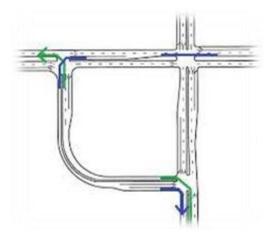
Factors Affecting the Constructability of Alternative Intersections & Interchanges

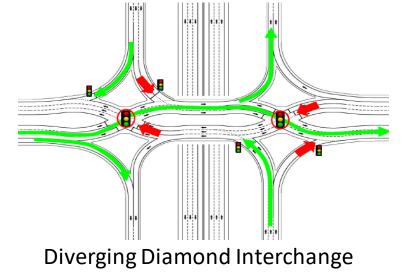
February 29, 2024

William Rasdorf, Ph.D., P.E. Minerva Bonilla, Ph.D.

Department of Civil, Construction, and Environmental Engineering North Carolina State University

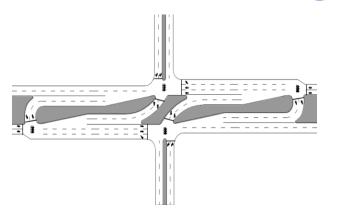

Outline

- 1. Background
 - Definition
 - Problem
 - Objectives
- 2. Findings
 - Inhibitors Identification
 - Case studies (Work Zone Evaluation)
- 3. Conclusion

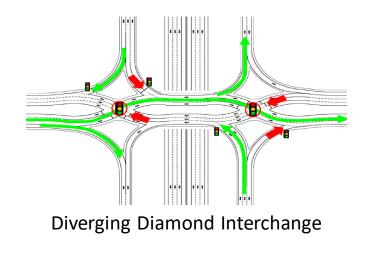

Alternative Intersections and Interchanges (Alls)

Reduced Conflict Intersection

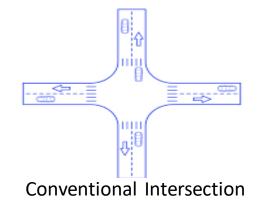
Quadrants Roadways



Continuous Flow Intersection



NC STATE UNIVERSITY


Alternative Intersections and Interchanges (Alls)

Reduced Conflict Intersection

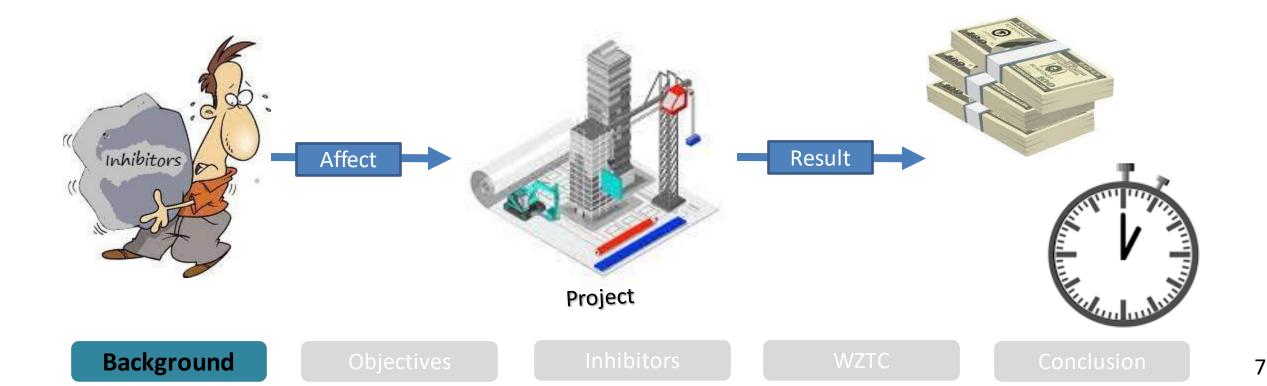
Conventional Intersections and Interchanges (Clls)

Conventional Interchange

Background

- Alls enhance traffic flow, reduce congestion, increase capacity and safety, and account for future traffic demands.
- The use of Alternative Intersections and Interchanges (Alls) is crucial for the sustainability of transportation infrastructure.

Problem

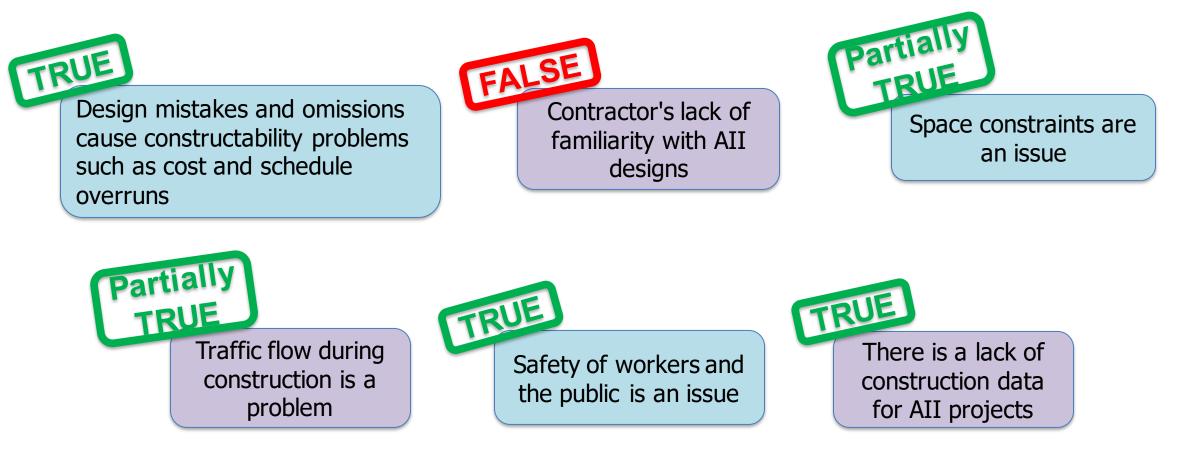

- Alls are not being built with the frequency they could be.
 - A perception exists that Alls result in additional construction time and cost when compared to projects with conventional designs.

Why does this perception exist? Because Alls are unfamiliar.

Inhibitors

Are the factors that have the potential to negatively affect the construction of AII projects.

Objective


- Identify and quantify construction inhibitors previously identified on NCDOT projects.
- Analyze inhibitors documented in claims and supplemental agreements.

Objectives

 Identify and quantify cost and schedule differences between Alls and Conventional Designs.

Literature Review Findings

Perceptions vs Findings

Objectives

Inhibitors

Methodology

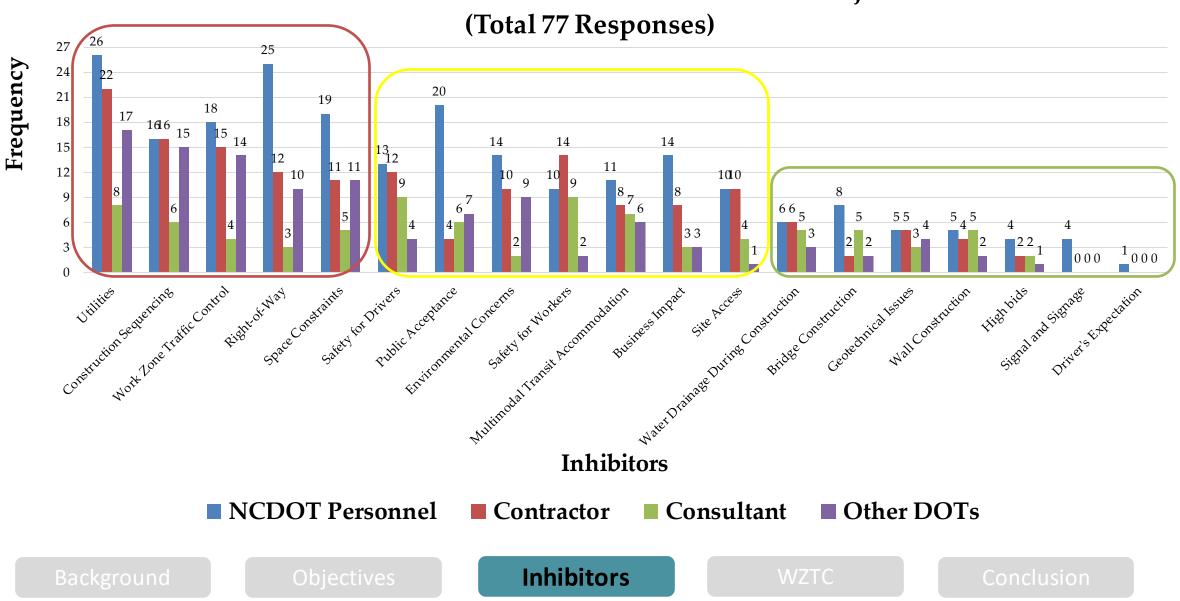
Interviews

- A total of 29 interviews
 - (NCDOT personnel, contractors, and consultants)

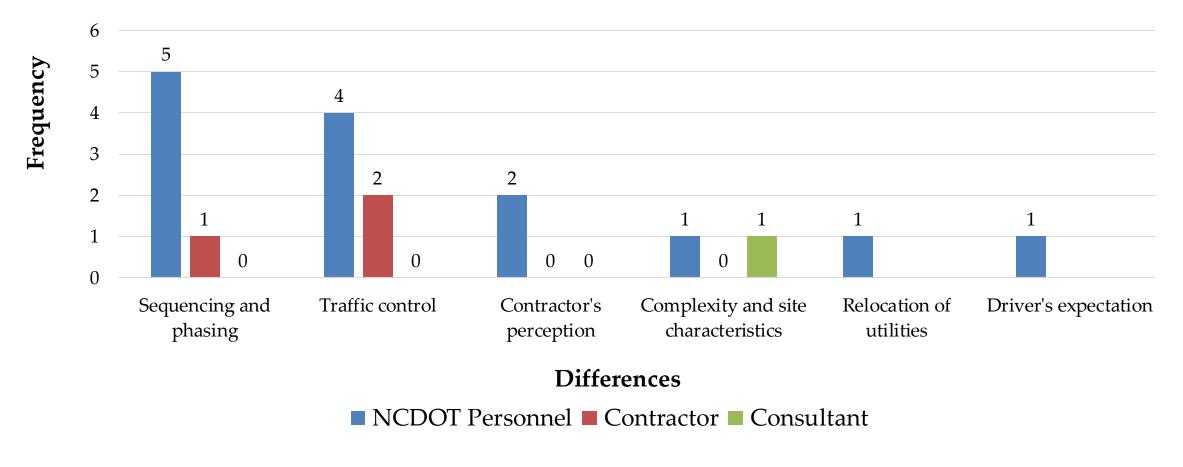
Surveys

- A total of 48 responses
 - 28 responses (NCDOT personnel and contractors)
 - 20 responses (Other state DOTs)

Field Study

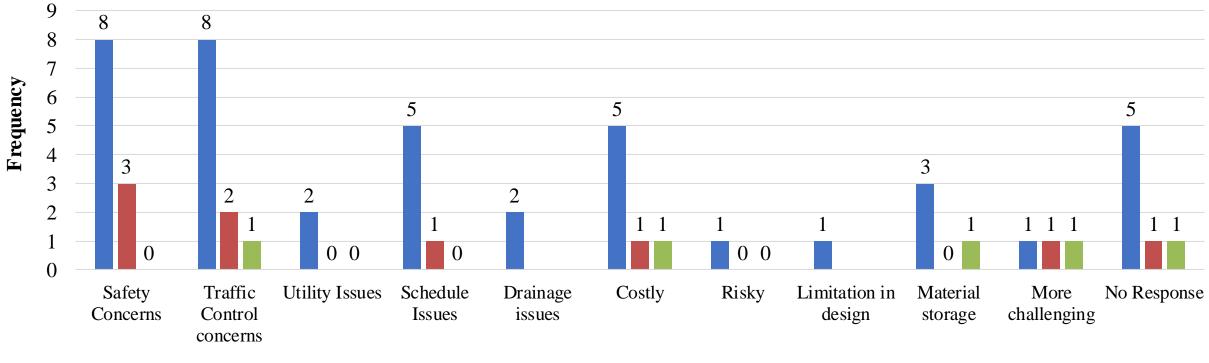

• A total of three construction projects were monitored for 10 months

Findings


- Constructability factors
- AII vs CII
- Space constrained
- Business process

12

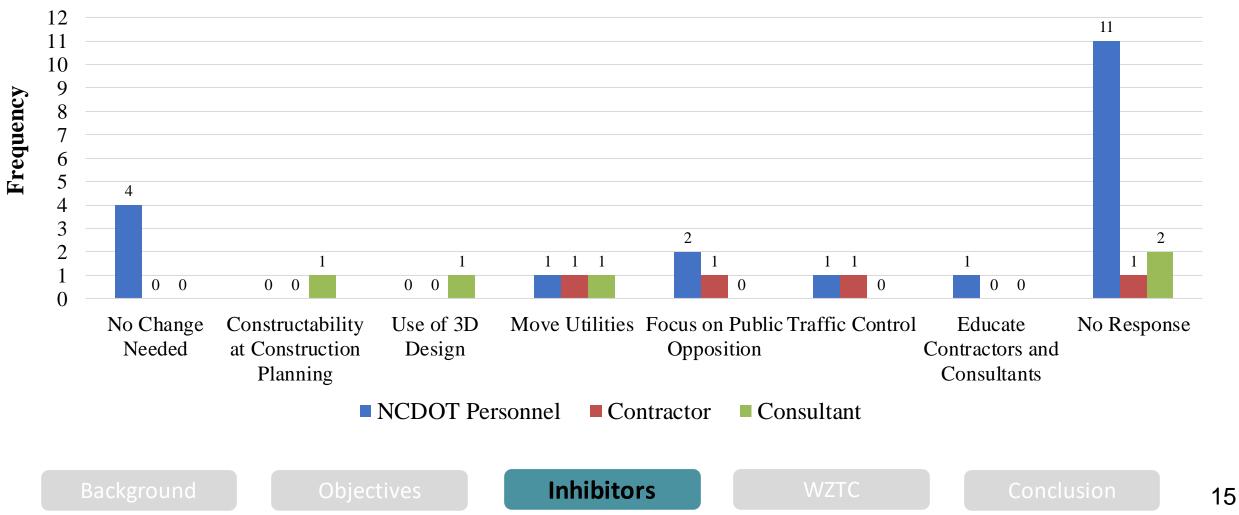
Construction Inhibitors Associated with AII Projects


Difference Between the Construction of AII vs CII Designs (Total 29 Responses)

Background

Inhibitors

Differences of a Tightly Constrained vs Unconstrained Site (Total 29 Responses)



■ NCDOT Personnel ■ Contractor ■ Consultant

Inhibitors

NCDOT Business/Construction Process Changes Needed for Improving the Construction and Design of AIIs (Total 29 Responses)

Main Findings from Interviews and Surveys

- 1. AIIs present signing problems during and after construction.
- 2. Contractors are willing to bid on AIIs even if they are unfamiliar designs.
- 3. Enhancers improve schedule performance and reduce the cost of projects.
- 4. Terminology (naming of AIIs) plays an important role in public acceptance.

Main Findings from Interviews and Surveys

- 5. There is a learning curve for constructing (construction personnel) and using (public) AIIs.
- 6. Move away from focusing on the constructability of AIIs and focus on how can we communicate the designs to the public to mitigate public opposition.
- 7. Staging makes a big difference and improves project performance.

Inhibitors identified for all AIIs design types and are based on stakeholder's opinion.

Inhibitors	Frequency (%)
Utilities	9%
Business Impact	9%
Public Acceptance	9%
Multimodal Traffic Accommodation	7%
Right of Way	7%

Frequency (%): # of inhibitors/ total # inhibitors reported by all respondents.

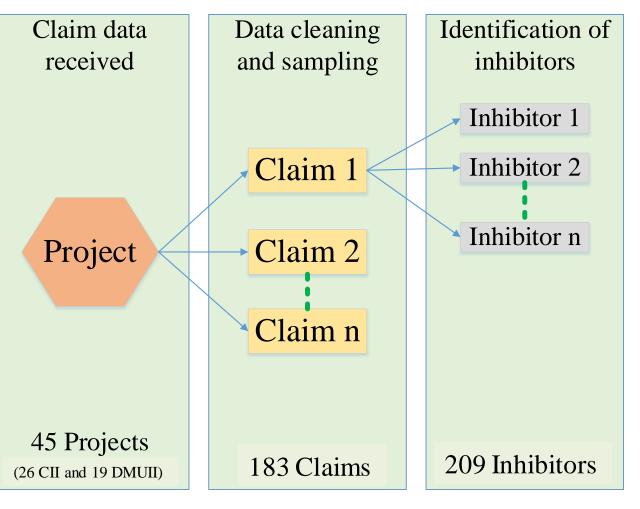
* Frequency of a total of 18 inhibitors identified by participants

NCDOT Field Study

Inhibitors identified based on observation on three Diverging Diamond Projects.

Inhibitors	Frequency (%)
Material Delivery	21%
Space Constraints	14%
Utilities	14%
Design Errors	7%
Design Specifications	7%

Frequency (%): Percent of all inhibitors identified in construction projects. * Frequency of a total of 10 inhibitors observed over 10-month field studies

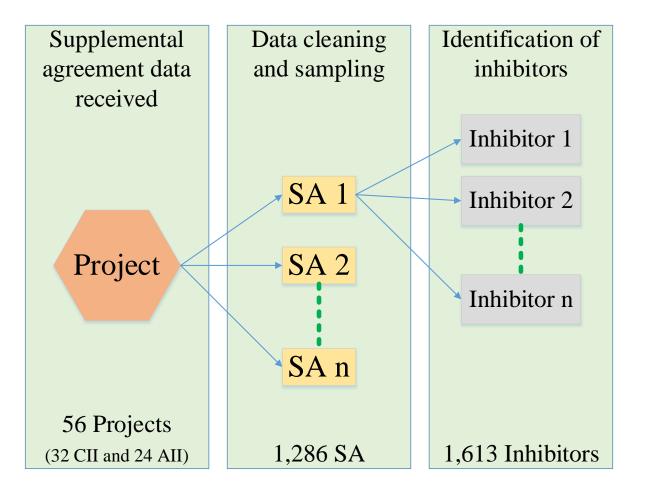

Inhibitors

Claim Data

Claims (Bills for unexpected work)

A request for more time or money to compensate for losses due to changes or additions.

"Due to plan revisions causing additional earthwork, additional surveying, and delays from Hurricane Florence, it was agreed upon to provide 86 days to ICT 6 to facilitate negotiations of the release of claim dated 4-4-19."

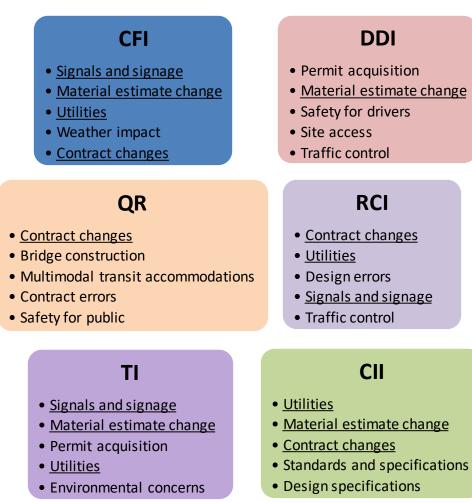


Supplemental Agreement Data

Supplemental Agreement

(also known as a change order)

A request to amend the contract in terms of monetary compensation, time, or scope of work as necessary to satisfactorily complete additional construction work not initially contracted for.



Relevance of Inhibitors to AII Design Type

- Inhibitors cannot be generalized for all AIIs.
- Chi-Square test was performed to determine the relevance of inhibitors.
 - Results indicate a statistical significance (*p*-value < 0.05) relationship among all the AIIs evaluated.
 - Statistical significance indicates that the relationship between the inhibitors and AIIs is highly likely to have a meaningful rather than a random connection.

CFI: Continuous Flow IntersectionDDI: Diverging Diamond InterchangeCI: Reduced Conflict IntersectionTI: Turbine Interchange

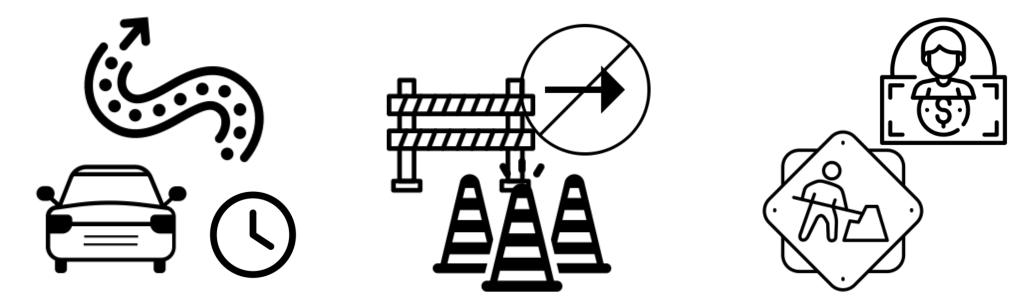
QR: Quadrant Roadway Intersection **CII:** Conventional Intersections or Interchanges

tives

Inhibitors

Conclusions

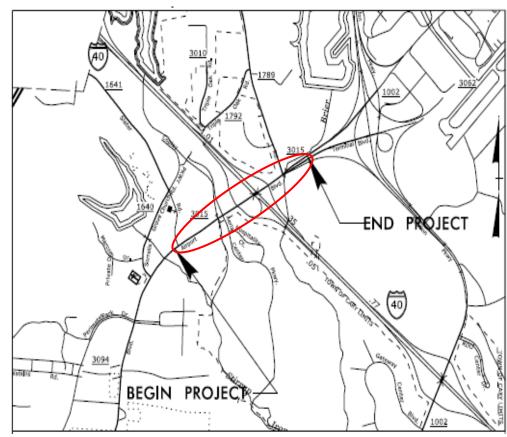
Findings indicate valuable insights into the inhibitors that affect projects.


- Documenting and keeping track of inhibitors is important.
- Inhibitors affecting AIIs vary depending on the design type. Therefore, each design needs to assess its respective inhibitors.
- Utilities are one of the main inhibitors in projects, it is recommended to pay close attention to them.

Inhibitors

NC STATE UNIVERSITY

Case Study: Evaluation of Roadway Congestion and Detours Due to Work Zone Traffic Control Measures

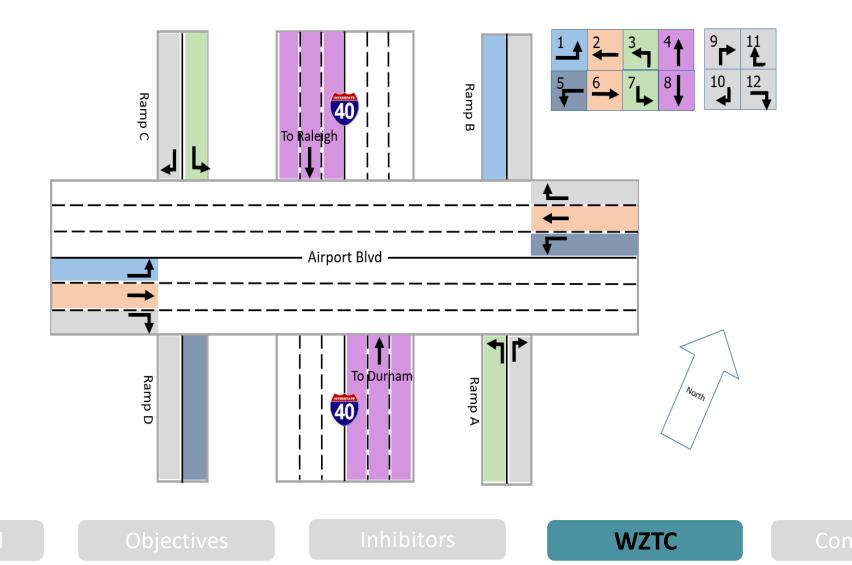

Travel Time Evaluation

Congestion Evaluation

Road User Cost Evaluation

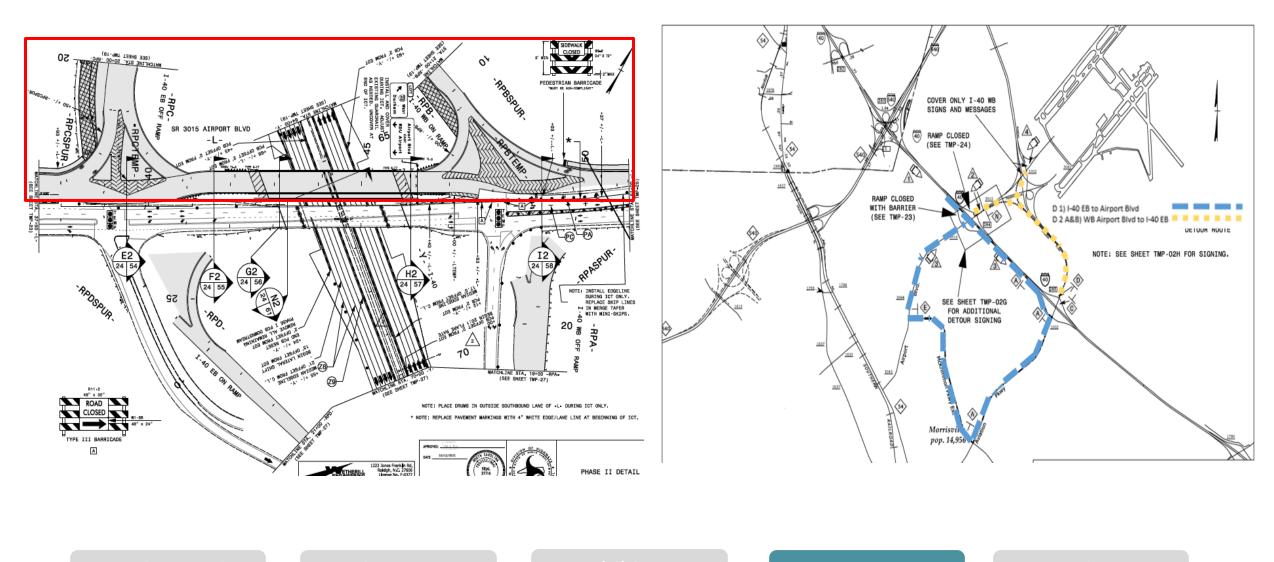
Site 1: I-5700 DDI (I-40 and Airport Blvd)

- Project Started: February 3, 2020.
- Expected Completion: February 11, 2024.
- Ramp Closures:
 - 105 days for ramps B and C.
 - 120 days for ramps A and D.
- WZTC measure: with detour.
- **Scope:** Grading, drainage, paving, signals, and structures work.
- Project length: 0.798 miles.


DDI: Diverging Diamond Interchange

Background

Inhibitors

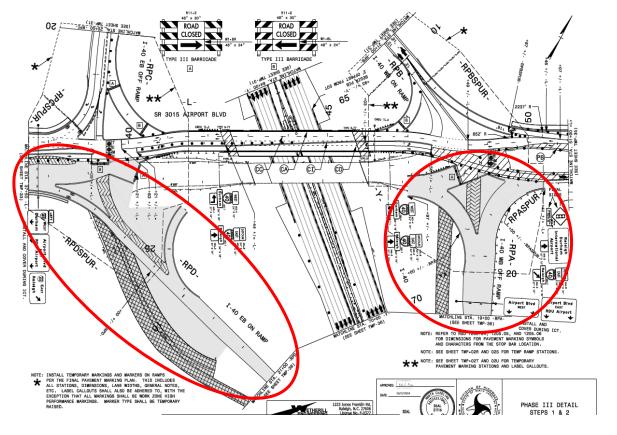

NC STATE UNIVERSITY

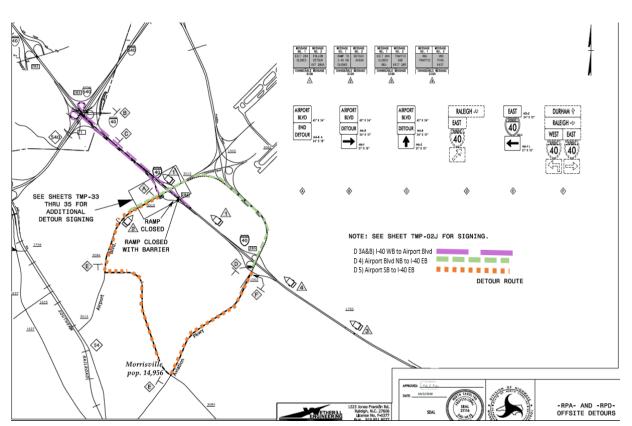
Traffic Movement in I-5700 DDI Project

26

Phase II Closure of Ramps B and C and Detour Routes in I-5700 DDI Project

Background


ojectives


Inhibitors

Phase III Closure of Ramps A and D and Detour Routes in I-5700 DDI Project

*Phase III will only be considered for Road User Cost calculations

Background

Objectives

Inhibitors

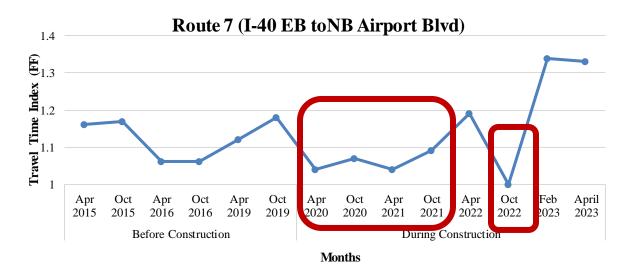
Evaluation of Travel Time Due to Detour Measures in I-5700 DDI Project

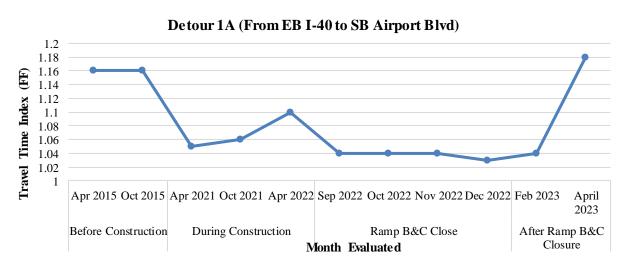
 $Travel Time = \frac{Distance(miles)}{Average Speed (mph)}$

Route and	Traffic M	Iovement	Detour	Original Route	Detour Length	Additional Distance	-	Limit e/hr.)	Travel Time (min/veh.)		Added Travel Time due to
Movement	Origen	Destination	Detour	Length (mile)	(mile)	Travel due to Detour (mile)	Route	Detour	Route	Detour	WZTC (min/veh.)
<u>1</u>	Airport Boulevard NB	I-40 WB	D2A	1.03	3.67	2.64	45	55	1.4	4.0	2.6
2	Airport Boulevard SB	Airport Boulevard SB	No Detour	0.38	No Detour	0	45	55	0.5	No Detour	No Detour
3◀	I-40 WB	Airport Boulevard SB	D3A	0.54	4.6	4.06	45	55	0.7	5.0	4.3
4	I-40 WB	I-40 WB	No Detour	1.24	No Detour	0	65	55	1.1	No Detour	No Detour
5	Airport Boulevard SB	I-40 EB	D5	1.92	4.65	2.73	45	55	2.6	5.1	2.5
6 →	Airport Boulevard NB	Airport Boulevard NB	No Detour	0.36	No Detour	0	45	55	0.5	No Detour	No Detour
⁷ ⊾	I-40 EB	Airport Boulevard NB	D1	0.87	6.08	5.21	45	55	1.2	6.6	5.5
8↓	I-40 EB	I-40 EB	No Detour	0.95	No Detour	0	65	55	0.9	No Detour	No Detour
⁹ ►	I-40 WB	Airport Boulevard NB	D3B	0.4	5.24	4.84	45	55	0.5	5.7	5.2
10	I-40 EB	Airport Boulevard SB	D1	0.59	5.75	5.16	45	55	0.8	6.3	5.5
	Airport Boulevard SB	I-40 WB	D2B	1.54	3.4	1.86	45	55	2.1	3.7	1.7
12 •	Airport Boulevard NB	I-40 EB	D4	1.68	4.71	3.03	45	55	2.2	5.1	2.9

Background

Objectives


Inhibitors


WZTC

Conclusion

Congestion Analysis: Monthly Travel Time Index Values for Routes in I-5700 DDI Project

- The Travel Time Index (TTI)
 - Allows congestion levels to be evaluated.
 - Traffic performance to be monitored.
 - The impact of WZTC measures to be assessed.
- TTI = 1 indicates no congestion or delay.
- TTI > 1 indicates higher levels of congestion and longer travel times.
 - For example, a TTI = 1.2 indicates that travel time under free-flow conditions takes 20% longer than the expected.

Objectives

Inhibitors

RUC in I-5700 DDI Project

Road User Cost (RUC) Model quantifies work zone delay, detour delay, and vehicle operating cost.

The input data for RUC is shown below.

Road User Cost Data Input

				L	ength (m	ile)	Additional	Spee	d Limit (n	nile/hr.)	%
Route	AADT	AADT Cars	AADT Trucks	Route	Work Zone	Detour	Distance Travel due to Detour (mile)	Route	Work Zone	Detour	Vehicles Using Detour
1	4,050	3,858	181	1.03	0.2	3.67	2.64	45	45	55	100%
2	13,625	12,979	610	0.38	0.2	0	0	45	45	55	0
3	3,600	3,429	161	0.54	0.2	4.6	4.06	45	45	55	100%
5	3,450	3,287	154	1.92	0.2	4.65	2.73	45	45	55	100%
6	13,625	12,979	610	0.36	0.2	0	0	45	45	55	0
7	3,900	3,715	174	0.87	0.2	6.08	5.21	45	45	55	100%
9	3,600	3,429	161	0.4	0.3	5.24	4.84	45	45	55	100%
10	3,900	3,715	174	0.59	0.3	5.75	5.16	45	45	55	100%
11	4,050	3,858	181	1.54	0.1	3.4	1.86	45	45	55	100%
12	3,450	3,287	154	1.68	0.1	4.71	3.03	45	45	55	100%

Background

RUC in I-5700 DDI Project

Detour Travel Delay Cost

 $Travel Time = \frac{Distance(miles)}{Average Speed (mph)}$

Travel Delay Cost = Delay time (hrs) * Hourly Dollar Value of Delay

The RUC model enable us to calculate the detour travel delay cost (\$/vehicle)

		of Time	Travel	Travel Time			-	Total Deto	
Route	(\$/	'hr.)	Time along	along Detour	Delay Time	per	Vehicle	Cost (\$/v	ehicle)
	Car	Truck	Route (min)	Route (min)	(min)	Cars	Trucks	Cars	Trucks
1	\$12.50	\$50.00	1.37	4.00	2.63	\$0.55	\$2.19	\$2,114.16	\$397.15
2	\$12.50	\$50.00	0.51	0.00	0.00	\$0.00	\$0.00	\$0.00	\$0.00
3	\$12.50	\$50.00	0.72	5.02	4.30	\$0.90	\$3.58	\$3,070.89	\$576.88
5	\$12.50	\$50.00	2.56	5.07	2.51	\$0.52	\$2.09	\$1,720.45	\$323.19

Inhibitors

Road User Cost in I-5700 DDI Project

Additional Vehicle Operating Costs

*Vehicle Operating Cost (VOC) = Unit Cost per Mile * Miles Traveled per Vehicle * Number of Vehicles*

Route		Operating s (\$/mile)	Additional M detour (vel		Total Additic Operatir	
	Car	Truck	Car	Truck	Car	Truck
1	\$0.20	\$0.50	10185	478	\$2,037.07	\$239.17
2	\$0.20	\$0.50	0	0	\$0.00	\$0.00
3	\$0.20	\$0.50	13923	654	\$2,784.69	\$326.95
5	\$0.20	\$0.50	8972	421	\$1,794.44	\$210.68

Road User Cost in I-5700 DDI Project

Total Road User Costs

Total Project Road User Cost (RUC) = (Delay Cost * Total days) + (Operating Cost * Total Days)

WZTC Ramp Closures	Detour Travel Delay Cost	Additional Vehicle Operating Costs	Total RUC
Ramps A&D (105 days)	\$1,306,963	\$1,160,425	\$2,467,388
Ramps B&C (120 days)	\$1,700,122	\$1,498,797	\$3,198,918
	Total		\$5,666,306.43

Site 2: U-5806 CI

(Concord Mills Blvd and Entrance #1 at Kings Grant Pavilion)

- Project Started: August 13, 2018.
- Completion: August 18, 2022.
 - Project lasted 1,571 days.
- Night Lane Closures:
 - 7:00 PM to 6:00 AM.
- WZTC measure: No detour. Lane Closure
- **Scope:** Grading, drainage, paving, signals, and structures work.
- Project length: 0.434 miles.

CI: Conventional Intersection

Objectives

Inhibitors

Road User Cost in U-5806 CI Project

Road User Cost Data Input

• Night Lane Closures: 7:00 PM to 6:00 AM.

RouteAADT AADTAADT CarsAADT TrucksAADT TrucksAADT RouteWork ZoneTravel due to DetourRouteWork TrucksWork UsingWork Detour217,1253,1172,9691390.550.550045350%617,1253,1172,9691390.550.550045350%			Adjusted			Le	ength (m	ile)	Additional Distance	Speed (mile	Limit E/hr.)	Vehicles
	Route	AADT	-		Tunala	Route		Detour	to Detour	Route		Using Detour
6 17,125 3,117 2,969 139 0.55 0 0 45 35 0%	2	17,125	3,117	2,969	139	0.55	0.55	0	0	45	35	0%
	6	17,125	3,117	2,969	139	0.55	0.55	0	0	45	35	0%

Hour	Hourly-AADT	HDF
12:00 - 1:00 AM	127	0.74%
1:00 - 2:00 AM	80	0.47%
2:00 - 3:00 AM	70	0.41%
3:00 - 4:00 AM	86	0.50%
4:00 - 5:00 AM	144	0.84%
5:00 - 6:00 AM	377	2.20%
6:00 - 7:00 AM	1,029	6.01%
7:00 - 8:00 AM	1,572	9.18%
8:00 - 9:00 AM	1,413	8.25%
9:00 - 10:00 AM	1,041	6.08%
10:00 - 11:00 AM	885	5.17%
11:00 - 12:00 AM	891	5.20%
12:00 - 1:00 PM	921	5.38%
1:00 - 2:00 PM	944	5.51%
2:00 - 3:00 PM	971	5.67%
3:00 - 4:00 PM	1,041	6.08%
4:00 - 5:00 PM	1,132	6.61%
5:00 - 6:00 PM	1,211	7.07%
6:00 - 7:00 PM	957	5.59%
7:00 - 8:00 PM	676	3.95%
8:00 - 9:00 PM	531	3.10%
9:00 - 10:00 PM	450	2.63%
10:00 - 11:00 PM	341	1.99%
11:00 - 12:00 PM	235	1.37%
Total	17125	100%
Adjusted AADT (7:00) pm to 6:00 am)	3,116.75

values to calculate aujusted AAD1 are highlighted in grey

Road User Cost in U-5806 CI Project

Work Zone Delay Cost

	Value o	of Time	Travel Time	Travel Time at	Work Zone	Work Z	one Delay	Total Wo	rk Zone
Route	(\$/1	nr.)	along Route	Work Zone	Delay Time	Cost pe	r Vehicle	Delay	Cost
	Car	Truck	(min)	Speed (min)	(min/veh.)	Car	Truck	Car	Truck
2	\$12.75	\$50.00	0.73	0.94	0.21	\$0.04	\$0.17	\$132.19	\$24.35
6	\$12.75	\$50.00	0.73	0.94	0.21	\$0.04	\$0.17	\$132.19	\$24.35

Total Road User Costs

WZTC Time	Work Zone Travel Delay Cost (\$/day)	Additional Vehicle Operating Costs (\$/day)	Total RUC
1,571 Days	\$313.08	\$0	\$491,850

Conclusions

- The impact on WZTC measure is different based on which control measure was applied.
- Adopting detour analysis will aid NCDOT in selecting the most efficient and cost-effective solutions for WZTC.
- These findings further support the notion that, despite the unfamiliarity surrounding AII projects, their construction performance is not exacerbated compared to CIIs.

Inhibitors

Acknowledgements

- Research Team: Drs. Nagui Rouphail, Kevin Han, and Rudi Seracino
- Clare Fullerton and Stephanie Bolyard former NCDOT Employees
- Benard Chola, NCDOT Chief Engineer's Office
- Natalia Arbelaez, Liam Shannon, Robert Bullock, and Jacob Crews, NCDOT Field Engineers and Resident Engineers

Thank You

Contact us at:

William Rasdorf, Ph.D.

<u>rasdorf@ncsu.edu</u> Phone: (919) 515-7637

Minerva Bonilla, Ph.D.

<u>mbonilla@tamu.edu</u> Phone: (979) 458-7746