CAV Emerging Technologies

North Carolina Department of Transportation

Strategic Transportation Corridor Master Plans Visions

Corridor S: Future I-795

Wilson County to I-40 in Sampson County

Draft: March 15, 2022

March 2022

Kimley»Horn

Table of Contents

1	Overview and Project Background	2
2	Technology Strategies	3
	-	
	st of Tables	
	<u> </u>	3
rai	bie 2. Additional Strategies	4
Та	able of Acronyms	
	TSPM	Automated Traffic Signal Performance Measures
C	CTV	Closed-Circuit Television (Cameras)
C,	V	Connected Vehicles
DI	MS	Dynamic Message Signs
E,	VA	Emergency Vehicle Alert
Н	SR	Hard Shoulder Running
IN	MAP	Incident Management Assistance Patrol
ΙT	S	Intelligent Transportation Systems
LA	AN	Local Area Network
N	CDOT	North Carolina Department of Transportation
R'	WIS	Road Weather Information System
S	CMS	Security Credential Management System
SI	PaT	Signal Phasing and Timing
S	тс	Strategic Transportation Corridors
S	TOC	Statewide Transportation Operations Center
S	TRAHNET	Strategic Highway Network
TI	MC	Transportation Management Center
W	/EA	Wireless Emergency Alert
W	/WD	Wrong Way Driving

1 Overview and Project Background

This memorandum presents base and future year mobility analyses for Corridor S (Future I-795) of the North Carolina Strategic Transportation Corridors (STC).

1.1 Overview of Strategic Transportation Corridors

In 2015, the North Carolina Department of Transportation (NCDOT) identified a network of key multimodal transportation corridors called Strategic Transportation Corridors (STC). Identifying these STCs support smart planning, help set long-term investment decisions, and ensure that North Carolina's economic prosperity goals are achieved. The STCs are intended to promote transportation system connectivity, provide high levels of mobility, and improve access to important state and regional activity centers. A key element in the advancement of the STCs is the development of corridor master plan visions. The purpose of the master plan visions is to:

- Identify high-level visions and associated improvement strategies for corridor mobility,
- Align corridor improvements and development with a long-term vision and expected corridor performance levels, and
- Help protect the corridor's key functions as defined in the corridor profiles.

1.2 Corridor Description

Corridor S, otherwise known as Future I-795, is approximately 50 miles in length and spans from I-95 in Wilson County to I-40 in Sampson County. It consists of U.S. 117 south of Goldsboro and the existing I-795 north of Goldsboro. Future I-795 is regularly used to transfer freight from Goldsboro to I-95 in Wilson County. The corridor serves as a short reliever to I-95 and is an important part of the Strategic Highway Network (STRAHNET) system as it connects Seymour-Johnson Air Force Base to I-95. Future I-795 also is the link to the economic centers of Wilson and Goldsboro.

Future I-795 is envisioned to support freight service along with safe, reliable travel; to facilitate economic development and safety; and to afford safe, reliable travel as part of the STRAHNET to support Seymour Johnson Air Force Base.

Future I-795 also is currently prone to roadway flooding. A total of 15 flood events were recorded along Future I-795 from 2011 to 2019. These events, caused primarily by Hurricanes Matthew and Florence, resulted in impassable road conditions and instances where affected segments of the corridor were closed. Road weather information system (RWIS) technology could be used along these sections to provide additional surveillance and warnings prior to and during an event.

2 Technology Strategies

Emerging technologies are not just additional infrastructure deployed along the roadway, but also expansions of current programs to support safe mobility and opportunities for economic growth. Technology strategies can either build upon existing infrastructure or deploy additional infrastructure – all to address safety concerns, provide additional tools so support mobility, and to enhance operations. Depending on the strategy, some strategies apply to an arterial setting while others are a better fit for freeway deployments.

2.1 Infrastructure

Corridor S currently includes intelligent transportation system (ITS) devices along the Future I-795 and along arterial routes that connect, such as U.S. 70 Bypass, I-587/U.S. 264 and U.S. 117. The majority of the devices in this area are along the U.S. 70 Bypass around Goldsboro, with a small amount along Future I-795. These devices consist of closed-circuit television (CCTV) cameras, dynamic message signs (DMS), and vehicle detectors and speed probe data. The current ITS infrastructure is primarily used for situational awareness, providing traveler information messages to motorists reflecting travel time and incident information, and collecting data to be used for identifying congestion points. There are several ongoing projects along this corridor that will expand the number of ITS devices and provide the necessary fiber communications.

2.2 Future Strategies

Based on a qualitative review of the limitations of the existing geometrics of the corridor and potential stakeholder needs, the Department can determine the best strategy or combination of strategies that address the specific corridor needs. This assessment is typically done at the project level, although can be done as part of a longer corridor study. A few steps should be taken prior to deployment of future strategies. These steps include:

- Connection to signal central server
- Freeway Guideline (for installation and use)
- Freight mobility considerations

Table 1 shows possible strategies for the arterial segment of Corridor S. **Table 2** includes additional strategies to be considered to provide additional information to motorists.

Table 1. Arterial Strategies

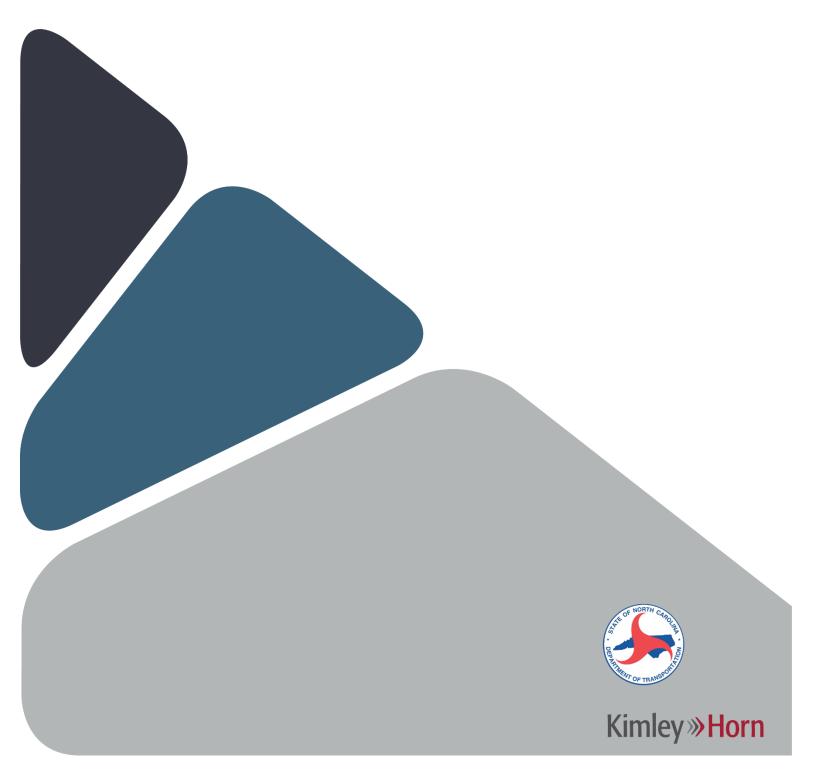
Arterial Strategies	Description
Ethernet Communications	Standard communication protocol used to develop local area
	networks (LAN); Ethernet communications are used for signal
	controllers to communicate with a central server and allow for
	remote adjustments.
Automated Traffic Signal	The collection and analysis of high-resolution traffic controller data
Performance Measures (ATSPM)	and conversion of the data into actionable performance measures;
	for proactive signal system management.

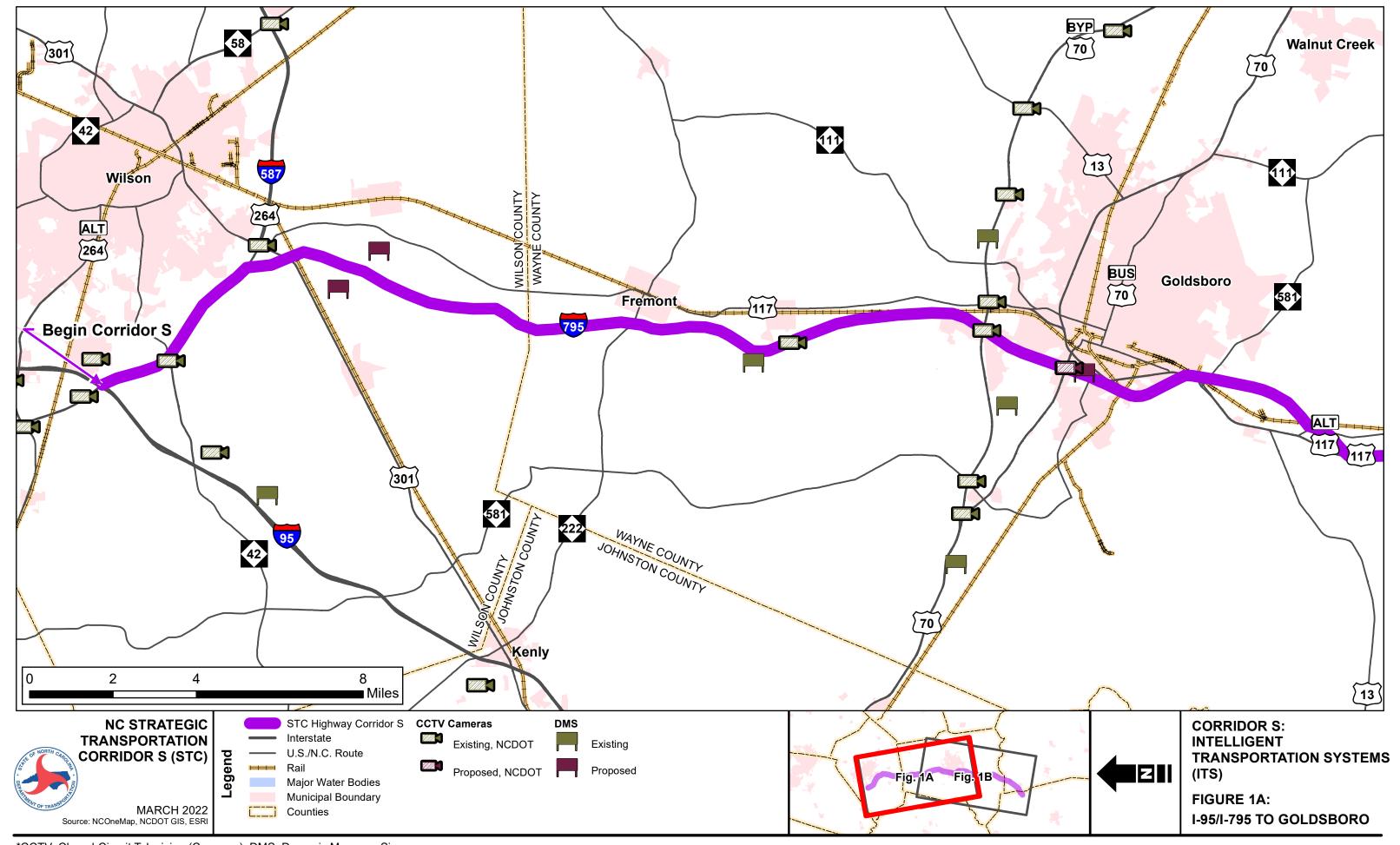
Arterial Strategies	Description
Connected Vehicle (CV) Notifications	Using roadside and onboard (in-vehicle) units to collect data and
	alert motorists. These alerts can include notifications for Work
	Zone, School Zone, Signal Phasing and Timing (SPaT), and other
	critical traveler information.
Traffic Counting	Counting vehicular traffic to create a complete picture of traffic flows
	along the corridor; this can be used during an evacuation to provide
	more information to law enforcement and to the traffic management
	center (TMC).
Pedestrian Notification [for visually	Notification, typically an audible alert, provided to pedestrians with
impaired]	visual impairment, specifically at signalized intersections;
	notifications are provided through an application or other roadside
	unit to warn of an approaching vehicle.
Transit Applications	Interface between transit management centers and traffic
	management centers (TMCs) that can support the following
	functionalities: transit schedule information, personalized transit
	route requests, multi-modal coordination between transit agencies
	and other types of public transportation, typically through a mobile or
	desktop app.

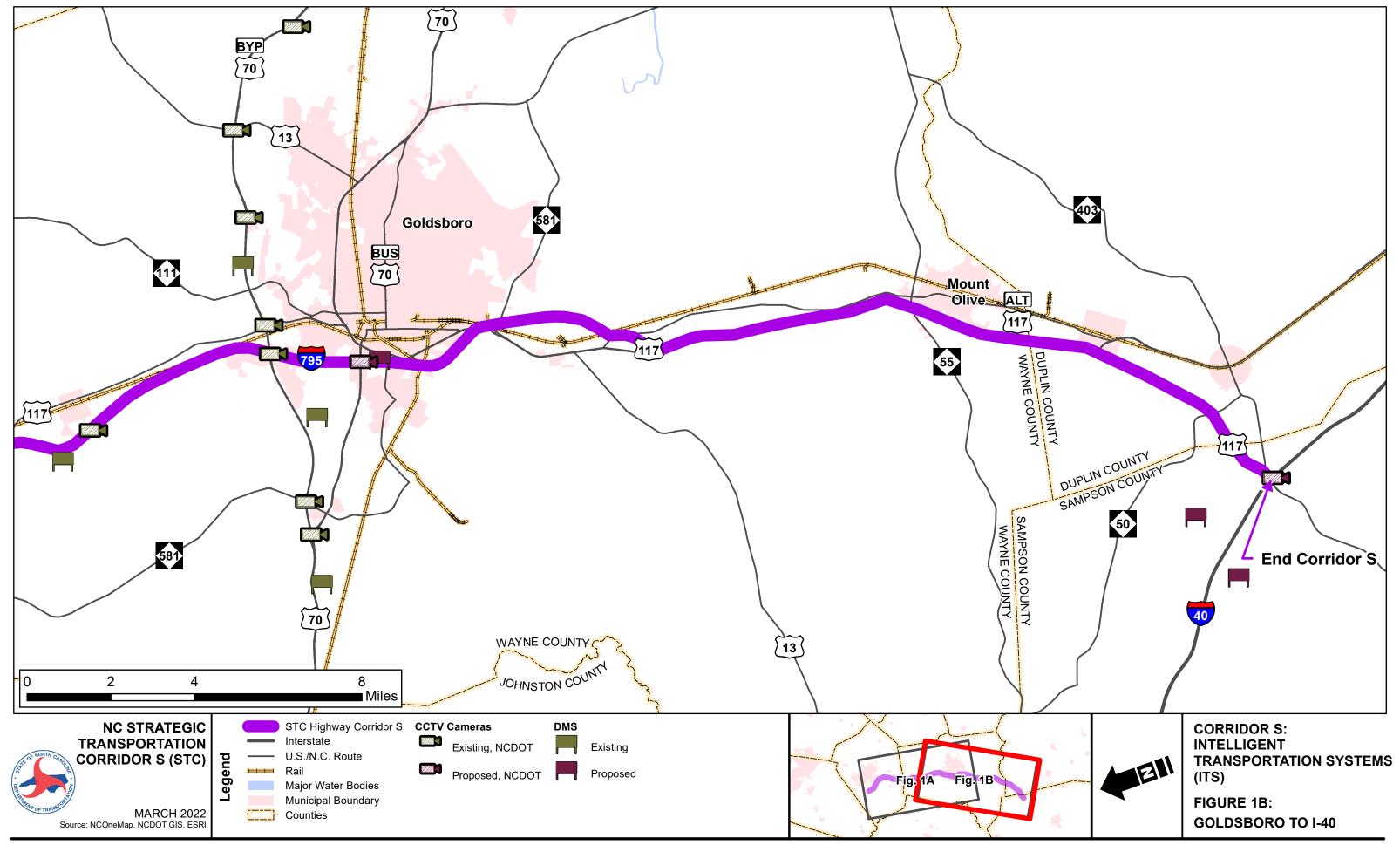
Table 2. Additional Strategies

Additional Strategies	Description
Travel Time Analysis	Collecting, analyzing, and disseminating the time it will take to arrive
	at the next point on DMS to provide additional traveler information to
	motorists. These are typically based on distance between exits.
Traveler Information for	Providing information to motorists on which route should be taken,
Bypass Routing	specifically when used as a detour.
Hard Shoulder Running (HSR)	Utilizing the shoulder as a travel lane during specified hours of the
	day to relieve congestion, or during certain events such as a
	hurricane evacuation. HSR is sometimes accompanied and
	supported by dynamic lane-use control signs.
Incident Reporting and Notification	Collecting and disseminating information about an incident that
	occurred along the corridor in a timely manner for the motorist to
	make decisions.
Hard Braking Analysis	Pulling information from vehicle onboard units to analyze and
	identify areas that are prone to quick, sudden braking to determine if
	additional warnings are needed for motorists.
Wireless Emergency Alert (WEA)	Providing advance warning to motorists of an emergency vehicle
and/or Emergency Vehicle Alert	ahead and instructing the motorists to move over – providing a safer
(EVA) systems	environment for first responders.

Predictive Traffic Analysis Forecasting traffic patterns using real time traffic speeds, traffic congestion, and environmental data. This enables early identificate of traffic jams so preventive measures could be taken to alleviate congestion.	
of traffic jams so preventive measures could be taken to alleviate	
	tion
congestion.	the
1 7	
Freight Connections to Major Coordinating the process of freight movement along the corridor	0
Destination their final destination. This could be done through platooning and	
operational coordination between operation centers.	
Signal Preemption Providing a specific vehicle type the right of way through a signal	_
denoted with a green indication at the signal. This typically is use	b
for transit, freight, emergency vehicles (EV).	
Road Weather Information System Devices placed in specific locations that collect a variety of weath	er
(RWIS) data used to support maintenance decisions or provide additiona	
situational awareness along the corridor. The devices including w	ind
sensors, water depth sensors, CCTV cameras, etc.	
Wrong Way Driving (WWD) Detection Detecting vehicles traveling the wrong way – either along a ramp	or
on the roadway itself – and notifying the driver they are traveling	n
the wrong direction; an alert can also be sent to law enforcement	
and TMCs.	
Incident Management Assistance Providing on-scene assistance such as motorist services, traffic	
Patrol (IMAP) Services control for an incident in the roadway, and quick clearance of	
incident scenes. These services enhance the safety for motorists	
and first responders, as well as reduce the likelihood of a second	ary
crash.	
Bridge Messages Collected data (i.e., incident, ice, flood) on/around specific bridge	S
used to automate messages to warn motorists of potential hazard	ls.
Ramp Metering Using signals to help regulate the flow of traffic entering freeways	-
Ramp meters are sometimes accompanied by variable speed lim	its.
Heavy Tow Program Utilizing a performance-based contract with companies that have	
tow trucks capable of moving heavy equipment, such as tractor	
trailers, along designated corridors more quickly and efficiently the	an
the typical tow rotation process.	
Truck Parking Designated locations, typically cooperative partnerships between	
public and private lots, for secure and safe truck parking. The	
parking locations are designated either through signs along the	
freeway and/or an app the truck drivers are able to access to not	9
the number of open spots.	
Automated Flood Warning Systems Instruments (gages) installed at rivers or streams that include	
sensors for detecting changes to set parameters for measuring	
either precipitation volume or water levels. These systems can	
support proactive/predictive road warnings and/or closures.	




2.3 Mitigations


There are always risks involved when deploying infrastructure or the need for additional technology. The following mitigations should be considered during deployment of the strategies noted above in **Table 1** and **Table 2**.

- Power to the devices the Department may need to consider alternative or backup power sources such as solar, to power the devices
- Operational strategies in the event of an evacuation closing interchanges, extended lane merge, signal coordination, etc.
- Security credential management system (SCMS) to ensure integrity and authenticity of data
- Funding for maintenance of the infrastructure/devices ensuring devices stay operational to provide the situational awareness to the statewide transportation operations center (STOC)
- Hard shoulder running and extended merge areas require design considerations, such as rumble-strip location, truck lane restrictions (e.g., not on the shoulder), width of paved shoulder, and depth of shoulder pavement.

Appendices

