Results from Designing an Interchange Instead of an Intersection

 Parclo A"
 Just south of downtown Raleigh

Results from Designing an Interchange Instead of an Intersection

 Parclo A"
 Just south of downtown
 Raleigh

Grade-Separated Intersection Alternatives

NCDOT Webinar

Presenters: Thomas Chase Chris Cunningham

NCDOT Moderators: Joseph Hummer

09/14/2020

Definition

Grade-separated intersections consist of:

- Two or more arterials
- Elevation of at least one movement
- Interrupted flow for through movements on each arterial

Why not an Interchange?

<u>Safety</u>: Interchange designs for crossing arterials may result in higher speeds and less pedestrian/bicycle accessibility.

<u>Operations</u>: Interchanges are ideal for high through demand on one arterial while GSI can accommodate balanced demand or heavy turning movements.

<u>Context Sensitive:</u> GSI designs can utilize the existing network and have compact low speed ramps to minimize Right of Way need.

Why not an Interchange?

<u>Frontage:</u> Interchange designs with free flowing ramps limit frontage and access in suburban/urban areas <u>Metering:</u> Uncontrolled movements on interchange designs may overload downstream signals

<u>Poor progression</u>: Signalized intersections at interchange often are critical intersection on the corridor while GSI can often utilize two phase signals and allow coordination options to limit ramp spillback

DISCLAIMER

All designs and drawings shown are not standards or typicals. These designs and drawings are meant to communicate the core design concepts and many components are adaptable to specific project needs.

Echelon Intersection

NC STATE UNIVERSITY

Center Turn Overpass

NC STATE UNIVERSITY

Grade Separated Quadrant Intersection

NC STATE UNIVERSITY

Hillsborough St & Hillandale Rd - Durham

Scope of Study Designs

 In order to provide an engineer or planner the most flexibility during concept or design stages of a project, our study provides the operational and safety analysis results only for one of the two roads (e.g. East-West road) that could intersect.

Study Scope: East-West Road (example: Direct Left - Downstream)

Direct Left - Downstream

The left turn is

- separated downstream of the signal on the major road
- conflicting with opposing left turn and opposing through

Direct Left - Upstream

The left turn is

- separated upstream of the signal on the major road
- conflicting with opposing through

RCI: RCUT U-turn then Right

The left turn is

- separated downstream of the signal on the major road
- conflicting with opposing U-turn and opposing through at U-turn point on the major road

RCI: RCUT Right then U-turn

opposing through at U-turn point on the minor road

RCI: Contra-RCUT

conflicting with opposing through at U-turn point on the major road

Combined Movements: Single Point Left

NC STATE UNIVERSITY

The left turn is

- separated at the signal on the major road
- conflicting with the opposing through on the major road

Combined Movements: Quadrant (SE shown) NC STATE UNIVERSITY

The left turn is

- separated upstream of the signal on the major road and then move to the right turn ramp
- not conflicting with any movement
- * There are three signal phases on major & minor roads

- Critical Movement Analysis can help select a subset of feasible GSI designs and lane configurations
- ITRE modified CAP-X is a starting point for analysis of newer GSI
- During Microscopic modeling, be sure to analyze the GSI "network" rather than isolated sections
- Develop detailed signalization options for simulation
- Turning movement patterns heavily impact GSI design selection, consider each peak and offpeak
- Overall, a project-based alternatives analysis is recommended for these cases in applications.

- For new intersection designs, CMFs are not yet available
- Current practice is to measure number of conflict points, VJuST uses weighting factors
- Proposed Movement-Based Safety Performance Functions enable safety screening with planning-level data
- MB-SPF need daily turning movement data
- Definition of conflict point order based on geometry
- MB-SPF has preliminary validation underway but many planned improvements
- MB-SPF method can be applied to existing designs as well for planning-level comparison

Process

- Patent search performed by UNC's Innovate Carolina
- Keyword search: Iterative search based on provided list

Findings

- Search found both international and US patents
- Previous Center Turn Overpass patent is expired- No expected issues
- Echelon and single point over single point have active US patents

Disclaimer

• A landscape is only a search, not legal opinion

Pedestrian and Bicycle Accommodations

- Lower speeds expected on GSI compared to interchanged designs
- Protected turns possible at all studied designs
- Crosswalk Pathing Impacts:
 - Direct Left Downstream: Diamond style needs additional signals for direct crossing
 - Direct Left Upstream: Contraflow vs Crossover median sidewalks
 - RCUT and Quadrant Designs: Long crossing distances for non-through crossings

Frontage and Driveway Impacts

• Tight Quadrants retain access on up to 6 frontages, All others up to 4

Constructability

- All GSI have major impacts to maintenance of traffic during elevation
- Contraflow and Contra RCUT need concurrent (E/W or N/S) intersection control changes
- Quadrant only needs two intersections and can be used as interim control

Queue Storage

- Storage constraints follow at-grade limitations
- Consider paired movements and ramp queues for spillback

Convertibility to Interchange

- Studied designs utilize standard structures with some modification for contraflow or crossover designs
- Conversion to interchange-style requires new structures for Center Turn Overpass and Echelon

Longitudinal Impact

- Direct left downstream allows very tight intersection and ramps
- Quadrant affects only two of four approaches
- U-turns accommodating right turn to u-turn need additional offset from ramp

Bridge Width Impact

- Single point and crossover designs require additional width to separate opposing movements
- Depending on the location of the quadrant intersections, left turn bay may extend onto bridge

MiniRoundabout Crash Modification Factors (CMF) Development

Srinivas S. Pulugurtha, The University of North Carolina at Charlotte Jim Dunlop, North Carolina Department of Transportation

Tuesday, March 8, 2022

NORTH CAROLINA Department Of Transportation

IDEAS Center Infrastructure Design Environment & Sustainability Center

Research Team

- Srinivas Pulugurtha, Principal Investigator
- Raunak Mishra, Ph.D. Student
- Sonu Mathew, Post-Doctoral Researcher
- Other graduate students

Steering & Implementation Committee

- James H. Dunlop (Chair)
- Joe Hummer
- Carrie L. Simpson
- Brian Mayhew
- Lisa E. Penny
- Curtis Bradley
- John W. Kirby

Outline

- Introduction
- Research question
- Methodology
 - Mini-roundabout identification and selection
 - Data collection and processing
 - Before-after analysis naïve and Empirical Bayes (EB) methods
- Results
- Conclusions

3

DEAS Center frastructure Design Environment Sustainability Center

Introduction

Single-lane roundabout Inscribed circle diameter (ICD) 90-180 ft Typical daily service volume 20,000 VPD Source: AASHTO, 2018 (Green book) Mini-roundabout Inscribed circle diameter (ICD) 45-90 ft Typical daily service volume 15,000 VPD Source: AASHTO, 2018 (Green book)

IDEAS Center Infrastructure Design Environment & Sustainability Center

Introduction (Cont.)

Mini-roundabout Single-lane roundabout Large trucks and buses can use the traversable central Source: NCDOT (2019) Roundabouts Roundabouts Source: NCDOT (2019) Roundabouts Roundabouts Roundabout, Bel Air, MD

https://www.youtube.com/watch?v=eZyccYCsyZM

https://www.voutube.com/watch?v=3KLbr1awEbk

IDEAS Center Infrastructure Design Environment & Sustainability Center

THE WILLIAM ST COLLEGE OF ENGIN

Mini-Roundabout

- Featured design to -
 - Reduce traffic speeds
 - Reduce delay 0
 - Reduce emissions
 - Lower right-of-way impacts
 - Enhance safety
- Common in the United Kingdom and many European countries

Mini-roundabout at Hickory Ridge Rd, Harrisburg, NC

IDEAS Center Infrastructure Design Environment & Sustainability Center

671

Mini-Roundabout (Cont.)

- Installed in several states
- Three locations in North Carolina on non-neighborhood roads
- More locations with mini-roundabouts are envisioned in North Carolina as the cost of a mini-roundabout is 1/3rd to half of a full-sized roundabout and has fewer right-of-way impacts
- FHWA recommends mini-roundabouts at speed limit ≤35 mph but ...
- Lack of documented evidence pertaining to safety benefits associated with mini-roundabouts at approaches with speed limit ≥35 mph
- Safety benefits?

Is it safe and cost effective to convert a stop-controlled intersection to a mini-roundabout?

Project/Study Objectives

- Identify mini-roundabout installations in the United States
- Collect before and after crash data at the mini-roundabout installations
- Quantify safety benefits of mini-roundabout installations by developing crash modification factors (CMFs)
- Examine the effect of traffic characteristics, geometric characteristics, and on-network and off-network characteristics on mini-roundabout safety effectiveness and after period crashes

DEAS Center frastructure Design Environmer Sustainability Center

Identification and Selection of Mini-Roundabouts

- Identified over 70 mini-roundabouts in the United States
- Selected 25 mini-roundabouts with speed limit ≥35mph, fully traversable, crash and traffic volume data availability, at least one year after period
- Eight states: Georgia, Iowa, Michigan, Minnesota, Missouri, North Carolina, Virginia, & Washington State

Selected mini-roundabouts

10

Data Collection – Mini-Roundabouts & Reference Intersections

- Crash data (before-after)
- Traffic volume (before-after)
- Inventory data including geometric, on-network and offnetwork characteristics

Extracting crash data

etters

Extracting traffic volume

Capturing geometric details

IDEAS Center Infrastructure Design Environment & Sustainability Center

Data Processing

- Each contacted state has its own crash database management software and formats
- Processed using database management software such as Microsoft Access, Tableau, and ArcGIS Pro
- Captured traffic volume data at major streets
 and cross-streets
- Collected and also processed reference intersection data (649 intersections) based on control type

Extracting crash data

IDEAS Center Infrastructure Design Environment & Sustainability Center

Analysis

- Methods
 - Naïve before-after
 - Empirical Bayes (EB) before-after
- 15 two-way stop-controlled/one-way stop-controlled intersections (TWSC/OWSC) converted to miniroundabouts
- 10 all-way stop-controlled (AWSC) intersections converted to mini-roundabouts
- Crashes for the year 2020 were not considered (during the pandemic)

DEAS Center nfrastructure Design Environmer Sustainability Center

Analysis (Cont.)

- Safety performance functions (SPFs) from the Highway Safety Manual (HSM) were used for TWSC/OWSC intersections
- Calibration factors were computed for SPFs available in the HSM
- Developed jurisdiction-specific SPFs for AWSC and OWSC (ramp) intersections
- Analyzed total crashes, FI crashes, and PDO crashes

DEAS Center nfrastructure Design Environmer Sustainability Center

Results

TWSC before and mini-roundabout after at Carver St & Broad St, Durham, NC (© **Google Street View**)

Department Of Transportation

IDEAS Center Infrastructure Design Environment & Sustainability Center

8

Crash severity type	Odds ratio based on crashes/year	Naïve Odds ratio based on crash rate (crashes per year/traffic volume)	EB Odds ratio (standard error)				
	(standard error) 15 TWSC/OWS	(standard error) C converted to mini-rour	Idabouts				
Total	0.99 (0.10)	0.85 (0.09)	0.83 (0.08)				
FI	0.53 (0.12)	0.44 (0.10)	0.41 (0.09) 🔄				
PDO	1.15 (0.13)	0.99 (0.12)	1.09 (0.12) 🗠				
	TWSC/OWSC intersection	STOP 🔿	Mini- roundabout				
NORTH CAROLINA Department Of Transportation		16 IDEAS Center Infrastructure Design Environm & Sustainability Center	ont CHARLOTTE				

Crash		EB				
severity	Odds ratio	Odds ratio based on	on Odds ratio			
type	based on crashes/year	crash rate (crashes pe	er (standard error)			
	(standard error)	(standard error)				
	10 AWSC c	converted to mini-round	labouts			
Total	3.51 (0.34)	3.04 (0.34)	3.25 (0.27) 🗠			
FI	1.96 (0.39)	1.67 (0.35)	1.74 (0.26)			
PDO	4.06 (0.44)	3.53 (0.43)	3.83 (0.31)			
	AWSC intersection		Mini- roundabout			
NORTH CAROLINA Department Of Transportation		17	ironment CHARLOTTE			

of intersections where the treatment is effective and not effective using naïve and EB methods

Prior	Crash severit		Ν	EB				
control		Crashes per year		Crash rate (cra	shes per			
type	y type			year/traffic volu	ıme)			
		# of	# of intersections	# of	# of	# of	# of intersections	
		intersections		intersections	intersections	intersections		
	where		where	where	where	where	where	
		treatment is	treatment is	treatment is	treatment is	treatment is	treatment is	
		effective not effective		effective not effective		effective	not effective	
TWSC	Total	7	7	8	66	8	<u> </u>	
/OWSC	FI	10	4	11	3	12	3	
	PDO	3	10	6	7	6	9	
AWSC	Total	0	10	0	10		9	
	اكى	1	8	1	88	1	9	
	PDO	0	10	1	9	1	9	

18

IDEAS Center Infrastructure Design Environment & Sustainability Center

Recommended CMFs for mini-roundabout

Crash severity type	CMF	Standard error	Confidence interval	Lower limit	Upper limit	Statistical significance			
TWSC/OWSC intersection									
Total	0.83	0.08	± 1.96	0.67	0.98	Significant at α=0.05			
FI	0.41	0.09	± 1.96	0.23	0.59	Significant at α=0.05			
PDO	1.09	0.12	± 1.96	0.86	1.32	Not significant			
AWSC intersection									
Total	3.25	0.27	± 1.96	2.72	3.78	Significant at α=0.05			
FI I	1.74	0.26	± 1.96	1.23	2.25	Significant at α=0.05			
PDO	3.83	0.31	± 1.96	3.22	4.44	Significant at α=0.05			

19

IDEAS Center Infrastructure Design Environment & Sustainability Center

Correlation analysis summary

Variablo	Odds ratio - TWSC/OWSC			Odds ratio – AWSC			Crashes per year		
Vallable	intersection converted to			intersection converted			(after period) -all		
	intersection converted to			intersection converted		(alter period) -all			
	mini-rou	ndabo	out	to mini-roundabout			mini-roundabouts		
	Т	FI	PDO	Т	FI	PDO	Т	FI	PDO
Total crashes per year (before period)	N						Ρ		
FI crashes per year (after period)		Р							
PDO crashes per year (before period)			Ν						Р
Cross-street AADT (before period)							Ρ		Р
Cross-street share (before period)									Р
Cross-street AADT (after period)							Ρ		Р
Speed limit major street							Ρ	Р	Р
Speed limit cross -street							Ρ	Р	Р
Entry width (maximum)						Ν			
Entry width (minimum)				N		N			
Entry width (average)						N			
Weaving length (minimum)							Ν	Ν	N
Entry angle (maximum)							Ρ	Р	Р
Entry angle (minimum)							Ν	Ν	N

Note1 : T, FI, and PDO are total, fatal & injury, and property damage only crashes

Note 2: P/N indicates statistically significant positive/negative Pearson correlation (r) at a 90% confidence level; blank cell indicates no statistically significant correlation (r); maximum, minimum and average is the maximum, minimum and average values considering all approaches

20

Odds ratio vs. area type

TWSC/OWSC

Scatter plot between odds ratio and area type of stop-controlled intersections converted to mini-roundabouts

IDEAS Center Infrastructure Design Environment & Sustainability Center

Odds ratio vs. crashes per year (before period)

Scatter plot between odds ratio and crashes (before period) for TWSC/OWSC intersections converted to mini-roundabouts

22

Infrastructure Desian Environment & Sustainability Center

Crashes per year vs. speed limit

Scatter plots between the number of crashes in the after period and speed limits of major street and cross-street

IDEAS Center Infrastructure Design Environment & Sustainability Center

Crashes per year vs. mini-roundabout geometric feature

Scatter plots between the number of crashes in the after period and weaving length (minimum of all approaches) and entry angle (maximum of all approaches)

IDEAS Center Infrastructure Design Environment & Sustainability Center

Conclusions

- Mini-roundabouts installed at intersections with speed limit ≥35 mph
- Crash, traffic volume, and geometry data was collected for 25 mini-roundabouts to conduct before-after analysis
 - Eight states (Georgia, Iowa, Michigan, Minnesota, Missouri, North Carolina, Virginia, and Washington)
- Before period crash data for five years and after period crash data for one to five years was analyzed (depending on the construction year and crash data availability)

25

Conclusions (Cont.)

- TWSC/OWSC intersections converted to mini-roundabouts
 - Reduction in the total number of crashes
 - Reduction in the number of FI crashes
 - Increase in the number of PDO crashes
- AWSC intersections converted to mini-roundabouts
 - Increase in the number of total crashes, FI crashes, and PDO crashes

26

DEAS Center nfrastructure Design Environme & Sustainability Center

Conclusions (Cont.)

- Crashes in the before period, cross-street traffic volume, speed limit at major street and cross-street, and intersection skewness have a statistically significant influence on after period number of crashes
- Recommended CMFs for converting a TWSC/OWSC intersection to a mini-roundabout are 0.83 for total crashes, 0.41 for FI, and 1.09 for PDO crashes
- Recommended CMFs for converting an AWSC intersection to a miniroundabout are 3.25 for total crashes, 1.74 for FI, and 3.83 for PDO crashes

Limitations and Scope for Future Work

- Number of intersections converted from TWSC/OWSC and AWSC to mini-roundabouts are relatively limited
- CMFs of signalized intersections converted to miniroundabouts are unknown (not many samples)
- Safety effectiveness of AWSC intersections, with high crash history, converted to mini-roundabouts should be further studied in the future

28

Limitations and Scope for Future Work (Cont.)

- Before-after analysis by crash type e.g., angle crashes, rear-end crashes, etc. when converted to miniroundabouts would provide insights for large-scale implementation
- Analysis using larger sample size and comparing CMFs with mini-roundabouts installed at intersections with speed limit <35 mph by area type merits further investigation

29

Link to the Final Report

 <u>https://connect.ncdot.gov/projects/research/RNAProjDocs/</u> <u>RP2020-32_Final%20Report.pdf</u>

30

IDEAS Center Infrastructure Design Environment & Sustainability Center

