

Big Data & Pivoting in the NCSTM

Steven Trevino & Stephen Tuttle December 2, 2020

Background

Extensible Modular Framework

Updating Base Year without Recalibration

rMerge & LBS Data

RSG's rMerge Platform

rMerge is high-quality passive LBS data products & services enriched and validated with traditional data and grounded in RSG's expertise in travel behavior

How is rMerge Applied?

LBS data is reconciled, expanded, and validated against traditional data sources

Census Traffic Counts Travel Surveys

LBS data

Big data from smartphone apps is the primary raw data source from which rMerge is derived

Mobile Data Experience

How Big is this Big Data?

- 10-15% population on any given day (DAU)
- 50% of population over a month (MAU)
- ~ 3.8 million unique devices for NC during October 2018
- Larger sample than surveys or pure navigational GPS

How is Privacy Protected?

- Raw LBS data
 - Only identifying information is "ad-id", which RSG replaces before processing
- Home & Work Locations
 - Necessary for:
 - Differentiating residents & visitors
 - Identifying trip purpose (e.g., home-based work)
 - Checking and correcting for demographic bias
- RSG never reports info below the zone
- RSG suppress/perturbs info for small zones
- OD aggregation prevents reassociation of data to individuals

RSG's 4-step process for passive OD tables

1 PREPARE INPUT DATA

Billions of individual device location points from commercial LBS data* are extracted, evaluated for basic metrics & cleaned

2 IDENTIFY TRIPS

Points are clustered to identify stop locations, locations are classified (home, work, other) and linked to create trips

3 4 EXPAND TO REGION AGGREGATE & VISUALIZE

Trips are expanded to region based on Census and traffic count data, surveys and other sources to provide representative O-D flows

Trip data aggregated to OD matrices, with key dimensions (such as time period, visitor / resident) broken out

* Typically represents 10-15% of population per day, or 50%+ for one month of observations

* ping is a latitude/longitude coordinate with a timestamp registered by a device

North Carolina LBS Data Summary

LBS Data - October 2018		
Sightings	1,268,125,349	
Total Devices	3,873,300	
Good Devices	1,290,589	
Locations	9,676,084	
Trips	32,432,463	

- LBS data represents a sample of 8.3% of NC residents

BIG DATA EXPANSION?

- Big data are large scale observations.
- But they are still only a sample of all travel.
- And they are NOT a random sample.
- Big data are known to have systematic biases.
- But if we can **measure** bias, we can **correct** for it.

What's Missing in Big Data?

- Seniors & low income populations
- Geographic coverage
- Short activities & trips
- Other unknowns

Geographic Coverage Gaps & Variations

SIGHTINGS AT GREAT SAND DUNES NATIONAL PARK IN JULY 2018

Data Verification: Demographics vs. Census

INCOME

AGE

Data Verification: Duration vs. Smartphone Survey

Expansion pr counts and C	rocess matche Census data	es regional	
1 PREPARE INPUT DATA	2 IDENTIFY TRIPS	3 EXPAND TO REGION	4 AGGREGATE
a RAKING TO CENSUS	 Rake number of resi 	idents and workers to Ce	nsus estimates
	•	sion factor using simple so tor function (of trip/activity	0
C RAKING TO COUNTS	•	ctors with Iterative Scree form of raking or IPF	nline Fitting
d LIMITED MATRIX ESTIMATION	 Non-parametric volumes from as 	tion (ODME) algorithm expansion factors from comp ssignment to observed count maximum imposed on expa	s

Traffic Counts

Hourly Trip Distribution

Device Observations in NC

Big Data Pivoting

Why Pivot?

- Pivoting improves the accuracy of travel models by allowing the model to forecast changes from a known base
- Destination choice models still struggle to reproduce observed OD patterns
- Builds from recommended data-driven forecasting approaches (NCHRP 255 & 765)
- Pivoting requires accurate base year information

Types of Pivoting

- FHWA TMIP webinars by RAND Europe for Australia Forecasting (2015)
- Pivoting in Travel Demand Models (Daly, et al., 2012)

Goal: Combine model "synthetic" forecasts for base (S_b) and future (S_f) with base information (B) on flows

- 1. Multiplicative: $P = (S_f/S_b) B$
- 2. Additive: $P = B + (S_f S_b)$
- 3. Mixed / Average of above

8-Case Pivoting (Mixed)

Case	Base (B)	Synthetic Base (S _b)	Synthetic Future (S _f)	Predicted
1	0	0	0	0
2	0	0	>0	Sf
3	0	>0	0	0
4n	0	>0	>0 (< X)	0
4e	0	>0	> 0 (> X)	Sf - X
5	>0	0	0	В
6	>0	0	>0	B + Sf
7	>0	>0	0	0
8n	>0	>0	>0 (<x)< th=""><th>B * (Sf/Sb)</th></x)<>	B * (Sf/Sb)

Base matrix (B) : data derived base year OD demand Synthetic Base (S_b) : base year demand model output Synthetic Future (S_f) : future year demand model output Switching Point (X) : parameter used to identify high growth

Pivoting Pitfalls

- Applying multiplicative factors can be challenging
 - Defining & calibrating switching point (X)
 - Base year model & passive data alignment
 - Base year errors can be amplified by future SE
- Model growth is often interpolated and applied uniformly

NCSTM Big Data Application

- Nationwide network with NC counts
- 3 Vehicle Classes:
 - Auto (LBS)
 - Multi-Unit Truck (ATRI)
 - Single-Unit Truck (synthetic)

9,568 Links with AADT

A multistep process to perform expansion of the passive LBS data

Single Factor Scaling

- Scaling by vehicle class
- Daily scaling factors
- Assignment by time period
- Iterative procedure

Statistic	All Vehicles
Loading Error (%)	3.35
RMSE (%)	47.58
MAPE (%)	49.79

Parametric Scaling

- Scaling by vehicle class
- Independent variable: Trip length

Truck Scale by Distance

Iterative Screenline Fitting (ISF)

Iterative Screenline Fitting (ISF)

- 18 Screenlines
- 7 Cordons
- 32 Cutlines
- 5 Iterations

Iterative Screenline Fitting (ISF)

Statistic	All Vehicles
Loading Error (%)	0.23
RMSE (%)	41.66
MAPE (%)	44.62

Distribution of Expansion Weights

A multistep process was used to develop the final expansion of the passive OD data

Constrained ODME

Statistic	Auto	Trucks	All Vehicles
Loading Error (%)	-1.02	-9.85	-1.96
RMSE (%)	23.00	56.85	23.53
MAPE (%)	21.62	77.64	22.97

*After ODME there is a final single-factor scale to get error to about 0%

Validation – Volume Group RMSE (%)

AADT	Expansion	Guideline
< 5,000	57.53	-
5k-10k	33.18	45.0
10k - 20k	24.09	40.0
20k - 40k	16.48	35.0
> 40k	8.87	30.0
Total	23.53	30-40

Model Loaded Network

Next Steps / COVID

- Passive Data can help measure & monitor changes due to the pandemic
- Metrics
- New Trip Matrices (efficient model update)
- Observe before/after changes in:
 - Quantity of trip Productions & Attractions by purpose (HBW, HBO, NHB, Long, Short, visitor, etc.)
 - Percent Stay-at-home
 - E-commerce/deliveries
 - Trip Distances
 - Spatial Distribution of Trips
 - Time of Day Distribution

