CAMBRIDGE SYSTEMATICS

Incorporating Intersection Delays in Subarea Travel Demand Modeling

presented to North Carolina Model User Group presented by Cambridge Systematics, Inc. Feng Liu, Ph.D.

May 11, 2016

Overview

Objectives and Motivation

- Methodology
- Study Area
- Results
- Conclusions

Objectives

- Investigate Congestion Effects
 - » Delay at the link and intersection level
- Analyze Traffic Impacts of Land Development
 » Level of services (LOS)
- Evaluate Mitigation Options
 - » Measures of effectiveness

Analytical Tools

- Traffic Analysis Software
 - » HCM-based methodology for analyzing intersection LOS
 - » Traffic volumes estimated externally
 - » No feedback
- Regional Travel Demand Modeling
 - » Estimate/forecast traffic volumes
 - » No consideration of the effects of intersection delay
- Subarea Travel Demand Modeling
 - » Consideration of the effects of intersection delay

Two Modeling Approaches

	Control Device Method	Intersection Modeling
Approach	Capacity-restrained assignment	Intersection-constrained
	with link capacity and speed	capacity-restrained
	modified by intersection delays	assignment, with HCM
		intersection methodology
Input/	Network attributes: control	Network attributes: link and
Parameters	devices, link facility types, total	intersections
	number of turn lanes	Geometric characteristics
	Default: degree of progression	Signal timing
	(arrival type), cycle time, green	
	time to cycle time ratios, and	
	signal progression factor	

Two Modeling Approaches

	Control Device Method	Intersection Modeling
Intersection types	No control device; Stop sign; Yield sign; Major approach to a signalized intersection; and Minor approach to a signalized intersection	Signal-controlled intersections (four types) All-way stop-controlled intersection Two-way stop-controlled intersection Priority intersection (two-way yield controlled intersection) Roundabout
Output	Link level LOS	Intersection Delays and LOS
Mitigation measures	Evaluated directly (limited) and indirectly	Evaluated directly

Study Area

General Study Area

Source: Cambridge Systematics

CAMBRIDGE SYSTEMATICS

Study Area

Core Study Area

8

Traffic Analysis Network

Subarea Model Network

AM Volume Comparison: Intersection Modeling vs Control Device Method

PM Volume Comparison: Intersection Modeling vs Control Device Method

Intersection Intersection Type : Adaptive Signal; Model Period : 180 minutes Attribute : Delay LOS LOS: D шш ЦЦ Comparisons with Traffic Analysis 1.38 C 0.37 Software Ban 1.07 0.37 C C 611 2.13 F F 1.39 30023 D 0.40 1.85 F 0.40 1.65 1.07 1.65 LL.

Model Validation

Screenlines

Model Validation

Model-Estimated vs. Observed Daily Volumes

	% Difference (%RMSE)		
Policy Issues	Control Device Method	Intersection Modeling	
Freeway/ Expressway	4% (32%)	-4% (27%)	
Major Arterial	-15% (27%)	-7%(15%)	
Medium/Minor Arterial	-1% (9%)	1%(12%)	
Collector	-7% (38%)	-5%(27%)	
Total	-6% (27%)	-4%(18%)	

Conclusions

Subarea Travel Demand Modeling

- » Control device modeling
- » Intersection modeling
 - HCM methodology
 - Detailed representation of intersection
 - Delays and intersection LOS
 - Congestion effects on route choice and diversion
- Model capability
 - » Evaluate mitigation measures
 - » Evaluate traffic impacts of land development

Acknowledgement

- Fairfax County Department of Transportation (David Kline)
- Cambridge Systematics staff (Jay Evans, P.E., AICP, Xuemei Liu, Ph.D., Keir Opie)

