Autonomy and AI for Advanced Transportation Technologies

Ali Karimoddini

Director, CR2C2 Regional University Transportation Center Director, NC-CAV Center Director, ACCESS Laboratory Department of Electrical and Computer Engineering North Carolina A&T State University Email: akarimod@ncat.edu

Transportation Infrastructure at NC A&T

- NC A&T has led several other transportation-related multi-university efforts
 - Center for Regional and Rural Connected Communities (CR2C2)
 - CATM Tier 1 UTC
 - NC-CAV Center of Excellence on CAVs

NC-CAV Center of Excellence on Advanced Transportation Technology

"NC-CAV Center of Excellence on Advanced Transportation Technology," Sponsor: North Carolina Department of Transportation (NCDOT), 2020-2025.

- Thrust 1 (CAV Impacts) investigates impact of Connected the and Autonomous Vehicle's (CAV) on Carolina's transportation North system and associated revenue.
- Thrust 2 (CAV Infrastructure) assesses North Carolina's readiness for CAVs in traditional and emerging transportation infrastructure.
- Thrust 3 (CAV Applications) explores emerging applications of CAVs and develops CAVs and Unmanned Arial Vehicles (UAVs) for advancing transportation systems.

CR2C2 Center, Region 4 UTC

Goal: The primary goal of CR²C² is to plan, implement, and evaluate an integrated research, education, workforce development, and technology transfer approach for providing innovative connected and coordinated multimodal technological solutions for rural and underserved communities.

Adopting Emerging Transportation Technologies to Enhance Mobility of People and Goods in Rural and Under-served Communities

MRI 1

MRI 3

Integrating emerging technologies into transportation planning and policy

MRI 2 Developing technological solutions for connected, safe, reliable, and secure transportation services

Providing equitable technology-driven mobility services

Technology Development Infrastructure

A dedicated rural test track at NCAT

The testbed of connected and autonomous micro-transit vehicles

A CAV HIL simulator

Roadway and Traffic Features

- Narrow road
- Steep Hills
- Forest environment
- Solid /Dash line
- Roundabout
- Intersection
- Regulatory/Warning Signs
- Bicycle lane
- Bus stop
- Pedestrian crossing

Rural AVTest Track

6

Rural AVTest Track

Autonomous Car Testbed

ncat.edu

ACCESS Laboratory

From Perception to Decision: Manual Control

How to control a system?

- Let's take a lesson from human experience!
- How does a driver control the car velocity?
- \succ Eyes look at the velocity gauge.

\triangleright Brain compares the car velocity with the desired velocity and computes the gas pedal position.

 \succ Foot actuates the gas pedal.

From Perception to Decision: Automatic Control

From Perception to Decision: Automatic Control

https://youtu.be/QquTxzKOo7Y

From Perception to Decision: Information Flow

From Sensing to Perception

https://youtu.be/C0Nt2xFoZeo

ncat.edu

Aggie Pride!

... SAE International AutoDrive Challenge June 12 at 9:00 AM · 🕄 Congratulations to all 8 universities! AutoDrive **Competition Year 2- Results Challenge**[™] Place Team Number University Total Points 884.96 1 16 Univ of Toronto 2 14 North Carolina A & T State Univ 522.98 515.10 15 Texas A&M Univ 3 4 13 Michigan Tech Univ 470.79 5 11 **Kettering Univ** 437.11 6 429.77 18 Virginia Tech 7 12 Michigan State Univ 351.73 8 17 Univ of Waterloo 330.23

Aggie Pride!

> Overall 2nd in the Competition

- > 3rd in Mapping challenge
- > 3rd in Bill of Material
- $> 3^{rd}$ in Pedestrian detection challenge
- $> 2^{nd}$ in Intersection challenge
- $> 2^{nd}$ in Straight line challenge
- $> 2^{nd}$ in Mcity challenge

Bringing innovation from the lab space to public streets

ncat.edu

Bringing innovation from the lab space to public streets

ncat.edu

Developing Workflow, Implementation Tools, and Guidance for Efficient UAV-enabled Bridge Inspection

Ali Karimoddini, Tara Cavalline akarimod@ncat.edu, tcavalline@uncc.edu

ncat.edu

Background

- O Bridges play a crucial role in transportation systems
- O National Level Statistics:
 - O 616,096 bridges in the United States with 42 percent aged more than 50 yrs.
 - O 7% of bridge failures due to deterioration of Concrete, Steel, Pier, Pile, & Abutment etc.
- O State Level Statistics:
 - O There are about 13,500 bridges across the State of North Carolina (NC) highways.
 - O About 13% of the bridges in State of North Carolina are structurally deficient. This is higher than the nation's 9.1% structurally deficient bridges for a letter grade of C+.
- O Inspection Requirements::
 - O All bridges should be regularly inspected by North Carolina Department of Transportation (NCDOT) at least every two years.
 - O These structurally deficient bridges are still safe to be used, but they require much more aggressive inspection and extensive inspection and maintenance plans to remain in service.

Rodanthe Jug Handle Bridge, Rodanthe - NC

Neuse River Bridge, New Bern - NC

ncat.edu

Development and Deployment of Shared Autonomous Vehicles

23

- **1. Cost and Time:** Often require specialized equipment, and lengthy inspection procedures. This can result in significant time and cost implications.
 - FHWA reportedly quotes a bi-annual expenditure of \$2.7bn.
 - NCDOT estimates \$4,600 for a 2-Man 8 hour inspection with lane closure
 - FHWA reported approximates an average of 1-2 days for an inspection
- **3. Subjectivity and Variability:** Different inspectors may interpret defects or structural issues differently, leading to subjectivity and variability in the inspection results. *This can affect decision-making regarding maintenance, repair, or replacement of the bridge.*
- **4. Safety risks:** Often require inspectors to work at heights and in potentially hazardous conditions using different access tools.

Current Bridge Inspection Method

- 2. Limited Visual Inspection: Inspectors may not be able to access certain areas due to structural complexity or safety concerns, leading to potential blind spots in the inspection
- 5. Disruption to Traffic: Bridge inspections often require lane closures or traffic diversions, causing inconvenience to road users and disruptions to traffic flow.

ncat.edu

- **1. Cost and Time:** Often require specialized equipment, and lengthy inspection procedures. This can result in significant time and cost implications.
 - FHWA reportedly quotes a bi-annual expenditure of \$2.7bn.
 - NCDOT estimates \$4,600 for a 2-Man 8 hour inspection with lane closure
 - FHWA reported approximates an average of 1-2 days for an inspection
- **3. Subjectivity and Variability:** Different inspectors may interpret defects or structural issues differently, leading to subjectivity and variability in the inspection results. *This can affect decision-making regarding maintenance, repair, or replacement of the bridge.*
- **4. Safety risks:** Often require inspectors to work at heights and in potentially hazardous conditions using different access tools.

Current Bridge Inspection Method

- 2. Limited Visual Inspection: Inspectors may not be able to access certain areas due to structural complexity or safety concerns, leading to potential blind spots in the inspection
- 5. Disruption to Traffic: Bridge inspections often require lane closures or traffic diversions, causing inconvenience to road users and disruptions to traffic flow.

ncat.edu

Opportunities for UAV adoption

- **1. Time and Cost Efficiency:** UAV-based inspections are typically faster and more cost-effective compared to traditional methods. UAVs can rapidly collect high-resolution images and videos, covering larger areas in a shorter period.
- **2. Enhanced Safety:** UAVs eliminate or significantly reduce the need for inspectors to physically access hazardous areas of the bridge.
 - By deploying drones, inspectors can remotely gather visual data and perform inspections from a safe location, mitigating risks associated with working at height or in dangerous environments

- **3. Improved Accessibility:** UAVs can easily reach areas that are difficult or impossible for inspectors to access manually.
 - They can navigate narrow spaces, fly over water bodies, and access the undersides of bridges, providing comprehensive visual coverage and reducing the likelihood of inspection blind spots
- **4. Repeatable Inspections and Comparison:** UAVs can be programmed to follow predefined flight paths and capture consistent data during subsequent inspections.
 - This allows for easy comparison between inspection cycles, enabling inspectors to monitor structural changes, track deterioration, and assess the effectiveness of maintenance interventions over time.
- **5. Real-time Monitoring and Analysis:** UAVs can transmit live video feeds and data in real-time to inspection teams, enabling immediate analysis and decision-making.
- 6. Data Management and Analytics: UAV inspections generate large amounts of digital data that can be efficiently managed, stored, and analyzed.
 - Advanced image processing, machine learning, and computer vision techniques can be applied to this data to automate defect detection, classification, and analysis, improving the accuracy and consistency of inspection results.

ncat.edu

Inspection Workflows

ncat.edu

Development and Deployment of Shared Autonomous Vehicles

27

ncat.edu

Development and Deployment of Shared Autonomous Vehicles

28

Inspector-In-The-Loop UAV-Assisted Bridge Inspection

In-field inspection setups: Expert UAV Pilot but not a qualified Inspector

• Pros

• Safety of the UAV platform is ensured

Cons

- Pilot-Inspection Team communication becomes difficult if both do not share the same experience, knowledge and terminologies and can affect inspection process and output
- High chance that the inspection has to be repeated as the pilot may not know the exact data that is needed to be collected.
 - Pilot may increase the quantity of collected data (data storage problem)
- Quality of collected data may be negatively impacted due to multitasking by the Pilot
- May negatively affect the inspection process and safety of the platform since the Pilot-in-Command (PIC) assumes multiple roles and attempts to multitask
- For new detection of defects in office (which could have been detected during the inspection), a follow-up in-person visit, and hands-on inspection is needed.

ncat.edu

Inspector-In-The-Loop UAV-Assisted Bridge Inspection

- 1. Shared screen for effectively having the inspector in the loop
- 2. Effective communication between the inspection team
- 3. Computer-aid inspection tool

ncat.edu

NC DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS STRUCTURE MANAGEMENT UNIT

INSPORTATION ATTENTION: (INSPECTED BY DRONE), PAR ISSUED

Structure Safety Report

	Routine Elem	ent Inspe	ection			
STRUCTURE NUMBER: 890178	SAP STRUCTURE NO:	0900178	FHWA	STRUCTURE NO:	00000001790178	
DIVISION: 10 COUNTY: UNION	INSPEC	INSPECTION DATE:		09/20/2022 FREQUENCY		
FACILITY CARRIED: SR1104			MIL	MILE POST:		
LOCATION: 1.0 MI. N. JCT. SR1102						
FEATURE INTERSECTED: WAXHAW CR	EEK					
LATITUDE: 34° 51' 2.4"	LONGITUDE:	80° 46' 26.6	5"			

(DRONE PHOTO) TYPICAL BEARING UNDER BEAM 3 AT INTERIOR BENT 2

ncat.edu

Development and Deployment of Shared Autonomous Vehicles

31

2024 Transportation Pre-Summit Technical Tour

Thank You

Autonomy and AI for Advanced Transportation Technologies

> Ali Karimoddini <u>akarimod@ncat.edu</u>

North Carolina Agricultural and Technical State University

NORTH CAROLINA AGRICULTURAL AND TECHNICAL STATE UNIVERSITY