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1.0  INTRODUCTION 
 
Submerged Aquatic Vegetation (SAV) is an important component in any estuarine ecosystem. 
As such, it is regulated by federal and state agencies as a jurisdictional resource, where impacts 
to SAV are compensated through mitigation. The North Carolina Department of Transportation 
(NC DOT) projects in the coastal area have the potential to impact SAV. Preparation of 
environmental documentation includes the identification of presence or absence of SAV in the 
project areas. Upon completion of avoidance and minimization protocols, compensatory 
mitigation is addressed. Historically, traditional wetland mitigation methodologies have been 
proven to be ineffective or inappropriate for SAV mitigation. These tasks are further complicated 
in that the location and density of SAV can change from year to year depending on variances in 
weather and water quality. 
 
The NCDOT desires to understand trends in the presence or absence of SAV in coastal areas of 
North Carolina. This information will provide NC DOT and regulatory agencies with 
information necessary to realistically assess impacts to SAV from proposed project, and to 
determine appropriate avoidance, minimization, and compensatory mitigation alternatives. The 
dynamics (unpredictable presence or absence) of the SAV can lead to unintentional violations, as 
well as, over mitigating for the resource. 
 
Large scale submerged aquatic vegetation (SAV) surveys are rarely possible, even though 
effective SAV management depends in part on understanding the coverage and abundance of 
SAVs, the growth forms present and/or the species present. This lack of survey data is largely 
due to the expense and challenges associated with sampling SAVs. Assessments are further 
complicated in regions covering thousands of hectare. For example, the Currituck Sound 
represents the northernmost sound along the Atlantic coast of North Carolina.  This shallow inlet 
has a surface area of 39,600 ha (396 km2) and a mean depth of 1.6 m (Wicker and Endres 1995). 
Inventorying this large of an area becomes cost-, time-, and labor-prohibitive using traditional 
field sampling techniques such as sampling along transects, within quadrants, or subsampling 
randomly-stratified lake points. Although these techniques can give good estimates of local SAV 
biomass and species composition at selected sites within a water body, these methods cannot 
capture whole-area plant biomass/cover or the patchy distribution of aquatic SAVs in an entire 
water body (Zhang, 1998). Remote sensing has the potential to be an important tool to obtain 
survey information on SAVs within large geographic areas (Valley et al., 2005; Vis et al., 2003).  
 
Typically, remote sensing has been used to measure SAV cover by the labor-intensive process of 
mapping SAV areal distributions along coastal margins using visual interpretations of aerial 
photographs (Orth and Moore, 1983; Marshall and Lee, 1994). Unfortunately, this approach has 
limited applicability for assessing SAV distributions in regions with extensive, non-linear water 
bodies. Therefore, an approach that can accommodate larger areas is needed for regional water 
body monitoring of SAVs. One approach is to use high resolution satellite images, such as 
Digital Globe’s Quickbird and Worldview-II satellite imagery.  The two sensors currently have 
the highest commercially available spatial resolution available (2.44 m and 2.0 m multispectral 
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respectively) and possess the capability of synoptically capturing large areas within a single 
image (272 km2). Although Quickbird and Worldview-II, like their Landsat predecessor, were 
primarily designed for detecting land features, recent improvements provide better spatial and 
spectral resolutions that may be applicable for aquatic studies (Zilioli, 2001). However, satellite 
remote sensing of aquatic SAVs, especially submersed SAVs, has been less studied than 
terrestrial vegetation because of the difficulties inherent in interpreting reflectance values of 
water (Penuelas et al., 1993; Lehmann and Lachavanne, 1997). For example, clear water 
provides little atmospheric reflectance and either absorbs or transmits the majority of incoming 
radiation (Lillesand and Kiefer, 1994; Verbyla, 1995). As a result, researchers have used 
remotely sensed data to detect primarily emergent vegetation or dense homogenous clusters of 
submersed vegetation (Ackleson and Klemas, 1987; Armstrong, 1993). Despite the potential 
limitations of using current sensors such as Quickbird and Worldview-II to detect submersed 
aquatic SAVs, more research is clearly needed to determine whether these sensors can be used to 
assess SAV abundance and distribution across a large geographical region.  
 
Additionally, water body characteristics may need to be taken into consideration when 
attempting to remotely sense SAVs. For example, several studies have shown that remotely 
sensed images can measure characteristics such as chlorophyll, Secchi disk transparency, and 
suspended sediments (see Lathrop and Lillesand, 1986; Jensen et al., 1993; Narumalani et al., 
1997; Lillesand et al., 1983; Khorram and Cheshire, 1985; Dekker and Peters, 1993; Kloiber et 
al., 2000; Nelson et al., 2003), all of which may influence the detection of SAVs, especially 
submersed SAVs. Water bodies within a region can vary widely in several of the above 
characteristics, which can also influence how aquatic SAVs are remotely sensed. For example, 
because water color and water depth may influence the sensor’s ability to detect SAVs, it may be 
necessary to incorporate such factors into predictive models of aquatic SAVs. Water depth has 
been successfully incorporated into models to detect submersed SAVs using sensors such as 
Landsat in smaller bodies of water (Raitala and Lampinen, 1985; Ackleson and Klemas, 1987; 
Armstrong, 1993; Narumalani et al., 1997; Nelson et al., 2006).  However tremendous potential 
still exists in the capacity of high resolution satellite imagery to detect submersed SAVs within a 
large region, such as the Currituck Sound of North Carolina.  

 
2.0  PROJECT AREA 

 
The Currituck Sound is located in the Northeastern most corner of North Carolina and makes up 
the northern arm of the Albemarle-Pamlico Estuary System (APES), the second largest estuary in 
the United States, thus making it one of the most important wildland habitats in the nation.  The 
Sound stretches approximately 30 miles from North to South and 3 to 8 miles from east to west 
dependent upon location.  On its northernmost end the Sound extends to Back Bay, Virginia and 
into the Albemarle -Chesapeake Canal.  To the south, it joins the Albemarle Sound and the rest 
of the APES system.  The freshwater inputs to Currituck Sound include North Landing River and 
Northwest River, both with headwaters in the Great Dismal Swamp of North Carolina.  Back 
Bay also contributes water (both salt and fresh) into the Sound through shallow water channels.   
Inputs of brackish water from Federal canals also might influence the salinity of Currituck 
Sound.  The sound is separated from the Atlantic Ocean by a narrow strip of barrier islands 
known as the outer banks which are no more than a mile wide.  The Sound has an average depth 
of 5 feet (1.52 meters) and maximum depth of approximately 13 feet (3.96 meters).  Water level 
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fluctuations in Currituck Sound are a product of constantly changing wind.  The Sound stretches 
through two counties; Dare and Currituck, with level or slightly sloping terrain that drains into 
the Currituck Sound. 
 
The survey area spans the mid-Currituck portion of the Currituck Sound encompassing the 
Currituck County mainland and outer banks as well as the Dare County outer banks (figure 2.1).  
The project area is approximately 13 miles long by 5 miles wide stretching from just south of 
Corolla to Duck on the eastern side and Parker’s creek to Webster’s creek on the western side.      
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Figure 2.1.  Study area for SAV sampling and remote sensing 
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3.0  PROJECT DESCRIPTION 
 

3.1.  Objectives 
 

The objectives in this study are: (1) to determine if different levels of aquatic plant cover and 
plant types (overall littoral SAVs (i.e. total presence/absence) can be detected using the 
commercially available Quickbird and Worldview-II satellite sensors or free LANDSAT 5 data 
and (2) to determine if predictions of SAV abundance and distribution can be improved by 
including limnological characteristics ( Secchi disk depth, salinity, sediment type, and water 
depth) and water quality (Total nitrogen, total phosphorus, etc) in the models.  Secondary 
objectives of this study are to identify existing beds of SAV and to determine the spatial extent 
and status with the use of currently accepted survey techniques and remote sensing.       
  The hypothesis of this study is that satellite remote sensing will provide an effective 
means of detecting SAV and the inclusion of the additional water clarity and quality 
characteristics will strengthen relationships between SAV cover and sensor spectral values. 
 

3.2.  SAV sampling 
 
The Currituck sound was sampled during the summer-stratified season and peak plant biomass 
(June –September).  SAVs were sampled using a modification of the point intercept method 
(Madsen, 1999).  The sound was gridded into 174 equidistant points that were sampled three 
times during the summer-stratified season:  Sample 1 (06/14/10-07/13/10), Sample 2 (07/24/10- 
08/07/10) and Sample 3 (09/03/10-09/06/10).  Initial findings allowed for reduction of sample 
points as locations with an initial depth of 10 feet (3.05 meters) or greater identified in sample 1 
were deemed too deep for plant growth.  Also, points found to be on island structures were 
removed as SAVs would be unable to establish growth on such terrestrial features.  Therefore, 
only points in the littoral zone of the Sound remained for sample 2 (N of 117).  Sample 3 was 
reduced to 31 points given time restraints and served solely as a validation dataset.  The sample 
points were located in the field using a Magellan MobileMapper CX professional grade GPS 
unit.  At each point, water depth was measured and plant composition assessed by recording 
plant presence and plant cover at each site.  This was accomplished by qualitatively assigning a 
‘plant cover level’ for each category.  Plant cover was assessed at each point for an area of 
10mx10m by utilizing a two-sided sampling rake thrown in four cardinal directions from the 
point of anchor.  A locational error of +/- 5 feet (1.52 meters) was thought to be obtained through 
constant repositioning.   Plant cover levels were initially separated into 10% field interval 
categories ranging from 0 (0%) to a level of 10 (91-100%).  These levels were then combined in 
the lab to represent four levels most likely to be discernible by each sensor: 0 (0–20% plant 
cover), 1 (21–40% plant cover), 2 (41–80% plant cover), and 3 (81–100% plant cover).  An 
additional binomial category of total littoral zone plant cover was developed by combining the 
four levels recorded for each plant category at each point. This category captures littoral plant 
presence or absence at each point by assigning each site either a 0 (0–20% plant cover) or a 1 
(21–100% plant cover).  All values of plant cover less than 20% are thought to be undetectable 
by most currently available sensors and were therefore assigned a value of “0” or absence 
(Nelson et al. 2003).  For non-model purposes, a littoral percent plant cover was calculated as the 
total number of points sampled with any plant category greater than level 0 (i.e., >1% cover at an 
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individual site), divided by the total number of points in the littoral zone. The littoral zone is 
defined as <2 m water depth (figure 3.1). Sites with a depth of >2 m will be regarded as pelagic 
where it will be assumed that reflectance of the water column would dominate the reflectance 
spectra necessary for submersed plant detection by the satellite sensor (Ferguson and 
Korfmacher 1997). 
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Figure 3.1.  Littoral zone of study area as estimated through summer 2010 SAV sampling  
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3.3.  Water Quality Characteristics 
 
Water clarity was estimated using a 20 cm diameter Secchi disk.  Secchi depth was determined 
by averaging two measurements taken over the shady side of the boat during SAV sampling.  
Pelagic water samples were taken from the deepest area of the study area (sample point 169 = 
10.5 feet) directly adjacent to multiple aggregated sampling areas for comparison.  A 
temperature profile was also established using an onboard thermometer during all SAV 
sampling.  Salt content of the water was determined with the use of a handheld refractometer by 
taking four readings over the side of the boat and averaging.  Finally, sediment type estimates 
were developed by collecting samples during each SAV sampling run in the littoral zone of the 
aggregated sampling areas with a bottom grab from directly under the boat. Lake sediments were 
categorized into ten different types that represent identified soil texture.  These were clay, clay 
loam, loam, loamy sand, sand, sandy clay loam, sandy loam, silt, silt clay, and silt loam.   

   
For water quality estimations, a representative dataset was developed from which to test water 
quality.  This representative dataset was then interpolated to provide water quality at each SAV 
sample point.  Water quality parameters identified below were tested between SAV sampling 
runs:  WQ sample 1 (07/08/10-07/23/10) and WQ sampling 2 (08/08/10-08/14/10).  Water 
quality parameters were estimated with the use of the LaMotte SMART® Spectro 
Spectrophotometer.  Measures of water quality included total nitrogen, total phosphorus, 
ammonia nitrogen, Nitrate-N, Color, Dissolved Oxygen, Nitrite-N, Phosphate-P and pH.  
Dissolved Oxygen, pH, and Color were all derived in the field using procedures designated for 
testing by LaMotte.  All other samples were collected into 32 ounce sampling containers, 
preserved using procedures specified by LaMotte and transferred back to the lab packed in ice.  
Samples taken back to the lab were processed the same day as collection.  Total nitrogen was 
determined using a persulfate digestion followed by second derivative spectroscopy (Crumpton 
et al., 1992). Total phosphorus was determined using a persulfate digestion (Menzel and Corwin, 
1965) followed by standard colorimetry (Murphy and Riley, 1962).  Ammonia nitrogen was 
determined using the reaction of Salicylate and ammonia in the presence of a chlorine donor and 
an iron catalyst which forms a blue indophenol dye.  The concentration of which is proportional 
to the ammonia concentration in the sample.  Nitrate-N concentration was determined using zinc 
to reduce nitrate to nitrite. The nitrite that was originally present, plus the reduced nitrate, reacts 
with chromotropic acid to form a red color in proportion to the amount of nitrate in the sample.  
Nitrite-N was determined using the compound formed by diazotization of sulfanilamide and 
nitrite which is coupled with N-(1-naphthyl)-ethylenediamine to produce a reddish purple color 
in proportion to the nitrite concentration.  Phosphate-P concentrations were determined using an 
ammonium molybdate and antimony potassium tartrate reaction in a filtered acid medium with 
dilute solution of PO4.  This reaction forms an antimony-phosphomolybdate complex. This 
complex is reduced to an intense blue colored complex by ascorbic acid. The color is 
proportional to the amount of phosphate present.  All Water quality estimates were matched to 
images and SAV samples with acquisition and sample dates that most closely corresponded to 
water quality collection dates. 
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3.4  SAV Mapping using IDW Approach 
 
In order to provide the NCDOT with maps of existing plant communities, an Inverse Distance 
Weighted (IDW) approach was utilized to map existing plant communities based solely on SAV 
point sampling.  These maps were also developed to provide estimations of probable SAV 
distributions throughout the entirety of the Sound.  The IDW approach is a deterministic method 
for multivariate interpolation (ArcMAP 10.0) and is based on the assumption that things that are 
close to one another are more alike than those that are farther apart.  Thus, a weighting system 
was developed based on all SAV sample points and only their closes neighbors.  The Spatial 
Analyst>Interpolation>IDW tool in ArcMap 10.0 was used to complete all interpolations.  The 
sample points for each sampling run were used as the input point features with the SAV binomial 
or multinomial variable as the Z-value field.  An output cell size of 30 meters and a power of 2 
were used to increase the influence of the closest points and provide as much differentiation as 
possible.  The IDW was based on a fixed search radius of 1300 meters to include all points 
adjacent (above, below, left, right or diagonal) to each point being interpolated.  The output was 
a smooth continuous raster surface of potential existent SAV communities.  These maps do not 
represent SAV distribution to actual scale however.  The same procedure was used to map all 
other variables collected during SAV sampling in 2010.     
 

3.5.  Satellite imagery 
 
Quickbird satellite imagery (2.44 m) and Woldview-II imagery (2.0m) were acquired from 
Digital globe and LANDSAT 5 imagery for the entire Mid-Currituck Sound study area and were 
matched to the SAV and water quality samples.  Each sensor records spectral data based on the 
electromagnetic spectrum and records this data into spectral ranges known as bands.  The 
Quickbird sensor is made up of four spectral bands: Band 1 (450-520 nm), Band 2:  (520-600 nm), 
Band 3 (630-690 nm), and Band 4 (760-900).  The Worldview-II sensor is made up of 4* 
spectral bands: Band 1 (450-510 nm), Band 2 (510-580 nm), Band 3 (630-690 nm) and Band 4 
(860-1040 nm).  The LANDSAT-5 sensor is made up of 7 bands: Band 1 (450-520 nm), Band 2 
(520-600 nm), Band 3 (630-690 nm), Band 4 (760-900 nm), Band 5 (1550-1750 nm), Band 6 
(1040-1250 nm) and Band 7 (2080-2350 nm).  Band 6 was omitted from this study given its 
spectral range is not advantageous in vegetation studies.  Each sensors characteristics are 
summarized in table 3.1.  For band specific wavelengths, see tables 3.2 – 3.4. 

 

Sensor Spatial (m) 
Spectral 

(nm) 
Radiometric 

(bits) 
Temporal 

(days) Bands 

Worldview-II 1.8-2.4 
450-
1040 11 3.7 4* 

Quickbird 2.44-2.88 450-900 11 3.5 4 

LANDSAT-5 30 (120 Band 6) 
450-
1250 8 7 7 

Table 3.1.  Sensor specifications for spatial, spectral, radiometric and temporal resolution.  * Worldview-II 
currently contains 4 additional bands that were not assessed during this study 
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Worldview-II         
Band 1 2 3 4 
Name Blue Green Red NIR 

Spectrum 
Width 
(nm) 

450 - 
510 

510 - 
580 

630 - 
690 

860 - 
1040 

                         Table 3.2.  Multi-Spectral bands of the WorldVeiw-2 satellite sensor 
 

Quickbird         
Band 1 2 3 4 
Name Blue Green Red NIR 

Spectrum 
Width 
(nm) 

450 - 
520 

520 - 
600 

630 - 
690 

760 - 
900 

                        Table 3.3. Multi-Spectral bands of the Quickbird satellite sensor 
 
LANDSAT 5 TM             

Band 1 2 3 4 5 7 
Name Blue Green Red NIR SWIR SWIR-2 

Spectrum 
Width 
(nm) 

450 - 
520 

520 - 
600 

630 - 
690 

760 - 
900 

1550 - 
1750 

2080 - 
2350 

                                        Table 3.4. Multi-Spectral bands of the LANDSAT 5 TM satellite sensor 
 

Two Worldview-II, Two-Quickbird and five LANDSAT 5 images were acquired over the 
summer of 2010.  Each image encompasses a portion or the entirety of the study area.  Original 
images from each sensor are found in figures 3.1-3.5.   
 
Worldview – II:   

July 22nd, 2010 (Entire) 
August 5th, 2010 (Partial) 

 
Quickbird:   

August 5th, 2010 (Partial – Not Applicable) 
September 13th, 2010 (Entire) 

 
LANDSAT-5:   

April 20th, 2010 (Entire) 
May 8th, 2010 (Entire) 
July 11th, 2010 (Entire) 
August 28th, 2010 (Entire) 
September 13th, 2010 (Entire) 
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Figure 3.2.  Worldview-II image obtained July 22nd, 2010 from Digital Globe.   
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Figure 3.3.  Worldview-II image obtained August 5th, 2010 from Digital Globe.   

 



13 
 

 
Figure 3.4.  Quickbird image obtained September 13th, 2010.   
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Figure 3.5.  LANDSAT 5 ETM images obtained April 20th through September 13th, 2010 
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Image rectification and geoprocessing were conducted using ERDAS Imagine 2011 image 
processing software.  Quickbird and Worldview-II images came already georectified, however 
visual inspection showed that further georeferencing was necessary for some images.  Images 
taken on 09/13/10 (QB) and 08/05/10 (WV-II) were georeferenced to the Worldview-II image 
considered most spatially accurate using professional judgment (07/22/10).  All imagery was 
georeferenced using a 1st order polynomial transformation with no less than 10 ground control 
points.  Error was minimized to less than 1 pixel per transformation.   All imagery was inspected 
for atmospheric differences occurring between scenes and histogram matching was completed 
when necessary.  Due to the high occurrence of clouds in most images, a cloud removal masking 
technique was required to remove all pixels containing clouds or cloud shadows.  All land 
features were masked out using similar masking techniques.  Data points lying within pixels 
containing clouds, shadows or other interference were subsequently removed from the dataset 
before any statistical analyses were performed.   
 
The spectral pixel values or digital number (DN) values for all single pixels containing the 
position of each sample point, using the field-recorded GPS coordinates, were extracted using 
the Spatial analyst>Extraction>Extract Multi Values to Points tool in ArcMap 10.0.  DN values 
were extracted from each individual scene and combined with all SAV sampling data into one 
database file.  Spectral DN values for the pelagic region (sample points with depth measurements 
>6 feet or 1.83 meters) were also extracted to analyze the relationship between pelagic zone 
sound characteristics and spectral values. Because the pelagic zone is more homogeneous than 
the littoral zone, the spectral DN values for all pixels within the pelagic zone of the aggregated 
sampling areas were averaged resulting in one pelagic spectral value.  In turbid North Carolina 
coastal bodies of water, SAVs are unable to establish or grow in depths greater than 6 feet (1.83 
meters) due to a lack of adequate sunlight (Ferguson and Korfmacher 1997).  Thus, areas greater 
than 2 meters in depth were deemed “pelagic” for the purposes of this study.  Given the high 
spatial resolution of the Worldview-II and Quickbird sensors, extraction of WV-II and QB DN 
values were based on a bilinear interpolation of the pixel containing each GPS sample point 
along with that pixels nearest neighbors and computed into an average spectral reflectance value.  
This was completed for Worldview-II and Quickbird to more closely replicate actual site 
sampling size of SAVs.  LANDSAT 5 DN extraction was based solely on the single pixel 
containing the GPS sample point as LANDSAT imagery is of much coarser spatial resolution 
(30m) than both WV-II and QB.  
 
Determination of outliers was completed using visual and statistical inspection of each DN value 
at each point.  Any DN value identified as an outlier (> 1.5 x IQR) in SAS Enterprise Guide 4.2 
(SAS EG) was ultimately inspected for atmospheric interference and removed upon 
confirmation.  All images were inspected for points lying within previously masked clouds, 
along land, or within previously masked shadow areas eliminated in preprocessing and 
subsequent points were removed based on professional judgment.  Points removed were deemed 
unusable in model development due to the high degree of influence from sources outside of the 
target.  This procedure was completed for each image/ SAV sampling dataset combination.  All 
spectral digital number values were independently and statistically evaluated for interference 
from atmospheric or sensor defects before attempting to develop a spectral model data set for 
each sensor.    
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3.6.  Statistical analysis 
 
The satellite imagery DN values and SAV data were analyzed using binomial and multinomial 
logistic regression (logit models) in SAS EG.  Stepwise and best-subset regression techniques 
were used to fit individual and combined spectral bands to the sample data. All models also 
initially included water depth, secchi depth, salinity, temperature and estimated water quality 
parameters at each sampling point as an interaction term with each main effect variable (i.e. 
fitted spectral band or combined bands). 
 
All image/SAV combined sampling data points not eliminated during outlier detection were 
included in all logit models for each sensor and combined models.  The multinomial and 
binomial categories for plant cover and plant presence absence served as individual response 
variables for each logit model. The logit model uses the explanatory and interaction covariates to 
predict the probability that the response variable will take on a given value (SAS Institute Inc., 
1995).  The logit model expression is given where Y-hat is the estimated probability that the ith 
case is in a category (equation 3.1a)  and u is the regular linear regression equation (equation 
3.2b) where u is the response variable (binary or multinomial category) and X1-Xk are the 
explanatory variables (Band DN, Depth, Secchi, etc) and B1-Bk are the regression coefficients of 
X1-Xk.    

 

                     
Equation 3.1a.     Equation 3.1b 
 
 

For binomial logistic regression, the logit model indicates how the explanatory variable (DN 
values by band) affects the probability of the event (SAV presence/absence) being observed 
versus not being observed. For the multinomial logistic regression, probable outcomes of 
observations are calculated by analyzing a series of binomial sub models that represent the 
overall model’s ability to predict each of the plant cover response variables. For all logit model 
analyses, the descending option was used to select the highest plant category level as the 
response variable reference (level 3 for plant cover and level 1 for littoral plant 
presence/absence). This selection ensures that the results will be based on the probabilities of 
modeling an event (SAVs present), rather than a non-event (SAVs not present). 
 
Model fit was determined by examining the percent concordant values, the Wald test statistic, 
likelihood ratio, and score test. The percent concordant values provide an indication of overall 
model quality through the association of predicted probabilities and observed responses. These 
values are based on the maximum likelihood estimation of the percent of paired observations of 
which values differ from the response variable (Kleinbaum, 1994). Thus, the higher the predicted 
event probability of the larger response variable (based on the highest plant category level), the 
greater the percent concordant value will be. The Chi-square level of significance for the Wald 
test statistic, Likelihood ratio and score tests test the hypothesis that the coefficients of the 
independent variables are significantly different from zero by fitting the model using the 
intercept terms (Kleinbaum, 1994; Pampel, 2000).  The Hosmer and Lemeshow Goodness of fit 
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test was used to determine the overall model goodness of fit.  The Hosmer and Lemeshow 
Goodness of Fit test tests the null hypothesis that the data are generated by the model fitted by 
the researcher. The test divides subjects into deciles based on predicted probabilities, and then 
computes a chi-square from observed and expected frequencies (Hosmer and Lemeshow 2000).  
Then a probability (p) value is computed from the chi-square distribution with 8 degrees of 
freedom to test the fit of the logistic model. If the Hosmer and Lemeshow Goodness-of-Fit test 
statistic is .05 or less, the researcher will accept the null hypothesis that there is no difference 
between the observed and model-predicted values of the dependent. (This means the model 
predicts values significantly different from what they ought to be, which are the observed 
values).  If the Hosmer and Lemeshow goodness-of-fit test statistic is greater than .05, as the 
researcher wants for well-fitting models, then the researcher will fail to reject the null hypothesis 
that there is no difference, implying that the model's estimates fit the data at an acceptable level. 
 
To examine whether there were significant differences between data obtained from multiple 
images of the same sensor, individual-image logit models were developed. The model output and 
model coefficients from each image were compared using a two sample t-test to test for 
differences between the means of the model coefficients (log transformed). Resultant p-values 
for the paired variance and significance were determined at the 0.1 level. Insignificant results 
from these tests suggest that the means of the individual image data show no significant 
difference. Second, the means of the percent concordant values from the individual image data 
were compared. In this analysis, the absence of large differences between the data percent 
concordant values will support the validity of creating a sensor specific model across multiple 
images. 
 
Logit models for individual images were used to examine whether various water quality 
characteristics helped improve predictions of plant cover using Quickbird, Worldview-II and 
LANDSAT 5 imagery. Ordinary least squares regression were used to regress each of the model 
coefficients from the individual image logit models against each of the measured water quality 
characteristics individually:  Secchi depth, water depth, salinity, water temperature, sediment 
type, total nitrogen, total phosphorus, ammonia nitrogen, Nitrate-N, Color, Dissolved Oxygen, 
Nitrite-N, Phosphate-P and pH 
    

3.7.  LOGIT Model Validation 
 
Model validation was accomplished using the results/output of logit predictive models and 
comparing those to outputs developed using SAV sampling data only. The validation was made 
by investigating point specific logit predictions and comparing them to point specific SAV 
sampling data of actual ground truthed data.  An inverse distance weighted method was also used 
to interpolate values between points of both the logit predicted dataset and the SAV sampling 
produced dataset.  The Inverse Distance Weighted approach is based on the assumption that 
things that are close to one another are more alike than those that are farther apart. To predict a 
value for any unmeasured location, IDW uses the measured values surrounding the prediction 
location. The measured values closest to the prediction location have more influence on the 
predicted value than those farther away. IDW assumes that each measured point has a local 
influence that diminishes with distance. It gives greater weights to points closest to the prediction 
location, and the weights diminish as a function of distance, hence the name inverse distance 
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weighted.  IDW estimations were produced using the Inverse Distance Weighted procedure in 
ArcMAP's Spatial Analyst extension.  Given the distance between points, only points adjacent to 
other points were utilized (fixed search neighborhood of <1300m) for IDW estimates and were 
based on a power function of p=2, which greatly reduces influence of points as distance 
increases.  The logit values represented the cumulative probability of each sample point being 
each plant cover level (0, 1, 2, and 3) or littoral plant presence (0 or 1) within each plant 
category. The cumulative probability value of the logit was used to calculate the actual 
probability of each sample point being each plant cover level or plant presence. The actual 
probabilities were then averaged to determine the overall probability of sample points belonging 
in each plant cover level and plant category.  All model outputs (SAV sampling IDWs and Logit 
model IDWs) were exported to ArcGIS to produce an SAV distribution and status analysis of the 
Currituck Sound per image based on points utilized for modeling.  Separate maps were 
developed to show ALL points sampled during SAV sampling to give an entire sample area 
status and distribution without image based outliers removed. 
 
4.0.  RESULTS 

4.1. Distribution of SAV 

One objective of this study was to provide adequate information representative of the extent and 
distribution of SAV within the designated study area presented in figure 2.1.  Vegetated areas 
were estimated using point specific data and the IDW approach.  General SAV extent and 
distribution were classified into two categories by percent plant cover as determined during field 
sampling:  Presence/Absence and Plant Density.  Plant absence was defined as any point 
containing less than 1% of SAV and plant presence as 1% to 100% as present. (Note: For 
incorporation into the logistic regression model however, all points containing less than 20% 
plant coverage were considered absent based on the limitations of each sensor to detect plant 
levels less than 20%).  During summer sampling, SAV was found to be present on average at 
46% of all points sampled.  Points designated as part of the littoral zone (<6.0 feet or 1.83 meters 
deep)   demonstrated SAV presence at 69.46% of the sample points on average throughout 
summer sampling.  SAV presence and absence per sampling set is demonstrated in figures 4.1.a 
and 4.1.b.   
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Figure 4.1a.  SAV presence/absence for run 1.  Absence = 0% plant coverage, Presence = 1-100% plant coverage 
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Figure 4.1b.  SAV presence/absence for run 2.  Absence = 0% plant coverage, Presence = 1-100% plant coverage 
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SAV spatial extent and distribution were also determined in terms of percent cover.  Overall 
plant coverage in the littoral zone of the Currituck Sound for each sampling run is presented in 
figures 4.2a and 4.2b.  Percent cover classes were separated into five main classes.  These classes 
were 0 (<1%), 1 (1-20%), 2 (21-40%), 3(41-80%), and 4 (81-100%) based on overall plant 
coverage at each point.  In terms of plant coverage categories, the majority (53.42%) of points 
sampled were devoid of plants,  24.36% of sample points fell into level 1 (>1%-20%), 11.11% 
into level 2 (21-40%), 7.69% of points into level 3 (41-80%) and 3.42% falling into level 4 (81-
100%).   
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Figure 4.2a.  SAV percent coverage for run 1. 
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Figure 4.2a.  SAV percent coverage for run 2. 
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4.2.  SAV by Species 

Six species were identified during summer sampling 2010.  They were native Ruppia maritima 
(Widgeon grass), Najas guadalupensis (southern naiad), Stuckenia pectinata (Sago pondweed), 
Vallisneria americana (Eel grass), Potamogeton perfoliatus (Redhead grass) and a single invasive 
species , Myriophyllum spicatum (Eurasian watermilfoil).  All of the six identified SAV species 
have been previously identified in the Currituck Sound (Sincock et al 1965).  Of points with 
SAV present, Ruppia maritima was most widely distributed at 87% of vegetated points, followed 
by Stuckenia pectinata at 61% of points, Najas guadalupensis at 43% of points, Myriophyllum 
spicatum at 35% of points, Potomogeton at 6% of points and Vallisneria americana at 5% of 
points.  The estimated extent of each species is presented in figures 4.3a-b, 4.4a-b, 4.5a-b, 4.6a-b, 
4.7a.-b, 4.8a-b as well as the p-value for the associated Moran’s-I  measure of spatial 
autocorrelation. 

Figure 4.3 a.)  Widgeon grass presence or absence for run 1 (p-value = 0.01) and b.) run 2 (p-value = 0.01) 
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Figure 4.4 a.)  Southern naiad presence or absence for run 1 (p-value = <0.001) and b.) run 2 (p-value = 0.01) 

Figure 4.5 a.)  Sago pondweed presence or absence for run 1 (p-value = 0.03) and b.) run 2 (p-value = 0.01) 
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Figure 4.6 a.)  Eel grass presence or absence for run 1 (p-value = n/a) and b.) run 2 (p-value = n/a) 

Figure 4.7 a.)  Redhead grass presence or absence for run 1 (p-value = n/a) and b.) run 2 (p-value = 0.01) 
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Figure 4.8 a.)  Eurasian watermilfoil presence or absence for run 1 (p-value = 0.10) and b.) run 2 (p-value = 0.05) 

Within vegetated areas, a dominant species may be present or SAV species may be intermixed.  
The majority of areas in Currituck Sound were found to have heterogeneous or intermixed beds 
of SAV with few solely homogenous beds.  Therefore, species dominance was established to 
represent the dominant species at each point.  Complete dominance is defined as an individual 
species representing more than 90% of a given area as determined during field sampling.  Shared 
dominance is defined as representing as much as 50% of a given area along with one or more 
species.  Lastly, subdominance is defined as representing less than 20% of an area however, 
being present in as little as trace amounts.  On average, Ruppia maritima was the dominant 
species at 41% of vegetated points, followed by Stuckenia pectinata at 26% of points.  
Myriophyllum spicatum and Najas guadalupensis were dominant at less than 8% of points and 
Vallisneria Americana and Potamogeton perfoliatus were not found to be considered dominant at 
any point.  Potential areas of species dominance are presented in figures 4.9a-b, 4.10a-b, 4.11a-b, 
4.12a-b, 4.13a.-b, 4.14a-b.   
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Figure 4.9 a.)  Widgeon grass dominance for run 1 and b.) run 2 

Figure 4.10 a.)  Southern naiad dominance for run 1 and b.) run 2 
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Figure 4.11 a.)  Sago pondweed dominance for run 1 and b.) run 2 

Figure 4.12 a.)  Eel grass dominance for run 1 and b.) run 2 
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Figure 4.13 a.)  Redhead grass dominance for run 1 and b.) run 2 

Figure 4.14 a.)  Eurasian watermilfoil dominance for run 1 and b.) run 2 
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Some species were found to be highly correlated in terms of spatial distribution.  Myriophyllum 
spicatum and Najas guadalupensis tend to be most highly correlated throughout the 2010 
summer season (p<0.0001) whereas Ruppia maritima, and Stuckenia pectinata showed spatial 
correlation early in the growing season but not later (table 4.1).  Species also tended to be 
clustered in certain areas of the Sound.  Ruppia maritima, Najas guadalupensis and Stuckenia 
pectinata exhibited high spatial autocorrelation (p<0.0001) whereas Myriophyllum spicatum did 
not show any spatial autocorrelation with other areas of Myriophyllum spicatum (table 4.2).  
Vallisneria americana and Potamogeton perfoliatus could not be evaluated due to the low rate of 
occurrence throughout the summer.    
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   Species  Rumar NaGuad MySpic StPect PoPerf VaAmer 
R1 Rumar 1 0.533 0.423 0.416 0.197 0.113 
     (0.0001) (0.0001) (0.0001) (0.0324) (0.2236) 

  Naguad 0.533 1 0.487 0.340 0.185 -0.047 
    (0.0001)  (0.0001) (0.0002) (0.0453) (0.6136) 

  MySpic 0.423 0.487 1 0.311 0.080 -0.039 
    (0.0001) (0.0001)  (0.0006) (0.3871) (0.6717) 

  StPect 0.416 0.340 0.311 1 0.018 0.148 
    (0.0001) (0.0002) (0.0006)  (0.8432) (0.111) 

  PoPerf 0.197 0.185 0.080 0.018 1 -0.015 
    (0.0324) (0.0453) (0.3871) (0.8432)  (0.872) 

  VaAmer 0.113 -0.047 -0.039 0.148 -0.015 1 
    (0.2236) (0.6136) (0.6717) (0.111) (0.872)  
  Rumar 1 0.152 0.129 -0.106 0.092 -0.152 
R2     (0.2761) (0.3554) (0.4471) (0.5114) (0.2768) 

 Naguad 0.152 1 0.380 0.019 0.182 0.038 
    (0.2761)  (0.005) (0.8899) (0.1917) (0.7867) 

  MySpic 0.129 0.380 1 -0.198 0.060 -0.085 
    (0.3554) (0.005)  (0.1535) (0.6663) (0.5431) 

  StPect -0.106 0.019 -0.198 1 0.213 0.064 
    (0.4471) (0.8899) (0.1535)  (0.1246) (0.6456) 

  PoPerf 0.092 0.182 0.060 0.213 1 0.188 
    (0.5114) (0.1917) (0.6663) (0.1246)  (0.1758) 

  VaAmer -0.152 0.038 -0.085 0.064 0.188 1 
    (0.2768) (0.7867) (0.5431) (0.6456) (0.1758)  

Table 4.1.  Correlation matrix of species for run1 and run 2.  Significant relationships are in bold face type. 
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  r1       r2       
 Moran's I Expected  P Sig 

level 
Moran's I Expected  P Sig 

level 
RuMar 0.253235 -0.008621 0 0.01 0.268975 -0.008621 0 0.01 
MySpic 0.079896 -0.008621 0.053 0.1 0.081858 -0.008621 0.0488 0.05 
NaGuad 0.162014 -0.008621 0.000212 0.01 0.232964 -0.008621 0 0.01 
StPect 0.091526 -0.008621 0.0306 0.05 0.4127 -0.008621 0 0.01 
PoPerf n/a n/a n/a (--) n/a n/a n/a (--) 
VaAmer n/a n/a n/a (--) n/a n/a n/a (--) 

Table 4.2.  Spatial Autocorrelation of each species for run1 and run 2.  Significant relationships are in bold face 
type. 
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4.3.  Other Variables of Interest 

4.3.1.  Depth 

The mean depth of the sound during sampling was 5.69 feet (1.97 SD) with a minimum 
depth of 1.1 feet and a maximum depth of 10.5 feet.  It was estimated that greater than 
50% (53.80%) of all points sampled were within the littoral zone (< 6 ft).  The littoral 
zone depth profile was mapped using an IDW approach and is presented in figure 4.15.  
The mean depth containing SAV was 3.98 feet which differed significantly from the 
mean depth at which SAV was not present (6.40 feet).  Species tended to vary little by 
depth with Vallisneria americana and potamogeton perfoliatus preferring somewhat 
shallower depths (3-3.5 ft) as compared to invasive Myriophyllum spicatum inhabiting 
deeper waters (4.5-6ft).  
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  Figure 4.15.  Littoral zone depth profile (feet) as estimated using points from SAV sampling summer 
2010. 
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4.3.2.  Secchi Depth 

The mean secchi depth during sampling was 0.46 meters (0.1222 SD) with a minimum 
secchi depth of 0.2 meters and a maximum secchi depth of 0.75 meters.  The mean secchi 
depth at which SAV was present was 0.44 meters (0.1222 SD) but did not differ from the 
average secchi depth of samples with no SAV present.  The average secchi depth 
throughout sampling can be viewed in figure 4.16.   
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Figure 4.16.  Example of secchi depth distribution as estimated using SAV sampling run 1. 
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4.3.3.  Salinity 

Salinity values seemed to vary from one sample run to the next suggesting potential 
surges of saline water throughout the summer growing period.  Initial sampling yielded 
an average salinity value of 0.79 ppt ranging from 0 ppm to 6.0 ppt.  During the second 
run of sampling, there was an overall spike of salinity to an average of 2.733 ppt with a 
minimum of 0.35 ppm to a maximum of 6.0 ppt.  During the first run, SAV were found to 
be present at a mean salinity of 0.41 ppt (0.64 SD) in a range from 0 to 2.5 ppt.  This 
differed significantly from Sampled points with no SAV which had a mean salinity of 
1.04 ppt and ranged from 0 to 6 ppt.  The second run yielded opposite results to salinity 
as levels were actually higher on average at sample points containing SAV (3.11 ppt, 
1.15 SD) than at sample points with no SAV (2.64 ppt, 0.97 SD).  Sampled points with 
and without SAV ranged from 0 to 6 ppt.  Estimated salinity distribution throughout the 
sound during summer 2010 are displayed in figures 4.17 a and b. 

Figure 4.17 a.)  Estimated salinity distribution for run 1 and b.) run 2 

 4.3.4.  Water Temperature 

Water temperature showed very little variation from the start of sampling until 
completion.  Water temperature on average was around 84 degrees Fahrenheit ranging 
from 72 to 90 degrees Fahrenheit.  Temperature did not show any significant effect in 
whether SAV was present or absent in a given area.   
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4.3.5.  Sediment Type 

Sediment types were identified and classified into ten categories.  These are clay, clay 
loam, loam, loamy sand, sand, sandy clay loam, sandy loam, silt, silt clay and silt loam.  
The sampled areas were primarily made up of Sand (22.22%), Loamy Sand (21.05%) or 
Loam (19.88%).  Sediment type distribution can be seen in figure 4.18.    Because SAV 
presence/absence shows a strong relationship with depth, sediment types for vegetated 
areas in the littoral zone were analyzed to see if soil preference was present.  The Littoral 
zone (< 6 feet or 1.83 meters) was made up mostly of Sand (27.17%).  Sediment type 
distributions for the littoral zone are presented in table 4.3.  Vegetated areas in the littoral 
zone seemed to show little preference for any one sediment type, however SAVs were 
most often not found in areas with a sediment type of sand.  Distributions of vegetated 
points by sediment type are presented in figure x.    
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Figure 4.18.  Distribution of soil type throughout the study area as estimated during SAV sampling of summer 
2010. 
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Sediment 
Type Frequency Percent 

Vegetated Percent 
Vegetated 

clay 1 1.09 1 100% 
clay loam 2 2.17 1 50.00% 
loam 13 14.13 7 53.85% 
loamy sand 19 20.65 11 57.89% 
sand 25 27.17 2 8.00% 
sandy clay 
loam 2 2.17 

0 0.00% 

sandy loam 17 18.48 13 76.47% 
silt 3 3.26 2 66.67% 
silt clay 1 1.09 0 0.00% 
silt loam 9 9.78 5 55.56% 

Table 4.3.  Sediment type distribution of the littoral zone and number of vegetated points in each. 

4.4.  SAV Change  

 The Sincock reports were a series of reports made available in 1965 and 1966 as a 
cooperative effort to identify the primary physical, chemical and biological factors responsible 
for the reduction in wildlife and fish use of the Currituck Sound, NC and Back Bay, VA.  The 
data were compiled into four volumes (Introduction and Vegetation Studies, Waterfowl Studies, 
Fish Studies, and Environmental Factors) in a cooperative effort between the Bureau of Sport 
Fisheries and Wildlife, North Carolina Wildlife Resources Commission and the Virginia 
Commission of Game and Inland Fisheries (Sincock et al 1965).  This study is the last known 
extensive SAV sampling program to have taken place on the Currituck Sound until present day.  
Estimations of SAV presence and absence are comparable among the Sincock Reports findings 
(transects N-R: Sincock et al 1965) and the study area used during this study.  An overall 
decrease in SAV presence of 31.53% was estimated between the last known sampling of the 
entire area (1964) and present day from 77.20% SAV presence in 1964 to 45.67% SAV presence 
as of 2010.  See figure 4.19.    

 The Currituck Sound has also seen a shift in species evenness when compared to the 
Sincock data (1958-1962).  The dominant species during the Sincock reports was Najas 
guadalupensis (50.60%) with equal representation of Ruppia maritima, Stuckenia pectinata, 
Potamogeton perfoliatus and Vallisneria americana, each between 20 and 30% of all points 
sampled.    The 2010 survey suggests Ruppia maritima as the dominant species (40.60%) with 
Najas guadalupensis and Stuckenia pectinata representing between 20% and 30% of all points 
sampled.  Potamogeton perfoliatus and Vallisneria americana are reduced to presence of only 2 
to 3% of all points sampled, only 10% of the Sincock estimates.  The 2010 survey also shows a 
17% representation of Myriophyllum spicatum, an invasive plant thought to have been 
introduced in the late 1960s which was not present during the time of the Sincock reports.  See 
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figure 4.20 for a graphical representation of species present during the Sincock reports (4.20a) 
and of the present study (4.20b).   

Figure 4.19.  SAV presence/absence percent change estimated using Sincock reports and current study. 

56.20% 

71.80% 

74.00% 

69.80% 
75.80% 

74.40% 

77.20% 

45.67% 

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1958 1959 1960 1961 1962 1963 1964 2010

average by year

SAV Presence/Absence and Percent Change 
1958 - 2010 

% change

% PA



43 
 

Figure 4.20 a.)  Species as a percentage of all vegetated points as estimated using the Sincock reports. 

Figure 4.20 b.)  Species as a percentage of all vegetated points as estimated in the summer 2010 study. 
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4.5.  LOGIT Model Results 

Sensor specific models proved to be the best approach for predicting SAV presence or absence.  
No models could be developed for the multinomial variable (plant cover) due to a low ratio of 
events to non-events.  In the case of the multinomial variable (plant cover), an event is defined as 
any plant cover category 1-3 which indicated some type of SAV presence.  A non-event is 
defined as the plant cover category 0 which indicated no plant presence.  One of the automated 
selection methods (i.e. forward, backward, best subset, and/or stepwise) produced the final 
models we selected for each sensor.  The automated best-subsets method allowed for exploration 
of a number of potential candidate models based on the number of variables input in the model.  
The automated stepwise selection method led to the final, most reasonable model as decided 
upon in the best-subset procedure.  For a variable to enter into or remain in the model, a p-value 
of <0.01 was necessary.  A model was considered fit if the Hosmer and Lemeshow test yielded 
an insignificant difference in groups (p>0.05).  Sensor specific models were developed for both 
the Quickbird and Worldview-II sensors, however LANDSAT 5 specific models were 
inconclusive for a number of reasons.  We used odds ratios to evaluate relative influence of 
variables selected in the final models.  Prediction maps are displayed as correct prediction 
(prediction = observation), false positives (prediction = 1, observation = 0), or false negatives 
(prediction = 0, observation = 1).  False negatives are thought to be a product of depth whereas 
false positives could be a product of contributions from sources other than SAVs.  Differences 
between sensor models might be attributed to variation in band width across each sensor.  A 
number of difficulties occurred during model development for both the binomial variable 
(presence/absence) and the multinomial variable (plant cover category).  Efforts to develop 
multinomial variable models were unsuccessful due to a low occurrence of events to nonevents.           

4.5.1.  Worldview-II  

The Worldview-II sensor provided the most adequate predictive model of the binary 
predictor variable (presence/absence) with percent concordant values between 88.5 and 
94.7% and Wald, Likelihood and Score values of <0.0001 each.  Three variables were 
included in the Worldview-II sensor specific prediction model (table x).  The most 
influential predictor variable for the Worldview-II sensor specific  model was the 
interaction between band 4 and secchi depth, followed by the interaction between band 3 
and secchi depth, band 4 alone and band 3 alone.  The negative β coefficient for band 4 
alone is consistent with knowledge of the reflective properties of submersed plants in 
wavelengths from 700 to 1100 nanometers.  The negative β coefficient associated with 
the interaction of band 3 and secchi depth is consistent with both the reflective properties 
of plants in wavelengths from 600 to 700 nanometers and the association that light 
penetration decreases as secchi depth increases.  The exact opposite can be said for both 
the positive associations with band 3 alone and the interaction between band 4 and secchi 
depth.  In regards to the best image provided for the Worldview-II sensor (08/05/10), 
model outputs demonstrated only 4 false negatives (observation dataset = presence, 
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prediction dataset = absence) and 3 false positives (observation datatset = absence, 
prediction dataset = presence).  False negatives and false positives were most often 
observed in shallow water (< 3 feet).  This could suggest that depth plays a secondary 
role in the ability of each sensor to detect SAV at certain depths.  One of the three false 
positives was actually located at a point with SAV coverage of 0-10%, however this point 
was designated for SAV absence because this did not cross the 20% or greater threshold 
for SAV presence.  The same model applied to the lowest quality Worldview-II image 
(07/22/10) yielded 1 false positive and 15 false negatives.  The only false positive 
predicted was also located at a point with SAV coverage of 10-20%, however this point 
was also designated for SAV absence because this did not cross the 20% or greater 
threshold for SAV presence.  Due to the poor quality of the Worldview-II image taken on 
07/22/10,   an image specific model was developed for the best Worldview-II image 
(08/05/10) to test for any difference.  The image specific model contained only two of the 
original three variables that were used for prediction in the Worldview-II sensor specific 
model. This image specific model suggested that only the interaction between band 4 and 
secchi depth was the best predictor for the model.  This image specific model yielded a 
percent concordant value of between 88.5 and 94.7 and a Wald, Likelihood and Score 
values of <0.001.  The positive β coefficient association with the interaction between 
band 4 and secchi depth is consistent with knowledge of the reflective properties of SAV 
from 700 to 1100 nanometers and was similar to that association in the sensor specific 
model.  The image specific model yielded 3 false positives and 5 false negatives 
however.  False positives were predicted in shallow areas (<3 feet) and false negatives 
were predicted in deeper water (> 3 feet).  Two of the three false positives were actually 
located at points with SAV coverage of 10-20%, however these points were designated 
for SAV absence because this did not cross the 20% or greater threshold for SAV 
presence.  Parameter estimates for each Worldview-II model can be found in tables 4.4 
and 4.5 for the sensor specific model and in table 4.6 for the image specific model.  All 
prediction outputs for the two proposed Worldview-II sensor derived models can be 
found in figure 4.21a (08/05/10 dataset), 4.22 a (07/22/10 dataset), as well as for the 
image specific model (08/05/10 dataset) in 4.23a.  For comparison of prediction output to 
actual ground truth estimations, SAV percent cover is overlain for each image/model 
combination in figures 4.21 b (08/05/10 dataset), 4.22b (07/22/10 dataset) and the image 
specific model in 4.23b (08/05/10 dataset). 
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Analysis of Maximum Likelihood Estimates     
Parameter DF Estimate Standard Wald Pr > ChiSq 

      Error 
Chi-
Square   

Intercept 1 -2.2755 0.7678 8.7843 0.003 
B3 1 0.5497 2.1038 0.0683 0.7939 
B4 1 -4.9392 3.0326 2.6527 0.1034 
B3*SD 1 -5.4005 4.6811 1.3309 0.2486 
B4*SD 1 21.6477 9.0837 5.6793 0.0172 

Table 4.4.  Parameter estimates for the Worldview-II sensor specific model applied to the 08/05/10 dataset. 

 

Analysis of Maximum Likelihood Estimates     
Parameter DF Estimate Standard Wald Pr > ChiSq 

      Error 
Chi-
Square   

Intercept 1 -1.8425 0.295 39.0086 <.0001 
B3 1 19.1947 7.5488 6.4655 0.011 
B4 1 -22.3063 7.8728 8.0278 0.0046 
B3*SD 1 -46.3251 20.0271 5.3506 0.0207 
B4*SD 1 53.8189 20.6317 6.8045 0.0091 

Table 4.5.  Parameter estimates for the Worldview-II sensor specific model applied to the 07/22/10 dataset. 

 

Analysis of Maximum Likelihood Estimates     
Parameter DF Estimate Standard Wald Pr > ChiSq 

      Error 
Chi-
Square   

Intercept 1 -2 0.4859 16.94 <.0001 
B4*SD 1 5.8799 1.3345 19.4146 <.0001 

Table 4.6.  Parameter estimates for the best Worldview-II image specific model applied to the 08/05/10 
dataset. 
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Figure 4.21a.  Worldview-II sensor specific model applied to image taken on 08/05/10. 

 



48 
 

Figure 4.21b.  Worldview-II sensor specific model predictions applied to image taken on 08/05/10 and 
overlain with SAV percent cover estimations from ground truthing run 2. 
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Figure 4.22a.  Worldview-II sensor specific model predictions applied to image taken on 07/22/10. 
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Figure 4.22b.  Worldview-II sensor specific model predictions applied to image taken on 07/22/10 and 
overlain with SAV percent cover estimations from ground truthing run 1. 
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Figure 4.23a.  Worldview-II image specific model predictions applied to image taken on 08/05/10. 
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Figure 4.23b.  Worldview-II image specific model predictions applied to image taken on 08/05/10 and 
overlain with SAV percent cover predictions from ground truthing run 2. 
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4.5.2.  Quickbird  

The Quickbird sensor derived predictive model yielded a percent concordant value of 
73.1% with a Wald of 0.04, Score of 0.0097 and a Likelihood ratio of 0.0175.   The most 
influential predictor variable was band 3 alone, followed by the interaction of band 2 and 
secchi depth, band 3 and secchi depth, band 2 alone, and a small influence provided by 
the interaction between band 4 and depth.  The positive β coefficient for band 3 alone is 
consistent with knowledge of the reflective properties of submersed plants in 
wavelengths from 600 to 700 nanometers.  The negative β coefficient associated with 
band 2 alone is consistent with knowledge of the reflective properties of submersed 
plants in wavelengths from 520 to 600 nanometers.  The positive β coefficient for the 
interaction between band 2 and secchi depth is consistent with knowledge of the 
reflective properties of submersed plants in wavelengths from 520 to 600 nanometers and 
the fact that light penetration decreases as secchi depth increases.  The negative β 
coefficient associated with the interaction of band 3 and secchi depth is consistent with 
both the reflective properties of plants in wavelengths from 600 to 700 nanometers and 
the association that light penetration decreases as secchi depth increases.  Lastly, the 
negative β coefficient associated with the interaction of band 4 and depth is consistent 
with knowledge of submersed plant reflection in wavelengths from 700 to 1000 
nanometers and the fact that light penetration decreases as depth increases.       
Unfortunately, the reliability of this model is in question due to the lag time between 
image acquisition and field sampling (+ 36 days).  Parameter estimates for the Quickbird 
derived model can be found in tables 4.7.  The sensor specific model prediction outputs 
for the Quickbird sensor can be found in figure 4.24a as well as a comparison of ground 
truthed SAV estimation to prediction output in figure 4.24b.  

Analysis of Maximum Likelihood Estimates     
Parameter DF Estimate Standard Wald Pr > ChiSq 

      Error 
Chi-
Square   

Intercept 1 1.8684 0.3393 30.3157 <.0001 
B2 1 -11.4288 5.4478 4.401 0.0359 
B3 1 12.4367 5.373 5.3576 0.0206 
B2*SD 1 31.7167 14.3848 4.8615 0.0275 
B3*SD 1 -30.4846 14.0404 4.7141 0.0299 
B4*D 1 -0.2457 0.1221 4.0476 0.0442 

      Table 4.7.  Parameter estimates for the Quickbird sensor specific model applied to the 09/13/10 dataset. 
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Figure 4.24a.  Quickbird sensor specific model predictions applied to image taken on 09/13/10. 
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Figure 4.24b.  Quickbird sensor specific model predictions applied to image taken on 09/13/10 and overlain with 
SAV percent cover predictions from ground truthing run 2. 
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4.3.3.  LANDSAT-5  

The LANDSAT-5 derived models yielded inconsistent results often varying from scene 
to scene and suggesting various bands not historically associated with plant reflectance.  
Although a number of images were available for analysis, a number of these images were 
affected by clouds, atmospheric haze, and sun-glint.  The coarser spatial resolution of 
LANDSAT-5 imagery also hindered attempts to contain only plant growth within 
individual pixels.  Pixels most likely contained plant matter but also received spectral 
contribution from background features such as bare bottom.     

5.  CONCLUSIONS 

 5.1.  Assessment of Methodology 

The main objective of this study was to develop and test satellite remote sensing to be used in 
long-term monitoring of submerged aquatic vegetation.  The methodologies utilized in this study 
were effective in mapping the current extent, distribution and interseasonal variation of 
submerged aquatic vegetation in the Currituck Sound, NC.  The utilization of field sampling 
gives adequate spatial representation of all variables collected including those relative to SAV 
distribution, presence, and dominance throughout the summer growing season of 2010.  Remote 
sensing methods utilized multiple sensor images acquired during the 2010 summer growing 
season, orthorectification of images, extraction of digital numbers into point datasets, and 
extensive ground reference data culminated into more than 300 total data points.  These methods 
were appropriate for mapping the distribution of submerged aquatic vegetation in the Currituck 
Sound. Vegetated and non-vegetated areas were accurately mapped using a combination of 
inverse distance weighted and predictive LOGIT models.  Distribution of individual species was 
distinguished based mainly on the ground reference data.  The overall methods were based on 
widely accepted methods (Nelson 2006, Madsen 1999) with few adaptations based on 
professional judgment.  This study was carried out in its entirety by NCSU employees with 
contracted services for obtaining satellite imagery for both the Worldview-II and Quickbird 
sensors.  At this point in time, a marriage of traditional SAV mapping techniques and remote 
sensing are probably the best approach to quantifying SAV status, distribution on a large 
regional scale.  Appropriate avoidance and mitigation can be determined using the methodology 
described in this study.  Individual processes of this study will be addressed in the below 
paragraphs. 

 5.2.  SAV Field Sampling Utilizing the Point-Intercept Method 

5.2.1.  Methodology to Determine SAV Status 

Field sampling provided the majority of information relative to species specific data and 
other important variables including depth, secchi depth, sediment type, temperature, 
salinity and various water quality aspects.  All of the variables collected in field sampling 
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were utilized in one way or another to address model development or to better understand 
intricate ecological relationships occurring within the Currituck Sound.   

  5.2.2.  Current Status of SAV in the Currituck Sound 

At this point, SAV distribution within the sound seems vast, however the density of these 
SAV beds may be rather low on average.  For example,  plant coverage category 3 (81-
100% coverage) makes up less than 3% of all points surveyed and the majority of those 
points were inhabited by non-native, Myriophyllum spicatum.  Field sampled species 
data and historical records suggest that species evenness may also have declined in recent 
years.  Beneficial species such as Vallisneria americana and Potamogeton perfoliatus that 
once shared equal numbers with other native species now make up less than 5% of all 
vegetated points.  Myriophyllum spicatum, the sole invasive species reported to inhabit 
the Sound, inhabits almost 40% of vegetated points.  

 5.2.3. Variables Collected  

There are a number of variables collected during field sampling that may determine the 
status and distribution of SAV in the Currituck Sound.  SAV and depth seem to share the 
most significant relationship as has been documented by other studies (Kemp et al. 2004) 
SAV may also be influenced by fluctuations in salt content of the water as is described in 
the results of this study.  Salinity levels may not be consistently high in most areas of the 
Sound, however fluctuations may be affecting the overall survivability of SAV within the 
Mid-Currituck portion of the Sound sampled in this study.  Sediment type also seems to 
play an important role in the location and coverage of SAV.  Sandy bottoms most often 
do not contain any SAV growth.  

Other variables of interest utilized but not included in this report are measures of water 
quality in the sound.  Water quality was collected between each sample run and included 
a number of parameters.  It was discovered later in our work that some of these variables 
shared significant relationships with SAV presence or absence.  For example, measures 
of Total Nitrogen (Figure 5.1) were found to be highly correlated with areas of SAV 
presence.  Because these variables didn’t necessarily improve the quality of the logistic 
models described in this study, they were not included, but should be considered in future 
work when establishing relationships of SAV to environmental factors.     
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Figure 5.1.  Average total Nitrogen for the Study area as estimated during two water quality sampling runs 
during SAV sampling summer 2010. 
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5.2.4.  Improving on Existing Field Collection  

Field sampling could be improved should more personnel and resources be available to 
do so.  As with any aspect of science, repetition and increasing sample sizes can be 
beneficial to more adequately describing the target of interest.  SAV communities could 
be more adequately mapped in the Currituck Sound given more time and available 
personnel to increase the spatial resolution or coverage of sampling.  The addition of data 
points would create a smoother and more accurate map of SAV within the Currituck 
Sound while applying the same methods developed in the study.  SAV distribution, 
density and coverage can potentially be more adequately described if such intense 
sampling is feasible in the future.  Additionally, other variables of interest when 
considering future development of remote sensing ground truth datasets are:  depth to 
vegetated canopy, length of longest stem, and status of SAV community.  Depth to 
vegetated canopy could influence the ability of sensors to detect growing SAV 
communities.  Plant material located on the surface of the water reflects higher amounts 
of energy than does plants found deeper in the water column.  Length of longest stem 
could provide insight on the growth of plants between sample runs that may influence 
sensor detection capability during lag times between sampling runs.  Status of SAV 
community can provide valuable information on the photosynthetic activity of the plants.  
Dying communities most likely will not contain the same reflective potential as actively 
growing plants, therefore the status of each community should be noted to determine if 
there are differences in reflectivity based on the status of the plants at time of data 
collection.   

 5.3.  Remote Sensing of SAV 

 5.3.1.  Sensor Performance 

Remote sensing of SAV in the Currituck Sound is possible at this point, however much 
more work need be done before developing models of SAV density or extending models 
beyond the Currituck Sound.  Overall, the Worldview-II sensor provided the best 
predictive model of SAV presence or absence.  A percent concordant value greater than 
80% is considered to be sufficient when developing predictive models (Nelson et al 
2003).   Models derived from the Worldview-II sensor consistently produced accurate 
predictive outputs based on the ground-truthed field data.  False positives using the 
Worldview-II derived models, although few, were most often experienced in areas of 
shallow depth (<3 feet) (see figure 5.2).  This could be due to reflective contribution from 
bottom sediment, however it should also be noted that four out of the seven false 
positives experienced across all images with the Worldview-II sensor actually took place 
at points with at least some SAV present (1-20%).  The  >20% threshold used to develop 
the models designated these points as “absent” of SAV, because these points fell below 
the threshold and were thus designated as points of SAV absence.  Future work should 
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attempt to develop a more applicable threshold for NC coastal bodies of water.  False 
negatives were most often experienced in areas of lower plant density (<40%) or in areas 
of deeper water (>4 feet).  Perhaps spectral contribution of SAV was inhibited by greater 
distances between plant canopy and water surface.  Lower densities of SAV may also not 
provide an adequate spectral contribution to be differentiated from the water column 
alone.  Plant coverage of an area may also have contributed to false negatives in that 
SAV coverage in the area extracted from satellite imagery may not have covered an 
adequate amount of each pixel area for detection.   
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Figure 5.2.  Worldview-II image specific model compared to depth profile of the study area. 
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The Quickbird sensor provided mixed results.  With a total of 10 false negatives and 1 
false positive, and a percent concordant value of 73.1%, the Quickbird sensor may not be 
the best sensor for modeling SAV presence or absence in the Currituck Sound.  A severe 
lag in image acquisition date and near-coincidental field sampling most likely contributed 
to issues with model development as well as a large amount of cloud cover in the 
Quickbird image (Figure 5.3).  Most false negatives experienced in the image were 
located along a large cloud extending from the southern to northern reach of the study 
area.  Atmospheric interference inherent around clouds can severely alter the spectral 
signature of the target thus leaving even points not directly within the cloud at risk for 
contamination.   
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Figure 5.3.  Quickbird sensor specific model predictions applied to image taken on 09/13/10 overlain with 
image. 
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Although three models were developed with somewhat different influence from each 
predictor chosen, common variables emerged from each Worldview-II model as well as 
the Quickbird Model;  Band 4 and Secchi Depth.  These two predictor variables were 
utilized in each model and should be investigated first in future attempts at remote 
sensing of SAV with the WorldView-II sensor.  The reflective properties of plants in the 
Near-Infrared portion of the electromagnetic spectrum have been cited in numerous 
papers regarding aquatic plants (Nelson 1983, Everitt and Yang 1999).  This portion of 
the spectrum should always be considered when remote sensing of SAVs is desired with 
the Worldview-II sensor.  The spatial resolution of the Worldview-II sensor also made it 
possible to more adequately capture the sample area from which the ground truth data are 
based.  This became the major limitation to using free LANDSAT 5 data.  The sensors 30 
meter spatial resolution most likely allowed spectral influence from sources outside of the 
target SAV.  Although LANDSAT 5 imagery have been used in the past for remote 
sensing of SAV, the patchy distribution of SAV in the Currituck Sound requires high 
spatial resolution imagery for remote sensing of SAV presence/absence at this time.  

5.3.2.  Issues Experienced  

Complications arose using all sensors due to the low occurrence of events to non-events 
in the ground-truthed data.  As is mentioned earlier, logistic regression requires that 
events, in this case SAV presence, to constitute 30% of the dataset.  This qualification 
was met for SAV presence/absence in the Sound and as such, a model of SAV presence/ 
absence was developed.  In the case of SAV percent coverage, the occurrence of events 
to non-events per class was very low.  SAV density was inversely proportional to number 
of points per coverage class.  The areas most likely to be detected by remote sensing 
(Class 3: 81-100%) were the least often to occur.  This made modeling of SAV percent 
coverage impossible given the lack of dense stands of SAV in the Currituck Sound.  
Increasing the sample size was suggested after the fact, but in the case of the Currituck 
Sound, this would actually compound the negative effect of the ratio of events to non-
events that occurred during sampling previously.  Remote sensing of SAVs in percent 
coverage class limited bodies of water or bodies of water lacking large representation of 
higher percent coverage classes  should be done with caution.   

Poor performance in image acquisition led to less than ideal acquisition dates.  
Originally, images were scheduled to be taken as near to actual dates of field sampling as 
possible.  Actual acquisition dates lagged and time between sample run 1 and image 
acquisition left the utility of sample run 1 as a ground truthed dataset questionable.  This 
is especially true with the Quickbird image acquired in mid-September, leaving sample 
run 1 unusable for model development using this sensor.  Only sample run 2 and 
validation sample run 3 were used to develop a model for the Quickbird sensor.   Future 
attempts to replicate this study should take special care to schedule and obtain imagery 
from dates as near-coincidental as possible to actual SAV sampling.   
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5.4.  Future Work 

Remote sensing has proven to be a promising tool for detecting SAV within the Currituck 
Sound and potentially into similar water bodies despite many complications and setbacks 
during the course of this study.  As is mentioned earlier, the Currituck Sound has a low 
ratio of events (SAV presence) to non-events (SAV absence), thus complicating model 
development using the logistic regression approach.  On the contrary, perhaps bodies of 
water with many points containing SAV representing a range of plant coverage may 
prove more successful for application of remote sensing.  Concern for invasion by 
invasive species in NC water bodies is becoming more of an issue with each passing year.  
Invasive submersed plant species such as Hydrilla verticillata (Hydrilla), Egeria densa 
(Brazilian Elodea), and Najas minor (Brittle naiad) already have a foothold in many 
waterbodies of the state and have begun to move into neighboring waterbodies to the 
Currituck Sound in recent years.  These invasive species are known for their dense 
canopies and large coverage areas once established in a body of water.  Given that remote 
sensing shows such promise for the ability to model SAV presence absence even in SAV 
poor bodies of water, the next logical step would be in attempting to model SAV in plant 
rich bodies of water.  Unfortunately, these bodies of water are most often those that are 
inundated with invasive species such as those mentioned above.  Future work should 
include the investigation of remote sensing as a tool to track species changes, percent 
coverage of SAV and SAV ranges in NC coastal bodies of water.     

Sediment change through disturbance is also a key component to monitoring SAV.  
Although not included in model development, there was substantial evidence that 
sediment type and SAV presence or absence is related.  Areas of sand most often did not 
contain any SAV.  During this study, we found that sediment type actually changed from 
the early summer sampling to late summer sampling in at least 5 points.  Understanding 
the roll of disturbance in identifying potential areas of SAV colonization should be of 
utmost importance in future studies.  Sediment type plays a key role in the establishment 
of aquatic plants and this can be altered greatly by disturbance events such as hurricanes 
(Rodusky 2010).  Given that the Currituck Sound has undergone two major disturbance 
events in the past two years (Hurricane Irene 2011 and Hurricane Sandy 2012), the 
impacts of these storms must be assessed to determine the effect that sediment change has 
on SAV communities.   

As existing sensors continue to be improved and new sensors developed, the ability of the 
NCDOT to utilize remote sensing for mapping and monitoring will continue to improve.  
Additionally, continued exploration of the spectral characteristics of different submersed 
aquatic plant communities is of utmost importance to improve the models developed in 
this study.  Presently, the Worldview-II sensor and Quickbird sensor, coupled with 
traditional field sampling techniques, provide an excellent means to map and monitor 
SAVs in the Currituck Sound. 
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