

NORTH CAROLINA Department of Transportation

Structures Constructability

Aaron Earwood, PE

May 24, 2022

Cap Rebar Constraints

Solutions

- Add splice in #11 B1's to limit length of bars
- Evaluate if hook bars from column can be eliminated

Crown Points on Staged Construction

18

19

Things to consider....

- Prefer stage line to be at crown point (if possible)
- Can screed finish the crown roll-over?
- Will screed stick out into traffic (w/o special inserts)?
- Where will longitudinal construction joints be in relation to wheel paths?

Girder Erection Sequence

26

27

Girder Erection Sequence

- Avoid drop-in section if possible
- Plan splice locations to allow linear erection
- Consider phasing/location of temporary bents
- Can pieces be spliced in advance?
- How much room does Contractor have for cranes?

Differential Deflections

	DEAD LOAD DEFLECTION TABLE FOR GIRDERS																													
		SPAN B																												
		EXTERIOR GIRDERS																												
SIXTIETH POINTS	€ BRG.	0.017	0.033	0.050	0.067	0.084	0.100	0.117	0.133	0.150	0.167	0.184	0.200	0.217	0.233	0.250	0.267	0.284	0.300	0.317	0.333	0.350	0.367	0.384	0.400	0.417	0.433	0.450	0.467	0.484
DEFLECTION DUE TO WEIGHT OF GIRDER	0.000	0.003	0.007	0.011	0.016	0.022	0.027	0.034	0.040	0.047	0.055	0.062	0.070	0.077	0.085	0.092	0.099	0.106	0.112	0.118	0.124	0.129	0.134	0.137	0.141	0.143	0.145	0.146	0.147	0.147
DEFLECTION DUE TO WEIGHT OF SLAB *	0.000	0.009	0.018	0.031	0.044	0.059	0.075	0.094	0.113	0.134	0.155	0.177	0.199	0.222	0.245	0.267	0.288	0.308	0.328	0.346	0.364	0.379	0.394	0.405	0.417	0.424	0.432	0.435	0.439	0.438
DEFLECTION DUE TO WEIGHT OF PARAPET	0,000	0.002	0,004	0.007	0.009	0.013	0.016	0.020	0.024	0.028	0.032	0.036	0.040	0.045	0.049	0.053	0.057	0.060	0.064	0.067	0.070	0.073	0.075	0.077	0.079	0.081	0.082	0.083	0.083	0.083
TOTAL DEAD LOAD DEFLECTION	0.000	0.014	0.029	0.049	0.069	0.094	0.118	0.148	0.177	0.209	0.242	0.276	0.309	0.344	0.378	0.411	0.444	0.474	0.505	0.531	0.558	0.580	0.603	0.620	0.637	0.648	0.659	0.664	0.669	0.668
REQUIRED CAMBER	0	∛6″	‰″	%6"	13/16″	11/8″	11/16″	1¾"	21/8″	21/2"	21⁄8″	35/16″	311/16″	41/8"	4%6″	415/16″	5%6″	511/16″	61/16″	6¾″	6 ¹¹ /16″	6 ¹⁵ /16"	71/4"	71⁄16″	75%″	7¾″	715/16"	8″	8 ¹ /16*	8″

					_					DEAD	LOA	D DEF	LECT	ION T	ABLE	FOR	GIRD	ERS													
												Г	S	pan e	3																
												E	XTER	EOR G	IRDE	RS															
SIXTIETH POINTS	0.500	0.517	0.533	0.550	0.567	0.584	0.600	0.617	0.633	0.650	0.667	0.684	0.700	0.717	0.733	0.750	0.767	0.784	0.800	0.817	0.833	0.850	0.867	0.884	0.900	0.917	0.933	0.950	0.967	0.984	€ BRG.
DEFLECTION DUE TO WEIGHT OF GIRDER	0.146	0.144	0.143	0.140	0.136	0.132	0.128	0.122	0.117	0.111	0.104	0.097	0.090	0.083	0.076	0.068	0.061	0.053	0.046	0.040	0.033	0.027	0.021	0.017	0.012	0.009	0.005	0.003	0.001	0.002	0.000
DEFLECTION DUE TO WEIGHT OF SLAB *	0.438	0.433	0.429	0.420	0.411	0.399	0.386	0.371	0.355	0.337	0.319	0.298	0.277	0.256	0.234	0.212	0.190	0.168	0.146	0.126	0.106	0.088	0.070	0.055	0.041	0.030	0.019	0.012	0.006	0.003	0.000
DEFLECTION DUE TO WEIGHT OF PARAPET	0.083	0.083	0.082	0.080	0.079	0.077	0.075	0.072	0.070	0.066	0.063	0.060	0.056	0.052	0.048	0.044	0.040	0.036	0.032	0.027	0.023	0.020	0.016	0.013	0.010	0.007	0.005	0.003	0.002	0.001	0.000
TOTAL DEAD LOAD DEFLECTION	0.667	0.660	0.653	0.640	0.627	0.608	0.589	0,565	0.542	0.514	0.486	0.455	0.424	0.391	0.358	0.324	0.290	0.257	0.223	0.193	0,162	0.135	0.107	0.085	0.063	0.046	0.030	0.019	0.008	0.005	0.000
REQUIRED CAMBER	8"	7 ¹⁵ /16″	7 ¹ 3/ ₁₆ "	711/16″	71/2"	75/16"	71/16"	6 ¹³ ⁄16″	6½"	6¾6"	5 ¹³ ⁄16″	5¾6"	5½i6"	411/16"	45%6"	3 7⁄8″	31/2"	31/16"	211/16″	25⁄16″	115/16"	15%″	15/16″	1″	∛4″	%6″	3∕8″	1⁄4″	1/8"	1/16"	0

	DEAD LOAD DEFLECTION TABLE FOR GIRDERS																													
													S	PAN E	3															
		INTERIOR GIRDERS																												
SIXTIETH POINTS	€ BRG.	0.017	0.033	0.050	0.067	0.084	0.100	0.117	0.133	0.150	0.167	0.184	0.200	0.217	0.233	0.250	0.267	0.284	0.300	0.317	0.333	0.350	0.367	0.384	0.400	0.417	0.433	0.450	0.467	0.484
DEFLECTION DUE TO WEIGHT OF GIRDER	0.000	0.004	0.008	0.013	0.018	0.024	0.030	0.037	0.045	0.053	0.061	0.069	0.077	0.086	0.094	0.102	0.110	0.118	0.125	0.132	0.138	0.143	0.149	0.153	0.157	0.159	0.162	0.163	0.164	0.164
DEFLECTION DUE TO WEIGHT OF SLAB *	0.000	0.011	0.022	0.038	0.053	0.073	0.093	0.116	0.139	0.165	0.191	0.218	0.245	0.273	0.301	0.328	0.354	0.379	0.404	0.426	0.448	0.466	0,484	0.498	0.512	0.521	0.531	0.535	0.539	0.539
DEFLECTION DUE TO WEIGHT OF PARAPET	0.000	0.002	0.004	0.007	0.009	0.012	0.016	0.019	0.023	0.027	0.031	0.036	0.040	0.044	0.048	0.052	0.055	0.059	0.062	0.065	0.069	0.071	0.074	0.075	0.077	0.079	0.080	0.081	0.081	0.081
TOTAL DEAD LOAD DEFLECTION	0.000	0.017	0.034	0.057	0.080	0.109	0.138	0.173	0.207	0.245	0.283	0.322	0.362	0.402	0.443	0.481	0.520	0.555	0.591	0.622	0.654	0.680	0.706	0.726	0.746	0.759	0.773	0.779	0.785	0.784
REQUIRED CAMBER	0	¾6″	3∕8″	11/16″	15/16″	1%6″	111/16"	21/16″	21/2"	2 ¹⁵ /16"	3%"	31⁄8″	45%6″	4 ¹³ /16~	5%6″	5¾″	61/4"	6 ¹¹ /16″	71/16″	7½″	7%"	8¾6″	8½″	811/16"	8 ¹⁵ /16″	9 ¹ /8″	9 ¹ /4″	9¾″	9¾6″	9¾″

	DEAD LOAD DEFLECTION TABLE FOR GIRDERS																														
												Г	S	PAN E	3																
												IN	ITERI	OR G	IRDER	S															
SIXTIETH POINTS	0.500	0.517	0.533	0.550	0.567	0.584	0.600	0.617	0.633	0.650	0.667	0.684	0.700	0.717	0.733	0.750	0.767	0.784	0.800	0.817	0.833	0.850	0.867	0.884	0.900	0.917	0.933	0.950	0.967	0.984	€ BRG.
DEFLECTION DUE TO WEIGHT OF GIRDER	0.163	0.161	0.159	0.156	0.152	0.147	0.143	0.137	0.131	0.124	0.117	0.109	0.101	0.093	0.085	0.076	0.068	0.060	0.052	0.044	0.037	0.031	0.024	0.019	0.014	0.010	0.006	0.004	0.001	0.001	0.000
DEFLECTION DUE TO WEIGHT OF SLAB *	0.538	0.532	0.527	0.516	0.505	0.490	0.475	0.456	0.437	0.414	0.392	0.366	0.341	0.314	0.288	0.260	0.233	0.206	0.179	0.154	0.130	0.108	0.086	0.068	0.050	0.037	0.024	0.015	0.007	0.003	0.000
DEFLECTION DUE TO WEIGHT OF PARAPET	0.081	0.081	0.080	0.079	0.077	0.075	0.073	0.071	0.068	0.065	0.062	0.059	0.055	0.051	0.048	0.044	0.040	0.035	0.031	0.027	0.023	0.020	0.016	0.013	0.010	0.007	0.005	0.003	0.002	0.001	0.000
TOTAL DEAD LOAD DEFLECTION	0.782	0.774	0.766	0.750	0.735	0.713	0.691	0.663	0.635	0.603	0.570	0.534	0.497	0.458	0.420	0.380	0.340	0.301	0.262	0.226	0.190	0.158	0.126	0.100	0.074	0.054	0.035	0.022	0.010	0.005	0.000
REQUIRED CAMBER	9¾"	9%6″	9¾6″	9″	8 ¹³ /16″	8%6″	85%6″	7 ¹⁵ /16″	7%r	71/4″	6 ¹³ /16″	6¾″	5 ¹⁵ /16″	51/2"	51/16″	4%6″	41/ ₁₆ ″	3%"	3½″	211/16″	21/4″	17/8"	11/2"	1¾6″	%″	5%"	%e″	1⁄4″	1/8°	1/16″	0

*INCLUDES SLAB, BUILDUPS & STAY-IN-PLACE FORMS. ALL VALUES ARE SHOWN IN FEET (DECIMAL FORM).EXCEPT "REQUIRED CAMBER", WHICH IS GIVEN IN INCHES (FRACTION FORM).

EXTERIOR GIRDERS

SIXTIETH POINTS	0 . 500									
DEFLECTION DUE TO WEIGHT OF GIRDER	0.146									
DEFLECTION DUE TO WEIGHT OF SLAB *	0.438									
DEFLECTION DUE TO WEIGHT OF PARAPET	0.083									
TOTAL DEAD LOAD DEFLECTION	0.667									
REQUIRED CAMBER										

INTERIOR GIRDERS

SIXTIETH POINTS											
DEFLECTION DUE TO WEIGHT OF GIRDER	0.163										
DEFLECTION DUE TO WEIGHT OF SLAB *	0.538										
DEFLECTION DUE TO WEIGHT OF PARAPET	0.081										
TOTAL DEAD LOAD DEFLECTION	0.782										
REQUIRED CAMBER											

0.438	0.538
+0.083	+0.081
0.521'	0.619'

Interior girders deflect 0.098' (1-3/16") more than exterior girders at mid-span

Differential Deflections

	Bridge Decl	k (Plan View)	

37

Bridge Width

¹/₂" Differential is typical and acceptable. Anything above this, contact the ACE or RBCE to discuss

Bridge Deck Geometry Factors

- Skew 🗸
- Crowns or Superelevations
- Vertical Curves
- Horizontal Curves

Problem Geometries SMU Design Manual (6.2.2.9)

Bridges with 2 or more of the following:

- Skew $\leq 75^{\circ}$ or $\geq 105^{\circ}$
- Vertical Curve
- Transitioning Superelevation
- Crown

Also crown transitions pose problems.

Skew + Crown

- Screed bogey wobbles across the crown point. This will round off the crown.
- Very difficult to get a good dry run
- One side of the deck will likely have low cover and will be low at the joint

Skew + Vertical = Impossible

 You can not set up a screed to finish correctly across the whole deck with this geometry, but we can minimize the effects

Each point along the header is at a different station on the vertical curve.

Header plots as a parabolic curve

Header plots as a parabolic curve

1		EB2 CL of Jt.									
			Offset			Dist					
		Control	From	Header	Top of Slab	Along		B-A	B-A		
	Location	Point	Control	Station	El. (A)	Header	Screed El. (B)	(ft.)	(in.)		
		1	-49.6250	45+09.3741	396.6223	0.0000					
	Gutterline	2	-48.0000	45+08.6003	396.6104	1.7977	396.6104	0.0000	0"		
		3	-46.0000	45+07.6486	396.6558	2.2124	396.6554	-0.0004	-0		
		4	-44.0000	45+06.6973	396.7011	2.2123	396.7003	-0.0008	-0		
		5	-42.0000	45+05.7467	396.7464	2.2122	396.7452	-0.0012	-0		
		6	-40.0000	45+04.7966	396.7916	2.2120	396.7902	-0.0014	-0		
		7	-38.0000	45+03.8470	396.8369	2.2119	396.8351	-0.0018	-0		
		8	-36.0000	45+02.8980	396.8821	2.2118	396.8801	-0.0020	-0		
		9	-34.0000	45+01.9496	396.9272	2.2116	396.9250	-0.0022	-0		
		10	-32.0000	45+01.0017	396.9724	2.2115	396.9699	-0.0025	-0		
		11	-30.0000	45+00.0544	397.0175	2.2114	397.0149	-0.0026	- 1/16		
		12	-28.0000	44+99.1076	397.0626	2.2112	397.0598	-0.0028	- 1/16		
		13	-26.0000	44+98.1614	397.1077	2.2111	397.1047	-0.0030	- 1/16		
		14	-24.0000	44+97.2157	397.1527	2.2110	397.1496	-0.0031	- 1/16		
		15	-22.0000	44+96.2705	397.1977	2.2109	397.1946	-0.0031	- 1/16		
		16	-20.0000	44+95.3260	397.2490	2.2107	397.2395	-0.0095	- 2/16	Π.	
		17	-18.0000	44+94.3819	397.2970	2.2106	397.2844	-0.0126	- 2/16		Vorst
		18	-16.0000	44+93.4385	397.3392	2.2105	397.3293	-0.0099	- 2/16		ົລເດ
		19	-14.0000	44+92.4955	397.3830	2.2103	397.3742	-0.0088	- 2/16	J,	Lase
		20	-12.0000	44+91.5532	397.4224	2.2102	397.4191	-0.0033	- 1/16		
		21	-10.0000	44+90.6113	397.4672	2.2101	397.4640	-0.0032	- 1/16		
		22	-8.0000	44+89.6701	397.5121	2.2100	397.5089	-0.0032	- 1/16		
		23	-6.0000	44+88.7293	397.5569	2.2098	397.5538	-0.0031	- 1/16		
		24	-4.0000	44+87.7891	397.6016	2.2097	397.5987	-0.0029	- 1/16		
		25	-2.0000	44+86.8495	397.6464	2.2096	397.6436	-0.0028	- 1/16		
		26	0.0000	44+85.9104	397.6911	2.2094	397.6885	-0.0026	-0		
		27	2.0000	44+84.9719	397.7358	2.2093	397.7334	-0.0024	-0		
		28	4.0000	44+84.0338	397.7805	2.2092	397.7783	-0.0022	-0		
		29	6.0000	44+83.0964	397.8251	2.2091	397.8232	-0.0019	-0		
		30	8.0000	44+82.1595	397.8697	2.2089	397.8680	-0.0017	-0		
		31	10.0000	44+81.2231	397.9143	2.2088	397.9129	-0.0014	-0		4
		32	12.0000	44+80.2873	397.9589	2.2087	397.9578	-0.0011	-0	5	4

Skew + Vertical = Impossible

 Parabolic curve is different at every point along the vertical curve. Therefore, even if modifications to the carriage rail could be made, it will still not be perfect.

Transitioning Super/Crown

Transitioning Super/Crown

Problem Geometries

Problem geometries can be mitigated for in many situations. If they are necessary, contact the RBCE to discuss.

Pour Sequences

4 SPANS

POURING SEQUENCE-PRESTRESSED CONCRETE SUPERSTRUCTURE

(CONTINUOUS FOR LIVE LOAD)

60

ROLLERS TURNING TOWARDS EACH OTHER

Screed Setup Rules For Skews (in order of importance)

- 1. Finish from leading edge to trailing edge
- 2. Finish up the superelevation
- 3. Finish downhill

65

Pour Sequences

4 SPANS

POURING SEQUENCE-PRESTRESSED CONCRETE SUPERSTRUCTURE

(CONTINUOUS FOR LIVE LOAD)

66

Pour Sequence Example

Is the Pour Direction Correct?

1) Finish from leading edge of skew to trailing edge

2) Finish from low side of super to high side

Is the Pour Direction Correct?

1) Finish from leading edge of skew to trailing edge

2) Finish from low side of super to high side

Screed Setup Rules For Skews (in order of importance)

- Finish from leading edge to trailing edge
- \checkmark 2. Finish up the superelevation
 - 3. Finish downhill
 - Change from Past (Design Manual Being Updated)
 - Least Important of the 3 Rules

Detour Bridge Offsets

Temporary Bridge Clearance

 How much room do we need between the temporary bridge and the work?

E07 0E
Is The Truss Width Accounted For?

Mabey Measurements

TYPICAL FOUNDATION LAYOUT

Is The Truss Width Accounted For?

New Wing Outside Superstructure

Is this enough?

Where do we put the shoring?

STRUCTURE TYPICAL SECTION

DETOUR STRUCTURE TYPICAL SECTION

80

Acrow

- Standard Clear Roadway Widths – Acrow (12', 24', 30', 36', 42')
 - Customized (26', 32') * limited inventory

Deck Cross-Slope

- Level Preferred
- Super-Elevation Discouraged
- Methods to Achieve Super-Elevation
 - Asphalt on Level Deck (Curb Height Limitations)
 - Tilted Bridge (1% Max; +1% Asphalt X-Slope)
 - Single spans less than 100'
 - Custom Sloping Transoms (\$\$)
- Crown Achieved with Asphalt Overlay (Min 2" at Curb)

Keep cross section as flat as possible

Girder Conflict On Integral Abutments

98

Girder Conflict On Integrals

Hammer Head Rebar Clearance

6" – Too Tight

8" – Better

2"MIN. CLR.

*6 "S"

SPA.

0

VARIES

6

VARIES

3" HIGH

BOLSTER

@ 5'-0

BEAM

Rebar Congestion

- Identify designs with congested rebar
- Upsize member if necessary
- Stagger lap splices
- Think about how the concrete will be vibrated
 - Potential for vibrators to get stuck
- Special Concrete Mixtures
- Additives/Aggregate Sizes?

ncdot.gov

Questions?

