
Cored Slab and Box Beam Bridges

Cored Slab - Box Beam

Cored Slab Units
3 feet wide units
Depths
18" (<45 ft)
21" (<55 ft)
24" (<70 ft)

Box Beam Units
 3 feet wide units
 Depths

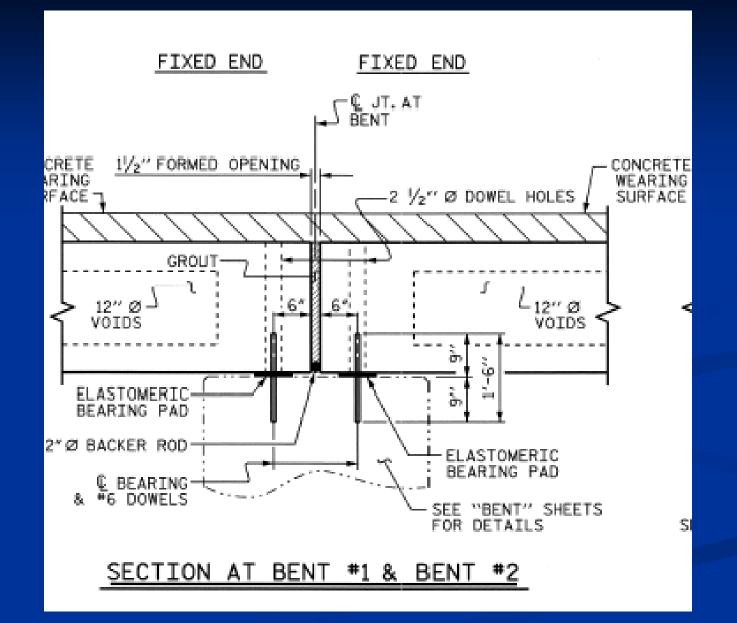
 33" (<90 ft)
 39" (<100 ft)

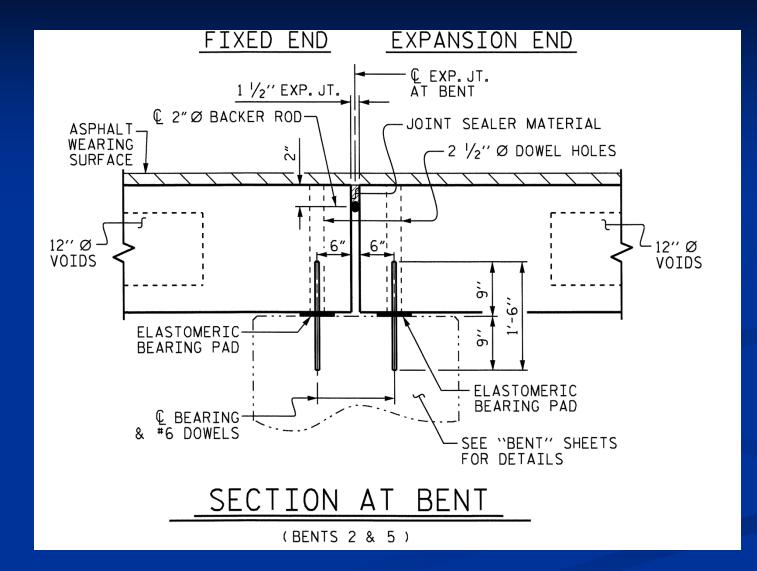
 Usually no more than 4 spans and less than 17 units in width.


SEE SHEAR KEY DETAIL HE HE HE HE HE HE HE HE HE HE HE HE HE	AI W I; W # H D
SHEAR KEY DETAIL	AI W I; W # H D
TYP. LONGITUDINAL SECTION	AI W IJ W #
FOR APPROX.MAX.SPAN FOR HL-93, See Figure 11-3	

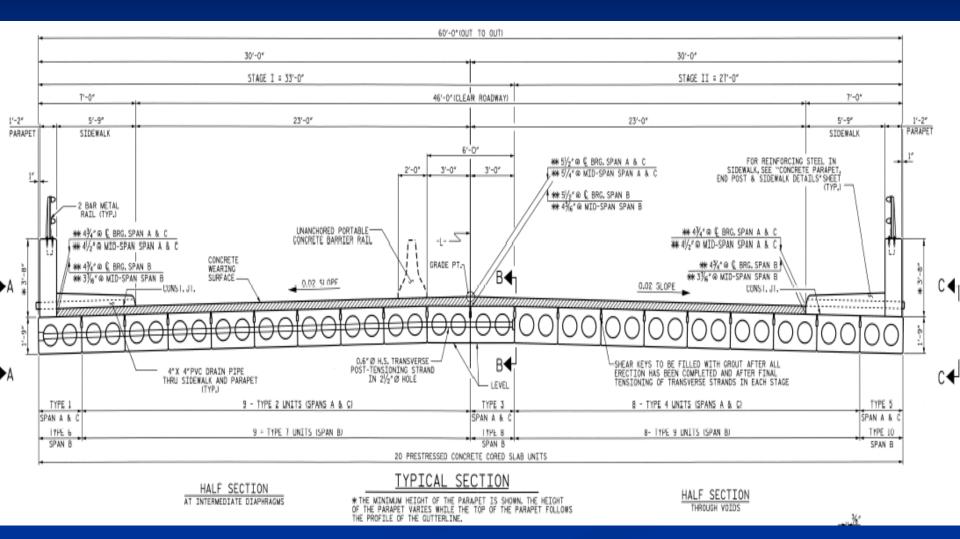
CORED SLAB PROPERTIES

FIGURE 6 – 81


Substructure


- Similar to other bridges.
- Dowels in place of anchor bolts.
- Non-laminated elastomeric bearing pads.

Substructure



Typical Section

Delivery

Delivery

- Verify correct slabs have been shipped.
- Collect material receipt documentation.
- M&T Approved Stamp?
- Inspect slabs for damage or repairs.
- Stored slabs should be supported off the ground on level dunnage placed at bearing locations.

Setting the Slabs

- ALWAYS lift from approved pick points.
- Begin setting slabs from center and work toward the outside. WHY?
 - Dimensional errors can be worked out toward the outside edges.
- Rearranging the slabs to accommodate excessive sweep in the units may be necessary.
- Extreme camber differentials may also require rearrangement, especially adjacent to exteriors.

Things to watch for!

- Camber in exterior slabs differ significantly from adjacent units.
 - Can cause reinforcing steel clearance issues on concrete overlays, may affect cover or crown slope.
 - May be necessary to adjust adjacent slab.
- Slab does not sit uniformly on bearing pad.
 - Slab may be pinching on adjacent slab, debris on the bearing pad, seat slope incorrect.
 - May need to pick up and investigate, adjust location of the unit, possibly install shim plate.

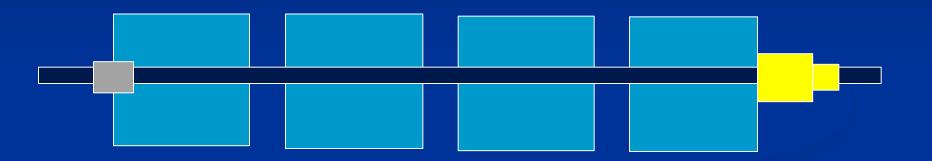
Things to watch for!

Dowels don't line up.
Did not set from center out?
Layout incorrect, plan errors.
Ends are out of alignment.
Skews are most common problem.
Can cause problems if joint is to be installed at approach slab.

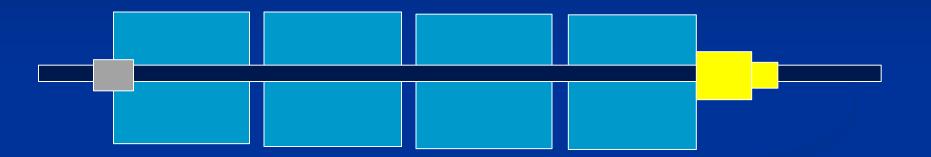
- Bond breaker for approach slab doesn't function correctly.
- Adjustments should be made to improve alignment.

Alignment

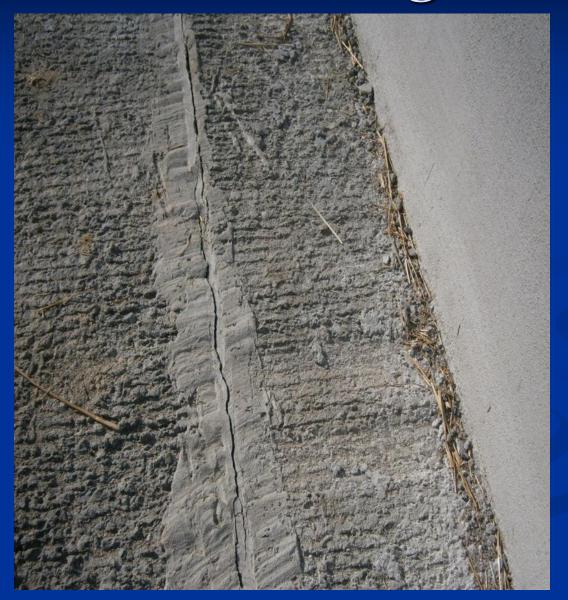
M&T Match Marks

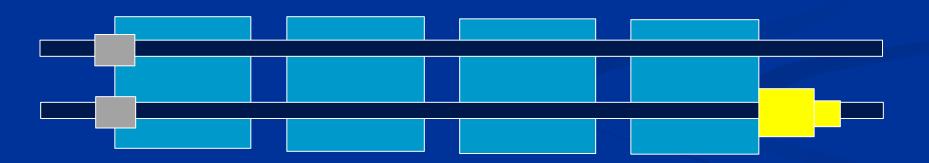

HiCAMS Materials Received

Once slabs are set, post-tensioning strands are tensioned to pull slabs together.
0.6 Inch strand inside a lubricated plastic sheath is threaded through strand duct (diaphragm).

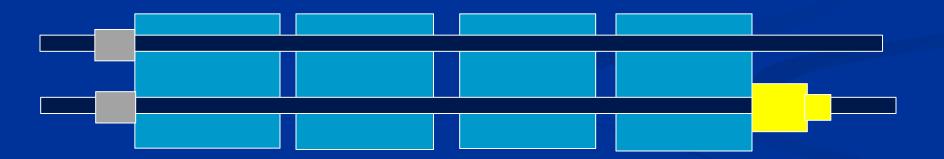

After tensioning and grouting shear keys, slabs act as one unit and transfer load throughout all the slabs

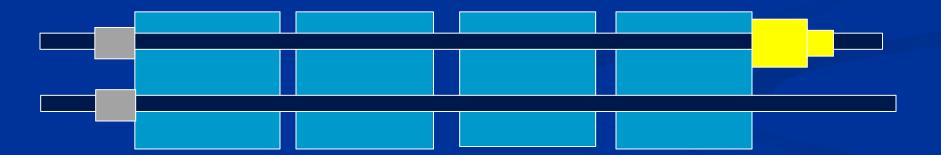
Tension to 43,950 lbs

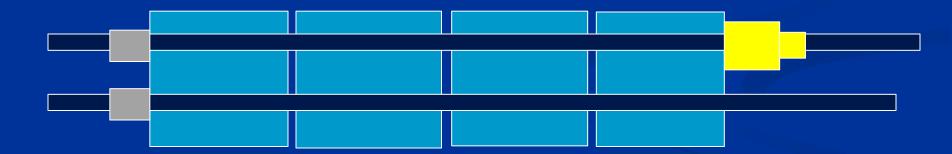

Cored Slabs and Box Beams now use the same diameter strand and are tensioned to the same load



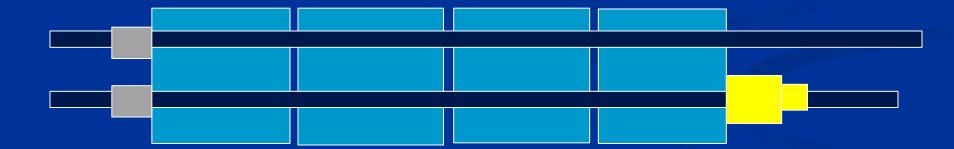
Tension to 43,950 lbs

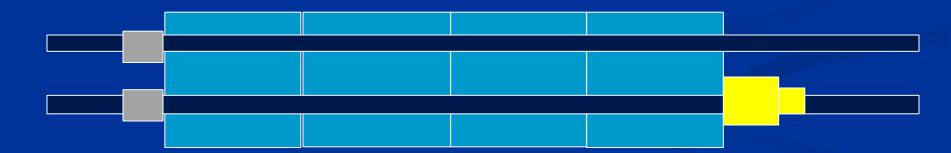

Cored Slabs and Box Beams now use the same diameter strand and are tensioned to the same load

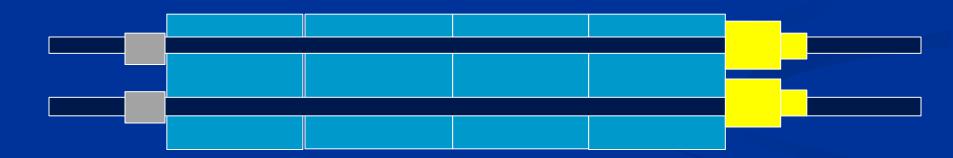

 Diaphragms with 2 strands must be tensioned symmetrically (Box Beams)

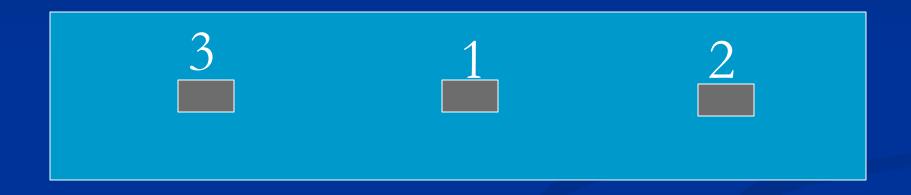


Article 430-6(C) - At each diaphragm location, maintain a symmetric tension force between each pair of strands in the diaphragm




Partially tension first strand


Fully tension next strand



Complete tensioning first strand

Multiple jacks can also be used

Complete tensioning first strand

Begin tensioning strand near mid-span first and work symmetrically along the length of the span.

Strand Jacks

- Must be calibrated by certified testing facility within 12 months.
- Contractor should provide calibration certificate and pressure/tension chart.

3295 Cob International Biol e Kennesaw, GA 30152 Telephone: (770) 429-0599 e Fax: (770) 429-0795 mail: saleedungsungs.com e Vebalis: Www.sepaaues.com						ESP Order #:						669863		
						Dat	Date of Certification:					8/6/12		
						Date Due for Re-Certific				atio	on:	8/6/13		
						Cer	Certified By: Shann			non M. Cameron				
						Init	Initials: SN			AC.				
Te	st Equipr	ment	& Conditio	ons					1			e at time of Test		
De	ad Weig	ht Tes	ster:	Dual Pi	ston Hydraul	lic Typ	pe					5° F & 75° F		
Bra	and:	Am	etek	Accuracy:			-	+/- 0.1% RDG		Hydraulic Fluid used for Test;		AAA Clean Oi No additives		
Мо	del #:	DM	R-100 Date Certified:				0	01/07/11						
_	rial #:	857		Buc for he certificati				01/07/13			lest;			
					ceable to NIS							_		
82	2/26629	6-02,	DHI1291	198527,	DHI64030, 2	2011-	9598-	58861						
Cer	rtificatio	n Peri	formed fo	r:										
С	Name:	me: Carolina Rubber & Hydrau					Customer Order #:			2023810				
ŭ			608 Union West Blvd.				Item Number:				4001-2LU-GF			
S Address:		s:	Matthews,		NC 28104		Item Description: Serial Number:			4" LF 1/2" LM 0/10000 psi 669863				
Ť				6										
Telephone:			1	Stated Catalog Accuracy				/: 1%						
Tes	st Result	s								-				
			Up S	cale					Do	wn	Scale			
Calibration Test Point		Instrument Reading / Result		Within Tolerand		Calibration Test Point		Instrum Reading /			Within Tolerance			
1000			1000		1		9000		900		D	*		
3000		3000		-		7000		700		D	1			
5000		_	5000				5000		500		D	1		
8000		-+	8000		1		3000		300		D	*		
10000 10000			00	1		1	000	100		o	1			
	t Summa													
	erall Accu			1%										
Not 9/2	tes: Rece 23/11; Ce	ertifica	ation of p d, assign	ressure g ed new s	auge; Remo erial number	ved T	eflon t	ape from	n threads	; P	rior seria	al # 990886 from		
9/23/11; Certified, assigned new serial num Date: 8/6/12 Signature:						- pac	1. Can	auge for	sni	pinent t	o customer			

ESP Certimes that above listed instrument has been tested using published and recognized metrological theories and practices. This report was made by dead weight test and comparison to ESP standards that are traceable to NIST (National Institute of Standards and Technology). All tests are conducted by qualified personal in an environmentally monitored laboratory. The calibration of this instrument meets applicable procedures and requirements.

Contractor should provide jack information.

RCH-Series, Hollow Plunger Cylinders

Page 1 of 2

Home > Industrial Tools > Printer-friendly

RCH-Series, Hollow Plunger Cylinders

rch.jpg 🗉

- Enerpac hollow plunger cylinders provide versatility in testing, maintenance and tensioning applications. The hollow plunger design allows for both pull and push forces
 Single-acting spring return
- Cylinders are nickel-plated, floating center tube on models over 20 tons increases product life
 Baked enamel finish for increased corrosion resistance
- Baked enamel finish for increased corr
 Collar threads for easy fixturing
- Collar infeads for easy lixiuring
 RCH-120 cylinders include AR-630 coupler and has 1/4 NPTF port
- RCH-121 and RCH-1211 cylinders have FZ-1630 reducer and AR-630 coupler, all other models
- feature CR-400 coupler

Cylinder Capacity	Stroke	Model Number	Cylinder Effective Area	Oil Capacity	Collapsed Height	Extended Height	Out- side Dia- meter inch	Center Hole Dia.	Weight pound
ton	inch		inch ²	inch ³	inch	inch			
	0.31	RCH-120	2.76	0.86	2.19	2.5	2.75	0.77	3.2
13	1.63	RCH- 121*	2.76	4.49	4.75	6.38	2.75	0.77	6.2
	1.63	RCH- 1211	2.76	4.49	4.75	6.38	2.75	0.77	6.2
	3	RCH-123	2.76	8.29	7.25	10.25	2.75	0.77	9.8
20	2	RCH- 202*	4.73	9.46	6.38	8.38	3.88	1.06	17
	6.1	RCH-206	4.73	28.67	12.05	18.11	3.88	1.06	31
30	2.5	RCH- 302*	7.22	18.05	7.03	9.53	4.50	1.31	24
	6.13	RCH-306	7.22	44.23	13.00	19.13	4.50	1.31	48
60	3	RCH- 603*	12.73	38.20	9.75	12.75	6.25	2.12	62
	6	RCH-606	12.73	76.41	12.75	18.75	6.25	2.12	78
95	3	RCH- 1003*	20.63	61.88	10.00	13.00	8.38	3.11	132

* For lightweight aluminium models, see RACH-series *Also available as cylinder-pump sets.

SC-Series, Single-Acting, Cylinder-Pump Sets [2] 700, 900-Series, High Pressure Hydraulic Hoses [3]

http://www.enerpac.com/en-us/print/3502

Verify correct pressure.

Jack data sheet should provide effective area of cylinder.

Tension = Pressure x Effective Area.

 Correct pressure would be 43,950 lb. /Eff. Area. (psi)

Check jack maximum stroke prior to tensioning.

Check maximum stroke

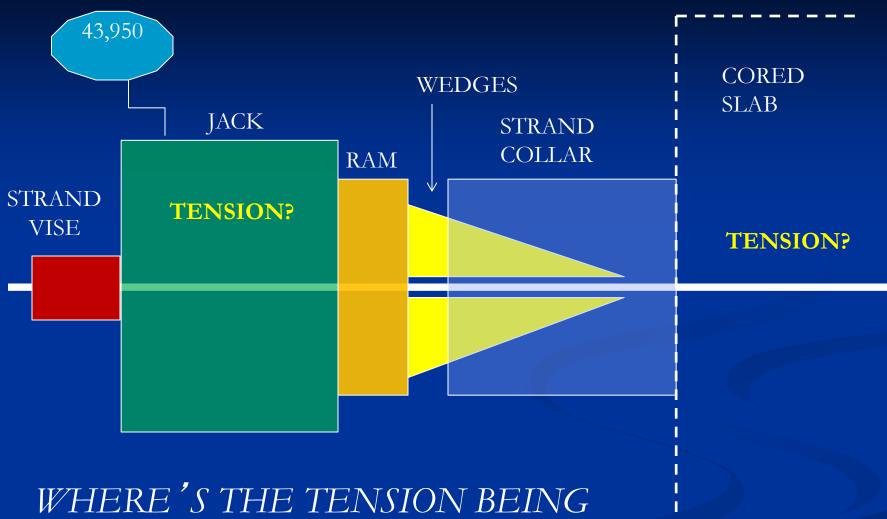
Max. stoke during tensioning =false tension readings.

Post-tensioning

Contractor must use a reaction frame to allow access to set the wedges after tensioning.
 Tensioning against the wedges will not be allowed.

Strand Vise

- Strand Anchors consist of a collar and hardened wedges.
- Proper installation is critical to achieve correct tension in units.



Double Strands

Strand Collar

MEASURED???

Jacking against wedges setup Not a good idea.

Jack Setup with reaction frame

Jack Setup with reaction frame

Double Acting Jack

Other Things To Consider

- Install strand vise on dry, clean cable only. No grease from strand should be on cable ends.
- Good idea to mark strand behind the strand vise to make sure the cable does not slip.
- Apply jack pressure to ensure proper tension is attained. 43,950 lbs. (need load charts for jack)
- Hold pressure for at least 2 minutes to ensure no pressure losses.
- Cut excess strand with saw. No flame cutting!

2012 Specifications and Other Resources

- Division 4 (Section 430), Page 4-52, 53, 54
- Construction Manual (Section 430), Page 4-43, 44
- Plans
- Project Special Provisions (Grout for Structures)
 Division 10 (Section 1003), Page 10-19 (DOES NOT APPLY)

GROUT FOR STRUCTURES

(9-30-11)

1.0 DESCRIPTION

This special provision addresses grout for use in pile <u>blockouts</u>, grout pockets, shear keys, dowel holes and recesses for structures. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Mix and place grout in accordance with the manufacturer's recommendations, the applicable sections of the Standard Specifications and this provision.

Approved Mix Design

- Must have an approved concrete mix design.
- Cannot use grout that contains soluble chlorides or more than 1% soluble sulfate.

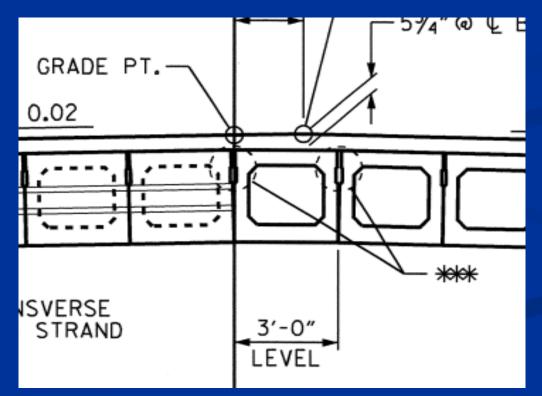
Approved Pre-Packaged

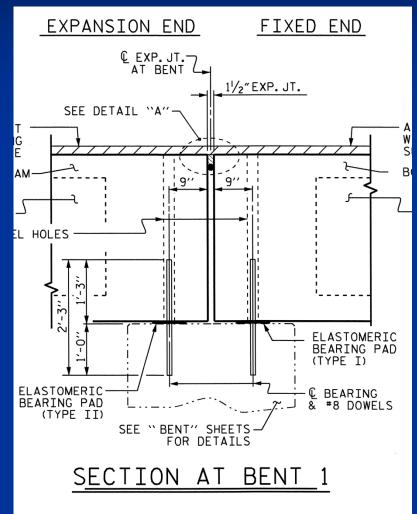
- A list of approved packaged grout is on M&T's web site.
- Must be non-metallic & nonshrink grout.
- Consult manufacturer to determine if it is suitable for the application & meets strength, durability, etc. requirements.

Product ID	Plant ID	Company Name	Product Group	Product Category	Product Name	Model Number	Product Status
NP99-2761	OT1186	BASF Building Systems, Inc.	Grouts	Non-Shrink	Construction Grout		Approved
NP99-2767	OT220	Kaufman Products	Grouts	Non-Shrink	Sure Grout	180-50	Approved
NP99-3447	OT1169	BASF Construction Chemicals	Grouts	Non-Shrink	Meyco RBA Grout		Approved
NP87-177	OT1156	Dayton Superior Corporation	Grouts	Non-Shrink	Sure-Grip High Performance Grout		Approved
NP95-1034	OT529	Lambert Corp.	Grouts	Non-Shrink	Vibropruf 11		Approved
NP95-1035	OT529	Lambert Corp.	Grouts	Non-Shrink	Vibropruf 20		Approved
NP95-1067	OT1156	Dayton Superior Corporation	Grouts	Non-Shrink	1107 Advantage Grout		Approved
NP99-2686	OT1186	BASF Building Systems, Inc.	Grouts	Non-Shrink	Masterflow 555		Approved
NP99-2726	OT80	ChemMasters	Grouts	Non-Shrink	Conset Grout	2310.50	Approved
NP99-2731	OT881	Kaufman Products, Inc	Grouts	Non-Shrink	Harris Construction Grout		Approved
NP99-2736	OT253	W.R. Meadows Of Georgia, Inc.	Grouts	Non-Shrink	CG-86		Approved
NP99-2741	OT495	A.W. Cook Cement	Grouts	Non-Shrink	MS Grout		Approved
NP99-2753	OT253	W.R. Meadows Of Georgia, Inc.	Grouts	Non-Shrink	Pac-It		Approved
NP99-2755	OT253	W.R. Meadows Of Georgia, Inc.	Grouts	Non-Shrink	588-10K		Approved
NP99-2757	OT1186	BASF Building Systems, Inc.	Grouts	Non-Shrink	Masterflow 928		Approved
NP99-2759	OT1186	BASF Building Systems, Inc.	Grouts	Non-Shrink	MasterFlow 713 Plus		Approved
NP05-4512	OT805	Sika Corporation	Grouts	Non-Shrink	Sika Grout 212		Approved
NP08-4808	OT1176	Quikrete Company	Grouts	Non-Shrink	General Purpose Grout	1585-01	Approved
NP08-4820	OT40	CTS Cement Manufacturing Corporation	Grouts	Non-Shrink	Rapid Set Cement All		Approved
NP09-4924	OT1187	SpecChem, LLC,	Grouts	Non-Shrink	SC Multipurpose Grout		Approved
NP09-5054	OT1186	BASF Building Systems, Inc.	Grouts	Non-Shrink	Masterflow 816		Approved
NP09-5055	OT1186	BASF Building Systems, Inc.	Grouts	Non-Shrink	Master Flow 1205		Approved
NP09-5078	OT1186	BASF Building Systems, Inc	Grouts	Non-Shrink	Masterflow 1341		Approved
NP09-5109	OT1185	A.W. Cook Cement Products	Grouts	Non-Shrink	Dry Pack Grout		Approved
NP99-2712	OT1176	Quikrete Company	Grouts	Non-Shrink	Anchoring Cement	1245-81	Approved
NP99-2771	OT859	Euclid Chemical Company	Grouts	Non-Shrink	NC Grout		Approved
NP99-2779	OT859	Euclid Chemical Co.	Grouts	Non-Shrink	NS Grout		Approved
NP12-6018		US Mix Co.	Grouts	Non-Shrink	US Spec NA-50	N/A	Under Evaluation
NP12-6019		US Mix Co.	Grouts	Non-Shrink	US Spec NA Grout	N/A	Approved
NP99-2777	OT859	Euclid Chemical Co.	Grouts	Non-Shrink	Hi-Flow Grout		Approved
NP05-4460	OT1176	Quikrete Company	Grouts	Non-Shrink	FastSet Non Shrink Grout	1585-09	Approved
<u>NP08-4807</u>	OT1176	Quikrete Company	Grouts	Non-Shrink	Non Shrink Precision Grout (CG)	1585-00	Approved

- Preparation To Place Grout:
 - Clean the areas (shear keys, dowel holes, recessed areas) to remove all dirt, debris, grease, oil, etc.
 - Saturate the concrete surfaces with clean water and remove excess water prior to placing grout.
 - Use backer rod or spray foam to seal cracks, holes, etc. Due to spray foam expansion, it should be trimmed as required.

- Mixing Approved Pre-Packaged Grout:
 - Per Article 1024-4, use potable water only.
 - Follow Manufacturer's recommendations for mixing. Instructions should be printed on the packaging.
 - Per Project Special Provisions -
 - Aggregate may be added to the mix only where recommended or permitted by the manufacturer & Engineer.
 - The quantity & size of aggregate shall be in accordance with the manufacturer's recommendation.

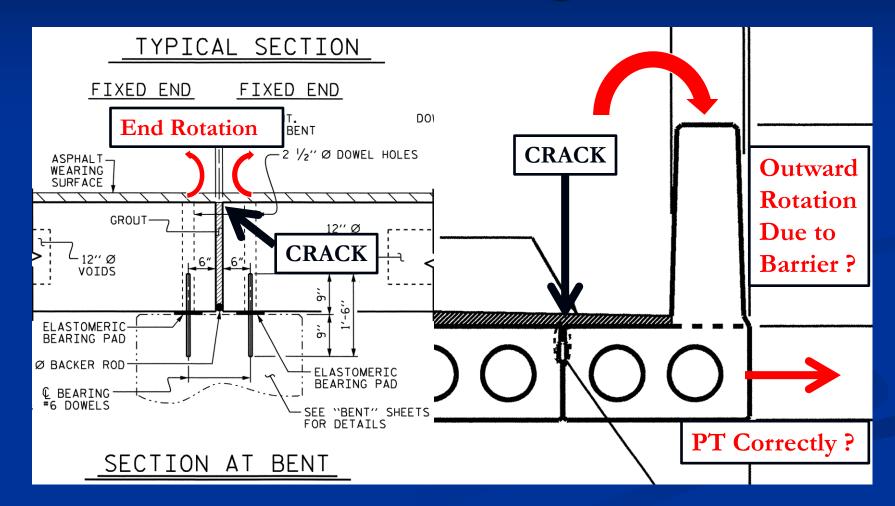




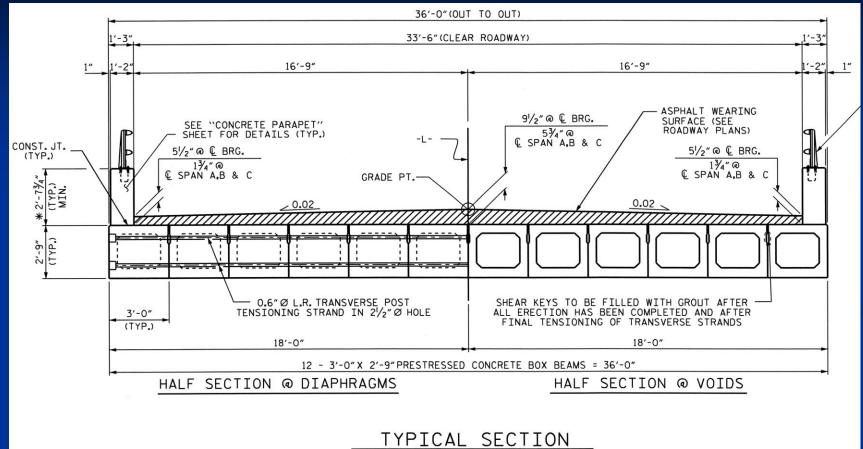
Grouting on Crown Typical Sections:

 Grout center shear keys <u>before</u> post-tensioning when the caps (of end bent/interior bents) are

crowned.


Dowel holes at fixed ends shall be filled with grout. Dowel holes at expansion ends shall be filled with joint sealer to $1 \frac{1}{2}$ above the dowels, then filled with grout.

Placing Loads on Cored Slabs/Box Beams:

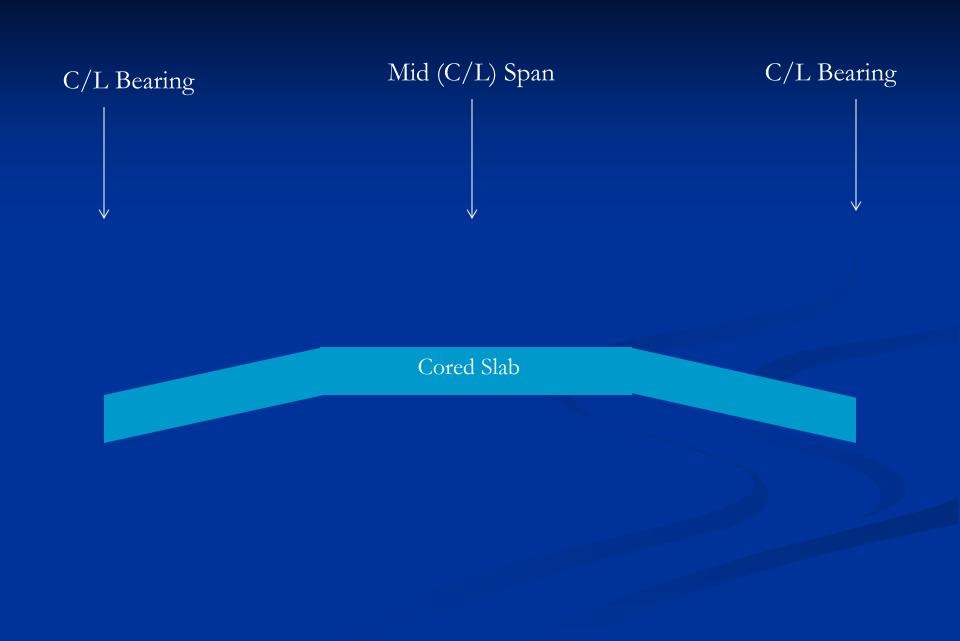

- Per Project Special Provisions, construction loading & traffic loading shall not be allowed until the 3 day compressive strength is achieved. (5000 psi)
- Construction loading & traffic over legal load limit should be submitted for review & approval. This includes loading for top down construction.

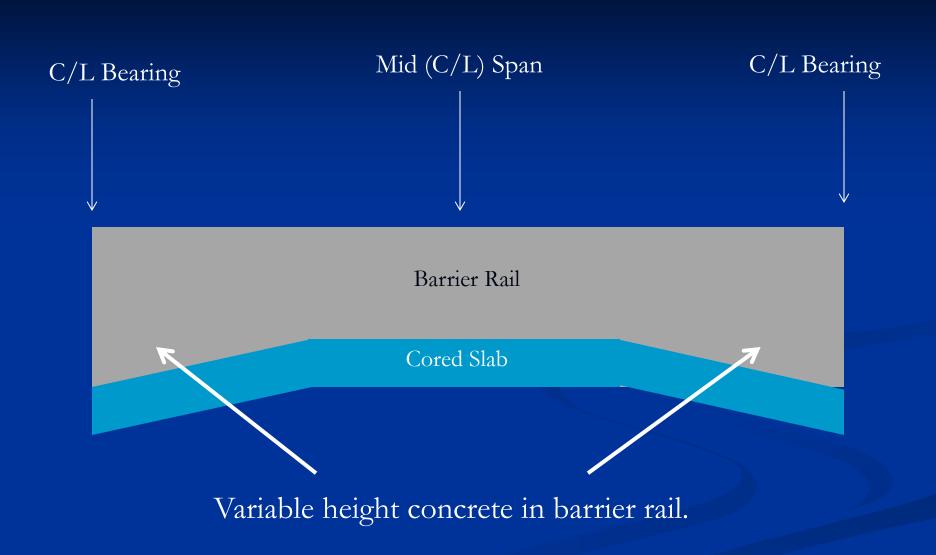
 If you observe cracks in the grout, prior to asphalt or concrete overlay, epoxy seal the cracks.

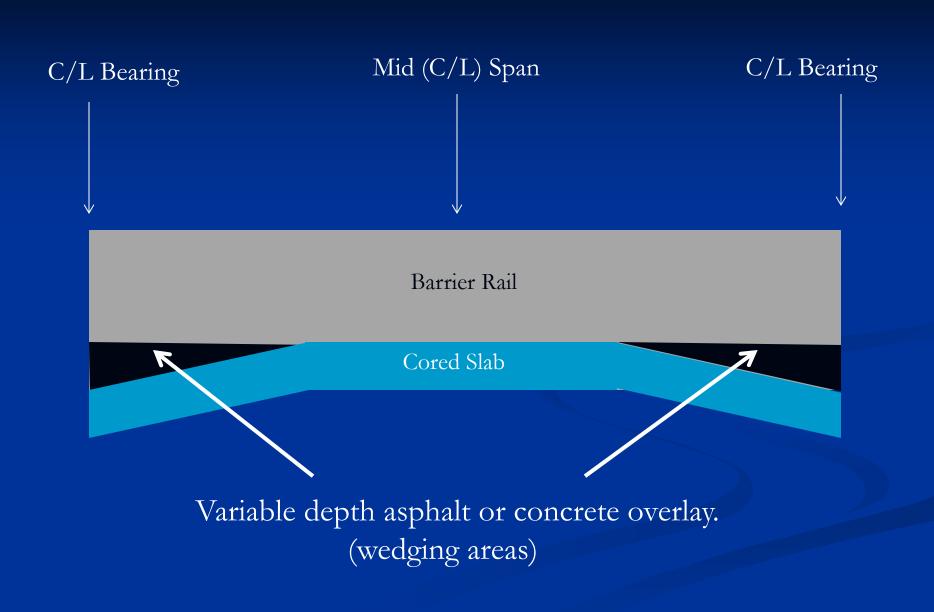
Typical Sections

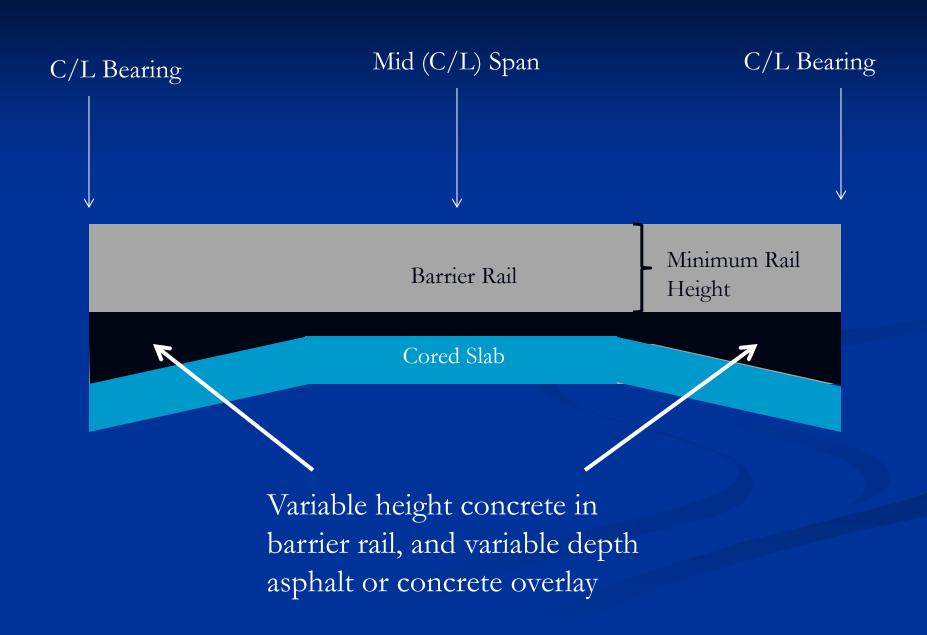
* THE MINIMUM HEIGHT OF THE PARAPET IS SHOWN THE HEIGHT OF THE PARAPET VARIES WHILE THE TOP OF THE PARAPET FOLLOWS THE PROFILE OF THE GUTTERLINE

• Camber in the cored slab/box beam units requires varying overlay depths along the span. Mid-span depth is the minimum overlay.


Barrier Rail


- Barrier rail is placed prior to overlay.
- Barrier rail will vary in depth to match the camber in the slabs.
- In addition to camber, overlay thickness must also be factored in to attain minimum rail height above finish grade.




Asphalt Wearing Surface

- Establish the plan grade line to determine wedging limits.
- Grades should be provided along the centerline and gutter lines.
- Several paving lifts may be necessary to bring bearing locations to grade.

Concrete Wearing Surface

Concrete Wearing Surface (CWS)

- Class AA 78M mix design
- Place and finish according to 420-14 (just like cast in place decks on girder bridges)
- Adhere to 420-20 14 days cure and 4500 psi prior to placing loads on deck.
- Due to camber, deck thickness varies across the span. Grade lines are necessary to obtain proper depth and reinforcing steel cover.
- Screed set up must be based on finished grade elevations and rebar chairs adjusted to obtain proper cover.

CWS Screed Set Up

CWS Longitudinal Construction Joints

Cracking in CWS

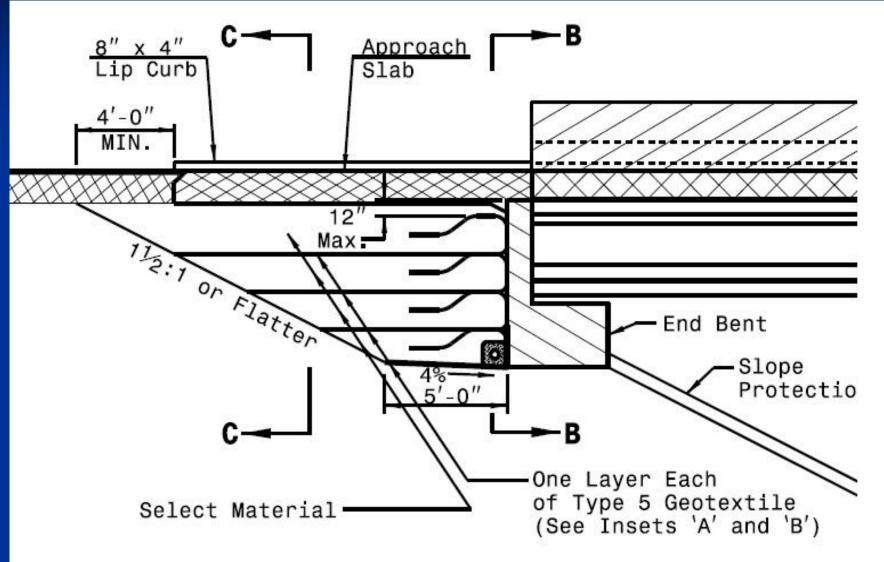
- CWS will crack over the grout joint between spans.
- A tooled joint or sawed joint can control this crack.
- Sawed joints within 12 hours.
- Do not saw the joint if it has already cracked.

Sidewalks

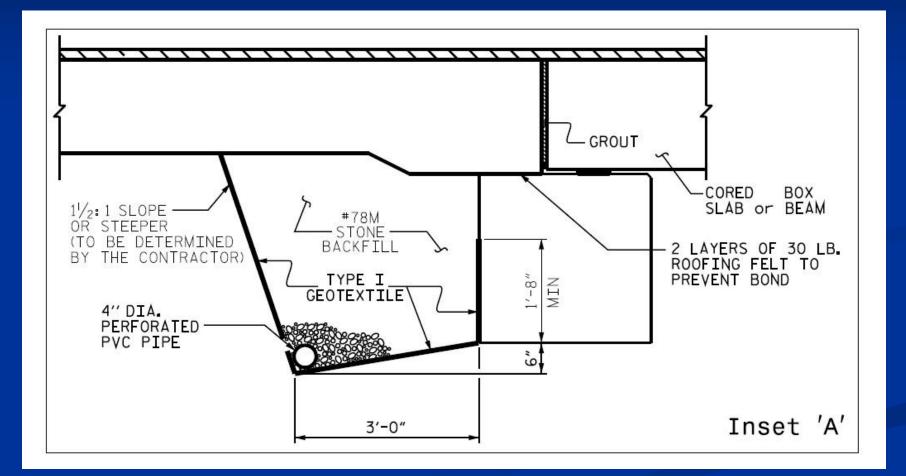
Tool joints in sidewalk on skew and over grouted, fixed joints between spans.

Do Not Allow This!

Reinforced Bridge Approach Fill


Two types
 Standard Design

 Major routes – Interstate, Primary, Major collectors, etc.


 Sub-Regional Tier Design

 Minor collectors, local, and secondary roads.
 Common for cored slabs and box beam bridges.
 Not common in Coastal Plain

Standard RBAF

Subregional Tier

Materials

Standard RBAF

- Class III or V Select backfill
- **Type 5 Geotextile Fabric**
- PVC pipes, fittings and outlet pipes.
- PVC, HDPE, Linear low density polyethylene (LLDPE)– 30 mils thick
- Class B concrete outlet pads with rodent screens.
- **78**M stone (drain)

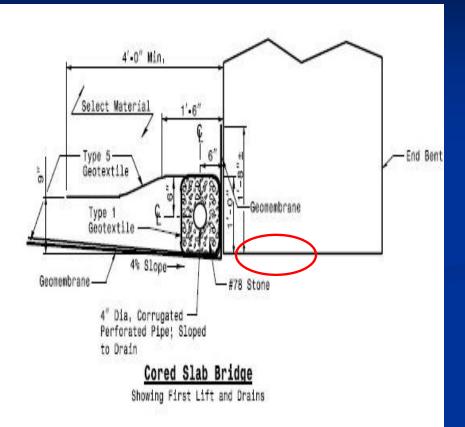
Sub-Regional Tier

- Class V Select Backfill (78M)
- Type 1 Geotextile Fabric
- PVC pipes, fittings, and outlet pipes.
- Class B concrete outlet pads with rodent screens.

Geotextiles – Section 1056

Refer to 2012 Standard Specifications for required engineering properties of Type 1, Type 5, & Geomembrane

Refer to National Transportation Product Evaluation Program or NTPEP to verify geotextile meets requirements for specific type. http://data.ntpep.org/Module/GTX/Data.aspx


RBAF – Construction Methods

Excavation

- Depth to bottom of cap.
- 5 foot bottom width on 4 % slope toward cap.
- Backslope 1 ¹/₂:1 or flatter extending 4 feet beyond end of approach slab.

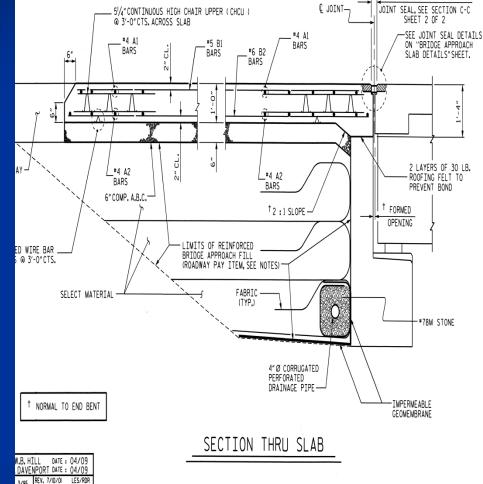
RBAF- Construction Methods

- Install Impermeable
 Geomembrane
 - Geomembrane necessary to make RBAF work correctly.
 - Attach to the cap and wings using adhesives, tape, etc. to hold in place.
 - Vertical limits as shown in std. drawing.
 - Glue or weld seams to prevent leakage between pieces.

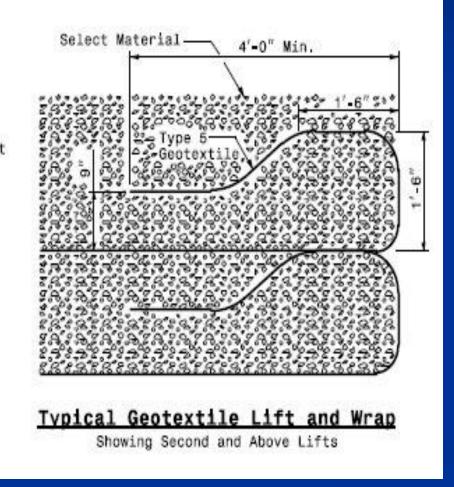


Drain outlet through the impermeable membrane must be sealed to prevent leaking.

RBAF- Construction Methods


Drain Installation

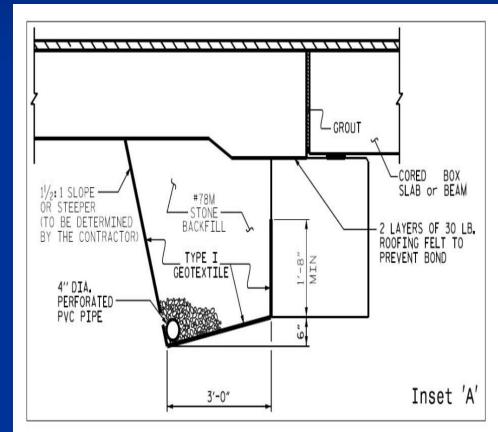
- Place first layer of TYPE
 5 geotextile and construct drainage as shown in details.
- Slope perforated PVC pipe to drain.
- Pipe and 78M stone wrapped in Type 1 geotextile.
- Drain outside RBAF must be solid.



RBAF – Construction Methods

- 1'-6" Type 5 fabric layers
- 4 ft. overlap on top of each layer with 2 ¹/₂' buried in the lift.
- Overlap on 3 sides.
- Overlap adjacent layers 18".
- Number of layers based on height of the backwall. See Std.
 Drawings

Std. Drawing Details

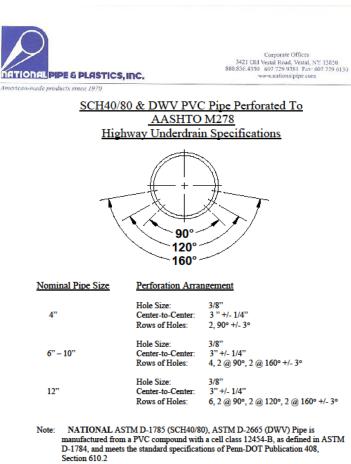

Inset 'B'

Height of Backwall	Number of Fabric Layers
< 4'-6"	2
4'-6" - 5'-9"	3
5'-10" - 7'-2"	4
7'-3" - 8'-8"	5
8'-9" - 10'-1"	6
10'-2" - 11'-8"	7

Sub-regional Tier Construction Methods

Excavation

- Depth to bottom of cap.
- 3 ft. bottom sloping 6" away from cap.
- Must be graded to function as a drain.
- 1 ¹/₂: 1or steeper backslope.


Sub-regional Tier Construction Methods

- Place Type 1 fabric on all excavated faces and 1'-8" minimum on cap face and wing walls.
- Place perforated PVC drain in bottom of excavation and lay on grade to drain.
- Backfill with 78M stone.

Drill Your Own Holes

Standard pipe length: 20'