

Toll Feasibility Analysis and Toll Diversion Modeling

North Carolina Model Users Group May 13, 2009

David Schellinger, P.E.

Vice President – Modeling / Toll Feasibility

Systra Mobility

Presentation Overview

- Focused on Toll Modeling in a Regional Setting
- Toll Feasibility Analysis Levels
- Past Practice / Emerging Needs
- Technical Issues
- Applications CUBE Voyager Features

TOLL FEASIBILITY ANALYSIS

NUMBER OF ALTERNATIVES

TOLL FEASIBILITY ANALYSIS TECHNIQUES

- Three Levels of Toll Feasibility Analysis
 - Level 1 Sketch Methods or readily-available models
 - Level 2 Models with some enhancements
 - Zone system
 - Additional Data (counts, socioeconomic data revisions)
 - Level 3 Models / Investment Grade
 - Surveys Stated Preference / Origin-Destination
 - Independent Assessment of Socioeconomic Forecasts
 - Extensive Validation & Sensitivity Testing

ANALYSIS ISSUES

- Significant Variation in Estimates by Analysis Level
- Potential Discontinuous / Conflicting Results
- Sketch Method Limitations for Addressing Emerging Policies
- Congestion Pricing
- Complex Tolling Schemes

AGENCY REQUIREMENTS

- Near-Term Implementation of Multiple Projects
 - Significant Project Interaction
- Projects in Various Stages of Approval/Design
 - Conceptual Stage Projects
 - Conversion of Existing Improvement Projects to Toll Roads
- Variation in Tolling Concepts
 - By Project Type
 - Variation in Tolling Policy by Agency

MODELING APPROACH

- Adopt Regional Model With Enhancements
 - Additional Detail / Zonal Disaggregation
- Retain Existing Procedures
 - Trip Generation
 - Trip Distribution
 - Mode Choice
- Utilize Advanced Highway Assignment Process
 - Reflect Travel Conditions by Time of Day & Market Segment
 - Provide Robust Toll Diversion Process

BENEFITS

- Utilizes Approved MPO Model
 - Facilitates Agency Approval
- Consistent Platform for Multiple Projects
- Sensitive to Availability of Competing Services/Policies
 - Transit Options
 - Land Use Policies
- Facilitates the Analysis of Projects
 Advancing Through Feasibility Levels

PAST PRACTICE / EMERGING NEEDS

TOLL DIVERSION PROCESS FOR TYPICAL REGIONAL MODEL S

- Function of Highway Assignment
 - Equilibrium Based
 - Single 24-Hour assignment
 - Toll Diversion Estimated Via "Equivalent Time"
 Penalties
 - Suitable / Consistent with Uniform Tolling Policies

PREVIOUS TECHNIQUES

Limitations

- Provides only a "generic" estimate of congestion based on a daily assignment.
- Estimates sensitive to minor changes in network conditions
- Assumes that all travelers evaluate time savings equally (equal "Value of Time")
- Assumes equal tolls for all time periods & payment types

SYSTRAMOBILITY planning tomorrow's cities to the REGING TOLL POLICY REQUIREMENTS

- Potential Tolling Policies
 - Variation by Payment Type
 - Variation by Frequency
 - Variation by Agency / Operator
- Use Restrictions
 - Restrictions by Payment Method
 - Restrictions by Vehicle Type
- Variation in Pricing
 - Time of Day Pricing (Peak/Off-Peak/Weekend)
 - Congestion Pricing

POTENTIAL TOLLING POLICIES

- Variation by Payment Type
 - Cash
 - Transponder
 - Video Tolling
- Variation by Frequency
 - Commuter / Frequent Use Discount Plans
 - Restricted by Payment Method
- Variation by Agency / Operator
 - Multiple Agencies / Payment Policies

TOLL FACILITY USE RESTRICTIONS

- Restrictions by Payment Method
 - ETC Only
 - Transponder Only
 - Transponder & Video Billing
- Restrictions by Vehicle Type
 - Auto Use
 - General Use
 - HOT Lane
 - Truck Use
 - Exclusive Truck Toll Roads

VARIATION IN PRICING

- Time-of-Day Pricing
 - Peak/Off-Peak Rates
 - Linked to Transponder Usage
 - Weekend Surcharges / Discounts
- Congestion Pricing
 - Pricing Based on Facility Usage
 - Pricing Based on Conditions of Competing Non-Tolled Roadways

OTHER ISSUES INFLUENCING DIVERSION

- Diversion Sensitive to Traveler Characteristics
 - Income
 - Trip Purpose
- Traveler Biases
 - Dislike Toll Roads
 - Favor Electronic Toll Collection
- Market Segmentation
 - Travelers Acceptance of New Tolling Mechanisms

CRITICAL QUESTIONS

- What Options Exist to Forecast Toll
 Diversion that are Sensitive to the Wide
 Array of Policy Issues and Traveler
 Characteristics?
- Can Methods be Developed to Yield Plausible and Consistent Results as Projects are Advanced through the Feasibility Analysis.

POTENTIAL DIVERSION FORECASTING TECHNIQUES

Toll Choice within Mode Choice

- Production-Attraction Methods provide mechanism to relate traveler characteristics such as income
- Responsive to policies that will alter mode usage (SOV vs. HOV)

Toll Choice within Assignment

- Capable of addressing wide range of toll conditions
- Internally consistent results
- Capable of forecasting dynamic pricing options

TECHNICAL ISSUES

CHOICE - BASED PROCEDURES

- Choice Options:
 - Toll Choice as Part of Mode Choice Model
 - Toll Choice via a Route Choice Model
- Desired Feature
 - Simultaneous Choice and Assignment ensures consistency of results

EXTERNAL ROUTINE CONSISTENCY

- Under Either Method Feedback is Required
- Consistency not Assured
- Convergence Difficult under Certain Conditions

TYPICAL MODE CHOICE MODEL WITH TOLL CHOICE

MODE CHOICE ISSUES

- Internal Consistency
- Practical Limits on Treatments of "Submode"
 Choices
- Threshold Issues
- New Mode Bias Cases
- Value of Time Estimates

SYSTRAMOBILITY planning tomorrow's CHOICE & ASSIGNMENT CONSISTENCY

- Requires Feedback between Mode Choice and Assignment.
- Constrain Toll Trips Estimated by Mode Choice to Utilize Toll Roads in Assignment.
- Consistency of Paths Skimmed for Mode Choice with Paths used for Assignment.

PATH CONSISTENCY ISSUES

USE OF "CHOICE" SUBMODES

- Option of Submodes for Payment Types
 - Additional nesting of choices
 - Additional path-building for each payment option

THRESHOLD ISSUES

- Toll Choice Must Meet Certain Thresholds
 - Must Save Minimum Time Amount
 - Must Travel Minimum Distance on Toll Roads
- Convenient Assumption
- Some Conflict with Choice Theory
- Causes "Cliff" effect where minor change in condition can result in a large reaction.
 - 4.9 Minutes 0 % Toll Diversion
 - 5.0 Minutes 20 % Toll Diversion

NEW MODE BIAS CASES

- Nested Mode Choice Models Influenced by the Number of Submodes Available
- Potential Illogical Results
 - Conversion of Existing Road to Toll Facility Introduces New "Mode"
 - New Mode Causes Unexpected Reduction in Other Modes such as Transit

VALUE OF TIME

- Mode Choice Models Use Common Value of Time for all Modes
- Tends to be 25%-40% of Wage Rate
- Does not reflect Higher Values associated with Route Choice (50+%)

ROUTE CHOICE PROCESS

PATH A-B		
ROUTE	TIME	COST
TOLL	15 MN.	\$1.00
NONTOLL	20 MN	\$0.00

ROUTE CHOICE MODELS

- Assumes Toll Options Will not Impact the Selection of Travel Modes.
- Internal Consistency Issue
- Allows for the Development of Choice Functions and Parameters Specific to Auto Modes.
- Allows for Treatment by Market Segments,
 Similar to Mode Choice

POTENTIAL SOLUTION ??

SEQUENTIAL PROCESS

"EMBEDDED" ROUTE CHOICE MODEL

TOLL DIVERSION MODELING USING CUBE VOYAGER

"It's All About the Tool Box"

BENEFITS OF VOYAGER FOR MODELING DIVERSION

- Voyager Highway Assignment Capabilities
 - Choice-Based Procedures Embedded within Assignment Process
 - Complex Modeling of Costs by Payment Type
 - Extensive Segmentation Possible
 - Integrate Traveler Characteristics (such as Income Levels)
 - Dynamic Toll Estimation

SYSTRAMOBILITY planning tomorrow's cities today ADVANCED TOLL DIVERSION MODELING

- Enhanced Highway Assignment Process
 - Multiple "Time-of-Day" Assignments
 - Permits varying toll rates / usage options
 - Enhanced estimation of traffic delays
 - Customized Toll Diversion Procedure
 - Embedded Route Choice Submodels sensitive to payment methods and traveler characteristics.
 - Trip purposes have individual Values of Time
 - Permits separate treatment for cash, video, and ETC Patrons
 - Permits separate treatment by vehicle type (SOV,HOV, Truck)
 - Dynamic Pricing Analysis
 - CUBE Voyager or CUBE Avenue Options

MULTIPLE TOLLING SCHEMES

- Defined by Agency and Plaza and/or Toll Road Distance
- Plaza locations Contain:
 - Toll Rates by Vehicle Type (SOV/HOV/Truck)
 - Payment Options (Cash /ETC/Video)
 - Frequent Use Discounts / Surcharges
 - Base Maximum Value (congestion pricing)
- Distance-Based Systems:
 - Supports "urban/rural" variation
 - Used to Approximate Ticket-based Systems
- Entry-Exit Systems

SYSTRAMOBILITY planning tomorrol of clies and a RKET SEGMENTATION TECHNIQUES

- Vehicle Types
- Trip Purposes
 - Separate Values of Time
 - Pricing Options
- Transponder Availability
 - Zone
 - Region
 - Purpose

TRAVELER CHARACTERISTICS

- Diversion for Some Purposes is a function of Income
- Requires knowledge of "home" zone income
- Solution:
 - Partition Purpose into Production → Attraction & Attraction → Production Movements
 - Utilize "Production" Zone to Reference Zonal Income Values.

TOLL DIVERSION MODEL STRUCTURE

```
Toll Share = (1/(1+e^U))
```

Where:

Toll Share = Probability of selecting a toll road

e = Natural Logarithm

U = "Utility" of Toll Route

 $a * (Time_{TR} - Time_{FR}) + b * Cost + C_{TR}$

 $Time_{TR}$ = Toll road travel time in minutes

 $Time_{FR}$ = Nontoll road travel time in minutes

Cost = Toll in dollars

 C_{TR} = Constant for toll road bias

a.b = Coefficients

PURPOSE

TOLL SHARE VS. TIME SAVINGS

TOLL SHARE VS. COST

CHOICE FUNCTIONS BY TIME/COST CONDITIONS

SYSTRAMOBILITY planning tomorrow's cities today SEGMENTATION BY PAYMENT METHOD

- Establish the Market Segment of Vehicles by Mode Equipped with Transponders
- Allow Path-Building Process to Generate Paths Available by Payment Type.
- Route Choice Model Selects Best Set of Path Choices (toll & non-toll) for Each Segment.

ROUTE CHOICE PATH BY PAYMENT TYPE

NON-TOLL PATH

CASH-TOLL PATH (CASH TOLL ROAD AND NON-TOLL AVAILABLE)

ETC-TOLL PATH (ALL ROUTES AVAILABLE)

DYNAMIC TOLL ESTIMATION

- Potential Approaches:
 - Adjusted Toll Cost based on Volume/Capacity Ratio
 - Processed as part of "Link Adjust" Phase
 - Adjustment to Toll Cost based on Volume/Capacity of Adjacent Roadway Links
 - Processed with the "LinkLoop" Option
 - Either Method Can be Constrained if Necessary

SUMMARY DIAGNOSTICS

- Reporting Options:
 - Summarize Toll Diversion Statistics during Execution of Route Choice Submodel
 - Summarize Tolled Trips using Final Loaded Conditions

EXAMPLE OF DIAGNOSTICS

SOV TRIPS BY COST & TIME SAVINGS San Antonio Loop 1604 Model Demo 2014 AM PEAK

QUESTIONS ??