# Using GIS Based Property Tax Data For Trip Generation

Prepared by:

John R. Stone Krista M. Tanaka Department of Civil Engineering North Carolina State University Raleigh, NC 27695-7908

and

Alan J. Karr Ashish Sanil National Institute of Statistical Sciences Research Triangle Park, NC 27709-4006

January 2003

| 1. Report No.<br>FHW AVRC2002-28       2. Government Accession No.       3. Recipient's Catalog No.         4. Title and Subtitle<br>Using GIS Based Property Tax Data for Trip Generation       5. Report Date<br>January 2003       6. Performing Organization Code         Author(s)<br>John R. Stone, Krista M. Tanaka, Alan J. Karr and Ashish Sanil       8. Performing Organization Report No.         9. Performing Organization Name and Address<br>Department of Civil Engineering<br>North Carolina Dstatute of Statistical Sciences<br>19 Adexader Drive (FedExUPS)<br>Research Tinagle Park, NC 27709-4006       10. Work Unit No. (TRAIS)         12. Sponsoring Agency Name and Address<br>North Carolina Department of Transportation<br>One South Wilmington Street<br>Raleigh, NC 27601       11. Contract or Grant No.         14. Sponsoring Agency Name and Address       13. Type of Report and Period Covered<br>Final Report<br>July 2000 - December 2001         15. Supplementary Notes       14. Sponsoring Agency Code<br>2001-08         15. Supplementary Notes       14. Sponsoring the traffic flow outputs of the trainsportation<br>One South Wilmington Street<br>Raleigh, NC 27601         16. Abstract<br>This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input<br>into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation.<br>The project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input<br>into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation.<br>The project assessest the feasibility of using statistically clustered p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.       Report No.       3.       Recipient's Catalog No.         4.       Title and Subtitle       5.       Report Date         Junary 2003       6.       Performing Organization Code         Author(s)       6.       Performing Organization Code         John R. Stone, Krista M. Tanaka, Alan J. Karr and Ashish Sanil       8.       Performing Organization Report No.         9.       Performing Organization Name and Address       10.       Work Unit No. (TRAIS)         Department of Civil Engineering       10.       Work Unit No. (TRAIS)         Noth Carolina Statu University       11.       Contract or Grant No.         12.       Sponsoring Agency Name and Address       11.       Contract or Grant No.         13.       Type of Report and Period Covered Finial Report       13.       Type of Report and Period Covered Finial Report         14.       Sponsoring Agency Code 2001-08       14.       Sponsoring Agency Code 2001-08       15.         15.       Supplementary Notes       14.       Sponsoring Agency Code 2001-08       16.         15.       Supplementary Notes       18.       Distribution Statement       Toge of Resource requirements of a case study oppleation. Not Site research finds that classering method to 56 grand count stations, the research finds that classering performs the classering technique. The major drawback is that advanced statis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                     |                             |                                                 |                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|-----------------------------|-------------------------------------------------|---------------------------------------|
| 4. Title and Subtide       5. Report Date         Justing GIS Based Property Tax Data for Trip Generation       5. Report Date         Autthor(s)       6. Performing Organization Code         John R. Stone, Krista M. Tanaka, Alan J. Karr and Ashish Sanil       8. Performing Organization Report No.         Department of Cvil Engineering       0. Work Unit No. (TRAIS)         Department of Cvil Engineering       10. Work Unit No. (TRAIS)         National Institute of Statistical Sciences       11. Contract or Grant No.         19. Alexander Drive (FedEx/UPS)       13. Type of Report and Period Covered         Research Tringle Park, NC 27709-006       13. Type of Report and Period Covered         12. Sponsoring Agency Name and Address       13. Type of Report and Period Covered         Noth Carolina Department of Transportation       14. Sponsoring Agency Code         2001-08       14. Sponsoring Agency Code         15. Supplementary Notes       14. Sponsoring Transportation. The report summarizes the feasibility of using statistically clustered property tax data instead of windshield survey data for input into the Internal Data Summary (DS) ing generation model used by the North Carolina Department of Transportation. The report summarizes the clustering malysis and its data requirements. To gauge clustering resource requirements of a case study application. NCSU researchere semaine the Town of Pitisboro. Comparing the traffic Roo oruppet of a case study application. NCSU researchere semaine the Tow or Nerthared to gathere the pinut data is the main heneff result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4. Title and Subtitle       5. Report Date         Juing GIS Based Property Tax Data for Trip Generation       5. Report Date         Junnary 2003       6. Performing Organization Code         Author(s)       6. Performing Organization Report No.         John R. Stone, Krista M. Tanaka, Alan J. Karr and Ashish Sanil       8. Performing Organization Report No.         Department of Cvit Engineering       10. Work Unit No. (TRAIS)         Department of Cvit Engineering       10. Work Unit No. (TRAIS)         National Institute of Statistical Sciences       11. Contract or Grant No.         12. Sponsoring Agency Name and Address       13. Type of Report and Period Covered Final Report         North Carolina Department of Transportation       14. Sponsoring Agency Code         201-08       15. Supplementary Notes         15. Supplementary Notes       14. Sponsoring Agency Code         15. Supplementary Notes       18. Distribution Statement         16. Abstract       Trip generation model used by the North Carolina Department of Transportation. The property tax data instand of windshield survey data for input instruction the laternal Data Summary (DS) trip generation model used by the North Carolina Department of Transportation. The property card and this methods yield similar results. In SNet Reduction in an hour requirements of the traditional modeling is required to implement data is the main benefit result. In SNet Reduction is the main benefit result in the laternefit flow outpus of the traditional modeling is required to im                                                                                                                                                                                                                                                                                                                                                                | 1. Report No.<br>FHWA/NC/2002-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2. Gover                       | nment Accession No.                 | 3.                          | Recipient's Ca                                  | atalog No.                            |
| 6.       Performing Organization Code         Author(s)       John R. Stone, Krista M. Tanaka, Alan J. Karr and Ashish Sanil       8.       Performing Organization Report No.         John R. Stone, Krista M. Tanaka, Alan J. Karr and Ashish Sanil       8.       Performing Organization Report No.         John R. Stone, Krista M. Tanaka, Alan J. Karr and Ashish Sanil       10.       Work Unit No. (TRAIS)         Department of Civil Engineering<br>North Carolina Byattment (PCE)       11.       Contract or Grant No.         Jopasson Provide (PedEx/UPS)       Research Trangle Park, NC 27709-4006       13.       Type of Report and Period Covered<br>Final Report         12.       Sponsoring Agency Name and Address<br>North Carolina Department of Transportation<br>One South Wilnington Street<br>Raleigh, NC 27601       13.       Type of Report and Period Covered<br>Final Report         15.       Supplementary Notes       14.       Sponsoring Agency Code<br>2001-08       14.         15.       Supplementary Notes       14.       Sponsoring resource requirements for a case study<br>application, NCSU researches examine the Town of Pitisbory. Comparing the traffic flow outputs of the traditional modelin<br>readingues and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering<br>resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to<br>implement the technique.         17.       Key Words<br>Traffic Forecasting, GHS, Trip Generation, k-means       18. </td <td>6. Performing Organization Code           Author(s)<br/>John R. Stone, Krista M. Tanaka, Alan J. Karr and Ashish Sanil         8. Performing Organization Report No.           9. Performing Organization State University<br/>Rategia, NC 27695-7908         10. Work Unit No. (TRAIS)           National Institute of Statistical Sciences<br/>19 Alexander Drive (FedExUPS)<br/>Research Tringle Park, NC 27709-4006         11. Contract or Grant No.           12. Sponsoring Agency Name and Address<br/>North Carolina Department of Transportation<br/>One South Wilmington Street<br/>Rategia, NC 27601         13. Type of Report and Period Covered<br/>Final Report<br/>July 2000 – December 2001           14. Sponsoring Agency Code<br/>2001-08         14. Sponsoring Agency Code<br/>2001-08           15. Supplementary Notes         14. Sponsoring Agency Code<br/>2001-08           15. Supplementary Notes         18. Distribution Statement.<br/>Tops or query data for imput<br/>into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department or imaportation<br/>and tradition methods yield similar resultments.<br/>To gange cutestring resource requirements for a sace study<br/>application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the raditional modeling<br/>and tradition methods yield similar results. An 85% reduction in man-bours required to gather the input data is the main benefit<br/>resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to<br/>implement the technique.           17. Key Words         18. Distribution Statement<br/>Unimited         21. No of Perm         22. Prime</td> <td colspan="2">4. Title and Subtitle<br/>Using GIS Based Property Tax Data for Trip Generation</td> <td>5.</td> <td>Report Date<br/>January 2003</td> <td></td> | 6. Performing Organization Code           Author(s)<br>John R. Stone, Krista M. Tanaka, Alan J. Karr and Ashish Sanil         8. Performing Organization Report No.           9. Performing Organization State University<br>Rategia, NC 27695-7908         10. Work Unit No. (TRAIS)           National Institute of Statistical Sciences<br>19 Alexander Drive (FedExUPS)<br>Research Tringle Park, NC 27709-4006         11. Contract or Grant No.           12. Sponsoring Agency Name and Address<br>North Carolina Department of Transportation<br>One South Wilmington Street<br>Rategia, NC 27601         13. Type of Report and Period Covered<br>Final Report<br>July 2000 – December 2001           14. Sponsoring Agency Code<br>2001-08         14. Sponsoring Agency Code<br>2001-08           15. Supplementary Notes         14. Sponsoring Agency Code<br>2001-08           15. Supplementary Notes         18. Distribution Statement.<br>Tops or query data for imput<br>into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department or imaportation<br>and tradition methods yield similar resultments.<br>To gange cutestring resource requirements for a sace study<br>application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the raditional modeling<br>and tradition methods yield similar results. An 85% reduction in man-bours required to gather the input data is the main benefit<br>resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to<br>implement the technique.           17. Key Words         18. Distribution Statement<br>Unimited         21. No of Perm         22. Prime                                                                                                                                                                                                    | 4. Title and Subtitle<br>Using GIS Based Property Tax Data for Trip Generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 5.                                  | Report Date<br>January 2003 |                                                 |                                       |
| Author(s)<br>John R. Stone, Krista M. Tanaka, Alan J. Karr and Ashish Sanil       8. Performing Organization Report No.         9. Performing Organization Name and Address<br>Department of Civil Engineering<br>North Carolina State University<br>Raleigh, NC 27695-7908       10. Work Unit No. (TRAIS)         National Institute of Statistical Sciences<br>19 Alexander Drive (FedRUDS)<br>Research Triangle Park, NC 27709-4006       11. Contract or Grant No.         12. Sponsoring Agency Name and Address<br>North Carolina Department of Transportation<br>One South Wilmington Street<br>Raleigh, NC 27601       13. Type of Report and Period Covered<br>Final Report<br>July 2000 - December 2001         14. Sponsoring Agency Code<br>2001-08       14. Sponsoring Agency Code<br>2001-08         15. Supplementary Notes       14. Sponsoring resulting and system and to dura requirements. To gauge clustering resource requirements for a case study<br>application. NCSU researchers examine the Town of Pittsbort. Comparing the traffic flow outputs of the traditional modelin<br>techniques and those resulting from the use of the clustering method to 55 ground count stations, the research finds that clustering<br>resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to<br>implement the technique.         17. Key Words<br>Traffic Forecasting, GIS, Trip Generation, k-means<br>Clustering       18. Distribution Statement<br>Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Author(s)<br>John R. Stone, Krista M. Tanaka, Alan J. Karr and Ashish Sanil       8. Performing Organization Report No.         9. Performing Organization Name and Address<br>Department of Civil Engineering<br>North Carolina State University<br>Raleigh, NC 27695-7908       10. Work Unit No. (TRAIS)         11. Contract or Grant No.       11. Contract or Grant No.         12. Sponsoring Agency Name and Address<br>North Carolina Department of Transple Tark, NC 27709-4006       13. Type of Report and Period Covered<br>Final Report<br>July 2000 – December 2001         13. Type of Report and Period Covered<br>Final Report       14. Sponsoring Agency Code<br>2001-08         15. Supplementary Notes       14. Sponsoring Agency Code<br>2001-08         16. Abstract       This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input<br>into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The<br>report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study<br>application, NCSU researchers examine the Town of Pittsbow. Comparing the Uraffic flow outputs of the traditional modeling<br>techniques and those resulting from the use of the clustering methods is 64 ground count stations, the research flads that clustering<br>and tradition methods yield similar results. An 85% reduction in man-bours required to gather the input data is the main benefit<br>resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to<br>implement the technique.         17. Key Words       18. Distribution Statement<br>Unlimited         17.                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                     | 6.                          | Performing O                                    | rganization Code                      |
| 9. Performing Organization Name and Address<br>Department of Civil Engineering<br>North Carolina State University<br>Rateigh, NC 27695-7908       10. Work Unit No. (TRAIS)         11. Contract or Grant No.       11. Contract or Grant No.         12. Sponsoring Agency Name and Address<br>North Carolina Department of Transportation<br>One South Wilmington Street<br>Rateigh, NC 27601       11. Contract or Grant No.         15. Supplementary Notes       13. Type of Report and Period Covered<br>Final Report<br>July 2000 – December 2001         16. Abstract<br>This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input<br>into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The<br>report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements of a case study<br>application, NCSU researchers examine the Town of Pittsbore. Comparing the traffic flow outputs of the traditional modelin<br>techniques and those resulting from the use of the clustering method to 58 ground count statistical training is required to<br>implement the technique.         17. Key Words<br>Traffic Forecasting, GIS, Trip Generation, k-means<br>Clustering       18. Distribution Statement<br>Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9. Performing Organization Name and Address<br>Department of CrVI Engineering<br>North Carolina State University<br>Raleigh, NC 27695-7908       10. Work Unit No. (TRAIS)         11. Contract or Grant No.<br>19 Alexander Drive (FelEXUPS)<br>Research Triangle Park, NC 27709-4006       11. Contract or Grant No.<br>13. Sprasoring Agency Name and Address<br>North Carolina Department of Transportation<br>One South Wilmington Street<br>Raleigh, NC 27601       11. Contract or Grant No.<br>14. Sponsoring Agency Name and Address<br>North Carolina Department of Transportation<br>One South Wilmington Street         15. Supplementary Notes       13. Type of Report and Period Covered<br>Final Report<br>July 2000 – December 2001         15. Supplementary Notes       14. Sponsoring Agency Yame<br>2001-08         16. Abstract<br>This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input<br>into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation.<br>The report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study<br>application, NCSU researchers examine the Town of Pittsborto.<br>Comparing the traffic flow outputs of the traditional modeling<br>techniques and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering<br>and tradition methods yield similar results. An 58% reduction in man-hours required to gather the input data is its main head fir<br>resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to<br>implement the technique.         17. Key Words<br>Traffic Forecasting, GIS, Trip Generation, k-means<br>Clustering       18. Distribution Statement<br>Unlimited | Author(s)<br>John R. Stone, Krista M. Tanaka, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lan J. Karr and                | Ashish Sanil                        | 8.                          | Performing O                                    | rganization Report No.                |
| National Institute of Statistical Sciences<br>19 Alexander Drive (FedEx/UPS)<br>Research Triangle Park, NC 27709-4006       11. Contract or Grant No.         12. Sponsoring Agency Name and Address<br>North Carolina Department of Transportation<br>One South Wilmington Street<br>Raleigh, NC 27601       13. Type of Report and Period Covered<br>Final Report<br>July 2000 – December 2001         14. Sponsoring Agency Code<br>2001-08       14. Sponsoring Agency Code<br>2001-08         15. Supplementary Notes       16. Abstract<br>This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input<br>into the Internal Data Summary (DDS) trip generation model used by the North Carolina Department of Transportation. Th<br>report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study<br>application, NCSU researchers examine the Town of Pitsboro. Comparing the traffic flow outputs of the traditional modelin<br>techniques and those resulting from the use of the clustering method to 56 ground count stations, the input data is the main benefi-<br>resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to<br>implement the technique.         17. Key Words<br>Traffic Forecasting, GIS, Trip Generation, k-means<br>Clustering       18. Distribution Statement<br>Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | National Institute of Statistical Sciences<br>19 Alexander Drive (FedEx/UPS)<br>Research Triangle Park, NC 27709-4006       11. Contract or Grant No.         12. Sponsoring Agency Name and Address<br>North Carolina Department of Transportation<br>One South Wilmington Street<br>Raleigh, NC 27601       13. Type of Report and Period Covered<br>Final Report<br>July 2000 – December 2001         14. Sponsoring Agency Code<br>2001-08       14. Sponsoring Agency Code<br>2001-08         15. Supplementary Notes       14. Sponsoring Agency Code<br>2001-08         16. Abstract       This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input<br>into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The<br>report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study<br>application. NCSU researchers examine the Town of Pittsboro. Companying the traffic flow outputs of the traditional modeling<br>and tradition methods yield similar results. An 85% reduction in man-hours required to gather the input data is the main benefit<br>resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to<br>implement the technique.         17. Key Words<br>Traffic Forecasting, GIS, Trip Generation, k-means<br>Clustering       18. Distribution Statement<br>Unlimited         19. Security Classif (of this menor)       20. Security Classif (of this menor)       21. No of Pance       12. No of Pance                                                                                                                                                                                                                                                                | 9. Performing Organization Name and<br>Department of Civil Engineering<br>North Carolina State University<br>Raleigh, NC 27695-7908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Address                        |                                     | 10.                         | Work Unit No                                    | ). (TRAIS)                            |
| 12. Sponsoring Agency Name and Address<br>North Carolina Department of Transportation<br>One South Wilmington Street<br>Raleigh, NC 27601       13. Type of Report and Period Covered<br>Final Report<br>July 2000 - December 2001         14. Sponsoring Agency Code<br>2001-08         15. Supplementary Notes         16. Abstract<br>This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input<br>into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The<br>report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study<br>application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the traditional modelin<br>and tradition methods yield similar results. An 85% reduction in man-hours required to gather the input data is the main benefi<br>resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering<br>and tradition methods yield similar results. An 85% reduction in man-hours required to gather the input data is the main benefi<br>resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to<br>implement the technique.         17. Key Words<br>Traffic Forecasting, GIS, Trip Generation, k-means<br>Clustering       18. Distribution Statement<br>Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12. Sponsoring Agency Name and Address<br>North Carolina Department of Transportation<br>One South Wilmington Street<br>Raleigh, NC 27601       13. Type of Report and Period Covered<br>Final Report<br>July 2000 – December 2001         14. Sponsoring Agency Code<br>2001-08       14. Sponsoring Agency Code<br>2001-08         15. Supplementary Notes       16. Abstract<br>This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input<br>into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The<br>report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study<br>application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the traditional modeling<br>techniques and those resulting from the use of the clustering method to 56 ground count stations. The research finds that clustering<br>and tradition methods yield similar results. An 85% reduction in man-hours required to gather the input data is the main benefit<br>resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to<br>implement the technique.         17. Key Words<br>Traffic Forecasting, GIS, Trip Generation, k-means<br>Clustering       18. Distribution Statement<br>Unlimited         19. Security Classif (of this report)       20. Security Classif (of this report)                                                                                                                                                                                                                                                                                                                                                                                  | National Institute of Statistical Scien<br>19 Alexander Drive (FedEx/UPS)<br>Research Triangle Park, NC 27709-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nces<br>4006                   |                                     | 11.                         | Contract or G                                   | rant No.                              |
| 14. Sponsoring Agency Code 2001-08         15. Supplementary Notes         16. Abstract         This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for inpui into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the traditional modelin techniques and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering analysis and its data requirements. To gauge clustering the input data is the main benefit resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to implement the technique.         17. Key Words       18. Distribution Statement         Traffic Forecasting, GIS, Trip Generation, k-means       18. Distribution Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14. Sponsoring Agency Code 2001-08         15. Supplementary Notes         16. Abstract         This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the traditional modeling techniques and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering and tradition methods yield similar results. An 85% reduction in man-hours required to gather the input data is the main benefit resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to implement the technique.         17. Key Words       18. Distribution Statement         Traffic Forecasting, GIS, Trip Generation, k-means       18. Distribution Statement         Unlimited       121. No of Pares       122. Prime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ol> <li>Sponsoring Agency Name and Add<br/>North Carolina Department of Tran<br/>One South Wilmington Street<br/>Raleigh, NC 27601</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ress<br>sportation             |                                     | 13.                         | Type of Report<br>Final Report<br>July 2000 – D | rt and Period Covered<br>ecember 2001 |
| 15. Supplementary Notes         16. Abstract         This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the traditional modelin techniques and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to implement the technique.         17. Key Words       18. Distribution Statement         Traffic Forecasting, GIS, Trip Generation, k-means       18. Distribution Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15. Supplementary Notes         16. Abstract         This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the traditional modeling techniques and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering and tradition methods yield similar results. An 85% reduction in man-hours required to gather the input data is the main benefit resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to implement the technique.         17. Key Words       18. Distribution Statement         Traffic Forecasting, GIS, Trip Generation, k-means       18. Distribution Statement         Unlimited       19. Security Classif (of this page)       21. No of Pages       12. Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                     | 14.                         | Sponsoring Ag<br>2001-08                        | gency Code                            |
| 16. Abstract         This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the traditional modelin techniques and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering and tradition methods yield similar results. An 85% reduction in man-hours required to gather the input data is the main benefit resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to implement the technique.         17. Key Words       18. Distribution Statement         Traffic Forecasting, GIS, Trip Generation, k-means       18. Distribution Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16. Abstract         This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the traditional modeling techniques and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering and tradition methods yield similar results. An 85% reduction in man-hours required to gather the input data is the main benefit resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to implement the technique.         17. Key Words       18. Distribution Statement         Traffic Forecasting, GIS, Trip Generation, k-means       18. Distribution Statement         Unlimited       19. Security Classif (of this report)       20. Security Classif (of this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                                     |                             |                                                 |                                       |
| 16. Abstract         This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the traditional modelin techniques and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering and tradition methods yield similar results. An 85% reduction in man-hours required to gather the input data is the main benefit resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to implement the technique.         17. Key Words       18. Distribution Statement         Traffic Forecasting, GIS, Trip Generation, k-means       18. Distribution Statement         Unlimited       11. Means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16. Abstract         This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the traditional modeling techniques and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering and tradition methods yield similar results. An 85% reduction in man-hours required to gather the input data is the main benefit resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to implement the technique.         17. Key Words       18. Distribution Statement         Traffic Forecasting, GIS, Trip Generation, k-means       18. Distribution Statement         Unlimited       19. Security Classif (of this report)       20. Security Classif (of this name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                     |                             |                                                 |                                       |
| 17. Key Words       18. Distribution Statement         Traffic Forecasting, GIS, Trip Generation, k-means       18. Distribution Statement         Clustering       Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17. Key Words       18. Distribution Statement         Traffic Forecasting, GIS, Trip Generation, k-means       18. Distribution Statement         Clustering       19. Security Classif (of this report)       20. Security Classif (of this page)       21. No. of Pages       22. Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16. Abstract<br>This project assesses the feasibility of using statistically clustered property tax data instead of windshield survey data for input<br>into the Internal Data Summary (IDS) trip generation model used by the North Carolina Department of Transportation. The<br>report summarizes the clustering analysis and its data requirements. To gauge clustering resource requirements for a case study<br>application, NCSU researchers examine the Town of Pittsboro. Comparing the traffic flow outputs of the traditional modeling<br>techniques and those resulting from the use of the clustering method to 56 ground count stations, the research finds that clustering<br>and tradition methods yield similar results. An 85% reduction in man-hours required to gather the input data is the main benefit<br>resulting from the use of the clustering technique. The major drawback is that advanced statistical training is required to<br>implement the technique. |                                |                                     |                             |                                                 |                                       |
| 17. Key Words<br>Traffic Forecasting, GIS, Trip Generation, k-means<br>Clustering18. Distribution Statement<br>Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17. Key Words       18. Distribution Statement         Traffic Forecasting, GIS, Trip Generation, k-means       18. Distribution Statement         Clustering       19. Security Classif (of this report)       20. Security Classif (of this page)       21. No. of Pages       22. Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                     |                             |                                                 |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 Security Classif (of this report) 20 Security Classif (of this page) 21 No of Pages 22 Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17. Key Words<br>Traffic Forecasting, GIS, Trip Generatio<br>Clustering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n, k-means                     | 18. Distribution State<br>Unlimited | ement                       |                                                 |                                       |
| 19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages22. Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unclassified Unclassified 21. No. of Tages 22. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19. Security Classif. (of this report)       2         Unclassified       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20. Security C<br>Unclassified | Classif. (of this page)             | 21. No.<br>81               | of Pages                                        | 22. Price                             |

#### Disclaimer

The contents of this report reflect the views of the authors and not necessarily the views of the University. The authors are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the North Carolina Department of Transportation or the Federal Highway Administration at the time of publication. This report does not constitute a standard, specification, or regulation.

#### Acknowledgements

The authors would like to express thanks to the North Carolina Department of Transportation (NCDOT) and the Federal Highway Administration (FHWA) for sponsoring this research and the Institute of Transportation Research and Education (ITRE) for administering the project. A thank you as well, goes to the Research Project Steering Committee (RPSC), including, Mike Stanley, David Hyder, Leta Huntsinger and Joe Stevens.

A special thanks is extended to Billy Smithson and Jamal Alavi of the NCDOT and Felix Nwoko from the City of Durham for their technical support throughout the project.

# TABLE OF CONTENTS

| TABLE OF CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VI                                                                                                                                                                                                                                                           |
| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |
| EXECUTIVE SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ES-1                                                                                                                                                                                                                                                         |
| 1. INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |
| BACKGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                              |
| Trip Generation and the Four-Step Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |
| Trip Generation Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                              |
| Internal Data Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                            |
| PROBLEM DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                              |
| SCOPE AND RESEARCH OBJECTIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                            |
| CHAPTER SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |
| 2. LITERATURE REVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                            |
| REVIEW OF DESIRABLE GIS MODEL CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                              |
| NCDOT Use of GIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |
| Portland Metro's GIS Database (FHWA, 1998a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                            |
| CAMPO Automated Data Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |
| METHODS OF ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              |
| CHAPTER SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |
| 3. A RESEARCH METHODOLOGY FOR TRIP GENERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TION10                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |
| 4. HOUSEHOLD CONDITIONS BASED ON PROPERTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAX13                                                                                                                                                                                                                                                        |
| 4. HOUSEHOLD CONDITIONS BASED ON PROPERTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAX13                                                                                                                                                                                                                                                        |
| 4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br>CLASSIFICATION METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAX13                                                                                                                                                                                                                                                        |
| 4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br>CLASSIFICATION METHODOLOGY<br>VARIABLE SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>TAX13</b> 13 13 13 14                                                                                                                                                                                                                                     |
| 4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br>CLASSIFICATION METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>TAX13</b> 13 13 13 14 16 16                                                                                                                                                                                                                               |
| 4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br>CLASSIFICATION METHODOLOGY<br>VARIABLE SELECTION<br>CLASSIFICATION TECHNIQUES<br>Classification Tree<br>Linear Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAX                                                                                                                                                                                                                                                          |
| 4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br>CLASSIFICATION METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAX                                                                                                                                                                                                                                                          |
| 4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br>CLASSIFICATION METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAX                                                                                                                                                                                                                                                          |
| 4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br>CLASSIFICATION METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAX                                                                                                                                                                                                                                                          |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY         CLASSIFICATION METHODOLOGY</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAX                                                                                                                                                                                                                                                          |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br/>CLASSIFICATION METHODOLOGY</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TAX                                                                                                                                                                                                                                                          |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br/>CLASSIFICATION METHODOLOGY<br/>VARIABLE SELECTION<br/>CLASSIFICATION TECHNIQUES<br/>Classification Tree<br/>Linear Discriminant Analysis<br/>Clustering of Households<br/>DISCUSSION OF FINDINGS<br/>CHAPTER SUMMARY</li> <li>5. THE PITTSBORO CASE STUDY<br/>PITTSBORO MODEL DEVELOPMENT<br/>BASE YEAR DATA COLLECTION</li> </ul>                                                                                                                                                                                                                                                                                                            | TAX                                                                                                                                                                                                                                                          |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br/>CLASSIFICATION METHODOLOGY</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TAX                                                                                                                                                                                                                                                          |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br/>CLASSIFICATION METHODOLOGY</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TAX                                                                                                                                                                                                                                                          |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY<br/>CLASSIFICATION METHODOLOGY</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TAX                                                                                                                                                                                                                                                          |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY <ul> <li>CLASSIFICATION METHODOLOGY</li> <li>VARIABLE SELECTION</li> <li>CLASSIFICATION TECHNIQUES</li> <li>Classification Tree</li> <li>Linear Discriminant Analysis</li> <li>Clustering of Households</li> <li>DISCUSSION OF FINDINGS</li> <li>CHAPTER SUMMARY</li> </ul> </li> <li>5. THE PITTSBORO CASE STUDY</li> <li>PITTSBORO MODEL DEVELOPMENT</li> <li>BASE YEAR DATA COLLECTION</li> <li>PITTSBORO GIS DATABASE</li> <li>Parcel Level Database</li> <li>Aggregated TAZ Level Database</li> <li>Network Database</li> </ul>                                                                                                              | TAX                                                                                                                                                                                                                                                          |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY <ul> <li>CLASSIFICATION METHODOLOGY</li> <li>VARIABLE SELECTION.</li> <li>CLASSIFICATION TECHNIQUES.</li> <li>Classification Tree</li> <li>Linear Discriminant Analysis</li> <li>Clustering of Households.</li> <li>DISCUSSION OF FINDINGS.</li> <li>CHAPTER SUMMARY</li> </ul> </li> <li>5. THE PITTSBORO CASE STUDY.</li> <li>PITTSBORO MODEL DEVELOPMENT</li> <li>BASE YEAR DATA COLLECTION</li> <li>PITTSBORO GIS DATABASE.</li> <li>Parcel Level Database</li> <li>Aggregated TAZ Level Database</li> <li>Network Database</li> <li>INTERNAL DATA SUMMARY.</li> </ul>                                                                        | TAX       13         13       13         13       13         13       16         16       16         17       17         18       19         19       21         21       21         22       24         24       25         26       26                     |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY <ul> <li>CLASSIFICATION METHODOLOGY</li> <li>VARIABLE SELECTION.</li> <li>CLASSIFICATION TECHNIQUES.</li> <li>Classification Tree</li> <li>Linear Discriminant Analysis</li> <li>Clustering of Households</li> <li>DISCUSSION OF FINDINGS.</li> <li>CHAPTER SUMMARY</li> </ul> </li> <li>5. THE PITTSBORO CASE STUDY.</li> <li>PITTSBORO MODEL DEVELOPMENT</li> <li>BASE YEAR DATA COLLECTION</li> <li>PITTSBORO GIS DATABASE.</li> <li>Parcel Level Database</li> <li>Aggregated TAZ Level Database</li> <li>Network Database</li> <li>INTERNAL DATA SUMMARY.</li> </ul>                                                                         | TAX                                                                                                                                                                                                                                                          |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY <ul> <li>CLASSIFICATION METHODOLOGY</li> <li>VARIABLE SELECTION</li> <li>CLASSIFICATION TECHNIQUES</li> <li>Classification Tree</li> <li>Linear Discriminant Analysis</li> <li>Clustering of Households</li> <li>DISCUSSION OF FINDINGS.</li> <li>CHAPTER SUMMARY</li> </ul> </li> <li>5. THE PITTSBORO CASE STUDY</li> <li>PITTSBORO MODEL DEVELOPMENT <ul> <li>BASE YEAR DATA COLLECTION</li> <li>PITTSBORO GIS DATABASE</li> <li>Parcel Level Database</li> <li>Network Database</li> <li>INTERNAL DATA SUMMARY</li> </ul> </li> </ul>                                                                                                         | TAX                                                                                                                                                                                                                                                          |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY <ul> <li>CLASSIFICATION METHODOLOGY</li> <li>VARIABLE SELECTION.</li> <li>CLASSIFICATION TECHNIQUES.</li> <li>Classification Tree.</li> <li>Linear Discriminant Analysis</li> <li>Clustering of Households</li> <li>DISCUSSION OF FINDINGS.</li> <li>CHAPTER SUMMARY</li> </ul> </li> <li>5. THE PITTSBORO CASE STUDY.</li> <li>PITTSBORO MODEL DEVELOPMENT <ul> <li>BASE YEAR DATA COLLECTION</li> <li>PITTSBORO GIS DATABASE.</li> <li>Parcel Level Database</li> <li>Aggregated TAZ Level Database</li> <li>Network Database</li> <li>INTERNAL DATA SUMMARY.</li> </ul> </li> </ul>                                                            | TAX                                                                                                                                                                                                                                                          |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY <ul> <li>CLASSIFICATION METHODOLOGY</li> <li>VARIABLE SELECTION.</li> <li>CLASSIFICATION TECHNIQUES.</li> <li>Classification Tree</li> <li>Linear Discriminant Analysis</li> <li>Clustering of Households.</li> <li>DISCUSSION OF FINDINGS.</li> <li>CHAPTER SUMMARY</li> </ul> </li> <li>5. THE PITTSBORO CASE STUDY.</li> <li>PITTSBORO MODEL DEVELOPMENT <ul> <li>BASE YEAR DATA COLLECTION</li> <li>PITTSBORO GIS DATABASE.</li> <li>Parcel Level Database</li> <li>Network Database</li> <li>INTERNAL DATA SUMMARY.</li> </ul> </li> <li>STATISTICAL COMPARISONS.</li> <li>RESULTS.</li> <li>DISCUSSION.</li> <li>CHAPTER SUMMARY</li> </ul> | TAX       13         13       13         13       13         16       16         17       17         18       19         19       21         21       21         22       24         24       25         26       26         27       28         33       34 |
| <ul> <li>4. HOUSEHOLD CONDITIONS BASED ON PROPERTY <ul> <li>CLASSIFICATION METHODOLOGY</li> <li>VARIABLE SELECTION</li> <li>CLASSIFICATION TECHNIQUES</li> <li>Classification Tree</li> <li>Linear Discriminant Analysis</li> <li>Clustering of Households</li> <li>DISCUSSION OF FINDINGS.</li> <li>CHAPTER SUMMARY</li> </ul> </li> <li>5. THE PITTSBORO CASE STUDY</li> <li>PITTSBORO MODEL DEVELOPMENT</li> <li>BASE YEAR DATA COLLECTION</li> <li>PITTSBORO GIS DATABASE</li> <li>Parcel Level Database</li> <li>Aggregated TAZ Level Database</li> <li>Network Database</li> <li>INTERNAL DATA SUMMARY.</li> </ul> <li>6. CONCLUSIONS AND RECOMMENDATIONS</li>                                 | TAX                                                                                                                                                                                                                                                          |

| GIS PROPERTY TAX DATABASE                                               |                      |
|-------------------------------------------------------------------------|----------------------|
| THE PITTSBORO CASE STUDY                                                |                      |
| SUMMARY RECOMMENDATIONS                                                 |                      |
| RECOMMENDED METHODOLOGY FOR USE OF CLUSTERING                           |                      |
| 7. REFERENCES                                                           |                      |
| APPENDIX A CALCULATION OF NON-HOME BASED, NON-RESIDENT                  | Г SECONDARY TRIPS    |
| FOR HHC AND CLUSTER SCENARIOS                                           | 41                   |
| APPENDIX B SAMPLE PARCEL DATABASE FILE                                  |                      |
| APPENDIX C SAMPLE TAZ DATABASE FILE                                     |                      |
| APPENDIX D SAMPLE NETWORK DATABASE FILE                                 | 45                   |
| APPENDIX E IDS INPUT FILE FOR HHC METHOD                                |                      |
| APPENDIX F IDS INPUT FILE FOR CLUSTER METHOD                            | 50                   |
| APPENDIX G NCDOT BASE YEAR PROCEDURE FOR PITTSBORO (SM                  | 11THSON, 2001)54     |
| APPENDIX H STATISTICAL COMPARISON OF PRODUCTIONS AND A<br>CALCULATIONS  | ATTRACTION:          |
| APPENDIX I STATISTICAL COMPARISON OF ASSIGNED FLOWS AND<br>CALCULATIONS | D GROUND COUNTS:<br> |

# LIST OF TABLES

| Table 1-1: | Cross-Classification Model for Daily Home-Based Other Vehicle Trips                                         | \$       |
|------------|-------------------------------------------------------------------------------------------------------------|----------|
| Table 1-2: | IDS Daily Vehicle Trip Generation Rates by Household Condition                                              | ŀ        |
| Table 2-1: | NCDOT GIS Benefits and Costs on Selected Projects                                                           | 7        |
| Table 4-1: | Comparison of Statistical Models Used to Classify Property Tax Data for Input into Trip<br>Generation Model | )        |
| Table 5-1: | Employment Categories by SIC Code                                                                           | ;        |
| Table 5-2: | IDS Daily Vehicle Trip Generation Rates by Household Condition Rating Used in Pittsboro<br>Study            | 5        |
| Table 5-3: | Results of the Comparison of Total Productions and Total Attractions Between Models                         | 3        |
| Table 5-4: | Results of the Comparison Between the HHC Model and the Cluster Model by Trip<br>Purpose                    | •        |
| Table 5-5: | Production Results and Differences Between the HHC Model and the CLUSTER Model<br>By Trip Purpose           | 1        |
| Table 5-6: | Results of the Comparison Between Link Assignments for the HHC Model, CLUSTER Model<br>and Ground Counts    | <u>,</u> |
| Table 5-7: | Required Data Compilation Times for the HHC and CLUSTER Methods                                             | +        |

# LIST OF FIGURES

| Figure 1-1: NCDOT Travel Model Development Process                   | 2  |
|----------------------------------------------------------------------|----|
| Figure 3-1: Methodological flow chart                                | 11 |
| Figure 4-1: Distributions of the Predictors (log scale) for Each HHC | 15 |
| Figure 4-2: Pairwise Scatterplots of the Predictors                  | 16 |
| Figure 5-1: Vicinity Map of Pittsboro, NC (Not to Scale)             |    |
| Figure 5-2: Pittsboro Study Area with Parcels and Right-of-Way       |    |
| Figure 5-3: Household Rating by Parcel                               |    |
| Figure 5-5: CLUSTER Method Daily Flow Map                            |    |
| Figure 5-6: HHC Method Daily Flow Map                                |    |

# **EXECUTIVE SUMMARY**

A strong relationship exists between property characteristics like tax value and trip generation according to recent travel surveys by USDOT and other agencies. Such property information is now common in geographic information system (GIS) format. GIS data are available at city and county planning agencies across North Carolina, and the GIS data potentially offer a relatively inexpensive, quick method for estimating trip generation for regional travel models.

Currently, the NCDOT model called the internal data summary (IDS) for trip generation relies on "drive-by" windshield observations of household condition to estimate travel especially for residential locations. Windshield surveys however, have several weaknesses.

- They are expensive and time consuming;
- They depend on subjective judgments that are hard to replicate and that may lead to errors and bias; and
- They cannot be forecast to the future.

Consequently, the question arises: Can property tax data replace windshield surveys to estimate travel in IDS? If the answer to this question is "yes", then statistical categorization of GIS data can replace expensive, time consuming and potentially error prone windshield surveys by relatively easily acquired property tax information. This research will attempt to answer this question.

Keeping trip generation tied to readily available property tax data is the key to cost effective data collection. First, the NCSU approach develops a method to classify property tax data into the common household categories designated in windshield surveys. Second, the approach compares IDS trip generation and resulting travel estimates to the same results produced using GIS data. In addition, ground counts serves to validate the results of both methods.

For Pittsboro, this project will determine if property tax information can be used in place of windshield surveys for household condition. If so, a workable method for collecting property tax information and merging it to the base year trip generation model will be proposed for other cities.

More specifically the objectives of this report are:

- To determine an appropriate statistical method to classify dwelling units by GIS based property tax data;
- To suggest a database structure that includes all of the required fields for use in the new classification procedure for trip generation; and
- To demonstrate the application of the new classification method using the case study city of Pittsboro, NC;

Ultimately the goal is to simplify the data collection process and to reduce the uncertainty in data input for the trip generation model used by NCDOT.

## Statistical Classification

This project has as a goal to determine a method for grouping and classifying GIS based property tax data into categories for use in the IDS trip generation model. The National Institute of Statistical Sciences (NISS) determine that deed acres, improvement values and land values are the three best predictors of household condition (HHC). Using these three variables, NISS carefully reviews the various statistical techniques [Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART) and *k-means* clustering] available for this type of categorization and settles on the *k-means* clustering method. The reasons for selecting k-means clustering as the preferred method are outlined below.

*K-means clustering* groups properties into clusters based on natural breaks in the data analogous to household condition categories. Clusters are assigned to properties based on the statistical similarity between the property tax characteristics of the land parcels. Parcels with similar characteristics are grouped into the same cluster. For a case study based on Pittsboro, N.C., the clusters are used instead of HHC ratings for single family dwelling units for the purpose of trip generation. The demonstrated advantages of this method are that:

- Properties can be assigned cluster values without the subjective evaluation of HHCs during drive-by windshield surveys;
- Clusters are not based on HHC ratings as is the case with the CART and LDA approaches;
- Clustering does not require any windshield survey to be done.

The disadvantage to the *k-means* clustering approach is that a new clustering would have to be performed for each city. The amount of statistical training needed is quite substantial and so the NCDOT would have to hire a statistician or train some of their employees to carry out the analysis.

One of the challenges of the statistical analysis is to balance complexity versus generalizability of the clustering model. In doing so, the predictive power of the classification tool is often limited. In this case, the limitation is to some extent due to the inherent subjectivity of the HHC assignment obtained in a windshield survey. However, the primary reason for the limited predictive power of each of the classification tools is that the property tax data contain only part of the information used to assign HHCs. The surveyors in the field subjectively incorporate several other items of information such as number of vehicles on the premises and neighborhood information in making a HHC assessment. This extra information is not captured in the property tax data and could help to increase the predictive power of the *k-mean* clustering model. One recommendation is to incorporate automobile ownership and numbers of persons by age group into the GIS database for use in a clustering procedure.

# **GIS Property Tax Database**

There are several advantages to using GIS based tax data for travel forecasting:

- GIS based property tax data are available for most N.C. cities;
- Property tax data is regularly collected and updated by N.C. counties; and
- Trip generation based on GIS property tax data is reproducible because of its quantitative basis.

Thus a second objective is to recommend a GIS database structure. In order to use property GIS based property tax data in a meaningful way for trip generation purposes, it is essential to design a database that completely incorporates all of the necessary attributes for the study area. In the case study city for this project, Pittsboro, N.C., NISS discovered a number of parcels that were missing part or all of the property tax data (deed acres, improvement value and land value) required to classify the parcels using the statistical procedures they identified.

Maintaining a complete, up to date parcel level database file for each study area is essential. Furthermore, it would facilitate data compilation if there were statewide GIS standards for coding parcel information (PINs, etc.). A standard format is essential for joining information from external databases into the GIS parcel layer. It allows planners to adjust TAZs boundaries as conditions change. TAZ level database files can be built using TransCAD based on the TAZ field in the parcel level database. Recommended fields to include in a parcel level database used for *k-means* clustering are as follows:

| Area      | Area of Parcel                                                          |
|-----------|-------------------------------------------------------------------------|
| Perimeter | Perimeter of Parcel                                                     |
| PIN       | Parcel Identification Number                                            |
| Land_FMV  | Tax value of land (base year)                                           |
| IMPR_FM   | Tax value of Improvement (base year)                                    |
| DEED_A    | Acreage of parcel                                                       |
| LU_Parcel | Land use or type of property                                            |
| TAZ       | Assigned TAZ                                                            |
| MTAZ      | Census TAZ number used in Regional Model                                |
| INDEMP    | Number of employees in Industrial employment                            |
| RETEMP    | Number of employees in Retail employment                                |
| HWYEMP    | Number of employees in Highway Retail employment                        |
| OFFEMP    | Number of employees in Office employment                                |
| CLUSTER1  | Number of households in the first cluster on parcel                     |
| CLUSTER2  | Number of households second cluster on parcel                           |
| CLUSTER3  | Number of households in third cluster on parcel                         |
| CLUSTER4  | Number of households in fourth cluster on parcel                        |
| CLUSTER5  | Number of households in fifth cluster on parcel (incorporate additional |
|           | fields for study areas with more than 5 clusters)                       |

### The Pittsboro Case Study

The third objective of this project is to test the chosen statistical classification method for the case study town of Pittsboro. Both standard HHC input data and CLUSTER data based on GIS property tax data are used in the four-step travel demand model for Pittsboro to test the results of the traditional HHC method to the CLUSTER method. The outputs of the trip generation step are compared using a t-test. Assuming the zonal productions from the two different methods are considered a paired sample, the difference between trips produced by each zone is calculated. The resultant differences for each zone become a single sample of differences about which inferences can be made. The null hypothesis is that there is no difference between trips resulting from the HHC or CLUSTER input data. Therefore, the mean of the sample of differences is compared to an expected mean  $(\mu_D)$  of zero using a one sample t-test. The test demonstrates that the productions and attractions produced by the two methods do not compare well for the two models at a 95% confidence level. However, the mean difference between productions for the HBW and NHB trip purposes are quite low. The mean difference for the HBW is 3.69 productions per TAZ between the two models and 2.76 for the NHB productions. In practical application of the trip generation model these differences are negligible. The same trend is documented for the attractions

Since the most important validation of a model compares traffic ground counts to estimated traffic, a comparison of flows versus ground counts is also undertaken for both methods. A comparison of the pre-calibration HHC and the CLUSTER models shows a mean percent difference between ground counts and link assignments greater than 25% which is well above the acceptable limits for calibrated NCDOT models. Mean percent difference between ground count and flows for the HHC model is greater than that found using the CLUSTER model. The CLUSTER model also results in a slightly better ground count to flow ratio than does the HHC model. Both models have the same 26 links with flow rate error within acceptable ranges. These results indicate that the pre-calibration flows derived using the CLUSTER method are no less accurate than those obtained using the HHC model. Statistical differences between CLUSTER model flows and ground counts are likely an issue that can be dealt with in the calibration phase of modeling. If the HHC model can be calibrated then the CLUSTER model should also be able to be calibrated and percent differences brought within acceptable limits. This indicates that CLUSTER model data, based on GIS property tax information, is no less accurate an input to IDS than is the windshield survey data.

The benefit of using the CLUSTER model is the timesaving associated with its use. The windshield survey of Pittsboro took 104 person-hours to complete the 100% evaluation of households. Obtaining the GIS data from Chatham County required no more than a 10-minute telephone conversation but did require some data cleansing efforts before applying the NISS clustering method. Data cleansing involves reducing the complete parcel level data down to a data set that only includes single family dwelling units with parcel identification number, deed acre, improvement value and land value attributes. The NISS clustering model is not very straightforward and requires significant statistical knowledge to be able to apply it to a GIS property tax data set. Total classification with

the CLUSTER method, including data cleansing, would require 8-16 person hours (once the procedure is understood). When compared to the 104 hours required to complete a windshield survey, the CLUSTER model takes only 15% of the time to implement.

Overall, the CLUSTER model used to evaluate property tax data looks promising in terms of timesaving. The major drawback is in the statistical training required to implement the procedure for each city or town.

# **Conclusions and Recommendations**

GIS based property tax data that is freely available and regularly updated is an attractive alternative to special drive-by windshield surveys of all households in a community for which a travel model is being prepared. Significant time and expense savings are possible, plus GIS property tax data (including property type, size, and value) are quantitatively recorded in database format and compatible with travel forecasting software like TransCAD.

Adapting GIS property data for a case study to city traffic analysis zones is not difficult using GIS techniques. However, statistically grouping GIS property tax data in a manner similar to conventional observations of household condition (an acceptable surrogate for trip generation potential) obtained in a windshield survey is difficult. A sophisticated statistical technique called *k-means* clustering is the preferred technique (compared to LDA and CART) to group property tax data instead of the subjective assignment of case study household conditions. The resulting property tax clusters (similar to household condition categories used in IDS, the NCDOT trip generation software) estimate precalibration trip productions and attractions that are statistically different at the 95% confidence level from productions and attractions generated by IDS using windshield survey data.

The comparison of pre-calibration link volumes to actual ground counts for both GIS based trip generation and windshield survey shows that GIS based trips estimate are somewhat better than the windshield survey based estimates. Overall, for pre-calibrated results, the GIS based productions, attractions and link volumes are no less accurate than pre-calibration windshield survey results. Yet, the GIS based data are obtained 85% more quickly and less expensively than windshield survey data for the case study city (actual modeling time remains the same for both scenarios).

The specific recommendations for NCDOT, resulting from this project follow:

- 1. Test the use of GIS based property tax data in another North Carolina city.
- 2. Enrich the property data with other data like vehicle ownership and census data to enhance the predictive power of the *k-means* clustering classification tool.
- 3. Conduct the comparisons of productions, attractions and link volumes on calibrated models.
- 4. Obtain software and tutorial guides so that NCDOT staff can become familiar with k-*means* clustering.

5. Contact county tax departments and discuss data format and data items that are needed for travel forecasting.

# **1. INTRODUCTION**

A strong relationship exists between trip generation and property characteristics like tax value according to recent travel surveys (FHWA, 1998a; NuStats International, 1995). Property information is now common in geographic information system (GIS) format. GIS data are available at city and county planning agencies across North Carolina and the GIS data potentially offer a relatively inexpensive, quick method for estimating trip generation for regional travel models.

Currently, the NCDOT trip generation model called the internal data summary (IDS) relies on "drive-by" windshield observations of household condition to estimate travel especially for residential locations (NCDOT, 1999). Windshield surveys have several weaknesses.

- They are expensive and time consuming;
- They depend on subjective judgments that are hard to replicate and can lead to bias and errors; and
- They cannot be forecast to the future.

By contrast, GIS property tax data are inexpensive, accurate, up to date and can be projected into the future. Moreover, GIS allows these data to be used readily in analysis and to produce visual descriptions. Consequently, the question arises: **Can property tax data replace windshield surveys to estimate travel in IDS?** If the answer to this question is "yes", then statistical categorization of GIS data can replace expensive, time consuming and potentially error prone windshield surveys by relatively easily acquired property tax information. This research will attempt to answer this question.

Keeping trip generation tied to existing property tax data is the key to cost effective data collection. First, the NCSU approach develops a method to classify property tax data into the common household categories designated in windshield surveys. Second, the approach compares IDS trip generation and resulting travel estimates to the same results produced using GIS data. In addition, ground counts serve to validate the results of both methods.

Although a GIS based method could be used for determining data input for trip generation in general, the NCSU project uses the NCDOT IDS trip generation model. While NCDOT primarily associates IDS with Tranplan and smaller city models, the NCSU approach can be adapted to TransCAD, which is becoming the preferred modeling tool at NCDOT. In the meantime, Tranplan models will continue in use for several years.

To provide background, this report describes the traditional four-step travel forecasting process and the trip generation step that is the focus of this effort. In particular the report discusses trip generation by IDS. Next, the report refines the problem based on the background statement and identifies the research objectives. Then the report develops and justifies the research approach through a review of pertinent literature. Throughout, the report emphasizes the significance to NCDOT of the proposed GIS-based data collection method for household data.

# Background

# Trip Generation and the Four-Step Process

NCDOT planners and engineers develop long range, regional travel forecasts by applying the "traditional" four-step planning process: 1) trip generation, 2) trip distribution, 3) mode split, and 4) trip assignment as seen in Figure 1-1. For the past decade or more, they have implemented the process with Tranplan (Urban Analysis Group, 1995). Recently, however, they have adopted TransCAD (Caliper Corporation, 2000), and they are converting their regional models from Tranplan to the new, more GIS-oriented environment that TransCAD offers.



Figure 1-1: NCDOT Travel Model Development Process (NCDOT, 1997).

This research focuses on the first, and arguably the most important and costly, step of the travel forecasting process – trip generation. Trip generation estimates the regional demand for travel. If the estimate is wrong, the regional model is wrong (garbage in, garbage out). Furthermore, the estimate for regional travel demand is very data intensive, potentially very expensive, time-consuming, and uncertain. To estimate regional travel in the base year analysts must collect current socioeconomic data for each land use parcel in each traffic analysis zone (TAZ) in the region.

For both the base year and the future year, the trip generation step estimates the number of trips produced by and attracted to each TAZ based on zonal residential and business land use. Each TAZ is characterized by associated socioeconomic data such as dwelling units and condition, employment, and commercial vehicles. The generation procedure consists of three basic functions: computing total trips produced by a zone, computing total trips attracted to a zone, and scaling to equate the total productions and the total attractions in the region for each of several trip purposes.

#### Trip Generation Methods

Generally speaking there are three methods to estimate trip generation – regression model, cross-classification and trip rates. Some transportation planning agencies use cross-classification models based on samples of household travel behavior data to estimate zonal trip productions, and they use regression models to estimate zonal trip attractions. Other agencies use sophisticated regression models for generating productions as well as attractions. Recently, activity-based methods for trip generation have also been implemented (Stone, *et al*, 2000).

Cross-classification involves using sample interview data to construct tables of variables descriptive of dwelling units (i.e. occupancy, auto ownership, household income, etc.) and the travel behavior (daily vehicle or person trip rates) for the different classes of dwelling units. Such a table is shown in Table 1-1. Knowing the number of dwelling units in each income class in each zone will give the number of daily trips for that zone. Summing over all zones will give the trips for the entire study area. Travel for various trip purposes (home-based work, home-based other, and non-home-based) are determined similarly for both the base and future year.

| Persons per<br>Dwelling Unit |      | Income Group |      |
|------------------------------|------|--------------|------|
|                              | 1    | 2            | 3    |
| 1                            | 0.28 | 0.85         | 1.44 |
| 2                            | 1.25 | 2.26         | 2.70 |
| 3 or more                    | 1.33 | 2.46         | 3.21 |

 Table 1-1: Cross-Classification Model for Daily Home-Based Other Vehicle Trips (NCDOT, 1997).

An advantage of cross-classification is the transferability of the model from zone to zone in the study area and between cities of similar types. The model can discriminate among many socioeconomic categories (nine in this example). Also, cross-classification can show realistic non-linear effects in travel behavior. On the other hand, crossclassification models have complex relationships among the data that lead to more difficult, less intuitive model calibration. Furthermore, cross-classification typically differentiates trip-making potential within a TAZ based on zonal averages from sample data. The samples may be as few as 30 per category depending on city size. Perhaps most troublesome is the difficulty in estimating future income.

#### Internal Data Summary

Besides cross-classification NCDOT engineers and planners use IDS, which uses trip rates for different residential and employment types to estimate trip generation productions and attractions. They developed IDS in-house, and it is separate from, but can be merged with, Tranplan (Urban Analysis Group, 1995) and TransCAD (Caliper, 2000). IDS relies on average, time invariant trip rates for North Carolina cities. The trip rates are the coefficients of the IDS model for trip productions and attractions. During model validation, the trip rates are changed as necessary to improve the comparison of estimated link volumes versus actual ground counts.

For productions there are five trip rates corresponding to five household condition categories – excellent, above average, average, below average, and poor (Table 1-2). Trip rates for special residential categories like university dormitories are also included. Given the number of households by condition in a TAZ, IDS determines the number of daily home-based productions in the TAZ by trip purpose. Area-wide productions by trip purpose result from summing the individual TAZ productions. The IDS output includes a file containing summaries of household conditions by TAZ, productions and attractions for each TAZ by trip purpose and area-wide totals by trip purpose.

| Household<br>Condition | Excellent | Above<br>Average | Average | Below<br>Average | Poor |
|------------------------|-----------|------------------|---------|------------------|------|
| Trip Rate              | 12.0      | 10.0             | 8.0     | 6.0              | 4.0  |

 Table 1-2: IDS Daily Vehicle Trip Generation Rates by Household Condition (NCDOT, 1999).

IDS has certain strengths compared to cross-classification. First, trained technicians inspect every household in a TAZ. Sampling is not used, and thereby every home-based trip generator is counted. They make a visual assessment of the condition of each household, and they assign it to one of the five household conditions based on such factors as observed numbers of vehicles, the estimated number of occupants, evidence of children, and estimated property value versus local averages. In this regard, IDS has the discrimination of cross-classification. Second, since IDS is like a linear regression model, its use is relatively straightforward and intuitively easy to understand. On the other hand, IDS assumes consistent and accurate appraisals of household condition by the inspectors. Moreover, inspecting every property, while avoiding the uncertainties of sampling, leads to costly, time-consuming data collection.

# **Problem Definition**

As discussed above, NCDOT has a daunting task to periodically count every household and appraise its condition in order to develop base year trip generation estimates for a region. The housing count is made by trained technicians who drive by each property in the city, identify it as residential, and classify its condition based on visual appearance, apparent number of occupants including children, and parked vehicles. Clearly, such counts and subjective appraisals made while driving by a property are prone to error and bias.

This research tests the hypothesis that property tax data can replace windshield survey data. Analysts could then replace the cumbersome and error-prone, inspection-based counts and condition estimates of each household in each TAZ with computer-based property tax data of each property in a TAZ. If the hypothesis is true, this report will propose recommendations for appropriate data collection procedures and discuss how to adapt IDS for trip generation based on property tax information.

# Scope and Research Objectives

The scope of this project addresses the trip generation of the case study Town of Pittsboro, North Carolina. This city has all of the required information: IDS windshield survey data (year 2000), base year trip generation results corresponding to the windshield survey data (IDS output), GIS parcel data and corresponding property tax records and the NCDOT travel model developed with TransCAD.

For Pittsboro, this project will determine whether property tax information can be used in place of windshield surveys for household condition. A workable method for merging property tax information to the base year trip generation model will be proposed.

More specifically the objectives of this report are:

- To determine an appropriate statistical method to classify dwelling units by GIS based property tax data;
- To suggest a database structure that includes all of the required fields for use in the new classification procedure; and
- To demonstrate the application of the new classification method using the case study Town of Pittsboro, NC.

Ultimately the goal is to simplify the data collection process and to reduce the bias in data input for the trip generation model used by NCDOT.

## **Chapter Summary**

The NCDOT realizes that the windshield survey method for collecting socio-economic data for input into IDS for trip generation has several shortcomings. Besides being time consuming and inefficient, it is based on subjective evaluation and hence it is not reproducible. With the advances in GIS in the past few years, and the ready availability of property tax data that each county prepares, it makes sense to move toward a method for household classification based on a more reproducible evaluation.

The following chapter will justify a GIS-based approach. Subsequent chapters will, in turn, summarize a methodology for developing a GIS approach and apply the approach to the case study Town of Pittsboro, NC. Recommendations and conclusions regarding the effectiveness of using GIS data for Pittsboro trip generation will close out the report.

# 2. LITERATURE REVIEW

Many cities and agencies including NCDOT use GIS databases for a range of land use and transportation planning activities (Shinebein, 1999; He, 1999; FHWA, 1998a; FHWA, 1998b). However, the applicability of GIS based land use data like property values, type and location; have not been demonstrated for travel forecasting. For example, the Capital Area Metropolitan Planning Organization (Raleigh, NC) could not find a strong statistical correlation between land use and socioeconomic data available in GIS format and travel behavior (Parsons Transportation Group, 2000). While finding such relationships seems intuitively plausible, issues such as GIS and travel survey data availability, GIS data format and accessible statistical methods complicate the problem. The following literature review briefly describes NCDOT's use of GIS, Portland METRO's use of GIS, the CAMPO GIS study and alternative statistical methods for establishing relationships between GIS land use data and travel behavior data. The results of the literature review help establish the research approach that a subsequent chapter describes.

The motivation for the proposed trip generation project comes from the need to facilitate socioeconomic data collection, reduce its cost and improve its accuracy. The key technology that makes this project feasible is GIS – geographic information systems.

More and more NCDOT is using GIS to support decision-making. TransCAD, the primary NCDOT urban transportation planning software, has full GIS capabilities. NCDOT also uses GIS to locate and describe highways and their features including signs, pavement conditions and accidents through the Linear Referencing System.

## **Review of Desirable GIS Model Characteristics**

#### NCDOT Use of GIS

The GIS Unit at the NCDOT compiles environmental GIS data and supplements it with some field surveys of historic sites (FHWA, 1998b). Using relatively inexpensive commercial software like ArcView, engineers overlay GIS coverages on aerial photography to produce map-based data that are used for public hearings and as part of the approval process (FHWA, 1998b). This overlay technique is helpful in evaluating the different improvement scenarios as their effect on various environmental resources can be visualized.

Besides ArcView, NCDOT has adopted the network travel forecasting tool called TransCAD, which relies heavily on GIS data input and GIS graphical output. NCDOT is continuing to expand its GIS applications to traffic operations, safety and maintenance. As a result, the Federal Highway Administration Travel Model Improvement Program has recognized NCDOT's innovation in GIS by featuring the Statewide Planning Unit as one of six planning agencies that extensively uses GIS. In the report *Transportation* 

*Case Studies in GIS* the FHWA describes "NCDOT: Use of GIS to Support Environmental Analysis During System Planning". Of particular interest are the benefits and costs that accrue from using GIS (Table 2-1). NCDOT reports that GIS collection and analysis of environmental data (which is similar to the process proposed for socioeconomic data in this report) is more efficient, quicker, less costly and improves the communication and consensus process between the Department, regulatory agencies and the public.

| Project                | Benefits                                                                                                 | Costs                                                                      |
|------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Halstead Blvd          | <ul> <li>Environmental Assessment (EA) reduced by 16 months.</li> <li>Cost savings \$150,000.</li> </ul> | <ul> <li>GIS data collection, 3 months.</li> <li>Cost \$15,000.</li> </ul> |
| Morganton<br>Connector | <ul><li>Early consensus, minor EA not major EA.</li><li>Cost savings \$250,000.</li></ul>                | <ul><li>GIS documentation</li><li>Cost \$20,000</li></ul>                  |

 Table 2-1: NCDOT GIS Benefits and Costs on Selected Projects (FHWA, 1998b).

#### Portland Metro's GIS Database (FHWA, 1998a)

Portland Metro is the regional government and the MPO that serves 1.3 million people in Clackamas, Multnomah and Washington Counties in Oregon. Metro provides all of the urban transportation planning for the region. Metro is the leading user of GIS-T for transportation planning in the country. The Data Resources Center (DRC) is the in-house department that is responsible for gathering base year data, producing forecasts and managing the database and GIS.

Portland Metro is recognized for its innovations in using GIS for activity-based models such as Transims (Los Alamos, 1999). Of particular interest to this research project is the Portland Metro use of GIS to store data using households as the unit of analysis. While Portland Metro uses a more disaggregate model than NCDOT does, the GIS lessons learned and benefits accrued are important for this research and eventual application in TransCAD. The benefits of storing both household and employment data at the disaggregate level are clear. When using TAZs as the unit of analysis, but storing data at the parcel level, it is simple to adjust TAZ boundaries when needed without concerns about losing data. Furthermore, data stored at the disaggregate level allows for data groupings other than standard TAZs (smaller TAZs can be created within a TAZ for smaller scale planning projects). Although the NCSU GIS database is stored in a polygon coverage based on parcels, a disaggregate format is maintained.

The GIS is known as the Regional Land Information System (RLIS). It stores 75 layers of demographic, employment, environmental and transportation data for the region in the form of polygon, arc and point coverages. The base maps and attribute data are continually updated and published quarterly in CD-ROM format. The GIS is maintained using ESRI's Arc/INFO software.

The Metro trip generation model uses disaggregate demographic data stored as point data records within the GIS. The point data represents separate survey data that have been geocoded to the address from which they were received. Regional disparities within travel analysis zones can then be taken into consideration during the trip generation phase of transportation planning. Employment information is also entered as point data within the GIS.

Metro decided that GIS would be an integral part of their planning process. They have invested a good deal of money to create and maintain such an elaborate database. Metro's "GIS-centric" approach to planning requires many resources to maintain it.

#### CAMPO Automated Data Summary

Closer to home, the Capital Area Metropolitan Planning Organization (CAMPO) has initiated an extensive GIS data collection effort. The project is called the Automated Data System (ADS) (CAMPO, 1999). Its goal is to capture in GIS format all public data that will support the land use and transportation planning efforts of municipalities in Wake County. Significantly for this research project, the data will include parcel information from tax records. Other data will include employment and income data, business locations by Standard Industrial Code (SIC), water and sewer billings, vehicle tax billings, etc. by address.

The CAMPO ADS study found a weak statistically significant relationship between property tax variables and household trip production rates. The study did show that household composition is the fundamental determinant of trip production and that land-use and dwelling unit characteristics were not reliable predictors of travel behavior (Parsons Transportation Group, 2000).

## Methods of Analysis

The primary analytical tasks of this project are (1) to determine if GIS property tax records can be substituted for windshield survey household condition ratings and if so, (2) to accurately estimate the trip generation and network traffic in Pittsboro, the case study city. Task (2) will be accomplished using IDS and TransCAD as discussed previously. Task (1), however, requires selection of an appropriate statistical method.

For finding similar travel behavior relationships, the CAMPO study applied standard cross-classification and regression/ANOVA methods from commonly available software like spreadsheets, SAS and SPSS. Analysis was straightforward, though the results were not encouraging. Property tax data evaluated as possible causal variables included heated square footage, dwelling unit ownership status, type-and-use classification, number of rooms, acreage, appraised tax value, own or rent and type of home (Parsons Transportation Group, 2000). Heated square footage and type-and-use classifications have the strongest relationship to overall trip production.

Other more sophisticated statistical approaches exist for determining clustered relationships similar to those implied by the five standard IDS household conditions for trip generation. In one study, North Carolina State University (NCSU) and the National Institute of Statistical Sciences (NISS) examined relationships between air quality and a variety of variables including traffic descriptors, a site variable, and vehicle specific variables using a method called Classification and Regression Trees (CART) (Rouphail, *et al*, 2000). The emissions estimates derived from CART were referred to as macro estimates. The model produced emissions estimates for clusters of vehicles that share common design characteristics. Presumably, a similar technique can be applied to predict HHC clusters that share common property tax characteristics.

## **Chapter Summary**

As Table 2-1 shows, GIS has proven to be an effective tool for transportation planning at the NCDOT. For cost effective application of GIS to travel forecasting using IDS or similar trip generation models it is essential that GIS data be clustered in a manner consistent with the application of such models. For this project, a database similar to that of the Portland Metro MPO was used. Advanced statistical clustering methods were used instead of conventional spreadsheet methods as outlined above. The next chapter describes a methodology to cluster GIS-based property tax data and apply it to IDS trip generation.

# 3. A RESEARCH METHODOLOGY FOR TRIP GENERATION

The goal of the research project was to determine if property tax data could be used to replace the household condition (HHC) ratings derived from a windshield survey. In concept the research approach compared five categories of household condition ratings obtained with windshield surveys to statistically predict household condition ratings based on the GIS property tax data:

HHC<sub>predicted</sub>= f (acreage, improvement value and land value).

The predicted HHC ratings were not compared directly to the windshield HHC ratings because of their variability and subjectivity. Rather, predicted and actual HHCs were used in IDS and the TransCAD travel demand model forecasting process then the trip generation results of productions and attractions for each zone were compared and model trip assignments from each method were compared to ground counts. The rationale for this indirect comparison properly shifts the focus to trip generation results and validation of predicted traffic versus actual traffic.

This project began with selecting a case study town. The criteria for the case study town were that it had a relatively small population (less than 10 000), current property tax data available in a GIS format and current and reliable windshield survey data. Together with the NCDOT, NCSU chose Pittsboro, North Carolina as the case study based on the availability of data and the start date of field data collection that coincided with the start date of this project.

Figure 3-1 outlines subsequent steps involved in the analysis following the selection of the case study town. Data were collected and compiled into a GIS database. A polygon property tax database coverage from Chatham County was supplemented with household classification (HHCs) attributes for each parcel as evaluated during the windshield survey. A line coverage, provided by Chatham County, containing an attributed road network was also modified by adding additional attributes needed for the planning process. These include posted speed, ground counts and capacities.

The parcel level property tax database was then evaluated to determine which variables could be used to estimate the HHCs. NISS used land value, improvement value and deed acres as variables to classify the single-family dwelling unit parcels using various statistical techniques including linear discriminant analysis (LDA), classification and regression tree (CART) and *k-means* clustering.

The *k-means* clustering was selected as the best technique (justification provided in the following chapter) and reported cluster values were aggregated to the TAZ level and input in the CLUSTER scenario IDS file. A second scenario named the HHC scenario was also created which used the NCDOT windshield survey HHC classifications aggregated to the TAZ level.



Figure 3-1: Methodological Flow Chart For the Research

The two scenarios were run through IDS and the resulting Ps and As were processed through trip distribution and trip assignment using TranCAD following the same procedures outlined in Appendix H. Comparisons were then made between Ps resulting from the two methods. Productions were held constant while balancing Ps and As and so the resulting As were likewise affected by the different methods used for categorizing dwelling units. Attractions were also compared between methods. Link assignments from each scenario can be compared to ground counts.

The overall general methodology for this project, as summarized above, was applied to the case study Town of Pittsboro. The following chapter details the case study and the findings.

# 4. HOUSEHOLD CONDITIONS BASED ON PROPERTY TAX

This project determined the relationships between household conditions based on windshield surveys and property tax data. The analysis used year 2000 property tax data and year 2000 windshield survey data for Pittsboro, NC.

The National Institute of Statistical Science (NISS) applied a statistical procedure called *K-means* clustering to perform the analysis. NISS used the clustering method to classify predictor variables in property tax data (acreage, land use value and improvement value) in an attempt to group the data into definable categories for trip rate assignment.

The methodology used by NISS for this portion of the project is outlined in the following section. Later sections detail each of the methodological steps and finally, results and conclusions round out the chapter.

# **Classification Methodology**

Steps Involved:

- 1. Choose a subjectively selected subset of variables in the property tax data that are likely to be the most relevant in modeling HHCs. The variables for which data are only partially available, i.e., variables for which data are largely missing, are dropped from the subset.
- 2. Compute the remaining set of variables as all real-valued so correlation can be determined between every pair of variables. The final set of variables used for modeling are selected to minimize the number of missing values in the finally selected set and such that the correlation between the selected variables is as low as possible.
- 3. Perform linear discriminant analysis and statistical measures (tests) to verify the adequacy of the model. The fitted model is used to obtain predictions on the data set itself and the predictions are then compared with the windshield survey HHCs in order to check if the variables have any potential to serve as HHC predictors.
- 4. Use *K*-means clustering for classification. The number of clusters (K) for the data segments has to be specified in advance. The procedure is tried with K = 3,4,5,6,7,8,9,10,14 and visually inspected for each K. Finally K=7 is selected (i.e. divide the data into 7 clusters). Ideally, five clusters would be preferred to relate to the five traditional HHC categories.

## Variable Selection

The primary focus of the analysis was to evaluate the capability of statistical models to predict HHC ratings using readily available property tax data as predictors. The property tax data consisted of several fields such as: tax value of the land, tax value of improvements, acreage, perimeter of parcel, name of institutional or commercial establishment, and so on. Such property tax data would replace currently assigned HHCs obtained by means of expensive, labor-intensive and subjective windshield surveys. The general strategy fit a statistical classifier model, using training data for a set of parcels in Pittsboro with HHC ratings, along with the property tax data available for the parcels. (Note that such training data would require subsequent windshield surveys in other cities for other models. Hence, some windshield surveys would always be necessary with this approach). Then the strategy evaluated the classifier model ability to reproduce the assigned HHC numbers in Pittsboro as well as ascertaining its generalizability to other regions.

Preliminary exploration of the data revealed that:

- Several variables, *e.g.*, area of the parcel and tax value, were highly correlated and were essentially measures of the same latent feature of the parcel.
- Approximately 22.5% of the residential parcels were missing all or part of the year 2000 property tax data.

Exploratory data analysis (Breinman, *et al*, 1983) selected a subset of variables for model fitting such that the selected variables captured features of the parcel without redundancy and were also available in sufficient number of data records. Acreage, Land value and Land Improvement value were the variables used for model training. For technical reasons related to the class of fitted models, the discriminatory power of these variables, were enhanced if they were transformed to the logarithmic scale. The boxplots in Figure 4-1 show the values of these selected variables for each of the HHC categories. (The box indicates the range between which 50% of the data values lie; the horizontal line within each box is the median value.)

Clearly, the medians in Figure 4-1 indicate that there are systematic overall differences between households with different HHCs. However, the significant overlaps between the boxes also indicate that it will be difficult to train a statistical model to predict all of the HHCs with a low error rate. This difficulty is further evidenced in the pairwise scatterplots shown in Figure 4-2, in which the distribution of values for each pair of predictor variables is displayed (color-coded according to their HHC).

Again, it seems clear that any model that attempts to classify HHC based solely on these predictor variables is unlikely to be accurate for the entire set of households. For example, while land value and deed acres show a clear trend as in Figure 4-1, there is much scatter with overlap and no obvious trends in improvement value versus deed acres and land value.



Figure 4-1: Distributions of the Predictors (log scale) for each HHC.



Figure 4-2: Pairwise Scatterplots of the Predictors.

#### **Classification Techniques**

To overcome the problems illustrated in Figures 4-1 and 4-2, NISS attempted classification using a number of techniques including linear regression, classification trees, linear discriminant analysis and k-means clustering. The findings are summarized below.

#### **Classification Tree**

Tree-based modeling is widely used for classification problems. A tree model can be thought of as an optimal set of decision rules learned from a training data set that can be used to predict classes (HHC in the Pittsboro case) for a new set of predictor variables (the property tax data). For instance, a tree model fit to the Pittsboro data might yield rules such as: "If (Acreage < a) then predict HHC = 1; Else (If Land\_value < 1 then HHC = 2; Else HHC = 4)." The set of rules can best be expressed in a logical tree structure. Several techniques exist for fitting tree-models [e.g., *CART* (Insightful Corporation) and *C4.5* (Quinlan, 1993)] that differ in the details of the rule learning algorithm, as well as the model parameters that can be set to determine the complexity of the tree (rule set).

In this research, NISS used the tree model facilities built into the *S-Plus* (Insightful Corporation). The tree results discussed below were unsatisfactory. Models that adequately reproduced the windshield survey HHCs were too complex and would be very unlikely to generalize well to other settings beyond Pittsboro; and conversely, the models that might be more generalizable, were poor predictors.

#### Linear Discriminant Analysis

Classification based on discriminant functions can be justified using different lines of reasoning (Ripley, 1996). In a situation where there are K classes to predict (k=5 HHC ratings for IDS), the training data learn K linear functions of the predictor variables as follows:

$$y_c(x_1, x_2, x_3) = a_{0c} + a_{1c}x_1 + a_{2c}x_2 + a_{3c}x_3$$
 for  $c = 1, 2, ..., K$ 

Then the predicted *HHC* = c for a household if  $y_c(x_1, x_2, x_3) > y_i(x_1, x_2, x_3)$  for  $j \neq c$ .

This classification approach fit the linear discriminant model in *S-Plus* using software described in STATLIB. The resulting classifier was a little better than a tree-based classifier. NISS also attempted an extension of linear discriminants in which the discriminant function was quadratic in the predictor variables which gives a more flexible discriminant function with potentially better predictive capability. However, the quadratic model was worse than the linear fits.

Linear discriminant analysis provided a reliable means of classifying the Pittsboro data into HHC categories based on property tax information but sample HHC survey data must be available for subsequent study areas. There are a number of advantages and disadvantages to using this model.

Advantages:

- Uses well known HHC classification scheme;
- Will allow the use of traditionally prescribed trip rates for the five HHCs.

Disadvantages:

• Due to the subjective nature of the HHCs being predicted, it is unlikely that the Pittsboro model is transferable and the analysis has to be redone for each case city. That is, windshield survey data would be needed for each region to train the model. Therefore, the linear discriminant model does not eliminate windshield surveys and complicates the process.

#### Clustering of Households

The goal of the cluster analysis is to investigate if the property tax data itself can be used to segment the households into categories related to trip rates. If such a categorization

can be done, NCDOT engineers can use the property tax profile as a surrogate for the HHCs and the engineers can assign trip-generation rates to the categories. It would then be possible to use the new categorization and circumvent the expensive and subjective HHC number assignments. The primary tools are statistical clustering methods (also known as unsupervised learning methods). Methods such as *k-means* can partition the data into clusters of households with similar property tax profiles.

This NISS approach used the simple, widely available technique of *k*-means clustering. In this method, the analyst first specified k, the number of clusters required. Then khouseholds were chosen at random as representatives for each of the clusters and each household was assigned to the cluster nearest to it. Next, the representatives of each cluster were adjusted to the center (or "mean") of the cluster. The process is then repeated with the new cluster representatives. Iterations continued until the clusters stabilized. The procedure was carried out in S-Plus. Several values of k were tried and the appropriateness of resulting clusters were evaluated using data plots of the clusters as well as the distribution of HHCs within each cluster. (Note that the HHCs windshield survey would not typically be available if the clustering method is used in place of a windshield survey. Here it is used for additional guidance in the exploratory investigation of the efficacy of the proposed technique). The clustering method finally settled on clusters with k=7. (Actually this corresponds to effectively five clusters, since two of the resulting seven clusters really represent outlying observations of Pittsboro properties.)

There are a number of advantages and disadvantages associated with the clustering method as well.

Advantages:

- Clusters are based on natural breaks in the data and are not predicted based on a model trained to simulate subjective HHCs;
- There is no need to collect the windshield survey data at all. Disadvantages:
- A new clustering analysis would have to be performed for each new town;
- The clusters' properties would have to be evaluated each time to determine appropriate trip rates to assign to the clusters;
- IDS or TransCAD trip generation models would have to be re-written to accommodate cases where clusters are not the usual 5 clusters;
- NCDOT staff would require training in new statistical software.

# **Discussion of Findings**

In the models fit by the analysis, a cross-validation procedure is performed to balance complexity versus generalizability. This trade-off is to some extent due to the inherent subjectivity of the HHC assignment. However, the primary reason for the limited predictive power of each of the classification tools is that the property tax data contain only part of the information used to assign HHCs. The surveyors in the field qualitatively incorporate several other items of information such as number of vehicles on the premises and neighborhood information in making a HHC assessment. This information is not captured in the property tax data. However, the concept of replacing HHC surveys by property tax data should not be abandoned if the base year traffic model estimates are comparable (as this research demonstrates).

A comparison of the various techniques (Table 4-1) show that although the *k-means* clustering model may be more difficult to perform, it is the only model that is transferable and the only model that eliminates windshield survey.

| Model                        | Data Requirements          | Ease of use                     | Transferability |
|------------------------------|----------------------------|---------------------------------|-----------------|
| CART                         | HHCs and property tax data | Advanced statistical techniques | No              |
| LDA                          | HHCs and property tax data | Advanced statistical techniques | No              |
| <i>k-means</i><br>Clustering | Property tax data          | Advanced statistical techniques | Yes             |

 

 Table 4-1: Comparison of Statistical Models Used to Classify Property Tax Data for Input into Trip Generation Model.

# Chapter Summary

The NCSU and NISS experiences with the classification and clustering analysis of the property-tax data suggest that statistical classifiers may be used for assigning HHC ratings to dwelling units based on property-tax data. Unfortunately, as seen in Figure 4-1 and Figure 4-2, the predictive accuracy of a model built solely from the property tax data is limited to the case study area. While it is possible to construct arbitrarily complex models that reproduce the HHCs for the case study training data exactly; it is unlikely that they would generalize to other urban study areas.

The *k-means* clustering classifier method, for property taxes and HHCs, may be about as accurate as windshield survey HHCs (as demonstrated in the subsequent case study). As generalizability is of great concern, the clustering approach for bypassing HHC assignments is promising as it relies on the natural breaks in the data and does not link classifications to existing data as the learned models do. HHC classification, in the field, is based on factors other than housing condition and perceived worth, hence, augmenting the property tax data with census data and car ownership data, may lead to more meaningful clusters that are more readily interpretable for assigning trip-generation rates.

Although using natural breaks in the data to cluster properties into uniform property tax groupings is promising, there are a number of drawbacks to this approach as well. First, a clustering will have to be performed for each city. This will involve statistical training for the NCDOT engineers responsible for modeling each town. Second, it will require training NCDOT engineers in a new way of assigning trip rates as clusters may not follow the well known five category system used in the windshield survey method of data collection. It may take an experienced engineer to determine the proper trip rates to assign to each cluster. As with IDS trip generation a "seed set" of trip rates could be used to establish base year productions and attractions and resulting traffic assignments. Then

during the base year calibration and validation phase of the model, the trip rates could be adjusted if necessary to help match model traffic assignments to actual ground counts. This follows current NCDOT practice. Third, IDS or a modified TransCAD "IDS" would have to be re-written for more or less than five clusters.

Pittsboro demonstrates the clustering method to generate input data for IDS. Each of the single-family dwelling unit parcels is classified in the GIS database using the clustering classifier. The four-step travel forecasting process is then carried out based on the pre-calibrated base year windshield survey data (HHC scenario) and then the pre-calibrated cluster data (CLUSTER scenario). The outputs of these two scenarios are compared for trip generation productions, attractions and assigned link volume to ground counts. The case study and results of the cluster analysis are described in the following chapter of this report.

# 5. THE PITTSBORO CASE STUDY

The Town of Pittsboro in Chatham County, North Carolina (Figure 5-1) is the case study area. This town was chosen because it is a current NCDOT small urban study and it has available GIS property tax data. The study area includes all parcels within a five-mile radius of the town's central traffic circle (Figure 5-2).



Figure 5-1: Vicinity Map of Pittsboro, NC (NTS) (Smithson, 2001)

## Pittsboro Model Development

From August 2000 to May 2002, the NCDOT Statewide Planning Branch developed and calibrated a base year transportation planning model for the Pittsboro area using HHC and IDS as the tool for trip generation and TransCAD for trip distribution and assignment. In September 2001, NCSU received an early version of the model. Before the model could be used in this research, NCSU had to make several adjustments.

The September 2001 NCDOT model for Pittsboro had several discrepancies. First, the IDS file contained non-reproducible values for non-home-based secondary (NHBS) trips. Second, several of the aggregated HHC numbers used in the IDS input file did not correspond to the numbers of households evaluated in the windshield survey and coded into the parcel level database. Numbers were inverted. Third, in calibrating the model, NCDOT made direct adjustments to IDS output zone productions and attractions rather than adjustments to IDS input trip generation rates. Fourth, the through trips calculated

in SYNTH by NCDOT used centroids 84-95 as the external stations. However, the original model had the external stations represented by centroids 85-96. Thus, joining the through trips matrix to the O-D matrix in trip distribution resulted in assignments to and from a "dummy" node (centroid 84) that did not exist.



Figure 5-2: Pittsboro Study Area with Parcels and Right-of-Way.

To correct some of these errors, NCSU re-aggregated the HHC data and corrected input errors found in the IDS file. NCSU then re-calculated the values of NHBS using NCDOT methods and used the modified windshield survey data (Appendix A). The through trip matrix file was also re-created using the appropriate centroid numbers to represent the external stations. The un-calibrated Pittsboro travel model was used in subsequent steps in this project.

## **Base Year Data Collection**

NCDOT conducted a windshield survey in Pittsboro, NC between August and October 2000. One engineer, with help from an engineering technician, evaluated 100% of the dwelling units for HHCs and recorded telephone interview data for all of the businesses within the study area. Data obtained from the HHC windshield survey and business interviews were then input into a GIS database.

IDS requires each dwelling unit in each TAZ to be categorized as either excellent, above average, average, below average, or poor. Categorizing the dwelling units in each TAZ is accomplished by the drive-by windshield survey. The drive-by windshield survey is conducted by driving by each parcel within the study area. If there is a building improvement on the parcel, it is determined whether or not the use is residential. Residential uses include single detached housing (on-site construction and pre-fab housing) and all multi-family units (duplex, triplex, apartments, dormitories, etc.). If the building improvement on the parcel is residential, the parcel is then assigned a rating of either, excellent, above average, average, below average, or poor.

These ratings are measures of the trip-making propensity of each dwelling unit. It is up to the surveyor to determine the HHC rating for the dwelling unit. The surveyor assesses the dwelling unit based on a number of physical features: the apparent age and size of the house, its appearance (well maintained or not), number of vehicles garaged, any signs of children living in the house, and neighborhood appearance.

IDS uses the dwelling unit ratings to calculate productions by purpose including homebased work productions (HBWP), home-based other productions (HBOP) and non-homebased productions (NHBP). IDS uses the number of employers by employment category to calculate home-based work attractions (HBWA), home-based other attractions (HBOA) and non-home-based attractions (NHBA). Employment data is simultaneously collected during the drive-by windshield survey method. If the parcel being surveyed contains a business, the name of the business is noted. The local phone book is used to look up the telephone number of the business. NCDOT contacts each business by telephone and asks the nature of the business. The type of business is needed in order to assign that business the appropriate Standard Industrial Classification (SIC) code (Table 5-1). The assigned SIC code is then used to categorize the business into one of the five employment categories required for IDS. The five IDS employment categories are industrial, retail, highway retail, office, and service.

During the August to October 2000 windshield survey, over 4000 parcels were surveyed resulting in the rating of 2385 households (Figure 5-3) and the categorization of 2,664 employees by their employment type.

| IDS Employment |                  |
|----------------|------------------|
| Categories     | SIC Codes        |
| Industry       | 1-49             |
| Retail         | 55,58            |
| HwyRetail      | 50-54,56,57,59   |
| Office         | 60-67, 91-97     |
| Service        | 70-76, 78-89, 99 |

Table 5-1: Employment Categories by SIC Code (Smithson, 2001).
### Pittsboro GIS Database

Four primary databases containing socio-economic data were used for this project:

- 1993 Property Tax Data (Chatham County, GIS Department);
- 2000 Property Tax Data (Chatham County, GIS Department);
- Parcel Database (developed by NCSU);
- TAZ Database (developed by NCDOT).



Figure 5-3: Household Ratings by Parcel.

### Parcel Level Database

Chatham County provided the 1993 Property Tax Database. This database contains the geographic delineation and information or attributes pertaining to each parcel within the study area. This database provides the foundation for development of the Parcel Database used in TransCAD. The Chatham County database also contains many attributes not necessary for the model. These fields were deleted to reduce the size of the database. Examples of fields dropped are owner's name, owner's address, 1993 land value, 1993 improvement value and certain fields used for reference by Chatham County. Fields or attributes that were kept include parcel identification numbers (PINs), acreage, land tax value, improvement tax value, and land use. Chatham County property tax examiners re-evaluated land parcels in 2000 for property tax purposes. These were stored

in a database and merged to the 1993 Chatham County Property Tax Database. Only tax values obtained in the 2000 tax assessment were used for this project.

The Parcel Database was created by adding fields for household condition ratings and assigned TAZs to the edited Chatham County database described in the previous paragraph. Additional fields are described below. Appendix B provides a sample of the Parcel database.

| Area of Parcel                           |
|------------------------------------------|
| Perimeter of Parcel                      |
| Parcel Identification Number             |
| Tax value of land (year 2000)            |
| Tax value of Improvement (year 2000)     |
| Acreage of parcel                        |
| Land use or type of property             |
| Assigned TAZ                             |
| 2000 Household condition Rating          |
| 1995 Household condition Rating          |
| TAZ number for Regional Model            |
| Census TAZ number used in Regional Model |
|                                          |

### Aggregated TAZ Level Database

The TAZ Database is then created after completion of the Parcel Database described above. Essentially, each parcel within the Parcel Database with the same TAZ assignment are merged into one polygon. The single-family dwelling units per household condition rating are aggregated at the zonal level and entered into the database. Employment data is then added to each TAZ. As with the household condition ratings, employment data is entered by type for each TAZ. The TAZ database attribute fields are described below. Appendix C gives a sample of the TAZ database.

| ID         | Record ID (produced by TransCAD                         |
|------------|---------------------------------------------------------|
| PITTTAZ_00 | Pittsboro TAZ number                                    |
| INDEMP     | Number of employees in Industrial employment            |
| RETEMP     | Number of employees in Retail employment                |
| HWYEMP     | Number of employees in Highway Retail employment        |
| OFFEMP     | Number of employees in Office employment                |
| TOTEMP     | Total number of employees in TAZ                        |
| HH1        | Number of households with a POOR rating in TAZ          |
| HH2        | Number of households with a BELOW AVERAGE rating in TAZ |
| HH3        | Number of households with an AVERAGE rating in TAZ      |
| HH4        | Number of households with an ABOVE AVERAGE rating in    |
|            | TAZ                                                     |
| HH5        | Number of households with an EXCELLENT rating in TAZ    |
| ТОТНН      | Total number of households in TAZ                       |
|            |                                                         |

#### Network Database

The network database was supplied in a line coverage from NCDOT. The NCDOT line files are not sufficient for travel demand modeling purposes. NCDOT line files only contain the coordinates of the endpoints that define each link, the length of the link, and street name. The NCDOT street database (shown in Appendix D) is thus expanded to include speed, time, link-type, and capacity. Speed limits and roadway cross-sections were gathered from field surveys in Pittsboro. Link travel time is a function of length and speed and the "time" column in the street database is filled with the following formula: length/speed\*60. The result is travel time in minutes for each link. The "link-type" column contains link codes based on link classifications or categories (i.e. centroid connectors). Link capacity depends upon a number of physical features of a roadway such as shoulder widths, lane widths, number of lanes in each direction, and speed limits.

### Internal Data Summary

The NCDOT uses an in-house program called IDS for the trip generation phase of the four step planning process, discussed in the Introduction of this report. The inputs into IDS are trip rates, dwelling unit data aggregated to the TAZ level, NHBS trips and aggregated employment data based on SICs for each TAZ.

Two different TAZ database files were created and used as input into IDS (Appendix F) to estimate the balanced productions and attractions. The data files differ only in the data used as ratings for the dwelling units and the calculated NHBS trips. All group dwelling unit data, employment data, external station data and trip rates (Table 5-2) are the same for the two scenarios.

 Table 5-2: IDS Daily Vehicle Trip Generation Rates by Household Condition Used in Pittsboro Study (Smithson, 2001).

| Household | Excellent | Above   | Average | Below   | Poor |
|-----------|-----------|---------|---------|---------|------|
| Condition |           | Average |         | Average |      |
| Trip Rate | 12.0      | 10.0    | 8.0     | 7.0     | 5.0  |

The scenarios are as defined below:

- 1. HHC: The data model used year 2000 windshield survey data for the household condition ratings 1 through 5, aggregated at the TAZ level. This input file varied from the NCDOT base year model in the number of NHBS trips and the modification of aggregated HHC numbers for some TAZs that did not correspond to the numbers coded into the parcel database file. This adjustment corrected the coding errors discussed earlier.
- 2. CLUSTER: This data model used NISS predicted clusters aggregated to the TAZ level. The two outlying clusters that contained two parcels each were added into the preceding clusters. There were a number of parcels that could not be evaluated using the NISS clustering model. Of the 2386 dwelling units evaluated by the NCDOT in the windshield survey, NCSU researchers were not able to classify 536 of them, using the NISS classifier. The three main reasons why a property was not classified are:

- More than one dwelling unit on a parcel;
- Missing land value from property tax record; and
- No property tax data available for the parcel.

Those parcels that contained a single-family dwelling unit and had all of the property tax data were evaluated using the NISS classifier. For those properties that had more than one dwelling unit on it, the additional dwelling units were assigned the same cluster value as that predicted for the parcel using the NISS classifier. For the parcels with missing property tax data, the dwelling units were evaluated based on the distribution of dwelling units among clusters in that TAZ. For example, a TAZ with twenty missing dwelling units and with the following distribution:

- 20% in cluster A
- 50% in cluster B
- 30% in cluster D

the twenty missing dwelling units were be assigned as follows: ten of the missing dwelling units are assigned to cluster B, four to cluster A and six to cluster D.

Each of the two models (Appendix E and Appendix F) were run through IDS. The productions for the two methods were compared to one another using the statistical procedures outlined in the following section. Attractions were compared in a similar manner. Trip distribution and assignment were carried out using the same procedures used by the NCDOT in the base year analysis of Pittsboro (Appendix G).

### Statistical Comparisons

The un-calibrated productions from the HHC scenario IDS output file were compared to the IDS productions from the CLUSTER scenario. Comparisons were made at the zonal level for each trip purpose. Attractions were compared in a similar manner. The comparisons used un-calibrated productions and attractions because the un-calibrated values are input for trip distribution and subsequently for traffic assignment. Only when estimated link volumes are available for validation against base year ground counts are trip generation model trip rates adjusted and Ps and As re-calculated and the model rerun until estimated link volumes approximate ground counts.

Assuming the zonal productions from two different methods are a paired sample, the differences between trips produced by each zone are calculated. The resulting differences for each zone become a single sample of differences about which inferences can be made. Differences in productions for each trip purpose and differences in attractions for each trip purpose were calculated individually. The null hypothesis is that there is no difference between productions or attractions resulting from the input HHC and CLUSTER data. Therefore, the mean of the sample of differences is compared to an expected mean ( $\mu_D$ ) of zero using a one sample t-test (Equation 5-1).

$$t_{calc} = \frac{\overline{D} - \boldsymbol{m}_{D}}{S_{D} / \sqrt{n}}$$

Equation 5-1 (Raos, 1998)

Where:  $t_{calc} = calculated t statistic;$ 

D = mean of paired sample differences,

 $\mu_D$  = expected mean of paired sample differences. If no difference exists,  $\mu_D = 0$ ,

 $S_D$  = standard deviation of differences between paired samples,

n = number of differences between paired samples.

By comparing  $t_{calc}$  values to the published t-value at a significance level of 0.05 and degrees of freedom n-1, the null hypothesis,  $H_0: \mu_D = 0$ , is rejected in favor of the alternative hypothesis,  $H_1: \mu_D \neq 0$ , in cases where  $t_{calc} < -t$  (73,0.025) or when  $t_{calc} > t$  (73,0.025).

Link assignments for both the un-calibrated HHC and CLUSTER models were compared to one another and then to ground counts using the same statistical procedure as used for productions and attractions.

Percent difference between ground count and link flow assignments is the usual comparison used by the NCDOT when evaluating the model. Similar comparisons are also made for the two models to determine if the model assignments are within acceptable ranges for the NCDOT.

### Results

The CLUSTER model does not compare well statistically, to the un-calibrated HHC base year model for total productions or for total attractions as seen in Table 5-3. This suggests that at 95% confidence, the HHC and CLUSTER productions are not the same. The same difference is also true for the attractions. Appendix H shows the calculations for the statistical analysis of productions and attractions between scenarios.

|                                   | Mean, $\mu_D$ | Standard<br>Deviation, S <sub>D</sub> | t <sub>calc</sub> | t(df, α/2)<br>α=0.05<br>df=73 | Accept or Reject<br>H <sub>0</sub> |
|-----------------------------------|---------------|---------------------------------------|-------------------|-------------------------------|------------------------------------|
| HHC vs.<br>CLUSTER<br>Productions | 14.91         | 31.60                                 | 4.06              | ±2.00                         | Reject                             |
| HHC vs.<br>CLUSTER<br>Attractions | 14.81         | 29.36                                 | 4.34              | ±2.00                         | Reject                             |

Table 5-3: Results of the Comparison of Total Productions and Total Attractions Between Models.

The models are also compared at the trip purpose level. Statistical comparisons of the HHC and CLUSTER model are summarized in Table 5-4 and calculations are found in Appendix I. Differences at a 95% confidence level are noted between productions for the HHC and CLUSTER models for all of the trip purposes. The same is noted for differences in attractions between models.

The mean difference between productions for the HBW and NHB trip purposes are quite low and are seen in Table 5-4. The mean difference for the HBW is 3.69 productions per TAZ between the two models and 2.76 for the NHB productions. In practical application of the trip generation model these differences are negligible.

Table 5-5 shows the entire set of productions by model and TAZ as well as the differences between models by trip purpose. Differences range between -26 to 42 productions for the HBW and 0 to 25 for NBH productions (CLUSTER – HHC). For 13 of the 74 TAZs HHC productions are higher than CLUSTER HBW productions; for 8 TAZs there is no difference between model HBW productions and for 53 TAZs, the CLUSTER model yields higher HBW productions than the HHC model. For half of the TAZs, the CLUSTER model and HHC model yield the same results for NHB productions. For the remaining 37 TAZs, the CLUSTER model over estimates the productions. HBO differences show a little more variability and a higher mean difference of productions between models, with differences range from -58 to 96.

The external trips are not influenced by the household condition ratings of parcels within the planning area or by the clusters and are not in the IDS file. Productions and attractions for external trips thus remain the same regardless of scenario. They are not compared in this analysis.

| Trip Purpose                    | Mean, $\mu_D$ | Standard<br>Deviation, S <sub>D</sub> | T <sub>calc</sub> | $t(df, \alpha/2)$ | Accept or Reject H <sub>0</sub> |
|---------------------------------|---------------|---------------------------------------|-------------------|-------------------|---------------------------------|
| Home-based Work<br>Productions  | 3.69          | 8.94                                  | 3.55              | ±2.00             | Reject                          |
| Home-based Other<br>Productions | 8.46          | 20.33                                 | 3.58              | ±2.00             | Reject                          |
| Non-Home-Based<br>Productions   | 2.76          | 5.68                                  | 4.18              | ±2.00             | Reject                          |
| Home-based Work<br>Attractions  | 3.66          | 9.11                                  | 3.45              | ±2.00             | Reject                          |
| Home-based Other<br>Attractions | 8.36          | 17.85                                 | 4.03              | ±2.00             | Reject                          |
| Non-Home-Based<br>Attractions   | 2.79          | 5.79                                  | 4.15              | ±2.00             | Reject                          |

 Table 5-4: Results of the Comparison Between the HHC Model and the CLUSTER Model by Trip Purpose.

|     | HHC |     |      | CLUSTER |     |      | CLU | JSTER-H | HC  |
|-----|-----|-----|------|---------|-----|------|-----|---------|-----|
| TAZ | HBW | НВО | NHB  | HBW     | НВО | NHB  | HBW | HBO     | NHB |
| 1   | 33  | 76  | 19   | 46      | 105 | 20   | 13  | 29      | 1   |
| 2   | 24  | 54  | 7    | 24      | 55  | 7    | 0   | 1       | 0   |
| 3   | 71  | 161 | 106  | 77      | 176 | 107  | 6   | 15      | 1   |
| 4   | 0   | 0   | 0    | 0       | 0   | 0    | 0   | 0       | 0   |
| 5   | 55  | 125 | 27   | 71      | 162 | 28   | 16  | 37      | 1   |
| 6   | 141 | 320 | 133  | 154     | 350 | 136  | 13  | 30      | 3   |
| 7   | 95  | 217 | 968  | 106     | 242 | 984  | 11  | 25      | 16  |
| 8   | 138 | 313 | 925  | 180     | 409 | 941  | 42  | 96      | 16  |
| 9   | 2   | 4   | 51   | 1       | 3   | 52   | -1  | -1      | 1   |
| 10  | 37  | 84  | 7    | 41      | 93  | 7    | 4   | 9       | 0   |
| 11  | 44  | 100 | 12   | 51      | 115 | 12   | 7   | 15      | 0   |
| 12  | 31  | 71  | 7    | 33      | 76  | 7    | 2   | 5       | 0   |
| 13  | 95  | 217 | 192  | 91      | 207 | 196  | -4  | -10     | 4   |
| 14  | 139 | 317 | 788  | 150     | 341 | 801  | 11  | 24      | 13  |
| 15  | 62  | 140 | 513  | 69      | 158 | 522  | 7   | 18      | 9   |
| 16  | 90  | 206 | 27   | 110     | 251 | 28   | 20  | 45      | 1   |
| 17  | 81  | 184 | 780  | 95      | 217 | 794  | 14  | 33      | 14  |
| 18  | 13  | 30  | 12   | 11      | 25  | 12   | -2  | -5      | 0   |
| 19  | 55  | 126 | 651  | 49      | 111 | 662  | -6  | -15     | 11  |
| 20  | 225 | 511 | 659  | 254     | 577 | 670  | 29  | 66      | 11  |
| 21  | 64  | 145 | 82   | 64      | 147 | 84   | 0   | 2       | 2   |
| 22  | 49  | 112 | 157  | 69      | 157 | 160  | 20  | 45      | 3   |
| 23  | 48  | 109 | 317  | 45      | 103 | 323  | -3  | -6      | 6   |
| 24  | 44  | 99  | 748  | 49      | 111 | 761  | 5   | 12      | 13  |
| 25  | 24  | 56  | 784  | 27      | 61  | 798  | 3   | 5       | 14  |
| 26  | 41  | 94  | 369  | 48      | 110 | 375  | 7   | 16      | 6   |
| 27  | 2   | 6   | 0    | 3       | 7   | 0    | 1   | 1       | 0   |
| 28  | 86  | 195 | 66   | 92      | 209 | 67   | 6   | 14      | 1   |
| 29  | 4   | 10  | 0    | 4       | 10  | 0    | 0   | 0       | 0   |
| 30  | 85  | 193 | 91   | 90      | 205 | 92   | 5   | 12      | 1   |
| 31  | 8   | 19  | 513  | 8       | 19  | 522  | 0   | 0       | 9   |
| 32  | 35  | 79  | 670  | 39      | 89  | 682  | 4   | 10      | 12  |
| 33  | 28  | 63  | 1066 | 34      | 77  | 1084 | 6   | 14      | 18  |
| 34  | 61  | 139 | 1457 | 76      | 173 | 1482 | 15  | 34      | 25  |
| 35  | 22  | 51  | 686  | 19      | 44  | 698  | -3  | -7      | 12  |
| 36  | 34  | 78  | 43   | 40      | 90  | 44   | 6   | 12      | 1   |
| 37  | 10  | 24  | 0    | 12      | 27  | 0    | 2   | 3       | 0   |
| 38  | 7   | 15  | 0    | 9       | 21  | 0    | 2   | 6       | 0   |
| 39  | 31  | 70  | 7    | 35      | 79  | 7    | 4   | 9       | 0   |
| 40  | 53  | 121 | 12   | 51      | 116 | 12   | -2  | -5      | 0   |
| 41  | 15  | 34  | 4    | 20      | 46  | 4    | 5   | 12      | 0   |
| 42  | 36  | 81  | 7    | 42      | 96  | 7    | 6   | 15      | 0   |
| 43  | 31  | 71  | 7    | 30      | 68  | 7    | -1  | -3      | 0   |

 Table 5-5: Production Results and Differences Between the HHC Model and the CLUSTER Model by Trip Purpose.

|     |     | HHC |     |     | CLUSTER |     |     | JSTER-H | НС  |
|-----|-----|-----|-----|-----|---------|-----|-----|---------|-----|
| TAZ | HBW | HBO | NHB | HBW | HBO     | NHB | HBW | HBO     | NHB |
| 44  | 12  | 27  | 659 | 13  | 30      | 670 | 1   | 3       | 11  |
| 45  | 25  | 58  | 329 | 26  | 58      | 335 | 1   | 0       | 6   |
| 46  | 78  | 177 | 561 | 97  | 221     | 571 | 19  | 44      | 10  |
| 47  | 19  | 43  | 4   | 16  | 37      | 4   | -3  | -6      | 0   |
| 48  | 50  | 115 | 12  | 45  | 103     | 12  | -5  | -12     | 0   |
| 49  | 0   | 0   | 46  | 0   | 0       | 48  | 0   | 0       | 2   |
| 50  | 26  | 59  | 7   | 31  | 71      | 7   | 5   | 12      | 0   |
| 51  | 6   | 13  | 0   | 7   | 15      | 0   | 1   | 2       | 0   |
| 52  | 147 | 334 | 43  | 174 | 395     | 44  | 27  | 61      | 1   |
| 53  | 13  | 31  | 4   | 15  | 35      | 4   | 2   | 4       | 0   |
| 54  | 6   | 13  | 392 | 6   | 13      | 398 | 0   | 0       | 6   |
| 55  | 7   | 15  | 0   | 8   | 19      | 0   | 1   | 4       | 0   |
| 56  | 17  | 39  | 4   | 19  | 44      | 4   | 2   | 5       | 0   |
| 57  | 23  | 53  | 4   | 26  | 59      | 4   | 3   | 6       | 0   |
| 58  | 22  | 51  | 4   | 21  | 47      | 4   | -1  | -4      | 0   |
| 59  | 0   | 0   | 0   | 0   | 0       | 0   | 0   | 0       | 0   |
| 60  | 23  | 53  | 7   | 33  | 76      | 7   | 10  | 23      | 0   |
| 61  | 36  | 82  | 7   | 42  | 96      | 7   | 6   | 14      | 0   |
| 62  | 77  | 175 | 16  | 51  | 117     | 17  | -26 | -58     | 1   |
| 63  | 13  | 30  | 4   | 15  | 35      | 4   | 2   | 5       | 0   |
| 64  | 35  | 79  | 7   | 45  | 102     | 7   | 10  | 23      | 0   |
| 65  | 47  | 107 | 32  | 57  | 129     | 32  | 10  | 22      | 0   |
| 66  | 26  | 60  | 32  | 31  | 71      | 32  | 5   | 11      | 0   |
| 67  | 35  | 80  | 98  | 41  | 94      | 100 | 6   | 14      | 2   |
| 68  | 26  | 59  | 4   | 27  | 62      | 4   | 1   | 3       | 0   |
| 69  | 14  | 31  | 4   | 16  | 37      | 4   | 2   | 6       | 0   |
| 70  | 8   | 18  | 0   | 9   | 21      | 0   | 1   | 3       | 0   |
| 71  | 16  | 37  | 12  | 19  | 43      | 12  | 3   | 6       | 0   |
| 72  | 16  | 37  | 4   | 18  | 41      | 4   | 2   | 4       | 0   |
| 73  | 20  | 46  | 4   | 24  | 55      | 4   | 4   | 9       | 0   |
| 74  | 57  | 129 | 16  | 52  | 119     | 17  | -5  | -10     | 1   |

While the statistical tests directly compare the estimates of Ps and As by the HHC and CLUSTER methods, the ultimate validation of the base year model for the study area is how well it duplicates ground counts. Thus, a test can be performed for ground counts versus estimated traffic flow. If that overall model test yields positive results, discrepancies in Ps and As (Tables 5-3, 5-4 and 5-5) may be downplayed.

The traditional way in which the NCDOT compares ground counts to estimated flows is in keeping with the J. Robbins (1978) estimates of accuracy of travel demand forecasting parameters. Table 5-6 summarizes the results of the comparison of flows from the different scenarios to the ground counts. Table 5-6 shows that the flows estimated using the CLUSTER method are quite similar to those obtained using the HHC method.

The mean percent difference between ground counts and the two scenario flows are within  $\pm$  29%. The CLUSTER model results in a lower mean percent difference between ground counts and flows than does the HHC model. The CLUSTER model also shows a

"Ground Count: Model Flows" ratio slightly closer to unity than the HHC model. The number of links within acceptable percent error range is the same for both scenarios (Table 5-6). The acceptable percent difference between ground count and estimated link volumes depends on the functional class of the roadway and can be as large as 100% for certain local roadways.

 

 Table 5-6: Results of the Comparison Between Link Assignments for the HHC Unadjusted, CLUSTER and Ground Counts.

|                              | Mean,         | Standard   | t <sub>calc</sub> | t(df,        | Mean %     | Number of    | Ground |
|------------------------------|---------------|------------|-------------------|--------------|------------|--------------|--------|
|                              | $\mu_{\rm D}$ | Deviation, |                   | <b>α</b> /2) | Difference | Links' Flows | Count: |
|                              | -             | $S_D$      |                   |              | in Flows   | Within       | Model  |
|                              |               |            |                   |              |            | Acceptable   | Flows  |
|                              |               |            |                   |              |            | Error*       | Ratio  |
| Ground Counts<br>Vs. CLUSTER | 910.0         | 1981.1     | 3.44              | ±2.00        | 25.37      | 14/56        | 0.85   |
| Ground Counts<br>Vs. HHC     | 830.2         | 1922.3     | 3.23              | ±2.00        | 28.81      | 14/56        | 0.84   |

\* Robbins, J. (1978). Mathematical Models-the Error of Our Ways. *Traffic Engineering & Control*, Vol. 18(1).

Figure 5-5 shows the flows that result from using the CLUSTER method for determining input into the IDS model used for trip generation in the four step planning process. Figure 5-6 shows the flows derived from using the HHCs from windshield surveys in the IDS model. Note that the loaded networks are very similar for the two methods.



Figure 5-5: CLUSTER method daily flow.



Figure 5-6: HHC method daily flow.

#### Discussion

The analysis of productions and attractions reveals that the CLUSTER model does not compare well to the HHC model for overall productions or overall attractions at the 95% confidence level. When looking at the models in detail, it appears that the CLUSTER model has a lower  $t_{calc}$  for HBWP, HBWA and HBOP than for the other trip purposes. The highest mean differences between scenario productions and attractions are found for the HBO trip purpose. HBO trips also show the greatest variations in differences for both productions and attractions. The CLUSTER model results in Ps, As and estimated flows that are less than those produced using the windshield survey data. The two methods of trip generation data input result in Ps and As that are statistically different between models at the 95% confidence level.

The mean difference between productions for the HBW and NHB trip purposes are quite low. The mean difference for the HBW is 3.69 productions per TAZ between the two models and 2.76 for the NHB productions. In practical application of the trip generation model these differences are negligible. The same trend is documented for the attractions.

Both methods result in traffic flows that are statistically different from ground counts at the 95% confidence level. A comparison of the un-calibrated HHC and the CLUSTER models shows a mean percent difference between ground counts and link assignments greater than 25% which is well above the acceptable limits for calibrated NCDOT models. Mean percent differences between ground counts and flows for the HHC model

are greater than that found using the CLUSTER model. The CLUSTER model also results in a slightly better ground count to flow ratio than does the HHC model. Both models have the same 26 links with flow rate error within acceptable ranges. These results indicate that the flows derived using the CLUSTER method are no less accurate than those obtained using the HHC model. Statistical differences between CLUSTER model flows and ground counts are likely an issue that can be dealt with in the calibration phase of modeling. If the HHC model can be calibrated then the CLUSTER model should also be able to be calibrated and percent differences brought within acceptable limits. This indicates that CLUSTER model data, based on GIS property tax information, is no less accurate an input to IDS than is the windshield survey data, and that the CLUSTER model data can be appropriately calibrated to ground counts.

A major benefit of using the CLUSTER model is the time and costs savings. The windshield survey of Pittsboro took 104 person-hours to complete the 100% evaluation of households. Obtaining the GIS data from Chatham County required no more than a 10-minute telephone conversation, but the data did require some data cleansing before applying the NISS clustering method. The NISS clustering model is not very straightforward and requires significant statistical knowledge to be able to apply it to a GIS property tax data set. Total classification with the CLUSTER method, including data cleansing, would require 8 to 16 person-hours (once the procedure is understood). When compared to the 104 hours required to complete a windshield survey, the CLUSTER model takes only 15% of the time to implement. Table 5-7 summarizes the time-savings that can be achieved using the CLUSTER method for classifying single family dwelling units.

| Model   | Windshield<br>Survey for | Windshield<br>Survey Time | Clustering<br>Classification | Clustering<br>Classification | Total Time<br>For Data |
|---------|--------------------------|---------------------------|------------------------------|------------------------------|------------------------|
|         | SFDU                     | for SFDU                  |                              | Time                         | Compilation            |
| HHC     | Yes - 100%               | 104 hrs                   | No                           | 0 hrs                        | 104 hrs                |
| CLUSTER | No                       | 0 hrs                     | Yes - 100%                   | 16 hrs                       | 16 hrs                 |

 Table 5-7: Required Data Compilation Time for the HHC and CLUSTER Methods.

#### **Chapter Summary**

Based on the Pittsboro case study, the CLUSTER model used to evaluate property tax data looks promising in terms of accuracy, reproducibility and time-savings. The major drawback is in the statistical expertise required to implement the procedure for each city or town. Statistical training and appropriate software like the public domain *R-Project* are essential for NCDOT staff to apply the method.

## 6. CONCLUSIONS AND RECOMMENDATIONS

### Statistical Classification

This project developed a method for grouping and classifying GIS based property tax data into categories for use in the IDS trip generation model. NISS determined that deed acres, improvement value and land value were the three best predictors of household condition in the Pittsboro case study. Using these three variables, NISS carefully reviewed the various statistical techniques (LDA, CART and *k-means* clustering) available for this type of categorization. NISS found that models that adequately reproduced the windshield survey HHCs were too complex and would be very unlikely to generalize well to other settings beyond Pittsboro; and conversely, the models that might be more generalizable, were poor predictors. NISS selected the *k-means* clustering method for the reasons outlined below. NISS used the statistical package called *S-Plus*, however, NCDOT should consider the public domain package *R-Project* for clustering.

The *k-means* method groups properties into clusters based on natural breaks in the data. Clusters are assigned to properties based on the statistical similarity between the property tax characteristics of the land parcels. Parcels with similar characteristics are grouped into the same cluster. The clusters are used instead of HHC ratings for single family dwelling units for the purpose of trip generation. The advantages of this method are that:

- Properties can be assigned cluster values without the subjective evaluation of the HHC surveyor. Once the clusters are established, appropriate trip rates can be applied.
- Clusters do not have to follow the 5 HHC categories of IDS.
- Clusters are not based on HHC ratings as is the case with the CART and LDA approaches.
- Clustering does not require any windshield survey to be done.

The disadvantage to the *k-means* clustering approach is that a new clustering would have to be performed for each city. The NCDOT would have to train some of their employees to carry out the analysis.

Using HHC as a means of predicting the trip making propensity of the people in a dwelling unit is time consuming and costly. NISS's suggested use of property tax data clusters is promising in that it allows the natural breaks in the data to be recognized and used for classification. Replicating a subjective HHC rating system based on windshield surveys is not be the best approach to classifying households.

One of the challenges of the statistical analysis is to balance complexity versus generalizability of the clustering model. In doing so, the predictive power of the classification tool is often limited. In this case, the limitation was to some extent due to the inherent subjectivity of the HHC assignment. However, the primary reason for the

limited predictive power of each of the classification tools is that the property tax data contain only part of the information used to assign HHCs. The surveyors in the field incorporate several other items of information such as number of vehicles on the premises and neighborhood information in making a HHC assessment. This extra information is not adequately captured in the property tax data and could help to increase the predictive power of the *k-mean* clustering model.

### **GIS Property Tax Database**

In order to use property GIS based property tax data in a meaningful way for trip generation purposes, it is essential to design a database that incorporates all of the necessary attributes. NISS discovered a number of parcels that were missing part or all of the property tax data required (deed acres, improvement value and land value) to classify the parcels using either of the statistical procedure identified. These missing data (536 out of 2386 parcels did not have complete data) could be one reason that the trip generation results from the CLUSTER model did not compare well to the results of the HHC model.

Data compilation would be facilitated if there were statewide GIS standards for coding parcel information (PINs, etc.). A standard format is essential for joining information from external databases into the GIS parcel layer.

Maintaining a parcel level database file for each study area is essential. It allows planners to adjust TAZs boundaries as conditions change. TAZ level database files can be built in TransCAD based on the TAZ field in the parcel level database.

Recommended fields to include in a parcel level database that is to be used for clustering are as follows:

| Area      | Area of Parcel                                      |
|-----------|-----------------------------------------------------|
| Perimeter | Perimeter of Parcel                                 |
| PIN       | Parcel Identification Number                        |
| Land_FMV  | Tax value of land (base year)                       |
| IMPR _FM  | Tax value of Improvement (base year)                |
| DEED_A    | Acreage of parcel                                   |
| LU_Parcel | Land use or type of property                        |
| TAZ       | Assigned TAZ                                        |
| MTAZ      | Census TAZ number used in Regional Model            |
| INDEMP    | Number of employees in Industrial employment        |
| RETEMP    | Number of employees in Retail employment            |
| HWYEMP    | Number of employees in Highway Retail employment    |
| OFFEMP    | Number of employees in Office employment            |
| CLUSTER1  | Number of households in the first cluster on parcel |
| CLUSTER2  | Number of households second cluster on parcel       |
| CLUSTER3  | Number of households in third cluster on parcel     |
| CLUSTER4  | Number of households in fourth cluster on parcel    |
|           |                                                     |

CLUSTER5 Number of households in fifth cluster on parcel (incorporate additional fields for study areas with more than 5 clusters)

### The Pittsboro Case Study

This project applies a statistical classification method to the case study Town of Pittsboro. Both standard HHC input data and CLUSTER data were used in the travel demand model for Pittsboro.

The two methods result in traffic flows that are statistically different from ground counts at the 95% confidence level. A comparison of the un-calibrated HHC and the CLUSTER models shows a mean percent difference between ground counts and link assignments greater than 25% which is above the acceptable limits for calibrated NCDOT models. Mean percent difference between ground count and flows for the HHC model is greater than that found using the CLUSTER model. The CLUSTER model also results in a slightly better ground count to flow ratio than does the HHC model. Both models have the same 26 links with flow error within acceptable ranges. These results indicate that the flows derived using the CLUSTER method are no less accurate than those obtained using the HHC model. Statistical differences between CLUSTER model flows and ground counts are likely an issue that can be dealt with in the calibration phase of modeling. If the HHC model can be calibrated then the CLUSTER model should also be able to be calibrated and percent differences brought within acceptable limits. This indicates that CLUSTER model data, based on GIS property tax information, is no less accurate an input to IDS than is the windshield survey data. However, the mean difference between productions for the HBW and NHB trip purposes are quite low. The mean difference for the HBW is 3.69 productions per TAZ between the two models and 2.76 for the NHB productions. In practical application of the trip generation model these differences are negligible. The same trend is documented for the attractions.

The benefits of using the CLUSTER model is the time-savings associated with its use. The windshield survey of Pittsboro took 104 person-hours to complete the 100% evaluation of households. Obtaining the GIS data from Chatham County required no more than a 10-minute telephone conversation but did require some data cleansing efforts before applying the NISS clustering method. The NISS clustering model is not very straightforward and requires statistical knowledge to be able to apply it to a GIS property tax data set. Total classification with the CLUSTER method, including data cleansing, would require 8-16 person-hours (once the procedure is understood). When compared to the 104 hours required to complete a windshield survey, the CLUSTER model takes only 15% of the time to implement.

The CLUSTER model used to evaluate property tax data looks promising in terms of time-savings. The major drawback is in the statistical training required to implement the procedure for each city or town. Another case study should be performed to test the transferability of the clustering approach.

#### **Summary Recommendations**

The specific recommendations for NCDOT, resulting from this project follow:

- 1. Test the use of GIS based property tax data in another North Carolina city.
- 2. Enrich the property data with other data like vehicle ownership and census data to enhance the predictive power of the *k*-means clustering classification tool.
- 3. Conduct the comparisons of productions, attractions and link volumes on calibrated trip generation models, as well as un-calibrated models.
- 4. Obtain software and tutorial guides so that NCDOT staff can become familiar with *k*-*means* clustering. *R*-*Project* may be a source of information.
- 5. Contact county tax departments and discuss data format and data items that are needed for travel forecasting and compare them to developing NCDOT standards.
- 6. Establish a statewide database definition for all parcel level GIS coverages and encourage state and municipal organizations to adopt it.

### **Recommended Methodology for Use of Clustering**

In order to use the clustering method in travel demand modeling there are several steps to carry out. The following is a general recommended methodology for using cluster data in place of windshield survey input data for trip generation.

- 1. Obtain countywide GIS cadastral coverage from the county GIS department.
- 2. Determine the extent of the study area and clip the county cadastral layer to include only parcels within that boundary.
- 3. Obtain current property tax data including land value, improvement value and deed acres (if not already included in cadastral coverage) and adjust to current year values.
- 4. Determine which records in the database file represent single family dwelling units. Create a selection set containing the single family dwelling units and convert that to a new database file. Make adjustments for group quarters.
- 5. Take the new database file and determine which of the records contain all of the required property tax data (land value, deed acres and improvement value). Eliminate those that are missing data.
- 6. Using statistical software, apply the *k-means* clustering procedure to the remaining database records. After several iterations, the *k-means* clustering method will assign cluster numbers to each record that is in the data set.
- 7. Join the data set, complete with cluster assignments, back into the original study area GIS database file.
- 8. Aggregate data based on TAZ boundaries.
- 9. Prepare the IDS input file containing aggregated cluster assignments.
- 10. Proceed with trip generation, trip distribution, mode split and network assignment following the traditional procedures used by NCDOT.

### 7. REFERENCES

- Breinman, L., Friedman, J.H., Olshen, R.A., and C.J. Stone (1983). *CART: Classification and Regression Trees*, Wadsworth, Belmont, CA.
- Caliper Corporation (2000). TransCAD, Transportation GIS Software. Newton, MA, <u>http://www. Caliper.com/</u>
- CAMPO (1999). *CAMPO Newsletter*. Raleigh, NC <u>http://www.raleigh-nc.org/campo/Newsletfw99.htm</u>.
- FHWA (1998a), Transportation Case Studies in GIS Case Study 2: Portland Metro, Oregon – GIS database for Urban Transportation Planning, Report # FHWA-PD-98-065 No. 2.
- FHWA (1998b), Transportation Case Studies in GIS Case Study 3: NCDOT: Use of GIS to Support Environmental Analysis During System Planning, Report # FHWA-PD-98-065, No. 3.
- Goulias, K.G. and R. Kitamura (1992). *Travel Demand Forecasting with Dynamic Microsimulation*. Transportation Research Record 1347.
- He, Y. (1999). EUTSTIS: A Comprehensive Database System to Support Transportation Studies in and MPO. *ITE Journal*, Vol: 69 (3).
- Hyashi, Y. and Y. Tomita (1989). A Micro-Analytic Residential Mobility Model for Assessing the Effects of Transportation Improvement. *Transport Policy*, *Management & Technology Towards 2001: Selected Proceedings of the Fifth World Conference on Transport Research*, Volume 4.
- Insightful Corporation (last accessed 2001). S-PLUS Product Family http://www.insightful.com.
- Los Alamos National Laboratory (1999). Transims Overview, Vol: 0. Los Alamos, NM.
- NCDOT (1999). Internal Data Summary (IDS), NCDOT notes for data input and output. Received September 1999.
- NCDOT (1997). *NCDOT Travel Forecasting Training Manual*, Prepared for the NCDOT Statewide Planning Branch, Raleigh, NC.
- NuStats International (1995). *Triangle Travel Behavior Survey*. Prepared for the Triangle Transit Authority, Raleigh, NC.

- Parsons Transportation Group (2000). *Wake County Automated Data System: Travel Behavior Analysis*. Prepared for the Capital Area Planning Organization.
- Quinlan, J.R. (1993), *C4.5: Programs for Machine Learning*, Morgan Kaufmann, San Mateo, CA.
- Ripley, B.D (1996). *Pattern Recognition and Neural Networks*, Cambridge University Press.
- Robbins, J. (1978). Mathematical Models- the Error of Our Ways. *Traffic Engineering & Control*, Vol. 18(1).
- Rouphail, N.M; Frey, H.C.; Unal, A.; Dalton, R., and A. Karr (2000). *ITS Integration of Real-Time Emissions and Traffic Management Systems*. IDEA Program Research Report, ITS-44. Prepared for the IDEA Program, Transportation Research Board National Research Council.
- THE R PROJECT FOR STATISTICAL COMPUTING (last accessed 2001), http://www.r-project.org.
- Shinebein, P.J. (1999). Developing a Geographic Information System Travel Demand Forecasting Model for Las Vegas. . *ITE Journal*, Volume 69 (2).
- Smithson, W.D. (2001). A Travel Demand Model For Pittsboro, North Carolina: A Case Study Using TransCAD, A GIS Based Software. Masters Project Submitted to the University of North Carolina, Chapel Hill, NC.
- STATLIB (last accessed 2001), http://lib.stat.cmu.edu.
- Stone, J.R., et.al. (2000). Assessing the Feasibility of TRANSIMS in North Carolina. FHWA/NCDOT/2000-05.
- Tukey, J.W. (1977). *Exploratory Data Analysis*, Addison-Wesley, Reading, MA.
- Urban Analysis Group (1995). *Tranplan User Manual*, Hayward, CA, <u>http://www.minutp.com/</u>.
- Venables, W. and B. Ripley (1997). *Modern applied statistics using S-PLUS, (2<sup>nd</sup> Ed.),* Springer, New York, NY.

VISUAL INSIGHTS, ADVIZOR, http://www.visualinsights.com.

## **APPENDIX A**

## CALCULATION OF NON-HOME BASED, NON-RESIDENT SECONDARY TRIPS FOR HHC AND CLUSTER SCENARIOS

## CALCULATION OF NON-HOME BASED NON-RESIDENT (NHB-NR) TRIPS FOR SMALL URBAN AREAS

| Thoroughfare Plan Study Area: | Pittsboro |
|-------------------------------|-----------|
| Scenario:                     | HHC       |
| Input File Name               | ncdot.in  |
| Date:                         | 2/22/02   |
|                               |           |

\*\*\*ASSUMPTION: NHB-NR = 0 ASSUMED IN INITIAL IDS RUN\*\*\*

| Trips produced by housing units                                                 | 17902 |
|---------------------------------------------------------------------------------|-------|
| (Source – IDS CALC output file)                                                 |       |
| Commercial vehicle trips                                                        | 974   |
| (Source – IDS CALC output file)                                                 |       |
| Total Internally Generated Trips (I)                                            | 18876 |
| % of trips remaining within the planning area                                   | 0.8   |
| (Source – IDS input file)                                                       |       |
| Trips that remain within planning area (I $ ightarrow$ I)                       | 15101 |
| Internal to External Trips (I→E)                                                | 3775  |
| Total External $\leftarrow$ > Internal Trips (from IDS)                         | 27103 |
| (Source – IDS CALC output file)                                                 |       |
| External to Internal Trips (E←>I)                                               | 23328 |
| Factor (ranges from 0.4 to 0.7, depending on opportunities to make extra trips) | 0.45  |
| (Source – Modeler's judgement)                                                  |       |
| Non-Home Based Non-Resident Trips                                               | 10498 |
| (Add these back into IDS input file & run agai                                  | n)    |

## CALCULATION OF NON-HOME BASED NON-RESIDENT (NHB-NR) TRIPS FOR SMALL URBAN AREAS

| Thoroughfare Plan Study Area:     | Pittsboro               |
|-----------------------------------|-------------------------|
| Scenario:                         | CLUSTER                 |
| Input File Name                   | NCSU.in                 |
| Date:                             | 2/22/02                 |
| ***ASSUMPTION: NHB-NR = 0 ASSUMED | O IN INITIAL IDS RUN*** |

| Trips produced by housing units                                                 | 19918 |
|---------------------------------------------------------------------------------|-------|
| (Source – IDS CALC output file)                                                 |       |
| Commercial vehicle trips                                                        | 974   |
| (Source – IDS CALC output file)                                                 |       |
| Total Internally Generated Trips (I)                                            | 20892 |
| % of trips remaining within the planning area                                   | 0.8   |
| (Source – IDS input file)                                                       |       |
| Trips that remain within planning area (I $ ightarrow$ I)                       | 16714 |
| Internal to External Trips (I→E)                                                | 4178  |
| Total External $\leftarrow$ > Internal Trips (from IDS)                         | 27103 |
| (Source – IDS CALC output file)                                                 |       |
| External to Internal Trips (E←>I)                                               | 22925 |
| Factor (ranges from 0.4 to 0.7, depending on opportunities to make extra trips) | 0.45  |
| (Source – Modeler's judgement)                                                  |       |
| Non-Home Based Non-Resident Trips                                               | 10316 |
| (Add these back into IDS input file & run agai                                  | n)    |

## **APPENDIX B**

### SAMPLE PARCEL DATABASE FILE

| ID   | PIN              | LAND_FMV | IMPR_FMV | DEED_ACRES | LU_PARCEL                    | PITTTAZ_00 | HHC_00 | MU_00 | NEW_TAZ | CLUSTER |
|------|------------------|----------|----------|------------|------------------------------|------------|--------|-------|---------|---------|
| 1417 | 9742-44-5184.000 | 128000   | 133434   | 18.000     | Single Family<br>Residential | 74         | 4      | 0     | 74      | 1       |
| 1413 | 9742-24-7627.000 | 35050    | 127900   | 4.010      | Single Family<br>Residential | 74         | 4      | 0     | 74      | 3       |
| 1252 | 9742-26-4081.000 | 210996   | 273673   | 44.610     | Single Family<br>Residential | 74         | 4      | 0     | 74      | 1       |
| 1362 | 9742-15-7147.000 | 37500    | 133034   | 2.190      | Single Family<br>Residential | 74         | 4      | 0     | 74      | 3       |
| 1341 | 9742-15-5543.000 | 33750    | 156684   | 2.000      | Single Family<br>Residential | 74         | 4      | 0     | 74      | 3       |
| 1513 | 9742-53-0501.000 | 21750    | 185298   | 1.500      | Single Family<br>Residential | 74         | 4      | 0     | 74      | 1       |
| 1242 | 9742-05-3903.000 | 189920   | 35109    | 33.480     | Single Family<br>Residential | 74         | 3      | 0     | 74      | 7       |
| 1131 | 9742-47-3808.000 | 20505    | 102642   | 1.101      | Single Family<br>Residential | 74         | 3      | 0     | 74      | 3       |
| 1357 | 9742-15-4361.000 | 33750    | 127306   | 2.120      | Single Family<br>Residential | 74         | 3      | 0     | 74      | 3       |
| 1331 | 9742-15-5628.000 | 33750    | 142934   | 2.000      | Single Family<br>Residential | 74         | 3      | 0     | 74      | 3       |
| 1313 | 9742-15-4885.000 | 33750    | 142465   | 2.000      | Single Family<br>Residential | 74         | 3      | 0     | 74      | 3       |
| 1296 | 9742-16-4073.000 | 33750    | 131758   | 2.000      | Single Family<br>Residential | 74         | 3      | 0     | 74      | 3       |
| 1277 | 9742-16-4241.000 | 33750    | 147714   | 2.000      | Single Family<br>Residential | 74         | 3      | 0     | 74      | 3       |
| 1251 | 9742-16-4309.000 | 33750    | 144853   | 2.000      | Single Family<br>Residential | 74         | 3      | 0     | 74      | 3       |
| 1249 | 9742-16-2571.000 | 33750    | 143888   | 2.040      | Single Family<br>Residential | 74         | 3      | 0     | 74      | 3       |
| 1246 | 9742-16-0581.000 | 33750    | 156609   | 2.000      | Single Family<br>Residential | 74         | 3      | 0     | 74      | 3       |
| 1244 | 9742-06-8496.000 | 33750    | 123496   | 2.000      | Single Family<br>Residential | 74         | 3      | 0     | 74      | 3       |

## **APPENDIX C**

### SAMPLE TAZ DATABASE FILE

| ID | AREA     | PITT<br>TAZ 00 | IND<br>EMP | RET<br>EMP | HWY<br>RET | OFF<br>EMP | SERV<br>EMP | TOT<br>EMP | HH1 | HH2 | HH3 | HH4 | HH5 | тотнн | TAZ_00 | CAR | PUP | VAN | BUS | TRK | BEDS |
|----|----------|----------------|------------|------------|------------|------------|-------------|------------|-----|-----|-----|-----|-----|-------|--------|-----|-----|-----|-----|-----|------|
| 1  | 0.002664 | 0              |            |            |            |            |             |            | 0   | 0   | 0   | 0   | 0   | 0     |        |     |     |     |     |     |      |
| 2  | 0.354618 | 1              | 0          | 0          | 0          | 0          | 1           | 1          | 1   | 23  | 3   | 0   | 0   | 27    | 1      |     |     |     |     |     |      |
| 3  | 1.209644 | 2              | 2          | 0          | 0          | 0          | 0           | 2          | 1   | 3   | 7   | 4   | 1   | 16    | 2      |     |     |     |     |     |      |
| 4  | 2.218294 | 3              | 3          | 11         | 0          | 0          | 0           | 14         | 3   | 20  | 21  | 8   | 0   | 52    | 3      |     |     |     |     |     |      |
| 5  | 0.351996 | 4              | 0          | 0          | 0          | 0          | 0           | 0          | 0   | 0   | 0   | 0   | 0   | 0     | 0      |     |     |     |     |     |      |
| 6  | 1.426570 | 5              | 0          | 0          | 0          | 0          | 1           | 1          | 10  | 27  | 4   | 4   | 0   | 45    | 5      |     |     |     |     |     |      |
| 7  | 2.255241 | 6              | 0          | 1          | 0          | 0          | 9           | 10         | 5   | 42  | 41  | 14  | 1   | 103   | 6      |     |     |     |     |     |      |
| 8  | 2.221431 | 7              | 7          | 1          | 0          | 0          | 95          | 103        | 3   | 31  | 26  | 8   | 1   | 69    | 7      |     |     |     |     |     |      |
| 9  | 2.688641 | 8              | 2          | 28         | 0          | 0          | 67          | 97         | 63  | 38  | 24  | 1   | 0   | 126   | 8      |     |     |     |     |     | 15   |
| 10 | 0.750785 | 9              | 17         | 0          | 0          | 4          | 0           | 21         | 0   | 0   | 0   | 1   | 0   | 1     | 9      |     | 8   |     |     |     |      |
| 11 | 2.201250 | 10             | 0          | 0          | 0          | 0          | 0           | 0          | 0   | 12  | 12  | 3   | 0   | 27    | 10     |     |     |     |     |     |      |
| 12 | 0.690984 | 11             | 0          | 0          | 0          | 0          | 0           | 0          | 3   | 17  | 12  | 2   | 0   | 34    | 11     |     |     |     |     |     |      |
| 13 | 1.089796 | 12             | 3          | 0          | 0          | 0          | 0           | 3          | 5   | 6   | 7   | 3   | 2   | 23    | 12     |     | 4   |     |     |     |      |
| 14 | 0.455912 | 13             | 0          | 0          | 0          | 0          | 15          | 15         | 0   | 14  | 43  | 10  | 0   | 67    | 13     |     |     |     |     |     |      |
| 15 | 1.090354 | 14             | 19         | 2          | 31         | 3          | 0           | 55         | 18  | 31  | 53  | 6   | 0   | 108   | 14     |     |     |     |     |     |      |
| 16 | 0.786351 | 15             | 0          | 0          | 4          | 1          | 36          | 41         | 4   | 24  | 19  | 1   | 0   | 48    | 15     |     |     |     |     |     |      |
| 17 | 0.707835 | 16             | 0          | 0          | 0          | 0          | 0           | 0          | 8   | 22  | 40  | 0   | 0   | 70    | 16     |     |     |     |     |     |      |
| 18 | 0.834608 | 17             | 37         | 6          | 4          | 0          | 56          | 103        | 2   | 54  | 9   | 0   | 0   | 65    | 17     | 1   |     |     |     |     |      |
| 19 | 3.364412 | 18             | 1          | 0          | 0          | 0          | 1           | 2          | 0   | 3   | 3   | 3   | 0   | 9     | 18     |     |     |     |     |     |      |
| 20 | 0.339099 | 19             | 4          | 6          | 3          | 0          | 82          | 95         | 0   | 9   | 15  | 12  | 1   | 37    | 19     |     | 1   |     |     |     |      |
| 21 | 0.094756 | 20             | 0          | 0          | 0          | 0          | 149         | 149        | 0   | 169 | 11  | 0   | 0   | 180   | 20     | 6   |     | 4   |     |     | 31   |
| 22 | 0.052521 | 21             | 0          | 0          | 2          | 0          | 0           | 2          | 5   | 12  | 19  | 9   | 1   | 46    | 21     |     |     |     |     |     |      |
| 23 | 0.114315 | 22             | 1          | 3          | 0          | 0          | 12          | 16         | 19  | 17  | 7   | 1   | 0   | 44    | 22     | 3   | 2   |     |     | 1   |      |
| 24 | 0.053863 | 23             | 12         | 1          | 4          | 0          | 16          | 33         | 0   | 17  | 13  | 5   | 0   | 35    | 23     | 1   | 2   |     |     |     |      |
| 25 | 0.042332 | 24             | 6          | 29         | 5          | 37         | 99          | 176        | 5   | 15  | 11  | 3   | 0   | 34    | 24     | 2   | 5   |     | 1   |     |      |
| 26 | 0.037396 | 25             | 3          | 37         | 32         | 20         | 24          | 116        | 0   | 7   | 10  | 1   | 0   | 18    | 25     | 1   | 3   |     |     | 4   | 20   |

## **APPENDIX D**

### SAMPLE NETWORK DATABASE FILE

| ID  | LENGTH | DIR | LINK_TYPE | CAPACITY_ | SPEED_ | TIME_ | FNODE_ | TNODE_ | STREET      | ADT_01   | TRUCK |
|-----|--------|-----|-----------|-----------|--------|-------|--------|--------|-------------|----------|-------|
| 375 | 1.69   | 0   | 1         | 9000.00   | 40.00  | 2.54  |        |        |             |          |       |
| 399 | 0.20   | 0   | 1         | 9000.00   | 40.00  | 0.30  |        |        |             | 11200.00 |       |
| 37  | 0.21   | 0   | 1         | 9000.00   | 40.00  | 0.32  |        |        |             | 1200.00  |       |
| 91  | 0.68   | 0   | 1         | 9000.00   | 40.00  | 1.02  | 184    | 145    | N US 15-501 |          |       |
| 112 | 0.64   | 0   | 1         | 9000.00   | 40.00  | 0.96  |        |        |             |          |       |
| 191 | 0.19   | 0   | 1         | 9000.00   | 40.00  | 0.28  | 304    | 287    |             |          |       |
| 228 | 0.19   | 0   | 1         | 9000.00   | 40.00  | 0.29  | 326    | 325    |             |          |       |
| 330 | 0.14   | 0   | 1         | 9000.00   | 40.00  | 0.21  |        |        |             | 2625.00  |       |
| 363 | 0.56   | 0   | 1         | 9000.00   | 40.00  | 0.84  |        |        |             |          |       |
| 58  | 0.25   | 0   | 1         | 9000.00   | 40.00  | 0.38  | 112    | 106    | SILK HOPE G | 1050.00  |       |
| 59  | 0.78   | 0   | 1         | 9000.00   | 40.00  | 1.17  |        |        |             |          |       |
| 132 | 0.42   | 0   | 1         | 9000.00   | 40.00  | 0.64  | 251    | 246    | W US 64 HWY |          |       |
| 136 | 1.00   | 0   | 1         | 9000.00   | 40.00  | 1.50  | 256    | 246    | OLD SILER C |          |       |
| 272 | 0.09   | 0   | 1         | 9000.00   | 40.00  | 0.14  | 348    | 360    |             | 9200.00  |       |
| 422 | 0.37   | 0   | 1         | 9000.00   | 40.00  | 0.55  |        |        |             |          |       |
| 277 | 0.22   | 0   | 1         | 9000.00   | 40.00  | 0.33  | 344    | 363    |             |          |       |
| 436 | 1.51   | 0   | 1         | 9000.00   | 40.00  | 2.27  |        |        |             |          |       |
| 284 | 0.35   | 0   | 1         | 9000.00   | 40.00  | 0.53  | 345    | 372    | OLD GOLDSTO |          |       |
| 415 | 0.34   | 0   | 1         | 9000.00   | 40.00  | 0.51  |        |        |             |          |       |
| 301 | 0.21   | 0   | 1         | 9000.00   | 40.00  | 0.32  |        |        |             |          |       |
| 312 | 0.20   | 0   | 1         | 9000.00   | 40.00  | 0.31  |        |        |             |          |       |
| 313 | 0.20   | 0   | 1         | 9000.00   | 40.00  | 0.29  |        |        |             | 350.00   |       |
| 410 | 0.23   | 0   | 1         | 9000.00   | 40.00  | 0.35  |        |        |             | 9250.00  |       |
| 350 | 0.23   | 0   | 1         | 9000.00   | 40.00  | 0.35  |        |        |             | 1500.00  |       |
| 358 | 0.24   | 0   | 1         | 9000.00   | 40.00  | 0.36  | 455    | 458    | PITTSBORO-G |          |       |
| 398 | 0.04   | 0   | 1         | 9000.00   | 40.00  | 0.06  |        |        |             |          |       |

# **APPENDIX E**

### **IDS INPUT FILE FOR HHC METHOD**

| IDS H  | HC MET | THOD 20 | 01 PRE | LIM WI<br>TATTON | TH NHBS  | = 10498 |     |        |     |     |
|--------|--------|---------|--------|------------------|----------|---------|-----|--------|-----|-----|
| 96     |        | 48600   | 0.22 0 | 10498            | 5)       |         |     |        |     |     |
| 20     | 80     | 22      | 50     | 28               |          |         |     |        |     |     |
|        | 250    | 250     | 250    | 250              | 250      |         |     |        |     |     |
|        | 1200   | 1000    | 800    | 700              | 500      |         | 670 | 67     | 670 | 670 |
| 100    | 100    | 100     | 100    | 100              |          |         |     |        | 030 |     |
| 010    | 200    | 840     | 260    | 250              |          |         |     |        | 010 |     |
| 020    | 200    | 840     | 260    | 250              |          |         |     |        | 010 |     |
|        |        |         |        |                  |          |         |     |        |     |     |
|        |        |         |        |                  |          |         |     |        |     |     |
|        |        |         |        |                  |          |         |     |        |     |     |
|        |        |         |        |                  |          |         |     |        |     |     |
| 050    | 200    | 840     | 260    | 250              |          |         |     |        | 010 |     |
| 1      | 0      | 0_0     | 200    | 23               | 1        |         | 0   | 0      | 0   |     |
| 2      | 1      | 4       | 7      | 3                | 1        |         | 0   | 0      | 0   |     |
| 3      | 0      | 8       | 21     | 20               | 3        |         | 0   | 0      | 0   |     |
| 4      | 0      | 0       | 0      | 0                | 0        |         | 0   | 0      | 0   |     |
| 5      | 0      | 4       | 4      | 27               | 10       |         | 0   | 0      | 0   |     |
| 6      | 1      | 14      | 41     | 42               | 5        |         | 0   | 0      | 0   |     |
| 0      | Ŧ      | 11      | ΤT     | 74               | 5        |         | 0   | 0      | 0   |     |
| 7      | 1      | Q       | 26     | 31               | 3        |         | 0   | 0      | 0   |     |
| 2<br>8 | 1      | 1       | 20     | 38               | 63       |         | 0   | 0      | 0   |     |
| 0      | 0      | 1       | 24     | 0                | 0        |         | 0   | 0      | 0   |     |
| 10     | 0      | ⊥<br>2  | 10     | 10               | 0        |         | 0   | 0      | 0   |     |
| 10     | 0      | 3       | 12     | 17               | 0        |         | 0   | 0      | 0   |     |
| 10     | 0      | 2       | 12     | ± /              | <u>з</u> |         | 0   | 0      | 0   |     |
| 12     | 2      | 10      | /      | 0<br>1 /         | 5        |         | 0   | 4      | 0   |     |
| 14     | 0      | 10      | 43     | 14<br>21         | 10       |         | 0   | 0      | 0   |     |
| 14     | 0      | 1       | 23     | 31               | 18       |         | 0   | 0      | 0   |     |
| 15     | 0      | 1<br>O  | 19     | 24               | 4        |         | 0   | 0      | 0   |     |
| 10     | 0      | 0       | 40     |                  | 8        |         | 0   | 0      | 0   |     |
| 10     | 0      | 0       | 9      | 54               | 2        |         | 0   | 1<br>O | 0   |     |
| 18     | 0      | 3       | 3      | 3                | 0        |         | 0   | 0      | 0   |     |
| 19     | Ţ      | 12      | 15     | 1                | 0        |         | 0   | 10     | 0   |     |
| 20     | 0      | 0       |        | 10               | 0        |         | 0   | TO     | 0   |     |
| 21     | Ţ      | 9       | 19     |                  | 5        |         | 0   | 0      | 0   |     |
| 22     | 0      | 1       | 10     | 17               | 19       |         | 0   | 6      | 0   |     |
| 23     | 0      | 5       | 13     | 1 /              | 0        |         | 0   | 3      | 0   |     |
| 24     | 0      | 3       | 11     | 15               | 5        |         | 0   | 8      | 0   |     |
| 25     | 0      | Ţ       | 10     | 10               | 0        |         | 0   | 8      | 0   |     |
| 26     | 0      | 0       | 12     | 17               | 4        |         | 0   | 5      | 0   |     |
| 27     | 0      | 0       | 0      | 2                | 0        |         | 0   | 0      | 0   |     |
| 28     | 0      | 8       | 27     | 25               | 3        |         | 0   | Ţ      | 0   |     |
| 29     | 0      | 0       | 3      | 0                | 0        |         | 0   | 0      | 0   |     |
| 30     | 0      | 0       | 36     | 27               | 1        |         | 0   | 2      | 0   |     |
| 31     | 0      | Ţ       | 2      | 3                | 0        |         | 0   | 13     | 0   |     |
| 32     | 0      | 0       | 12     | 13               | 2        |         | 0   | 4      | 0   |     |
| 33     | 0      | Ţ       | .7     | 10               | 4        |         | 0   | 8      | 0   |     |
| 34     | 0      | 0       | 13     | 31               | 5        |         | 0   | 6      | 0   |     |
| 35     | 0      | 0       | 1      | 1/               | 0        |         | 0   | 10     | 0   |     |
| 36     | 0      | 1       | 12     | 12               | 1        |         | 0   | 0      | U   |     |
| 37     | 0      | 0       | 3      | 5                | 0        |         | 0   | 0      | 0   |     |
| 38     | 0      | 1       | 0      | 4                | 0        |         | 0   | 0      | 0   |     |
| 39     | 0      | 0       | 14     | 9                | 0        |         | 0   | 0      | 0   |     |
| 40     | 5      | 11      | 7      | 11               | 0        |         | 0   | 0      | 0   |     |
| 41     | 0      | 0       | 2      | 9                | 1        |         | 0   | 0      | 0   |     |
| 42     | 0      | 2       | 11     | 12               | 2        |         | 0   | 0      | 0   |     |
| 43     | 0      | 3       | 13     | 6                | 0        |         | 0   | 0      | 0   |     |
| 44     | 0      | 0       | 5      | 4                | 0        |         | 0   | 6      | 0   |     |

| 45<br>46<br>78<br>90<br>55<br>55<br>55<br>55<br>55<br>56<br>66<br>66<br>66<br>66<br>67<br>77<br>77<br>77<br>77<br>77<br>88<br>88<br>88<br>88<br>89<br>90<br>123<br>45<br>67<br>89<br>01<br>23<br>45<br>67<br>89<br>01<br>23<br>45<br>67<br>89<br>01<br>23<br>45<br>67<br>89<br>01<br>23<br>45<br>67<br>89<br>01<br>23<br>45<br>67<br>89<br>01<br>23<br>45<br>67<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77 |                                                      | 0<br>2<br>14<br>0<br>0<br>4<br>0<br>2<br>7<br>0<br>0<br>4<br>2<br>7<br>0<br>0<br>4<br>2<br>7<br>0<br>0<br>4<br>2<br>7<br>0<br>0<br>4<br>7<br>0<br>2<br>7<br>0<br>0<br>4<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>0<br>7<br>0<br>0<br>0<br>7<br>0<br>0<br>0<br>7<br>0<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>7<br>7<br>0<br>0<br>7<br>7<br>0<br>0<br>7<br>7<br>0<br>0<br>7<br>7<br>0<br>0<br>0<br>7<br>7<br>0<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>0<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | $11 \\ 21 \\ 11 \\ 13 \\ 0 \\ 10 \\ 3 \\ 47 \\ 6 \\ 2 \\ 2 \\ 6 \\ 8 \\ 3 \\ 0 \\ 6 \\ 13 \\ 12 \\ 3 \\ 11 \\ 15 \\ 13 \\ 15 \\ 14 \\ 5 \\ 3 \\ 6 \\ 3 \\ 10 \\ 22 \\$ | $\begin{array}{c} 8\\ 35\\ 0\\ 6\\ 0\\ 9\\ 1\\ 57\\ 4\\ 1\\ 3\\ 7\\ 7\\ 0\\ 0\\ 7\\ 8\\ 0\\ 5\\ 9\\ 18\\ 5\\ 10\\ 5\\ 4\\ 3\\ 2\\ 4\\ 5\\ 11\end{array}$ | 0<br>6<br>0<br>0<br>1<br>0<br>4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |  |  | 0<br>8<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--------------------------------------------------------------------------------------------------|
| 95<br>96<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                       | 0<br>2<br>3<br>0<br>0<br>0<br>7<br>2<br>17<br>0<br>0 | 0<br>0<br>11<br>0<br>1<br>1<br>28<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>4<br>0<br>0                                                                                                           | 1<br>0<br>0<br>1<br>9<br>5<br>67<br>0<br>0<br>0                                                            |  |  |                                                                                                  |

| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>23<br>31<br>22<br>33<br>132<br>23 | 3<br>0<br>10<br>0<br>37<br>1<br>4<br>0<br>0<br>1<br>12<br>6<br>3<br>0<br>0<br>5<br>0<br>0<br>0<br>5<br>10 | 0<br>2<br>0<br>6<br>0<br>6<br>0<br>3<br>1<br>5<br>0<br>0<br>5<br>0<br>0<br>8<br>7 | 0<br>0<br>21<br>4<br>0<br>4<br>0<br>2<br>0<br>4<br>5<br>13<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>9<br>15 | 0<br>2<br>3<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>20<br>10<br>28<br>0<br>0<br>0<br>20<br>10<br>28<br>0<br>0<br>0<br>35<br>15<br>20 | 0<br>15<br>0<br>36<br>0<br>56<br>1<br>50<br>60<br>0<br>12<br>16<br>25<br>13<br>4<br>0<br>0<br>7<br>16<br>15<br>20 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                                                                                      |                                                                                                           | 20<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0                                        | 18<br>10<br>0<br>0<br>0<br>0<br>0<br>0                                                                   | 15<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                              | 55<br>36<br>2<br>0<br>0<br>0<br>0<br>0                                                                            |
| 42<br>43<br>44                                                                                                                    | 0<br>0                                                                                                    | 0<br>0                                                                            | 0<br>0                                                                                                   | 0<br>0                                                                                                                                  | 0<br>0<br>67                                                                                                      |
| 45                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 25                                                                                                                                      | 7                                                                                                                 |
| 46                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 55                                                                                                                |
| 47<br>48                                                                                                                          | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 49                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 5                                                                                                                 |
| 50                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 51                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 52<br>53                                                                                                                          | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 55<br>54                                                                                                                          | 500                                                                                                       | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 55                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 56                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 5/<br>58                                                                                                                          | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 59                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 60                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 61                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 62<br>62                                                                                                                          | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 63<br>64                                                                                                                          | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 65                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 2                                                                                                                 |
| 66                                                                                                                                | 8                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 2                                                                                                                 |
| 67<br>60                                                                                                                          | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 9                                                                                                                 |
| 08<br>69                                                                                                                          | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 70                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 71                                                                                                                                | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 1                                                                                                                 |
| 72<br>72                                                                                                                          | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| 74<br>74                                                                                                                          | 0                                                                                                         | 0                                                                                 | 0                                                                                                        | 0                                                                                                                                       | 0                                                                                                                 |
| -                                                                                                                                 | č                                                                                                         | č                                                                                 | č                                                                                                        | č                                                                                                                                       | ÷                                                                                                                 |

| 75 |      |
|----|------|
| 76 |      |
| 77 |      |
| 78 |      |
| 79 |      |
| 80 |      |
| 81 |      |
| 82 |      |
| 83 |      |
| 84 |      |
| 85 | 4576 |
| 86 | 6268 |
| 87 | 614  |
| 88 | 1777 |
| 89 | 911  |
| 90 | 4413 |
| 91 | 222  |
| 92 | 1321 |
| 93 | 1422 |
| 94 | 134  |
| 95 | 3979 |
| 96 | 1466 |

## **APPENDIX F**

### **IDS INPUT FILE FOR CLUSTER METHOD**

| IDS C    | LUSTER | METHO    | D 2001   | WITH      | NHBS =  | 10316 |     |    |     |     |
|----------|--------|----------|----------|-----------|---------|-------|-----|----|-----|-----|
| 96 ZO    | NES (7 | 4 ZONE   | S+22 SI  | L'A'I'ION | S)      |       |     |    |     |     |
| 90       | 80     | 22       | 50       | 28        |         |       |     |    |     |     |
|          | 250    | 250      | 250      | 250       | 250     |       |     |    |     |     |
|          | 1200   | 1000     | 800      | 700       | 500     |       | 670 | 67 | 670 | 670 |
| 100      | 100    | 100      | 100      | 100       |         |       |     |    | 030 |     |
| 010      | 200    | 840      | 260      | 250       |         |       |     |    | 010 |     |
| 020      | 200    | 840      | 260      | 250       |         |       |     |    | 010 |     |
|          |        |          |          |           |         |       |     |    |     |     |
|          |        |          |          |           |         |       |     |    |     |     |
|          |        |          |          |           |         |       |     |    |     |     |
| 050      | 200    | 840      | 260      | 250       |         |       |     |    | 010 |     |
| 1        | 0      | 23       | 4        | 0         | 0       |       | 0   | 0  | 0   |     |
| 2        | 2      | 5        | 5        | 1         | 3       |       | 0   | 0  | 0   |     |
| 3        | 0      | 18       | 23       | 10        | 1       |       | 0   | 0  | 0   |     |
| 4        | 0      | 25       | 0<br>1.4 | 0         | 0       |       | 0   | 0  | 0   |     |
| 5        | 4      | 23       | 14<br>41 | 22        | 3       |       | 0   | 0  | 0   |     |
| 7        | 2      | 33       | 18       | 11        | 6       |       | 0   | 0  | 0   |     |
| 8        | 4      | 28       | 38       | 55        | 1       |       | 0   | 0  | 0   |     |
| 9        | 0      | 0        | 1        | 0         | 0       |       | 0   | 8  | 0   |     |
| 10       | 1      | 9        | 13       | 3         | 1       |       | 0   | 0  | 0   |     |
| 11       | 1      | 11       | 14       | 7         | 1       |       | 0   | 0  | 0   |     |
| 12       | 0      | 10       | 6<br>2 E | 5         | 2       |       | 0   | 4  | 0   |     |
| 13<br>14 | 0      | 23       | ∠5<br>50 | ∠8<br>23  | 4<br>12 |       | 0   | 0  | 0   |     |
| 15       | 0      | 18       | 12       | 14        | 4       |       | 0   | 0  | 0   |     |
| 16       | 1      | 39       | 15       | 15        | 0       |       | 0   | 0  | 0   |     |
| 17       | 4      | 8        | 46       | 6         | 1       |       | 0   | 1  | 0   |     |
| 18       | 0      | 2        | 1        | 2         | 4       |       | 0   | 0  | 0   |     |
| 19       | 0      | 6        | 9        | 17        | 5       |       | 0   | 1  | 0   |     |
| ∠0<br>21 | 0      | 59       | 76       | /         | 39      |       | 0   | 10 | 0   |     |
| 22       | 1      | 20       | 20<br>18 | 5         | 0       |       | 0   | 6  | 0   |     |
| 23       | 0      | 0        | 18       | 14        | 3       |       | 0   | 3  | 0   |     |
| 24       | 0      | 7        | 20       | 6         | 1       |       | 0   | 8  | 0   |     |
| 25       | 0      | 5        | 11       | 2         | 0       |       | 0   | 8  | 0   |     |
| 26       | 0      | 6        | 25       | 2         | 0       |       | 0   | 5  | 0   |     |
| 27       | 0      | 1 T      | 1        | 10        | 0       |       | 0   | 0  | 0   |     |
| ∠o<br>29 | 0      | ⊥ /<br>1 | 33       | 12<br>2   | 1       |       | 0   | 1  | 0   |     |
| 30       | 0      | 9        | 38       | 17        | 0       |       | 0   | 2  | 0   |     |
| 31       | 0      | 0        | 4        | 2         | 0       |       | 0   | 13 | 0   |     |
| 32       | 0      | 5        | 18       | 4         | 0       |       | 0   | 4  | 0   |     |
| 33       | 0      | 11       | 4        | 7         | 0       |       | 0   | 8  | 0   |     |
| 34       | 0      | 24       | 18       | 6         | 14      |       | 0   | 6  | 0   |     |
| 35       | ∠<br>3 | 5        | ∠<br>13  | 5         | 14      |       | 0   | 10 | 0   |     |
| 37       | 0      | 2        | 6        | 0         | 0       |       | 0   | 0  | 0   |     |
| 38       | 1      | 4        | 0        | 0         | 0       |       | 0   | 0  | 0   |     |
| 39       | 3      | б        | 7        | 5         | 2       |       | 0   | 0  | 0   |     |
| 40       | 5      | 7        | 8        | 13        | 1       |       | 0   | 0  | 0   |     |
| 41       | 0      | 9        | 3        | 0         | 0       |       | 0   | 0  | 0   |     |
| 42       | 2      | ΤÜ       | د<br>10  | 5<br>1 2  | U<br>1  |       | U   | U  | 0   |     |
| 43<br>44 | 1      | 5<br>0   | 5<br>7   | ± 5<br>1  | т<br>О  |       | 0   | 6  | 0   |     |
| 45       | 0      | 1        | 9        | 9         | 0       |       | 0   | Ũ  | 0   |     |
|          |        |          |          |           |         |       |     |    |     |     |

| 46<br>47<br>48<br>50<br>52<br>55<br>55<br>55<br>56<br>66<br>66<br>66<br>66<br>67<br>77<br>77<br>77<br>77<br>78<br>90<br>12<br>34<br>56<br>78<br>90<br>12<br>34<br>56<br>77<br>77<br>77<br>78<br>90<br>12<br>34<br>56<br>78<br>90<br>12<br>34<br>56<br>78<br>90<br>12<br>34<br>56<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77 | 0<br>0<br>0<br>3<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $29 \\ 0 \\ 3 \\ 0 \\ 6 \\ 3 \\ 52 \\ 4 \\ 0 \\ 3 \\ 7 \\ 6 \\ 5 \\ 0 \\ 15 \\ 18 \\ 2 \\ 20 \\ 17 \\ 13 \\ 15 \\ 3 \\ 5 \\ 2 \\ 7 \\ 8 \\ 2 \\ 5 $ | 32<br>0<br>16<br>0<br>8<br>1<br>43<br>2<br>9<br>0<br>0<br>4<br>2<br>1<br>6<br>5<br>15<br>6<br>8<br>13<br>2<br>4<br>3<br>2<br>7<br>3 | 1<br>13<br>14<br>0<br>15<br>2<br>1<br>0<br>2<br>2<br>1<br>0<br>1<br>3<br>27<br>1<br>2<br>1<br>0<br>3<br>27<br>1<br>2<br>1<br>0<br>3<br>27<br>1<br>2<br>1<br>0<br>3<br>2<br>0<br>1<br>1<br>2<br>2 | 0<br>0<br>0<br>2<br>0<br>1<br>1<br>0<br>0<br>2<br>0<br>5<br>0<br>0<br>2<br>15<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |  |  | 8<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--------------------------------------------------------------------------------------------------|--|
| 93<br>94<br>95<br>96<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                                                                                                                                                                                                            | 0<br>2<br>3<br>0<br>0<br>7<br>2<br>17<br>0<br>3                                                                                                                                                                                                                  | 0<br>0<br>11<br>0<br>1<br>1<br>28<br>0<br>0<br>0<br>0                                                                                               |                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>4<br>0<br>0<br>0                                                                                                                                              | 1<br>0<br>0<br>1<br>9<br>5<br>67<br>0<br>0<br>0<br>0                                                                                                                    |  |  |                                                                                                  |  |

| 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 0<br>10<br>0<br>37<br>1<br>4<br>0<br>0<br>1<br>12<br>6<br>3<br>0<br>0<br>5 | 0<br>2<br>0<br>6<br>0<br>6<br>0<br>3<br>1<br>15<br>15<br>15<br>0<br>0<br>5 | 0<br>21<br>4<br>0<br>4<br>0<br>2<br>0<br>4<br>5<br>13<br>1<br>0<br>0 | 2<br>3<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>20<br>10<br>28<br>0<br>0 | 15<br>0<br>36<br>0<br>56<br>1<br>50<br>60<br>0<br>12<br>16<br>25<br>13<br>4<br>0<br>0 |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 29<br>30                                                                                     | 0<br>0                                                                     | 0<br>0                                                                     | 0<br>0                                                               | 0<br>0                                                                                                   | 0<br>7                                                                                |
| 31                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 35                                                                                                       | 16                                                                                    |
| 32                                                                                           | 10                                                                         | 8                                                                          | 9<br>1 E                                                             | 15                                                                                                       | 15                                                                                    |
| 33<br>34                                                                                     | 10                                                                         | 20                                                                         | 18                                                                   | 30<br>15                                                                                                 | 20<br>55                                                                              |
| 35                                                                                           | 0                                                                          | 20                                                                         | 10                                                                   | 0                                                                                                        | 36                                                                                    |
| 36                                                                                           | 0                                                                          | 2                                                                          | 0                                                                    | 0                                                                                                        | 2                                                                                     |
| 37                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 38                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 39<br>40                                                                                     | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 40<br>41                                                                                     | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 42                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 43                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 44                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 67                                                                                    |
| 45<br>46                                                                                     | 0                                                                          | 0                                                                          | 0                                                                    | 25                                                                                                       | 7                                                                                     |
| 40<br>47                                                                                     | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 48                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | Ő                                                                                     |
| 49                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 5                                                                                     |
| 50                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 51                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 5∠<br>53                                                                                     | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 54                                                                                           | 500                                                                        | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 55                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 56                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 57<br>E0                                                                                     | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 50<br>59                                                                                     | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 60                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 61                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 62                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 63                                                                                           | 3                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 64<br>65                                                                                     | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 66                                                                                           | 8                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 2                                                                                     |
| 67                                                                                           | 0                                                                          | 0                                                                          | 0<br>0                                                               | 0                                                                                                        | 9                                                                                     |
| 68                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 69                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| /U<br>71                                                                                     | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | U<br>1                                                                                |
| /⊥<br>72                                                                                     | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | ⊥<br>⊥                                                                                |
| 73                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 74                                                                                           | 0                                                                          | 0                                                                          | 0                                                                    | 0                                                                                                        | 0                                                                                     |
| 75                                                                                           |                                                                            |                                                                            |                                                                      |                                                                                                          |                                                                                       |

| 76 |      |
|----|------|
| 78 |      |
| 79 |      |
| 80 |      |
| 81 |      |
| 82 |      |
| 83 |      |
| 84 |      |
| 85 | 4576 |
| 86 | 6268 |
| 87 | 614  |
| 88 | 1777 |
| 89 | 911  |
| 90 | 4413 |
| 91 | 222  |
| 92 | 1321 |
| 93 | 1422 |
| 94 | 134  |
| 95 | 3979 |
| 96 | 1466 |

### **APPENDIX G**

### NCDOT BASE YEAR PROCEDURE FOR

### PITTSBORO (SMITHSON, 2001)

#### **Trip Distribution**

Trip distribution is the second step in the four-step modeling process. Trip distribution is where the productions and attractions developed for each TAZ are "distributed" throughout the planning area using a gravity model. The required inputs to trip distribution are a balanced production/attraction table, an impedance matrix, and a friction factor matrix for each trip purpose. The balanced production/attraction table was created during trip generation. The impedance matrix, used to represent the amount of difficulty of traveling between any pair of zones, was developed from the Pittsboro street network files. Once an impedance matrix is developed, the friction factor matrix is created. The friction factor matrix contains the friction factor for travel between each pair of TAZ's.

#### Pittsboro Network Development

Developing an impedance matrix requires a transportation network. The Pittsboro line files were "clipped" from the Chatham County street database.

The final step in network development is attaching the Pittsboro TAZ's to the Pittsboro network. To connect an area (a TAZ) to a line file (Pittsboro network) in TransCAD, click the *Tools* drop down menu, click *Map Editing*, and then the *Connect* feature. TransCAD will prompt the user for the geographic area file and the line layer file the user would like to connect. TransCAD places a 'centroid' in each TAZ and creates a new link to connect the centroid to the closest link or node on the network.

#### Connecting TAZ's to Street Network

The new links are called centroid connectors and are assigned the value of "2" in the *link-type* column in the line layer database. The centroids TransCAD placed in each TAZ are also added to the line layer database and assigned a record ID matching the TAZ number. This feature allows the user to recognize points that represent a TAZ from points defining the shape of a link.

#### Creating the Impedance Matrix

Link travel times were used to develop the impedance between TAZ pairs. In TransCAD, impedances are stored in a zone-to-zone matrix. An impedance matrix is generated in TransCAD by applying the *Multiple Shortest Path* function to a network. The procedure generates shortest paths between multiple origins and multiple destinations and creates a matrix file containing the impedance of traversing each path.

In TransCAD, click the *Network/Paths* drop down menu then click *Multiple Paths*. TransCAD will prompt the user for the network file and to select the endpoints representing the TAZ's. The output is an impedance matrix for each pair of zones based on travel time.

#### Developing Friction Factors

Friction factors are a required input in the gravity model. Friction factors are inversely proportional to impedance.

The equation is as follows:  $f(cij) = a(cij)^{-b} * e^{-c}(cij)$ , where a>0, c>=0

The gamma function requires user specification of the parameters to be used in the model. Travel Estimation Techniques for Urban Planning (NCHRP365, 1995) suggests that the gamma function be used with the following parameters (Table 1):

 Table 1: Recommended Gamma Function Parameters

| Trip Purpose | А      | b     | С     |
|--------------|--------|-------|-------|
|              |        |       |       |
| HBW          | 28507  | 0.02  | 0.123 |
| HBO          | 139173 | 1.285 | 0.094 |
| NHB          | 219113 | 1.332 | 0.01  |

To create friction factors in TransCAD click *Planning* from the drop down menu. Select *Trip Distribution* then select *Synthetic Friction Factors*. TransCAD opens the friction factor matrix dialogue box. In this box the user specifies the impedance function (gamma function), and types in the function parameters to be used for each trip purpose. The user must also specify the file location of the impedance matrix created and discussed in the above section. The TransCAD output is a set of friction factor matrices for each trip purpose specified.

#### Applying the Gravity Model

Applying the gravity model in TransCAD is a simple procedure. The TAZ geographic file must be the active window in TransCAD. Choose *Planning* from the drop down menu, select *Trip Distribution*, then select *Gravity Evaluation*. TransCAD displays the gravity evaluation dialogue box. The user specifies the file containing the productions and attractions (the TAZ geographic file) and the location of the friction factor matrices for each trip purpose. TransCAD generates P-A (production-attraction) flow matrices for each trip purpose. The trip purpose matrices are then summed to create a total P-A flow matrix of all trip purposes. To sum matrices in TransCAD, choose *Matrix* from the drop down menu and click *Quick Sum*.

### *Thru-trips and Converting P-A Matrix to O-D Matrix*

The final steps in trip distribution are adding the thru-trips calculated in SYNTH to the Quick Sum matrix described above. The Quick Sum matrix only includes the HBW, HBO, NHB, and Ext-Int trips. The balanced thru-trip matrix developed in SYNTH is converted to a matrix file in TransCAD. The thru-trip matrix is then combined with the Quick Sum matrix for use in traffic assignment, the final step in the travel demand modeling process. To convert the thru-trip matrix to a TransCAD matrix file choose *Matrix* from the drop down menu and select *Import*. TransCAD makes the conversion to the appropriate format. To join the thru-trip matrix to the Quick Sum matrix, simply choose *Matrix* and select *Combine*. The thru-trips are now added to the P-A flow matrix generated during gravity evaluation.

Prior to traffic assignment, TransCAD requires the P-A flow matrix to be converted to an OD (origin-destination) matrix. The active window must be the total P-A flow matrix. Choose *Planning* and select *PAtoOD*. The result is an OD matrix for trip purposes for each TAZ. At this point, all the inputs required for traffic assignment have been developed.

### Mode Split

Mode split is the third step in the four-step travel demand model. This step has been intentionally left out of the Pittsboro study.

### Traffic Assignment

Traffic assignment models are used to estimate the flow of traffic on a network. The traffic assignment model used for the Pittsboro study is an All-or-Nothing assignment. In small towns similar to Pittsboro, NCDOT uses an All-or-Nothing assignment when congestion may not be a factor in route choice.

Required inputs for traffic assignment include an O-D matrix and a network. To perform the traffic assignment for the Pittsboro model in TransCAD, the O-D matrix discussed above and the modified Pittsboro network from the NCDOT GIS Unit were used. In TransCAD, the Pittsboro network was made the active window. Choose *Planning* from the drop down menu and select *Traffic Assignment*. TransCAD opens the traffic assignment dialogue box. The traffic assignment method (All-or-Nothing) and the desired O-D matrix must be selected. No changes were made to the default fields settings. TransCAD stores the assigned traffic volumes to a link-flow table and joins the table to the network file.

## **APPENDIX H**

### STATISTICAL COMPARISON OF PRODUCTIONS AND ATTRACTION: CALCULATIONS

#### **Total Productions Comparison**

| Mean  | t-calc | t(n-1,a/ <i>2</i> ) | Reject/Accept | df=73, a= <b>0.05</b>     |
|-------|--------|---------------------|---------------|---------------------------|
| 14.91 | 4.06   | 2.00                | Reject        | Но: m <sub>a</sub> - m₀=0 |

#### Standard Dev

31.60

ннс

| TAZ | HBW | НВО | NHB | EXT | Total HHC |
|-----|-----|-----|-----|-----|-----------|
| 1   | 33  | 76  | 19  | 0   | 128       |
| 2   | 24  | 54  | 7   | 0   | 85        |
| 3   | 71  | 161 | 106 | 0   | 338       |
| 4   | 0   | 0   | 0   | 0   | 0         |
| 5   | 55  | 125 | 27  | 0   | 207       |
| 6   | 141 | 320 | 133 | 0   | 594       |
| 7   | 95  | 217 | 968 | 0   | 1280      |
| 8   | 138 | 313 | 925 | 0   | 1376      |
| 9   | 2   | 4   | 51  | 0   | 57        |
| 10  | 37  | 84  | 7   | 0   | 128       |
| 11  | 44  | 100 | 12  | 0   | 156       |
| 12  | 31  | 71  | 7   | 0   | 109       |
| 13  | 95  | 217 | 192 | 0   | 504       |
| 14  | 139 | 317 | 788 | 0   | 1244      |
| 15  | 62  | 140 | 513 | 0   | 715       |
| 16  | 90  | 206 | 27  | 0   | 323       |

#### CLUSTER

| TAZ | HBW | НВО | NHB | EXT | Total<br>CLUSTER |
|-----|-----|-----|-----|-----|------------------|
| 1   | 46  | 105 | 20  | 0   | 171              |
| 2   | 24  | 55  | 7   | 0   | 86               |
| 3   | 77  | 176 | 107 | 0   | 360              |
| 4   | 0   | 0   | 0   | 0   | 0                |
| 5   | 71  | 162 | 28  | 0   | 261              |
| 6   | 154 | 350 | 136 | 0   | 640              |
| 7   | 106 | 242 | 984 | 0   | 1332             |
| 8   | 180 | 409 | 941 | 0   | 1530             |
| 9   | 1   | 3   | 52  | 0   | 56               |
| 10  | 41  | 93  | 7   | 0   | 141              |
| 11  | 51  | 115 | 12  | 0   | 178              |
| 12  | 33  | 76  | 7   | 0   | 116              |
| 13  | 91  | 207 | 196 | 0   | 494              |
| 14  | 150 | 341 | 801 | 0   | 1292             |
| 15  | 69  | 158 | 522 | 0   | 749              |
| 16  | 110 | 251 | 28  | 0   | 389              |

| D=CLUSTER-HHC | D <sup>2</sup> |
|---------------|----------------|
| 43            | 1849           |
| 1             | 1              |
| 22            | 484            |
| 0             | 0              |
| 54            | 2916           |
| 46            | 2116           |
| 52            | 2704           |
| 154           | 23716          |
| -1            | 1              |
| 13            | 169            |
| 22            | 484            |
| 7             | 49             |
| -10           | 100            |
| 48            | 2304           |
| 34            | 1156           |
| 66            | 4356           |

| 17 | 81  | 184 | 780  | 0 | 1045 |   | 17 | 95  | 217 | 794  | 0 | 1106 | 61  | 3721  |
|----|-----|-----|------|---|------|---|----|-----|-----|------|---|------|-----|-------|
| 18 | 13  | 30  | 12   | 0 | 55   |   | 18 | 11  | 25  | 12   | 0 | 48   | -7  | 49    |
| 19 | 55  | 126 | 651  | 0 | 832  |   | 19 | 49  | 111 | 662  | 0 | 822  | -10 | 100   |
| 20 | 225 | 511 | 659  | 0 | 1395 |   | 20 | 254 | 577 | 670  | 0 | 1501 | 106 | 11236 |
| 21 | 64  | 145 | 82   | 0 | 291  |   | 21 | 64  | 147 | 84   | 0 | 295  | 4   | 16    |
| 22 | 49  | 112 | 157  | 0 | 318  |   | 22 | 69  | 157 | 160  | 0 | 386  | 68  | 4624  |
| 23 | 48  | 109 | 317  | 0 | 474  |   | 23 | 45  | 103 | 323  | 0 | 471  | -3  | 9     |
| 24 | 44  | 99  | 748  | 0 | 891  |   | 24 | 49  | 111 | 761  | 0 | 921  | 30  | 900   |
| 25 | 24  | 56  | 784  | 0 | 864  | ľ | 25 | 27  | 61  | 798  | 0 | 886  | 22  | 484   |
| 26 | 41  | 94  | 369  | 0 | 504  |   | 26 | 48  | 110 | 375  | 0 | 533  | 29  | 841   |
| 27 | 2   | 6   | 0    | 0 | 8    | ľ | 27 | 3   | 7   | 0    | 0 | 10   | 2   | 4     |
| 28 | 86  | 195 | 66   | 0 | 347  |   | 28 | 92  | 209 | 67   | 0 | 368  | 21  | 441   |
| 29 | 4   | 10  | 0    | 0 | 14   | ľ | 29 | 4   | 10  | 0    | 0 | 14   | 0   | 0     |
| 30 | 85  | 193 | 91   | 0 | 369  |   | 30 | 90  | 205 | 92   | 0 | 387  | 18  | 324   |
| 31 | 8   | 19  | 513  | 0 | 540  | ľ | 31 | 8   | 19  | 522  | 0 | 549  | 9   | 81    |
| 32 | 35  | 79  | 670  | 0 | 784  |   | 32 | 39  | 89  | 682  | 0 | 810  | 26  | 676   |
| 33 | 28  | 63  | 1066 | 0 | 1157 |   | 33 | 34  | 77  | 1084 | 0 | 1195 | 38  | 1444  |
| 34 | 61  | 139 | 1457 | 0 | 1657 |   | 34 | 76  | 173 | 1482 | 0 | 1731 | 74  | 5476  |
| 35 | 22  | 51  | 686  | 0 | 759  |   | 35 | 19  | 44  | 698  | 0 | 761  | 2   | 4     |
| 36 | 34  | 78  | 43   | 0 | 155  |   | 36 | 40  | 90  | 44   | 0 | 174  | 19  | 361   |
| 37 | 10  | 24  | 0    | 0 | 34   |   | 37 | 12  | 27  | 0    | 0 | 39   | 5   | 25    |
| 38 | 7   | 15  | 0    | 0 | 22   |   | 38 | 9   | 21  | 0    | 0 | 30   | 8   | 64    |
| 39 | 31  | 70  | 7    | 0 | 108  |   | 39 | 35  | 79  | 7    | 0 | 121  | 13  | 169   |
| 40 | 53  | 121 | 12   | 0 | 186  | ľ | 40 | 51  | 116 | 12   | 0 | 179  | -7  | 49    |
| 41 | 15  | 34  | 4    | 0 | 53   |   | 41 | 20  | 46  | 4    | 0 | 70   | 17  | 289   |
| 42 | 36  | 81  | 7    | 0 | 124  | ľ | 42 | 42  | 96  | 7    | 0 | 145  | 21  | 441   |
| 43 | 31  | 71  | 7    | 0 | 109  |   | 43 | 30  | 68  | 7    | 0 | 105  | -4  | 16    |
| 44 | 12  | 27  | 659  | 0 | 698  | Ĩ | 44 | 13  | 30  | 670  | 0 | 713  | 15  | 225   |
| 45 | 25  | 58  | 329  | 0 | 412  |   | 45 | 26  | 58  | 335  | 0 | 419  | 7   | 49    |
| 46 | 78  | 177 | 561  | 0 | 816  | Ĩ | 46 | 97  | 221 | 571  | 0 | 889  | 73  | 5329  |
| 47 | 19  | 43  | 4    | 0 | 66   |   | 47 | 16  | 37  | 4    | 0 | 57   | -9  | 81    |

Ш

| 48 | 50  | 115 | 12  | 0 | 177 |   | 48 | 45  | 103 | 12  | 0 | 160 | -17 | 289  |
|----|-----|-----|-----|---|-----|---|----|-----|-----|-----|---|-----|-----|------|
| 49 | 0   | 0   | 46  | 0 | 46  |   | 49 | 0   | 0   | 48  | 0 | 48  | 2   | 4    |
| 50 | 26  | 59  | 7   | 0 | 92  | Í | 50 | 31  | 71  | 7   | 0 | 109 | 17  | 289  |
| 51 | 6   | 13  | 0   | 0 | 19  |   | 51 | 7   | 15  | 0   | 0 | 22  | 3   | 9    |
| 52 | 147 | 334 | 43  | 0 | 524 |   | 52 | 174 | 395 | 44  | 0 | 613 | 89  | 7921 |
| 53 | 13  | 31  | 4   | 0 | 48  |   | 53 | 15  | 35  | 4   | 0 | 54  | 6   | 36   |
| 54 | 6   | 13  | 392 | 0 | 411 |   | 54 | 6   | 13  | 398 | 0 | 417 | 6   | 36   |
| 55 | 7   | 15  | 0   | 0 | 22  |   | 55 | 8   | 19  | 0   | 0 | 27  | 5   | 25   |
| 56 | 17  | 39  | 4   | 0 | 60  |   | 56 | 19  | 44  | 4   | 0 | 67  | 7   | 49   |
| 57 | 23  | 53  | 4   | 0 | 80  |   | 57 | 26  | 59  | 4   | 0 | 89  | 9   | 81   |
| 58 | 22  | 51  | 4   | 0 | 77  |   | 58 | 21  | 47  | 4   | 0 | 72  | -5  | 25   |
| 59 | 0   | 0   | 0   | 0 | 0   |   | 59 | 0   | 0   | 0   | 0 | 0   | 0   | 0    |
| 60 | 23  | 53  | 7   | 0 | 83  |   | 60 | 33  | 76  | 7   | 0 | 116 | 33  | 1089 |
| 61 | 36  | 82  | 7   | 0 | 125 |   | 61 | 42  | 96  | 7   | 0 | 145 | 20  | 400  |
| 62 | 77  | 175 | 16  | 0 | 268 |   | 62 | 51  | 117 | 17  | 0 | 185 | -83 | 6889 |
| 63 | 13  | 30  | 4   | 0 | 47  |   | 63 | 15  | 35  | 4   | 0 | 54  | 7   | 49   |
| 64 | 35  | 79  | 7   | 0 | 121 |   | 64 | 45  | 102 | 7   | 0 | 154 | 33  | 1089 |
| 65 | 47  | 107 | 32  | 0 | 186 |   | 65 | 57  | 129 | 32  | 0 | 218 | 32  | 1024 |
| 66 | 26  | 60  | 32  | 0 | 118 |   | 66 | 31  | 71  | 32  | 0 | 134 | 16  | 256  |
| 67 | 35  | 80  | 98  | 0 | 213 |   | 67 | 41  | 94  | 100 | 0 | 235 | 22  | 484  |
| 68 | 26  | 59  | 4   | 0 | 89  |   | 68 | 27  | 62  | 4   | 0 | 93  | 4   | 16   |
| 69 | 14  | 31  | 4   | 0 | 49  |   | 69 | 16  | 37  | 4   | 0 | 57  | 8   | 64   |
| 70 | 8   | 18  | 0   | 0 | 26  |   | 70 | 9   | 21  | 0   | 0 | 30  | 4   | 16   |
| 71 | 16  | 37  | 12  | 0 | 65  |   | 71 | 19  | 43  | 12  | 0 | 74  | 9   | 81   |
| 72 | 16  | 37  | 4   | 0 | 57  |   | 72 | 18  | 41  | 4   | 0 | 63  | 6   | 36   |
| 73 | 20  | 46  | 4   | 0 | 70  |   | 73 | 24  | 55  | 4   | 0 | 83  | 13  | 169  |
| 74 | 57  | 129 | 16  | 0 | 202 |   | 74 | 52  | 119 | 17  | 0 | 188 | -14 | 196  |
| 75 | 0   | 0   | 0   | 0 | 0   |   | 75 | 0   | 0   | 0   | 0 | 0   | 0   | 0    |
| 76 | 0   | 0   | 0   | 0 | 0   |   | 76 | 0   | 0   | 0   | 0 | 0   | 0   | 0    |
| 77 | 0   | 0   | 0   | 0 | 0   |   | 77 | 0   | 0   | 0   | 0 | 0   | 0   | 0    |
| 78 | 0   | 0   | 0   | 0 | 0   |   | 78 | 0   | 0   | 0   | 0 | 0   | 0   | 0    |
| 79 | 0 | 0 | 0 | 0    | 0    |   | 79 | 0 | 0 | 0 | 0    | 0    |     | 0    | 0      |
|----|---|---|---|------|------|---|----|---|---|---|------|------|-----|------|--------|
| 80 | 0 | 0 | 0 | 0    | 0    |   | 80 | 0 | 0 | 0 | 0    | 0    |     | 0    | 0      |
| 81 | 0 | 0 | 0 | 0    | 0    |   | 81 | 0 | 0 | 0 | 0    | 0    |     | 0    | 0      |
| 82 | 0 | 0 | 0 | 0    | 0    |   | 82 | 0 | 0 | 0 | 0    | 0    |     | 0    | 0      |
| 83 | 0 | 0 | 0 | 0    | 0    |   | 83 | 0 | 0 | 0 | 0    | 0    |     | 0    | 0      |
| 84 | 0 | 0 | 0 | 0    | 0    |   | 84 | 0 | 0 | 0 | 0    | 0    |     | 0    | 0      |
| 85 | 0 | 0 | 0 | 4576 | 4576 |   | 85 | 0 | 0 | 0 | 4576 | 4576 |     | 0    | 0      |
| 86 | 0 | 0 | 0 | 6268 | 6268 |   | 86 | 0 | 0 | 0 | 6268 | 6268 |     | 0    | 0      |
| 87 | 0 | 0 | 0 | 614  | 614  |   | 87 | 0 | 0 | 0 | 614  | 614  |     | 0    | 0      |
| 88 | 0 | 0 | 0 | 1777 | 1777 |   | 88 | 0 | 0 | 0 | 1777 | 1777 |     | 0    | 0      |
| 89 | 0 | 0 | 0 | 911  | 911  |   | 89 | 0 | 0 | 0 | 911  | 911  | 1   | 0    | 0      |
| 90 | 0 | 0 | 0 | 4413 | 4413 |   | 90 | 0 | 0 | 0 | 4413 | 4413 |     | 0    | 0      |
| 91 | 0 | 0 | 0 | 222  | 222  |   | 91 | 0 | 0 | 0 | 222  | 222  | 1 I | 0    | 0      |
| 92 | 0 | 0 | 0 | 1321 | 1321 |   | 92 | 0 | 0 | 0 | 1321 | 1321 |     | 0    | 0      |
| 93 | 0 | 0 | 0 | 1422 | 1422 |   | 93 | 0 | 0 | 0 | 1422 | 1422 | 1 I | 0    | 0      |
| 94 | 0 | 0 | 0 | 134  | 134  |   | 94 | 0 | 0 | 0 | 134  | 134  |     | 0    | 0      |
| 95 | 0 | 0 | 0 | 3979 | 3979 |   | 95 | 0 | 0 | 0 | 3979 | 3979 |     | 0    | 0      |
| 96 | 0 | 0 | 0 | 1466 | 1466 |   | 96 | 0 | 0 | 0 | 1466 | 1466 | 1   | 0    | 0      |
| l  |   |   |   |      |      | 9 | Ľ  |   | • |   |      |      | SUM | 1431 | 100555 |

## **Total Attractions Comparison**

t-calc

4.34

t(n-1,a/2)

2.00

Mean

14.81

Standard Dev

29.36

ннс

### CLUSTER

df=73, a=**0.05** 

Но: m<sub>t</sub>- m₅=0

Reject/Accept

Reject

| TAZ | HBW | НВО | NHB | EXT  | Total HHC |
|-----|-----|-----|-----|------|-----------|
| 1   | 11  | 9   | 20  | 33   | 73        |
| 2   | 8   | 2   | 8   | 13   | 31        |
| 3   | 36  | 50  | 106 | 185  | 377       |
| 4   | 0   | 0   | 0   | 0    | 0         |
| 5   | 18  | 13  | 27  | 46   | 104       |
| 6   | 50  | 64  | 133 | 225  | 472       |
| 7   | 155 | 461 | 968 | 1655 | 3239      |
| 8   | 169 | 441 | 925 | 1569 | 3104      |
| 9   | 26  | 22  | 51  | 119  | 218       |
| 10  | 10  | 4   | 8   | 13   | 35        |
| 11  | 13  | 6   | 12  | 20   | 51        |
| 12  | 11  | 4   | 8   | 20   | 43        |
| 13  | 47  | 92  | 192 | 324  | 655       |
| 14  | 86  | 374 | 787 | 1351 | 2598      |
| 15  | 69  | 245 | 513 | 867  | 1694      |
| 16  | 25  | 13  | 27  | 46   | 111       |
| 17  | 154 | 364 | 780 | 1391 | 2689      |
| 18  | 5   | 6   | 12  | 20   | 43        |
| 19  | 93  | 310 | 650 | 1106 | 2159      |
| 20  | 143 | 314 | 658 | 1112 | 2227      |
| 21  | 19  | 39  | 82  | 139  | 279       |

| TAZ | HBW | НВО | NHB | EXT  | Total<br>CLUSTER |
|-----|-----|-----|-----|------|------------------|
| 1   | 13  | 10  | 20  | 33   | 76               |
| 2   | 8   | 2   | 8   | 13   | 31               |
| 3   | 41  | 56  | 108 | 185  | 390              |
| 4   | 0   | 0   | 0   | 0    | 0                |
| 5   | 20  | 15  | 28  | 46   | 109              |
| 6   | 56  | 71  | 136 | 225  | 488              |
| 7   | 172 | 514 | 984 | 1655 | 3325             |
| 8   | 188 | 491 | 941 | 1569 | 3189             |
| 9   | 29  | 25  | 52  | 119  | 225              |
| 10  | 11  | 4   | 8   | 13   | 36               |
| 11  | 14  | 6   | 12  | 20   | 52               |
| 12  | 13  | 4   | 8   | 20   | 45               |
| 13  | 52  | 102 | 195 | 324  | 673              |
| 14  | 95  | 416 | 801 | 1351 | 2663             |
| 15  | 77  | 272 | 522 | 867  | 1738             |
| 16  | 28  | 15  | 28  | 46   | 117              |
| 17  | 171 | 405 | 793 | 1391 | 2760             |
| 18  | 6   | 6   | 12  | 20   | 44               |
| 19  | 104 | 345 | 662 | 1106 | 2217             |
| 20  | 160 | 349 | 670 | 1112 | 2291             |
| 21  | 21  | 44  | 84  | 139  | 288              |

| D=CLUSTER-HHC | D <sup>2</sup> |
|---------------|----------------|
| 3             | 9              |
| 0             | 0              |
| 13            | 169            |
| 0             | 0              |
| 5             | 25             |
| 16            | 256            |
| 86            | 7396           |
| 85            | 7225           |
| 7             | 49             |
| 1             | 1              |
| 1             | 1              |
| 2             | 4              |
| 18            | 324            |
| 65            | 4225           |
| 44            | 1936           |
| 6             | 36             |
| 71            | 5041           |
| 1             | 1              |
| 58            | 3364           |
| 64            | 4096           |
| 9             | 81             |

| 23 54 149 317 563 1023 23 60 166 323 563 1112 29 841   24 102 355 748 1271 2476 24 113 395 761 1271 250 653 44086   26 53 176 368 622 1219 25 83 414 77 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22 | 36  | 75  | 157  | 265  | 533  |   | 22 | 41  | 83  | 159  | 265  | 548  |   | 15  | 225   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|------|------|------|---|----|-----|-----|------|------|------|---|-----|-------|
| 24     102     335     748     1271     2476       25     74     372     783     1331     2560       26     53     176     368     622     1211     25     83     414     797     1331     2626     66     4225       27     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                            | 23 | 54  | 149 | 317  | 563  | 1083 |   | 23 | 60  | 166 | 323  | 563  | 1112 |   | 29  | 841   |
| 25     74     372     783     1331     2560       26     53     176     386     622     1219       27     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td>24</td> <td>102</td> <td>355</td> <td>748</td> <td>1271</td> <td>2476</td> <td></td> <td>24</td> <td>113</td> <td>395</td> <td>761</td> <td>1271</td> <td>2540</td> <td></td> <td>64</td> <td>4096</td>                                                                                                             | 24 | 102 | 355 | 748  | 1271 | 2476 |   | 24 | 113 | 395 | 761  | 1271 | 2540 |   | 64  | 4096  |
| 26     53     176     368     622     1219       27     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     <                                                                                                                                                                                                                                                                                                                           | 25 | 74  | 372 | 783  | 1331 | 2560 |   | 25 | 83  | 414 | 797  | 1331 | 2625 |   | 65  | 4225  |
| 27   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26 | 53  | 176 | 368  | 622  | 1219 | 1 | 26 | 59  | 195 | 375  | 622  | 1251 | 1 | 32  | 1024  |
| 28   35   30   67   119   251     29   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 <t< td=""><td>27</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td>27</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td></t<>                                                                                                                                                                                                                                                                                                                    | 27 | 0   | 0   | 0    | 0    | 0    |   | 27 | 0   | 0   | 0    | 0    | 0    |   | 0   | 0     |
| 29   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28 | 35  | 30  | 67   | 119  | 251  | 1 | 28 | 39  | 33  | 68   | 119  | 259  | 1 | 8   | 64    |
| 30   33   43   90   152   318     30   33   43   90   152   318     31   65   245   513   867   1690     32   76   319   670   1146   2211     33   111   506   1066   1821   3504     34   154   695   1457   2463   4769     35   64   327   686   1159   2236     36   14   21   43   73   151     36   14   21   43   73   151     36   14   21   43   73   151     36   15   23   44   73   155     36   16   12   20   51   36   15   23   44   73   155     37   3   0   0   0   11   16   12   20   52     141   4   2   4   7   17   16   14   16   12 <td>29</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>29</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                 | 29 | 0   | 0   | 0    | 0    | 0    |   | 29 | 0   | 0   | 0    | 0    | 0    |   | 0   | 0     |
| 31   65   245   513   867   1690     32   76   319   670   1146   2211     33   111   506   1066   1821   3504     34   154   695   1457   2463   4769     35   64   327   686   1159   2236     36   14   21   43   73   151     36   14   21   43   73   151     36   14   21   43   73   151     37   3   0   0   0   3     38   1   0   0   1   38   1   0   0   0     39   8   4   8   13   33   3   3   3   3   3   3     41   4   2   4   7   17   44   16   2     39   8   4   8   13   33   0   0   1   1     41   4   2   4 <td>30</td> <td>33</td> <td>43</td> <td>90</td> <td>152</td> <td>318</td> <td>1</td> <td>30</td> <td>36</td> <td>48</td> <td>92</td> <td>152</td> <td>328</td> <td>1</td> <td>10</td> <td>100</td>                                                                                                                                                                                                                                                        | 30 | 33  | 43  | 90   | 152  | 318  | 1 | 30 | 36  | 48  | 92   | 152  | 328  | 1 | 10  | 100   |
| 32 $76$ $319$ $670$ $1146$ $2211$ $32$ $84$ $356$ $682$ $1146$ $2268$ $57$ $3249$ $33$ $111$ $506$ $1066$ $1821$ $3504$ $33$ $123$ $564$ $1084$ $1821$ $3592$ $34$ $154$ $695$ $1457$ $2463$ $4769$ $33$ $123$ $564$ $1084$ $1821$ $3592$ $36$ $14$ $21$ $43$ $73$ $151$ $36$ $697$ $1159$ $2291$ $37$ $3$ $0$ $0$ $3$ $33$ $30$ $44$ $73$ $155$ $37$ $3$ $0$ $0$ $3$ $37$ $3$ $0$ $0$ $3$ $37$ $3$ $0$ $0$ $1$ $38$ $1$ $0$ $0$ $1$ $39$ $8$ $4$ $8$ $13$ $33$ $33$ $30$ $0$ $0$ $39$ $8$ $4$ $8$ $13$ $33$ $33$ $33$ $0$ $0$ $0$ $41$ $4$ $2$ $4$ $7$ $177$ $42$ $11$ $4$ $8$ $13$ $33$ $44$ $73$ $155$ $322$ $556$ $1089$ $45$ $52$ $175$ $335$ $556$ $1118$ $45$ $52$ $175$ $335$ $556$ $1118$ $29$ $841$ $46$ $102$ $297$ $570$ $947$ $1916$ $46$ $102$ $297$ $570$ $947$ $1916$ <td< td=""><td>31</td><td>65</td><td>245</td><td>513</td><td>867</td><td>1690</td><td></td><td>31</td><td>73</td><td>272</td><td>522</td><td>867</td><td>1734</td><td></td><td>44</td><td>1936</td></td<> | 31 | 65  | 245 | 513  | 867  | 1690 |   | 31 | 73  | 272 | 522  | 867  | 1734 |   | 44  | 1936  |
| 3311150610661821350433123564108418213592887744341546951457246347693417177414832463489112214884356432768611592236357136469711592291553025361421437315136152344731553000381000138100010003984813333340146122052110004142471774481333000100042104813333544813333611111111111111111111111111111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32 | 76  | 319 | 670  | 1146 | 2211 | 1 | 32 | 84  | 356 | 682  | 1146 | 2268 | 1 | 57  | 3249  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33 | 111 | 506 | 1066 | 1821 | 3504 |   | 33 | 123 | 564 | 1084 | 1821 | 3592 |   | 88  | 7744  |
| 35 $64$ $327$ $686$ $1159$ $2236$ $35$ $71$ $364$ $697$ $1159$ $2291$ $55$ $3025$ $36$ $14$ $21$ $43$ $73$ $151$ $36$ $15$ $23$ $44$ $73$ $155$ $30$ $0$ $0$ $37$ $3$ $0$ $0$ $0$ $3$ $37$ $3$ $0$ $0$ $0$ $3$ $0$ $0$ $0$ $3$ $38$ $1$ $0$ $0$ $1$ $38$ $1$ $0$ $0$ $1$ $0$ $0$ $0$ $39$ $8$ $4$ $8$ $13$ $33$ $40$ $14$ $6$ $12$ $20$ $52$ $1$ $1$ $41$ $4$ $2$ $4$ $7$ $177$ $41$ $4$ $2$ $4$ $7$ $177$ $42$ $10$ $4$ $8$ $13$ $33$ $44$ $8$ $13$ $36$ $1$ $1$ $43$ $8$ $4$ $8$ $13$ $33$ $44$ $8$ $13$ $36$ $1$ $1$ $44$ $87$ $314$ $658$ $1112$ $2171$ $44$ $8$ $13$ $33$ $0$ $0$ $0$ $45$ $52$ $175$ $335$ $556$ $1118$ $29$ $841$ $46$ $102$ $297$ $570$ $947$ $1916$ $50$ $2500$ $47$ $4$ $7$ $177$ $48$ $13$ $6$ $12$ $20$ $51$ $49$ $6$ $22$ <                                                                                                                                                                                                                                        | 34 | 154 | 695 | 1457 | 2463 | 4769 | İ | 34 | 171 | 774 | 1483 | 2463 | 4891 | 1 | 122 | 14884 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35 | 64  | 327 | 686  | 1159 | 2236 |   | 35 | 71  | 364 | 697  | 1159 | 2291 |   | 55  | 3025  |
| 37   3   0   0   0   3     38   1   0   0   0   1     39   8   4   8   13   33     40   13   6   12   20   51     41   4   2   4   7   17     42   10   4   8   13   35     43   8   4   8   13   33     44   87   314   658   1112   2171     44   87   314   658   1112   2171     45   47   157   329   556   1089     45   47   157   329   556   1089     45   47   157   329   556   1089     45   52   175   335   556   1118     46   92   267   560   947   1866     47   4   2   4   7   17     48   13   6   12   20   51                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36 | 14  | 21  | 43   | 73   | 151  | 1 | 36 | 15  | 23  | 44   | 73   | 155  | 1 | 4   | 16    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37 | 3   | 0   | 0    | 0    | 3    |   | 37 | 3   | 0   | 0    | 0    | 3    |   | 0   | 0     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38 | 1   | 0   | 0    | 0    | 1    |   | 38 | 1   | 0   | 0    | 0    | 1    |   | 0   | 0     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39 | 8   | 4   | 8    | 13   | 33   | 1 | 39 | 8   | 4   | 8    | 13   | 33   | 1 | 0   | 0     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 | 13  | 6   | 12   | 20   | 51   |   | 40 | 14  | 6   | 12   | 20   | 52   |   | 1   | 1     |
| 42   10   4   8   13   35   42   11   4   8   13   36   1   1   1     43   8   4   8   13   33   43   8   4   8   13   33   0   0   0     44   87   314   658   1112   2171   44   97   349   670   1112   2228   57   3249     45   47   157   329   556   1089   45   52   175   335   556   1118   29   841     46   92   267   560   947   1866   46   102   297   570   947   1916   50   2500     47   4   2   4   7   17   48   13   6   12   20   51   2   44   7   177   0   0   0   1   2   4   4   4   97   159   55   25   25   25   55   55   1   1   1 <td>41</td> <td>4</td> <td>2</td> <td>4</td> <td>7</td> <td>17</td> <td>1</td> <td>41</td> <td>4</td> <td>2</td> <td>4</td> <td>7</td> <td>17</td> <td>1</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                        | 41 | 4   | 2   | 4    | 7    | 17   | 1 | 41 | 4   | 2   | 4    | 7    | 17   | 1 | 0   | 0     |
| 43   8   4   8   13   33   43   8   4   8   13   33     44   87   314   658   1112   2171   44   97   349   670   1112   2228   57   3249     45   47   157   329   556   1089   45   52   175   335   556   1118   29   841     46   92   267   560   947   1866   46   102   297   570   947   1916   50   2500   2500     47   4   2   4   7   17   48   13   6   12   20   51   2   4   7   17   0   0   0     48   11   6   12   20   49   7   25   48   79   159   55   25   25     50   6   4   8   13   31   32   1   1   1   0   0   1   0   0   1   0   0<                                                                                                                                                                                                                                                                                                                                                                                                                            | 42 | 10  | 4   | 8    | 13   | 35   |   | 42 | 11  | 4   | 8    | 13   | 36   |   | 1   | 1     |
| 44   87   314   658   1112   2171   44   97   349   670   1112   2228   57   3249     45   47   157   329   556   1089   45   52   175   335   556   1118   29   841     46   92   267   560   947   1866   46   102   297   570   947   1916   50   2500     47   4   2   4   7   17   48   11   6   12   20   49   48   13   6   12   20   51   25   48   79   159   55   250   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   25   24   2 <td< td=""><td>43</td><td>8</td><td>4</td><td>8</td><td>13</td><td>33</td><td>1</td><td>43</td><td>8</td><td>4</td><td>8</td><td>13</td><td>33</td><td>1</td><td>0</td><td>0</td></td<>                                                                                                                                                                                                             | 43 | 8   | 4   | 8    | 13   | 33   | 1 | 43 | 8   | 4   | 8    | 13   | 33   | 1 | 0   | 0     |
| 45   47   157   329   556   1089   45   52   175   335   556   1118   29   841     46   92   267   560   947   1866   46   102   297   570   947   1916   50   2500   2500   2500   267   560   947   177   46   102   297   570   947   1916   50   2500   2500   2500   2500   267   560   947   177   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                              | 44 | 87  | 314 | 658  | 1112 | 2171 |   | 44 | 97  | 349 | 670  | 1112 | 2228 |   | 57  | 3249  |
| 46   92   267   560   947   1866   46   102   297   570   947   1916   50   2500     47   4   2   4   7   17   4   2   4   7   17     48   11   6   12   20   49   4   2   4   7   17   0   0     49   6   22   47   79   154   49   7   25   48   79   159   5   25   25     50   6   4   8   13   31   51   1   0   0   1   1   0   0   1   1   0   0   1   1   0   0   1   1   0   0   1   1   0   0   1   1   0   0   1   1   0   0   1   1   0   0   1   1   0   0   1   1   0   0   1   1   0   0   1   1   0   0 <t< td=""><td>45</td><td>47</td><td>157</td><td>329</td><td>556</td><td>1089</td><td>İ</td><td>45</td><td>52</td><td>175</td><td>335</td><td>556</td><td>1118</td><td>1</td><td>29</td><td>841</td></t<>                                                                                                                                                                                                                                                                | 45 | 47  | 157 | 329  | 556  | 1089 | İ | 45 | 52  | 175 | 335  | 556  | 1118 | 1 | 29  | 841   |
| 47   4   2   4   7   17   47   4   2   4   7   17   0   0     48   11   6   12   20   49   48   13   6   12   20   51   2   4   4   7   17   17   0   0   0     49   6   22   47   79   154   49   7   25   48   79   159   55   25     50   6   4   8   13   31   50   7   4   8   13   32   1   1   0   0   1   1     51   1   0   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1 <t< td=""><td>46</td><td>92</td><td>267</td><td>560</td><td>947</td><td>1866</td><td></td><td>46</td><td>102</td><td>297</td><td>570</td><td>947</td><td>1916</td><td></td><td>50</td><td>2500</td></t<>                                                                                                                                                                                                                                                                             | 46 | 92  | 267 | 560  | 947  | 1866 |   | 46 | 102 | 297 | 570  | 947  | 1916 |   | 50  | 2500  |
| 48   11   6   12   20   49     49   6   22   47   79   154     50   6   4   8   13   31     51   1   0   0   0   1     52   42   21   43   73   179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47 | 4   | 2   | 4    | 7    | 17   | İ | 47 | 4   | 2   | 4    | 7    | 17   | 1 | 0   | 0     |
| 49   6   22   47   79   154   49   7   25   48   79   159   50   50   6   4   8   13   31   50   7   4   8   13   32   1   1   1   1   0   0   1   1   1   0   0   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48 | 11  | 6   | 12   | 20   | 49   |   | 48 | 13  | 6   | 12   | 20   | 51   |   | 2   | 4     |
| 50   6   4   8   13   31   50   7   4   8   13   32   1   1   1     51   1   0   0   0   1   51   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 <td< td=""><td>49</td><td>6</td><td>22</td><td>47</td><td>79</td><td>154</td><td>1</td><td>49</td><td>7</td><td>25</td><td>48</td><td>79</td><td>159</td><td>1</td><td>5</td><td>25</td></td<>                                                                                                                                                                                                                                                                                                      | 49 | 6   | 22  | 47   | 79   | 154  | 1 | 49 | 7   | 25  | 48   | 79   | 159  | 1 | 5   | 25    |
| 51     1     0     0     0     1     51     1     0     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     0     1     0     0     1     1     0     1     0     1     0     1     0     1     0     1     1     0     1     1     0     1     1     0                                                                                                                                                                                                                                                                                                                                 | 50 | 6   | 4   | 8    | 13   | 31   | 1 | 50 | 7   | 4   | 8    | 13   | 32   |   | 1   | 1     |
| 52     42     21     43     73     179     52     46     23     44     73     186     7     49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51 | 1   | 0   | 0    | 0    | 1    | 1 | 51 | 1   | 0   | 0    | 0    | 1    | 1 | 0   | 0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52 | 42  | 21  | 43   | 73   | 179  | 1 | 52 | 46  | 23  | 44   | 73   | 186  |   | 7   | 49    |

| 53 | 3   | 2  | 4   | 7    | 16   |   | 53 | 3   | 2   | 4   | 7    | 16   | 0  | 0    |
|----|-----|----|-----|------|------|---|----|-----|-----|-----|------|------|----|------|
| 54 | 631 | 93 | 392 | 1655 | 2771 |   | 54 | 701 | 104 | 399 | 1655 | 2859 | 88 | 7744 |
| 55 | 1   | 0  | 0   | 0    | 1    | ] | 55 | 1   | 0   | 0   | 0    | 1    | 0  | 0    |
| 56 | 4   | 2  | 4   | 7    | 17   |   | 56 | 4   | 2   | 4   | 7    | 17   | 0  | 0    |
| 57 | 6   | 2  | 4   | 7    | 19   | ] | 57 | 7   | 2   | 4   | 7    | 20   | 1  | 1    |
| 58 | 5   | 2  | 4   | 7    | 18   |   | 58 | 6   | 2   | 4   | 7    | 19   | 1  | 1    |
| 59 | 0   | 0  | 0   | 0    | 0    | ] | 59 | 0   | 0   | 0   | 0    | 0    | 0  | 0    |
| 60 | 6   | 4  | 8   | 13   | 31   |   | 60 | 7   | 4   | 8   | 13   | 32   | 1  | 1    |
| 61 | 9   | 4  | 8   | 13   | 34   | ] | 61 | 10  | 4   | 8   | 13   | 35   | 1  | 1    |
| 62 | 16  | 7  | 16  | 26   | 65   |   | 62 | 18  | 8   | 16  | 26   | 68   | 3  | 9    |
| 63 | 6   | 2  | 4   | 13   | 25   | ] | 63 | 7   | 2   | 4   | 13   | 26   | 1  | 1    |
| 64 | 10  | 4  | 8   | 13   | 35   |   | 64 | 11  | 4   | 8   | 13   | 36   | 1  | 1    |
| 65 | 15  | 15 | 31  | 53   | 114  |   | 65 | 17  | 17  | 32  | 53   | 119  | 5  | 25   |
| 66 | 19  | 13 | 31  | 66   | 129  |   | 66 | 21  | 15  | 32  | 66   | 134  | 5  | 25   |
| 67 | 20  | 47 | 98  | 166  | 331  | ] | 67 | 22  | 52  | 100 | 166  | 340  | 9  | 81   |
| 68 | 6   | 2  | 4   | 7    | 19   |   | 68 | 7   | 2   | 4   | 7    | 20   | 1  | 1    |
| 69 | 3   | 2  | 4   | 7    | 16   |   | 69 | 3   | 2   | 4   | 7    | 16   | 0  | 0    |
| 70 | 1   | 0  | 0   | 0    | 1    |   | 70 | 1   | 0   | 0   | 0    | 1    | 0  | 0    |
| 71 | 5   | 6  | 12  | 20   | 43   |   | 71 | 6   | 6   | 12  | 20   | 44   | 1  | 1    |
| 72 | 4   | 2  | 4   | 7    | 17   |   | 72 | 4   | 2   | 4   | 7    | 17   | 0  | 0    |
| 73 | 5   | 2  | 4   | 7    | 18   |   | 73 | 6   | 2   | 4   | 7    | 19   | 1  | 1    |
| 74 | 14  | 7  | 16  | 26   | 63   |   | 74 | 15  | 8   | 16  | 26   | 65   | 2  | 4    |
| 75 | 0   | 0  | 0   | 0    | 0    |   | 75 | 0   | 0   | 0   | 0    | 0    | 0  | 0    |
| 76 | 0   | 0  | 0   | 0    | 0    |   | 76 | 0   | 0   | 0   | 0    | 0    | 0  | 0    |
| 77 | 0   | 0  | 0   | 0    | 0    |   | 77 | 0   | 0   | 0   | 0    | 0    | 0  | 0    |
| 78 | 0   | 0  | 0   | 0    | 0    |   | 78 | 0   | 0   | 0   | 0    | 0    | 0  | 0    |
| 79 | 0   | 0  | 0   | 0    | 0    |   | 79 | 0   | 0   | 0   | 0    | 0    | 0  | 0    |
| 80 | 0   | 0  | 0   | 0    | 0    | ] | 80 | 0   | 0   | 0   | 0    | 0    | 0  | 0    |
| 81 | 0   | 0  | 0   | 0    | 0    |   | 81 | 0   | 0   | 0   | 0    | 0    | 0  | 0    |
| 82 | 0   | 0  | 0   | 0    | 0    | ] | 82 | 0   | 0   | 0   | 0    | 0    | 0  | 0    |
| 83 | 0   | 0  | 0   | 0    | 0    |   | 83 | 0   | 0   | 0   | 0    | 0    | 0  | 0    |

|    | - |   |   |   | <u> </u> |    |   |   |   |   | <br> | <u>     </u><br>n | 1422 | 9023 |
|----|---|---|---|---|----------|----|---|---|---|---|------|-------------------|------|------|
| 96 | 0 | 0 | 0 | 0 | 0        | 96 | 0 | 0 | 0 | 0 | 0    | ii ii             | 0    | 0    |
| 95 | 0 | 0 | 0 | 0 | 0        | 95 | 0 | 0 | 0 | 0 | 0    |                   | 0    | 0    |
| 94 | 0 | 0 | 0 | 0 | 0        | 94 | 0 | 0 | 0 | 0 | 0    |                   | 0    | 0    |
| 93 | 0 | 0 | 0 | 0 | 0        | 93 | 0 | 0 | 0 | 0 | 0    |                   | 0    | 0    |
| 92 | 0 | 0 | 0 | 0 | 0        | 92 | 0 | 0 | 0 | 0 | 0    | [                 | 0    | 0    |
| 91 | 0 | 0 | 0 | 0 | 0        | 91 | 0 | 0 | 0 | 0 | 0    |                   | 0    | 0    |
| 90 | 0 | 0 | 0 | 0 | 0        | 90 | 0 | 0 | 0 | 0 | 0    |                   | 0    | 0    |
| 89 | 0 | 0 | 0 | 0 | 0        | 89 | 0 | 0 | 0 | 0 | 0    |                   | 0    | 0    |
| 88 | 0 | 0 | 0 | 0 | 0        | 88 | 0 | 0 | 0 | 0 | 0    | [                 | 0    | 0    |
| 87 | 0 | 0 | 0 | 0 | 0        | 87 | 0 | 0 | 0 | 0 | 0    |                   | 0    | 0    |
| 86 | 0 | 0 | 0 | 0 | 0        | 86 | 0 | 0 | 0 | 0 | 0    | [                 | 0    | 0    |
| 85 | 0 | 0 | 0 | 0 | 0        | 85 | 0 | 0 | 0 | 0 | 0    |                   | 0    | 0    |
| 84 | 0 | 0 | 0 | 0 | 0        | 84 | 0 | 0 | 0 | 0 | 0    |                   | 0    | 0    |

# **APPENDIX I**

# STATISTICAL COMPARISON OF ASSIGNED FLOWS AND GROUND COUNTS: CALCULATIONS

#### **Ground Counts vs. HHC Total Flows** $H_0$ that the mean of the differen

that the mean of the differences between paired samples is equal to

|                   | $\mu_D = 0$ |
|-------------------|-------------|
| Mean              | 830.16      |
| SD                | 1922.34     |
| T-calc            | 3.23        |
| df                | 55.00       |
| α                 | 0.05        |
| $t(df, \alpha/2)$ | 2.02        |
| Reject/           | Reject      |
| accept            |             |
| Mean %            | 25.37       |
| Difference        |             |

| Link | Ground HHC |          | Difference | Difference <sup>2</sup> | % Difference | Acceptable | Acceptable |
|------|------------|----------|------------|-------------------------|--------------|------------|------------|
|      | Counts     |          |            |                         |              |            |            |
|      | ADT_01     | Tot_flow |            |                         |              | Difference | Yes or No  |
| 37   | 1200       | 2507     | 1307       | 1707340                 | 109          | 16         |            |
| 48   | 1000       | 1747     | 747        | 558180                  | 75           | 16         |            |
| 58   | 1050       | 1450     | 400        | 159679                  | 38           | 16         |            |
| 90   | 3900       | 4073     | 173        | 29787                   | 4            | 16         | yes        |
| 150  | 4300       | 5550     | 1250       | 1563510                 | 29           | 16         |            |
| 201  | 6500       | 10936    | 4436       | 19681941                | 68           | 16         |            |
| 202  | 11200      | 9403     | -1797      | 3228722                 | -16          | 16         | yes        |
| 204  | 14000      | 19016    | 5016       | 25160975                | 36           | 16         |            |
| 205  | 12200      | 14951    | 2751       | 7566797                 | 23           | 16         |            |
| 231  | 8700       | 10276    | 1576       | 2482880                 | 18           | 16         |            |
| 242  | 1000       | 0        | -1000      | 1000000                 | -100         | 40         |            |
| 246  | 7400       | 6118     | -1282      | 1642352                 | -17          | 16         |            |
| 269  | 700        | 310      | -390       | 152484                  | -56          | 40         |            |
| 272  | 9200       | 12721    | 3521       | 12400809                | 38           | 16         |            |
| 287  | 9500       | 12721    | 3221       | 10377922                | 34           | 16         |            |
| 291  | 925        | 1195     | 270        | 73028                   | 29           | 40         | yes        |
| 311  | 250        | 392      | 142        | 20082                   | 57           | 16         |            |
| 313  | 350        | 550      | 200        | 39947                   | 57           | 40         |            |
| 319  | 450        | 983      | 533        | 284334                  | 118          | 16         |            |
| 322  | 4000       | 3711     | -289       | 83678                   | -7           | 16         | yes        |
| 330  | 2625       | 2618     | -7         | 45                      | 0            | 16         | yes        |
| 350  | 1500       | 1666     | 166        | 27718                   | 11           | 16         | yes        |
| 354  | 1950       | 1924     | -26        | 657                     | -1           | 16         | yes        |
| 372  | 1700       | 1698     | -2         | 4                       | 0            | 16         | yes        |
| 386  | 10000      | 9998     | -2         | 4                       | 0            | 16         | yes        |
| 389  | 9700       | 10191    | 491        | 241307                  | 5            | 16         | yes        |
| 391  | 700        | 84       | -616       | 378989                  | -88          | 16         |            |
| 392  | 500        | 84       | -416       | 172741                  | -83          | 16         |            |
| 393  | 10000      | 10845    | 845        | 714593                  | 8            | 16         | yes        |
| 395  | 15400      | 21500    | 6100       | 37210106                | 40           | 16         |            |
| 396  | 14000      | 17985    | 3985       | 15877104                | 28           | 16         |            |
| 397  | 10500      | 11857    | 1357       | 1842543                 | 13           | 16         | yes        |
| 399  | 11200      | 12658    | 1458       | 2125863                 | 13           | 16         | yes        |
| 404  | 700        | 698      | -2         | 4                       | 0            | 16         | yes        |
| 405  | 1200       | 2521     | 1321       | 1745181                 | 110          | 16         |            |
| 406  | 350        | 988      | 638        | 406853                  | 182          | 16         |            |
| 408  | 2900       | 2901     | 1          | 1                       | 0            | 16         | yes        |
| 409  | 10000      | 9568     | -432       | 186714                  | -4           | 16         | yes        |

| 410               | 9250   | 9353   | 103   | 10710     | 1   | 16 | yes    |
|-------------------|--------|--------|-------|-----------|-----|----|--------|
| 413               | 1500   | 1647   | 147   | 21609     | 10  | 16 | yes    |
| 416               | 3600   | 3711   | 111   | 12261     | 3   | 16 | yes    |
| 419               | 625    | 1182   | 557   | 309921    | 89  | 16 |        |
| 420               | 950    | 325    | -625  | 390074    | -66 | 40 |        |
| 421               | 5300   | 2487   | -2813 | 7912996   | -53 | 16 |        |
| 428               | 5825   | 4633   | -1192 | 1420052   | -20 | 16 |        |
| 432               | 8000   | 8026   | 26    | 679       | 0   | 16 | yes    |
| 433               | 6900   | 7280   | 380   | 144714    | 6   | 16 | yes    |
| 435               | 150    | 444    | 294   | 86572     | 196 | 16 |        |
| 437               | 150    | 148    | -2    | 4         | -1  | 16 | yes    |
| 438               | 6800   | 6799   | -1    | 1         | 0   | 16 | yes    |
| 439               | 2400   | 2400   | 0     | 0         | 0   | 16 | yes    |
| 441               | 3500   | 3255   | -245  | 59985     | -7  | 16 | yes    |
| 442               | 7913   | 11200  | 3287  | 10802463  | 42  | 16 |        |
| 443               | 1400   | 4383   | 2983  | 8897343   | 213 | 16 |        |
| 446               | 2700   | 2618   | -82   | 6674      | -3  | 16 | yes    |
| 454               | 3287   | 11200  | 7913  | 62620159  | 241 | 16 |        |
| SUM               | 273000 | 319489 | 46489 | 241841092 |     |    | 26 yes |
|                   |        |        |       |           |     |    |        |
| gc:model<br>ratio | 0.85   |        |       |           |     |    |        |

## Ground Counts vs. CLUSTER Total Flows

 $H_0$  that the mean of the differences between paired samples is equal to  $\mu_D = 0$ 

| Mean       | 910.03  |
|------------|---------|
| SD         | 1981.06 |
| T-calc     | 3.44    |
| df         | 55.00   |
| α          | 0.05    |
| t(df,α/2)  | 2.02    |
| Reject/    | Reject  |
| accept     |         |
| Mean %     | 28.81   |
| Difference |         |

| Link | Ground CLUSTER |          | Difference | Difference <sup>2</sup> | % Difference | Acceptable | Acceptable |
|------|----------------|----------|------------|-------------------------|--------------|------------|------------|
|      | Counts         |          |            |                         |              | -          | -          |
|      | ADT_01         | Tot_flow |            |                         |              | Difference | Yes or No  |
| 37   | 1200           | 2574     | 1374       | 1889056                 | 115          | 16         |            |
| 48   | 1000           | 1799     | 799        | 638496                  | 80           | 16         |            |
| 58   | 1050           | 1546     | 496        | 245882                  | 47           | 16         |            |
| 90   | 3900           | 4167     | 267        | 71463                   | 7            | 16         | yes        |
| 150  | 4300           | 5682     | 1382       | 1910306                 | 32           | 16         |            |
| 201  | 6500           | 11228    | 4728       | 22358379                | 73           | 16         |            |
| 202  | 11200          | 9448     | -1752      | 3070548                 | -16          | 16         | yes        |
| 204  | 14000          | 19404    | 5404       | 29208321                | 39           | 16         |            |
| 205  | 12200          | 15193    | 2993       | 8955880                 | 25           | 16         |            |
| 231  | 8700           | 10271    | 1571       | 2469070                 | 18           | 16         |            |
| 242  | 1000           | 0        | -1000      | 1000000                 | -100         | 40         |            |
| 246  | 7400           | 6330     | -1070      | 1145162                 | -14          | 16         | yes        |
| 269  | 700            | 336      | -364       | 132822                  | -52          | 40         |            |
| 272  | 9200           | 12901    | 3701       | 13700409                | 40           | 16         |            |
| 287  | 9500           | 12901    | 3401       | 11569565                | 36           | 16         |            |
| 291  | 925            | 1327     | 402        | 161213                  | 43           | 40         |            |
| 311  | 250            | 422      | 172        | 29701                   | 69           | 16         |            |
| 313  | 350            | 577      | 227        | 51413                   | 65           | 40         |            |
| 319  | 450            | 1102     | 652        | 425210                  | 145          | 16         |            |
| 322  | 4000           | 3800     | -200       | 39850                   | -5           | 16         | yes        |
| 330  | 2625           | 2655     | 30         | 871                     | 1            | 16         | yes        |
| 350  | 1500           | 1669     | 169        | 28728                   | 11           | 16         | yes        |
| 354  | 1950           | 1991     | 41         | 1663                    | 2            | 16         | yes        |

| 372      | 1700   | 1698   | -2    | 4         | 0   | 16 | yes    |
|----------|--------|--------|-------|-----------|-----|----|--------|
| 386      | 10000  | 9998   | -2    | 4         | 0   | 16 | yes    |
| 389      | 9700   | 10185  | 485   | 235384    | 5   | 16 | yes    |
| 391      | 700    | 80     | -620  | 384512    | -89 | 16 |        |
| 392      | 500    | 80     | -420  | 176476    | -84 | 16 |        |
| 393      | 10000  | 10893  | 893   | 797638    | 9   | 16 | yes    |
| 395      | 15400  | 21895  | 6495  | 42185022  | 42  | 16 |        |
| 396      | 14000  | 18325  | 4325  | 18702413  | 31  | 16 |        |
| 397      | 10500  | 12037  | 1537  | 2363666   | 15  | 16 | yes    |
| 399      | 11200  | 12810  | 1610  | 2590919   | 14  | 16 | yes    |
| 404      | 700    | 698    | -2    | 4         | 0   | 16 | yes    |
| 405      | 1200   | 2598   | 1398  | 1953040   | 116 | 16 |        |
| 406      | 350    | 1012   | 662   | 437782    | 189 | 16 |        |
| 408      | 2900   | 2901   | 1     | 1         | 0   | 16 | yes    |
| 409      | 10000  | 9608   | -392  | 153862    | -4  | 16 | yes    |
| 410      | 9250   | 9356   | 106   | 11183     | 1   | 16 | yes    |
| 413      | 1500   | 1647   | 147   | 21609     | 10  | 16 | yes    |
| 416      | 3600   | 3800   | 200   | 40151     | 6   | 16 | yes    |
| 419      | 625    | 1313   | 688   | 472874    | 110 | 16 |        |
| 420      | 950    | 351    | -599  | 359193    | -63 | 40 |        |
| 421      | 5300   | 2544   | -2756 | 7594751   | -52 | 16 |        |
| 428      | 5825   | 4717   | -1108 | 1228332   | -19 | 16 |        |
| 432      | 8000   | 8043   | 43    | 1884      | 1   | 16 | yes    |
| 433      | 6900   | 7319   | 419   | 175797    | 6   | 16 | yes    |
| 435      | 150    | 469    | 319   | 101561    | 212 | 16 |        |
| 437      | 150    | 148    | -2    | 4         | -1  | 16 | yes    |
| 438      | 6800   | 6799   | -1    | 1         | 0   | 16 | yes    |
| 439      | 2400   | 2400   | 0     | 0         | 0   | 16 | yes    |
| 441      | 3500   | 3348   | -152  | 23199     | -4  | 16 | yes    |
| 442      | 7913   | 11200  | 3287  | 10802463  | 42  | 16 |        |
| 443      | 1400   | 4513   | 3113  | 9688978   | 222 | 16 |        |
| 446      | 2700   | 2655   | -45   | 2069      | -2  | 16 | yes    |
| 454      | 3287   | 11200  | 7913  | 62620159  | 241 | 16 |        |
| SUM      | 273000 | 323962 | 50962 | 262228938 |     |    | 26 yes |
| normodel | 0.04   |        |       |           |     |    |        |
| gc:model | 0.84   |        |       |           |     |    |        |
| ratio    |        |        |       |           |     |    |        |

#### HHC vs. CLUSTER Total Flows

| Link          | HHC                  | CI USTER        | Difference    | Difference <sup>2</sup> |
|---------------|----------------------|-----------------|---------------|-------------------------|
| Difference    |                      |                 |               |                         |
| Mean %        | 2.19                 |                 |               |                         |
| Reject/accept | Reject               |                 |               |                         |
| t(df,α/2)     | 2.02                 |                 |               |                         |
| α             | 0.05                 |                 |               |                         |
| df            | 55.00                |                 |               |                         |
| T-calc        | 6.02                 |                 |               |                         |
| SD            | 99.25                |                 |               |                         |
| Mean          | 79.87                |                 |               |                         |
|               | equal to $\mu_D = 0$ |                 |               |                         |
| Ho            | that the mean of the | e differences b | etween paired | samples is              |

| Link |       |       | Difference | Difference <sup>2</sup> | % Difference |
|------|-------|-------|------------|-------------------------|--------------|
|      |       |       |            |                         | _            |
| 37   | 2507  | 2574  | 68         | 4594                    | 3            |
| 48   | 1747  | 1799  | 52         | 2698                    | 3            |
| 58   | 1450  | 1546  | 96         | 9267                    | 7            |
| 90   | 4073  | 4167  | 95         | 8975                    | 2            |
| 150  | 5550  | 5682  | 132        | 17354                   | 2            |
| 201  | 10936 | 11228 | 292        | 85282                   | 3            |
| 202  | 9403  | 9448  | 45         | 1986                    | 0            |
| 204  | 19016 | 19404 | 388        | 150855                  | 2            |
| 205  | 14951 | 15193 | 242        | 58495                   | 2            |
|      |       |       |            |                         |              |

| 231           | 10276  | 10271  | -4   | 19     | 0  |
|---------------|--------|--------|------|--------|----|
| 242           | 0      | 0      | 0    | 0      | 0  |
| 246           | 6118   | 6330   | 211  | 44699  | 3  |
| 269           | 310    | 336    | 26   | 678    | 8  |
| 272           | 12721  | 12901  | 180  | 32374  | 1  |
| 287           | 12721  | 12901  | 180  | 32374  | 1  |
| 291           | 1195   | 1327   | 131  | 17233  | 11 |
| 311           | 392    | 422    | 31   | 938    | 8  |
| 313           | 550    | 577    | 27   | 722    | 5  |
| 319           | 983    | 1102   | 119  | 14126  | 12 |
| 322           | 3711   | 3800   | 90   | 8037   | 2  |
| 330           | 2618   | 2655   | 36   | 1311   | 1  |
| 350           | 1666   | 1669   | 3    | 9      | 0  |
| 354           | 1924   | 1991   | 66   | 4412   | 3  |
| 372           | 1698   | 1698   | 0    | 0      | 0  |
| 386           | 9998   | 9998   | 0    | 0      | 0  |
| 389           | 10191  | 10185  | -6   | 37     | 0  |
| 391           | 84     | 80     | -4   | 20     | -5 |
| 392           | 84     | 80     | -4   | 20     | -5 |
| 393           | 10845  | 10893  | 48   | 2282   | 0  |
| 395           | 21500  | 21895  | 395  | 156018 | 2  |
| 396           | 17985  | 18325  | 340  | 115614 | 2  |
| 397           | 11857  | 12037  | 180  | 32407  | 2  |
| 399           | 12658  | 12810  | 152  | 22982  | 1  |
| 404           | 698    | 698    | 0    | 0      | 0  |
| 405           | 2521   | 2598   | 76   | 5846   | 3  |
| 406           | 988    | 1012   | 24   | 566    | 2  |
| 408           | 2901   | 2901   | 0    | 0      | 0  |
| 409           | 9568   | 9608   | 40   | 1588   | 0  |
| 410           | 9353   | 9356   | 2    | 5      | 0  |
| 413           | 1647   | 1647   | 0    | 0      | 0  |
| 416           | 3711   | 3800   | 90   | 8037   | 2  |
| 419           | 1182   | 1313   | 131  | 17149  | 11 |
| 420           | 325    | 351    | 25   | 637    | 8  |
| 421           | 2487   | 2544   | 57   | 3266   | 2  |
| 428           | 4633   | 4717   | 83   | 6949   | 2  |
| 432           | 8026   | 8043   | 17   | 301    | 0  |
| 433           | 7280   | 7319   | 39   | 1511   | 1  |
| 435           | 444    | 469    | 24   | 598    | 6  |
| 437           | 148    | 148    | 0    | 0      | 0  |
| 438           | 6799   | 6799   | 0    | 0      | 0  |
| 439           | 2400   | 2400   | 0    | 0      | 0  |
| 441           | 3255   | 3348   | 93   | 85/6   | 3  |
| 442           | 11200  | 11200  | 0    | 16000  | 0  |
| 443           | 4383   | 4513   | 130  | 10800  | 3  |
| 440           | 2018   | 2055   | 30   | 1311   |    |
| 404           | 210490 | 222062 | 0    | 0      | U  |
| <b>201</b> MI | 319489 | 323902 | 4473 | 899024 |    |
| gc:model      | 0.99   |        |      |        |    |

gc:model ratio