Simulation-based Dynamic Traffic Assignment for Planning Applications

Daniel Morgan
Qi Yang, PhD
Howard Slavin, PhD
Caliper Corporation

November 19, 2015
Context: Motivation

• Technical
 – Many transportation planning problems require dynamic models

• Practical
 – Effective transportation planning solutions require consensus/buy-in
Context: Technical Motivation

- Dynamic Traffic Assignments are needed for analyzing pricing strategies, capacity improvements, and ITS
- Congested travel times form the basis for crucial planning model estimation and application
- Static assignments produce biased travel times and biased models and forecasts
- These compromises are no longer necessary or justifiable
- ...
• Operational fidelity needed for traffic engineering work
• Many projects and traffic management measures have impacts that cannot be estimated with planning models
• These require detailed microsimulation in which lane level behavior is captured
Context: Practical Motivation

- Effective deployment hinges on usability, robustness
- DTAs lend themselves better to dynamic visualization and animation
- A more compelling tool for engaging stakeholders and the public
Context: Background

• Early experiments with macro DTA
• TRANSIMS & MITSIM
• Meso models-Integration, Dynasmart, & DYNAMIT
• Microsimulation thought to be impossible at the regional scale
• The TransModeler hybrid approach: Macro, Meso, and Micro in any combination on the same network
• 4-D lane level GIS for efficiency in simulation development
Context: Wide Area Micro DTA Successes

- Eureka, CA
- Burlington, VT
- Phoenix, AZ
- Lake County, CA
- Jacksonville, FL
- Virginia Beach, VA
- Ukiah, CA
- Practical, calibrated, validated, and deployed Microscopic DTA models
- Hybrid models neither needed nor warranted for any reason
Context: Wide Area Micro DTA Successes

- Eureka, CA
- Burlington, VT
- Phoenix, AZ
- Lake County, CA
- **Jacksonville, FL**
- Virginia Beach, VA
- Ukiah, CA
- Practical, calibrated, validated, and deployed Microscopic DTA models
- Hybrid models neither needed nor warranted for any reason
• 495 Express Lanes (Northern VA)
• 95 Express Lanes (Miami)
• 95 Express Lanes (Northern VA)
• I-4 (Orlando)
• C-470 (Denver)
• I-70 Mountain Corridor (West of Denver)
• Purposes varied: from practical applications to T&R to research
• Dynamic pricing a theme
Approach: Key DTA Elements

- Dynamic shortest paths based upon departure times
- Realistic route choice incorporating VOT, willingness to pay
- Queue build-up and dissipation
- Short time intervals for travel time measurement
- Dynamic User Equilibrium condition - Temporal extension of Wardrop’s principle that all used paths between each OD pair, have the same minimum cost for a given departure time interval and that there are no lower cost routes
- Iterative computation to achieve convergence
Approach: Key DTA Elements

- Dynamic shortest paths based upon departure times
- Realistic route choice incorporating VOT, willingness to pay
- Queue build-up and dissipation
- **Short time intervals** for travel time measurement
- Dynamic User Equilibrium condition: Temporal extension of Wardrop’s principle. Roads between each OD pair, have the same minimum cost for a given departure time interval and there are no lower cost routes
- Iterative computation to achieve convergence

Direct tie-in with activity-based models (ABM)
Approach: Key DTA Elements

- Dynamic shortest paths based upon departure times
- Realistic route choice incorporating VOT, willingness to pay
- Queue build-up and dissipation
- Short time intervals for travel time measurement
- Dynamic User Equilibrium condition - Temporal extension of Wardrop’s principle that all used paths between each OD pair, have the same minimum cost for a given departure time interval and that there are no lower cost routes
- Iterative computation to achieve convergence

While rooted in familiar trip-based model theory
Approach: Key DTA Elements

- Dynamic shortest paths based upon departure times
- **Realistic route choice** incorporating VOT, willingness to pay
- **Queue build-up and dissipation**
- Short time intervals for travel time measurement
- Dynamic User Equilibrium - Temporal extension of Wardrop’s principle that all used paths between each OD pair, have the same minimum cost for a given departure time interval and that there are no lower cost routes
- Iterative computation to achieve convergence

Key advantages
Approach: Microscopic DTA

• Microscopic in level of detail
 – Referenced to ground truth with accurate geometry
 – Lane level and intersection area representation
 – Temporal dynamics (as low as 0.1-sec)
 – 2-d and 3-d dynamic visualization

• Microscopic in modeling accuracy
 – Microscopic (car following, lane changing)
 – Employs realistic route choice models
 – Handles complex network infrastructure (Signals, variable message signs, sensors, etc.)
 – Simulates multiple modes, user classes, vehicle types
Approach: Microscopic DTA

• Microscopic in level of detail
 – Referenced to ground truth with accurate geometry
 – Lane level and intersection area representation
 – Temporal dynamics (as low as 0.1-sec)
 – 2-d and 3-d dynamic visualization

• Microscopic in modeling accuracy
 – Microscopic (car following, lane changing)
 – Employs realistic route choice models
 – Handles complex network infrastructure (Signals, variable message signs, sensors, etc.)
 – Simulates multiple modes, user classes, vehicle types
Approach: Microscopic DTA

- Microscopic in level of detail
 - Referenced to ground truth with accurate geometry
 - Lane level and intersection area representation
 - Temporal dynamics (as low as 0.1 sec)
 - 2-d and 3-d dynamic visualization

- Microscopic in modeling accuracy
 - Microscopic (car following, lane changing)
 - Employs realistic route choice models
 - Handles complex network infrastructure (signals, variable message signs, sensors, etc.)
 - Simulates multiple modes, user classes, vehicle types
Approach: Microscopic DTA

• Microscopic in level of detail
 – Referenced to ground truth with accurate geometry
 – Lane level and intersection area representation
 – Temporal dynamics (as low as 0.1-sec)
 – 2-d and 3-d dynamic visualization

• Microscopic in modeling accuracy
 – Microscopic (car following, lane changing)
 – Employs realistic route choice models
 – Handles complex network infrastructure (Signals, variable message signs, sensors, etc.)
 – Simulates multiple modes, user classes, vehicle types
Approach: Microscopic DTA

- Microscopic in level of detail
 - Referenced to ground truth with accurate geometry
 - Lane level and intersection area representation
 - Temporal dynamics (as low as 0.1 sec)
 - 2-d and 3-d dynamic visualization

- Microscopic in modeling accuracy
 - Microscopic (car following, lane changing)
 - Employs realistic route choice models
 - Handles complex network infrastructure (Signals, variable message signs, sensors, etc.)
 - Simulates multiple modes, user classes, vehicle types
Implementation: Jacksonville, FL

Region-wide, Six-county coverage
Implementation: Jacksonville, FL

Parcel-level activity location
Implementation: Jacksonville, FL

Major and local streets and centroid connectors
Implementation: Jacksonville, FL

Intersection geometry and signal timings
Implementation: Framework

• Parcel-level origins and destinations
 – 492,684 parcels
 – Point-to-point route choice
 – Trips produced by DAYSIM

• Zonal truck and external traffic
 – 2,578 TAZs
 – Zone-to-zone route choice
 – Matrices produced by CUBE

• Integration/Linkage
 – DAYSIM
 – CUBE
Implementation: Challenges
Implementation: Challenges
Implementation: Challenges
Implementation: Challenges
Implementation: Challenges
Implementation: Features

• Read DAYSIM trips without temporal aggregation
• Handle parcel locations without spatial aggregation
• Use dense street network
 – Realistic accessibility, connectivity
• Simulate multiple travel modes
• Possess practical running times
Implementation: Input

- Demand: Disaggregate trip tables
 - Detailed demographic and trip information
 - Approximately 650K trips in 3-hour AM peak [6:00-9:00]
Implementation: Running Time

- DTA running time per iteration
 - Approx. 50 minutes overall
 - 3.1 GHz Intel Xeon Dual-Core 64-Bit CPU, 64 GB RAM
Implementation: Next Steps

- **Model Development Review**
 - Testing
 - Signal timings validation
 - Running time performance evaluation

- **Model Calibration**
 - Compare DTA volumes with counts

- **Software integration/linkage**
 - Refine
 - Deliver
 - Support