

Experiences Incorporating Reliability into Planning Models

Stephen Tuttle, RSG Vince Bernardin, PhD, RSG

November 8, 2017

Presentation Overview

- Background
 - What is travel time reliability?
 - Recent research (SHRP2)
- Case Studies and Other Examples
 - Tennessee
 - Other Link-Based Examples
 - Path-Level Measures
 - Southeast Florida
 - San Diego

Travel Time Reliability

- "Variation in travel time for the same trip from day to day." (SHRP2 L11)
- Why model reliability? Why not just average time?...
- Would you rather have:
 - A. 100% chance of 20 min. commute
 - B. 50% chance of 15 min. commute *and* 50% chance of 25 min. commute?
- Same average time but Option A is more reliable
 - Budget 20 minutes for on-time arrival (Option A)
 - Budget 25 minutes for on-time arrival (Option B)

Reliability and Travel Decisions

Route Choice

- Avoid unreliable routes
- Managed/Priced lanes are generally reliable

Departure Time

- Leave early for on-time arrival

Mode Choice

- Transit can very (un)reliable
- Walk is reliable (but slow)

Other

- Destination Choice
- Trip Frequency
- Location Choice

Barriers to Modeling Reliability

Methodological Challenges

 Reliability measures are generally non-additive across links (<u>vexing issue</u>)

Data Requirements

- Need months of observed data
- Data quality isn't always great (historically)

Many Measures

- No obvious "best" measure
- Just the right tail or full distribution?
- Simple measures for non-technical audiences?

Link Non-Additivity

- $LinkA_{Reliability} + LinkB_{Reliability} <> LinkAB_{Reliability}$
- ...with some exceptions
 - Adding the variance of uncorrelated links
 - Certain proxy measures, such as weighted travel time
- May necessitate tradeoffs
 - Path-based assignment,
 - No reliability in SP Route-finding
 - Inconsistency Path and Link- measures, or
 - Use proxy measure

Reliability Measure versus Assignment Type

Avoid confusing link/path assignment and link/path measures!

Reliability Measure

Assignment Type

	Link-Level	OD/Path-Level
Link-Based (traditional shortest path)	Problematic? Use in SP Routefinding	Inferred from skims Use in toll/mode choice
Path-Based/ Enumeration (more advanced)	Not needed! (can be a model output)	Flexible Use in path selection

Recent Research (SHRP 2)

SHRP 2 Research

OVERVIEW

- Major federally funded research effort (2006 to 2015)
- Four focus areas:
 - Safety
 - Renewal
 - Capacity
 - Reliability
- Wealth of material on reliability
 - Measuring
 - Modeling
 - Project programming

Downloadable Content:

http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/SHRP2FocusAreas.aspx

Relevant Reports

SELECTED REPORTS

- SHRP 2 L03 (Cambridge Systematics, Inc. et al., 2013)
 - Empirical analysis of reliability
 - Mean TTI and reliability measures
- SHRP 2 L04 (Mahmassani et al., 2013)
 - Path-level reliability measures
 - Tool for meso- and micro-simulation models
- SHRP 2 C04 (Parsons Brinkerhoff et al., 2013)
 - Reliability and route choice

Case Study: Tennessee

Overview

- Bernardin (RSG) et al.
- For Tennessee Statewide Model
- · Link-Based Assignment, Link-Level Measure
- Weighted Delay
 - Proxy measure
 - No additivity problem
 - Reduced challenge estimating/implementing
 - Unreliability closely depends on congestion/LOS

Is all travel time created equal?

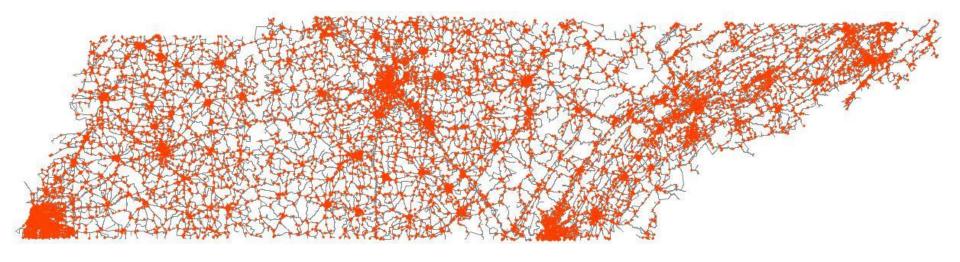
20 minutes of this

VS

20 minutes of this

A Simple Version

Congested Time = Free-flow Time + Delay


Perceived Time = Free-flow Time + α Delay

Tennessee Statewide Travel Model

DATA

• 12,000+ Traffic Counts

METHOD

Estimate α to produce Least Squared Error (LSE)

Results

FINDINGS

Modest improvement (~1-2%) in RMSE

• Autos: $\alpha = 1.10$

• SUT: $\alpha = 1.29$

• MUT: $\alpha = 1.21$

 Over-estimation/over-valuation of delay less than in some research, but still significant, particularly for trucks

Other Link-Based Examples

FAMPO Model

RESULTS

- Similar approach to TDOT model
- Tested $1.5 < \alpha < 1.7$
- Eventually settled on 1.5
- Closer to values in literature

LOS Weighting Scheme

LOS-BASED WEIGHTS

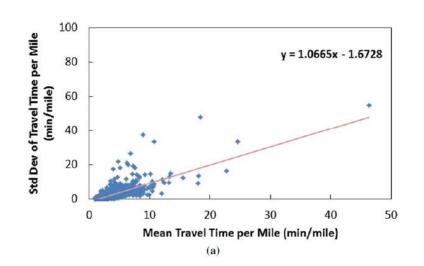
Travel Time Conditions	Weight	LOS	V/C
Free flow	1.00	A, B	Under 0.5
Busy	1.05	С	0.5–0.7
Light congestion	1.10	D	0.7–0.8
Heavy congestion	1.20	E	0.8–1.0
Stop start	1.40	F	1.0–1.2
Gridlock	1.80	F	1.2+

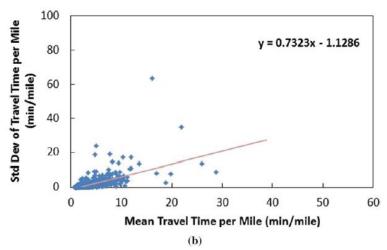
Source: (Mahmassani, et. al, 2014)

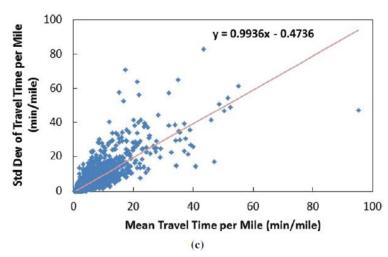
Path-Level Measures

Analytic Path-Based Approaches

- Can estimate from single assignment (instead of explicitly simulating)
- L04: can use mean travel time per distance to predict
- L03: can use TTI to predict

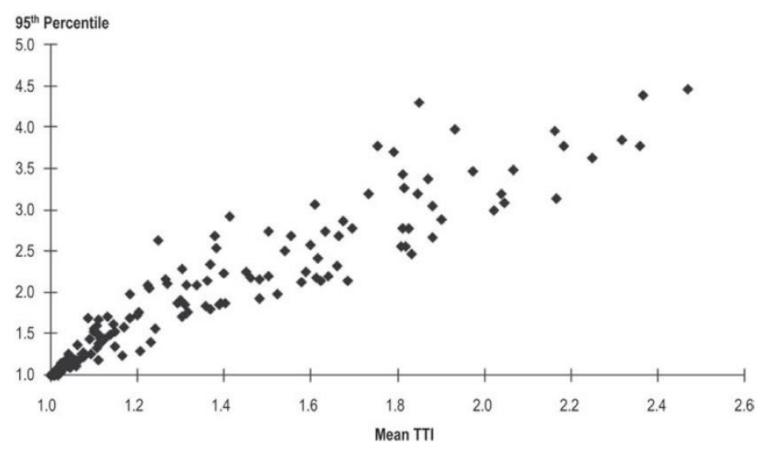



Mean Travel Time Approach


Std. Dev/mile vs. Mean/mile

PSRC

- (a) OD Level
- (b) Path Level
- (c) Link Level



Source: (Mahmassani, et. al, 2014)

TTI Approach

Mean TTI vs. 95th TTI for Seattle

Source: (Cambridge Systematics, et. al, 2013)

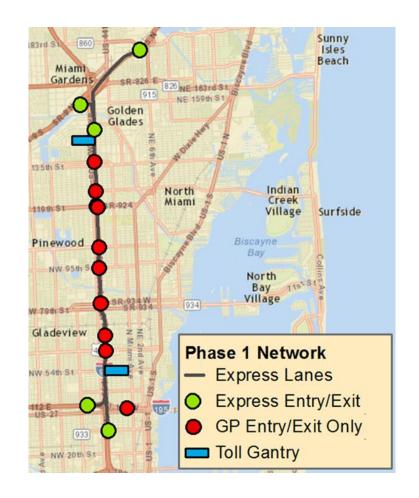
Case Study: Southeast Florida

Overview

- RSG and AECOM for Florida's Turnpike
- Link-Based Assignment, Path-Level measure
- Standard Deviation
 - Used in toll diversion
 - Not used for SP Route-finding
- Based on SHRP2 L04 equation considering:
 - Trip distance
 - Delay
 - Travel time correlation

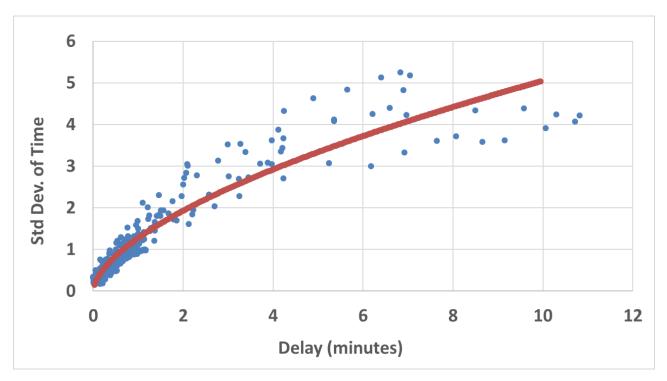
Reliability Formula

ROUTE MEASURE


- Initial L04 formula:
 - $StdDev = \gamma \times (Time_{Congested} Time_{FreeFlow}) \times (Distance)^{-\eta}$
- Grows proportionally with delay
- Decreases with distance
 - Slow/fast links cancel out
- Well-suited for corridor assignments
 - Simple pathfinding
 - Steady parameter values
- Can also be used in regional assignments

Example Corridor Analysis

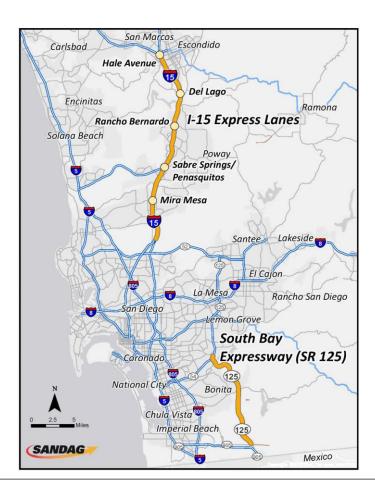
I-95 STUDY AREA

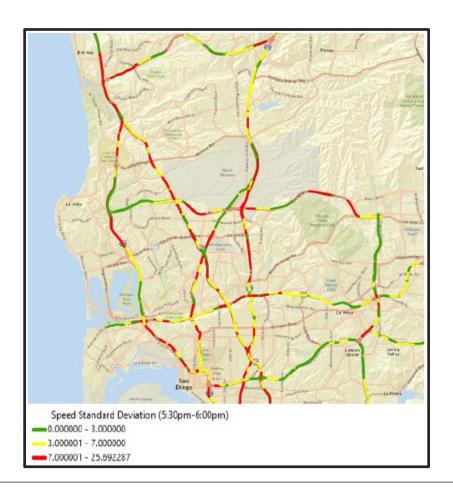

- Simple Pathfinding:
 - 1 free path
 - 1 or 0 toll paths
- Reliability not needed for pathfinding
- But used in toll choices

Reliability Equation

- One Year of data for I-95 and I-595 Corridors
- Data grouped by 15-minute period
- $StdDev = 1.28 \times Delay^{0.59} \times (Distance)^{-.1}$

Case Study: San Diego


Overview


- Freedman (RSG) et al.
- For SANDAG Activity-Based Model
- Link-based Assignment
- Link-level measure of Standard Deviation:
 - Depends on LOS and non-LOS Factors
 - Used in SP Route-finding
- Path-level measure of Standard Deviation:
 - Square root of summed link variances
 - Works best theoretically with no or low link time correlation
- Used in Utility equation based on SHRP2 C04

Study Area

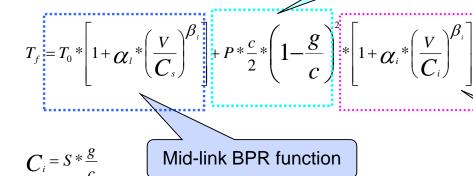
LARGE STUDY AREA WITH TWO PRICED FACILITES

Travel Time Reliability Regression Model

$$\frac{\sigma_{min \ per \ mile}}{\mu_{min \ per \ mile}} = f \ (speed, lanes, control \ type, distance \ to \ freeway, \\ time \ period, volume/capacity)$$

- Dependent variable formulated so that it can be implemented in volume-delay function
- Posted speed represents facility type variations for arterials
- (Inverse of) Distance to major freeway captures potential weaving conflicts: upstream (past) versus downstream (to)
- Control type signalized, stop-controlled, metered, rr-xing, none)
- Time period captures time-of-day effects within broad periods
- V/C ratio captures congestion effects

Estimation Results


- Reasonable LOS effects
 - Flatter for arterials than freeways
- Significant time-of-day effects capturing within period variability
- Distance to/from major interchanges significant for freeways
- Adjusted r^2
 - 0.18 for freeways
 - 0.37 for arterials

Reliability Implementation

Uncongested Signal Delay

Modified VDF Model Form

Intersection congestion adjustment

$$T_{f+r} = T_f + T_f * \left[\sum_{t=1,n} (\gamma_t * \frac{v}{c} - t + 0.01) + R \right]$$

Where:

 T_{f+r} = Travel time with (un)reliability

 T_f = Travel time without (un)reliability

t = v/c thresholds (C, D, E, F-low, F-high)

 γ_t = Coefficients for v\c thresholds

 $R = \text{non-v} \setminus c \text{ link (un) reliability}$

C04 Highway Utility Function (implemented)

$$Utility_{ij} = \alpha \times Time_{ij} + \beta \times \left[Cost_{ij} / (I^e \times O^f) \right] + \gamma \times \frac{STD}{Distance_{ij}} + \delta$$

where:

 α is a log-normally distributed random parameter representing unobserved user heterogeneity with respect to travel time sensitivity

 β is the travel cost coefficient

γ is the reliability coefficient

 δ is an alternative-specific constant for toll usage

 I^e captures the effect of income (I) on travel cost sensitivity O^f captures the effect of auto occupancy on travel cost sensitivity STD/Distance is the standard deviation of travel time per mile

Conclusions

- Active area of research
- Several approaches, consider:
 - Model type: micro/meso/macro simulation?
 - Study area small enough for path-based assignment?
 - Study objectives T&R or just traffic?

References

- Cambridge Sytematics Inc., et al. "Analytical Procedures for Determining the Impacts of Reliability Mitigation Strategies." *Transportation Research Board of the National Academies*, Washington, DC (2013).
- Kittelson & Associates. "Evaluating Alternative Operations Strategies to Improve Travel Time Reliability." *Transportation Research Board of the National Academies*, Washington, DC (2013).
- Mahmassani, Hani S., et al. "Incorporating Reliability Performance Measures into Operations and Planning Modeling Tools." *Transportation Research Board of the National Academies*, Washington, DC (2014).
- Parsons Brinckerhoff, et al. "Improving Our Understanding of How Highway Congestion and Price Affect Travel Demand." *Transportation Research* Board of the National Academies, Washington, DC (2013).

www.rsginc.com

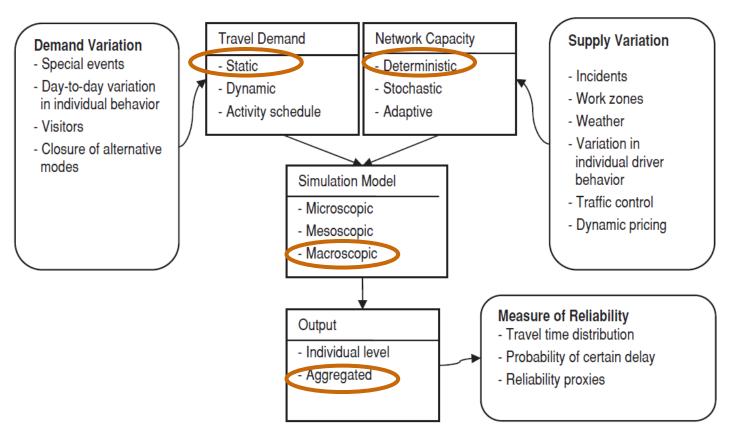
Stephen Tuttle CONSULTANT

Stephen.Tuttle@rsginc.com 312.605.9203

Vince Bernardin, Jr, PhD
DIRECTOR OF TRAVEL FORECASTING

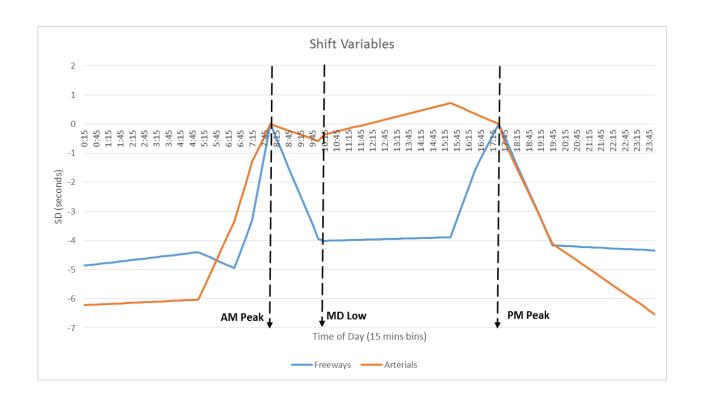
Vince.Bernardin@rsginc.com 812.200.2351

Reliability Measures by Analysis Level


		Analysis Level				
		Network	O-D	Path/Segment/Link		
Characteristic	Travel times for vehicles	Not comparable	Comparable	parable Comparable		
	Travel distances for vehicles	Different	Different	Identical		
Applicable measures	Distance-normalized measures (Type A)	 Average of travel times per mile (TTPMs) Standard deviation of TTPMs 95th/90th/80th percentile TTPM 				
	Measures for comparable travel times (Type B)		 Average travel time Standard deviation of travel times Coefficient of variation Standard deviation of travel times/mean travel time 95th/90th/80th percentile travel time Buffer Index (95th percentile travel time – mean travel time)/(mean travel time) Skew Index (90th percentile travel time – median travel time)/(median travel time – 10th percentile travel time) Percent on-time arrival Percent of travel times < 1.1 median travel time 			
	Measures for the same travel distance (Type C)			TTI (Travel Time Index) Mean travel time/free-flow travel time PTI (Planning Time Index) 95th percentile travel time/free-flow travel time Misery Index Mean of the highest 5% of travel times/free-flow travel time Frequency of congestion Percent of travel times > 2 free-flow travel time		

Source: (Mahmassani, et. al, 2014)

Modeling Overview


OVERVIEW

Source: (Mahmassani, et. al, 2014)

Shift Variables

