Non-Motorized Model Development
General Information and DCHC MPO Project

presented to
North Carolina Model Users Group
Raleigh, North Carolina

presented by
John (Jay) Evans, P.E., AICP
Cambridge Systematics, Inc.

April 15, 2008
Non-Motorized Model Enhancement Objectives

- Improve ability to capture impacts of land use and infrastructure enhancements on non-motorized travel

- Demonstrate air quality and congestion mitigation impacts of investments that expand bike trails, improve pedestrian and bicycle safety, and provide or improve sidewalks

- Benefit in developing Transportation Improvement Programs (TIP), air quality conformity analysis, and other studies and programs

DCHC MPO’s Metropolitan Transportation Improvement Program (MTIP) Regional Priority List for fiscal years 2007-2013 lists more than 75 potential projects in which bike/pedestrian infrastructure improvements are a primary or prominent feature of the improvement project.
Non-Motorized Model Enhancement
Application Areas

- Mode Choice
- Analysis of TDM and Other Measures to Reduce Auto Travel
- Analysis of Effects of Alternative Land Use Patterns
- Transit Access
Non-Motorized Model Enhancement
Example Projects

Central Artery Project (Boston, MA)
- Pedestrian trip generation uses three trip types: walk only trips; transit access/egress trips; and parking access/egress
- Pedestrian origin-destination flows and link volumes are estimated through a process of walk trip generation; trip distribution; and assignment

LUTRAQ (Portland, OR)
- Incorporated pedestrian environment variable in existing models.
- Showed that pedestrian environment and density variables can be statistically significant variables in models of auto ownership and mode choice

DVRPC (Philadelphia, PA)
- Incorporated PEV into trip generation model
- Mode choice model was developed to separate motorized from non-motorized trips
Pedestrian Environment Variables

Typical
- Sidewalk availability
- Ease of street crossing
- Street connectivity
- Availability of bicycle infrastructure
- Building setbacks
- Terrain

DVRPC Example
- \(PEV = 0.25 \times (\text{Sidewalk Availability}) + 0.30 \times (\text{Ease of Street Crossing}) + 0.45 \times (\text{Building Setbacks}) \)
- Range for variable is 1-3
Variables Affecting Non-Motorized Travel

<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>Density, mixed use/pedestrian-oriented development</td>
</tr>
<tr>
<td>Roadway</td>
<td>Speeds, lanes, street density, connectivity, grade</td>
</tr>
<tr>
<td>Intersection</td>
<td>Signals, crosswalks, medians</td>
</tr>
<tr>
<td>Non-motorized facilities</td>
<td>Sidewalks, bike lanes/paths, pavement markings</td>
</tr>
<tr>
<td>Demographics</td>
<td>Age, student status</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Proximity of persons to activities</td>
</tr>
<tr>
<td>Impedance</td>
<td>Time or distance from origin to destination</td>
</tr>
</tbody>
</table>
General Modeling Challenges

- The need for *objective* measures for variables affecting non-motorized travel behavior
- Identifying the effects on other modes
 - Transit trips
 - Auto trips
- Zonal attributes
Presentation Outline

- General
- *DCHC-MPO*
- End Notes
DCHC MPO Project Objectives

Develop and implement enhancements to Triangle Regional Model (TRM) to:

- better capture travel demand impacts of non-motorized travel (walking and bicycling) due to land use and facility/infrastructure changes
- generate trip tables indicating zone-to-zone and intrazonal non-motorized travel

Enhancements intended to help DCHC MPO:

- forecast future bicycle and pedestrian demand
- assess future bicycle and pedestrian travel needs
- plan for adequate non-motorized facilities/infrastructure
- prioritize bicycle and pedestrian improvement projects
- gauge the effects of non-motorized trip-making on other travel modes
Triangle Region Household Survey
Non-Motorized Travel by Trip Purpose

<table>
<thead>
<tr>
<th>Trip Purpose</th>
<th>1995 Survey</th>
<th>2006 Survey (Weighted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home-Based Work</td>
<td>2.79 %</td>
<td>3.82 %</td>
</tr>
<tr>
<td>Home-Based Shopping</td>
<td>4.68 %</td>
<td>3.99 %</td>
</tr>
<tr>
<td>Home-Based School</td>
<td>7.74 %</td>
<td>3.64 %</td>
</tr>
<tr>
<td>Non-Home Based</td>
<td>13.12 %</td>
<td>8.50 %</td>
</tr>
<tr>
<td>Home-Based Other</td>
<td>9.09 %</td>
<td>5.57 %</td>
</tr>
</tbody>
</table>
DCHC MPO Project
Phase 1

Objective: *Improve the existing model to be more sensitive to factors affecting non-motorized travel in a short timeframe*

- Coordination with DCHC-MPO
- Determine candidate variables
- Reestimate models with new variables
- Develop program to implement new models
- Revalidate models
- Documentation
- Phase 2 work plan
Objective: Developed revised model to accurately integrated non-motorized travel into the region’s model

- Make any necessary revisions to trip generation
- Revise/revalidate trip distribution
- Develop new mode choice model including non-motorized modes
- Develop program to implement new models
- Documentation
Three potential areas for new variables to be incorporated into the model:

- land use mix and density
- zonal network characteristics
- person and household characteristics
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Str1dum</td>
<td>No Car Indicator, 1 if Car = 0</td>
</tr>
<tr>
<td>Str2dum</td>
<td>Low Income Indicator, 1 if Inc<=19,999</td>
</tr>
<tr>
<td>Str3dum</td>
<td>Med. Inc and Less Cars Indicator, 1 if 20,000<=Inc<=99,999 and Cars<Workers</td>
</tr>
<tr>
<td>Str4dum</td>
<td>Med. Inc and More Cars Indicator, 1 if 50,000<=Inc<=99,999 and Cars >=Workers</td>
</tr>
<tr>
<td>Str5dum</td>
<td>High Income Indicator, 1 if Inc>=100,000</td>
</tr>
<tr>
<td>EmpDis</td>
<td>Employment Distance Accessibility Measure</td>
</tr>
<tr>
<td>PopDis</td>
<td>Population Distance Accessibility Measure</td>
</tr>
<tr>
<td>EPDis</td>
<td>Emp + Pop Distance Accessibility Measure</td>
</tr>
<tr>
<td>Urban</td>
<td>High Density Indicator, 1 if Area Type = 1</td>
</tr>
<tr>
<td>Suburban</td>
<td>Medium Density Indicator, 1 if Area Type = 2</td>
</tr>
<tr>
<td>Rural</td>
<td>Low Density Indicator, 1 if Area Type = 3</td>
</tr>
</tbody>
</table>
Table 2. Additional Variables Used in the Phase 1 Nonmotorized Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc2</td>
<td>Low-Medium Income Indicator, 25,000<=Inc<=49,999</td>
</tr>
<tr>
<td>Inc3</td>
<td>Medium-High Income Indicator, 50,000<=Inc<=99,999</td>
</tr>
<tr>
<td>Inc4</td>
<td>High Income Indicator, Inc=>100,000</td>
</tr>
<tr>
<td>Inc234</td>
<td>Not Low Income Indicator, Inc=>25,000</td>
</tr>
<tr>
<td>LessVeh</td>
<td>Less vehicles than workers in the household, with at least one vehicle, Cars<Workers</td>
</tr>
<tr>
<td>MoreVeh</td>
<td>At least or more vehicles than workers in the household, Cars >=Workers</td>
</tr>
<tr>
<td>PChild</td>
<td>Presence of children in the household</td>
</tr>
<tr>
<td>Suburb</td>
<td>Medium Density Indicator</td>
</tr>
<tr>
<td>LUMix</td>
<td>Land Use Mix = ((2*(People+Jobs)-abs(People-Jobs))/acre</td>
</tr>
<tr>
<td>AveBlock</td>
<td>Average Street Block Perimeter in Zone</td>
</tr>
</tbody>
</table>
DCHC MPO Project
Preliminary Models – Significant Variables

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Parameter</th>
<th>Parameter</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>Intercept</td>
<td>Intercept</td>
<td>Intercept</td>
<td>Intercept</td>
</tr>
<tr>
<td>Inc4</td>
<td>Inc2</td>
<td>Inc3</td>
<td>Inc2</td>
<td>Inc2</td>
</tr>
<tr>
<td>LessVeh</td>
<td>Inc4</td>
<td>MoreVeh</td>
<td>Inc3</td>
<td>MoreVeh</td>
</tr>
<tr>
<td>MoreVeh</td>
<td>Urban</td>
<td>LessVeh</td>
<td>Inc4</td>
<td>Urban</td>
</tr>
<tr>
<td>Urban</td>
<td>EmpDis</td>
<td>MoreVeh</td>
<td>LessVeh</td>
<td>LUMix</td>
</tr>
<tr>
<td>EmpDis</td>
<td>PopDis</td>
<td>MoreVeh</td>
<td>MoreVeh</td>
<td>EmpDis</td>
</tr>
<tr>
<td>PopDis</td>
<td>AveBlock</td>
<td>PChild</td>
<td>Urban</td>
<td>PopDis</td>
</tr>
<tr>
<td>AveBlock</td>
<td></td>
<td>AveBlock</td>
<td>AveBlock</td>
<td></td>
</tr>
</tbody>
</table>
Presentation Outline

- General
- DCHC-MPO
- End Notes
End Notes
Potential Resources

- Traveler Response Handbook (TCRP Report 95)
 - Chapter 16 – Pedestrian and Bicycle Facilities (Forthcoming)

- Guidebook on the Methods to Estimate Non-Motorized Travel (1999) Federal Highway Administration (available on the web)

End Notes
DCHC-MPO Project

Team Members
- Cambridge Systematics, Inc.
- Kimley-Horn and Associates, Inc.

Key Staff
- Felix Nwoko, Client Project Manager
- Tom Rossi, Project Manager
- Jay Evans, Deputy Project Manager
- Laura McWethy
- Tim Padgett
- Chris Porter
- Tara Rima
- Kevin Tierney
End Notes

Contact Information

John (Jay) Evans, P.E., AICP
Senior Associate

Cambridge Systematics, Inc.
4800 Hampden Lane Ste 800
Bethesda, MD 20814

(301) 347-0100
jevans@camsys.com
www.camsys.com