

Agenda

- What is VISSIM?
- 2 Modeling Process
- 3 Traffic Assignment in VISSIM
- 4 I-526 Corridor Study Example

Microsimulation model developed by PTV

Pros:

- Very flexible
- Detailed results
- High-quality videos with 3D objects

Cons

- Time-consuming
- Costly (software and labor)
- Tedious
- OD Matrix requires separate platform

2 Modeling Process

Modeling Process Run Model • VISSIM Load OD & **Assign Traffic** VISUM -> VISSIM **OD** Matrix Development • VISUM **Build Road** Network • VISSIM Travel Demand Model • TransCAD

Modeling Process

 Volumes • Speed

Travel Demand Model

TransCAD

- NC is a TransCAD state
- Regional model demonstrates the traffic movement on the regional level, but lacks the details needed by a simulation model.
- We use regional model to get:
 - Traffic patterns
 - Future year growth trend (Land Use related)
 - Build vs No-Build regional reactions
 - Corridor capacity change
 - Connectivity change
 - NOT interchange improvement

Build Road Network

VISSIM

- Use aerial imagery or Bing Maps
- Add Network Elements
 - Links/connectors
 - Parking Lots (Zones)
 - Nodes
 - Signal heads
 - Reduced Speed Areas
 - Desired Speed Decisions
 - Conflict Areas
- Links/Connectors → VISUM

OD Matrix Development

VISUM (or other)

- VISSIM "stick" network imported into VISUM
- Base Year Demand Development
 - Traffic Pattern
 - Travel Demand Model
 - OD Survey Data: Bluetooth, Plates, Cellphone, etc
 - Turning Movement Counts & Link Volumes
 - Truck related information Trucks play a big role in the simulation

OD Matrix Development

VISUM (or other)

- Future Year Demand Development
 - Growth pattern from demand model
 - Traffic pattern change (if regionally significant) from demand model
 - Turning movements and link volume projections

OD Matrix Development

		1	2	3	4	5	6	7	8	9	10	11	12	15	16	17	18	20	22	23	24	25	26	27	28	29	30	35	36	37	38	41
	Sum	854	1398	258	32	91	6	301	27	1	27	48	6	6	90	0	2	3	336	76	120	95	7	53	8	6	15	14	312	56	127	133
1	824	0	396	10	1	7	0	13	0	0	0	4	0	-1	29	0	0	0	33	29	0	31	0	0	0	0	6	0	15	34	41	42
2	1156	488	0	36	1	13	0	59	19	0	10	35	6	1	-11	0	0	- 1	178	11	25	16	1	10	1	0	0	11	104	0	25	20
3	259	38	71	0	21	6	2	94	1	0	1	2	0	0	0	0	0	0	5	0	2	1	0	-1	0	0	0	0	7	0	2	2
4	40	3	7	20	0	0	0	8	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
5	70	8	23	2	0	0	0	32	0	0	0	-1	0	0	0	0	0	0	-1	0	0	1	0	0	0	0	0	0	1	0	0	0
6	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	313	22	83	132	6	47	2	0	1	0	1	3	0	0	1	0	0	0	5	0	1	1	0	0	0	0	0	- 1	2	0	2	0
8	38	2	0	7	1	1	1	10	0	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	11	0	6	1	0	0	0	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	294	18	123	47	2	16	1	76	2	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	- 1	1	0	- 1	1
12	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	8	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	1	0
14	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
15	11	2	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0
16	169	24	26	1	0	0	0	0	0	0	0	0	0	1	0	0	- 1	0	106	0	1	0	0	0	0	0	0	- 1	4	0	- 1	1
17	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
18	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
19	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	6	0	5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	1	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22	164	11	89	1	0	1	0	2	0	0	0	2	0	3	48	0	1	2	0	0	0	0	- 1	0	0	0	0	0	2	0	0	0
23	203	9	113	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	1	1	9	0	0	3	0	48	0	1	0
24	21	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	2	0	0	0	0	10	0	0	0
25	74	17	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	15	25
26	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
27	59	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5	0	0	0	3	0	0	0	33	0	0	1
28	10	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	7	0	0	0
29	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
30	25	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	10	0	0	0
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35	11	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	4	0	0	0
36	459	47	239	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18	52	1	3	19	3	3	0	0	0	0	1	1
37	44	0	42	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
38	75	3	24	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0	8	0	16
39	6	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	1	1
40	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
41	20	3	4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	1	2	0
42	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Load OD and Assign Traffic

Parking Lots (Zones)

Nodes

OD Matrix

Dynamic Assignment

Traffic Assignment in VISSIM

Two Options

Dynamic Traffic Assignment (DTA)

- Large networks
- Varying travel patterns
- Closely spaced intersections
- Travel Demand Model is available

Static Vehicle Assignment

- Smaller networks
- Less congested areas
- Defined travel patterns
- No closely spaced intersections

Dynamic Traffic Assignment

- Allows vehicles to dynamically choose path
- Parallel routes, grid network
- Requires use of:
 - Parking lots
 - Nodes
 - OD Matrix
 - (Static Route Closures)
- Iterative process
- Easier to manipulate if OD changes
- Can convert to static routes once patterns are set

Static Vehicle Assignment

- Path manually chosen by user
- Requires use of:
 - Vehicle Inputs
 - Static Routing Decisions
 - Turning Movement Volumes (typically)
- Combine routes for closely spaced intersections
- Tedious for large networks

STATIC ASSIGNMENT

DYNAMIC ASSIGNMENT

DYNAMIC ASSIGNMENT

I-526 Corridor Study

1 Introduction

Charleston, South Carolina

16+ miles of freeway

17 interchanges

Project Background

- I-526 is one of the most congested corridors in South Carolina
- Designated as a "Mega Project" in the State Long-Range Interstate Plan
- Mega Projects = Construction costs for improvements exceed the funding of the entire interstate program for South Carolina for multiple years

Daily Traffic Volumes – 1-526

I-526 Work Effort

- Define existing corridor deficiencies
- Quantify future problem areas
- Identify potential improvement strategies
- Evaluate strategies for effectiveness – VISSIM
- Develop menu of recommendations

I-526 Potential Improvement Strategies

- Evaluate the following strategies to reduce congestion:
 - Travel Demand Management (TDM)
 - Modal/Freight
 - Traffic Operations
 - Capacity Improvements

2 Data Collection

Data Collection

- Existing Traffic Counts
- Existing Signal Plans/Timings
- Regional Travel Demand Model
 - Expected future development
 - Future travel patterns
- Origin-Destination Data
- Travel Times
- Field Observation

O-D Results

ORIGIN DESTINATION PERCENTAGES FROM | 526 EAST From I-526 East Stantec

O-D Results

Travel Time Results

Free Flow

~10 minutes

2

Distance (mi.)

8

10

12

2 VISSIM Model

Base Model Development

Determine MOE's

Calibration

Alternatives Analysis

Recommendations

Base Model Development

- Existing aerial photography
- Develop trip table using macro model (VISUM)
 - Blufax origin-destination data
 - CHATS model
 - Peak hour counts
- Dynamic traffic assignment

Measures of Effectiveness

- Travel time
- Speed
- Delay

- Level of service (LOS)
- Density
- Queue length

Sim Vol	Counted Vol	Delta	% Delta	Descr	
3849	3736	113	3.0%	I-526 WB East of Rhett	I-526
3320	3193	127	4.0%	I-526 WB East of Rivers	
3813	3746	67	1.8%	I-526 WB East of I-26	
3628	3506	122	3.5%	I-526 WB East of International	
3166	3096	70	2.3%	I-526 WB at Montague	
3535	3487	48	1.4%	I-526 WB East of Dorchester	
3475	3418	57	1.7%	I-526 WB East of Leeds	
2720	2668	52	1.9%	I-526 WB West of Leeds	
1445	1323	122	9.2%	I-526 WB West of Glen McConnell	
4090	4466	376	8.4%	I-526 EB East of Rhett	
3146	3412	266	7.8%	I-526 EB East of Rivers	
2943	3054	111	3.6%	I-526 EB East of I-26	
3487	3438	49	1.4%	I-526 EB East of International	
2915	2968	53	1.8%	I-526 EB at Montague	
3528	3662	134	3.7%	I-526 EB East of Dorchester	
3365	3422	57	1.7%	I-526 EB East of Leeds	
3997	4132	135	3.3%	I-526 EB West of Leeds	
2058	1924	134	7.0%	I-526 EB West of Glen McConnell	
5687	5672	15	0.3%	I-26 EB North of US 52	I-26
6909	7068	159	2.2%	I-26 EB South of US 52	
7971	8377	406	4.8%	I-26 EB South of Ashley Phosphate	
6579	6751	172	2.5%	I-26 EB South of Aviation	
7511	8101	590	7.3%	I-26 EB South of Remount	
5875	6439	564	8.8%	I-26 EB South of I-526	
5522	6146	624	10.2%	I-26 EB South of Montague	
5797	6385	588	9.2%	I-26 EB South of Dorchester	
2819	2915	96	3.3%	I-26 WB North of US 52	
2258	2344	86	3.7%	I-26 WB South of US 52	
4253	4422	169	3.8%	I-26 WB South of Ashley Phosphate	
3893	3977	84	2.1%	I-26 WB South of Aviation	
5129	5205	76	1.5%	I-26 WB South of Remount	
2854	2920	66	2.3%	I-26 WB South of I-526	
2806	2787	19	0.7%	I-26 WB South of Montague	
3008	2964	44	1.5%	I-26 WB South of Dorchester	

Total
Simulated
Volume
137,351 vph

Total Counted Volume 141,124 vph

Travel Times

18 16 **I-526 EB Travel Times**

Existing AM Peak

Demand > Capacity

Field Observation showed this:

...but VISSIM was showing this

Future Year Models

- 2020 and 2043
- 1-2% Annual Growth
- Committed Improvements
 - Airport Connector Road
- Boeing Expansion
 - $_{\circ}$ Growth by >200% from 2015 to 2043

How do we

Alternatives Analysis

- Model Improvement Strategies:
 - Travel demand
 - Capacity improvements
 - Volume adjustments
- Evaluate Results
- Make Recommendations

Improvements

Future Year Build Model

PROPOSED OPERATIONAL & CAPACITY IMPROVEMENTS

- Widening of I-526 to 6 lanes
- "Turbo" Interchange at I-26 & I-526
- Braided ramps
- Diverging Diamond
- Compressed Diamond
- Bowtie Interchange

Future Year Build

76%

Decrease in travel times

