Modeling Intersection Delay in Static Assignment

May 11, 2016
Agenda

MOTIVATION
• Why do this?

KEY ISSUES
• Things to think about

METHODS
• Ways of doing it

SUMMARY
Motivation
Why bother?

GOOD REASONS
• Get speeds and delay right on arterials
 - Get emissions and vehicle operating costs right
 - Get routing right (better volumes, better paths for microsim)
• Represent rough benefits of different types of intersection control
 - Stop vs. Roundabout vs. Signal vs. Interchange

MAYBE NOT
• Test signal improvements (re-timing, coordination)
 - Better to use Synchro, HCS, or microsimulation
Key Issues
Solution Stability

REQUIREMENTS FOR EXISTENCE OF UNIQUE, FIXED POINT SOLUTION

- The network is strongly connected
- Demand is non-negative, finite, and either fixed or continuous and decreasing in cost
- The cost function is positive, continuous and increasing in demand

Source: D. Boyce
Trouble with Intersections

SIGNS – ESPECIALLY ACTUATED – VIOLATE CONDITIONS

- cost function must be positive, **continuous and increasing in demand**
- cost can decrease at signals with the same or increasing demand if
 - timing changes/adapts or
 - cross street demand decreases
- multiple equilibria possible
- difference between two runs could just be this

![Actuated Signal](image)

Two Equilibria!
So... Good enough?

DANGER OF REALISTIC TRAFFIC DYNAMICS

- Realistic signal operations, etc., can threaten solution stability and invalidate (legally for NEPA) alternatives analysis, benefit-cost, and emissions analyses

SO, INSTEAD...

- Most methods compromise between realism and solution stability
 - Make intersection delay as realistic as possible
 - While maintaining a stable solution
- Beware methods that don’t compromise!
Precision & Convergence

PRACTICAL CONSIDERATIONS

• Well converged solutions are important
 - Considerable noise in poorly converged results
 - Is 800 vph +/- 2,000 vph really helpful?
• Some methods of incorporating intersection delay can require much longer run times to achieve the same convergence – or may not be able to achieve good convergence at all
Input Data

DATA HUNGRY?

- Different methods require different data
 - Location of signals & roundabouts (maybe stops)
 - g/C ratios, cycle length
 - Phasing, turn bay lengths, etc.
Dependencies on Input Data

SELF-FULFILLING PROPHECIES

• Outcomes can be dependent on input assumptions (such as g/C, phasing, etc.) – even if the algorithm can adjust these
 - If the initial iteration has less delay for one movement, more demand gets assigned to it, so the algorithm maintains or increases the g/C / phasing ratio in favor of the movement…repeat ad infinitum
 - Not an issue in simpler schemes without phasing or variable g/C’s

Other Self-Fulfilling Prophecies

THERE IS TOO MUCH TRAFFIC FOR BILLY TO WALK TO SCHOOL; SO WE DRIVE HIM.
TO TRANSFER OR NOT TO TRANSFER

- Different methods have differing numbers and types of parameters
 - Some have observable parameters (e.g., cycle length, g/C)
 - All have calibration parameters
 » Some have well-established defaults
 » Others do not and may vary by location
- Ideal calibration requires having both travel time / delay and volume data for the same time periods
 - Travel time data now becoming more common – but often detailed (hourly / 15-min) counts are lacking
- Calibration can also be done by minimizing squared error versus counts in assignment
Methods
Overview of Methods

METHODS FOR INTERSECTION DELAY IN STATIC ASSIGNMENT

• Link / Approach-based
 - Link/Approach-based with Simple BPR form vdf
 - Link/Approach-based with “Double”/“Modified” BPR vdf
 - Others (Aashtiani et al.)

• Node Delay
 - IIT Logit Delay
 - TMODEL Node Delay

• HCM-based Volume-Dependent Turn Delays
 - Full HCM method
 - HCM approach method

• Others?
A SIMPLE METHOD

- Webster’s uniform control delay for free-flow conditions added to free-flow time for each approach
- BPR form volume-delay function used to represent flow-dependent delays (uniform, random arrival / incremental & overflow / queueing delays)

\[d_0 = 0.5C \left(1 - \frac{g}{C}\right)^2 \]

\[t = (t_0 + d_0) \left[1 + \alpha \left(\frac{v}{c}\right)^\beta \right] \]

NOTES

- Used in IN, KY, TN, AR, etc.
- Delay continuously increasing in demand
- Only requires intersection type (g/C can be assumed or input, etc.)
- Parameters (\(\alpha, \beta\)) different from freeways and vary by location
Link-based w/ “Double”/“Modified” BPR vdf

A PRETTY SIMPLE METHOD

• One BPR form volume-delay function for link / mid-block delay

\[t_l = t_0 \left[1 + \alpha_l \left(\frac{v}{c} \right)^{\beta_l} \right] \]

• Another BPR form volume-delay function used to represent flow-dependent delays (uniform, incremental / random arrival & overflow/queueing delays)

\[t_n = d_0 \left[1 + \alpha_n \left(\frac{v}{c} \right)^{\beta_n} \right] \]

NOTES

• Used in AZ, CA, AK

• Delay continuously increasing in demand

• Only requires intersection type (g/C can be assumed or input, etc.)

• Need four parameters, vary by location
Node Delay – IIT Logit

\[t_n = p_1 d_0 \left[1 + \left(\frac{p_2}{1 + e^{(p_3 - p_4 \frac{v}{c})}} \right) \right] \]

A DIFFERENT METHOD

• Logit delay function (from IIT) – one for link delay, one for node delay

NOTES

• Used in NY, VT, NH
• Delay continuously increasing in demand
• Requires intersection / node capacities
 - Estimated at right from Synchro
• Requires lane configurations
• Fairly established parameters
HCM-based Volume-Dependent Turn Delays

A COMPLEX METHOD

- At each iteration, solve HCM for delay for each movement – update turn penalty to reflect this
- Can use full (critical movement) or simplified (approach) HCM method

NOTES

- Used in OH
- Delay NOT continuously increasing in demand with full HCM – mostly stable in practice, but…
 - Significant runtime increase
 - Limits convergence
 - Requires lane configurations
 - Fairly established parameters
Summary
Methods and Issues

AT THE RISK OF REALLY OVERSIMPLIFYING…

<table>
<thead>
<tr>
<th>Method Type</th>
<th>Stable</th>
<th>Runtime / Convergence</th>
<th>Input Data Required</th>
<th>Self-Fulfilling Prophecy</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link / Approach-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link/Approach-based with Simple BPR form vdf</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😞</td>
</tr>
<tr>
<td>Link/Approach-based with “Double”/“Modified” BPR vdf</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😞</td>
</tr>
<tr>
<td>Others (Aashtiani et al.)</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😞</td>
</tr>
<tr>
<td>Node Delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIT Logit Delay</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😞</td>
<td>😊😊</td>
<td>?</td>
</tr>
<tr>
<td>TMODEL Node Delay</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😞</td>
</tr>
<tr>
<td>HCM-based Volume-Dependent Turn Delays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full HCM method</td>
<td>😞😊</td>
<td>😞😊</td>
<td>😞😊</td>
<td>😞😊</td>
<td>😞</td>
</tr>
<tr>
<td>HCM approach method</td>
<td>😊😊</td>
<td>?</td>
<td>😞</td>
<td>😞</td>
<td>😃</td>
</tr>
</tbody>
</table>