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Executive Summary 
 
The Traffic Survey Unit (TSU) manages 40,000 traffic monitoring stations, of which 25,000 are updated 
annually. These counts obtained by TSU play a crucial role in allocation of resources for the maintenance, 
upgrade, and expansion of traffic infrastructure. The need for reliable, edited, and validated traffic count 
data is well acknowledged by the Federal Highway Administration (FHWA) and the American 
Association of State Highway and Transportation Officials (AASHTO).  
 
The research reported here addressed this need by developing a statistically defensible approach to 
achieving spatial continuity of traffic counts as part of the editing and validation process. The deliverables 
include GIS-formatted data that programmatically identify PTC stations that have anomalous counts. We 
also provide information for creating traffic continuity maps. Identification of problem areas is quick and 
reduces the burden on NCDOT staff. 
 
As such, the project will significantly improve the process of validating traffic counts by increasing the 
accuracy of reported counts, by reducing the time delay between data collection and reporting, and by 
making it easy to provide customized reports of traffic counts to NCDOT departments and customers.  
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1. INTRODUCTION  
 
1.1 Purpose 
 
The volume of traffic on North Carolina's 79,043 miles of state roads is of premier importance when it 
comes to allocating resources for the maintenance, upgrade, and expansion of traffic infrastructure. An 
excellent illustration of this comes from considering pavement requirements for Interstate routes. 
Increased traffic on interstates leads to tougher requirements on thickness levels of pavement. More 
specifically, a doubling of traffic volume requires an additional 1-2 inches of pavement, at a cost of 
about $30,000 per lane mile of pavement. Pavement planning cannot proceed without knowledge of 
traffic volume. If traffic volume on an interstate is mistakenly recorded too high, then unnecessary 
adjustments may occur, causing extreme fiscal waste. On the other hand, if traffic volume is mistakenly 
recorded too low, then needed adjustments will not be initiated and the pavement will deteriorate more 
quickly than expected; repair costs exceed rehabilitation costs, so again there is fiscal waste. 
 
The need for reliable, edited, and validated data on traffic volume is clear. As such, the Federal 
Highway Administration (FHWA) and the American Association of State Highway and Transportation 
Officials (AASHTO) have both issued guidelines related to the editing, validation, and analysis of data 
collected on traffic counts. This research project responds to the need by incorporating statistical 
techniques for the purpose of providing improved estimates and measures of uncertainty for annual 
average daily traffic counts.  
 
1.2 Background 
 
Traffic counts play a vital role in many aspects of daily life; they help determine the way people travel. 
Within North Carolina, approximately 25,000 traffic counts were recorded annually on highways for 
the purpose of monitoring flow of traffic during 1998. Counts are used to assess and define the current 
usage of roads in the state and can thus aid in the identification and development of transportation needs 
and plans. The Transportation Planning Branch of the North Carolina Department of Transportation 
(NCDOT) uses these counts in fulfilling its responsibilities of identifying long-range transportation 
needs for the state and for providing assistance to Metropolitan Planning Organizations (MPOs) as 
they respond to needs within their own areas of the state. The latter is accomplished through a 
comprehensive, coordinated, and cooperative transportation planning process between these agencies that 
is directly supported by the volume count data provided by the NCDOT. Additionally, volume counts 
are published annually and are also available by calling a dedicated traffic count hotline. 
 
Traffic counting programs are housed within the Traffic Survey Unit (TSU) of NCDOT's Statewide 
Planning Branch. Two programs monitor traffic volume: the Coverage Count Program—PTC (also 
known as short-term volume counts) and the Continuous Volume Count Program—ATR.  
 

Short-term volume counts are produced by inexpensive portable traffic counters (PTCs) 
that are rotated through the more than 40,000 PTC stations across North Carolina.  A 
PTC is installed at a station for a minimum of 48 hours and a maximum of 72 hours 
between Monday morning and Friday noon.  The counter records the number of axle 
pairs (two axle hits = 1 axle pair) that cross a pneumatic tube sensor in daily totals for 
two to three days.  This type of counter captures axle pair counts, not the volume count 
data needed for later analysis.  Consequently, axle adjustment factors are used to convert 
daily axle pair counts to daily volume counts to account for vehicles in the traffic stream 
with 3 or more axles.  Axle adjustment factors are the ratio of total traffic volume to the 
corresponding total number of axles divided by two.  These are generated from vehicle 
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classification counts where the number of axles for each vehicle is known.  These counts 
are more costly to collect and a factor generated at a single vehicle classification station 
is used at many PTC stations.  The second adjustment performed transforms the daily 
volume counts to annual average daily traffic (AADT) volumes.  This adjusts for 
seasonal variation typical for a location and provides a consistent measure of traffic 
regardless of the day of week or month the data was collected.  This adjustment is 
performed using seasonal adjustment factors developed from continuous count 
monitoring stations operated by the NCDOT.  
 
Continuous volume counts are produced by automatic traffic recorders (ATRs) that have 
sensors embedded in the pavement.  ATRs provide continuous hourly volume counts for 
each lane of travel at a station.  As such, ATRs serve a critical role for explaining the 
variability observed in traffic counts due to time of day, day of week, and month of year.  
Data is screened to identify typical travel patterns at each station and stations with 
common patterns are clustered to generate ATR Groups.  Seasonal adjustment factors are 
generated for these groupings of ATR stations to provide a basis for factoring counts 
collected at PTC stations.  Unfortunately, the cost of installing and maintaining ATRs 
limit this program to a sampling of stations (100 total) across North Carolina. 

 
Traffic counts produced by the more than 40,000 PTC and the 100 ATR stations must be edited and 
validated to achieve consistency over time and across space. Prior to this project, the process required 
manual and visual comparison of current counts to counts from previous years and neighboring 
stations. If a count was considered unusual, it was often modified to make it more similar to 
neighboring counts. This process was very slow, was prone to individual subjectivity and bias, and 
encouraged excessive manual adjustments to counts. Improvements to this process can help those 
performing the editing and validation as well as those using the resulting data. 
 
  
1.3 Problem Definition 
 
Prior practice within NCDOT for editing and validating count data was to manually and visually calibrate 
traffic count data from each of the more than 40,000 counting stations with values from neighboring 
stations. Counts that were not consistent with their neighbors were often manually adjusted to achieve 
consistency. Deficiencies of this process include, but are not limited to, the following. 
• There was subjectivity in deciding when a count needs to be manually adjusted. 
• If a manual adjustment was needed, there was subjectivity in determining the amount of manual 

adjustment needed. 
• The process encouraged excessive manual adjustments to counts that were not totally in line with their 

neighbors but were still within the level of variability of the data. 
• It took a year to complete the process. 
• Because the process was so slow, the window of opportunity for performing recounts of questionable 

data was often missed, so ad hoc manual adjustments were made. 
• The process did not realize the recommendations from FHWA and AASHTO to incorporate spatial 

analysis. 
The problem, and reason for this research project, was that NCDOT's process of editing and validating 
count data needed improvement to address the deficiencies listed above. 
 
This report documents our system for objectively improving the editing and validation process for PTC 
counts in light of spatial patterns. The next subsection reviews related literature. Section 2 of this report is 
a general overview of research methodology for all tasks, while implementation details for all tasks are 
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provided in Section 3 with even more details (including computing code) provided in Appendices 1 to 12. 
Findings and conclusions are given in Section 4, and recommendations are made in Section 5. 
Technology transfer is discussed in Section 6 and references (cited and bibliography) are given in 
Sections 7 and 8. 
 
  
1.4 Literature Review 
 
The literature on traffic data editing and validation is very sparse, even though the need for such 
practices is universally recognized. Albright (1991) argues that different agencies have developed 
independent data collection and analysis procedures, where the emphasis has been on application of 
professional judgment. While this emphasis has been helpful when the professional is truly 
knowledgeable of specific roadway operational characteristics, it has also resulted in data inconsistency 
and lack of comparability. Albright (1991) subsequently proposed four principles for the development of 
national standards: base data integrity, measurement edits, consistent computation, and truth-in-data. 
 
Truth-in-data is also a basic tenet in the AASHTO Guidelines for Traffic Data Programs, which will later 
be referred to as The Guidelines. Truth-in-data is described as “the disclosure of practice and estimate of 
data variability” that is “central to the Guidelines to ensure appropriate data quality and use” (AASHTO 
1992, p. 8). The Traffic Monitoring Guide (FHWA 2001, p. 3-27) goes on to say  

Subjective editing procedures for identifying and imputing missing or invalid data are 
discouraged, since the effects of such data adjustments are unknown and frequently bias 
the resulting estimates. … Truth-in-data implies that agencies maintain a record of how 
data are manipulated, and that each manipulation has a strong basis in statistically 
rigorous analysis. Data should not be discarded or replaced simply because “they didn't 
look right.” Instead, each State should establish systematic procedures that provide the 
checks and balances needed to identify invalid data, control how those invalid data are 
handled in the analysis process, and identify when those quality control steps have been 
performed. 

 
The seminal source for specific recommendations on avoiding the subjective input of professionals in the 
editing process is The Guidelines. Their recommendations are given in two chapters: Chapter 4—Editing 
Traffic Data, and Chapter 8—Quality Control. Data edits result from the three broad validity concerns of 
machine malfunction, non-representative observations (data collected on holidays are atypical with 
respect to “usual” traffic patterns), and consistency with respect to other data collected over time and 
across space. The need for spatial consistency is the main topic of interest in this proposed research. 
 
The Guidelines provide examples (using real data) of various data editing scenarios and make several 
recommendations: 
• Traffic counts should be edited in context. The context is defined for some data by extensive histories, 

and for other data by other counts and land use information on the same roadway. (p. 38) 
• Editing criteria should be as objective and nonjudgmental as possible. They may be based on expert 

judgment and experience, but should be capable of being reduced to algorithmic form so they can be 
programmed for computer editing of datasets. (p. 89) 

• A specific standard should be established for the time between collection of field data and its 
submittal, tabulation and editing. This will ensure assessment in time for meaningful corrective action 
to take place, if necessary. (p. 89) 

• If a traffic count is inconsistent with another traffic count during the same period on the same 
roadway, and no explanation of the count variance can be provided based on land use, the related 
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count should not be accepted for summarization until another count can be taken and compared. (p. 
36) 

• When there are inconsistencies, counts should also be initiated on the adjoining segments to confirm 
the validity of all counts. (p. 36) 

• As states develop traffic data programs, computational methods for traffic statistics should be 
automated in a way that does not permit imputation. (p. 37) 

• For states that currently employ imputation techniques: 
o The difference must be maintained between traffic measurements and imputed values. (p. 37) 
o Agencies should clearly document the method they used to impute missing values. (p. 37) 
o The extent of imputation in reported traffic summary statistics should be documented. (p. 37) 

 
Several other articles offer insights on traffic data. Claramunt et al. (2000) propose a method for the real-
time integration, manipulation, and visualization of urban traffic data. Their methods are based on 
observing the movements of several vehicles in space, or by observing changes in urban network 
properties. They do not address issues related to data editing or statistical modeling. Cunagin and Kent 
(1998) investigate the importance of traffic data variability on the reliability of traffic projections for 
pavement design. These activities are based on expressions for traffic data variability and the AASHTO 
reliability concept for pavement design. 
 
The literature on spatial statistical modeling of traffic count data for the purpose of validating the 
counts is nonexistent. However, the level of activity in spatial statistical modeling is very high and 
applications are being forged in many areas. Xia et al (1999) come very close in that they developed a 
model for estimating AADT for non-state roads by using some of the same attributes that we used for this 
project. They do not, however, use their model to validate count data and they do not investigate the 
spatial correlation structure. 
 
Finally, the literature is replete with articles that investigate the development of seasonal factors, 
either based on functional classifications or on cluster analysis methods. The findings very strongly 
support the need for seasonal adjustments of short count volume data. Sharma et al. (1996) find that 
estimation errors are very sensitive to the assignment of stations within clusters. Mohamad et al. (1998) 
use multiple regression to incorporate relevant demographic variables such as population, state highway 
mileage, per capita income, and the presence of interstate highways. Hu et al. (1998) use a simulation 
study to assess the bias, relative to continuously monitoring a site, of seasonally adjusting a short count. 
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2. RESEARCH METHODOLOGY AND ITEMIZED TASKS 
 
2.1 Research Objectives 
 
The goal of this research was to create a statistically defensible process for editing and validating traffic 
count data to achieve spatial continuity, and to automate this process in a GIS environment.  
 
The following research objectives were established to ensure achievement of the aforementioned goal: 
1. to learn from the experiences of other states where similar projects have already been established, 
2. to gain familiarity with computing and database platforms at NCDOT and other local state agencies 

so that implementation and technology transfer will be as seem-less as possible, 
3. to obtain and thoroughly explore NCDOT's count data, axle adjustment factors, seasonal adjustment 

factors, station locations, station classifications, and any other information that will aid in explaining 
the variability in the count data, 

4. to develop a statistical model for characterizing the spatial continuity of traffic counts, 
5. to obtain predictions and prediction intervals for traffic counts, 
6. to display predicted traffic counts on primary routes for creating “traffic continuity” maps, 
7. to identify and display anomalies in individual station counts so that various levels of “extremeness” 

can be recognized, 
8. to identify and display anomalies in regional traffic counts for the purpose of highlighting regional 

changes in traffic flow, and 
9. to support a continuous review process throughout the year, and 
10. to investigate the feasibility of a statistical model that simultaneously characterizes spatial continuity 

of counts and performs seasonal adjustments. 
 
Objectives 4 and 5 were primarily accomplished using advanced statistical modeling, while objectives 6, 
7, and 8 were primarily dependent on GIS methodologies. However, success of this project depended on 
inter-weaving several methodologies from the two broad areas of statistics and GIS. Specifically, 
development of the statistical methods required full integration of GIS tools, and, even though the final 
products will be presented in a GIS environment, they are based on statistical methodologies. In other 
words, the statistics and GIS have been fundamentally linked. 
 
 
2.2 Task 1: Further Review of Methods, Data, and Computing Options (Objectives 1, 2, 3) 
 
Primary Components: 
a. Review published literature. 
b. Learn about practices and plans from other states. 
c. Learn about computing options at NCDOT and other local state agencies. 
d. Obtain and explore data. 
 
Task Description: 
a. & b. An exhaustive search of the literature and transportation research repositories for related articles 

guaranteed that this project did not amount to reinventing the wheel. This search was not limited to 
transportation related sources but also examined articles on spatial modeling and prediction of counts 
when covariates are available. This search investigated options for dealing with spatial data that does 
not clearly fall in any of the three typical categories of geostatistical, lattice, or point process.  

 
More specifically, as of September 30, 2001, Tae-Young Heo and Jacqueline Hughes-Oliver completed 
reviews of 21 papers from sources such as Journal of Transportation Engineering, Transportation 
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Research Record, Journal of Transportation Planning and Technology, state DOT repositories, and 
other sources. Our literature search included practices from other states (notably Minnesota, Delaware, 
Florida, Iowa, Colorado, and Indiana) and from several other countries (including the UK, Norway, 
Hong Kong, and Canada). Most of these papers, selected because of their stated goal of improving 
estimation of AADT from short count data, focused on optimal ways of determining  seasonal 
groupings or on alternative approaches, such as regression or neural networks, to the widely used 
clustering approach of deriving seasonal factors. Some of these papers also considered optimal 
selection of locations for ATR stations. The regression papers were the only ones that provided 
information of immediate value to this project. Based on the literature it appeared that the following 
variables may have very good power for explaining observed variation in traffic counts, at least for 
ATR data: number of lanes, city population, whether or not access to a road section is controlled, and 
route code. As a result, we included these variables in the exploratory and model development stages. 
 
Between September and December of 2001, Tae-Young Heo and Jackie Hughes-Oliver continued 
reviewing the 1991 dissertation by Chih-Hsu Cheng entitled “Optimal Sampling for Traffic Volume 
Estimation” that was applied to Minnesota’s DOT data. We obtained the data used in Cheng’s study 
and recreated many of the tables and figures. A Bayesian analysis was also completed on this dataset 
for the purpose of learning the Bayesian BUGS software and for assessing the potential impact of a 
Bayesian analysis on this data. We found that the Bayesian and classical approaches gave comparable 
answers when vague priors were used. 
 
The most relevant papers that were reviewed are listed in the bibliography. 
 

c. Based on input from TSU personnel, an informal assessment was completed of computing power 
available to routine users of TSU’s traffic reports. These users include NCDOT departments and city 
and local government agencies.  The assessment provided information crucial for determining how we 
should standardize our primary product to be convenient to the greatest number of users. 
 
The primary product was discussed at the Kick-Off meeting on July 25, 2001 with the original 
intention that it would be software to allow interactive visualization of both the count stations and their 
status of being labeled “extreme” or not as well as traffic continuity maps. At this time, however, 
NCDOT is not able to provide distributable mapping software for interactive visualization of GIS-
formatted data, so we were required to modify our final product. The final product is now GIS-
formatted data that could be used to allow interactive visualization of both the count stations and their 
status of being labeled “extreme” or not as well as traffic continuity maps, provided the user has 
appropriate visualization software. Because the GIS-formatted data will be downloadable from the 
internet and/or distributed via CD-ROM, the only computing equipment required is a PC with internet 
access or a CD drive. In the future, after NCDOT acquires the ability to provide distributable mapping 
software for interactive visualization, the final product of this project can and should be adjusted to the 
original intended format. 
 

d. At the end of axle and seasonal adjustment factors to produce AADT data, the data was made available 
in two formats, plain text and in a GIS environment. This task required far more effort that originally 
anticipated but was very informative for the entire TSU process. Details on this task are provided in 
Section 3.1. 

 
 
2.3 Task 2: Spatial Modeling and Characterization, Using Current Seasonality Adjustments 
(Objectives 4, 5, 7, 8) 
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Primary Components: 
a. Develop and fit spatial model. 
b. Perform model diagnostics. 
c. Obtain predictions and prediction intervals. 
d. Determination of station-specific anomalies and levels of extremeness. 
e. Determination of regional anomalies and levels of extremeness. 
 
Task Description: 
a. & b. & c. With spatially correlated data, prediction at one site is based on a weighted average of 

observations at surrounding sites, where the method of averaging depends on the data type and on the 
correlation structure. Historical data was used to build and validate the model. This phase of the project 
provided various challenges. 
 
First, spatial models are fairly common-place for continuous data, but not for count data of this sort. 
Appropriate distributions needed to be determined, and these decisions impacted how correlation 
between nearby stations was handled. Questions of whether to attempt to transform the data to achieve 
near-normality, how to estimate the model, and how to handle the very large dataset, all needed to be 
addressed. Additionally, the questions of whether to treat each station as an individual spatial location 
or as indexed by the larger road of which it is a part and how to determine distances between stations 
needed to be addressed.  
 
This phase of the project relied heavily on the GIS structure and geo-referencing of the stations. Several 
iterations were required to obtain reasonable results. Programming was in the SAS Software, ArcView, 
and ArcGIS. Detailed information is provided in Section 3.2. 

 
d. & e. Anomaly identification was accomplished using prediction intervals. Detailed information is 

provided in Section 3.2. 
 
 
2.4 Task 3: Automation and GIS Implementation (Objectives 6, 7, 8) 
 
Primary Components: 
a. Program the methods developed in Task 2 for obtaining predictions and prediction intervals. 
b. Program the methods developed in Task 2 for identifying station-specific anomalies. 
c. Program the methods developed in Task 2 for identifying region-specific anomalies. 
d. Program the methods for creating traffic continuity maps. 
 
Task Description: 
Details are provided in Section 3.3. 
 
 
2.5 Task 4: Implementation Guidelines (Objective 9) 
 
Primary Components: 
a. Updating the spatial model in light of new data. 
b. Details on making the software available to other departments within and outside NCDOT. 
 
Task Description: 
a. It is unnecessary and infeasible to update the spatial model every year. When enough new station data 

has been accumulated, say in five year intervals, it is recommended that this project be repeated to 
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update both the mean and covariance models, and hence the prediction intervals. This will ensure that 
prediction intervals do not become dated and they reflect recent changes to the transportation 
infrastructure. The detailed nature of this report will facilitate this updating process. 

b. As explained for Task 1 above, we were required to modify our primary product from what was 
originally intended. The original intention was to create a customized GIS software package integrated 
with the traffic count data that would be distributed to other NCDOT departments, MPO's, and other 
users of the data.  The software would have allowed visualization of the count stations in an interactive 
mapping environment with simplified GIS functions, and it would have displayed traffic continuity 
maps. Our current primary product falls just short of providing visualization software—we instead 
provide the GIS-formatted data that could be used as input to visualization software. The GIS-
formatted data will be downloadable from the internet, and/or distributed via CD-ROM. This report 
contains elements of the type of GIS-formatted data provided to TSU and how this data may be used to 
obtain customizable reports. Details have been provided in Section 3.4.  

 
 
2.6 Task 5: Spatial Modeling and Characterization to Explore Alternative Seasonality Adjustments 
(Objective 10) 
 
Proposed Primary Components: 
a. Develop and fit a spatial-temporal model. 
b. Perform model diagnostics 
c. Create “look up” table of new seasonality adjustments. 
d. Compare new and old seasonality adjustments. 
 
Proposed Task Description: 
These activities will mirror the first two activities in Task 2, except with many additional complications. 
Later steps in this task are predicated by the success of earlier steps in the same task.  
 
Comments: 
This task was never completed, although some preliminary work was done towards it. Given the lengthy 
details in the project due to unanticipated difficulties in obtaining and editing the data, and the fact that 
seasonality adjustment factors were recently updated by another research project within the TSU, it was 
decided that this task would be omitted from the project. This decision was jointly made between 
NCDOT personnel and the project team. 
 
No further references will be made to Task 5 for the remainder of this report. 
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3. ADDITIONAL DETAILS ON COMPLETION OF TASKS 
 
3.1 Obtain and Explore Data, Task 1d 
 
Several people worked diligently to get the data requested for this project. Two early meetings, one after 
the Kick-Off meeting on July 25, 2001 and the other on August 2, 2001, were devoted to discussing data 
needs, availability, and integrity. The four broad categories of data are: 
 
1. PTC count data: actual counts, AADT or seasonally and axle adjusted counts, and non-attributed 

station descriptors such as name of road segment, route type, and county location. 
2. Auxiliary GIS station data and land use data: some “duplicate” non-attributed station descriptor data 

from PTC count data, station locations with respect to the State Plane Coordinate System (which we 
will also refer to as quasi-latitude-longitude locations), data on land use in areas surrounding stations, 
roadway network and associated layers of the shapefile containing road segment attributes such as 
number of lanes, speed limit, or level of access control, and unique identifiers for linking station 
information to census data.  

3. Census data: socio-economic and business indicators of regions surrounding PTC stations. 
4. Distances between PTC stations. 
 
PTC count data are collected and maintained almost entirely by TSU, but they needed extensive cleaning 
before being used in this project.  The remaining data types were either collected by groups external to 
TSU or they were previously unavailable and needed to be calculated from rudimentary knowledge. 
Specifically, auxiliary GIS station data are collected and maintained by the GIS unit within NCDOT, 
while US census-derivative data was obtained from the GIS Unit in NCDOT and land use data was 
obtained from the GIS Unit in NCDOT as a UNC-derivative. Distances between stations had to be 
derived, and this turned out to be a very difficult task. 
 
To ease the immediate burden of handling all the data, and to allow more intelligent decisions of exactly 
what kind of data and level of detail was needed for the entire state, a decision was reached to first 
consider a small five-county section of the state for detailed analysis. This test area consisted of Chatham, 
Orange, Durham, Wake, and Johnston counties. The next four subsections describe steps applied to obtain 
and edit the four data types, while the fifth subsection describes special handling required for obtaining 
data for the entire state, not just the five-county test area. 
 
3.1.1 PTC Count Data 
 
Larry Wikoff, with assistance from Susan Cosper, worked on the logic for extracting the PTC count data. 
The databases were rather large and complex, and many unexpected exceptions occurred. The road 
network (provided and maintained by NCDOT) had undergone a spatial and data integrity review, and 
several corrections and updates had to be made. In November 2001, Larry Wikoff transmitted the PTC 
count data for the test area as a space-delimited text file sent via electronic-mail. 
 
Two extensive edits were required for this dataset. The first set of edits addressed issues described in the 
February 2002 report “Documentation of Data Edits, Queries, and Issues in Reconciliation” submitted by 
Jacqueline Hughes-Oliver and Tae-Young Heo, and included as Appendix 1. Discrepancies between non-
attributed station descriptors in the PTC count data and auxiliary GIS station data, as well as missing 
entries or duplicate station entries within the PTC count data, were resolved. On May 6, 2002, two CDs 
were delivered in response to these data queries. The updated data, and the processes used to create it, 
was discussed in a meeting of the project team on May 16, 2002. Discussion during that meeting led to 
delivery of another CD and two reports, namely “Procedure and Corrections of PTC Data” by Shannon 
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McDonald (included as Appendix 2) and “Data Description for Spatial Study” by Larry Wikoff (included 
as Appendix 3). The data and reports were end-products of extensive cleaning by TSU and the GIS 
contractor, and they supersede all earlier versions. This was a major development in the project. Reaction 
to this development was provided by Shannon McDonald in the June 2002 report “FY2002 GIS Project 
Role and Assessment of Accomplishments and Budget Standing” included as Appendix 4. 
 
The second set of edits was in response to an August 21, 2002 email from Jacqueline Hughes-Oliver and 
Tae-Young Heo. Using a preliminary model that predicted AADT counts as a function of station 
descriptors, GIS data, land use data, and census data, without acknowledging spatial correlations, 55 of 
the 3434 stations within the test area were identified as “outliers” because their AADT counts were not 
well predicted by the preliminary model. The fact that only 1.6% of the stations were flagged 
indicated impressive early success of the project. Nonetheless, it was important to verify the validity of 
the flags raised by these 55 stations. The research team proposed several alternatives for doing this, 
including: 

• Augment the 2000 block-level census data with group-level attributes derived from 1990 block-
group census data. This would provide benefits from a finer scale while retaining a large number 
of attributes per station, thus possibly leading to a more detailed and better predictive model. 
Unfortunately, the updated data was not yet available, so this path was not pursued. 

• Investigate the 55 stations one-at-a-time to understand their unique perspectives. This was done, 
with the following findings: 

o Some stations suffered from time lags or even errors in their route classifications. For 
example, station 0501816 was listed as a local route in the LRS but not in CAD. 

o Some stations had incorrect IDs. For example, station attributes for stations 0910706 and 
1080706 should be switched. 

o Some stations are unusual, but their unusual behavior could possibly be captured by an 
additional attribute that indicates existence within city limits. For example, urban routes 
within city limits might reasonably be expected to have higher volumes than urban routes 
outside city limits. 

o Some stations were incorrectly snapped. (This is a long-standing, already-identified issue 
that can be eradicated only from extensive, one-at-a-time checking of all stations, which 
is not feasible in the context of this project.) 

o Some stations are simply unusual and, short of customizing variables to capture their 
special nature, cannot be adequately modeled using a parsimonious structure. For 
example, some roads are low volume because alternate high-volume routes are available. 

Investigation of the 55 stations revealed several long-reaching inconsistencies with how station data is 
obtained and recorded. Edits to account for some of these issues are thoroughly documented in the 
November 2002 report “Data Edits Determined From ‘List of 55,’” prepared by Shannon McDonald and 
Susan Cosper and included as Appendix 5. The rationale for adding new station attributes as a 
consequence of these edits is provided in “New Urban and Municipal Field Value Assignments and Their 
Relation to Station Locations and the PTC Data Model Process,” written November 2002 by Shannon 
McDonald and included as Appendix 6.  
 
Following the second major update to the PTC count data, a new CD was delivered in October 2002 by 
Shannon McDonald. At this point, only 3,431 PTC stations were retained in the test area dataset because 
three stations were regarded as extremely difficult to predict their AADTs. This represented another 
major development in the project. In the interest of allowing additional progress on the project, the 
research team decided that no further edits would be conducted for the PTC count data of the test area. 
 
3.1.2 Auxiliary GIS Station Data and Land Use Data  
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On November 27, 2001, Erik Brun, Susan Cosper, Jacqueline Hughes-Oliver, Shannon McDonald, Ann 
Strickland, Kent Taylor, and Larry Wikoff met to discuss issues, problems, and concerns that had arisen 
in relation to what kinds of GIS data are relevant and how distances should be calculated. Subsets of Erik 
Brun, Susan Cosper, Shannon McDonald, Kent Taylor, and Larry Wikoff had several subsequent face-to-
face meetings, and the entire group had several detailed electronic and telephone discussions to further 
hammer out the issues. As a result, Erik Brun was able to transmit two related data files on December 19, 
2001: one containing quasi-latitude-longitude locations of all stations; and the other containing count 
data, which consisted of data from the NCDOT Universe Database, land use variables, unique identifiers 
for linking stations to census data, and some road segment attributes such as number of lanes, speed limit, 
and level of access control. 
 
At this point, we now had two sets of PTC count data, and difficulties were encountered in authenticating 
data from these and other sources, including the Universe Database, the LRS road layer, and the complete 
statewide road linework. Details are given in the February 2002 report “Data Edits, Queries, and Issues in 
Reconciliation” of Appendix 1.  A few additional issues not included in the report are: 
• In the five-county test area, three stations have been identified as having questionable values for their 

counties. Station 100 in sips/countyid 50 is currently listed as being in Johnston county, 
county90=163, tract90=9702, and group90=3. However, all other stations in Johnston county have 
county90=101 (not 163) and the census file does not contain a record for the combination of 
county90= 163, tract90=9702, and group90=3. Should this station really be listed as falling in 
Sampson County? This would change variables county, sips and countyid. Or should all of the 
variables county90, tract90, and group90 change for this station? Should station 82 in sips/countyid 
18 have changes in variables county90, tract90, and group90? How about station 679 in 
sips/countyid 91? Several other stations outside the five-county test area also have questionable 
values for these variables. 

 
• Can tract90 take the same value across different counties, that is, is this census variables defined 

within or across counties? For example, tract90=53404 is defined to be in Chatham, Durham, and 
Wake counties. 

 
• The census file contains duplicate records for nine county90-tract90-group90 combinations. In all of 

these cases, one record contained mostly “zero” values for variables. The records containing zero 
values were deleted. For one county90-tract90-group90 combination, both records contained zero 
values and so both records were deleted.  

 
As described in the previous subsection, two major edits were conducted. These edits are detailed in 
“Procedures and Corrections of PTC Data” (May 2002, Appendix 2) and “Data Edits Determined From 
‘List of 55’” (November 2002, Appendix 5). On April 16, 2002, Erik Brun submitted an updated version 
of the file containing count data from the NCDOT Universe Database, land use variables, unique 
identifiers for linking stations to census data, and road segment attributes such as number of lanes, speed 
limit, and level of access control. Additional updated data was received in May 2002, as described in the 
previous subsection. 
 
During steps leading to creation of the “List of 55” outliers, it became apparent that more members of the 
project team needed the ability to individually query count stations for the purpose of identifying and 
understanding key features and deficits of the model. This knowledge would facilitate speedy and 
successful completion of the remainder of the project. As such, the GIS contractor Shannon McDonald 
delivered data and instruction for using NCDOT’s GIS shapefile of PTC count stations. This half-day 
crash course was offered to the statisticians (Jacqueline Hughes-Oliver, Tae-Young Heo, Susan Cosper) 
during July 2002. 
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3.1.3 Census Data  
 
The 1990 census data was received from Erik Brun as a comma-delimited text file on December 19, 2001. 
Census data was available at the group level, so all stations within a particular 1990 census group were 
assigned identical census values. Cross-referencing to this census informations was accommodated using 
the combination of four attributes: state90, county90, tract90, and group90. 
 
We also obtained and experimented with the 2000 census data. At first, we replaced the 1990 census data 
with 2000 census data. This move was considered several months prior, but the research team decided 
that it may be too risky since the 2000 census data had not been completely screened for quality 
assurance. However, the fact that NCDOT’s GIS Unit was working on completing the quality assurance 
for the 2000 census data, coupled with the fact that this 2000 census data was available on a much finer 
scale that would allow increased delineation in the model, encouraged us to replace 1990 census data with 
2000 data for building the model.  Unfortunately, the results offered no improvement beyond the model 
based on 1990 census data. The problem is that while the 2000 block-level census data is available on a 
much finer scale (a good thing), it has far fewer attributes than the 1990 block-group census data (a bad 
thing), thus resulting in a canceling effect that results in no improvement. In addition, some of the 2000 
census blocks were so small that they only included road segments such as major highways. As a 
consequence, they were recorded as having null census values for things like population counts, and this 
affected the performance of predictive models. For these reasons, we discontinued investigations with the 
2000 census data. 
 
Edits to the 1990 census data were conducted along with edits as outlined in the previous two subsections 
for the count and GIS data. Relatively minor edits were needed, as expected, because the 1990 census 
data we chose to work with was quality assured. 
 
3.1.4 Distances Between PTC Stations  
 
Erik Brun and Shannon McDonald worked very hard to track down information for obtaining distances 
between stations. Distances between stations can be determined in a variety of ways. Here we consider 
two distances: point-to-point by straight line and point-to-point by the most likely traveled path. The 
point-to-point by straight line distance is very easy to calculate but is not expected to be particularly 
useful in this project. It is calculated as the simple Euclidean or “as the crow flies” distance using the 
quasi-latitude-longitude locations of the stations; it is the shortest distance between two points. The basic 
premise of a spatial analysis is that stations that are “close” to each other will have similar traffic patterns. 
But closeness is dependent on route connectivity, which is not usually the shortest distance between two 
points. On the other hand, how does one define the most likely traveled path?  
 
On November 27, 2001, Erik Brun, Susan Cosper, Jackie Hughes-Oliver, Shannon McDonald, Ann 
Strickland, Kent Taylor, and Larry Wikoff met to discuss issues related to how distances should be 
calculated. In addition to not having a clear picture of how most-likely-traveled paths should be 
determined, another technical problem was encountered in determining the most efficient strategy for 
storing the required information on distances between stations. The team needed to find an effective 
strategy that would accommodate all 35,000 PTC stations, even though preliminary investigations were 
restricted to a test area of fewer than 3,500 stations. It was after several discussions that we agreed the 
source code approach was the most desirable. This approach was implemented for calculating the point-
to-point by straight-line distances and the C+ source code was received from Erik Brun on December 19, 
2001. These distances were useful for establishing baseline analyses.  
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The more interesting distances, however, are those along the most likely traveled path. Unfortunately, 
there was no universally agreed upon mechanism for determining such paths; we quickly realized that 
determining the distances could be a research project in itself. To complicate matters even more, some of 
the variables needed to determine most likely traveled paths were not even available. For example, much 
effort was expended in discussing route capacities and how these could be valuable in determining path 
preferences. But after further discussions we concluded that capacity would be too difficult to obtain and 
we instead decided to use variables that somehow provide information on, or are strongly related to, 
capacity. These variables include number of lanes, posted speed limit, and whether or not a segment has 
access control. At the time, these variables were included in the NCDOT Universe Database for about 
80% of the stations, but they were absent for more than 10,000 stations. Because 20% missing-ness may 
invalidate the outcome of any statistical analysis, extended effort was applied to “filling in” these missing 
values. While detailed approaches were documented and implemented during 4th quarter 2001, they were 
not yet considered acceptable and work continued in this area. We searched for a much more complete 
Universe Database and/or more acceptable methodologies for filling in missing values. This would in turn 
lead to obtaining the point-to-point distances along the most likely traveled path. It is important to 
mention, however, that certain problems would persist even after the Universe Database was complete. 
Determining number of lanes was problematic because different directions of divided highways are 
entered as separate segments in the database. The consequence is that a segment on a divided highway 
may list the number of lanes as two when it should really be four. These interpretation difficulties cannot 
be avoided given the current setup of the database. 
 
Several members of the research team met on February 21, 2002 to discuss determination of most likely 
traveled paths and their resultant distances. At this meeting, Kent Taylor provided several examples of 
most likely traveled paths and reviewed his reasoning for this designation. Shannon McDonald and Erik 
Brun used these examples as test cases for developing a routine to calculate distances along most likely 
traveled paths. During 1st quarter 2002, Shannon McDonald moved into office space in the same location 
as NCDOT’s TSU and GIS units, and this allowed more efficient communication and faster progress 
towards completion of tasks. Additionally, the Universe Database had now been updated, with one 
consequence being that segment characteristics such as speed and number of lanes were more reliable. 
Details are given in the November 2002 report by Shannon McDonald “Recordings and Methodology To 
Calculating Capacity Variables For Unmatched Stations” in Appendix 7. 
 
A consensus was reached during 2nd quarter 2002 that an optimal approach to determining most likely 
traveled paths was not attainable within the scope, budget and time requirements of this project. Instead, 
an intuitive (albeit ad hoc) approach was pursued. This approach had already been demonstrated to be far 
more effective than the naïve approach initially used to determine most likely traveled paths. 
 
An October 28, 2002 meeting led to improvements in the AML code for determining these distances and 
for avoiding size limits during generation of the resulting very large files. The problems were not 
eliminated, however, and we anxiously awaited arrival of the new dedicated computer that would enhance 
the process of path generation. Shannon McDonald delivered distances for Chatham County in November 
2002 and for Johnston County in December 2002. Distances for Orange County were delivered on 
January 27, 2003, for Durham County on March 14, 2003, and for Wake County on March 24, 2003. 
Files indicating which pairs of stations yielded “bad routes” were received on February 13, 2003, March 
14, 2003, and March 24, 2003. These bad routes were mainly caused by misalignment in the GIS 
network. Inconsistencies found in the bad route files were reported, and these bad routes were 
subsequently replaced with corrected information by April 2003. 
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Most likely traveled paths were complete for the test area by April 2003. After analysis within the test 
area to determine maximum ranges, distances smaller than maximum ranges would be obtained for all 
stations in the entire state. 

 

3.1.5 Scaling to the Entire State  

 

All of the census data, land use data, station locations in State Plane Coordinates, shapefile, number of 
lanes, speed limit and level of access were provided for the entire state at once. PTC count data and 
distances between PTC stations were the only data types that were delivered in phases, first for the test 
area then for the entire state. 

 

Statewide PTC count data was delivered in October 2002. It was very similar in format to the final 
version of the PTC count data for the test area, with one major exception. None of the modifications 
identified from the “List of 55” outliers were applied to this data. This caused some minor difficulties 
during the model fitting stage of the project because some attributes that were important in the mean 
model for the test area were either missing or incorrectly defined in the statewide PTC count data. The 
research team concluded that the slight degradation in the quality of the model was worth avoiding 
additional excessive delays in getting the data more complete. These details will be addressed when the 
models are updated in the future. 

 

Distances between PTC stations for the entire state were delivered on September 30, 2003. A 100-mile 
buffer was used in that most likely traveled paths were determined only for station pairs that were less 
than 100 miles apart in Euclidean distance. Covariance model estimates from the test area indicated that 
effective spatial ranges were always much less than 100 miles, so allocating resources to determining 
distances beyond 100 miles would have been inefficient. Station pairs outside this buffer were assigned a 
distance of 100 miles. The following is a quote from Larry Wikoff on the generation, format and size of 
the resulting distance file, 

“- Using a program written by Bill Miller of GIS, the statewide text file has been merged with the 
Interstate-US text file, tossing out records with duplicate combinations of the FromStation and 
ToStation fields, and including only the fields for FromStation, ToStation, Distance, and Cost. 
- The merged text file has been sorted by FromStation and ToStation and written to Sorted.txt.  It 
has 222,426,128 records, and is about 7.9G in size.” 

The resulting file was so large it had to be delivered on a computer. This computer was then used by Tae-
Young Heo for the remainder of the project since he needed to continue accessing the file of distances 
during the modeling steps. “ToStation” is the UNIQ_ID for the originating point of the path, while 
“FromStation” is the endpoint of the path. Order was ignored in creating this file, so the record for station 
pair (1,2) also served as the record for station pair (2,1). Although this was a natural (and wise) thing to 
do, it was not without its problems. Stations lying on one-way roads might have a short distance when 
traveling from A to B but have a long distance when traveling from B to A. We ignored such problems. 
 

Distances between PTC stations where both stations are on primary road segments were delivered 
February 6, 2004. Primary road segments can be either interstate, US, or NC routes. To obtain these 
distances, a primaries-only road network was created, and most likely traveled paths were limited to only 
traversing primary routes. This file was also subjected to a 100-mile buffer. The file was made accessible 
by ftp, with file size of 523 MB and 14,686,050 records.  

 
 
3.2 Spatial Modeling and Characterization, Using Current Seasonality Adjustments, Task 2 
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Spatial modeling provides two component models, the mean model and the covariance model. The mean 
model explains variability in expected AADT as a function of systematic variations (e.g., route type, 
speed, number of lanes, land use in surrounding area, census information, etc.). For example, the mean 
model might explain how AADT increases or decreases according to whether the PTC station is located 
on an interstate or on a local road segment. On the other hand, the covariance model explains the amount 
of linear relationship that exists between AADT counts for two stations, where the strength of the 
relationship is usually a function of spatial proximity of the two stations. For example, two stations 
located 2 miles apart on an interstate might be expected to be more related than two stations located 20 
miles apart on the same interstate. 
 
The original intention of the principal investigator Jacqueline Hughes-Oliver was to fit a spatial model 
using a likelihood approach that would simultaneously estimate both the mean model and the covariance 
model. This was not possible for two major reasons: 

1. There were significant delays in obtaining the data. A joint approach would require all the data, 
including distances between stations. While point-to-point by straight line distances were easy to 
obtain, they were not appropriate for this project. The more appropriate point-to-point by most 
likely traveled path distances were not complete for the test area until April 2003. We could not 
wait until then before beginning work on Task 2. 

2. Size of the dataset (approximately 35,000 PTC stations) exceeded the capabilities of all software 
options for joint modeling. Even the test area data, which only contained 3,431 PTC stations, was 
too large. Not even the SAS system, which is well known for being able to handle large files, 
could accommodate the file for the kind of analyses we needed. The major difficulty came from 
needing to repeatedly calculate inverses and determinants of n x n matrices, where n is the 
number of stations. These matrices were functions of the point-to-point by most likely traveled 
path distances that needed to be stored since they could not be quickly calculated as needed in a 
just-in-time manner. 

 
Although the joint modeling approach is generally considered to be optimal, the so-called estimated 
generalized least squares or variogram approach is also quite popular and effective. In this approach, one 
first estimates the mean model, applies it to obtain residuals (actual AADT counts minus mean-model-
predicted AADT counts) for all stations, uses the residuals to estimate the covariance model, and then 
combines the estimated mean and covariance models to obtain predictions for each station. New residuals 
could then be obtained to iterate the process of estimating the covariance model, but this is not commonly 
done. Because of the limitations listed above, we use the estimated generalized least squares approach to 
separately estimate a mean model and a covariance model, as outlined in the following four subsections. 
The fifth subsection explains how we obtained predictions and prediction intervals to determine station-
specific anomalies and levels of extremeness. 
 
3.2.1 Mean Model for Test Area 
 
The July 2003 report “Determining the Final Mean Model for the 5-County Test Area” by Jacqueline 
Hughes-Oliver and Tae-Young Heo (Appendix 8) details the fitting process. We provide a summary here. 
 
We performed multiple linear regression using summarized census information and PTC station 
attributes. All programming was done using SAS/STAT® software, Version 8 of the SAS System for 
Windows. Copyright, SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are 
registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA.  
 



Hughes-Oliver, Heo, McDonald  July 2006 

 

A Spatial Editing and Validation Process for Short Count Traffic Data 
 

— 22 — 

Of the more than 300 possible attributes, the final mean model for the test area included only 60 
attributes, five of which were summaries of the census data. Table 1 shows the attributes that contributed 
to the different census summaries, as obtained from principal components analysis using the varimax 
rotation of components from the covariance matrix. Factors were defined according to the largest absolute 
rotated coefficient. 
 

Table 1: Summary of Rotated Principal Components Retained for Test Area 

Principal 
Component 

% 
variability 
explained 

Attributes in Factor (- means negative impact on component, 0 means 
negligible impact on all components). Attribute names are explained in 
Appendix D of Appendix 8. 

Factor2: 
Single 

9.03 APARTMNT, ROOM_1_3, RNT_2550, ONEPERHH, RNT_5075, 
VEHICL_1, SEASONAL, PUBSEWER, INC_1525, ATTACHED, 
DUPLEX 

Factor3: 
College 

7.13 AGEIS_20, COLLEGE, AGE18_19, DORMITOR, SINGLE_, 
SAMESTAT, AGE21_24, ASIAN, ABLEENGL, AMIND, 
OTH_HEAT, O_NOINST, INSTREET, MENTAL 

Factor4: Poor 5.05 CHILDPOV, NOVEHICL, RNT_LT25, PUBL_INC, INPOVRTY, 
BLACK, SINGWICH, INC_LT15, NODIPLOM, PUBTRANS, 
VAL_2550, INCPRCAP(-), INC_MEDN (-) 

Factor5: Farm 
Life 

3.10 LAND_KM, COALWOOD, BOTL_GAS, FARM_INC, VAL_LT25, 
F_MIGRNT, WATER_KM, RNT_MEDI (-), POPDEN (-), 
HOUSEDEN(-), HOUSHOLD (-), FAMILIES (-) 

Factor6: 
Elderly 

2.52 AGE65_74, AGE75_84, SOCS_INC, WIDOWED, RETI_INC, 
FUELKERO, BLTBFR70, NURSHOME, MEDYRBLT, O_INSTIT(0), 
SHELTERS(-) 

Factor7: 
Wealthy 

1.79 VAL_2C3C, VAL_GT3C, RNT_751K, RNT_GT1K, VAL_MEDI, 
CORRINST(-) 

Factor1: Other 48.25 This component includes all other attributes, including middle income 
families with and without children and those who are employed. 

 
Table 2 summarizes all 60 attributes appearing in the final model. “Baseline attributes” may be regarded 
as having coefficient zero. Positive coefficients imply that AADT increases as the attribute increases, 
while negative coefficients imply AADT decreases as the attribute increases. The best model required a 
power transformation of AADT, namely (AADT)0.2. Diagnostics for this transformation indicated that the 
normality assumption was reasonably well supported. Therefore, the regression analysis actually modeled 
(AADT)0.2 as a function of systematic variants. R-squared for this model was 0.7766, with Mallow’s Cp 
of 31.1. 
 

Table 2: Summary of Attribute Effects in Mean Model for Test Area 

Category 
Baseline attribute. Other attributes ordered by coefficients, from largest to smallest, 
with “|” indicating a sign change 

Census data Factor1, Factor2, Factor7, Factor3 | Factor5 
Route classification Local. Interstate 
County—urban # Wake—108. Orange | Johnston, Durham—103  
Lanes-by-route 
interaction 

8—US. 8—interstate | 4—SR, 2—NC, 2—US, 2—SR, 2—local  

Speed-by-route 
interaction 

70—interstate. 55-US | 55—interstate, 25—SR  

Lanes-by-speed-by-
route interaction 

8—65—interstate. 4—55—NC, 8—45—US, 2—25—SR, 2—45—US, 6—65—
interstate, 6—45—US, 4—45—US | leftover, 2—55—SR, 4—35—NC, 3—35—
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US, 6—35—SR, 8—60—interstate, 3—35—SR, 3—30—SR  
Counting cycle-by-
road surface interact 

Variable—concrete. Odd—soil, variable—asphalt, annual—asphalt, even—
concrete, variable—concrete, even—soil, odd—concrete  

Access control High, i.e., interstate. | Medium 
Year 2001. | 1999, 1998 
Month Missing. November | February, June, January, May 
Day Missing. | Thursday 
Land use Transitional. Other Ag Land, Indust & Comm Complxs, Trans Comm Util, Comm 

& Services, Mxd Urban or Built-up | Residential, Shrub & Brush Rangeland 
City & urban 
location 

City—minor urban. City—major | city—outside, outside—major, outside--outside 

 
 
3.2.2 Mean Model for Entire State 
 
The March 2005 report “Determining the Final Mean Model for the Statewide Area, Version 2” by 
Jacqueline Hughes-Oliver and Tae-Young Heo (Appendix 9) details the fitting process. We provide a 
summary here. 
 
Again, we performed multiple linear regression using summarized census information and PTC station 
attributes. All programming was done using SAS/STAT software.  
 
Of the approximately 550 possible attributes, the final mean model for the entire state included only 178 
attributes, five of which were summaries of the census data. Table 3 shows the attributes that contributed 
to the different census summaries, as obtained from principal components analysis using the varimax 
rotation of components from the covariance matrix. Factors were defined according to the largest absolute 
rotated coefficient. 
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Table 3: Summary of Rotated Principal Components Retained for Statewide Area 

Principal 
Component 

% 
variability 
explained 

Attributes in Factor (- means negative impact on component, 0 
means negligible impact on all components). Attribute names are 
explained in Appendix D of Appendix 8. 

Factor1: With 
Kids 

44.68 BORNWEST, OTH_STAT, HISPANIC, ARMDFORC, 
AGE21_24, COM_LT15, ABLEENGL, BORNMIDW, 
MILIQUAR, BORNSOUT, WORKERS, MALE, WRK_HOME, 
WRKINCTY, AGEIS_20, AGELT_05, CARPOOL, SINGLE_, 
AGE25_34, AGE05_09, NATIVE, AGEGE_03, AGEGE_16, 
BORNNORT, ONLYENGL, ASIAN, ATTACHED, MARRWICH, 
AGE18_19, SOMECOLG, NATURAL_, INC_1525, MARRIED, 
WHITE, BLACK, ELEMSCND, PREPRIMA, PERINFAM, 
AGE10_14, PRUNIT34, SEPARATE, RNT_2550, DRVALONE, 
HIGHSCHL, COM_1529, VEHICL_1, ROOM_4_6, ELECTRIC, 
WAGE_SAL, VEHICL_2, AGE35_44, UNEMPLOY, 
PUBSEWER, COLLEGE, BLTBFR70, INC_2535, PUBWATER, 
CHILDPOV, AGE15_17, DUPLEX, PUBLWORK, APARTMNT, 
OTH_HEAT, PUBTRANS 
Note that this component includes middle income families with 
children. 

Factor2: No Kids 13.41 PRIVWORK, EMPLOYED, OWNR_OCC, AGE45_54, 
TECHSALE, TRADE, MARRNOCH, PRUNIT12, INC_5075, 
INC_3550, EXECPROF, UTILITY, SELF_INC, VAL_501C, 
SERVICES, FIRE, SERVICE, DETACHED, BLTAFT84, 
AGE55_64, INTE_INC, BLT_8084, SAMEHOUS, BORN_INS, 
PROFSERV, ONEPERHH, BLT_7079, SELFWORK, COM_3044, 
MANUFACT, SAMECNTY, PRIMARY_, VAL_1C2C, 
COLGGRAD, RETI_INC, WRKEXCTY, ROOM_1_3  
Note that this component includes middle income families with no 
children. 

Factor3: Poor 6.98 PUBL_INC, NOVEHICL, INC_LT15, RNT_LT25, INPOVRTY, 
SINGWICH, VAL_LT25, NODIPLOM, AMIND, RNT_MEDI(-), 
VAL_MEDI(-), INCPRCAP(-), INC_MEDN(-) 

Factor4: City Life 5.29 FAMILIES, HOUSHOLD, HOUSEDEN, POPDEN, PUBL_GAS 
SHELTERS, F_MIGRNT(-), BOTL_GAS(-), FARM_INC(-), 
COALWOOD(-), LAND_KM(-) 

Factor5: Elderly 2.26 AGE75_84, AGE65_74, WIDOWED, SOCS_INC, FUELKERO, 
NURSHOME, MEDYRBLT, O_INSTIT 

Factor6: Wealthy 1.88 RNT_751K, VAL_GT3C, VAL_2C3C, RNT_5075, RNT_GT1K, 
SEASONAL, WATER_KM, INSTREET(0), VAL_2550(-) 

Factor7: Unstable 1.64 DORMITOR, SAMESTAT, MENTAL, CORRINST, O_NOINST 
 
Table 4 summarizes all 178 attributes appearing in the final model. “Baseline attributes” may be regarded 
as having coefficient zero. Positive coefficients imply that AADT increases as the attribute increases, 
while negative coefficients imply AADT decreases as the attribute increases. The best model required a 
power transformation of AADT, namely (AADT)0.15. Diagnostics for this transformation indicated that 
the normality assumption was reasonably well supported. Therefore, the regression analysis actually 
modeled (AADT)0.15 as a function of systematic variants. R-squared for this model was 0.7287, with 
Mallow’s Cp of 174.2. 
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Table 4: Summary of Attribute Effects in Mean Model for Statewide Area 

Category 
Baseline attribute. Other attributes ordered by coefficients, from largest to smallest, 
with “|” indicating a sign change 

Census data Factor4, Factor2, Factor1, Factor6 | Factor3 
Route classification Local. Interstate, US, SR 
County—urban # Yancey. Brunswick—109, Orange, Mitchell, Franklin, Guilford—107, Haywood, 

Brunswick, Hertford, Catawba, Wake, Northampton, Caldwell—114, Lenoir, 
Cabarrus—111, Richmond, Wake—108, Harnett—104, Lincoln, Onslow—112, 
Orange—101, Wilkes, Caldwell, Macon, Carteret, Pamlico, Forsyth, Rowan—111, 
Cabarrus, Burke—114, Burke, Davison, Cumberland—104, Durham—103, Vance, 
Pork, Swain, Jones, Hyde, Johnston, Catawba—114, Rockingham, Randolph—
107, Gaston—105, Craven, Davison—107, Pitt, Yadkin, Buncombe, Henderson, 
Chatham | Scotland, Beaufort, Wayne, Robeson, Alamance—101, Rutherford, 
Pitt—115, Stokes, Tyrrell, Currituck, Avery, Bladen, Guilford, Chowan, 
Transylvania, Nash—116, Warren, Cherokee, Washington, Bertie, Caswell, Ashe, 
Camden, Lee, Harnett, Hoke, Madison, Edgecombe, Pasquotank, McDowell, 
Montgomery, Clay, Onslow, Randolph, Dare, Edgecombe—116, Union, Iredell, 
Graham, Granville, Moore, Martin, Anson, Alleghany, Guilford—106 

Lanes-by-route 
interaction 

12—interstate. 8—interstate, 6—NC, 5—SR, 4—NC, 4—SR | 3—US, 2—NC, 2—
US, 2—SR, 2—local, 1—SR   

Speed-by-route 
interaction 

70—interstate. 45—SR, 35—SR | 50—interstate, 55—NC, 40—US, 35—NC, 
60—US, 25—NC, 20—SR, 20—US, 25—local 

Lanes-by-speed-by-
route interaction 

12—55—interstate. 2—20—US, 2—25—local, 6—50—US, 6—65—US, 5—45—
SR, 4—55—SR, 4—60—NC, 2—50—SR, 3—55—NC, 3—45—US, 6—55—US, 
4—55—NC | 4—45—NC, 2—60—US, 3—35—US, 2—25—US, 8—45—US, 
8—60—interstate 

Counting cycle-by-
road surface interact 

Variable—soil. Variable—Asphalt, Annual— Asphalt, Annual— Concrete, 
Variable— Concrete, Even— Concrete, Even— Soil, Odd— Concrete, Odd— 
Soil 

Access control High, i.e., interstate. | Medium 
Year 2001. | 2000 
Month Missing. | October, January, June, November, July, May, September, August 
Day Missing. | Monday, Thursday 
Land use Transitional. Sandy Area (Non-Beach), Other Agricultural Land, 

Trans,Comm,Util, Indust & Commerc Cmplxs, Comm & Services, Other Urban Or 
Built-Up, Industrial | Forested Wetland, Evergreen Forest Land, Mixed Forest 
Land, Cropland And Pasture, Deciduous Forest Land, Confined Feeding Ops, 
Shrub & Brush Rangeland 

Urban location? Urban. | Rural 
 
 
3.2.3 Covariance Model for Test Area 
 
Using residuals from the mean model obtained for the test area, we estimated the covariance structure by 
first obtaining the empirical variogram. Let iy  represent (AADT)0.2 for the ith station, iŷ  represent the 

predicted (AADT)0.2 as obtained from the mean model, iii yye ˆ−=  be the residual for the ith station, and 
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i ranges from one to the sample size of 431,3=n  for the test area. Then the empirical variogram is a 
function of the distance between two stations and is obtained as 

∑
+

−=
+

+
)(

2)(
|)(|

1
)(ˆ2

hN
ji ee

hN
hγ , 

where the sum is over all ),( ji  pairs of stations that are h units apart and |)(| hN+  is the number of such 
pairs. For irregularly spaced locations, as is the case for the PTC stations, the variogram estimator is 
usually smoothed to address the fact that stations typically are not separated by a small number of distinct 
distances. The smoothed empirical variogram estimator, which is our default estimator, is defined as a 
function of ))(( lhTh ∈ , where the region ))(( lhT  is some specified “tolerance” or buffer region around 

)(lh , for kl ,,1…= . The equation is 

∑ −=
)(

2)(
|)(|

1
)(ˆ2

hN
ji ee

hN
hγ , 

where )(hN  represents the set of ),( ji  pairs falling in ))(( lhT .  
 
 
The empirical variogram estimates the true variogram 

)var()(2 ji eeh −=γ  

for stations i and j that have distance h units between them, where “var” represents variance. Having 
obtained empirical variograms, we then used both unweighted (ordinary) and weighted nonlinear least 
squares to fit several theoretical variograms, from which we selected the best fit. All programming was 
done using the SAS software. The effective range of a theoretical variogram model is defined as the 
distance at which the variogram increases 95% from its minimum nonzero value to its maximum possible 
or asymptotic value. This may be interpreted as the distance at which spatial correlation is ignorable or 
even zero. In other words, the effective range is the distance at which spatially recorded measurements 
may reasonably be regarded as nearly, if not completely, independent. As such, effective range is an 
important parameter to be estimated for any theoretical variogram model. Partial sill is the change in 
variogram between its maximum (or asymptotic) value and minimum non-zero value; a small partial sill 
indicates weak dependence or possibly independence. The nugget is the minimum non-zero value of the 
variogram, with variance being the sum of nugget and partial sill.  
 
Under an assumption of weak stationarity, the covariance structure may be determined from the 
variogram using 

),cov(2)var(2)(2 jii eeeh −=γ , 

where “cov” represents covariance. Weak stationarity assumes that any pair of sites separated by distance 
h will have the same covariance, irrespective of their actual locations. But is this a reasonable 
assumption? Two stations five miles apart on an interstate might well be more correlated than two stations 
five miles apart on a non-interstate road segment. If nonstationarity is an issue, can it be adequately 
addressed by choice of distance metric? Tae-Young and Jacqueline Hughes-Oliver investigated several 
options of distance metrics. 
 
Euclidean Distances Are Not Appropriate. In lieu of the complete set of distances along most likely 
traveled paths (which were not yet available), Tae-Young Heo obtained sub-optimal road distances for 
subsets of stations and used these distances in modeling spatial structure. This work was conducted 
during 3rd quarter 2002. We classified our “road distances” as sub-optimal because they were based solely 
on route lengths, not likelihood of route selection. By taking this simplified approach, we were able to 
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conduct a preliminary investigation of our prior assumption that Euclidean distances would not be 
acceptable for building the covariance model.  
 
Fitted theoretical variograms obtained using both Euclidean and road distances resulted in estimates as 
shown in Table 5. Using Euclidean distance, both the partial sill and effective range are estimated very 
small. As previously discussed, small partial sill and effective range indicate weak dependence or 
possibly independence. Both the partial sill and effective range are much larger when obtained from road 
distances. The summary is that Euclidean distances obscure correlation structure because of the manner in 
which they group pairs of stations.  
 
Table 5. Parameter estimates for the exponential variogram fitted by nonlinear ordinary least squares to 
interstate stations in the test area based on both Euclidean and road distances. 

Distance Partial Sill Effective Range Nugget 
Euclidean 0.0701 0.9243 miles 0.2281 
Road 0.3821 3.7778 miles 0.249 

 
To understand how this happens, consider Figure 1 where we display locations of all 82 interstate stations 
of the test area. More specifically, consider station pairs (1,2), (2,3) and (1,3) on the I-440 beltline. 
Existing evidence supports the belief that because station pairs (1,2) and (2,3) are about the same driving 

distance of x meters apart, their values of 2
21 )( ee −   and 2

32 )( ee −  will be similar. As the same time, 

the driving distance between stations 1 and 3 is about twice that for (1,2) and (2,3), so evidence suggests 

that 2
31 )( ee −  will be much larger than both 2

21 )( ee −  and 2
32 )( ee − . Recall that the computational 

formula for the empirical variogram requires grouping pairs of stations by their distances then averaging 

the values of 2)( ji ee −  within these groups. Based on road distances, station pairs (1,2) and (2,3) get 

grouped together while (1,3) is placed in a separate group. As seen in the hypothetical variogram cloud of 
Figure 2, these road distance groupings lead to a steadily increasing empirical variogram, which is 
suggestive of correlation. On the other hand, Euclidean distances group all three stations pairs (1,2), (2,3) 
and (1,3) together, so that the resulting averages lead to a variogram that increases at a slower rate. This, 
in turn, suggests there is reduced correlation than is indicated by road distances. 
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Figure 1. Interstate stations in the test area. Blue lines show road segments and bullets are PTC stations. 
East-west stations at the top of the figure are located on I-85. Northeast-southwest stations at the bottom 
right of the figure are on I-95. I-440 is the loop in the center of the figure, and the remaining stations are 
on I-40. 
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Figure 2. Hypothetical variogram clouds, where 2)( ji ee −  is plotted as a function of distance between 
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stations i and j, for road and Euclidean distances. The solid curve is the empirical variogram implied by 
road distances and the dashed curve is the empirical variogram implied by Euclidean distances. 
 
Road Distances Are Reasonable. Among research team members, it was generally expected that effective 
range would be largest within the test area for interstate stations. US and NC stations were expected to 
have the next largest effective ranges. Because of significant heterogeneity among SR and local routes, no 
predictions were made concerning where their effective ranges would fall in an ordered list. To validate 
our expectations, and to investigate whether nonstationarity was an issue, we separately estimated the 
variogram for each of the different route types: interstate, US, NC, SR, and local. Because this work was 
also done prior to getting most likely traveled paths, we again used the sub-optimal road distances 
introduced above. 
 

• We considered subsets of stations on: I-40, I-95, I-440, I-85, US-70, US-15/501, and NC-55.  
• Using an exponential variogram structure, we obtained estimates of variances and effective ranges  
• The results, in the order variance then effective range, are:  

o I-40: 0.72, 9.87 miles 
o I-95: 1.09, 10.72 miles 
o I-440: no spatial dependence 
o I-85: no spatial dependence 
o US-70: 1.19, 4.04 miles 
o US-15/501: no spatial dependence 
o NC-55: 0.82, 4.40 miles.  

 
Given the high use of I-40 by commuters to and from the Research Triangle Park, the effective range of 
9.9 miles for I-40 is not a surprise. Neither is the 10.7 mile effective range for I-95 given the long stretch 
of I-95 in Johnston County. The test area includes approximately 70 miles of I-40 and approximately 30 
miles of I-95. Behavior for I-440 seems reasonable since this short route of approximately ten miles 
accommodates travelers who enter the highway and exit very soon thereafter; no spatial dependence is 
reasonable. Results for I-85 are also reasonable when one considers that we are still only considering 
stations in the test area of five counties, and the approximately 30-mile I-85 section within this area is 
heavily used for short-distance commuters in Durham. Similar arguments may be applied to the other 
subsets of count stations. 
 
Distance or Time? Using most likely traveled paths for all stations in the test area as obtained by March 
2003, we investigated dependence structures across route types using two “distance” metrics, namely, 
actual distance (meters along the path) and time-to-traverse (seconds to travel the path). A decision on the 
best distance metric was not trivial. Because a most likely traveled path can include road segments of 
varying classifications and speed limits, actual distance between stations A and B can be the same as 
actual distance between stations C and D, but time-to-traverse these paths can be quite different. 
Likewise, time-to-traverse paths A—B and C—D can be the same but actual distances can be different.  
The extent of disagreements between these metrics can be quite large, as is seen by the spread in Figure 3 
and Figure 4 . Figure 3 and Figure 4 show scatter plots of actual distances versus time-to-traverse most 
likely traveled paths for Interstate and US routes. Graphs are similar for other route types. It is important 
to note that spread increases as you move away from the origin, thus suggesting that the two metrics are 
having diverging effects. Also important is the fact that the spread is larger for US routes, thus suggesting 
that choice of metric may have greater impact on US routes than on Interstate routes.  
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Figure 3. Actual distance on path (meters) vs. 
time-to-traverse path (seconds) for Interstate 
routes. 
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Figure 4. Actual distance on path (meters) vs. 
time-to-traverse path (seconds) for US routes. 
 

Theoretical variogram models were fit to empirical variograms obtained from both actual distance and 
time-to-traverse along most likely traveled paths. During the last quarter of 2002 and the first three 
quarters of 2003, much effort was devoted to modeling the variogram using both actual distance and time-
to-traverse along most likely traveled paths for the test area. Several theoretical variogram models were 
fit, including exponential, Gaussian, and spherical. These nonlinear models were fit using both ordinary 
and weighted least squares. Chatham and Johnston Counties were investigated separately and then 
together. Being the counties with fewest stations in the test area, we received their most likely traveled 
paths first. Their smaller sizes also allowed us to experiment with several options for computing 
variograms; timing studies were done to determine optimal strategies that would be needed for the larger 
counties within the test area and for the entire state. 
 
Variograms were fit for individual route types and for all route types together. As previously mentioned, 
we were concerned about nonstationarity, which could be indicated by variograms that differ across route 
types, and about whether results are reasonable in that they are consistent with the expert opinion of TSU 
staff. Lag values for calculating empirical variograms were determined separately for each route type to 
ensure that each lag contained at least 30 points. Given that only 83 interstate stations existed in the test 
area, and so there are only 83x82/2=3,403 distances, empirical variograms for interstate stations were 
highly variable, especially when compared to SR routes, which consisted of 2,444 test area stations. This 
in turn implied varying degrees of uncertainty for theoretical variogram models built for the different 
route types. 
 
Figure 5 shows effective ranges for the different route types using both distance and time as the metrics. 
In all cases, the Gaussian theoretical variogram model provided the best fit. All plotted ranges were 
obtained using nonlinear ordinary least squares, except distance-based range for US routes, which was 
obtained using nonlinear weighted least squares. From Figure 5, we see that distance-based ranges are 
more consistent with prior belief that, at least within the test area, interstate stations should have the 
largest ranges. For both distance-based and time-based approaches, effective ranges are smallest when all 
route types are combined. This is not surprising, since these variograms include station pairs that cross 
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route type categories. A station pair having an interstate and a local station is not expected to be as 
correlated as a station pair of two interstate stations. 
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Figure 5. Estimated effective ranges of the Gaussian variogram model determined using both actual and 
time metrics along most likely traveled paths for each route type. All ranges, except for distance-based on 
US routes, were estimated using nonlinear ordinary least squares. Nonlinear weighted least squares was 
used for distance-based on US routes. 
 
Our final decision was to model spatial covariance using actual distance along most likely traveled path 
with the Gaussian variogram 
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3.2.4 Covariance Model for Entire State 
 
Primaries-and-Secondaries Network. There were 34,944 PTC stations to be modeled across the state. 
Starting with residuals from the statewide mean model, we attempted to estimate the all-route-types 
variogram as outlined in the previous subsection. Unfortunately, computations stalled. Even the NCDOT 
dedicated dual processor computer could not accommodate the required computations. Our only 
alternative was to use a subset of the 34,944 stations to build a covariance model. A 15% subseting 
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approach was undertaken because 5,248 stations was the largest subset for which we could perform the 
necessary computations. 
 
Our subsetting was done using stratified random sampling. Strata were defined according to the 
combination of county name and route type. We considered it important to have representation in the 
subset from all route types within all counties. For each county and route type combination, 15% of their 
stations were randomly selected to be included in the subset. Three such subsets are displayed in Figure 
6. Black bullets show all 34,944 PTC stations. Overlaid as blue bullets, we show the subsetted stations. It 
is clear that while representation is not perfect, it is also extremely good given the amount of savings in 
reducing to only 5,248 stations. 
 

 

 

Subset 1 

Subset 2 
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Figure 6. Three different 15% subsets of statewide PTC stations. Black: full set of 34,944 stations. Blue: 
selected for subset. These subsets were used to estimate the statewide covariance model. 
 
Following findings from developing the covariance model for the test area, we used actual distances along 
most likely traveled paths to fit Gaussian variogram models to each of the subsets. Parameter estimates 
were obtained as 

  Subset 1 Subset 2 Subset 3 
Nugget 

0θ̂  0.102 0.100 0.095 

Partial sill 
sθ̂  0.045 0.052 0.050 

Variance 
0θ̂ + sθ̂  0.147 0.152 0.145 

(meters) 
rθ̂  1090.4 506.4 676.1 

Effective range (meters) 
rθ̂3  1888.6 877.1 1171.0 

Effective range (miles)  1.17 0.55 0.73 
 
We chose to use estimates from subset 3 since these lie between or close to estimates for the other two 
subsets. The resulting correlation function is plotted in Figure 7. It assigns correlations less than 0.30 even 
for stations as close as 0.15 miles apart. In other words, when viewed at the statewide level, PTC stations 
are not highly correlated after accounting for systematic variation. 

Subset 3 
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Figure 7. Fitted correlation function for the state, based on actual distance along most likely traveled 
paths for the primaries-and-secondaries network. 
 
As an aside, we also used time-to-traverse most likely traveled paths in subset 3 to fit the Gaussian 
variogram. Variance was similar to those based on the distance metric: 

075.0ˆ
0 =θ , 062.0ˆ =sθ , variance 137.0ˆˆ

0 =+= sθθ . 

The estimate of effective range was 56.6585.373ˆ3 =×=rθ  seconds. Converting this effective range 
to miles is tricky. For stations on an interstate where the speed limit is 65 miles per hour, the effective 
range is 18.13600/6556.65 =×  miles. For stations on an SR route where the speed limit is only 35 miles 
per hour, the effective range is 64.03600/3556.65 =×  miles. The correlation function based on time-to-
traverse is shown in Figure 8. Using time-to-traverse results in higher correlations than using the actual 
distance along most likely traveled paths. 
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Figure 8. Fitted correlation function for the state, based on time-to-traverse along most likely traveled 
paths for the primaries-and-secondaries network. 
 
Primaries-Only Network. In response to a request from Kent Taylor, we also considered the collection of 
stations that existed only on primary road segments. Primary road segments are either interstate, US, or 
NC routes. Most states other than North Carolina only monitor AADT on primary routes, so restricting 
investigation to a primaries-only network was not considered to be a major limitation. 
 
We expected there would be a longer effective spatial range for stations in the primaries-only network, 
but wanted confirmation from the data. Only the time-to-traverse variogram was determined. The 
estimated Gaussian variogram model had 

090.0ˆ
0 =θ , 024.0ˆ =sθ , variance 114.= ,  9.370ˆ =rθ , 

and effective ranges of 642.42 seconds, 11.6 miles at 65 miles per hour, and 6.2 miles at 35 miles per 
hour. The resulting correlation function, plotted in Figure 9, demonstrates that the maximum correlation 
among stations in the primaries-only network is significantly lower than among stations in the primaries-
and-secondaries network, but the range is significantly higher for the primaries-only network. 
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Figure 9. Fitted correlation function for the state, based on time-to-traverse along most likely traveled 
paths. The solid curve is from the primaries-only network and the dashed curve is from the primaries-
and-secondaries network. 
 
3.2.5 Predictions and Prediction Intervals 
 
The major goal of this research project was to implement a strategy for identifying PTC stations that have 
anomalous counts. The proposed approach was to develop a spatial model that would separate out 
systematic and spatial variability in counts so that residual uncertainty may be identified. Having 
determined the “typical level of uncertainty” for a PTC station, if counts are observed that are in excess of 
this typical level of uncertainty, the PTC station will be flagged for further review by TSU staff. 
Jacqueline Hughes-Oliver proposed the use of two levels of prediction intervals to flag stations, 95% 
prediction intervals (95%PI) and 99% prediction intervals (99%PI). This results in a hierarchy of station 
classification: 

 If observed AADT falls in the 95%PI, then FLAG=0. No alert. 
 If observed AADT falls in the 99%PI but outside the 95%PI, then FLAG=1. Level 1 alert. 
 If observed AADT falls outside the 99%PI, then FLAG=2. Level 2 alert. 

This subsection details the calculation of prediction intervals. As a precursor to obtaining prediction 
intervals, this subsection also details the calculation of predictions. 
 
Predictions and prediction intervals were required for three categories of PTC stations. These categories 
are: 

1. PTC stations whose data was used to develop the models as described in this report and whose 
station information will be unchanged at the time that a prediction interval is needed. 

2. PTC stations whose data was used to develop the models as described in this report but whose 
station information has been changed since this research project started. For example, the road 
segment might now have more lanes or a different speed limit. 

3. PTC stations that were not included in this research project. For example, stations that were 
digitized after the start of the project. 



Hughes-Oliver, Heo, McDonald  July 2006 

 

A Spatial Editing and Validation Process for Short Count Traffic Data 
 

— 37 — 

For purposes of obtaining predictions and prediction intervals, categories 2 and 3 will both be classified 
as “new” stations—their predictions and prediction intervals will be determined in the same manner. 
Category 1 will be referred to as “old” stations. Predictions and prediction intervals for old stations were 
obtained and delivered by Tae-Young Heo in February 2004 for the network of all 34,944 PTC stations 
and in March 2004 for the network of stations on primary road segments. Procedures for obtaining 
predictions and prediction intervals for new stations were provided to TSU staff and Shannon McDonald 
on November 19, 2004. 
 
Old Stations. Universal kriging is the most popular approach for obtaining predictions and prediction 
uncertainties from spatial models where the mean structure has to be estimated. Under an assumption of 
normality, universal kriging yields the best linear unbiased predictors under squared error loss. 
Unfortunately, because universal kriging is a perfect interpolator, using it on the old stations would result 
in predictions exactly equal to the observed AADT values used to build the model and prediction 
uncertainties would all equal zero. This would be entirely uninformative, so an alternative approach was 
necessary. 
 
The formulas we used to obtain predictions yield best linear unbiased predictors under squared error loss 
only if the covariance structure is known without error. Because we had to estimate the covariance 
structure, there is clearly a disconnect with the assumptions, but this was the best possible approach for 
meeting project needs. The consequence is that we may underestimate the prediction uncertainty, which 
might lead to more flags than necessary. This conservative approach was deemed acceptable. 
 
Let Y be the vector of observed (AADT)0.15 for all old stations and X be the matrix of attributes such that 
each column represents a variable in the mean model and each row corresponds to a station. The spatial 
model is 
 Mean model: εβ += XY , βXYE =)(  

 Covariance model: Σ=)var(Y , Σ  is matrix from estimated statewide Gaussian covariance  

 Distributional assumption:ε  is distributed as normal with Σ== )var(,0)( εεE . 
Predictions were obtained as 

YXXXXY TT
pred

111 )(ˆ −−− ΣΣ=  

with matrix of prediction uncertainties determined by ignoring )ˆ,cov( predYY  to get 

TT
pred XXXXYY 11 )()ˆvar( −−Σ+Σ=−  

and %100)1( α−  prediction intervals obtained as 

[ ])ˆvar(ˆ
2/ predpred YYdiagzY −± α , 

where 96.12/ =αz  for 95% prediction intervals, 58.22/ =αz  for 99% prediction intervals, ][Adiag  

represents the vector formed by extracting the diagonal elements of matrix A, and ][Adiag  is the 

elementwise square root. Because these prediction intervals were for (AADT)0.15, we had to transform 
them back to the original scale. The final prediction intervals were 

 lower endpoints: [ ]{ } 15.0/1

2/ )ˆvar(ˆ
predpred YYdiagzY −− α  

 upper endpoints: [ ]{ } 15.0/1

2/ )ˆvar(ˆ
predpred YYdiagzY −+ α . 

 
Although the formulas given above are analytically attractive, they are computationally inconvenient. We 
actually converted the spatial model above to become free of a covariance model as follows: 
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 Decompose Σ  as ( ) 11 −−
=Σ PPT  such that TPP=Σ−1  

 Then εβ += XY , ),0(~ ΣNε  becomes εβ TTT PXPYP += , ),0(~ ΣNε  or 
*** εβ += XY , ),0(~* INε . 

Having created a “new” response vector *Y  and “new” attribute matrix *X , the REG procedure of SAS 
Software was then used to output prediction intervals without us needing to write code for the explicit 
formulas given above. SAS Software is advantageous in that it is well designed to handle large datasets 
and to invert large matrices. Unfortunately, not even the power of SAS Software could simultaneously 
obtain prediction intervals for all 34,944 stations in the statewide network. The difficulty came from 
sorting and merging distances from the 7.9 gigabyte matrix of most likely traveled paths between all 

8101.62/3494334944 ×=×  station pairs in the state. In addition, we encountered issues with not having 

enough memory resources while attempting to obtain matrix TP  for decomposition of Σ . Once again, 
we were limited to working with only a segment of the data. Several experimental runs determined that a 
reasonable limit on segment size was less than 5,000 stations. 
 
After consultation with TSU staff and adhering to not separating stations within a particular county, we 
arrived at a partition based on ten regions. These regions and their station counts are listed in Table 6 and 
displayed in Figure 10. For each of the ten regions, Y was redefined to be the vector of (AADT)0.15 in the 
region, not in the entire state; Σ  and X  were similarly redefined to match the region. Computing time 
was approximately 24 hours for each region. Prediction intervals and flag values as obtained for each of 
the ten regions were delivered on February 24, 2004. The file format is shown in Figure 11.  Flags were 
distributed as shown in Table 7. Figure 12 is a sample flag map created by Tae-Young Heo using output 
for Region 7, which corresponds to the test area. 
 
Table 6. Ten-region segmentation of PTC stations within counties for obtaining predictions across the 
statewide primaries-and-secondaries network. 

Region 1 # stations 

Cherokee 139 
Graham 76 
Clay 108 
Swain 116 
Macon 232 
Jackson 173 
Haywood 251 
Transylvania 158 
Madison 160 
Buncombe 604 
Henderson 294 
Polk 160 
Rutherford 448 
Cleveland 552 

Total 3471 

  

Region 2  

Yancey 140 
McDowell 243 

Mitchell 114 
Avery 121 
Burke 375 
Watauga 150 
Caldwell 272 
Ashe 196 
Alleghany 146 
Wilkes 373 
Alexander 224 
Catawba 576 
Lincoln 360 
Iredell 648 

Total 3938 

  

Region 3  

Gaston 814 
Mecklenburg 1085 
Rowan 561 
Cabarrus 520 
Union 535 

Total 3515 

  

Region 4  

Forsyth 1061 
Davidson 680 
Guilford 1011 
Randolph 572 
Alamance 772 

Total 4096 

  

Region 5  

Surry 410 
Yadkin 229 
Davie 216 
Stokes 290 
Rockingham 511 
Caswell 197 
Person 252 
Granville 261 
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Vance 224 
Warren 220 
Franklin 307 

Total 3117 

  

Region 6  

Stanly 360 
Anson 337 
Montgomery 288 
Richmond 301 
Moore 458 
Lee 229 
Harnett 389 
Scotland 288 
Hoke 183 
Cumberland 868 

Total 3701 

  

Region 7  

Orange 381 
Durham 707 
Chatham 320 
Wake 1531 
Johnston 489 

Total 3428 

 
 

 

Region 8  

Nash 521 
Edgecombe 283 
Wilson 362 
Wayne 543 
Greene 232 
Lenoir 358 

Total 2299 

  

Region 9  

Robeson 674 
Bladen 268 
Sampson 508 
Duplin 470 
Craven 244 
Jones 109 
Carteret 133 
Onslow 345 
Pender 278 
New Hanover 327 
Brunswick 247 
Columbus 442 

Total 4045 

  

Region 10  

Halifax 330 
North Hampton 212 
Hartford 208 
Gates 158 
Currituck 88 
Camden 96 
Pasquotank 165 
Perquimans 121 
Chowan 112 
Bertie 210 
Martin 247 
Pitt 705 
Washington 110 
Tyrrell 60 
Dare 95 
Hyde 91 
Beaufort 295 
Pamlico 81 

Total 3384 

Total for 10 
Regions 34994 

 

 
Figure 10. Ten-region segmentation for determining prediction intervals of the primaries-and-
secondaries network. 
 

LPRED95 UPRED95 LPRED99 UPRED99 UNIQ_ID aadt_actual flag 
827.7471 15948.02 448.5096 22983.48 1 4801 0 
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840.2736 16080.73 456.1207 23159.83 2 5402 0 
1153.088 21415.95 630.9604 30755.31 3 5803 0 
949.6282 18039.15 516.5075 25961.96 4 6321 0 
1583.019 25674.57 897.6915 36388.79 5 7684 0 
696.7465 14276.32 371.3003 20695 6 1421 0 
696.2873 14284.39 370.9322 20709.09 7 4449 0 
1014.407 18293.94 559.4373 26197.46 8 5122 0 
785.7608 15424.81 423.6226 22269.13 9 3245 0 
842.8611 16111.81 457.6657 23202.05 10 2815 0 
696.8376 14274.72 371.3734 20692.21 11 1791 0 
693.4745 14334.02 368.6789 20795.81 12 2025 0 
696.0162 14289.16 370.7148 20717.43 13 3156 0 
603.9445 13067.23 317.0934 19039.61 14 2401 0 
129.5896 5480.658 55.90043 8474.974 1505 80 1 
84.47604 4003.241 35.15181 6249.271 1577 69 1 
515.8869 11991.4 265.5439 17589.12 1100727 7199 0 

2368.36 32915.57 1397.249 45940.18 1100728 34535 1 
1061.002 19016.13 586.096 27215.37 1100729 476 2 
7644.191 73343.03 4936.544 98497.47 1100730 14313 0 

Figure 11. Sample records from the file containing reported prediction intervals. [LPRED95,UPRED95] 
is the 95% prediction interval, and [LPRED99,UPRED99] is the 99% prediction interval. 
 
 

Table 7. Flag distribution for 10-region segmentation of the primaries-and-secondaries network. 
Region No Alert Level 1 Alert Level 2 Alert Total

1 3322 119 30 3471
2 3740 154 44 3938
3 3336 116 63 3515
4 3917 110 69 4096
5 2965 112 40 3117
6 3534 130 37 3701
7 3270 111 47 3428
8 2184 91 24 2299
9 3855 141 49 4045

10 3227 120 37 3384
Total 33350 1204 440 34994  
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Figure 12. Prediction interval flag map for Region 7, the test area. Flag colors indicate the following: 
red—level 2 alert, blue—level 1 alert, yellow—no alert. 
 
The segmentation approach, while computationally feasible, can create misleading results due to edge 
effects. More specifically, after segmentation stations near the border of a region do not benefit from 
information available in the adjoining region and this could impact either predictions or prediction 
uncertainties. To investigate the degree of impact, we focused on two counties, Johnston and Wake, 
placed them in a newly defined segment, and re-obtained their prediction intervals and flags. Of the 489 
PTC stations in Johnston County, only two of them (0.4%) had changes in their flag values. Of the 1,531 
PTC stations in Wake County, only 38 of them (2.5%) had changes in their flag values. Table 8 identifies 
those stations for which there were changes. The small percentages of affected stations and the fact that 
there were never any changes from a “no alert” flag to a “level 2 alert” flag suggested that edge effects 
may be very small.  
 
Table 8. PTC stations in Johnston (2 of 489) and Wake (38 of 1,531) Counties whose flag vlaues changed 
as a consequence of being placed in a different region. 

County 
UNIQ_I

D 
Flag from 
Region 7 

Flag from 
other region Difference 

Johnston 500144 1 0 1 
Johnston 500543 1 0 1 
Wake 910616 2 1 1 
Wake 1080316 2 1 1 
Wake 1080588 2 1 1 
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Wake 910648 1 0 1 
Wake 910665 1 0 1 
Wake 911512 1 0 1 
Wake 911886 1 0 1 
Wake 1080070 1 0 1 
Wake 1080083 1 0 1 
Wake 1080248 1 0 1 
Wake 1080674 1 0 1 
Wake 1080698 1 0 1 
Wake 1080862 1 0 1 
Wake 1080864 1 0 1 
Wake 1080866 1 0 1 
Wake 910666 1 2 -1 
Wake 911537 1 2 -1 
Wake 1080616 1 2 -1 
Wake 1080715 1 2 -1 
Wake 1080820 1 2 -1 
Wake 1082218 1 2 -1 
Wake 1082232 1 2 -1 
Wake 910696 0 1 -1 
Wake 910739 0 1 -1 
Wake 912016 0 1 -1 
Wake 1080267 0 1 -1 
Wake 1080303 0 1 -1 
Wake 1080329 0 1 -1 
Wake 1080537 0 1 -1 
Wake 1080592 0 1 -1 
Wake 1080626 0 1 -1 
Wake 1080751 0 1 -1 
Wake 1080753 0 1 -1 
Wake 1080844 0 1 -1 
Wake 1080847 0 1 -1 
Wake 1080870 0 1 -1 
Wake 1080922 0 1 -1 
Wake 1082223 0 1 -1 

 
 
We also obtained predictions from larger regions. These three regions, listed in Table 9 and displayed in 
Figure 13, considered only stations on primary road segments. Primary road segments are either 
interstate, US, or NC routes. Most states other than North Carolina only monitor AADT on primary 
routes, so restricting investigation to a primaries-only network was not considered to be a major 
limitation. Prediction intervals from these three regions were delivered on March 14, 2004. Flags were 
distributed as shown in Table 10. 
 
Table 9. Three-region segmentation of PTC stations within counties for obtaining predictions across the 
statewide primaries-only network.
 
Mountain (28 counties) 

County 
# Primary 
Stations 

Alexander 30 
Alleghany 46 
Ashe 60 
Avery 56 

Buncombe 221 
Burke 124 
Caldwell 74 
Catawba 115 
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Cherokee 44 
Clay 28 
Cleveland 143 
Graham 25 
Haywood 83 
Henderson 80 
Iredell 131 
Jackson 67 
Lincoln 102 
Macon 57 
Madison 60 
Mcdowell 71 
Mitchell 39 
Polk 40 
Rutherford 107 
Swain 37 
Transylvania 55 
Watauga 58 
Wilkes 79 
Yancey 55 
 2087 
 
 
Piedmont (42 counties) 

County 
# Primary 
Stations 

Alamance 213 
Anson 70 
Cabarrus 143 
Caswell 59 
Chatham 72 
Cumberland 213 
Davidson 141 
Davie 73 
Durham 206 
Edgecombe 100 
Forsyth 261 

Franklin 91 
Gaston 248 
Granville 66 
Greene 66 
Guilford 275 
Harnett 107 
Hoke 30 
Johnston 154 
Lee 55 
Lenoir 97 
Mecklenburg 328 
Montgomery 75 
Moore 117 
Nash 141 
Orange 87 
Person 52 
Randolph 126 
Richmond 64 
Rockingham 187 
Rowan 122 
Scotland 70 
Stanly 92 
Stokes 80 
Surry 110 
Union 114 
Vance 57 
Wake 270 
Warren 55 
Wayne 145 
Wilson 106 
Yadkin 45 

 5183 
 
 
Coastal (30 counties) 

County 
# Primary 
Stations 

Beaufort 68 
Bertie 64 
Bladen 112 
Brunswick 80 
Camden 25 
Carteret 41 
Chowan 28 
Columbus 135 
Craven 65 
Currituck 25 
Dare 28 
Duplin 117 
Gates 48 
Halifax 137 
Hertford 64 
Hyde 25 
Jones 32 
Martin 76 
New Hanover 129 
Northampton 83 
Onslow 88 
Pamlico 20 
Pasquotank 41 
Pender 93 
Perquimans 20 
Pitt 206 
Robeson 164 
Sampson 113 
Tyrrell 18 
Washington 36 
 2181 
    
Total for 3 
regions 9451 
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Figure 13. Three-region segmentation for determining prediction intervals for primaries-only network. 
 
 

Table 10. Flag distribution for 3-region segmentation of the primaries-only network. 
Region No Alert Level 1 Alert Level 2 Alert Total
Mountain 2024 45 18 2087
Piedmont 5057 92 34 5183
Coastal 2117 52 12 2181
Total 9198 189 64 9451  

 
 
New Stations. The formulas used to obtain prediction uncertainties for old stations required availability of 
the covariance model through the matrix Σ . This matrix Σ  was obtained as a function of the matrix of 
distances along most likely traveled paths. These distances would need to be determined from first 
principles for new stations that were not included in the data used for this research project. Stations whose 
information changed since the beginning of this project would also need to have their distances 
determined anew because identification of most likely traveled path depends on station attributes such as 
speed limit and number of lanes.  
 
As reported earlier in this document, obtaining most likely traveled paths was an extremely difficult 
process that the research team was not willing to accept as a just-in-time feature of the final software 
deliverable. In a November 19, 2004 meeting of the research team, Jacqueline Hughes-Oliver suggested 
an alternative that does not require the covariance model. Essentially, it follows the same procedure as for 

old stations, but the Σ  matrix is replaced by the diagonal matrix I2σ̂ . 
 
A formulaic summary is given here, with additional details provided in Appendix 10, “Preparations for 
November 19, 2004 Meeting with DOT Research Team.” Let X denote the matrix of attributes for the old 
stations (i.e., those stations that were used to build the mean model), 0X  denote the matrix of attributes 

for the new stations, Y denote the vector of (AADT)0.15 for the old stations, and 0Y  denote the vector of 

observed or unobserved (AADT) 0.15 for which we want to get predictions predY ,0̂  and associated 

prediction uncertainties. Then, 
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β̂)(ˆ
0

1
0,0 XYXXXXY TT

pred ≡= −  

with matrix of prediction uncertainties determined by ignoring )ˆ,cov( ,00 predYY  to get 
TT

pred XXXXIYY 0
1

0
2

,00 )(ˆ)ˆvar( −+=− σ  

and %100)1( α−  prediction interval for AADT as 

 lower endpoints: [ ]{ } 15.0/1

,002/,0 )ˆvar(ˆ
predpred YYdiagzY −− α  

 upper endpoints: [ ]{ } 15.0/1

,002/,0 )ˆvar(ˆ
predpred YYdiagzY −+ α . 

For a 95% prediction interval, uses 96.12/ =αz , and for a 99% prediction interval, use 58.22/ =αz . The 

vector β̂  is simply the coefficient estimates from the final mean model for the statewide area and 2σ̂  is 
0.14489, the mean squared error (MSE) from that same mean model. Since there is no need to recompute  

1)( −XX T  for each set of new stations, Tae-Young Heo presented this 179179 ×  matrix to TSU and 
Shannon McDonald on November 23, 2004. 
 
 
3.3 Automation and GIS Implementation, Task 3 
 
Much effort was made during this project to further the ongoing effort by the NCDOT to standardize data 
within a relational database environment, coupled with GIS capabilities.  The implementation of GIS 
proved essential in preparing, organizing and analyzing the information.  The procedures used in 
preparing and organizing the model input data, along with the calculations of prediction intervals (using 
the mean model algorithm) have been automated within ArcGIS using a series of scripts written in Visual 
Basic for Applications (VBA).  Details outlining these procedures are given in Appendix 12, 
“Automation With GIS Application Procedures.” 
 
The predictions and prediction intervals are stored in a comma-delimited text file.  This file obtains the 
stations’ unique identifiers and thus can be joined to the PTC station shapefile(s) for viewing in ArcGIS.  
Thus, with conventional ArcGIS tools, analysts can easily spot anomalies through logical selection and 
location.  In turn, these stations can be compared with other stations within an area or along a route to 
ensure integrity. 
 
The following screen shots illustrate a thematically mapped display that quickly alerts the analyst to 
station data anomalies. 
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Figure 14: Thematic Map of Traffic Volume AADT vs. Predicted 
 
In the above screenshot, the circles represent the PTC stations and are colored according to the AADT 
(actual) volumes recorded.  In contrast, the road network is similarly colored by the prediction mean.  The 
stations flagged (circles with ‘X’) indicate that they are outside the 95% (yellow) or 99% (red) prediction 
intervals.  Observing the color difference between the AADT and mean prediction, the analyst can 
quickly determine that the station in red has an AADT volume less than the lower 99% prediction value.  
Those stations in yellow (bottom right) appear to have AADT volumes within the upper 95% and 99% 
prediction. 
 
The next screenshot shows the outlier station AADT volume and that of its prediction intervals.  In this 
map, the road layer has been mapped to show the prediction intervals at-a-glance. 
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Figure 15:  Outlier Station 
 
Note the AADT of this station is 8116, while the lower 99% prediction interval value is 18,063.  The road 
layer is drawn with relative thickness’ that portray a viewable range of values.  The blue and green 
represents the 95% prediction interval.  The read represents the AADT value.  If all three colors are 
visible, i.e. the red is between the blue and the green, then the station volume count is within the 
prediction interval.  Notice the AADT representation (red) is not visible along the road segment(s) 
represented by the outlier station. 
 
The following screenshot illustrates two stations that are outside the 95% prediction intervals. 
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Figure 16:  PTC Stations outside the 95% Prediction Intervals 
 
In the above figure, the stations are located along a segment that appears red.  This indicates that the 
AADT volume for each station is greater than, thus thicker than the upper 95% prediction interval 
represented by green.  Note that the AADT values fall within the upper 95% and 99% prediction intervals 
for each station. 
 
The seamless aspect of the GIS layers allows the analysts to view data across county lines as well.  This 
aspect permits the analyst more flexibility when viewing regional anomalies. 
 
Traffic continuity maps depicting traffic volumes along the primary routes is another example of the type 
of analysis typical of GIS.  Assuming each station represents a particular segment of roadway, this data 
can be linked to the road layer.  The road layer can thus be thematically mapped to show an intuitive 
display representing the predicted and/or actual travel of North Carolina’s primary highways.  The 
procedures for this exercise are outlined in Appendix 11, “Primary Road Statewide Traffic Continuity 
Map”. 
 
 
3.4 Implementation Guidelines, Task 4 
 
All deliverable data derived from the procedures outlined in this report are available as stand-alone 
comma-delimited ASCII files and/or dBase (.dbf) files.  The prediction interval data contains the station 
unique identifier and can be used in combination with any data that so contains the identifier. 
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ESRI ArcGIS versions 8.1, 8.2 and 8.3 were used in the creation of the application.  It is not known at the 
time of this report whether newer versions of ArcGIS are compatable.  Any ArcGIS module (ArcView, 
ArcEditor or ArcINFO) will be sufficient in creating the prediction intervals for new stations using the 
mean model.  Modeling station data using the covariance model is not available at the time of this report 
due to the large amount of computations and limitations of the hardware systems. 
 
Note that some procedures outlines in this report were created using AML.  Recreation of such tasks will 
require the use of ArcINFO Workstation. 
 

 The project file (.mxd) contains a button that launches the application for creating prediction 
intervals for existing stations within the PTC shapefile. 
 
When executed, a new data frame is added to the table of contents (TOC).  At the termination of 
execution, the themes will be removed from the TOC.  At this point, the program has executed and the 
prediction intervals are available in comma-delimited format within the workspace. 
 
The workspace is coded within the application.  At the time of this report, the default workspace is 
‘C:\NCSU\GIS’.  The subfolders within the workspace must be identical to that declared as variables 
within the application.  To view or edit the pathnames, open the Visual Basic Editor in ArcGIS (Tools  
Macros  Visual Basic Editor, or Alt+F11).  All pathnames are declared as constants in the Declarations 
portion of the script. 
 
The comma-delimited prediction interval output file may be added to the TOC within this or another 
project file without conversion.  The data can be joined to the PTC shapefile or any other shapefile or data 
set that contains the PTC station unique identifier. 
 
It is probable that the system may require a 64-bit architecture in order to run properly because of 
constraints with floating-point ranges.  It is recommended that a dual-core 64-bit processor with adequate 
RAM (1 Gb or greater) be used to execute the algorithm.  Viewing, editing, or otherwise using the data is 
possible with the minimum requirements needed to run ArcGIS. 
 
Sample layers have been created for thematic mapping.  These can be added to the TOC for intuitive 
analysis.  It is predicted that these layers and the analytical interface will evolve to best suit the needs of 
the analysts.  The required data is dynamic to allow this migration. 
 
The application is written explicitly for the procedures and data as outlined in this report.  As new data 
becomes available, it is likely the data will differ from that used in this exercise.  In addition, new 
matrices will need to be calculated.  These and other changes in the input data will invariably affect the 
code.  Maintaining the code will be necessary whenever these changes occur. 
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4. FINDINGS AND CONCLUSIONS   
 
The project led to several major findings, some of which suggest changes may be needed in areas other 
than the stated targeted areas of the project, which are spatially aligned edits of PTC data and traffic 
continuity maps. Major findings are summarized below, categorized by research tasks. 
 
Task 1: Further Review of Methods, Data and Computing Options 
As of late 2001, most research papers with stated goals of improving estimation of AADT from short 
count data are actually focused on determining seasonal adjustment factors. Unlike the current project, 
they do not seek to develop traffic continuity maps or actually edit short count data. 
 
Current computing options within the NCDOT do not allow distribution of mapping software for 
interactive visualization. This caused a change to our primary product. 
 
Data acquisition and editing was a much more significant ordeal than originally anticipated. There were 
three extensive components that each required major effort from within the TSU, within the research 
team, and between these two groups. Two of these components concerned reconciliation of the data with 
other sources and the third was creation of a new data type that did not previously exist within the 
NCDOT. 
 
The first data reconciliation effort arose because of the many conflicts identified within and between the 
PTC count data (primarily maintained by the TSU) and the auxiliary GIS station data (primarily 
maintained by the GIS Unit). For example, several key attributes such as route type, number of lanes, and 
speed limit were missing or incorrect for some PTC stations, while other PTC stations had multiple 
conflicting records. Some of these issues were due to PTC stations being “snapped” to the wrong road 
segment in the GIS. While this snapping limitation was known to exist prior to the start of the project, the 
thorough data checking initiated by the project shed light on the severity, causes, and resolution of some 
problems. 
 
The second data reconciliation effort occurred after a preliminary spatial characterization model was 
obtained during Task 2. Using a preliminary model that predicted AADT counts as a function of station 
descriptors, GIS data, land use data, and census data, without acknowledging spatial correlations, 55 of 
the 3434 stations within the test area were identified as “outliers” because their AADT counts were not 
well predicted by the preliminary model. Although these 55 stations represented only 1.6% of the stations 
studied at that time and this small fraction indicated that the model was already very successful in 
capturing AADT dependence on station attributes, we still wanted to know whether the 55 stations were 
special in ways that could be addressed in order to achieve an even better model. Further study of the 55 
stations did indeed reveal additional ways that the model could be improved, for example, by creating 
additional attributes to indicate whether a PTC station is located within a municipality but outside the 
urban boundary. On the other hand, study of the 55 stations also revealed several long-reaching 
inconsistencies with how station data is obtained and recorded. The potential impact of these findings is 
far-reaching and will likely require much effort from NCDOT for complete resolution. 
 
Spatial characterization of AADT from short count data is contingent on knowing distances between PTC 
stations along the road network. As such, the project required identification of shortest paths and 
distances, along the road network, between all pairs of stations in the state. Such data was not previously 
available in NCDOT and had to be obtained from first principles. Starting from the definition of shortest 
path, continuing to delivery of the distances, this sub-project resulted in several important findings. 
Computational improvements due to using AML code for determining distances were significant, but a 
dedicated dual-processor computer was needed to expedite computation to an acceptable level. 
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Transmittal of these distances then required moving the dedicated computer to North Carolina State 
University because the file size was almost 8GB with other 200 million records and was not easily 
accessible otherwise. This finding impacted later tasks in that Task 2 was limited to only being able to 
access portions of the distance matrix at a time, so modifications from earlier proposed approaches were 
necessary. In other words, the biggest finding was that computational adjustments would be needed in 
Task 2 to accommodate the massive data created by shortest path distances. 
 
Task 2: Spatial Modeling and Characterization, Using Current Seasonality Adjustments 
Some Task 2 findings have already been discussed above because of their impact on Task 1 activities. 
Additional findings will be presented below in three separate categories, one regarding the mean model, 
another regarding the covariance model, and the third regarding prediction intervals. 
 
Data transformation was required to improve the fit of the mean model and to comply with modeling 
assumptions. As such, the statewide model was actually developed using (AADT)0.15, but predictions 
were ultimately converted back to the original scale for the GIS implementation. Of the 550 variables 
available for building the model, only 178 were ultimately kept in the final model. The resulting 
coefficient of determination (R-squared) was an impressive 0.73, with correlation of 0.85 between 
observed and predicted (AADT)0.15. The model captured impact on AADT of land use, census and 
demographic information for areas surrounding PTC stations, as well as station-specific attributes and 
day/time of data collection. The finding that day/time of data collection is important in the mean model, 
even after accounting for all the other variables that were included in building the model, suggests that 
enhancements are still needed for seasonality adjustments that convert PTC counts to an annualized 
count. 
 
Residuals from the mean model were used to develop covariance models. Findings confirmed the need for 
distances along the road network, even though they were very difficult to obtain. In other words, 
covariance models built on Euclidean distances (shortest distances irrespective of network accessibility) 
were meaningless. The question of what to report as “distances” along the shortest path on the road 
network was also important and non-trivial. Our choices between actual distances on these paths versus 
time to travel these paths both had potential advantages. In the end, models fit to the data suggested that 
actual distances provide more reasonable interpretations. The variogram model selected was the Gaussian 
variogram. Not surprisingly, the effective range (or distance beyond which AADTs for pairs of PTC 
stations can reasonably be treated as independent) of six miles for interstate stations far exceeds the 
effective ranges for other station pairs, with the other route types having effective ranges between one and 
two miles. On a statewide level, the maximum correlation among stations in the primaries-only network 
(i.e., interstate, US or NC routes) is significantly lower than among stations in the primaries-and-
secondaries network (i.e., all stations), but the effective range is significantly higher (almost by a factor of 
ten) for the primaries-only network. While a modest degree of covariance nonstationarity was indicated, 
the severity did not necessitate remedial actions, so we ultimately used covariance models developed 
simultaneously from all route types to obtain prediction intervals. 
 
Predictions, 95% prediction intervals, and 99% prediction intervals were obtained for three categories of 
PTC stations: “old” stations, “new” but previously digitized stations, and “new” but newly digitized 
stations. Because of the computational challenges caused by the distance matrix, prediction intervals had 
to be determined in segments. Ten segments were needed for the primaries-and-secondaries network, 
while only three segments were needed for the primaries-only network. We studied the impacts of edge 
effects caused by segmentation and determined them to be minimal. In the primaries-and-secondaries 
network, 3.4% of the stations received a level 1 alert, which indicated that their observed AADT count 
was outside the 95% prediction interval but inside the 99% prediction interval, while 1.3% of the stations 
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received a level 2 alert, meaning that their observed AADT count was outside the 99% prediction interval. 
For the primaries-only network, there were 2.0% level 1 alerts and 0.7% level 2 alerts. 
 
Task 3: Automation and GIS Implementation 
This portion of the project focused more heavily on programming as opposed to model development. 
While several important programmatic findings led to improved code, there are no other findings 
comparable to those listed for Tasks 1 and 2. 
 
Task 4: Implementation Guidelines 
This portion of the project focused more heavily on programming as opposed to model development. 
While several important programmatic findings led to improved code, there are no other findings 
comparable to those listed for Tasks 1 and 2. 
 
 
Conclusions 
Succinctly put, the project significantly improves the process of editing and validating traffic count data. 
Specific improvements include: 
• Reported counts are better in several ways: 

o determination of whether a count needs to be investigated is based on statistics and levels of 
uncertainty, not purely on the opinion of the data analyst, 

o adjustments, if necessary, are based on statistical predictions, not purely on the opinion of the data 
analyst, 

o over-control of the process through an excessive number of manual adjustments will no longer be a 
concern, and 

o recounts, if needed, will take place in a more timely fashion because the entire editing and 
validation process will be faster. 

• The process has increased functionality: 
o the use of color to indicate unusual counts will enhance interpretability and presentation, and 
o expert knowledge will not be required for using the software. 

• The process has increased flexibility: maps can be created at either the station level or at regional 
levels. 

• The process is much faster, reducing turnaround time to 1-2 months instead of the current one year. 
• The process and products allow and encourage easier sharing of data with other state and local 

government agencies by using computing tools and environments that are widely available. 
• The process follows the recommendations from FHWA and AASHTO for incorporating spatial 

analysis. 



Hughes-Oliver, Heo, McDonald  July 2006 

 

A Spatial Editing and Validation Process for Short Count Traffic Data 
 

— 53 — 

5. RECOMMENDATIONS 
 
PTC data collection is performed at monitoring stations annually or biennially and a natural question is 
how often should NCDOT repeat the exercises documented in this report. Our recommendation is that 
this update should be done every five to ten years in order to maintain relevance of the models. For areas 
of faster-than-average growth within the state, more level 1 and level 2 alerts might result due to the fact 
that the models created several years ago are no longer current for the time period of interest. While these 
extra alerts may be a nuisance that require unnecessary resources be allocated to investigate non-issues, 
they are actually the better of possible outcomes from out-of-date models. The more troublesome 
outcome is that a station does not get an alert when its new conditions actually demand such an alert. 
Urban fringe areas will likely be those regions that change most rapidly and hence be the regions where 
old models break down. Because transportation infrastructure is critical to continued growth, it will be 
very important to maintain up-to-date models in order to properly accommodate growth. The 
recommended frequency of five to ten years allows flexibility. Recall that this project generated two basic 
models, a mean model and a covariance model. The mean model was significantly less taxing to create, so 
it can be updated on a more frequent basis. The covariance model, on the other hand, was very difficult to 
create so it may need to be updated less frequently. This report contains sufficient details that allow re-
creation of both the mean and covariance models. 
 
On a more speculative note, we recommend several checks on model assumptions. There was indication 
during this project that covariance nonstationarity exists, but it was deemed minor enough to ignore. This 
will need to be checked for each determination of the covariance model. If covariance nonstationarity is 
significant, it may require that entirely separate models be built for each route type. We have already 
prototyped these models in this report—the primaries-only network is based on only interstate, US, and 
NC routes. Another technicality that requires attention is the impact of segmentation for creating the 
covariance model; the fewer the number of segments the better, but computational limitations must also 
be acknowledged. Other aspects that may need modification are the transformations needed for building 
the mean model. Here we applied a power of 0.15 to AADT for building the statewide model and we used 
a particular approach (principal components analysis) to create census and demographic summaries. 
Unfortunately, there is no guarantee that these same transformations will be appropriate for subsequent 
modeling. 
 
In the future, after NCDOT acquires the ability to provide distributable mapping software for interactive 
visualization, the final product of this project can and should be adjusted to the original intended format. 
More specifically, we recommend enabling the GIS-formatted data (our current primary product) with the 
visualization software then building a user’s manual for the software. Once this is done, additional 
guidance will then need to be provided on technical details for efficient transfer and distribution of the 
software and on creation of customized reports. 
 
Finally, during the process of curating the data for this project, many findings were made regarding data 
acquisition, reconciliation of data stored in multiple locations, and data integrity. Some of these findings 
have already impacted long-term processing, but we recommend that other findings be reconsidered for 
future resolution. 
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6. IMPLEMENTATION AND TECHNOLOGY TRANSFER PLAN 
 
What is the Primary Product? 
The primary product is GIS-formatted data that will incorporate the spatial statistical model developed in 
research objective 4 for the purpose of creating the displays of predictions and anomalies as outlined in 
research objectives 6 to 8. More specifically, the GIS-formatted data programmatically identifies PTC 
stations that have anomalous counts and provides information for creating traffic continuity maps. 
 
What are the Secondary Products? 
Secondary products are the many written reports documenting all steps needed in the future for: (i) 
editing/reconciling the input data; (ii) generating distances along most likely traveled paths; (iii) updating 
the mean model; (iv) updating the covariance model; (v) obtaining predictions and prediction intervals; 
and (vi) automation and GIS implementation. 
 
Who within NCDOT will use the Products, and why? 
TSU, the direct clients for the proposed research, will use the products: to replace their current process of 
editing and validating traffic counts; to obtain traffic continuity maps; and to create volume count reports 
for their customers.  
 
TSU will be the major users of the products, but they create so many reports for departments within 
NCDOT that indirect product usage will extend far and wide within NCDOT. For example, the 
Transportation Planning Branch uses reports created by TSU to develop models and long-range 
transportation plans, while the Project Development and Environmental Analysis Branch (PDEA) uses 
the reports for planning and developing alternatives for Transportation Improvement Program (TIP) 
projects. 
 
What will it take for NCDOT customers to use the products? 
With the new products, NCDOT will be able to create customized reports, using a GIS environment that 
encourages sharing and distribution, for both large and small customers. In order to effectively use the 
GIS-formatted data, users will need visualization software and general training for that software. Minimal 
additional training will be required to inform users of the potentially different and customizable reports 
that may be created using the GIS-formatted data that we provide. 
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