

the science of insight

Modeling Intersection Delay in Static Assignment

May 11, 2016

Agenda

MOTIVATION

• Why do this?

KEY ISSUES

• Things to think about

METHODS

• Ways of doing it

SUMMARY

Press Photo - Rex Larsen

Motivation

Why bother?

GOOD REASONS

- Get speeds and delay right on arterials
 - Get emissions and vehicle operating costs right
 - Get routing right (better volumes, better paths for microsim)
- Represent rough benefits of different types of intersection control
 - Stop vs. Roundabout vs. Signal vs. Interchange

MAYBE NOT

- Test signal improvements (re-timing, coordination)
 - Better to use Synchro, HCS, or microsimulation

Solution Stability

REQUIREMENTS FOR EXISTENCE OF UNIQUE, FIXED POINT SOLUTION

- The network is strongly connected
- Demand is non-negative, finite, and either fixed or continuous and decreasing in cost
- The cost function is positive, continuous and increasing in demand

Trouble with Intersections

SIGNALS – ESPECIALLY ACTUATED – VIOLATE CONDITIONS

- cost function must be positive, continuous and increasing in demand
- · cost can decrease at signals with the same or increasing demand if
 - timing changes/adapts or
 - cross street demand decreases
- multiple equilibria possible
- difference between two runs could just be this

So... Good enough?

DANGER OF REALISTIC TRAFFIC DYNAMICS

 Realistic signal operations, etc., can threaten solution stability and invalidate (legally for NEPA) alternatives analysis, benefit-cost, and emissions analyses

SO, INSTEAD...

- Most methods compromise between realism and solution stability
 - Make intersection delay as realistic as possible
 - While maintaining a stable solution
- Beware methods that don't compromise!

Precision & Convergence

PRACTICAL CONSIDERATIONS

- Well converged solutions are important
 - Considerable noise in poorly converged results
 - Is 800 vph +/- 2,000 vph really helpful?
- Some methods of incorporating intersection delay can require much longer run times to achieve the same convergence – or may not be able to achieve good convergence at all

05.11.2016

RSG

Traffic Assignment and Feedback Research to Support Improved Travel Forecasting, FTA, 2015

Input Data

DATA HUNGRY?

- Different methods require different data
 - Location of signals & roundabouts (maybe stops)
 - g/C ratios, cycle length
 - Phasing, turn bay lengths, etc.

Dependencies on Input Data

SELF-FULFILLING PROPHECIES

- Outcomes can be dependent on input assumptions (such as g/C, phasing, etc.)
 - even if the algorithm can adjust these
 - If the initial iteration has less delay for one movement, more demand gets assigned to it, so the algorithm maintains or increases the g/C / phasing ratio in favor of the movement...repeat ad infinitum
 - Not an issue in simpler schemes without phasing or variable g/C's

Calibration

TO TRANSFER OR NOT TO TRANSFER

- Different methods have differing numbers and types of parameters
 - Some have observable parameters (e.g., cycle length, g/C)
 - All have calibration parameters
 - » Some have well-established defaults
 - » Others do not and may vary by location
- Ideal calibration requires having both travel time / delay and volume data for the same time periods
 - Travel time data now becoming more common but often detailed (hourly / 15-min) counts are lacking
- Calibration can also be done by minimizing squared error versus counts in assignment

Overview of Methods

METHODS FOR INTERSECTION DELAY IN STATIC ASSIGNMENT

- Link / Approach-based
 - Link/Approach-based with Simple BPR form vdf
 - Link/Approach-based with "Double"/"Modified" BPR vdf
 - Others (Aashtiani et al.)
- Node Delay
 - IIT Logit Delay
 - TMODEL Node Delay
- HCM-based Volume-Dependent Turn Delays
 - Full HCM method
 - HCM approach method
- Others?

Link-based w/ Simple BPR form vdf

A SIMPLE METHOD

- Webster's uniform control delay for free-flow conditions added to free-flow time for each approach
- BPR form volume-delay function used to represent flow-dependent delays (uniform, random arrival / incremental & overflow / queueing delays)

$$d_0 = 0.5C \left(1 - \frac{g}{C}\right)^2$$

 $t = (t_0 + d_0) \left[1 + \alpha \left(\frac{v}{c} \right)^{\beta} \right]$

NOTES

- Used in IN, KY, TN, AR, etc.
- Delay continuously increasing in demand
- Only requires intersection type (g/C can be assumed or input, etc.)
- Parameters (α , β) different from freeways and vary by location

Link-based w/ "Double"/"Modified" BPR vdf

A PRETTY SIMPLE METHOD

- One BPR form volume-delay function for link / midblock delay
- Another BPR form volume-delay function used to represent flow-dependent delays (uniform, incremental / random arrival & overflow/queueing delays)

$$t_l = t_0 \left[1 + \alpha_l \left(\frac{v}{c} \right)^{\beta_l} \right]$$

 $t_n = d_0 \left[1 + \alpha_n \left(\frac{v}{c} \right)^{\beta_n} \right]$

NOTES

- Used in AZ, CA, AK
- Delay continuously increasing in demand
- Only requires intersection type (g/C can be assumed or input, etc.)
- Need four parameters, vary by location

Node Delay – IIT Logit

$$t_n = p_1 d_0 \left[1 + \left(\frac{p_2}{1 + e^{\left(p_3 - p_4 \frac{\nu}{c} \right)}} \right) \right]$$

A DIFFERENT METHOD

• Logit delay function (from IIT) - one for link delay, one for node delay

NOTES

- Used in NY, VT, NH
- Delay continuously increasing in demand
- Requires intersection / node capacities
 - Estimated at right from Synchro
- Requires lane configurations
- Fairly established parameters

	Signalized Intersection 24-Hour Capacity Values*										
	Minor Lane Groups	4	_€ L	ţ	\$	Ţ	↓↓	↓↓↓	₩	₩	
Major Lane Group	\succ	Single	Left Turn Bays	Left & Right Turn Bays	Left & 2 Through	Left, Right & 2 Through	2 Throughs	3 Throughs	Left & 3 Through	Left, Right and Three Through	
+	Single	23,000	\times	imes	\times	imes	imes	imes	imes	\succ	
¶†•	Left Turn Bays	28,000	33,000	imes	\times	\times	\times	\times	\times	\times	
¶ r	Left & Right Turn Bays	31,000	36,000	38,000	\times	\times	imes	imes	imes	\succ	
1₽	Left & 2 Through	40,000	44,000	49,000	53,000	imes	imes	\succ	imes	\succ	
1	Left, Right & 2 Throughs	46,000	50,000	54,000	58,000	62,000	imes	\succ	imes	\succ	
⇒	2 Throughs	29,000	33,000	37,000	39,000	43,000	35,000	\times	imes	\succ	
Ħ	3 Throughs	32,000	36,000	40,000	46,000	46,000	38,000	40,000	imes	\succ	
∎	Left & 3 Through	48,000	52,000	56,000	60,000	64,000	50,000	54,000	66,000	\succ	
₿	Left, Right and Three Through	50,000	54,000	58,000	62,000	66,000	52,000	56,000	68,000	72,000	

alized Intersection 24 Hour Conscitut Value

HCM-based Volume-Dependent Turn Delays

A COMPLEX METHOD

- At each iteration, solve HCM for delay for each movement update turn penalty to reflect this
- Can use full (critical movement) or simplified (approach) HCM method

NOTES

- Used in OH
- Delay NOT continuously increasing in demand with full HCM mostly stable in practice, but...
- Significant runtime increase
- Limits convergence
- Requires lane configurations
- Fairly established parameters

Methods and Issues

AT THE RISK OF REALLY OVERSIMPLIFYING...

	Stable	Runtime / Convergence	Input Data Required	Self-Fulfilling Prophecy	Calibration
Link / Approach-based					
Link/Approach-based with Simple BPR form vdf	\odot	\odot	\odot	\odot	8
Link/Approach-based with "Double"/"Modified" BPR vdf	\odot	\odot	\odot	\odot	8
Others (Aashtiani <i>et al.</i>)	\odot	©	\odot	3	8
Node Delay					
IIT Logit Delay	0		8		?
TMODEL Node Delay	3	©	\odot		8
HCM-based Volume-Dependent Turn Delays					
Full HCM method	8	8	8	8	٢
HCM approach method	9	?	$\overline{\mathbf{S}}$	8	\odot

VINCE BERNARDIN, PHD Director

Vince.Bernardin@RSGinc.com 812-200-2351

www.rsginc.com