CHAPTER NINE

AT GRADE INTERSECTIONS

"BULB" TYPE CHANNELIZATION

Intersection "Bulbs" shall be designed in accordance with the Policy and Procedure Manual 23/1. When there is not adequate space to show intersection details on the plans, intersection detail sheets shall be inserted. Information shown on the sheets shall be restricted to <u>design criteria only</u> that is necessary for the construction of the intersection.

- NOTES: 1) Bulb type intersections are to be used on all divided facilities on both paved and unpaved -Y- lines.
 - 2) For additional information, see Chapter 9-1, Figures 1 and 2.

FIGURE 1

<u>9 - 1</u> F - 1

DESIGN GUIDE I

INTERSECTION WITH TWO-LANE FACILITY USING RIGHT-TURN TAPER

REV. DATE: 07/12/06 Revision No.4 FIGURE 2

9 – 1	
F - 2	

DESIGN GUIDE II

INTERSECTION WITH FOUR-LANE DIVIDED FACILITY

REV. DATE: 07/12/06 Revision No.4

"L" (WHERE VEHICLE STORAGE DOES NOT GOVERN) NO WAITING VEHICLES

DESIG	IN SPEED	<u> "L" </u>
40	MPH	330'
50	MPH	550'
60	MPH	680'

FIGURE 3A

9-1	
F3-A	

Guidelines for Use of Positive Offset Left Turn Lanes on Median Divided Facilities

Positive offset left turn lanes will be required on median divided facilities where the median width is greater than 20 feet and the following criteria is met.

- 1. Use at all proposed *signalized* intersections which meet either of the following criteria:
 - a. If left turns are designed with exclusive* movements due to inadequate horizontal and/or vertical alignment and there is adequate cross section width available;
 - b. TEE intersections with opposing left turn lanes for U-turn traffic
- 2. Use at all *unsignalized* intersections which meet either of the following criteria:
 - a. If 10 year traffic projections satisfy any signal warrants;
 - b. Major route left turns meet or exceed 60 vph during the peak hour
- 3. Use at locations where the engineer determines that its use will improve or provide safer or more efficient traffic operations.
- 4. Positive offset left turn lanes on median divided facilities should be discussed at the preliminary field inspection.
- * Positive offset left turn lanes will help to enhance exclusive left turn signal operations by reducing the time required for the left turn movements to clear the intersection.

PART 1

RE	3A		9 – 1 F – 3A – 1
	GUIDELINES FOR LEFT-TURN LANES	R OFFSETTING O S ON DIVIDED F	PPOSING COADWAYS
	DOES NOT GOVERN)	"L" 330' 550' 680'	
	"L" (WHERE VEHICLE STORAGE	DESIGN SPEED 40 MPH 50 MPH 60 MPH	

FIGURE 3A

A 4 degree skew angle will provide approximately 340' of deceleration lengths for design speeds up to 40 mph. A parallel deceleration lane can be incorporated for design speeds 50 mph and higher or where additional storage length is required. See Detail B

FIGURE 3-A

A 4 degree skew angle will provide approximately 230' of deceleration lengths for design speeds up to 30 mph. A parallel deceleration lane can be incorporated for design speeds 40 mph and higher or where additional storage length is required. See Detail B

9-1

A 4 degree skew angle will provide approximately 385' of deceleration lengths for design speeds up to 40 mph. A parallel deceleration lane can be incorporated for design speeds 50 mph and higher or where additional storage length is required. See Detail B

A 4 degree skew angle will provide approximately 455' of deceleration lengths for design speeds up to 50 mph. A parallel deceleration lane can be incorporated for design speeds 60 mph and higher or where additional storage length is required. See Detail B

AT GRADE INTERSECTIONS	9-1
	F-4

GUIDELINES FOR RIGHT TURN LANE WARRANTS, LEFT AND RIGHT TURN LANE STORAGE LENGTHS AND TAPER LENGTH

RIGHT TURN WARRANTS

Figure 4 charts determine the warrants for either a full right turn lane, taper only, or radius only. These charts were taken from NCHRP 279, "Intersection Channelization Design Guide," figure 4-23. They were developed from a 1981 Virginia Highway and Transportation Research Council Report.

LEFT AND RIGHT TURN LANE LENGTHS

Once the right turn warrant has been determined and also figures F-4 A, B, and C determine the minimum turn lane or taper length. The left turn lane lengths were revised to reflect the 2001 AASHTO Design Book. This revision basically excluded the taper from the required deceleration length. These lengths are found in <u>A POLICY ON GEOMETRIC DEIGN OF HIGHWAYS AND STREETS (2001)</u> edition, page 718. There were some concerns raised that these revised lengths (deceleration length plus taper length) were excessive. After reviewing in the field, we agreed. Therefore, we recommended revising the turn lane lengths to the distances shown below which include the taper. The justification for including the taper as part of the deceleration length is found in <u>A POLICY ON GEOMETRIC DEIGN OF HIGHWAYS AND STREETS (2001)</u> edition, page 718. It states:

Design Speed	Minimum Right and Left Turn Lane Lengths*	Taper Only For Right Turns		
40 mph	330 ′	230′		
50 mph	550 ′	265'		
60 mph	680 ′	300′		

*This length includes the taper. The taper length can range from a minimum of 100' to a maximum of 150'.

<u>9-1</u> F-4

AT GRADE INTERSECTIONS (Continued)

GUIDELINES FOR RIGHT TURN LANE WARRANTS, LEFT AND RIGHT TURN LANE STORAGE LENGTHS AND TAPER LENGTH (Continued)

The turn lane lengths have been discussed with the FHWA and no design exceptions are required for the above lengths. As with any guidelines, there will be exceptions based on site conditions and engineering judgement. However, these guidelines should provide some overall consistency.

FIGURE 4

	9	-	1
F	_	4	A

. Turn Lanes	ariable storage ength * + D ength * + P P	Approach / Departure Taper (A)	$A = WS^{2}/60$ (IF S ≤ 40 MPH)	A = WS (IF S > 40 MPH)	S = Design Speed	W = WIGTN OF LATERAL SHITT	* Storage length for waiting vehicles should be calculated based on the latest version	of the Highway Capacity Manual or Policy on Street	and Driveway Access to North Carolina Highways.
t for	idening	Bay Taper Length (T)	75'	75′	100′	100′	100′	150′	200'
edtmer	nmetrical W	Desirable Deceleration Length (D)	150′	150′	200'	250'	300′	500'	575'
ded Tr		Minimum Deceleration Length (D)	100 '	100 '	150′	150′	150′	200 '	250′
commen	2/3 A 2/3 A 2/3 A	Posted Speed (mph)	≤ 25	30	35	40	45	50	55
Re		Design Speed (mph)	30	35	40	45	50	55	60

PART 1

FIGURE 4

REV. NO. 3 01/02/04

 $\frac{9-1}{F-4C}$

9-2

PART 1

Three centered curves shall be constructed at locations in accordance with the Policy and Procedure Manual 23/1. The critical dimensions of three centered curves have been worked out for each combination of radii in increments of one degree of angle of turn. These intervals permit a straight line interpolation between the listed values with a maximum error of 0.02' which is within the practical limits of field layout or construction.

Normally, the range in angles of turn permitted for an at-grade intersection is between 60 degrees and 120 degrees. The computations in these tables have been extended to the range of 53 degrees to 128 degrees to provide for those few cases which exceed these normal limits.

When three-centered compound curves are recommended on a project and the design computations are not in the Design Manual, they shall be shown on the plans for the benefit of the Resident Engineer in laying out the curves in the field.

9 – 2

T - 2

TYPICAL DESIGNS FOR TURNING ROADWAYS

		THREE - CE COMPOUND	THREE – CENTERED WIDTH COMPOUND CURVE OF LANE		THREE – CENTERED COMPOUND CURVE		APPROX. ISLAND SIZE
(DEGREES)	DESIGN CLASSIFICATION	RADII (ft)	OFFSET (ft)	(ft)	(ft)		
75	A	150-75-150	3.5	14	60		
	В	150-75-150	5.0	18	50		
	с	220-135-220	5.0	22	360		
00 ^a	•	150 50 150	3.0	14	50		
90	R	150-50-150	3.0	14	50		
	C	200 70 200	11.0	21	150		
	C	200-70-200	11.0	25	270		
105	А	120-40-120	2.0	15	70		
	В	150-35-150	11.5	29	65		
	с	180–60–180	9.5	32	260		
120	۵	100-30-100	2.5	16	120		
120	B	150-30-150	10.5	33	130		
	c	140-55-140	7.0	45	215		
125	•	100 20 100	2.5	14	440		
135	A	150-30-150	2.5	10	400		
	ь С	140-45-140	7.0	38	395		
	C		7.0	52	465		
150	А	100-30-100	2.5	16	1400		
	В	150-30-150	9.0	42	1350		
	с	160-40-160	6.0	53	1590		

^a ILLUSTRATED IN EXHIBIT 9-43 IN " A POLICY ON GEOMENTRIC DESIGN OF HIGHWAYS AND STREETS" (2011)

NOTE: ASYMMETRIC THREE – CENTERED COMPOUND CURVES AND STRAIGHT TAPERS WITH A SIMPLE CURVE CAN ALSO BE USED WITHOUT SIGNIFICANTLY ALTERING THE WIDTH OF ROADWAY OR CORNER ISLAND SIZE. PAINTED ISLAND DELINEATION IS RECOMMENDED FOR ISLANDS LESS THAN 75 ft² in Size.

DESIGN CLASSIFICATION:

- A PRIMARILY PASSENGER VEHICLES; PERMITS OCCASIONAL DESIGN SINGLE–UNIT TRUCKS TO TURN WITH RESTRICTED CLEARANCES.
- B PROVIDES ADEQUATELY FOR THE SU–30 AND SU–40 DESIGN VEHICLES; PERMITS OCCASIONAL WB–62 DESIGN VEHICLES TO TURN WITH SLIGHT ENCROACHMENT ON ADJACENT TRAFFIC LANES.
- C PROVIDES FULLY FOR WB-62.

9-2 T-3

(Simple Curve), Table 9-15					
Angle of		Simple	Simple	Curve Radius w	ith Taper
Turn	Design	Curve	Radius	Offset	Taper
(Degrees)	Vehicle	Radius	(ft.)	(ft.)	(ft.:ft.)
30	Р	60	-	-	-
	SU-30	100	-	-	-
	SU-40	140	-	-	-
	WB-40	150	-	-	-
	WB-62	360	220	3.0	15:1
	WB-67	380	220	3.0	15.1
	WB-92D	365	190	3.0	15.1
	WB-100T	260	125	3.0	15.1
	WB-109D	475	260	3.5	20.1
45	Р	50	-	-	-
	SU-30	75	-	-	-
	SU-40	115	-	-	-
	WB-40	120	-	-	-
	WB-62	230	145	4.0	15:1
	WB-67	250	145	4.5	15:1
	WB-92D	270	145	4.0	15:1
	WB-100T	200	115	2.5	15:1
	WB-109D	-	200	4.5	20:1
60	Р	40	-	-	-
	SU-30	60	-	-	-
	SU-40	100			
	WB-40	90	-	-	-
	WB-62	170	140	4.0	15:1
	WB-67	200	140	4.5	15:1
	WB-92D	230	120	5.0	15:1
	WB-100T	150	95	2.5	15:1
	WB-109D	-	180	4.5	20:1

See Edge of Traveled Way For Turns at Intersections

TABLE 3 (continued)

See Edge of Traveled Way For Turns at Intersections						
(Simple Curve)						
Anala of		Cimula	Cimple	Curra Dadina m	ith Tonor	
Angle of	D '	Simple	Simple			
Turn	Design	Curve	Radius	Offset	I aper	
(Degrees)	Vehicle	Radius	(ft.)	(ft.)	(ft.:ft.)	
75	Р	35	25	2.0	10:1	
	SU-30	55	45	2.0	10:1	
	SU-40	90	60	2.0	10:1	
	WB-40		60	2.0	15:1	
	WB-62		145	4.0	20:1	
	WB-67	-	145	4.5	20:1	
	WB-92D	-	110	5.0	15:1	
	WB-100T		85	3.0	15:1	
	WB-109D	-	140	5.5	20:1	
90	Р	30	20	2.5	10:1	
	SU-30	50	40	2.0	10:1	
	SU-40	80	45	4.0	10:1	
	WB-40		45	4.0	10:1	
	WB-62		120	4.5	30:1	
	WB-67		125	4.5	30:1	
	WB-92D	-	95	6.0	10:1	
	WB-100T	-	85	2.5	15:1	
	WB-109D	-	115	2.9	15:1	
105	Р	-	20	2.5	8:1	
	SU-30		35	3.0	10:1	
	SU-40		45	4.0	10:1	
	WB-40		40	4.0	10:1	
	WB-62		115	3.0	15:1	
	WB-67	-	115	3.0	15:1	
	WB-92D	-	80	8.0	10:1	
	WB-100T	-	75	3.0	15:1	
	WB-109D	-	90	9.2	20:1	

<u>9-2</u> T-3

TABLE 3 (continued)

(Simple Curve)					
Angle of		Simple	Simple	Curve Radius w	ith Taper
Turn	Design	Curve	Radius	Offset	Taper
(Degrees)	Vehicle	Radius	(ft.)	(ft.)	(ft.:ft.)
120	Р	-	20	2.0	10:1
	SU-30	-	30	3.0	10:1
	SU-40	-	35	6.0	8:1
	WB-40	-	35	5.0	8:1
	WB-62	-	100	5.0	15:1
	WB-67	-	105	5.2	15:1
	WB-92D	-	80	7.0	10:1
	WB-100T	-	65	3.5	15:1
	WB-109D	-	85	9.2	20:1
135	Р	-	20	1.5	10:1
	SU-30	-	30	4.0	10:1
	SU-40	-	40	4.0	8:1
	WB-40	-	30	8.0	15:1
	WB-62	-	80	5.0	20:1
	WB-67	-	85	5.2	20:1
	WB-92D	-	75	7.3	10:1
	WB-100T	-	65	5.5	15:1
	WB-109D	-	85	8.5	20:1
150	Р	-	18	2.0	10:1
	SU-30	-	30	4.0	8:1
	SU-40		35	7.0	8:1
	WB-40		30	6.0	8:1
	WB-62		60	10.0	10:.
	WB-67		65	10.2	10:1
	WB-92D	-	65	11.0	10:1
	WB-100T	-	65	7.3	10:1
	WB-109D	-	65	15.1	10:1

See Edge of Traveled Way For Turns at Intersections

<u>9-2</u> T-3

TABLE 3 (continued)	9-2
	T-3

See Edge of Traveled Way For Turns at Intersections (Simple Curve)

Angle of		Simple	Simple	Curve Radius w	ith Taper
Turn	Design	Curve	Radius	Offset	Taper
(Degrees)	Vehicle	Radius	(ft.)	(ft.)	(ft.:ft.)
180	Р	-	15	0.5	20:1
	SU-30	-	30	1.5	10:1
	SU-40	-	35	6.4	10:1
	WB-40	-	20	9.5	5:1
	WB-62	-	55	10.0	15:1
	WB-67	-	55	13.8	10:1
	WB-92D	-	55	16.8	10:1
	WB-100T	-	55	10.2	10:1
	WB-109D	-	55	20.0	10:1

For Additional Information, See A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (2011) edition.

TABLE 3A

PART 1

9-2	
T-3A	

See Edge of Traveled Way For Turns at Intersections (Compound Curve), Exhibit 9-20

		3-Centered	Compound	3-Centered	Compound
Design	Angle of	Curve	Symmetric	Curve	Asymmetric
Vehicle	Turn	Radii	Offset	Radii	Offset
-	Degrees	Feet	Feet	Feet	Feet
Р	30	-	-	-	-
SU-30		-	-	-	-
SU-40		-	-	-	-
WB-40		-	-	-	-
WB-62		-	-	-	-
WB-67		460-175-460	4.0	300-175-550	2.0-4.5
WB-92D		550-155-500	4.0	200-150-500	2.0-6.0
WB-100T		220-80-220	4.5	200-80-300	2.5-5.0
WB-109D		550-250-550	5.0	250-200-650	1.5-7.0
Р	45	-	-	-	-
SU-30		-	-	-	-
SU-40		-	-	-	-
WB-40		-	-	-	-
WB-62		460-240-460	2.0	120-140-500	3.0-8.5
WB-67		460-175-460	4.0	250-125-600	1.0-6.0
WB-92D		525-155-525	5.0	200-140-500	1.5-6.0
WB-100T		250-80-250	4.5	200-80-300	2.5-5.5
WB-109D		550-200-550	5.0	200-170-650	1.5-7.0
Р	60	-	-	-	-
SU-30		-	-	-	-
SU-40		-	-	-	-
WB-40		-	-	-	-
WB-62		400-100-400	15.0	110-100-220	10.0-12.5
WB-67		400-100-400	8.0	250-125-600	1.0-6.0
WB-92D		480-110-480	6.0	150-110-300	3.0-9.0
WB-100T		250-80-250	4.5	200-80-300	2.0-5.5
WB-109D		650-150-650	5.5	200-140-600	1.5-8.0

	See Edg	ge of Traveled Wa (Compo	y For Turns at und Curve)	Intersections	
		3-Centered	Compound	3-Centered	l Compound
Design	Angle of	Curve	Symmetric	Curve	Asymmetric
Vehicle	Turn	Radii	Offset	Radii	Offset
_	Degrees	Feet	Feet	Feet	Feet
Р	75	30-8-30	0.6	-	-
SU-30		36-14-36	0.6	-	-
SU-40		61-11-61	1.5	18-14-61	0.3-1.4
WB-40		36-14-36	1.5	36-14-60	0.6-2.0
WB-62		134-23-134	4.5	43-30-165	1.5-3.6
WB-67		128-23-128	3.0	61-24-183	0.3-3.0
WB-92D		152-29-152	2.1	46-30-152	0.3-2.4
WB-100T		76-24-76	1.4	30-24-91	0.5-1.5
WB-109D		213-38-213	2.0	46-34-168	0.5-3.5
Р	90	100-20-100	2.5	-	-
SU-30		120-40-120	2.0	-	-
SU-40		200-30-200	7.0	60-45-200	1.0-4.5
WB-40		120-40-120	5.0	120-40-200	2.0-6.5
WB-62		400-70-400	10.0	160-70-360	6.0-10.0
WB-67		440-65-440	10.0	200-70-600	1.0-11.0
WB-92D		470-75-470	10.0	150-90-500	1.5-8.5
WB-100T		250-70-250	4.5	200-70-300	1.0-5.0
WB-109D		700-110-700	6.5	100-95-550	2.0-11.5
Р	105	100-20-100	2.5	-	-
SU-30		100-35-100	3.0	-	-
SU-40		200-35-200	6.0	60-40-190	1.5-6.0
WB-40		100-35-100	5.0	100-55-200	2.0-8.0
WB-62		520-50-520	15.0	360-75-600	4.0-10.5

13.0

8.0

5.0

8.0

500-50-500

500-80-500

250-60-250

700-95-700

200-65-600

150-80-500

100-60-300

150-80-500

1.0-11.0

2.0-10.0

3.0-15.0

1.5-6.0

WB-67

WB-92D

WB-100T

WB-109D

TABLE 3A (continued)

		(Compo	und Curve)		
		3-Centered	Compound	3-Centered	l Compound
Design	Angle of	Curve	Symmetric	Curve	Asymmetric
Vehicle	Turn	Radii	Offset	Radii	Offset
-	Degrees	Feet	Feet	Feet	Feet
Р	120	100-20-100	2.0	-	-
SU-30		100-30-100	3.0	-	-
SU-40		200-35-200	6.0	60-40-190	1.5-5.0
WB-40		120-30-120	6.0	100-30-180	2.0-9.0
WB-62		520-70-520	10.0	80-55-520	24.0-17.0
WB-67		550-45-550	15.0	200-60-600	2.0-12.5
WB-92D		500-70-500	10.0	150-70450	3.0-10.5
WB-100T		250-60-250	5.0	100-60-300	1.5-6.0
WB-109D		700-85-700	9.0	150-70-500	7.0-17.4
Р	135	100-20-100	1.5	-	-
SU-30		100-30-100	4.0	-	-
SU-40		200-40-200	4.0	60-40-180	1.5-5.0
WB-40		120-30-120	6.5	100-25-180	3.0-13.0
WB-62		600-60-600	12.0	100-60-640	14.0-7.0
WB-67		550-45-550	16.0	200-60-600	2.0-12.5
WB-92D		450-70-450	9.0	150-65-450	7.0-13.5
WB-100T		250-60-250	5.5	100-60-300	2.5-7.0
WB-109D		700-70-700	12.0	150-65-500	14.0-18.4
Р	150	75-20-75	2.0	-	-
SU-30		100-30-100	4.0	-	-
SU-40		200-35-200	6.5	60-40-200	1.0-4.5
WB-40		100-30-100	6.0	90-25-160	1.0-12.0
WB-62		480-55-480	15.0	140-60-560	8.0-10.0
WB-67		550-45-550	19.0	200-55-600	7.0-16.4
WB-92D		350-60-350	15.0	120-65-450	6.0-13.0
WB-100T		250-60-250	7.0	100-60-300	5.0-8.0
WB-109D		700-65-700	15.0	200-65-500	9.0-18.4

See Edge of Traveled Way For Turns at Intersections

<u>9-2</u> T-3A

	See Edge	e of Traveled Wa	ay For Turns at	Intersections	
		(Compo	und Curve)		
		3-Centered	Compound	3-Centered	Compound
Design	Angle of	Curve	Symmetric	Curve	Asymmetric
Vehicle	Turn	Radii	Offset	Radii	Offset
	Degrees	Feet	Feet	Feet	Feet
Р	180	50-15-50	0.5	-	-
SU-30		100-30-100	1.5	-	-
SU-40		150-35-150	6.2	50-35-130	5.5-7.0
WB-40		100-20-100	9.5	85-20-150	6.0-13.0
WB-62		800-45-800	20.0	100-55-900	15.0-15.0
WB-67		600-45-600	20.5	100-55-400	6.0-15.0
WB-92D		400-55-400	16.8	120-60-400	9.0-14.5
WB-100T		250-55-250	9.5	100-55-300	8.5-10.5
WB-109D		700-55-700	20.0	200-60-500	10.0-21.0

For Additional Information, See A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (2011) edition.

TABLE 3A (continued)

|--|

\mathbf{L}	E	4																																9 .	- 2
	d.	0 ~ "					0.0			10.1		5	-										60 10						70				8 1	T www	- 4
		555 	5 86 				88					E	et de	88		86 			- -	88	6 66 				99 ~ 94 ~	0.0	0 	86 	60 		6 	40	88 	68	88
Area	84. IB	891.19	610.2	590.6	563		519.0	486.4	455.5	441.	413.	Area	sq. fe	1005.	962	927.5	86	826.4	834.	812.	181	750.	731.0	604.5	SQ. fe	1391	1315	1278.	1243	1175.	1142	1111	19 <u>51</u> 1022	964	941.0
Σ	12.2	2.50	7.10	6.9	651	0.33	6.14 5.95	5.59	5.47	5.24	4.90	×		4.89	4.56	4.40	4.25	8 8 8	3.79	3.64	3.36	3.22	80.0	888	ε	7.05	6.61	6.40	6.19	5.77	5.57	5.37	4.80	4.61 4.43	4.25
w	04.00	23.39	22.17	21.58	598 598 598 598 598 598 598 598 598 598	76.61	19.40 18.89	18.39	17.43	16.97	16.08	E		28.59 27 91	27.25	26.61	25.98	24.78	24.20	23.64	22.56	22.04	21.53	20.22		33.83	32.20	31.41	30.65 29.90	29.18	28.47	27.78	26.46 25.82	25.20 24.60	24.01
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		82.25 85.25	63.61	62.82	61.27	26.09	59.78	58.34	56.94	56.26	54.94	ł	ength in feet	79.61 78.70	77.82	76.95	76.10	74.44	73.63	72.84	00.12	70.54	69.69	68.36 67.65	enath in feet	94.50	92.31	91.25	90.21 80.18	88.18	87.19	86.23 85.27	84.34 83.42	82.51 81.62	80.75 79.89
F	10.00	47.47	45.84	45.04	8 8 F	42.74	42.00	40.56 39.86	30.17	39.49 29.49	37.16	11	-	51.77	49.98	49.11	48.26	46.60	45.79	45.00	43.46	42.70	41.96	40.52	E	63.27	61.08	60.02	58.98 57 06	56.95	26.97	55.00 54.00	53.11 52.19	51.29 50.40	49.52 48.66
12	67.00	38.58 28.58	36.95	36.15	5.8.5 5.8	33.65	33.11	31.67	80.06	29.60	28.27	12		37.85 36 04	36.06	35.19	34.34	32.68	31.87	31.08	20.00	28.78	28.04	26.60 25.89 25.89	2	47.66	45.47	44.41	43.37	41.34	40.36	39.39 38.44	37.50 36.58	35.68 34.79	33.91 33.05
	ŝ	868	8 8	28	383	5	88	88 6	8	882	8		deg.	86	8	8	28	38	91	88	88	87	88	828	den	88	ñ 8	8	28	88	6	88	88 68	88	28
Constants		SU SU	R1 = 120°	R2 = 40	* = 2.0	Θ= 12°50.34'	v = 2.00					Constants		Design Vehicle	3	R1 = 120	R2 = 40	* = 5.0'	10 1000 0		DC'/ = A				Constants	Design Vehicle	2	R1 = 150	R2 = 50	° = 5.0	G = 18°11.70	v = 7 50'	2		
	8	293	:2	8	868	8	88	888	5	589			8	ç;	12	₽	88	86	8	83	58	38	58	388		8	**	8	38	28	<u>ه</u>	88	886	82	32
	Ŭ,			9.9	* - *	₽. 80.	40						g et	4.0	1 49	<u>د</u>		0.10	8	010 1	0.4	13	00	2 00 1			- 90	4				9.0		4.0	
٩.	80.10	1210	1 1 1 1 1	1113	200	1025	866	86	807	56	828	An	5	1786	8	1651	100	1521	1486	1451	1375	1 E	1312	1246	e v	2	85	245	330	38	22	516	58 R	96 ē	187
z		5.13 12.5	5.44	5.28	4.96	4.81	4.65	4.35	500	3.92 3.92	3.64	M		7.93	7.52	7.32	7.12	6.92	6.53	6.34	6.15	5.79	5.61	5 2 5 9 2 9 9 2 9	Ξ	3.54	3.35 3.35	3.25	3.16	2.97	2.88	2.79	583	2.45	228
U		8.58 8.59 8.59	34.74	33.88	32.25	31.47	30.71	29.26 29.26	04 24	27.23	25.97			44.25	42.43	41.07	40.08	198 199 199 199 199 199 199 199 199 199	37.27	36.38	202	33.89	33.10	31.60 30.88		14.30	13.63	13.30	12.99	12.39	12.10	11.82	11.02	10.77	10.28
	Length in fee	888 888 888	82.13 82.13	81.08	80.06 79.06	78.08	77.13	75.29		72.67	71.02		Length in fee	107.51	104.91	103.66	102.44	101.25	96.96	97.85	96.71 96.71	94.68	93.66	92.67 91.70 90.74	T endth in fee	45.73	44.83	44.40	43.97	43.44 14	42.74	42.34	41.57	40.83 40.45	40.10 39.75
F		59.90 59.30 50.30	57.13	56.08	54.06	53.08	52.13	50.29		47.67	46.02			70.25	67.66	66.41	65.19	64.00 62.84	61.71	60.60	59.52 58.46	57.42	56.41	8 8 8 8 4 8 8 4 8	4	25.88	23.43 24.99	24.55	24.13	23.30	22.90	22.50	21.73	20.98	20.26
12		46.97 45.84	44.74 43.66	42.62	40.60	39.62	38.68	36.83	20.00	34.21	32.55	64		56.71	8.15 1.15	52.86	51.64	50 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	48.16	47.05	45.97	80.64	42.86	40.90 90.90 90.90	72	20.92	20.03	19.59	19.17	18.73	17.94	17.54	16.77 16.39	16.02 15 86	15.30
•	deg	12	5 <u>6</u>	6	<u>8</u> 6	<u>8</u>	8	<u>8</u> 88	į	5 <u>8</u> 8	88		deg.	113	Ē	110	109	₿0	§	<u>8</u>	₿₿	<u>3</u> 8	5	888	∆	8	68	8	28	38	6	88	886	88	328
Constants		Design Vehicle 243	R1 = 100'	22 = 35	° = 5.0°	DC 75°CC - 6						Anctante		Design Vehicle	R	R1 = 150'	R2 = 40'	.=65		01.14-BL =0	y = 8.86				Constants	Design Vehicle	n.	R1 = 100°	R2 = 20	*=2.5					

TABLE 4 (continued)

9 - 2 T - 4

	Area 🗠	sq. feet deg.	2268.2 126 2268.2 127 2202.9 126 2140.2 125	2079.9 124 2021.8 123 1966.0 122 1912.2 121	1860.4 120 1810.4 119 1715.2 118 1715.7 117	1670.8 116 1627.4 115 1585.5 114 1545.0 113	Area A	sq. feet deg. 394.9 113 384.1 112 373.6 111 373.5 110 363.5 110	353.7 109 344.3 109 335.1 107 326.3 106	317.7 105 309.4 104 301.4 103 293.6 103	286.1 101 278.8 100 271.7 99 264.8 98	Area A sq. feet deg.	990.9 113 960.8 112 931.7 111 903.6 110	876.5 109 850.2 108 824.9 107 800.4 106	776.7 105 753.7 106 731.5 104 731.5 103 710.1 102	689.3 101 669.1 100
	3	64.9	8.22 8.03 7.83	7.64 7.45 7.08	8000 878 857 857 857 857 857 857 857 857 857	6.18 5.02 60 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.0	Z	6.17 6.05 4.94	4.71 4.49 4.49 38 4.49 38 4.49 4.49 4.49 4.38	4.27 4.16 3.85	3.85 3.75 3.64 3.54	3	7.81 7.62 7.43 7.24	7.06 6.87 6.69 6.51	6.34 5.89 5.89 5.89 5.89 5.89 5.89 5.89 5.89	5.65 5.49
	3	t An Rt	56.51 57.51 56.93	8 .83 8.83 8.83 8.83 8.83 8.83 8.83 8.83	49.00 45.55 45.38	41.26 43.17 43.17	u	20.77 20.24 19.72 19.23	18.75 18.28 17.83 17.39	16.98 16.55 15.75	15.37 14.64 14.30	3	33.85 32.06 31.25	30.44 28.65 28.89 28.14	27.42 26.72 26.04 25.38	24.74 24.12
	-	Length in fee	118.02 118.02 114.46	112.77 111.13 108.55 108.55	106.53 105.08 102.38	100.39 98.71 98.45 97.23	-	53.84 53.84 53.28 52.58 51.98 51.98	51.39 50.81 50.25 49.70	49.17 48.64 48.13 47.63	47.14 46.06 46.19 45.73	T ength in feet	76.93 75.86 74.81 73.79	72.79 71.82 70.67 69.95	69.04 67.29 67.29 66.44	65.62 64.81
	F	BC 11	84.24 82.43 80.68	78.99 77.35 75.77 74.24	72.75 71.30 69.90 68.54	67.21 65.83 64.67 63.46	Ч	33.98 33.36 32.74 32.13	31.54 30.97 30.41 29.86	29.32 28.80 28.80 28.29 27.79	27.30 26.81 26.34 25.88	H	57.41 56.34 56.28 54.27	53.27 52.30 51.35 50.43	49.52 48.64 47.77 46.93	46.10 45.29
3)	72	06.64	70.33 68.52 66.77	85.08 61.86 60.33	56.98 57.38 54.58	53.31 52.02 50.71 49.55	22	29.03 28.40 27.17 27.17	26.01 26.01 24.95 24.95	24.36 23.33 23.33 24.36 23.33 24.36 23.33 24.36 23.33 24.36	21.85 21.85 20.92	12	46.90 45.83 44.78 43.76	42.76 41.79 40.84 39.92	39.01 38.13 37.26 36.42	36.59 34.78
Table		1980	8588 85	<u> </u>	119 119 117	÷÷‡‡	∇	deg. 113 111 110	<u>8</u> 868	<u>8588</u>	5 <u>5</u> 88	de <u>p</u> .	55255 5525	8868	ន៍ខ្ម័ន៍ន័	₫8
(Refer to 9-2	Constants	Desire Vahida	C50 C50 R1 = 120	R2 = 35' • = 7.0'	e = 23*24.90' y = 9.88'		Constants	Design Vehicle P R1 = 100	R2 = 20 • = 2.5	θ = 14°21.72 y = 3.13		Constants	Design Vehicle SU R1 = 100*	R2 = 35 • = 3.0	G = 17°28.50' y = 4.62'	
ANDS	V	deg t	8588 85	<u> </u>	11 11 11 12 12 12 12 12 12 12 12 12 12 1	444 144 144 144 144 144 144 144 144 144	⊲	deg. 126 126 126	22222 22222	119 119 117	115 115 113 113	dep	128 128 128	<u> 7</u> 2 2 2 2 2	118	115
HOUT ISL	Area	80. feet	545.0 545.0 527.7 511.0	495.0 479.7 464.9 450.7	437.0 423.9 411.2 399.0	387.2 375.9 365.0 365.0	Area	sq. feet 1563.4 1563.4 1506.7 1461.7 1418.6	1377.1 1337.3 1298.9 1268.9	1226.4 1192.1 1159.1 1127.2	1096.5 1096.8 1038.1 1010.4	Area sq. feet	1632.6 1584.2 1537.7 1493.1	1450.3 1460.0 1369.3 1369.3	1294.3 1258.8 1224.6 1191.6	1159.7 1129.0
III	I	7.46	7.19	6.92 6.79 6.53 6.53	6.40 6.27 6.15 6.02	5.90 5.67 5.55 5.55	¥	7.78 7.60 7.43 7.26	7.09 6.92 6.76 6.59	6.43 6.27 5.95	5 5 5 5 8 8 8 8 8 9 8 8	Σ	7.40 7.23 7.06 6.90	6.73 6.57 6.24	6.08 5.77 5.77	5.47 5.32
		9 1 0	20.14 28.46 27.66	26.86 26.11 25.38 24.68	24.00 23.35 22.72 22.12	21.52 20.95 20.39 19.86	3	49.84 48.44 47.06 45.80	44.55 43.35 42.19 41.08	40.00 38.96 37.96	36.05 35.14 34.26 33.41	B	50.98 46.56 86.20 86.80 86.80	44.65 44.46 23.24 44.65 23.04 20 23 44.65 20 20 20 20 20 20 20 20 20 20 20 20 20	41.00 38.95 37.94	36.99 36.07
	-	Length In fee	61.90 60.95 60.04	59.15 59.47 57.47 56.68	55.58 57.38 58.38 59.38 59.58 59.58 59.58 59.59 59 59 59.59 59 59 59 59 59 59 59 59 59 59 59 59 5	52.98 52.31 51.65 51.05	F	97.74 97.74 96.18 94.67 94.67 93.22	91.81 90.44 89.12 87.84	86.60 85.40 84.23 83.10	81.99 80.92 79.88 78.86	T ength in fee	98.89 96.87 35.87	93.96 92.58 91.24 89.94	88.69 87.47 86.28 85.13	84.01 82.92
		÷	3.18	41.38 30.69 38.89	38.11 37.35 36.61 35.90	35.21 34.55 33.28 33.24	H	71.76 70.20 68.69 67.23	65.82 64.46 63.14 61.86	60.62 59.42 58.25	55.55 52.50 52.50 52.50 52.50	F	72.79 71.20 69.67 68.20	66.77 65.38 64.04 62.75	61.48 60.27 59.08 57.93	56.81 55.72
		ľ	1444				_									
	T2 T	37 39 07	30.05 38.73 38.73 37.82 37.82	36.83 36.25 34.44	32.91 32.91 31.45	30.76 30.09 29.43 28.79	24	60.62 59.07 57.56 56.10	54.69 52.01 50.73	49.49 48.28 47.12 45.98	44.88 43.80 42.76 41.75	12	61.13 59.55 58.02 56.54	56.11 53.73 52.39 51.09	49.83 48.61 41.43 46.27	45.16 44 07
	A 1 72 1 T	deg. 40.66 45	128 4000 127 39.68 4 4 126 38.73 4 4 125 37.82 4	124 123 123 36.08 36.08 36.08 34.44 34.44	120 33.66 119 32.91 118 32.17 31.46	116 30.76 115 30.09 114 29.43 113 28.79	A 72	deg. 128 60.62 127 56.07 126 57.56 125 56.10	124 54.69 123 55.09 121 52.01 50.73	120 49.49 119 48.28 118 47.12 117 45.98	116 44.88 115 43.80 114 42.76 113 41.75	∆ T2 deg.	128 61.13 127 59.55 126 58.02 125 56.54	124 55.11 123 55.73 122 55.39 121 51.09	120 49.83 119 48.61 118 47.43 117 46.27	116 45.16 115 44.07

PART 1

VARIABLE DIMENSIONS OF 3-CENTERED CURVES

TABLE 4 (continued)

9 - 2 T - 4

								[ſ				1			ſ
Constants	A nah	21	F	anoth in faet	w		Area an faet	a la	Constants	den	12	E	Andh in feet	-		Aron So faet	dan
Design Vehicle	8	18.15	23.89	41.09	11.05	2.98	207.4	88	Design Vehicle	88	32.75	49.10	81.81	24.10	3.78	971.7	88
۹	82	17.74	23.06	40.08	10.78	2.87	201.6 195.9	88	5	3 2	31.05	0 7 .24	80.80 80.11	22.89	3.45	8.026	3 2
R1 = 100'	8	16.92	22.66	39.66	10.25	2.67	190.5	8	R1 = 150	8	30.22	48.57	79.28	22.45	3.29	896.6	8
R2 = 25	62	16.52	22.26	30.46	6.6	2.58	185.2	62	R2 = 50	62	29.40	45.75	78.46	21.93	3.14	872.9	62
*=2.0	۶۲	15.74	21.98	38.66	8.74 8.50	5.8	175.0	22	• = 5.5'	25	27.79	44	76.85	20.92	2.68	827.5	22
G = 13°15,68	76	15.36	21.10	38.30	9.26	2.29	170.1	76	G = 19105 46	76	27.01	43.36	76.07	20.43	2 70	805.8	92
	22	14.98	20.72	37.92	806	2.20	165.4	23		23	26.23	83.2	75.29	19.96	5.28	784.6	2
y = 2.67	ŧ٤	14.24	20.98 10.98	37.18	8.50	587	156.4	22	y = 0.23	22	24.71	41.07	13.78	19.04	220	743.9	22
	2	13.86	19.62	36.82	8.37	1.94	152.1	22		2	23.97	40.32	73.03	18.60	2.16	724.4	2
	23	13.52	19.26 18.01	36.46 36.16	8.16 7.96	1.86	147.8 143.8	22		22	23.23	30.50 38.86	72.30	18.17	2.04 1.07	705.4	22
	888	12.82	18.56 18.21	36.76 36.42	7.76	1.70	139.6 135.9	88		88	21.79	38.14 37.44	70.85	17.34	1.88	666.9 651.4	88
	•							[[6#	14			,		-
Constants	den	21	=	endth in feet			Ro. feet	dep	CONSUMICE	den	1		enath in feet	-	E	So. feet	4
Design Vehicle	នន	31.26	41.58	58.79	17.75	5.36	496.5	88	Design Vehicle	68	36.33	52.95 57.95	82.32	19.69	4.71	845.1	86
00	2 22	29.82	40.14	57.35	16.81	4.89	464.2	3 2	3	58	58	20.98	80.35	18.60	4.26	788.6	58
R1 = 120	8	29.12	39.44	26.64	16.35	4.81	448.8	8	R1 = 200'	8	32.39	50.01	79.38	18.08	4.05	761.7	8
R2 = 45	62	28.42	38.74 38.74	56.95 56.95	15.91 15.48	4.64	433.8	62 82	R2 = 75	28	31.43	49.05	78.43	17.57	3.84	735.6	28
* = 2.0	22	51.06	37.30	8.12	15.06	8	405.3	1	• = 3.5'	83	29.54	11.17	76.54	16.58	4.0	665.8	83
0 = 13°15.66	2	76.40	20.02	56.50	14.04	4	97.00 2	ę	6 = 13°35.40	6	70.07	40.24	10.07	1.01	9.24	1.700	Б
y = 3.20	52	25.74 25.09	36.08 35.42	53.27 52.62	14.24	3.97	378.6 365.8	22	y = 5.60	88	27.70	46 .32	74.70	15.04 15.19	8.05	639.1 616.9	88
	22	24.46 23.83	34.15 34.15	51.98	13.47	3.50	353.5 341.5	22		a 8	22 00 52 00	43.51	72.89	14.75	2.53	574.4	86
	7	23.20	33.53	50.73	12.73	3.35	329.9	7		8	24.12	41.74	71.11	13.91	2.36	564.2	8
	28	22.59	32.91	50.11	12.38	3.20	318.7 207.8	28		82	23.24	40.87	70.24	13.50	2.20	534.6	82
	88	21.38	31.70	48.91	11.69	2.92	297.2	88		58	21.52	39.14	68.51	12.72	18	497.3	ន
Constants		72	11	-		2	Area										
	B			enoth in feet			sq. feet	deg.									
Design Vehicle C43	88	28.85 28.10	47 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	67.52 66.76	20.42	3.40	681.8 662.4	883									
R1 = 120	5 8	27.35	41.85	66.02 65.28	19.44	3.19	643.5 625.2	58									
R2 = 45	79	25.89	40.39	64.56	18.50	2.91	607.4	62									
• = 4.0	85	25.18 24.48	8 8 8 8	83.85 14	18.05	2.63	590.2 573.4	25									
	92	23.78	38.28	62.45	17.18	2.50	567.1	78									
H = 18.4/.97	75	23.10	37.60	61.77	16.76	2.38	541.2	22									
y = 6.40	1 E E	51.29 51.29 51.29	36.28 36.28	60.42 60.42	15.96 15.96	512	510.9	122									
	: 7		202		15.10	5	487.7	4									
	288	19.61 19.61 19.68	2 8 8 8 6 6 8 8 8 6 6 8 8 8	88.6 88.6 8.8 8.8 8.8 8	14.46	8 8 9	456.1	288									

VARIABLE DIMENSIONS OF 3-CENTERED CURVES WITHOUT ISLANDS (Refer to 9-2 Table 3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TA	BL	$\mathbf{E}$	5
-----------------------------------------	----	----	--------------	---

Æ	1	5																																									9	) -
	_														_																												1	['-
<b>ded</b>	113	£ 1	2	1	50	107	<u>8</u>	<b>1</b> 05	<u>ş</u>	<u>8</u> 8		ē₿	8	8	<	deg	113	12	10		ŝ	<u>6</u>	<del>1</del> 08	105	₫	₿ ŝ	701	ē₿	38	8	<	Бер Г	22	Ξ	₽	8	<u> </u>	8	2	32	ŝŝ	201	₫	383
Sq. feet	1098.9	1063.0	995.0		962.7 931.6	901.5	872.5	844.4	817.3	765.8		741.3	2.160	672.5	Area *	so. feet	1451.9	1409.9	1330.0		12821	1220.0	1185.7	1152.5	1120.3	1089.2	1.6001	1029.9	974.1	947.5	Area *	sq. feet	1903.4	1855.2	1808.5	1763.4	1.8171	1636.3	2001	1557.9	1520.5	1484.2	1449.0	1381.6
E	11.06	10.82	10.35		9.89	99.66	9.43	9.21	88	8.55		8.33	16.7	112			8.14	527	7.51	;	15.7	6.91	6.72	6.63	6.34	6.15	08.0	5.78	5.43	5.25	Ξ		7.12	6.92	6.73	6.54	6.16	5.97		5.61	5.44	BZ.0	200	4.75
	36.10	36.11	33.23		32.33	30.61	29.79	28.99	8.2	26.74		26.83	24.67	24.02		•	40.63	80.08	37.58		20.02	34.81	33.94	33.10	32.28	31.48	5.06	29.98	28.52	27.83			46.06	43.86	42.81	41.80	30.86	38.83	~ ~	37.15	36.30	¥.9	8.8	33.14
enath in feet	81.23	80.04 10.04	77.76		75.58	74.54	73.61	72.61	71.53	80.02		68.73	88	60.69	•	enoth in feet	93.69	92.43 0. 20	90.01		80.64	86.59	86.51	84.45	83.41	82.40	1.10	80.44	78.56	77.64	-	ength in feet	110.34	109.04	107.76	106.51		102.96		100.72	<b>10</b> 10 10 10 10 10 10 10 10 10 10 10 10 10	80.98	97.54	86.54
=	63.46	62.27	59.98		57.81	56.76	66.74	54.74	53.76	51.87		96.05 96.05	49.18	48.32			67.23	65.97 64.75	83.55		62.39	60.14	69.05	57.99	56.96	55.94	06.40	53.98	52.10	51.19	ы		70.42	69.11	67.84	68.59	8, 19	83.04	2	60.80	59.72	8	57.62	56.62 56.62
2	54.57	80.38 20.38	51.09		49.99	47.87	46.85	45.85	44.87	43.91		42.06	40.29	39.43	2		54.01	52.75 54 52	50.33		49.16	46.91	45.83	44.77	43.73	12.72	S.14	40.76	38.88	37.97	12		55.91 55.91	54.60	53.32	52.08	20.00 40.68	48.52		46.28	45.20	44.14	43.51	41.10
	113	ŝ	<b>9</b>		80	107	<u>6</u>	<u>1</u> 05	ğ	<u>8</u> 8	!	ēŝ	38	8		198	113	21	2	1	<u>B</u> Ş	36	ĝ	<u>8</u>	₫	ŝ		ē	38	8		8	113	Ξ	110	<u>8</u>	<u>8</u>	ŝ	2	<u>8</u>	ន្	201	ēś	28
Constants	Design Vehicle	P or		R1 = 120'	R2 = 40		*= 2.0	0 = 12°50.34	1	y = 3.00					Constants		Design Vehicle	SU or		R1 = 120'	- 40		.= 4.5	Θ = 19°18.54'		y = 6.75					Constants		Design Vehicle C50		R1 = 150	R2 = 40°	·= 7.6	2	<b>Heta = 21°16.80</b>	y = 10.23				
	8	58	3 10		38	R	~	8	<u>ē</u> :	212		9	2	E			8	58	3 16		38	38	5	8	19	<u>ه</u> :	2	9 ¥	2 7	ti ti		Ŕ	85	8	8	7	38	3.5	5	<b>₹</b> 🛱	21	4	9 i	2 7
	9	۰۰ ۲۰					÷	÷ ~						-		te te	4 1						÷ 	4	-		-			4	-	ð ð			₽ ~	6.					~	~		4 10
sq. fe	1177	138	1064		1029	864	833.	8	875.	828		26	748	128	Ama	9	1663	1508	1418		13/7	1298	1262	1226	1192	1159	7711	1096	88	1010	Area	8d. fe	9887 7988	2202	2140	2079	1002	1912		1810	1782	1715	1670	1585
E	10.18	8.98 70	9.59		9.40	9.03	8.84	8.65	8.47	8.29		7.93	2.58	7.40	3	E	7.78	7.43	1.26		60.7	6.76	6.59	6.43	6.27	6. 1	08.0	6.80	5.49 6.49	5.34	¥		8.42	8.03	7.83	7.64	24-1- 36-1-	2.08		6.71	6.54	6.36	6.18	5.84
•	44.14	42.84	40.39		39.23	37.04	36.00	35.00	34.04	33.10		31.33	29.67	28.88			49.84	48.44	45.80		44.65	42.19	41.08	40.00	36.96	37.96	86.96	36.05	34.26	33.41			60.81 59.13	57.51	56.96	54.46	53.02	50.29		47.75	46.55	45.38	44.26	43.17
anoth in feet	86.18	80.73	60.97	1	79.66 78.40	71.17	75.98	74.83	73.72	71.58	1	70.55	65.68	67.64	•	anoth in feet	97.74	96.18 79.18	89.22		91.81	89.12	67.84	86.60	85.40	84.23	01.58	81.99	26.00	78.86	-	ength in feet	119.89	116.21	114.46	112.77	111.13	108.01		105.08	103.68	102.32	100.99	17.98
	66.64	65.19 59 70	62.43	1	61.12 59.86	58.63	57.44	56.29	56.17	80.85		52.01	20.05	49.10	14		71.76	70.20	67.24		66.83	63.14	61.86	60.62	59.42	58.25	21.70	56.01	6.53	52.88	£		86.11 84.24	82.43	80.68	78.99	1.35	74.24		11.30	80.00	68.54	67.21	66.83 64.67
2	58.69	57.24	2 <del>2</del> 2	1	53.18 51 91	50.69	49.50	48.35	47.23	45.09		44.07	42.10	41.16	54		60.63	59.07	56.10		8.8	52.01	50.73	67.67	48.28	47.12	40.98	44.88	42.76	41.75	24		72.20	68.52	66.77	65.08	63.45 84 86	60.33		57.39	66.99	54.63	53.31	50.77
4	128	Ģ,	ŝ		22	ā	5	8	119	118	1	116	2	ŧ		a pap	128	5	125		2	3 5	121	120	119	118	i i	116	2 <b>‡</b>	113	V	deg.	5 5 5 5	128	125	124	<u>8</u>	22		8ª ₽	18	117	16	115
Constants	Design Vehicle	P or		R1 = 100	20 = 3U	3	*=2.5	9 = 15°21.54"		y = 3.57						CONSTANTION	Design Vehicle	SU or		R1 = 100	20-00	DC = 71	• = 5.0*	9= 21%7 22		y = 7.14"					Constants		Design Vehicle	}	R1 = 120	R2 = 36'	56	n'/ =	0 = 23°24.90	v = 9.88'				

VARIABLE DIMENSIONS OF 3-CENTERED CURVES WITHOUT ISLANDS (Refer to 9-2 Table 2)

TABLE 5 (continued)

Constants		12	14	-		3	Area.	V	Constants		2	F	-	3	z	Area *	◄	
	deg.			Length in feet			sq. feet	deg.		ŝ		7	ngth in feet			sq. feet	Bep	
Design Vehicle	8	48.81	60.97	85.28	30.79	9.01	1117.1	8	Design Vehicle	8	46.81	69.45	92.10	29.81	6.45	1376.2	8	
Por	6	47.75	59.91	84.22	28.88	8.76	1082.5	26	Por	8	45.60	68.24	80.88	29.01	6.18	1330.1	83	
occesionel SU	8	46.71	58.86	83.17	29.21	8.51	1049.0	8	occasional SU	5	44.40	67.05	69.68	28.23	5.92	1285.5	5	
	8	45.68	57.84	82.15	28.45	8.27	1016.6	8		8	43.23	65.87	88.51	27.47	5.67	1242.3	8	
R1 = 150'									R1 = 150'			_	-					
	3	44.68	56.84	81.15	27.71	8.8	985.3	2		¢,	42.07	64.71	87.35	28.73	5.43	1200.4	۶¢	
R2 = 50'	8	43.70	55.85	80.16	27.00	7.80	864.9	8	R2=75	82	40.82	63.57	86.21	26.01	5.18	1159.8	82	
	8	27.74	54.88	79 19	28.30	7.57	825.4	8		4	39.80	62.44	85.09	25.31	4.95	1120.5	4	
N0	1 2	41 78		78.24	25.63	7.34	896.9	10	.= 3 E	76	38.69	61.33	83.98	24.62	4.72	1082.4	92	
2.0	5	2	2			Į		;		2								
	8	10.06	~~~~~	1	2010		000	8	0 - 17°31 20'	75	27.60	80.24	82.88	2000	4 40	1045.4	£	
0 = 14 M . 20	88			00.92	10.10	000	3 6 4 8	8 8		2	1986	50 15	8180	20.00	124	1009.6	14	
	83	58.95	90.70	8				8 8		5			24	and co	2	OTE O	1	
y = 4.50	8	39.02	81.10	84.C/	80.52	200	0.010	8 3	M'' = A	2 6		8.6	2.00	38	3		2 6	
	87	38.14	06.00	14.61	70.92	64.0	5.IE	ò		2	ゆうざう	3.76	00.61	00.77	00.0		2	
					-			5		;		~	10.01	5		0 000	F	
	8	31.21	49.42	2.5	1472	6.24	8.001	8 8		- 6	8.8	20.00	10.01	24.12		900.0	. 6	
	8	14.00	10.01	8	80.12	3 8	2.24	83		2 8	10.10		00 01	3	100	1 340	2 8	
	\$	10.00	41.12	5.5	2012		1.024	5 8		8 8	10.10	8 8	26.60				88	
	8	34.74	46.89	07.17	2.12	20.0	090.1	8		8	1 10.00	06.20	10:01	20.21	20.0	017.1	8	
	ŀ			•			•	[			5		•	1	1	Area *	[	
Constants		21	Ξ	-		E			CONSTRAINTS		-		to the second		ľ	and had	1	
	с Э			Length in feet			SQ. 1001	660		500						20100		
Design Vehicle	8	47.66	63.27	94.50	33.83	8.2	1391.7	8	Design Vehicle	3	43.85	10.79	0.78	20.15	4.73	1004.3	8 1	
SUor	97	46.55	62.17	83.39	33.8	6.83	1352.8	6	SU or	23	42.62	<b>1</b>	90.47	0.15	10.4	0.450	2 2	
occasional C50	8	45.47	61.08	92.31	32.20	6.61	1315.1	8	occasional C50	5	41.40	8	07.08	17.06	4.78	1400.4	5 8	
	8	44.41	60.02	91.25	31.41	6.40	1278.5	8		8	40.20	67.13	60.55	24.62	4.0/	0.9541	8	
R1 = 150'									R1 = 150									
	8	43.37	58.98	90.21	30.65	6.19	1243.1	8		2	39.02	66.95	92.87	28.68	3.86	1394.2	62	
R2 = 50	8	42.35	57.96	89.18	29.90	5.98	1208.6	8	R2 = 75	82	37.86	64.78	91.71	27.94	3.65	1350.1	78	
	8	41.34	56.95	88.18	29.18	6.77	1175.3	92		1	36.71	83.64	90.56	27.22	3.46	1307.4	4	
*= 5.0	9	40.36	56.97	87.19	28.47	5.57	1142.8	91	•= 5.0	26	35.58	62.50	89.43	26.62	3.26	1265.9	8	
										_								
Θ = 18°11.70	8	39.39	55.00	86.23	27.78	5.37	1111.4	8	G=21°02.34"	75	34.46	61.39	88.31	25.84	3.07	1225.7	2	
	8	38.44	54.05	85.27	27.11	5.18	1080.9	8		14	33.36	60.28	87.21	29.12	2.89	1186.6	2	
y = 7.50	8	37.50	53.11	84.34	26.46	4.99	1051.3	8	y = 10.00	£	32.27	59.20	86.12	24.52	2.71	1148.7	R	
	87	36.58	52.19	83.42	25.82	4.80	1022.5	87		2	31.20	58.12	85.05	23.89	2.54	1111.9	2	
								1		1							;	
	8	35.68	51.29	82.51	26.25	4.61	884.5	8:		-	30.14	80.76	83.58	17.67	88	2.9/01	5 8	
	8	34.79	04.00	81.62	74.60	4.43	4.100	83		2 8	B0.87		6.70	8 8			2 8	
	3	33.91	49.52	6. 08 08 08	5		0.144	2 8		88	8.02	8.8	00.10	22.00	8 6	676	8 2	
	3	33.00	40.00	RO'RI	23.44	4.00	1010	8		3		~~~~	~~~~	-	1 121		3	
Constant.	ŀ	4	74	•		N	Area *	[	Constants			11	-		M	Area*		
	1			i enath in feet			sq. feet	den		Dep Dep			angth in feet			sq. feet	deg.	
Design Vehicle	8	81.95	79.95	111.81	40.94	10.44	1983.2	8	Design Vehicle	8	57.87	82.72	107.58	34.84	8.75	1866.3	8	
C50	87	60.55	78.56	110.41	39.69	10.13	1923.1	97	S	8	56.42	81.28	106.13	33.89	8.41	1802.0	8	
	8	59.18	77.19	109.04	38.87	9.83	1864.9	8		5	55.00	29.86	104.71	32.96	8.08	1/39.7	5	
R1 = 180'	8	57.84	75.85	107.70	37.87	9.53	1806.6	8	R1 = 180	8	53.60	78.46	103.31	32.06	1.76	16/9.4	8	
						į		;		1		1	~				ş	
R2 = 65	2	58.53	74.53	106.38	36.91	9.24	1754.0	<b>3</b> 8	R2 = 90	2	22.22	8.2	3.10	11.10	6 <del>1</del> .1	1.1201	2 9	
	88	888	73.24	8.99		5	0.10/1	38	36	2 6	00.00	76.97	10.00	10.00	583		2 5	
· = 4.0	56	8	19:12	103.82	9.4	8.8	10000	20	0.0 -	2 12	48.20	50.62	16.76	28.65	129	1456.8	22	
Q - 40°04 00°	ā	71.70	10.12	20.30	2	3		5	G = 16°01.86	2								
	8	51.50	69.50	101.36	33.29	8.11	1561.9	8		52	46.89	71.75	98.60	27.85	6.24	1405.4	8	
y = 7.04	8	50.29	68.30	100.15	32.44	7.83	1505.2	8	y = 7.00'	74	45.60	70.46	96.31	27.08	5.96	1355.7	2	
	8	49.11	67.12	98.97	31.62	7.57	1459.9	8		21	41.33	69.19	94.04	26.31	2.68	1307.6	2	
	87	47.95	65.95	97.81	30.81	7.30	1416.0	87		2	43.08	67.83	87.79	10.02	4.0	1260.9	2	
	ä	46.81	64.81	98.67	30.03	7.04	1373.4	8		7	41.84	68.69	91.55	24.85	5.15	1215.8	7	T
	12	45.68	63.69	96.54	29.27	6.79	1332.1	8		2	40.62	65.47	90.32	24.14	4.89	11721	2	_
	23	44.57	62.58	878 878	28.52	200	1282.0	28		88	39.41	87.5	89.12 87 e2	23.45	5 F	1129.7	88	5
	83	43.40	61.49	86.54	71.00	0.29	1,0021	8		8	17'00	1000	01.7A	244.12	-	1	3	ĺ
							:	<b>ncludes</b> AI	ren of Islands									

VARIABLE DIMENSIONS OF 3-CENTERED CURVES WITHOUT ISLANDS (Refer to 9-2 Table 2) 9 - 2

#### ROADWAY DESIGN MANUAL

#### SIGHT DISTANCE AT INTERSECTIONS

In determining the required sight distance at intersections, there are cases listed in A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (2001) edition. The treatment of these cases are as follows:

<u>Cases I and II</u> are for no stop control or yield control for vehicles on the minor road. Since all intersections are stop signed or signal controlled, these cases do not apply to standard intersection design.

<u>Case III</u> (see Figure 1) is sight distance for stop control on minor roads. This case is further broken down into three basic maneuvers.

<u>Case IIIA</u> is for vehicles on the minor road that cross the intersection. <u>This is the minimum required sight distance at unsignalized intersections</u>. Figure 2 shows the equation for determining this distance. Figure 3 is a graph showing sight distances for various highway types.

<u>Case IIIB and IIIC</u> is for vehicles that turn left and right respectively onto the main roadway. This is a desirable sight distance for intersection design. Figure 4 shows these sight distances.

<u>Case IV</u> is sight distance for signalized intersections. It is desirable to determine the sight distance line by using Case III procedures. However, this distance may not be obtainable in heavily urbanized areas.

NOTE: For additional information on sight distance, refer to A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (2001) edition.

9 - 3 F - 1







IN THE ABOVE FIGURE, THE DISTANCE S THAT THE CROSSING VEHICLE MUST TRAVEL TO CLEAR THE MAJOR HIGHWAY IS THE SUM OF THE FOLLOWING THREE DISTANCES (IN FEET):

S = D + W + L

WHERE: D = DISTANCE FROM NEAR EDGE OF PAVEMENT TO FRONT OF A STOPPED VEHICLE, FT. W = PAVEMENT WIDTH ALONG PATH OF CROSSING VEHICLE, FT. L = OVERALL LENGTH OF VEHICLE, FT.

THE SIGHT DISTANCE FOR A CROSSING MANEUVER IS BASED ON THE TIME IT TAKES FOR THE STOPPED VEHICLE TO CLEAR THE INTERSECTION AND THE DISTANCE THAT A VEHICLE WILL TRAVEL ALONG THE MAJOR ROAD AT IT'S DESIGN SPEED IN THAT AMOUNT OF TIME. THIS DISTANCE MAY BE CALCULATED FROM THE EQUATION:

$$d = 1.47 \vee (J + t_{c})$$

WHERE: d=SIGHT DISTANCE ALONG THE MAJOR HIGHWAY FROM THE INTERSECTION, FT. V=DESIGN SPEED ON THE MAJOR HIGHWAY, MPH.

J=SUM OF THE PERCEPTION TIME AND THE TIME REQUIRED TO ACTUATE THE CLUTCH OR ACTUATE AUTOMATIC SHIFT, SECONDS.

t=TIME REQUIRED TO ACCELERATE AND TRAVERSE THE DISTANCE S TO CLEAR THE MAJOR HIGHWAY PAVEMENT, SECONDS.





# SIGHT DISTANCE AT INTERSECTION (CASE IIIA, REQUIRED SIGHT DISTANCE ALONG & MAJOR HIGHWAY).

-- THESE DISTANCES ARE BASED ON 90 DEGREE CROSSINGS AND 0% GRADES. THE SIGHT DISTANCE MUST BE ADJUSTED FOR GRADE AND SKEW.

-- IF THE STOPPING SIGHT DISTANCE EXCEEDS THE INTERSECTION SIGHT DISTANCE, THE STOPPING SIGHT DISTANCE WILL GOVERN.







INTERSECTION SIGHT DISTANCE AT AT-GRADE INTERSECTION (CASE IIIB AND CASE IIIC).

- A SIGHT DISTANCE FOR P VEHICLE CROSSING 2-LANE HIGHWAY FROM STOP. (SEE DIAGRAM)
- **B** 1 SIGHT DISTANCE FOR P VEHICLE TURNING LEFT INTO 2-LANE HIGHWAY ACCROSS P VEHICLE APPROACHING FROM LEFT. (SEE DIAGRAM)
- B 1 -4LANE + MEDIAN SIGHT DISTANCE FOR P VEHICLE TURNING LEEFT INTO 4- LANE HIGHWAY ACCROSS P VEHICLE APPROACHING FROM LEFT. (SEE DIAGRAM)
- B 2b SIGHT DISTANCE FOR P VEHICLE TO TURN LEFT INTO 2 - LANE HIGHWAY AND ATTAIN 85% OF DESIGN SPEED WITHOUT BEING OVERTAKEN BY A VEHICLE APPROACHING FROM THE RIGHT REDUCING SPEED FROM DESIGN SPEED TO 85% OF DESIGN SPEED.(SEE DIAGRAM)
  - cb SIGHT DISTANCE FOR P VEHICLE TO TURN RIGHT INTO 2 - LANE HIGHWAY AND ATTAIN 85% OF DESIGN SPEED WITHOUT BEING OVERTAKEN BY A VEHICLE APPROACHING FROM THE LEFT REDUCING SPEED FROM DESIGN SPEED TO 85% OF DESIGN SPEED.

#### DIRECTIONAL CROSSOVERS WITH MEDIAN U-TURNS

Directional Crossovers with Median U-Turns should be considered in the following locations:

- High speed rural median divided facilities
- Strategic Highway Corridors with partial or limited control of access
- Intersections with a documented crash history
- In congested areas where it is desirable to minimize the use of traffic signals.

The directional crossover eliminates full-movement median openings. Traffic on the primary highway is not affected, as all movements (thru, left, right) are still permitted. Traffic on the secondary highway must turn right onto the primary highway. Through and left movements from the secondary highway are directed to a median U-turn crossover located downstream (approximately 800-1000 ft.)

This type of crossover design will be used in various situations. For rural, high speed median divided facilities, full-movement median crossovers have a high crash potential, with the predominate crash-type being the secondary highway far-side angle crash, which has the potential to have the most severe injuries. The directional crossover with median U-turns converts the secondary highway left-turn and through movements to two-stage movements, (right-turn and U-turn) each of which is significantly safer than the full-movement crossover. Because turning movements are separated the need for signalization at intersections is reduced.

For high-mobility corridors, including strategic highway corridors, the use of directional crossovers with median U-turns converts four-leg, multi-phase signalized intersections into four independent two-phase signalized intersections. The reduced number of signalized phases provides for more green time to be allocated to the primary movements, and allows for shorter cycle lengths, which reduce queuing. Each two-phase signal only impacts one direction of traffic on the primary highway. Because the primary highway's through movements operate independently, signal coordination is simpler and more effective, as the primary highway has effectively been converted to two parallel one-way streets.

Variations include not permitting the primary highway left-turn to turn directly to the secondary highway, diverting that movement to the median U-turn. This may occur where shorts weaving and merging distances at the directional crossover may create a safety or capacity problem. For higher volume secondary highways, or for intersections of two primary highways, another variation would permit the through and right movements from each highway to occur at a two-phase signal, but direct all left-turn movements to median U-turns. This is commonly known as a "Michigan Left" intersection.

REV. 4 REV. 12/01/05

#### DIRECTIONAL CROSSOVERS WITH MEDIAN U-TURNS(continued) 9-4

Each intersection on a corridor must be evaluated individually, to determine the optimum type of median opening. On current TIP projects, the locations where Directional Crossovers with Median U-turns are proposed should be thoroughly discussed during the public hearing map review, presented at the public hearing, and the details of the design features should be discussed during the Final Design Field Inspection. Potential retrofit locations should be reviewed by the Division Traffic Engineer and by Transportation Mobility and Safety.





REV. DATE : 02/05/09 REV. NO. 6





INSET "B"



REV. 4 REV. 12/01/05