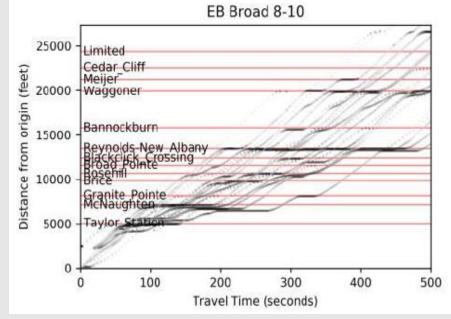
Use of GPS Trip & Waypoint Data in evaluating Route Choice for models (time, distance & reliability of travel time)

For NC MUG: Sam Granato, 11-09-2021

For over 30 years combining the math skills of a planner with the people skills of an engineer.

Use of this trajectory data, to date:


• City of Columbus (Ohio):

- Vehicle dwell times & locations for EV charging stations.
- Traffic signal coordination/performance measures.

Corridor Trajectories by time of day

• Ohio DOT:

- Traffic volume K and D factors.
- O/D travel route choice.
- Trip-level travel time reliability.
- Delay at Railroad crossings.
- Vehicle acceleration/deceleration rates.

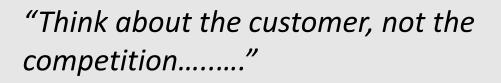
Information available:

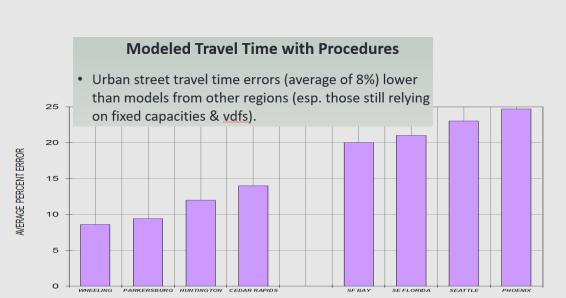
• <u>Trip file:</u>

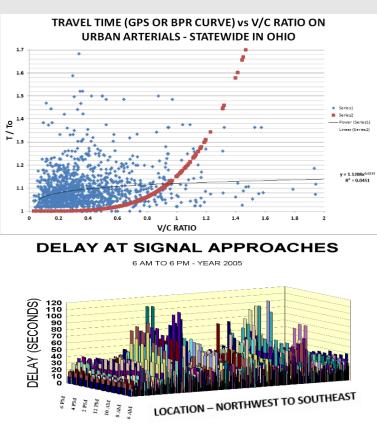
- Start & end point date and time
- Start & end point lat/lon values
- Travel distance & vehicle type
- Device and Provider ID#s

• Waypoint file:

- Trip ID# & (joined) XD road segment
- Date/time & lat/lon values
- (Instantaneous) travel speed




Started with trip & waypoint data for two smaller urban areas where detailed data on modeled travel paths exist....

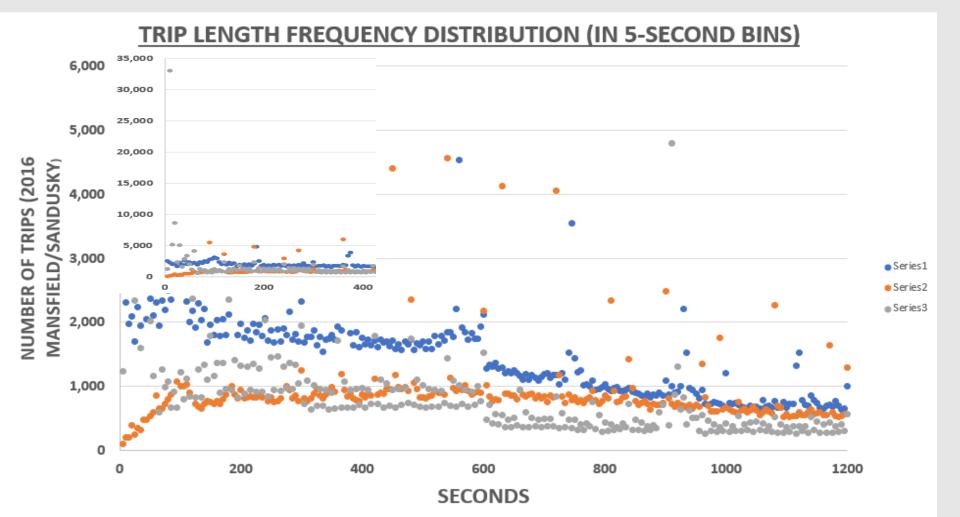


Not just any modeling: summary of what's different from the usual (re past TRB paper & TMIP webinar)

- **Operations**-level techniques (HCM & related) embedded in route assignment for travel time, delay, and carrying capacity estimates— used for past 31 years
- "Driveway" counts/other field studies for trip generation also for 31 years
- Metro area-wide Dynamic Traffic Assignment (& by season of year) 16 years
- Travel paths incorporate variability of as well as average travel time 11 years

How do people select a travel path, anyway?

- Distance (fixed)
- Travel time (average)
- Travel time (variability/reliability)
- Pavement condition
- Safety (perceived, both on and off-road)
- "Fear of merging"
- The scenic route?

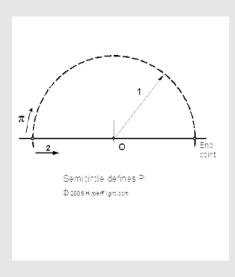


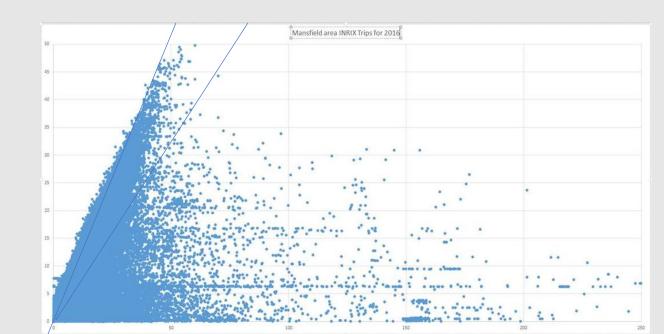
Trip lengths by vehicle class (CY 2016):

• Many are "short bursts" (exp. smartphone app use) that for most applications would get filtered out.

Distribution of Trips by average waypoint density (sample of small urban arterials):

Trip/Waypoint file filtering for route choice and trip-level reliability:


- Focus for this application on <u>cars</u> and on <u>surface streets.</u>
- Criteria not "hard & fast" (balance ideal w/sample size).
- Filtered out 95% of car trips (down to about N=25,000).


B-Route Choice, and Trip-level travel time reliability (for cars only)

Field	_							
Vehicle Class	1							
OD_CONCAT (on MPO network)	<>null,	N>9 (at least 10 records meeting specs to then use WP file)						
Seconds per waypoint:	<15							
Average FRC value	>=2	(avoid Interstates, which are not within either UZA)						
Number of waypoints	>39	(affects accuracy of measured trip distance)						
Percent of waypoints snapped to XD	>69	(focus more on trip record side data for B)						
Trip average speed kph	15-80	(10-50 mph, to keep the focus on arterials)						
Distance from trip start/end to model network node <0.25 m								
Minimum Trip distance	(O/D m	nodeled shortest distance) – D2StartNode - D2EndNode						
Maximum Trip distance	(O/D m	nodeled distance on shortest time path *(3.14157/2)) <u>+</u> join distances						
Travel time (seconds)	>480	(i.e. the longer the trip, the less the join distance matters)						

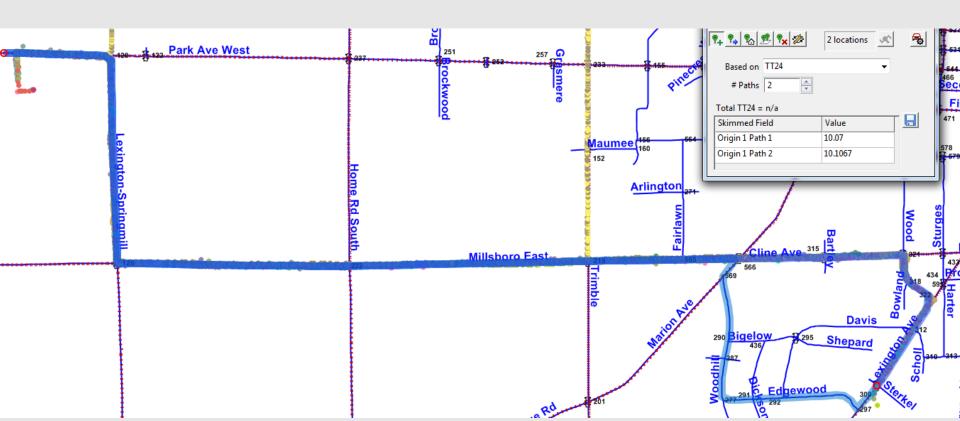
Example of wholesale filtering of records for trip distance (vs O/D network distance)

- Trip circuity as indicator of "intermediate" stops.
- Arc-based formula (+ distance to & from the modeled network) removed about 10% of the Trips in the file (manual reviews were then conducted for the most frequently observed travel paths).

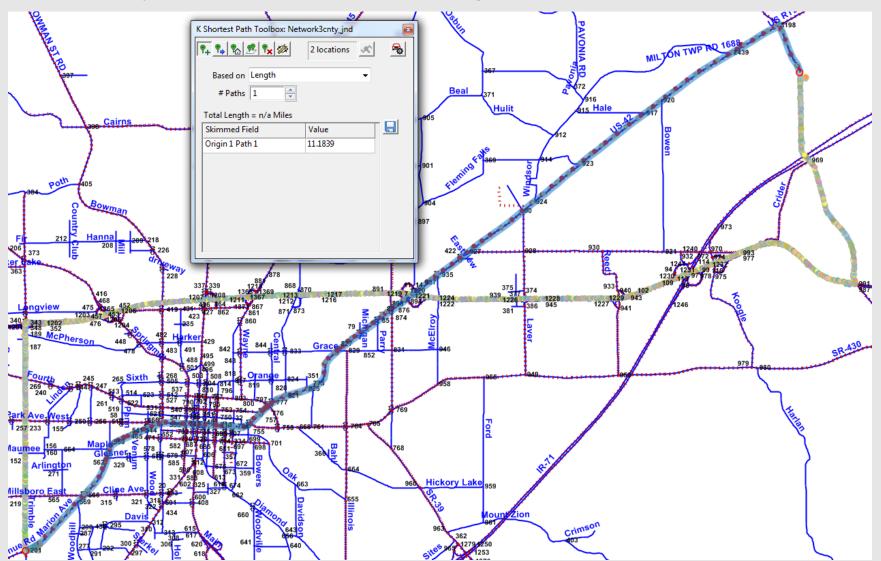
Results found to date (1 of 2):

- Top 12 O/D movements by (filtered) sample size below.
- Some intermediate stops easier to detect than others.
- Occasional issues with modeled vs observed travel time (in large part due to sampled vehicle driver if not stops).

									From trav	el deman	d model:			Percent di
			Observed (GPS) travel time and distance						Observed travel path:			Estimated shortest path:		
Orig	Dest		Avg.Dist	Std Dev	Avg.time	Std Dev	XD net**	Avg.Dist	Avg.time	Std Dev	Avg.Dist	Avg.time	Std Dev	and GPS pa
Node	Node	N	(miles)		(minutes)		Avg.time	(miles)	(minutes)		(miles)	(minutes))	Distance A
117	300	31	5.4	0.1	10.1	1.12		5.7	10.1	2.62	5.5	10.1	2.62	3.8%
3199	201	27	14.4	0.2	19.3	2.16		14.5	20.0	4.14	11.2	17.7	4.74	29.6%
1011	40	32	6.6	0.2	12.8	2.42	11.3	6.4	10.6	2.25	6.4	10.6	2.25	0.0%
769	250	52	3.7	0.1	8.2	1.24		3.7	8.5	2.14	3.7	8.5	2.14	0.0%
237	2220	17	11.5	0.2	22.1	2.79	20.0	11.9	18.9	3.97	11.8	18.7	3.64	0.5%
863	1038	21	10.6	0.1	16.2	1.34		11.0	15.7	3.85	7.4	15.5	3.50	48.9%
2182	410	18	12.2	0.1	16.3	1.05		12.4	18.1	3.84	11.9	16.9	4.21	4.2%
462	572	16	5.7	0.1	9.8	0.69		6.3	9.4	2.36	5.1	9.0	2.24	24.7%
1038	543	12	6.8	0.1	13.7	0.76		7.1	13.0	2.64	6.3	12.6	2.68	14.2%
2313	635	11	12.3	0.2	19.1	1.91		13.4	21.2	4.76	12.6	21.2	4.76	6.1%
1044	912	8	13.2	0.1	24.0	1.71		13.6	22.8	5.48	12.6	20.1	4.51	7.6%
1058	1492	8	7.0	0.1	13.8	1.77	11.1	7.1	11.6	2.59	7.0	11.6	2.59	1.2%
Overal	l avera	ge:	9.1	0.1	15.4	1.58		9.4	15.0	3.39	8.5	14.4	3.32	11.7%


O/D pairing: example #1

- 2 trips filtered out by distance.
- 2 more trips clearly have an intermediate stop (not filtered).
- Modeled time = time from data.


O/D pairing (still example #1):

The (most) observed travel path is estimated to have the most "reliable" travel time, 2nd best for average travel time, only 12th best for distance.



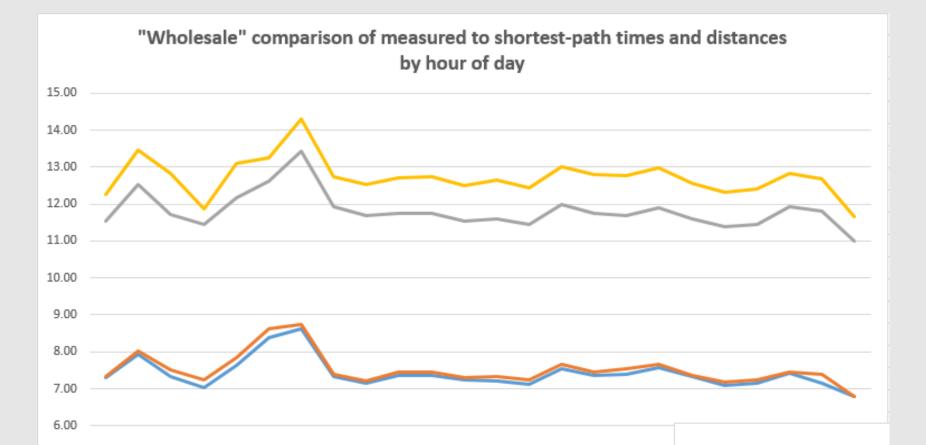
O/D pairing: example #2

• 2 trips followed the shortest distance path, rest on a path maximizing freeway distance - not minimizing either total time or distance.

Example of O/D pair that was not used.

Results found to date (2 of 2):

• Identical result to more extensive study done at Univ. of Minnesota regarding relative importance of time and distance (1/3 of travelers on shortest time path, none on shortest distance path unless identical to shortest time).


						From trav	el deman	d model:			Percent d	lifference	
Observed	ed (GPS) travel time and distance			nce	Observed travel path: Estimated				d shortest	path:	between shortest		
Avg.Dist	Std Dev	Avg.time	Std Dev	XD net**	Avg.Dist	Avg.time	Std Dev	Avg.Dist	Avg.time	Std Dev	and GPS	paths (mod	lel)
(miles)		(minutes)		Avg.time	(miles)	(minutes)		(miles)	(minutes)		Distance	Avg.time	Avg +SD
5.4	0.1	10.1	1.12		5.7	10.1	2.62	5.5	10.1	2.62	3.8%	0.4%	0.0%
14.4	0.2	19.3	2.16		14.5	20.0	4.14	11.2	17.7	4.74	29.6%	13.0%	7.5%
6.6	0.2	12.8	2.42	11.3	6.4	10.6	2.25	6.4	10.6	2.25	0.0%	0.0%	0.0%
3.7	0.1	8.2	1.24		3.7	8.5	2.14	3.7	8.5	2.14	0.0%	0.0%	0.0%
11.5	0.2	22.1	2.79	20.0	11.9	18.9	3.97	11.8	18.7	3.64	0.5%	1.1%	2.4%
10.6	0.1	16.2	1.34		11.0	15.7	3.85	7.4	15.5	3.50	48.9%	1.3%	2.9%
12.2	0.1	16.3	1.05		12.4	18.1	3.84	11.9	16.9	4.21	4.2%	7.3%	4.1%
5.7	0.1	9.8	0.69		6.3	9.4	2.36	5.1	9.0	2.24	24.7%	5.4%	5.4%
6.8	0.1	13.7	0.76		7.1	13.0	2.64	6.3	12.6	2.68	14.2%	2.9%	2.1%
12.3	0.2	19.1	1.91		13.4	21.2	4.76	12.6	21.2	4.76	6.1%	0.0%	0.0%
13.2	0.1	24.0	1.71		13.6	22.8	5.48	12.6	20.1	4.51	7.6%	13.4%	14.9%
7.0	0.1	13.8	1.77	11.1	7.1	11.6	2.59	7.0	11.6	2.59	1.2%	0.0%	0.0%
9.1	0.1	15.4	1.58		9.4	15.0	3.39	8.5	14.4	3.32	11.7%	3.7 %	<mark>3.3%</mark>

Any insight from a more wholesale analysis of the trip records without <u>any</u> manual review?

- Cursory comparison of measured Trip times and distances with (modeled) shortest paths found a closer comparison to shortest <u>distances</u> instead – is it due to differences in driver/trip purposes (largest O/D sample sizes used were all in the AM peak period), or is it the lack of "weeding out" the intermediate stops?
- If trip <u>purpose</u> is the reason, then we might see a pattern in terms of the <u>hour of day</u> the Trip is made.
- A more abbreviated filtering of Trips was conducted, based on "constrained" values of measured/modeled trip times.

.....But no significant difference by TOD was found

- X-axis=hour of day, y-axis=average distance (7-9 miles) or average times (11-14 minutes).
- So, still a need to "manually" review records.

Conclusion: "further research is needed"

- So far, minimizing travel time still more important than minimizing distance for traffic assignment, with the impact of the variability (reliability) of travel time somewhat smaller (light congestion levels in tested regions).
- Observed variability in O/D travel time considerably less than estimates used for modeling. (Likely due to little or no heterogeneity in sampled vehicle drivers by O/D pairing.)
- Need better/more extensive filtering of intermediate stops before moving to a more "wholesale" analysis of the full data set.

Questions?

- The Road Not Taken, 999th ed.
- 2 roads diverged past the Office of the Examiner
- 1 had turbulent traffic flow, the other quite laminar
- The clues of the scour were apparent near here
- And that has made the difference quite clear

RR grade crossing delay analysis:

- <u>Typically, RRX delay filtered out</u> of GPS travel time data for road segments. So, hoped to use waypoints to find delay to motorists as well as general pattern of train arrivals.
- Can be difficult to see these patterns, esp. when road or rail volumes are low, or other sources of delay are nearby.
- <u>Specific locations could be estimated when consecutive waypoints are</u> <u>found to have no "spot speed</u>." Data needs review for directionality relative to the crossing and not due to other causes. (And max trip "delay" of 10 minutes.)

Sample RRX: NS crossing @ Remington Ave

- Double-track, Xing about 800' SW of traffic signal @ US 6.
- AADT=6,000, estimated 94 trains/day (avg. 4/hour).
- Waypoints from 3,300 vehicle trips were mapped within 500 feet of the crossing in 2018, about 15% of the trips had at least one waypoint with no travel speed (after filtering).

Sample use of consecutive waypoints to solve a modeling question:

SIMPLE CASE OF UNIFORM TRAIN HEADWAY AND CHARACTERISTICS:

A = TIME THE RR CROSSING IS BLOCKED

B = TIME FOR THE VEHICLE QUE TO CLEAR

C = TIME BETWEEN TRAINS (A < B << C)

SAMPLE VALUES: A = 2.15 MINUTES, B = 2.4 MINUTES, C = 15 MINUTES

AVERAGE DELAY = 0.22 MINUTES

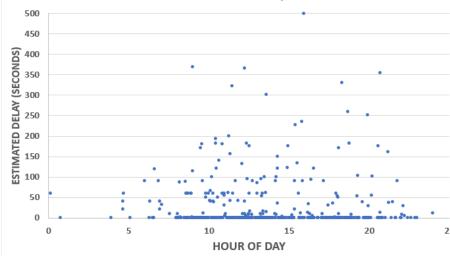
STD. DEVIATION = 0.47 MINUTES, CV = 2.1

ESTIMATE FROM REMINGTON AVE WAYPOINT DATA:

AVERAGE DELAY = 0.13 MINUTES


STD. DEVIATION = 0.44 MINUTES, CV = 3.5

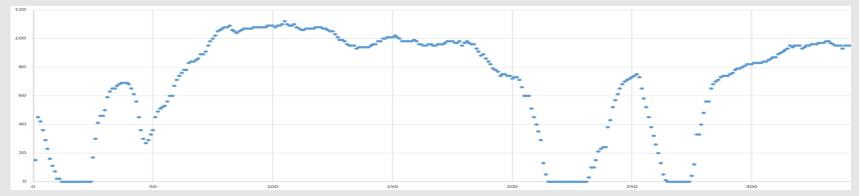
TRAVEL MODEL'S CV EQUATIONS FOR PATH-BUILDING:


FREEWAY: CV = 0.16 * (t/to)^1.02 * ((dist)^-.39)

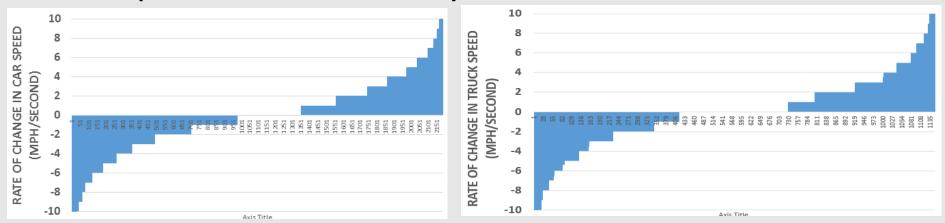
SURFACE STREET: CV = 0.106 * (t/to)^.776 * ((dist)^-.122)

(SURFACE STREET W/<u>RRX?</u>: data suggests use constant term of around 3.3 - or around 2.8 if reducing distance coefficient value to zero.)

CONSECUTIVE-WAYPOINT STOP DELAY AT NS RRX ON REMINGTON AVENUE, SANDUSKY

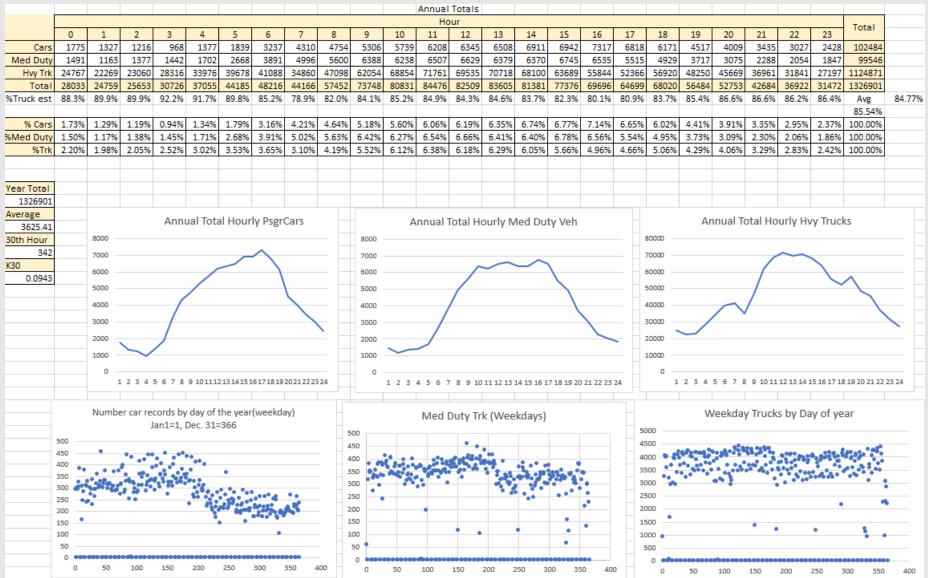

File filtering for vehicle acceleration profiles:

- Criteria used for vehicle acceleration profiles are shown below: focus on tight waypoint spacing.
- Only <u>9</u> truck Trips (of 2.2 million) and <u>90</u> car Trips (of 600,000) met the criteria...


A—Vehicle Acceleration Profiles

Field	Car	Truck:	
Vehicle Class	1	3	
Seconds per waypoint:	=1.0	<1. <mark>3</mark>	(ideally 1.0 per second, but no truck trip records meet that)
Average FRC value	>=3.5	>=2	(avoid freeways, but US30 as well as US42&SR13 are FRC=2)
Number of waypoints	>299	>99	(need large number to find some accel/decel locations)
Pct snapped waypoints	>74	>49	(so that trucks are not just found in parking lots?)
Trip average speed kph	31-60		(already down to just <mark>9</mark> truck records
Max trip speed kph	<100		
OD_CONCAT (on MPO net)	<>null		

• Sample car speed record from waypoints every second.



• Range of car (left) and truck (right) values of change in MPH per second, sorted by value:

Puzzling to find (so far) that accel rates = decel rates, and rates for cars = rates for trucks . . .

K & D factors:

