Methodology

Input Data

- Planning Analysis (data-driven)
 - NC DOT GIS Shapefiles
 - NC DOT Crash Data
 - HSIS Crash and Roadway Data
- Operational Analysis (data + models)
 - NC DOT Automatic Traffic Recorder (ATR)
 - FSP Sites' Incident Data
 - FSP Cost Data
 - Delay vs incident characteristics (models)

Expansion Criteria

- Planning Analysis—initial screening
 - Crashes per Mile per Year (last 3 year data)
 - AADT per Lane
 - Crashes per 100 Million Vehicle Miles
- Operational Analysis
 - Benefit / Cost ratio based on traveler delay savings with FSP vs. cost of FSP deployment

Visual Displays- Density Map

Crashes per 100 Million Vehicle Miles Density

Input Data-Crash to Non-Crash Incidents Ratios

- No central repository for incident data
- Charlotte and Greensboro FSP data
- Create incident distribution tree
- Use known crash figures to estimate noncrash incidents
 - Ratio based on data → 7.2:1
- In the long-term, incident rates can be predicted using ADT, truck volume, length & weather

Incident Distribution Tree

- a Average Duration with Freeway Service Patrol
- b Peak periods are assumed to be Monday- Friday, $7-9\,\mathrm{am}$ and $4-6\,\mathrm{pm}$

Traffic Profile Data for Delay Analysis

Urban Hourly Weekday Traffic Volume Profile from permanent automatic traffic recorder sites in North Carolina

Delay Model development using FREEVAL

- Model of HCM2000 Freeway Facilities
- Allows for temp. capacity reductions
- Modeled 2-5 lane, 10 mile sections; incident duration; incident severity; normal d/c; urban/rural segments
- FREEVAL→ Veh-hours delay per VMT
- Statistical models for delay estimation based on facility and incident features

