8-1

CHAPTER EIGHT

INTERCHANGES

The information contained in this chapter pertains to the design of ramp connections only. The designer should be familiar with Chapter 10 of the 2011. "<u>A Policy on Geometric</u> <u>Design of Highways and Streets</u>" before beginning the design of any interchange.

The configuration of an interchange should allow all movements to operate at an acceptable level of service as defined in the 1998 "<u>Highway Capacity Manual</u>". The Project Engineer should approve a preliminary design of the interchange before final surveys begin.

CONTROL OF ACCESS AT INTERCHANGES

Control of access along Y lines at interchanges is needed for a minimum of 1000' beyond the ramp intersections. If for some reason this is not practical, we should provide full control of access for 350' and then use a raised island to eliminate left turns for the remaining 650'.

LOOP DESIGN

TYPICAL SECTION:

2'-6" curb and gutter is placed on the inside of all loops. Pavement widths should be designed to meet <u>Design Widths of Pavements for Turning Roadways</u> see 8-1 Figure 1. Case II (Provision for passing a stalled vehicle).

Г

DESIGN WIDTHS OF PAVEMENTS FOR TURNING ROADWAYS _____8 - 1 F - 1

_	<u> </u>		
	F	-	1

avement Width (ft) Case II Case III Two-lane operationei one way or two way ign traffic conditions Ign traffic conditions B C A B 26 30 31 36 23 27 29 33 22 25 28 31 21 23 26 29 20 22 25 28 19 21 25 27 19 21 25 27 19 21 25 27 18 20 24 26 regarding edge treatment	
ane, one-way operation-provision for passing a stalled vehicleTwo-lane operationei one way or two wayign traffic conditionsBCAB263031362327293322252831212326292022262820222528192125271921252718202426	C 45 38 35 32 30 29 28 28
Provision for passing a stalled vehicle Involume operation-end one way or two way ign traffic conditions A B 26 30 31 36 23 27 29 33 22 25 28 31 21 23 26 29 20 22 26 28 19 21 25 27 19 21 25 27 19 21 25 27 18 20 24 26	C 45 38 35 32 30 29 28 28
B C A B 26 30 31 36 23 27 29 33 22 25 28 31 21 23 26 29 20 22 26 28 20 22 25 28 19 21 25 27 19 21 25 27 18 20 24 26	45 38 35 32 30 29 28 28
26 30 31 36 23 27 29 33 22 25 28 31 21 23 26 29 20 22 26 28 20 22 25 28 19 21 25 27 19 21 25 27 18 20 24 26	45 38 35 32 30 29 28 28
23 27 29 33 22 25 28 31 21 23 26 29 20 22 26 28 20 22 25 28 19 21 25 27 19 21 25 27 18 20 24 26	38 35 32 30 29 28 28
22 25 28 31 21 23 26 29 20 22 26 28 20 22 25 28 19 21 25 27 19 21 25 27 18 20 24 26	35 32 30 29 28 28
21 23 26 29 20 22 26 28 20 22 25 28 19 21 25 27 19 21 25 27 18 20 24 26	32 30 29 28 28
20 22 26 28 20 22 25 28 19 21 25 27 19 21 25 27 18 20 24 26	30 29 28 28
20 22 25 28 19 21 25 27 19 21 25 27 18 20 24 26	29 28 28
19 21 25 27 19 21 25 27 18 20 24 26	28 28
19 21 25 27 18 20 24 26 regarding edge treatment	28
18202426regarding edge treatment	
egarding edge treatment	26
None None	
None None	
None Add 1 ft Add 1 ft Add 2 ft	
Deduct shoulder Deduct 2 ft width; minimum where shoul pavement width is 4 ft or wid as under Case I	ulder
)	NoneAdd 1 ftAdd 1 ftAdd 2 ftDeduct shoulderDeduct 2 ftwidth; minimumwhere shoupavement widthis 4 ft or width

LOOP DESIGN (Continued)

See Chapter 1-4D of this manual for width of usable shoulder on outside of loops.

ALIGNMENT:

- Freeways 150' to 250' radii unless conditions warrant otherwise. On interstate, loops should be designed for a 30 mph design speed where feasible. (230' radii minimum for 30 mph design speed).
- Expressways A 150' radius is acceptable on highways with a 50 mph or less design speed.

Appropriate deceleration and acceleration lanes should be provided for all loops. See Part 1, Section 8-7, Table 1 of this manual. For additional information, see <u>A POLICY ON</u> <u>GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (2011)</u>, ch. 10, for acceleration and deceleration lane lengths.

RAMP DESIGN

8-2

TYPICAL SECTION:

Pavement width is normally 14 feet, but where traffic volumes or truck percentages are high, the designer should consider using a width of 16 feet. On the interstate system, the pavement width should be 16 feet.

SHOULDERS:

See Chapter 1-4E of this manual for width of usable shoulder. Paved shoulders are required on both sides.

ALIGNMENT:

Ramp alignments should be designed to provide room for future loop placement in the quadrants where loops could be placed to eliminate left turns from the Y line onto the ramp. Use a minimum of 170' to 250' radii for the future loop. Accommodate for the future loop lane under the bridge as well.

RAMP DESIGN (continued)

Ramp design speeds should approximate the low volume running speed on the intersecting highways. This design speed is not always practicable and lower design speeds may be necessary.

GUIDE VALUES FOR RAMP DESIGN SPEED

RAMP DESIGN SPEE		UIDE RELA				VAY I	DESIC	N SP	<u>EED</u>	
Highway design speed (mph)	30	35	40	45	50	55	60	65	70	75
Ramp design speed (mph)										
Upper range (85%)	25	30	35	40	45	48	50	55	60	65
Middle range (70%)	20	25	30	33	35	40	45	45	50	55
Lower range (50%)	15	18	20	23	25	28	30	30	35	40
Corresponding minimum radius (feet)				<u>charts</u> Thru						

NOTE: Ramp design speeds above 30 mph seldom are applicable to loops. For highway design speeds of more than 50 mph, the loop design speed should not be less than 25 mph (150' radius). For additional information, see <u>A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (2011), ch. 10</u>.

Desirable curvatures for normal 50 mph design speeds in the vicinity of the gore areas are as follows:

		Rural E			3 to 5 deg					
		Rural E	Entrance		3 to 5 deg	grees				
		Urban I	Exit		4 to 6 de	grees				
		Urban I	Entrance		3 to 6 deg	grees				
CHART 1				US C	CUSTOM	ARY				C-1
<i>e</i> (%)	$V_d = 15 \text{ mph}$		V_d = 25 mph		V_d = 35 mph	V_d = 40 mph	V_d = 45 mph	V_d = 50 mph	V_d = 55 mph	V_d = 60 mph

е	V_d = 15 mph	V_d = 20 mph	V_d = 25 mph	V_d = 30 mph	V_d = 35 mph	V_d = 40 mph	V_d = 45 mph	V_d = 50 mph	V_d = 55 mph	V_d = 60 mph
(%)	R (ft)									
1.5	796	1410	2050	2830	3730	4770	5930	7220	8650	10300
2.0	506	902	1340	1880	2490	3220	4040	4940	5950	7080
2.2	399	723	1110	1580	2120	2760	3480	4280	5180	6190
24	271	513	838	1270	1760	2340	2980	3690	4500	5410
2.6 2.8 3.0	201	388	650	1000	1420	1930	2490	3130	3870	4700
2.8	157	308	524	817	1170	1620	2100	2660	3310	4060
3.0	127	251	433	681	982	1370	1800	2290	2860	3530
32	105	209	363	576	835	1180	1550	1980	2490	3090
3.2 3.4	88	175	307	490	714	1010	1340	1720	2170	2700
3.6	73	147	259	416	610	865	1150	1480	1880	2350
3.8	61	122	215	348	512	730	970	1260	1600	2010
4.0	42	86	154	250	371	533	711	926	1190	1500

Note: Use of e_{max} = 4% should be limited to urban conditions.

Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{max} = 4\%$

REV. DATE: 06/15/11 REVISION 7 8-3

5.				,			
5.6 7.0 7.6 8.0 8.0	00555554444 00864208642	4.0 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(%)	CHART	44440000 04000040000	40000000000000000000000000000000000000	1.5 (%)
ଌଌ୵୵୵ଌଌଌ ଌଌୡଌଌୡ୰ୠୠ୵୰ୡ୶	2255 215 193 172 126 126 126 126 126	676 546 496 453 415 382 382 322 327 327	V_d = 15 mph R (ft) 932	ω	1131 1016 1012 1012 1012 1012 1016 1016 101	614 482 484 384 301 301 300 176 171	V_d = 15 mph $R_{ m (ff)}$ 868
178 178 112 112 112 112 112 112 112 112 112 11	45 3445 27 27 27 27 28 49 27 27 28 49 27 27 27 27 27 27 27 27 27 27 27 27 27	1190 1070 8759 730 672 530 530 530) mph	Min	270 213 189 189 152 115 106 106 81	1120 991 791 791 566 566 498 498 309	V_d = 20 mph $\frac{R}{1580}$ (ft)
308 267 278 278 278 278 278 287 287 287 287 28	678 542 542 542 542 542 542 542 542 542 542	1720 1550 1280 1280 1170 1170 985 985 841 784 784	$V_d = 25 \text{ mph}$ R (ft) 2370		452 3602 292 2137 186 186 186	1630 1450 1170 1050 944 850 761 761 583 511	V_d = 25 mph $R_{(ff)}$ 2290
4472 386 386 336 287 261 214	955 727 542 56 56 56 57 58 57 58 57 57 57 57 57 57 57 57 57 57 57 57 57	2370 2130 17630 1760 1610 1480 1370 1370 11370 1180 1180 1180 1180	nph	for	684 505 413 337 337 296 231	2240 17900 1610 1320 1320 1200 1200 1200 1080 1080 972 864 766	V_d = 30 mph $R_{(ff)}$ 3130
3 3 4 4 5 5 5 6 6 6 8 5 5 5 6 6 6 8 5 5 5 6 6 6 8 5 5 5 6 6 6 6	1280 11200 11300 1060 991 991 870 870 871 875 761	3120 2800 2540 2130 2130 1960 1820 1690 1670 1470 1470 1470	$V_d = 35 \text{ mph}$ R (ft) 4260	gn	960 7 18 654 549 540 431 340	2950 2630 2130 1930 1760 1460 1460 1460 1190 1190	mph)
909 761 582 582 582 582 582 582 582 582 582 582	1660 1470 1470 1390 1310 1230 1230 1230 1160 1160 1090 1090	3970 3570 22960 2720 2510 2330 2330 2170 2330 2170 1890 1770	$V_d = 40 \text{ mph}$ R(ft) 5410	Superelevation Rates,	1310 1190 995 911 833 759 687 687 687	3770 3370 2490 2280 2270 2280 1200 1200 1200 1200 1200 1200 120	V_d = 40 mph $\frac{R(t)}{5230}$
11180 11110 1050 933 878 878 878 705 705 785 785	2080 1960 1850 1750 1850 1850 1450 1320 1320	4930 4440 3690 3130 2700 2700 2700 2700 2720 2280 2280 228	$V_d = 45 \text{ mph}$ R (ft) 6710	vation Rates, D CUSTOMARY	1680 14540 1300 1190 1090 9095 9095 806 806	4680 3420 3410 2840 2800 2100 2100 1840	V_d = 45 mph R (ft) 6480
1480 1480 1330 1260 1120 1120 980 980 980 758	24560 2410 2280 2180 2140 1930 1830 1850 1740 1850	5990 54100 4910 44910 3820 3550 3000 3000 3090 2720	mph	Desig RY	2110 1940 1640 1510 1390 1390 1160 1160 833	5700 4600 3800 3480 2740 2740 2300 2300	V_d = 50 mph R (ft) 7870
1820 1730 1650 1460 1480 1400 1400 1320 1320 1320 1320 1230 1230	3080 2910 2750 2750 2470 2350 2350 2350 2120 2120 1920	7150 6450 5370 4950 4250 4250 3710 3710 3710 3710 3710 3710	mph	Speeds	2590 22400 22400 1890 1750 14610 14610 1320 1060	6820 5510 4200 3260 3260 3260 3260 3260 3260 3260 3	V_d = 55 mph $R_{(ff)}$ 9410
2210 2110 2010 1910 1820 1720 1630 1630 1410 1530	3670 3470 3290 2960 2820 2820 2680 2680 2680 2680 2680 26	8440 7620 6330 6350 5850 5420 5440 5040 4400 44100 3890	$V_d = 60 \text{ mph}$ R (ft) 11500	and ema	3140 27120 2510 2330 1990 1890 1890 1830	800 800 800 800 800 800 800 800	V_d = 60 mph $R_{(ff)}$ 11100
2600 2490 2380 2180 2070 1970 1850 1850 1480	4200 3770 3710 3510 3410 3250 3110 3110 3110 2110 2110 22710	9510 8600 71830 6630 6140 5720 5720 5720 5720 5710 44710 4450	nph	= 6%	3680 32440 3000 2800 24510 22520 2610 2610 2610 2610 2600	9130 74200 5710 5280 4890 4230 3950	V_d = 65 mph $R_{(ff)}$ 12600
3020 2910 2690 2580 2580 2470 2470 2230 2090 1810	4780 4540 4310 3910 3740 3740 3420 3420 3450 3150	10700 9660 8810 8090 6450 6450 5350 5350	nph		4270 37010 3570 3120 210 210 210 210 210 2100 2100 210	10300 83240 83240 7660 6490 6490 5580 5580 4850 4850	V_d = 70 mph $R_{(ff)}$ 14100
3480 3360 3120 3010 2900 2500 2500 2500 2510 2210	5410 5140 4890 4670 4460 4260 4260 3920 3760 3760 3760	12000 1000 9050 9050 7260 6800 6800 6800 6030 5710	hdt		4910 41830 4148 3910 34690 34690 3230 2970 2500	11500 9420 8620 7330 6810 6810 5580 5220	V_{d}
3990 3850 3720 3480 3370 3370 3370 3120 3120 2970 2670	6090 5530 5530 5280 5050 5050 4840 4840 4840 4840 4840 4460 4290 4140	13300 112000 111000 9340 8700 8130 7620 7180 6780 6420	$V_d = 80 \text{ mph}$ R(ft) 17800	C-3	53620 53220 4790 4320 3840 3860 3860 3050	12900 11600 9670 8260 8260 8260 7680 7180 6320 6320 5950	7

Minimum Radii for Design Superelevation Rates, Design Speeds, and *e*_{max} = 8% (Continued)

REV. DATE: 06/15/11 REVISION 7

GUIDE VALUES FOR RAMP DESIGN SPEED (continued)

8-3

CHART 2

US CUSTOMARY

C-2

GUIDE VALUES FOR R	AMP DESIG	N SPEED (c	continued)		8-3	3
	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000077770000 4600046000	4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	433333222222 086420864205) · · ·]
	3 4 4 5 5 6 6 8 7 7 6 4 8 2 6 6 4 8 2 6	1452 1300 1200 112 112 98 86 81	2789 275 255 240 226 213 200 188 176 164	947 6294 567 475 475 438 406 329 329 329 329	$T_{d} = 15 \text{ mph}$ $R_{(ff)}$	
	147 1124 1124 1124 1124 1124 1124 1124 1	280 2280 212 212 212 112 115 115 155	514 425 319 319 299	1680 11230 1110 1010 916 916 841 720 670 670 675 584	V_d = 20 mph R (ft)	
Ainimum	246 221 198 186 175 175 175 175	4 33 3 4 33 3 4 3 3 6 3 3 7 6 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 75 6 7 15 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2420 1780 1460 1330 1230 1140 1140 1140 1150 1150 978 978 856 804	V_d = 25 mph R (ft)	
Minimum Radii for Design Superelevation Rates, Design Speeds, and e_{\max}	377 345 307 256 236 200	396 396 396 396 396 396 396 396 396 396	1060 9494 890 7262 689 656	3320 2440 2200 2200 1840 1890 1890 1870 1450 1360 1360 1360 1360 1360 1360 1360 136	V_d = 30 mph R (ft)	
r Design	533 4463 3414 3405 292 292	846 7737 585 585 585 585	1400 1230 1260 1190 1190 1130 1080 1080 929 929 886	4350 3210 2900 2420 2420 2420 2060 1920 1790 1790 1580 1580 1490	V_d = 35 mph R (ft)	
Superele	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1110 1020 971 931 892 885 885 786 754	1800 1610 1530 1460 1390 1390 1270 1270 1270	5620 4080 3680 3880 3080 2840 2840 2750 2750 2750 2750 2750 2020 2020	$V_d = 40 \text{ mph}$ R(ft)	
vation R	930 8593 784 710 625 540	968	2120 2120 1920 1920 1520 1520 1460 1460	6830 5050 4160 3520 3270 3040 2510 2510 2370	$\frac{\text{CUSTOMARY}}{R_{d} = 45 \text{ mph } V_{d} = 50}$	
ates, Des	1170 1170 1040 992 994 904 798 694	1/20 1620 1530 1470 1316 1316 1260 1260	22740 2460 2340 2240 2240 2010 1950 1870 1870 1870	64280 5540 44640 39780 3700 32470 3260 3260 2890) mph	
ign Spee	1390 1390 1290 1290 1190 1190 1130 1080 1087 877	2090 2090 19310 1790 16170 16170 1550	23290 23120 2970 2700 2460 2360 2170 2170	9890 7330 6630 5150 5150 4760 3900 3410 3470	V_d = 55 mph R (ft)	
ds, and e	1750 1830 1830 1920 1920 1920 1920 1920 1920 1920 192	2490 2400 2230 2150 2070 1900 1870 1870 1870	3300 3520 3520 3360 3200 2930 2810 2810 2810 2810 2810 2810	11700 8650 7130 6550 6650 5620 5250 46210 4350 4350 4350	V_d = 60 mph R (ft)	
11	2050 1930 1870 1870 1870 1870 1870 1870 1870 187	27870 2760 26760 2490 2490 2330 2250 2180 2180 2180 2120	4210 4210 3830 32500 32500 32500 32500 32500 32500 2980	13100 9720 8800 8800 8800 5800 5250 5250 5250 52	V_d = 65 mph R (ft)	
10% (Continued)	2320 22380 2190 2010 1990 1990 1820 1820	31280 3160 2960 2860 2600 2600 2530 2450 2450	4760 4760 4340 3820 3670 3670 3670 3670 3670	14,700 10900 9860 9860 7880 7140 5260 5570 5270	Iph	
nued)	26750 2670 2540 2540 2470 2340 2340 2360 2160 1970	3730 34800 34800 3370 3070 2900 2800 2800 2800 2800 2800	5630 5120 4900 4800 44500 44500 44160 3860 3860	12200 12200 11000 10100 9260 8580 7990 7990 7480 7620 6620 6260 5930	hdt	
	3140 2980 2910 2710 2710 2750 2550 2370	4210 39470 3820 3710 3500 3400 3310 3220	4510 4510 4510 4510 4510 4510 4510	136000 13500 12200 11200 9550 9550 8900 73830 73830 6990 6630	C-4 $V_d = 80 \text{ mph}$ R (ft))

REV. DATE: 06/15/11 REVISION 7

REV. DATE :	06/15/11
REVISION 7	

Exhibit 3-29. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{max} = 12\%$ (Continued)

11.8 12.0	11.4	11.2	11.0	10.6	10.2	10.0	9.8	9.4 9.5	9.2	0000 0000	0.00 0.07	8.2 8.4	7.0 8.0		7.2 7.4	7.0	0, 0 00 0	ກ (ກ ເກັບ ເກັບ		ກ (J1 ວິເວ		n 01 0 2 0 0	4 r. ⊃ ∞	4.4	4.2	4.0	3.0 0.4				2.0		Q	CHART
40 34	47 44	49	ст с N с	ካ ሀካ ካ 00	61	67	70	77 74	0	50 09 09	905	105	111	125	140 133	148	156	172	181	199	209	231	257 243	286 271	303	341 321	364	448 417	484	574 526	700 631	950 R	V_d = 15 mph	RT 2
68 8 8 8 8 8	98 76	97	102	113	1124	130	136	149 142	156	172 164	180	199 190	222 210	234	230	271	284	312	327	359	377	415 5	460 437	512 485	542	610 574	649	743	863	1030 936	1250 1130	(ft)	V_d = 20 mph	
139 119	158 149	167	175	192	201	219	228	248 238	259	281 270	294	321 307	336 336	366	382	415	433	471	492	n (n 4 30	563 008	618 618	681 648	756	798	896 845	953	1090	1270	1500 1370	1820 1640	R (ft) 2460	V_d = 25 mph	
218 188	247	259	272	296	308	333	346	373	388	418 403	435	470 452	307 488	527	547	591	615	630 666	~ <u>~ 2 3</u> 694	754	024 788	862	948 904	1050 997	1110	1250 1180	14 IU 1320	1510	1740	2060 1890	2490 2250	R (ft) 3370	V_d = 30 mph	
312 272	333 1	368	384	416	448 432	465	481	516 499	535	554	594	637 615	660	708	734	790	820	886 886	900 922	1000	1050	1140	1260	1390 1320	1460	1630 1540	1730	1970	2280	2690 2470	3260 2950	A300	V_d = 35 mph	
434 381	485 461	506	527	n 0500	588	629	650	693 671	715	762 738	787	840 813	898 160	928	994 960	1030	1070	1150	1200	1300	1350	1470	1610 1540	1780 1690	1870	2090 1980	2220	2520	2910	3420	4140 3750	R (ft)	V_d = 40 mph	US C
500 500	009 679	656	682	732	781 757	308	832	883 857	910	967 938	766	1070 1030	1100	1170	1210	1300	1340	1440	1500	1620	1690	1840	2010 1920	2210	2330	2600 2460	2950	3130	3600	4240 3900	5130 4640		V_d = 45 mph	CUSTOMARY
722 641	763	831	862 862	922	951 951	1010	1040	1100 1070	1140	1200	1240	1320 1280	1400 1360	1440	1490	1590	1650	1770	1840	1980	2060	2240	2450 2340	2700 2570	2840	3160 2990	3350	3800	4380	5150 4730	6220 5640		V_d = 50 mph	ARY
904 807	953 953	1040	1070	1140	11210	1250	1280	1310	1390	1470 1430	1510	1600 1550	1650	1750	1810	1930	1990	2140 2060	2210	2390	2390	2700	2940 2810	3240 3080	3400	3790 3590	4020	4550	5240	5880	7430 6730	(ft)	V_d = 55 mph	
1120 1000	1170	1270	1310	1390	1430	1500	1540	1620 1580	1660	1760 1710	1810	1910 1860	2020 1970	2090	2150	2290	2400	2540	2630	2830	2940	3190	3480 3330	3830 3650	4020	4470 4240	4740	5370	6170	7240 6670	8740 7930	R (ft)	V_d = 60 mph	
1350 1220	1470 1410	1510	1560	1640	1680	1760	1800	1890 1840	1940	2040 1980	2090	2210 2150	2330 2270	2400	2470	2630	2010 2720	2900	3010	3230	3360	3630	3960 3790	4340 4140	4560	5060 4800	5360	5060	6960	8160 7510	9840 8920	(ft)	V_d = 65 mph	
1620 1480	1680	1780	1820	1900	1940	2030	2080	2180 2130	2230	2340 2280	2400	2530 2460	2600 2600	2740	2820	3000	3090	3300	3410	3660	3800	4110	4470 4280	4890 4670	5130	5700 5400	6020	6800	7800	9130 8420	11000 9980	800 (ft)	V_d = 70 mph	
1910 1790	2020 1970	2070	2110	2190	2240	2330	2380	2490 2440	2550	2670 2610	2740	2880 2800	2950	3120	3200	3400	3500	3730	3850	4130	444 U 4280	4620	5020 4810	5490 5240	5750	6380 6050	7 14 0 674 0	7600	8700	10200 9380	12300 11200		V_d = 75 mph	
2230 2130	2320 2280	2370	2400 2410	2500	2550	2660	2710	2830 2770	2890	3030 2960	3100	3260 3180	3430 3340	3520	3610	3820	4000 3940	4190	4470 4330	4630	4900 4800	5170	5380	6120 5850	6420	7100 6740	7500	8440	9660	11300 10500	13600 12400	18100	V_d = 80 mph	C-5

GUIDE VALUES FOR RAMP DESIGN SPEED (continued)

8-3

MAXIMUM RAMP GRADES

- 1) Desirable ramp grades shall not exceed 5% for a 50 mph design speed, or 6% for a 40 mph design speed, and should not exceed 5% in areas subject to snow and ice.
- 2) Where the ramp is to be used by a high volume of heavy trucks, up grades should be limited to 4%.
- 3) In exceptional cases, as with loops and urban area ramps, grades may be as steep as 10%. However, grades this steep should usually be limited to minor ramps with low volumes. A steep grade on a ramp is not objectionable if the gradient aids acceleration on entrance ramps or deceleration on exit ramps.
- 4) Ramps with high design speeds or those joining high-speed highways generally should have flatter grades than ramps with low design speeds or minor, light-volume ramps.
- 5) Grade should be limited on ramps with sharp horizontal curvature on downgrades as the high rate of superelevation in conjunction with a steep downgrade makes steering difficult.
- 6) If a ramp gradient does not aid the acceleration on entrance ramps or deceleration on exit ramps, care should be taken to provide the appropriate length for speed change.
- 7) Avoid use of Sag Vertical Curves in Cut Sections when possible.

PROCEDURE FOR ESTABLISHING RAMP GRADES WITH CONTROL POINTS

8-5

GIVEN:

- 1) Mainline alignment, stationing, grade, pavement width, and superelevation.
- 2) Ramp alignment, stationing, pavement width, superelevation, and nose station.
- FIND: Ramp grade in the area adjacent to the mainline at the exit or entrance point.

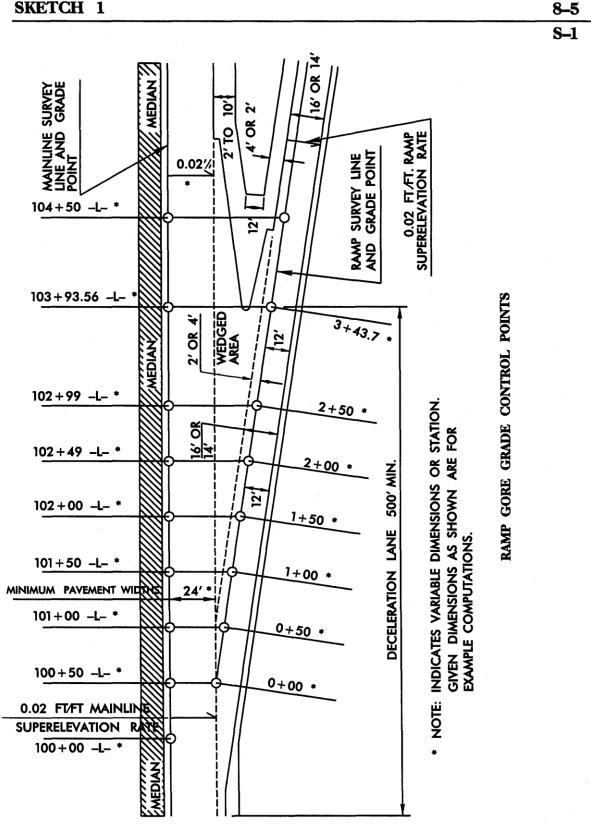
PROCEDURE:

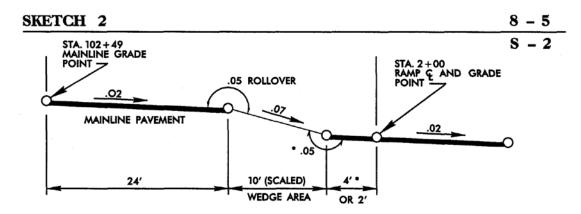
(1) Establish a series of control point elevations along the ramp survey line (or grade point) for the ramp grade to pass thru in order to provide a smooth, driveable pavement surface at the exit or entrance gore.

PROCEDURE FOR ESTABLISHING RAMP GRADES WITH CONTROL POINTS (continued)

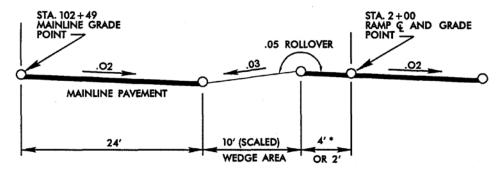
- A) Using a plan sheet with completed horizontal alignment, layout a series of cross-section lines at approximately 25' to 50' intervals at pertinent points along the ramp and mainline alignment. A section should be placed at the beginning station and nose station on the ramp. Sections between these points can be placed at random locations in order to adequately cover the pavement. A section should also be placed 200' to 300' beyond the nose station to check the proposed ditch slopes between the ramp and mainline. See Sketch No. 1 for an example layout.
- B) Using the mainline grade, pavement width, and superelevation, calculate the mainline edge of pavement elevations adjacent to the ramp at those mainline stations selected with the cross-section layout.
- C) Establish a maximum, minimum, and desirable elevation at each ramp station selected with the cross-section layout. The maximum and minimum range is obtained by applying various superelevation rates on the pavement in the "wedge area" between the mainline and ramp edges of pavement. The various rates of superelevation in the "wedge area" are selected by applying a maximum 0.05 "roll-over" at the mainline edge of pavement and then at the ramp edge of pavement adjacent to the wedge area. See Sketch No. 2 for an example. It should be noted that the 0.05 roll-over limit is to be used with discretion in each case so that the resultant superelevation does not create an impractical or awkward section in the wedge area. After selecting a range of superelevation and scaling the width of the "wedge area", calculate the maximum and minimum elevation adjustments, due to the wedge superelevation, at each cross section. An additional superelevation adjustment calculation is made for the area from the ramp edge of pavement to the ramp centerline (4' or 2' width for a single lane ramp). Also a desirable or ideal elevation adjustment is of value in computing the ramp grade. This is calculated by assigning the ideal or most comfortable superelevation in the wedge area. This desirable elevation adjustment will obviously fall within the maximum and minimum range as described above.

At this point, the maximum, minimum, and desirable elevation adjustments are applied to the mainline edge of pavement elevations at each set of stations to provide a series of elevations on the ramp centerline thru which the proposed ramp grade must pass. It is helpful to prepare a chart for listing the various stations and their respective superelevation and elevation adjustments in calculating the maximum, minimum and desirable elevations.

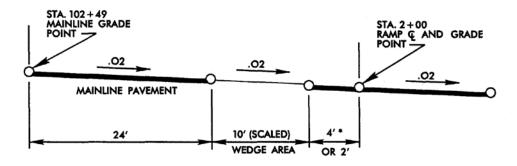

PART 1


PROCEDURE FOR ESTABLISHING RAMP GRADES WITH CONTROL POINTS (continued)

- (2) Compute a ramp grade which passes between these calculated elevations.
 - a) Plot a profile with the ramp stationing and the corresponding maximum, minimum and desirable elevation.
 - b) Compute ramp grade with tangents and/or vertical curves to pass thru the desirable elevations with a tolerance of ± 0.04 ft. if possible. If a grade thru the desirable points is not attainable, the maximum-minimum range can be utilized as the limits for the proposed grade. When using the maximum-minimum range, the designer must be careful to avoid using the minimum elevation at a particular station and the maximum elevation at an adjacent station. This situation can result in undesirable random superelevation across the wedge area. When using the maximum-minimum range, the grade should consistently be in the minimum area or in the maximum area to insure uniformity in the wedge area superelevation.
 - c) After the ramp grade is computed thru the gore area, a check of the superelevation "built into" the wedge should be made to insure a uniform pavement.
 - d) After the grade is established in the gore area, it can be continued to the "Y" line with normal grade design procedures.


Note: Also see Chapter 8-11 for additional information on the layout of deceleration and acceleration lanes.

See the <u>Roadway Standard Drawings</u> for the Standard Deceleration and Acceleration lanes.



MINIMUM ELEVATION DIAGRAM FOR RAMP GRADE AT STATION 2+00

MAXIMUM ELEVATION DIAGRAM FOR RAMP GRADE AT STATION 2+00

DESIRABLE ELEVATION DIAGRAM FOR RAMP GRADE AT STATION 2+00

- NOTE: STATIONS DIMENSIONS AND SUPERELEVATIONS ARE SHOWN AS EXAMPLE SITUATIONS.
 - * 4' OR 2' DIMENSION DEPENDENT UPON RAMP PAVEMENT WIDTH (16' OR 14')

MAXIMUM/MINIMUM GRADE CONTROL POINTS IN GORE AREA

SIGHT DISTANCE AT DIAMOND RAMP TERMINALS

See the sight line and geometric measurements. For additional information, see <u>A</u> <u>POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (2011), ch. 5</u>. Detail of Measurement of Sight Distance at Ramp Terminals.

With reduced handrail offsets specified in the <u>Bridge Policy</u> (see Chapter 6-1 of this Manual), horizontal sight distance has become a more critical element of interchange design. The more narrow bridge restricts the horizontal sight line, so that now the ramp terminal location, Y-line grade, and handrail offset must be considered in combination to attain the required sight distance across the bridge. Each interchange design must be individually studied to achieve the most cost effective combination of bridge width, ramp terminal location, and Y-line grade. A 6' minimum handrail offset will be used on interchange bridges.

There are four basic options available to the designer for providing the required horizontal sight distances.

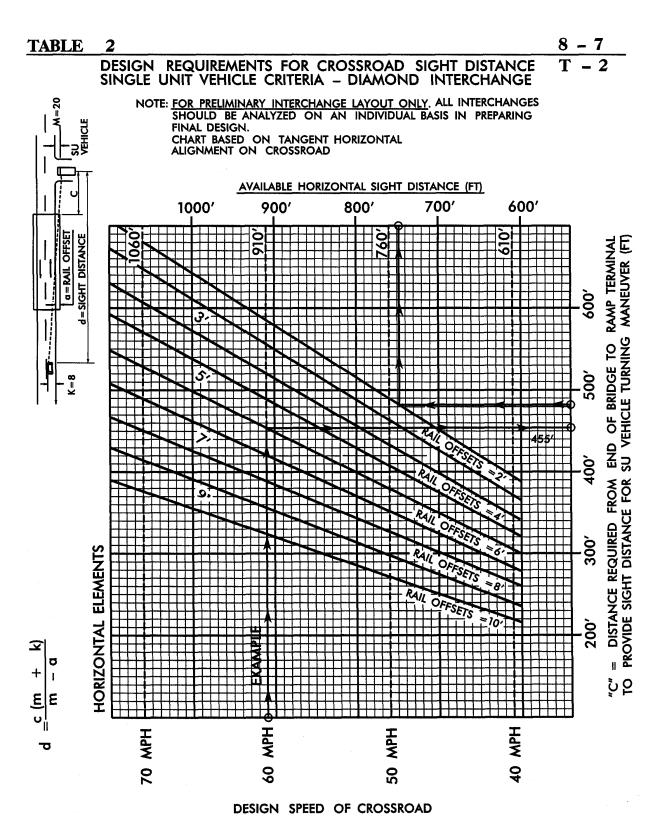
- 1. Design the Y-line grade to enable the driver to see over the bridge handrail and guardrail if present. (Chapter 8-7, Table 1 provides K values for Y-Line grades that will enable the ramp vehicle driver to see over the bridge handrail.)
- 2. Increase the bridge handrail offset and allow the horizontal sight line to fall inside the handrail. (Chapter 8-7, Table 1 provides K values for Y-Line grades that will allow a clear sight line inside the bridge handrail.)
- 3. Use the minimum handrail offset required by the <u>Bridge Policy</u> (see Chapter 6-1 of this Manual) and locate the ramp terminal a sufficient distance from the bridge end to provide the required sight distance. (The grade on Chapter 8-7, Table 2 shows the distance required from the end of bridge to ramp terminal that provides required horizontal sight distance with various bridge handrail offset distances. Conversely, this graph can show the available horizontal sight distance with set ramp terminals and handrail offset distances. This graph may also be use to derive combinations of handrail offsets and ramp terminal locations that may be necessary in an economic analysis of the interchange layout.)
- 4. Consider designing grades with the mainline carried over the Y-line.

This design may be cost effective with a narrow median on the mainline and a multilane Y-line. Earthwork costs are usually the critical cost elements in this option.

SIGHT DISTANCE AT DIAMOND RAMP TERMINALS (continued)

Some of the variables that must be considered in the economic evaluation of sight distance design options include grades, horizontal alignment, guardrail, skew, earthwork cost, right of way cost, handrail offset and bridge cost.

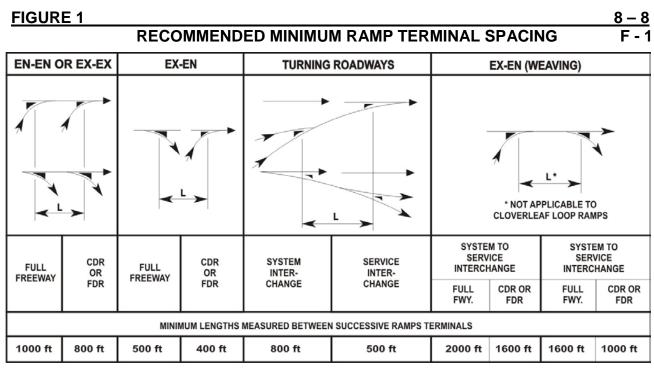
Another design element of importance is stopping sight distance from ramps (loops) that exit the mainline from beneath a bridge. The reduced offset from edge of pavement to piers and/or end bent fill slopes may restrict the stopping sight distance in these cases. The proper combination of pier location and ramp alignment should be designed to provide a minimum stopping sight distance of 350 feet.


The same attention should be given a ramp (loop) that exits the mainline immediately after crossing a bridge. The proper combination of handrail offset and ramp alignment should be designed so that the handrail does not restrict the required stopping sight distance for the ramp. These sight lines should be checked graphically by the designer.

PART 1

BLE 1										<u>8 – ′</u> T –
"K" REQ'D. TO PROVIDE SIGHT DISTANCE "d" FOR SU RAMP VEHICLE SIGHTING OVER BRIDGE RAIL 4	442	326	227	147	I SPEED VERTICAL SIGHT DISTANCE SOULD BE PROVIDED IN COMBINATION WITH HORIZONTAL SIGHT CONTROLS. THE DESIGN DATA LISTED ABOVE IS BASED ON UTILIZING THE SU VEHICLE AS THE RAMP VEHICLE. WITH A PASSENGER CAR AS THE RAMP VEHICLE. THE SIGHT DISTANCE	PROVIDED WITH THE DESIGN DATA LISTED ABOVE ALLOWS FOR APPROACH SPEEDS GREATER THAN THE CROSSROAD DESIGN. WITH A WB-50, THE AVAILABLE SIGHT DISTANCE ALLOWS FOR APPROACH SPEEDS OF ABOUT 75% OF THE CROSSROAD DESIGN SPEED WHICH IS APPROXIMATELY THE AVERAGE RUNNING SPEED OF THE CROSSROAD TRAFFIC. NOTES: 1. SIGHT DISTANCE "4" IS ESTABLISHED BY AASHTO CRITERIA FOR THE SU CONDITION; 2. A POLICY ON GEOMERIC DESIGN OF HIGHWAYS AND STREETS (2004)	 crossroad according to the 8.0', h₂ = 4.25' GE RAIL. 	rail ht.). rail does not required "4";		Τ-
"K" REQ'D. TO PROVIDE SIGHT DISTANCE "4" FOR SU RAMP VEHICLE LEFT TURN MANEUVER 3	235	173	121 *	78 *	I SPEED VERTICAL SIGHT DISTANCE SOULD BE PROVIDED IN COMBINATION WITH HORIZONTAL SI CONTROLS. THE DESIGN DATA LISTED ABOVE IS BASED ON UTILIZING THE SU VEHICLE AS THE RAMP VEHICLE. WITH A PASSENGER CAR AS THE RAMP VEHICLE. THE SIGHT DISTAL	PROVIDED WITH THE DESIGN DATA LISTED ABOVE ALLOWS FOR APPROACH SPEEDS GREATHAN THE CROSSROAD DESIGN. WITH A WB-50, THE AVAILABLE SIGHT DISTANCE ALLOWS FOR APPROACH SPEEDS OF ABOUT 75% OF THE CROSSROAD DESIGN SPEED WHICH IS APPROXIMATELY THE AVERAGE RUNNING SPEED OF THE CROSSROAD TRAFFIC. NOTES: 1. SIGHT DISTANCE "d" IS ESTABLISHED BY AASHTO CRITERIA FOR THE SU CONDITION; 2. A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (2004)	MINIMUM "K" FOR STOPPING SIGHT DISTANCE ALONG CROSSROAD ACCORDING TO 2001 AASHTO CRITERIA DERIVED FROM K = $\frac{d^2}{100 (\sqrt{2h_1} + \sqrt{2h_2})^2}$ WITH h = 8.0', h ₂ = 4.25' sight distance obtained by sighting inside bridge rail.	Ramp vehicle driver sights over bridge rail (2.67' rail ht.). Rail does not obstruct horizontal or vertical sight lines for required "d"; $h_{1} = (8.0' - 2.67') h_{2} = (4.25' - 2.67')$		
"K" REQ'D. FOR STOPPING SIGHT DISTANCE ALONG CROSSROAD 2	247 *	151 *	84	44	DESIGN	PROVIDED WITH THE DE THAN THE CROSSROAD FOR APPROACH SPEEDS APPROXIMATELY THE AVE SU NOTES: VEHICLE 1. SIGHT DISTANCE "d" I	 MINIMUM "K" FOR STC 2001 AASHTO CRITERIA DERIVED FROM K= 100 100 SIGHT DISTANCE OBTAI 	8, SU 4.		
SIGHT DISTANCE "d" REQ'D. FOR SU RAMP VEHICLE, LEFT TURN MANEUVER 1	1060 FT.	910 FT.	760 FT.	610 FT.	DTES MINIMUM "K" TO BE USED FOR EACH VERTICAL SIGHT DISTANCE ELEMENTS		= SIGHT DISTANCE FOR LEFT TURN MANEUVER		"P"	I of vertical curve = L/A Diff. IN grades (G2 - G1)
CROSSROAD DESIGN SPEED	TO MPH	HAM 09	50 MPH	40 MPH	* DENOTES MINIMUM VERTICAL SIGHT		"d" = SIGHT	4.25'		 L = LENGTH OF \ K = A = ALGEBRAIC DIFF.I

TABLE1



ARRANGEMENT FOR SUCCESSIVE RAMP TERMINALS

8-8

8-9

8-10

ARRANGEMENT FOR SUCCESSIVE RAMP TERMINALS

NOTES:

FDR – FREEWAY DISTRIBUTOR CDR – COLLECTOR DISTRIBUTOR EN - ENTRANCE EX – EXIT

THE RECOMMENDATIONS ARE BASED ON OPERATIONAL EXPERIENCE AND NEED FOR FLEXIBILITY AND ADEQUATE SIGNING. THEY SHOULD BE CHECKED IN ACCORDANCE WITH THE PROCEDURE OUTLINED IN THE HIGHWAY CAPACITY MANUAL (4) AND THE LARGER OF THE VALUES IS SUGGESTED FOR USE, ALSO, A PROCEDURE FOR MEASURING THE LENGTH OF THE WAAVING SECTION IS GIVEN IN CHAPTER 24 OF THE 2000 HIGHAY CAPACITY MANUAL (4) THE "L" DISTANCES NOTED IN THE FIGURES ABOVE ARE BETWEEN LIKE POINTS, NOT NECESSARILY "PHYSICAL" GORES. A MINMUM DISTANCE OF 270 FT IS RECOMMENDED BETWEEN THE END OF THE TAPER FOR THE FIRST ON RAMP AND THE THEROETICAL GORE FOR THE SUCCEDING ON RAMP FOR THE EN-EN (SIMILAR FOR EX-EN)

FUTURE GUIDELINES

(This section has been reserved for future guidelines.)

MEDIAN DESIGNS IN INTERCHANGE AREAS

The median width of a facility should not be reduced through an interchange on either the mainline or the intersecting highway (-Y- Line), if the median is continuous. (See Chapter 1-6 in Part I of this manual.)

Traffic islands on -Y- Lines within the interchange should be provided for highways with four or more lanes. On facilities with three lanes, a 4 foot painted island should be provided. The justification of a left turn lane on the -Y- Line is discussed in 8-15 of this Chapter.

ACCELERATION AND DECELERATION LANES

Typically on new facilities angular type exit and parallel type entrance ramps should be utilized. When adding or reconstructing an interchange on an existing facility, the designer should maintain the exit and entrance type if a definite pattern has been established on the freeway segment.

Parallel type entrance lanes should be used in locations where existing interchanges facilities are being up-graded and where right of way is at a premium. See Chapter 8-11, Figures 1-2 of this manual for sample deceleration and acceleration lanes. For additional information see <u>Roadway Standard Drawings</u>, Std. No. 225.03.

The designer should provide sufficient length to enable a driver to make the necessary change between the speed of operation on the highway and the speed on the turning roadway in a safe and comfortable manner. The following Figures and Tables show the appropriate method for obtaining the desirable length of a speed change lane, and how the AASHTO values should be applied to the standard entrance and exit types.

CHART 1	WIINFLAI	GRADES C	OF TWO PER	CENT OF	K LESS				C-	-1
			US	Custom	ary					
	Accel	eration leng	gth, <i>L</i> (ft) fo	or design s	speed of e	xit curve	VN (mpl	n)		
Highway design	Speed	Stop cond		20 erage runn	25 ing speed	30 on exit c	35 urve, <i>V</i> 'a	40 a (mph)	45	50
speed, V (mph)	reached, Va (mph)	0	14	18	22	26	30	36	40	44
30	23	180	140	-	-	-	-	-	-	-
35	27	280	220	160	-	-	-	-	-	-
40	31	360	300	270	210	120	-	-	-	-
45	35	560	490	440	380	280	160	-	-	-
50	39	720	660	610	550	450	350	130	-	-
55	43	960	900	810	780	670	550	320	150	-
60	47	1200	1140	1100	1020	910	800	550	420	180
65	50	1410	1350	1310	1220	1120	1000	770	600	370
70	53	1620	1560	1520	1420	1350	1230	1000	820	580
75	55	1790	1730	1630	1580	1510	1420	1160	1040	780
V	=	design sp	eed of high	way (mph	l)					
V_a	=	average r	unning spee	d on high	way (mpł	n)				
VN	=	design sp	eed of exit	curve (mp	oh)					
V'_a	=	average r	unning spee	d on exit	curve (mp	oh)				

MINIMUM ACCELERATION LENGTHS FOR ENTRANCE TERMINALS CHART 1 WITH FLAT GRADES OF TWO PERCENT OR LESS

C 4

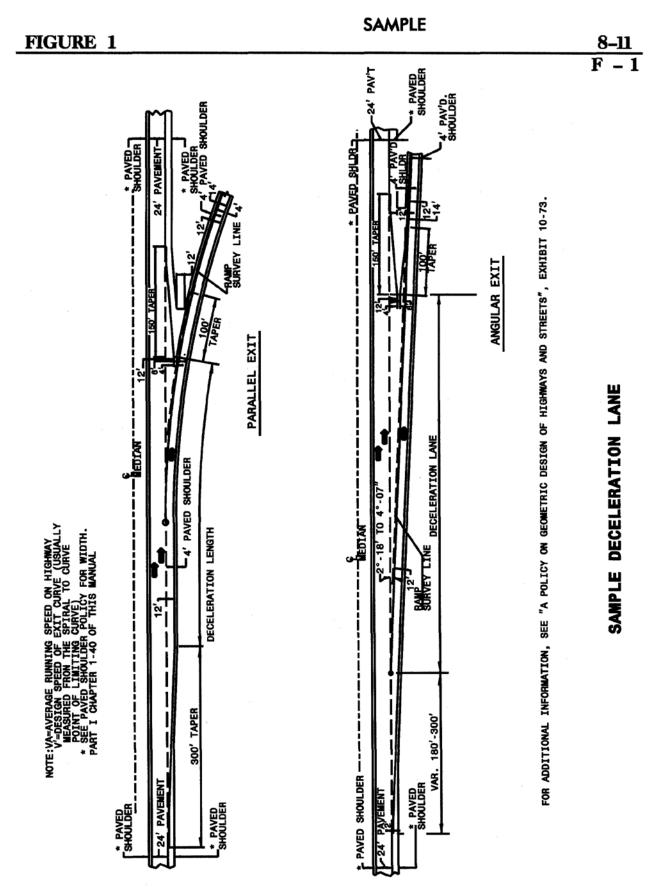
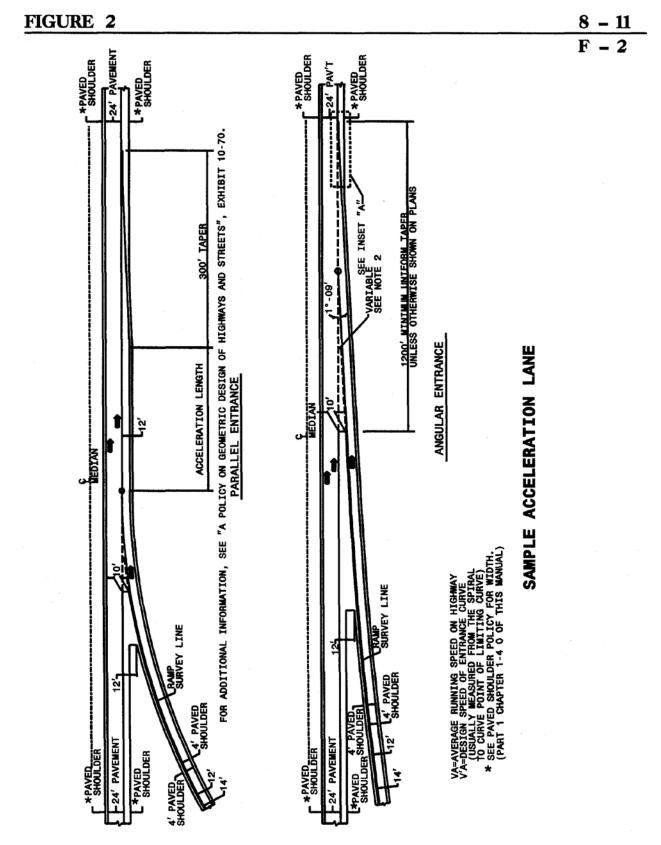

ACCELERATION AND DECELERATION LANES (continued)

CHART 2		CELERATION LEN S OF TWO PERCE			KIT TER	MINALS	5 WITH			C-2
		US	Custor	nary						
	Deceleration	n length, L (ft) for	design	speed	of exit	curve V	'N (mph)		
Highway		Stop condition	15	20	25	30	35	40	45	50
design speed, V (mph)	Speed reached, Va (mph)	For ave	14	<u>unning</u> 18	speed of 22	26	<u>curve, V</u> 30	<u>a (mp</u> 36	40	44
30	28	235	200	170	140	_	_	-	-	
35	32	280	250	210	185	_	-	_	-	_
40	36	320	295	265	235	185	155	-	-	-
45	40	385	350	325	295	250	220	-	-	-
50	44	435	405	385	355	315	2852	225	175	-
55	48	480	455	440	410	380	350	285	235	-
60	52	530	500	480	460	430	405	350	300	240
65	55	570	540	520	500	470	440	390	340	280
70	58	615	590	570	550	520	490	440	390	340
75	61	660	635	620	600	575	535	490	440	390
V	=	design speed of (mph) average running	-	-	hwav					
V_a	=	(mph)	, - r u							
VN	=	design speed of	exit cu	rve (m	ph)					
V'_a	=	average running	speed	on exit	t curve	(mph)				


MINIMUM DECELERATION LENGTHS FOR EXIT TERMINALS WITH

8-11

SAMPLE

REV. DATE: 01/02/02

PART 1

GRADING AT INTERCHANGES

Slopes should be flattened to 4:1 or flatter where feasible within the interchange. This provides better sight distance, eliminates the need for guardrail, and allows for landscaping and mowing.

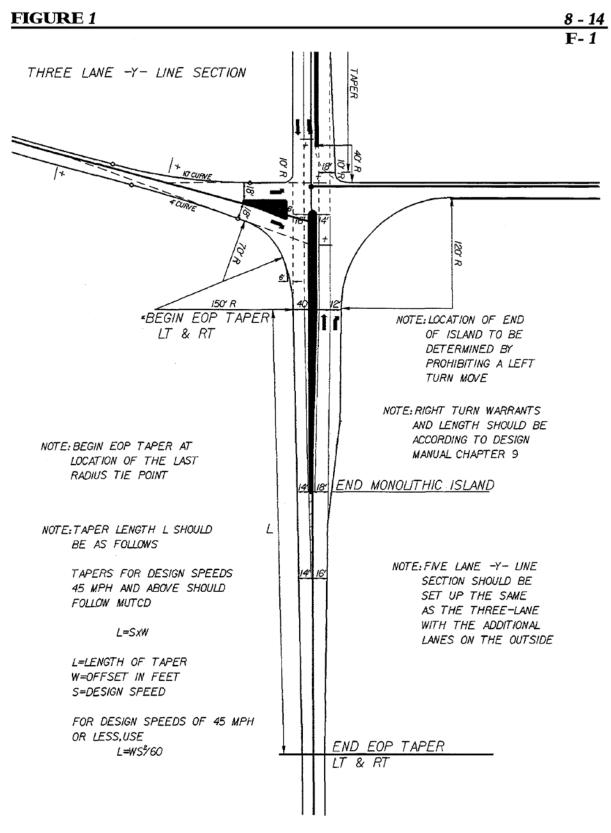
The designer should provide sight distance on all entrance ramps to allow time for the motorist to adjust their speed to the available gaps in traffic flow. The area beyond the exit gore should provide a traversable safety zone as well as a safe transition to the standard typical section.

For slope transition at bridge endbents, see <u>Roadway Standard Drawings</u>, Std. No's. 225.07 and 225.09.

EARTH BERM MEDIAN PIER PROTECTION	8-13
	015

See Roadway Standard Drawings, Std. No. 225.08.

RAMP TERMINALS	8-	·14


All ramp terminals should be designed to handle the appropriate design vehicle. See Chapter 9 of this manual for additional information.

The designer should pay special attention at ramp terminals to discourage wrong-way entry. At locations with unusual ramp termini configurations, a raised median on the -Y- line may be warranted.

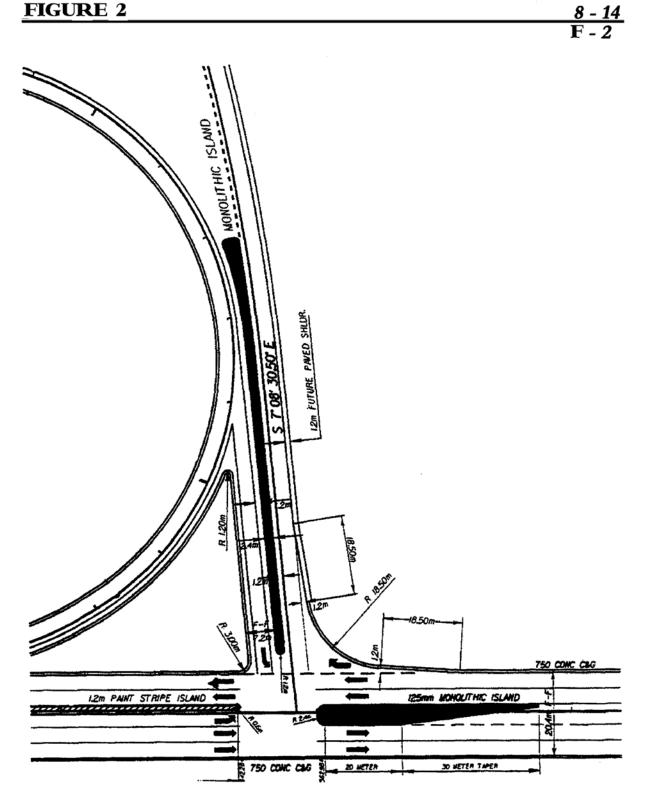
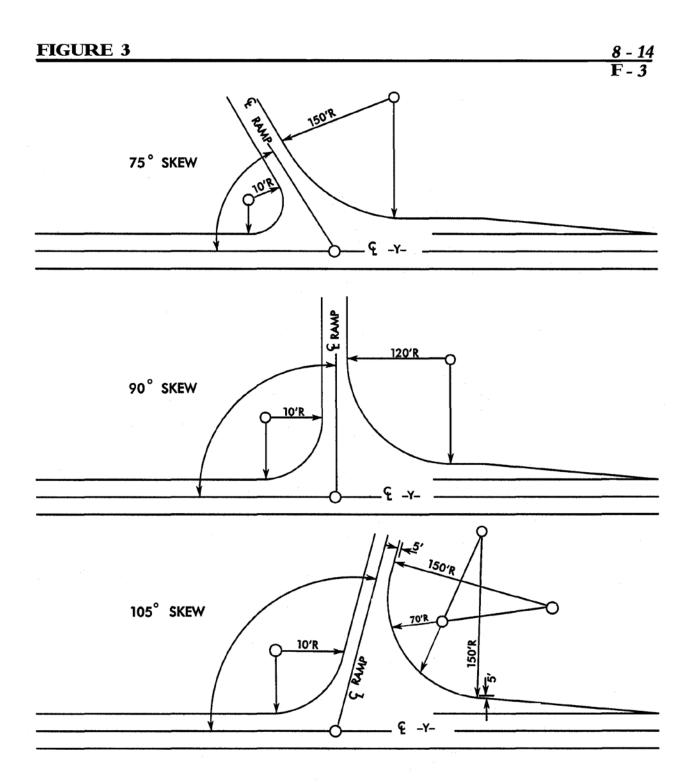
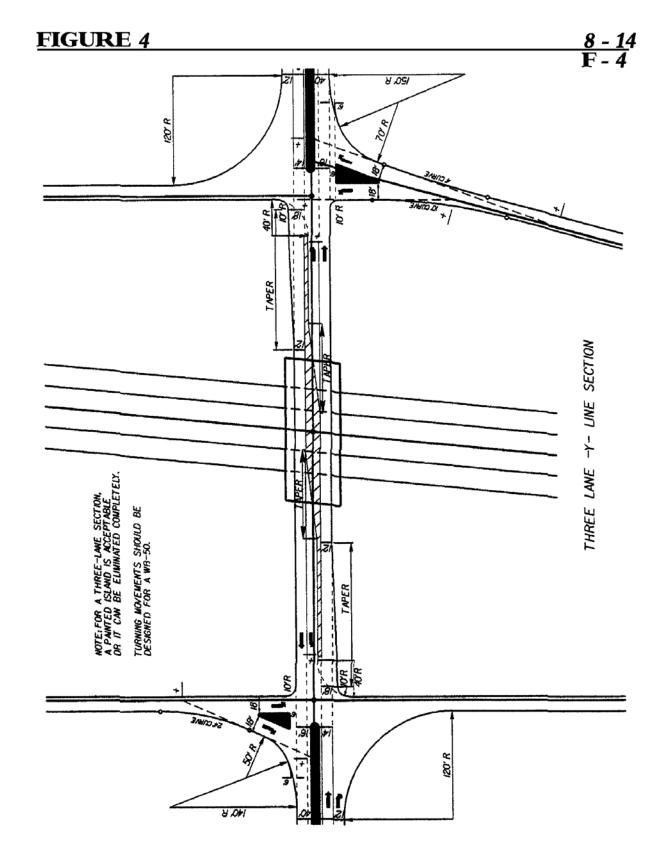

On half-clover type interchanges, the left turning vehicles should be given a recovery area (turning Lane), as shown in Figure 1.

Figure 2 shows designs for ramp terminal radii that will provide safe ingress movements for speeds between 20 and 25 mph. In designing ramps, these designs shall be used as an absolute minimum. Flatter radii may be provided if the designer feels the conditions warrant their use.


-Y- line approach to ramp terminals Figure 3 and 4 show a typical transition for pavement widening at interchange ramp terminals.


-Y- Line Transition

Terminal for Loop Ramp Combination

SUGGESTED RAMP TERMINAL RADII

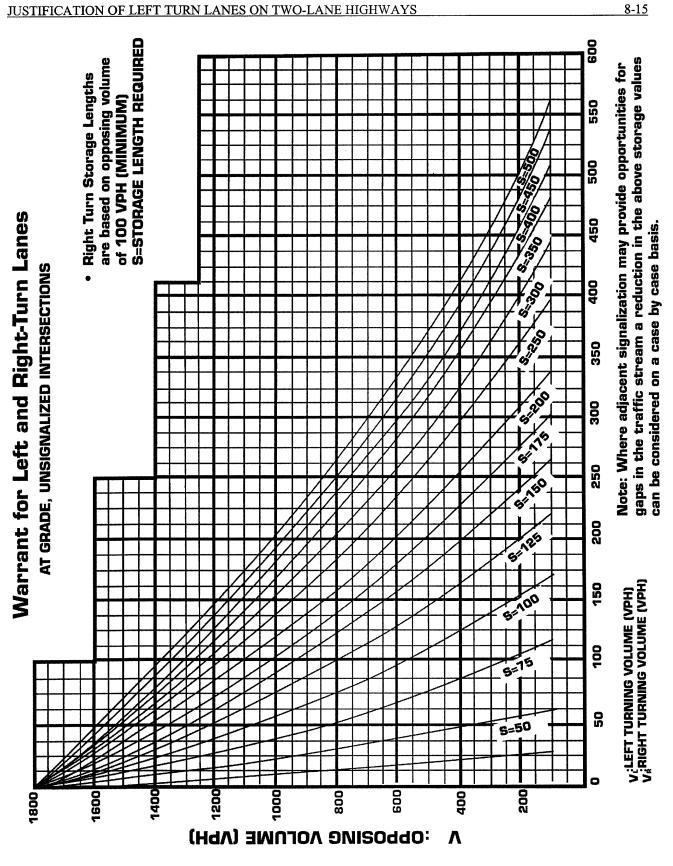
RAMP TERMINAL DESIGN

REV. DATE: 01/02/02

RAMP TERMINAL DESIGN

REV. DATE: 01/02/02

JUSTIFICATION OF LEFT TURN LANES ON TWO-LANE HIGHWAYS 8-15


The need for a left turn lane on an interchange -Y- line should be carefully evaluated by the designer, since it affects the width of the interchange bridge. The need for a left turn lane is determined by traffic volumes, speed, and safety benefits.

The method for determining the warrants for left turn lanes at unsignalized at-grade intersections (applicable to interchange ramp terminals) is addressed in the attached nomograph. The method utilizes a nomograph based on opposing volumes, left turn volumes, and through volumes. The time delays and queuing characteristics of the traffic volumes are the criteria utilized in establishing these nomographs.

The elements to be used in entering the appropriate nomograph are:

- Operating speed (see <u>A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS</u> <u>AND STREETS (2011)</u>, ch. 2.
- V/o, opposing traffic volume
- VL, left turning volume(VPH)
- Va, advancing traffic volume, including through, left turning, and right turning vehicles (design hour volume).
- VR, right turning volume(VPH)
- S, storage length required

If the intercept of V and Va falls right of the applicable S line, that is the amount of storage warranted.

REV. NO. 3 01/02/04

8-15