line.

This design may be cost effective with a narrow median on the mainline and a multilane Y-line. Earthwork costs are usually the critical cost elements in this option.

JUSTIFICATION OF LEFT TURN LANES ON TWO-LANE HIGHWAYS 8-15

The need for a left turn lane on an interchange -Y- line should be carefully evaluated by the designer, since it affects the width of the interchange bridge. The need for a left turn lane is determined by traffic volumes, speed, and safety benefits.

The method for determining the warrants for left turn lanes at unsignalized at-grade intersections (applicable to interchange ramp terminals) is addressed in the attached nomograph. The method utilizes a nomograph based on opposing volumes, left turn volumes, and through volumes. The time delays and queuing characteristics of the traffic volumes are the criteria utilized in establishing these nomographs.

The elements to be used in entering the appropriate nomograph are:

- Operating speed (see <u>A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS</u> <u>AND STREETS (2004)</u>, ch. 2.
- V/o, opposing traffic volume
- VL, left turning volume(VPH)
- Va, advancing traffic volume, including through, left turning, and right turning vehicles (design hour volume).
- VR, right turning volume(VPH)
- S, storage length required

If the intercept of V and Va falls right of the applicable S line, that is the amount of storage warranted.

3-1E

|--|

*3-Series (cont'd) Pare	cel Index Sheet (Applicable to projects with more than one plan sheet.)
4	The first plan sheet will always be Number 4. All other plan and profile sheets shall be numbered to fit the project conditions.
TMP-1, TMP-2, etc.	Transportation Management Plans
PMP-1, PMP-2, etc.	Pavement Marking Plans
E-1, E-2, etc.	Electrical Plan
EC-1, EC-2, etc.	Erosion Control Plans
L-1, L-2, etc.	Landscape Plans
SIGN-1, SIGN-2, etc.	Signing Plans
SIG-1, SIG-2, etc.	Signal Plans
UC-1, UC-2, etc.	Utility Construction Plans
UO-1, UO-2, etc	Utilities by others Plans
X-1A, X-1B, etc.	Cross-Section Summary Sheet
X-1, X-2, etc.	Cross-Sections
C-1, C-2, C-3, etc.	Culvert Plans
S-1, S-2, S-3, etc.	Structure Plans

Do not show total sheet numbers on the plans.

REV. DATE 03/20/13 REV. NO. 7