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 Executive summary 
 

This report constitutes the first phase to document the water quality benefits of a stream 

restoration in the coastal plain of North Carolina.  This phase establishes the pre-

restoration state of the water quality and hydrochemical signature of ‘the canal’ at the 

Claridge nursery in Goldsboro, NC, for comparison purposes with the during and after 

restoration phases.  Classical indicators of water quality include concentrations and loads, 

both calculated from samples generally collected infrequently (e.g., monthly).  Because 

they cannot capture the large variability in flow and concentrations these indicators are 

stained with large uncertainties.  They are thought to be suited to detect large effects 

(e.g., >20%) of a treatment, but not when smaller impacts are expected (e.g., <20%), as 

surmised in the case of stream restoration.  Large uncertainties tend to result from 

classical sampling and monitoring approaches.  Not surprisingly these techniques have 

failed to provide reliable numbers.  

 

We thus proposed to use different approaches using state of the art high frequency 

monitoring technology to lower the uncertainty as much as possible.  In particular, for 

this project, we have hypothesized that we could largely reduce uncertainties on nutrient 

and pollutant loads, which we used to quantify water quality benefits, by using novel 

continuous water quality sensors. We have proposed to use UV-Vis spectrophotometers, 

which measure light absorbance from the UV to the visible range. The absorbance data 

serve as index data source and the creation of Water Quality Rating Curves to obtain 

concentration data on a high frequency basis to calculate robust N, P, C, and material 

fluxes.    

 

We have shown that in an agricultural stream of the coastal plain of North Carolina, it 

was possible to construct robust Water Quality Rating Curves to measure nitrate (NO3-

N), Total Dissolved Nitrogen (TDN), Total Kjeldahl Nitrogen (TKN), Dissolved Organic 

Carbon (DOC), and Total Phosphorus (TP), using the absorbance data as index data and 

PLSR as a rating method. We have also shown that this method did not work well for 

ammonium (NH4-N) and phosphate (PO4-P), although it is possible that this was the 

result of not optimal calibration points pool.  

 

Our results suggest that it possible to reduce uncertainties within  3% for most 

constituents for the annual load, which opens the possibility of capturing effects of at 

least twice the uncertainty level, which corresponds to approximately a 10-fold 

improvement on current practices. We have shown that to obtain robust Water Quality 

Rating Curves, it is necessary to have as large as possible a calibration concentration 

range, where calibration concentrations are as stratified as possible. Extrapolating beyond 

the calibration range is inherently risky and may result in errors, and in the case of 

parameters that exhibit concentration effect during events, large overestimation as we 

showed for TSS predicted using PLSR. For Total Suspended Solids (TSS), we suggest 

that it is preferable to use the more conservative turbidity based method.   

 

We thus believe that the methods developed during the pre-restoration period of this 

stream restoration are very promising to detect the effects of water quality of such a 

practice in the Coastal Plain of North Carolina. 
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Chapter 1: Introduction 

As stated by Bernhardt et al., (2005), there was 37,099 stream restoration projects 

implemented in the United States, and the top goals of restoration included improving water 

quality, developing or enhancing riparian zones, creating/improving instream habitat, 

facilitating fish passage, and stabilizing stream banks. However, the lack or lack or poor 

availability of data to make a robust assessment of the, and the reasons for, success or failure 

of stream restoration projects (e.g., Pander and Geist, 2013; Bennett et al., 2011). In most 

cases, the stream restoration effects are estimated, after restoration, by comparison between 

the restored and nearby ‘reference’ reaches (e.g., Colangelo, 2014; Daniluk et al., 2013; 

Howson et al., 2009), which can only add to the uncertainty of the estimation process. 

Comparing pre- and post-restoration, theoretically removes this type of uncertainty from the 

evaluation method, and we too hypothesize it should be the preferred approach. Using the 

mathematical analogy, discrete concentrations and load values correspond to the derivative 

values needed to calculate the integral or overall water quality benefits.  

One would like to be able to claim that for this or that type of restoration, water quality 

has been improved by, e.g., ‘x%’. In the expression ‘x% water quality benefit’, the notion of 

integration over time is embedded. For very practical reasons, a common approach to 

estimate water quality benefits has been to compare the discrete sample concentrations and 

corresponding instantaneous loads over short and discontinuous periods of time. 2   In 

summary, we believe that the concept of water quality benefits of stream restoration often 

refers to a concept of integral or cumulative effect. However, one has historically had access 

only to points in time, i.e., discrete flow and concentration values, corresponding to the 

derivative functions necessary to calculate the integral. Numerous authors have shown that 
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the uncertainty on material loads associated with infrequent sampling can be such that it is 

likely that the effects of stream restoration are confounded within the measurement 

uncertainty (e.g., Skarbøvik and Roseth, 2015; Skarbøvik et al., 2012; Cassidy and Jordan, 

2011; Henjum et al., 2010; Birgand et al., 2010; Brauer et al., 2009).  

New available continuous water quality sensors give access for the first time to the full 

dynamics of concentrations, or when combined with continuous flow measurements, the 

derivative functions needed to calculate the cumulative load, which information is necessary 

to have a chance to evaluate water quality benefits of stream restoration. The recent 

availability of continuous optical sensors, ultraviolet-visual spectrophotometers, for water 

quality has opened the possibility to obtain high frequency water quality data which can 

reveal concentration dynamics that were not available until now (e.g., Langergraber et al., 

2003; Rieger et al., 2006, Etheridge et al., 2013).  

However, these instruments are relatively new and a very limited return on experience is 

currently available for guidance. As a result, it is unclear whether these field 

spectrophotometers can be used for the conditions in the agricultural coastal plain stream, 

and what kind of performance one should expect. Etheridge et al. (2014, 2015) have shown 

that these instruments are subject to optical fouling, but these results were obtained in a tidal 

marsh, hence in very different conditions. The same authors have shown that it was possible 

to use the spectrophotometers to measure concentrations of parameters not known to absorb 

light. Etheridge et al. (2015) have essentially proposed to create water quality rating curves 

where the spectrophotometer absorbance data are used as index data from which 

concentrations of a suite of parameters can be calculated using a rating curve, itself generated 

using Partial Least Square Regression (PLSR) statistical methods (Etheridge et al., 2015).  
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To fill in the voids in the literature on the water quality benefits of stream restoration, 

North Carolina Department of Transportation (NC DOT), North Carolina Forest Service 

(NCFS) and North Carolina State University (NCSU) have partnered together to conduct a 

pilot study. The general approach to quantify the water quality benefits pursued consists in 

quantifying the changes in the stream solutes and material signatures of the “same” stream 

from before to after restoration with continuous water quality and hydrology monitoring.  

1.2 Research Questions  

This research attempted to answer the following questions. The first question associated 

with the continuous water quality data is: Can one use in situ ultraviolet-visual (UV-vis) 

spectrophotometers to measure water quality on a continuous basis in an agricultural coastal 

plain streams? The corollary question becomes: for what parameter and what does it take to 

obtain continuous data? The answers to these very important questions are necessary to 

enrich guidance in the use of these instruments and create Water Quality Rating Curves to 

interpret the absorbance data (Chapter 2).  

The second question is: What are the uncertainties on concentrations and loads associated 

with data generated by the spectrophotometers? It is expected that the uncertainty on e.g., 

annual loads be much lower than when calculated from infrequent samples. The corollary 

questions become: How do the uncertainties associated with the instruments compare with 

those associated with infrequent sampling on the annual load indicator? The answers related 

to the second question is to quantify the uncertainties associated with the spectrophotometers 

itself and compare the uncertainties for estimating annual loads with infrequent sampling 

(Chapter 3).  
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The third research question is addressed as following: What does this continuous water 

quality information on the processes generating nutrient load in a coastal plain predominantly 

agricultural watershed, at the short term (e.g., storm events) and seasonal scales? Can the 

information obtained be used to infer about in-stream processes? The answers to the above 

questions are to characterize the nutrient dynamics from the continuous water quality 

information with seasonal effects and during the storm events (Chapter 4).  

 

1.3 Objectives  

To address our research questions, we monitored water quality and hydrology with high-

frequency of the Claridge Canal due to be restored in Goldsboro, NC. In Chapter 2, we 

present the application of ultraviolet-visual spectrophotometers to monitor water quality on a 

continuous basis at three stations along the Claridge Canal for 16 months. The objectives of 

Chapter 2 are: (1) to evaluate the possibility of creating water quality rating curves using 

UV-Vis spectrophotometers to measure nitrate (NO3-N), ammonium (NH4-N), total 5   

dissolved nitrogen (TDN), Total Kjeldahl Nitrogen (TKN), dissolved organic carbon (DOC), 

phosphate (PO4-P), total phosphorus (TP) and total suspended solids (TSS) in an agricultural 

coastal plain stream: (2) Report the potential challenges involved, and propose methods to 

obtain gap free time series and best results.  

In Chapter 3, we assess the level of uncertainties associated with the use of such 

technology and how these compare to those induced by infrequent sampling on nutrient loads 

and concentrations. The objectives of Chapter 3 were addressed as follows: (1) Evaluate the 

uncertainties on concentration values and annual loads calculated by the ‘global calibration’ 

provided by the manufacturer, and calculated using PLSR depending upon the number and 

the distribution of the calibration points used. (2) Compare these uncertainties to those that 
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would be induced by infrequent sampling on estimating annual loads with best load 

algorithm methods; (3) Provide guidance to users to minimize uncertainties and maximize 

the potential of their UV-Vis spectrophotometers.  
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Chapter 2: Application of ultraviolet-visual spectrophotometers and water 

quality rating curves to monitor concentrations and loads on a continuous 

basis in the ‘Claridge canal’, an agricultural coastal plain stream 

Background 

One of the robust indicators which should be chosen to assess the water quality benefits 

of this stream restoration uses cumulative nutrient loads as a basis.  We hypothesize that the 

bulk water quality effect can be assessed by the magnitude of the inflection or change of the 

correlation between cumulative loads of a treatment station vs that of a control station, 

between before and after restoration.  A station just upstream of the restored section can 

serve as a control while the treatment stations can correspond to station within and also just 

downstream of the restored reach. But to obtain these cumulative curves, gap free flow and 

concentration data are necessary at all three stations at the same time.  The continuous 

monitoring of hydrology and water quality reported in this report took place from December 

2013 to March 2015.  

Objectives of this chapter 

The objectives of this research are: (1) to evaluate the possibility of creating water quality 

rating curves using UV-Vis spectrophotometers to measure nitrate (NO3-N), ammonium 

(NH4-N), total dissolved nitrogen (TDN), Total Kjeldahl Nitrogen (TKN), dissolved organic 

carbon (DOC), phosphate (PO4-P), total phosphorus (TP) and total suspended solids (TSS) in 

an agricultural coastal plain stream: (2)  Report the potential challenges involved, and reports 

methods to obtain gap free time series and best results.  
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2.2 Methods 

Site description  

The study site is the Claridge Canal, an agricultural coastal plain stream reach 2,200 m in 

length, in Goldsboro, North Carolina (35.42∘N, 78.02∘W).  This reach was slated to be 

restored from 2015 to 2016 for 12 months starting in autumn to offset the construction of 

Highway US70 Bypass.  Three monitoring stations were installed as Upstream Station (UP), 

which serves as the control station, Middle Stream Station (MD, located 1,390 m from UP), 

and Downstream Station (DN, located 807 m from MD), both corresponding to the treatment 

stations, for a total length of 2,197m of the study reach (Figure 2.1). The drainage areas at 

UP, MD, and DN are 236 ha, 414 ha, 573 ha, respectively. The average slope of the stream is 

1.93%.  
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Figure 2.1  

Three monitoring stations along the Claridge Canal in Goldsboro, North Carolina (I: 

Contributed watershed area for UP station; I and II: Contributed watershed area for 

MD station; I, II, and III: Contributed watershed area for DN station) 

Flow measurements 

Because of the low gradient of the stream, variable downstream control conditions can 

create large hysteresis in the stage-discharge relationships at the event and seasonal scales 

(e.g., Birgand et al., 2013).  Stage measurements alone are thus insufficient to calculate 

discharge.  To solve this problem, we measured stage and velocity using Doppler velocity 

meters (SonTek IQ Doppler meter, San Diego, CA, USA) installed in wooden trapezoidal 

I 

II 

III 
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flumes.  The trapezoidal flumes (details in Etheridge et al., 2013, and Birgand et al., 2005) 

funnel water unto a structure of known and stable geometries. The discharge (flow) rate (Q) 

is calculated as the product of cross-sectional average velocity (V) with the cross-sectional 

area (A) (Equation 1).   

AVQ                                                     (Equation 1) 

The cross-sectional area is calculated using measured stages and the known dimensions 

of the flumes.  The cross-sectional average velocity V is calculated using the index velocity 

rating (Morlock et al., 2002; Birgand et al., 2005; ISO 15769, 2010).  An index velocity 

rating was established between the Sontek velocity data and the cross-section average 

velocities obtained during manual gauging.   

Manual gauging was performed using the velocity area method (ISO 748, 1997) every 

field visit, except in non-wadable conditions. For that, the cross-section of the flume was 

divided into several vertical columns, marked by PVC strips were installed along the sides 

and on the bottom of the flume to mark the center of each column (Figure 2.2). The point 

velocity, measured using a portable velocity meter (Marsh-McBirney, Frederick, MD, USA; 

resolution 1 cm/s), in each column at 40 percent of the depth was taken as the column mean 

velocity (Figure 2.2). The manual mean velocity (Vm) was eventually calculated from 

dividing the overall flow rate, i.e., the sum of flow in each column, by the total cross-

sectional area of the flume. The dimensions of the flumes at the three stations were measured 

using a total station after the flumes were installed. The index velocity from the Sontek used 
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to derive the velocity rating corresponded to the average of instantaneous measurements 1-3 

hours before and after each manual gauging.  

 

 
Figure 2.2  

Schematic of a trapezoidal flume cross-section, showing the Doppler velocity meter, the 

virtual vertical column and the location of the manual velocity measurement points 

(marked as +; Modified from Birgand, 2000). 

Water samples collections and measurements 

Water quality at each station was monitored using a UV-Vis spectrophotometer 

(spectro::lyser model, s::can), a multi-parameter sonde (Eureka Manta 2), and an automatic 

discrete sampler (ISCO 6712). The UV-Vis spectrophotometer measured the absorbance of 

light between 220 to 750 nm for 5 and 35 mm path lengths.  Thanks to the embedded Global 

Calibration from the manufacturer the instrument provided Turbidity (NTU), nitrate (NO3-N; 

mg/L), DOC (mg/L), and total organic carbon (TOC; mg/L) measurements every 15 minutes.  

At the same time interval, the Manta sonde measured Temperature (℃), pH, conductivity 

(µS/cm), turbidity (NTU), and colored dissolved organic matter (CDOM; μg/L).  The 
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automatic discrete sampler took discrete water samples, up to 1 L every 12 hours (12 am and 

12 pm). All field instruments were serviced on a biweekly basis.  

Installation of the monitoring system 

Although the water quality sensors are designed to be immersed, previous studies have 

shown that the reduced conditions surmised to exist in coastal plain streams may result in 

large chemical and biological fouling of the instruments (Etheridge et al., 2013).  To limit the 

magnitude of fouling, we followed the method developed by Etheridge et al., (2013), i.e., to 

shorten the time of exposure of the instruments to water (Figure 2.3).  In synchrony with the 

15 minutes sensor measurement intervals, a micro controller (equipped with Arduino Uno 

Board; www.arduino.cc) (4) triggered a peristaltic pump (3) to draw stream water (1) to the 

multi-parameter sonde (5) and to the UV-Vis spectrophotometer (7), both of which fitted 

with flow through cells. The spectrophotometer was installed in a container (6) to avoid 

ambient light disturbance. After the sensors took their measurements, water was purged out 

of the measurement cells through a drain valve (8) under the spectrophotometer, and using 

the peristaltic pump (3) in a reverse mode back to the stream.  The micro controller then sent 

a signal to a windshield washer pump (10) and valve (11) to rinse the optics the UV-Vis 

spectrophotometer (7) using tap water stored in a container (9) and resupplied during field 

visits. At 12 am and 12 pm every day, the discrete sampler (2) sampled up to ~900ml of 

water from the stream into the 24 bottles available. 
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Figure 2.3  

Schematic of the elements of the water quality monitoring system (not in the scale; 

numbers detailed in text; Modified from Etheridge et al., (2013)) 

Equipment maintenance  

Biweekly field visits included flow and water quality data download, as well as other 

maintenance.  The flumes and Doppler velocity meters were cleaned using brushes to remove 

sand, which was brought after storm events and clean algae that grew at certain times of the 

year.  Because of bio- and chemical fouling on instruments and optics in particular 

(Flemming, 2011; Etheridge et al., 2014; Whelan and Regan, 2006), a cleaning procedure 

was applied onto the UV-Vis spectrophotometer and multi-parameter sonde based on that 

developed by Etheridge et al., (2014).  For the UV-Vis spectrophotometers, we applied 
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cotton swabs soaked in 2% hydrochloric acid (HCl) to the optic lens for 2-3 minutes. Then, 

we rinsed the lenses with deionized water and dried with a cloth.  This procedure was 

repeated until the absorbance spectrum values in air and deionized water measurements were 

‘flat’ and within 10 m-1, i.e., similar to the original instrument setting.  For the multi-

parameter sonde, we used a detergent and toothbrush to clean the sensors except for CDOM 

sensor. CDOM sensor was cleaned with 2 % HCl, a cotton swab and deionized water; the pH 

reference solution for pH sensor was changed every 2 months. The sensors in multi-

parameter sonde were calibrated with standard solutions every 2-3 months.  

Laboratory analyses 

For each field visit, the discrete water samples were stored on ice and transported to the 

laboratory for analysis. The selections of the discrete samples for laboratory analysis 

depended on the initial water quality results from UV-Vis spectrophotometer and the flow 

events, i.e., the samples taken during flow events when concentrations change rapidly were 

preferentially selected.   

The original 900 ml discrete samples were split into several aliquots for analyses. 500 mL 

were transferred for TSS analysis (Standard Method 2540 D; Rice et al., 1997a), and 150 mL 

were acidified with sulfuric acid for TKN (Standard Method 4500 N Org D; Rice et al., 

2012) and TP analyses (Standard Method 4500 P F; Rice et al., 2012). The residual of the 

volume was filtered (pore size of 0.22 μm; EMD Millipore Sterivex Sterile Pressure-Driven 

Devices, Darmstadt, Germany). Filtered solutions of 14 mL were transferred and acidified 

with sulfuric acid in 15 mL-centrifuge tubes for DOC (Standard Method 5310 B; Greenberg 
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et al., 2005) and TDN analysis (adapted by Standard Method 5310 B; Greenberg et al., 

2005). Another 14 mL of filtered solutions without adding sulfuric acid were transferred in 

15 mL-centrifuge tubes for NO3-N (The Cadmium Reduction Method; Eaton et al., 1995), 

NH4-N (Salicylate Method; Eaton et al., 1995) and PO4-P analyses (Ascorbic Acid Method;  

Eaton et al., 1995). 

We chose not to add acid or other preservation agents to unrefrigerated samples in the 

field.  We ran a sample degradation study instead.  For this, two grab samples were collected 

at the same time.  One was labeled “Fresh”, immediately put on ice and brought back to the 

laboratory for analysis, and the other one was labeled “Degraded”, left in the sampler until 

the next field visit, when it was retrieved and analyzed following the procedure described 

above (TSS not analyzed).  

Cumulative load calculations 

The water quality indicator sought in this manuscript is cumulative load (L), which is the 

integral over a given time (t) of instantaneous loads calculated as the product of solute 

concentration (C) with flow rate (Q; Equation 2).  In reality, a good estimator of this integral 

is the summation of instantaneous 15-min loads calculated from the 15-min flow (Qi) and 

concentration (Ci) data (Equation 3), where K is the unit adjustment factor and N is the 

number of 15 min intervals in t.   
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Calibration methods for concentrations from spectral data  

The new water quality sensor probes used in this project are among the best probes 

available out there, or at least that we are aware of.  Contrary to chemistry based instruments, 

which have physical standard samples for calibrations, concentrations measured from 

spectrophotometers are calculated from a proprietary algorithm embedded in the probe.  The 

algorithm is the equivalent of calibration of chemistry instruments. , which calculates, using a 

pmay or may not fit well with local conditions. The ‘Global Calibration’ is the default 

algorithm embedded in the Spectro::lyser instrument to calculate concentrations in situ from 

the absorbance spectra.  Nitrate, DOC, Total Organic Carbon (TOC) concentrations, and 

Turbidity values are thus calculated and saved in an output PARameter file, referred to as the 

PAR file.  We compared the results from the PAR files to those of the discrete sample 

concentrations.  

We also used PLSR as a regression model to correlate concentrations from the discrete 

samples to the spectral data (from UV-Vis spectrophotometers) measured at the same time.  

We then used the PLSR model to predict 15 min concentrations from the 15-min spectral 

data.  PLSR essentially decreases the hundreds of wavelengths of spectral data to a smaller 

number of principal component vectors to obtain highest correlation with water quality 

concentrations (Etheridge et al., 2013).  This statistical technique is well suited for data in 
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which the explanatory variables are highly auto correlated, as are absorbance values from 

sequential wavelengths (Mevik et al., 2011). PLSR, thus corresponds to our local calibration, 

with the great advantage that with one sensor, it is possible to calibrate for more than one 

nutrient or pollutant. 

We followed the procedures for PLSR calibration described in Etheridge et al. (2013) and 

Langergraber et al. (2003), using the pls package (Mevik et al., 2011) in the R software (R 

Core Team, 2016).  Briefly, this package takes 90% of the points to create a calibration 

model and cross validates on the remaining 10%, and calculates indicators such as Root 

Mean-Square Error of Prediction (RMSEP) and R² for a given number of components.  The 

model was initially run for 20 components.  The optimum number of PLSR components for 

each analysis was chosen as the lowest number of components for which the RMSEP was at 

or near its minimum value.  

We hypothesize just as Etheridge et al. (2013) did, that this method essentially quantifies 

the co-variability of the ‘color matrix’ of the water with concentrations.  We hypothesize that 

this co-variability has no theoretical reason to hold for all seasons and all hydrological 

conditions.  We thus explored several models where in one all points were used, and in others 

where seasonal models were derived.   

Methods for correcting erroneous data and filling missing data 

Human errors and equipment failure invariably result in obvious errors and gaps in flow 

and/or concentration data in the field.  Since both signals correspond to the derivative 

functions necessary to calculate the cumulative loads, it is essential to be able to find 
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solutions to correct for erroneous and fill in missing data.  The details of this part would be 

lengthy in this report and can be found in Lin (2017). 

2.3 Results and Discussion 

Developing index velocity ratings to calculate flow 

The Sontek velocineter sensors tended to overestimate velocities by 2.5%, 7.0%, and 

1.0% , the cross-section average velocities, for the UP, MD, and DN stations, respectively, 

justifying the need for correction and harmonization among stations.  Details of the equations 

used can be found in Lin (2017).  

Degradation sample study results 

The degradation study showed that during Spring and Summer, ammonium and TKN 

could evolve over two weeks within the sampler. The consequence of this analysis is that 

when there was a significant difference (α=0.05) between ‘fresh’ and ‘degraded’ samples for 

the water quality parameters in spring and summer (Error! Reference source not found.), 

only the discrete samples collected within 48 hours prior to the field date were used to 

improve the quality of PLSR calibration (suggested by Etheridge et al., 2013). All the 

discrete samples collected in fall and winter were used in the PLSR calibration, as no 

significant degradation was found at these times. All additional details in Lin (2017). 
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Discrete sample results 

The laboratory analysis for discrete samples applied to PLSR calibrations are summarized 

in Table 2.1 which included the number of samples, mean concentrations, standard deviation, 

minimum concentrations, and maximum concentrations for NO3-N, NH4-N, TDN, TKN, 

DOC, TP, PO4-P, and TSS among the three stations.  

Table 2.1  

Summary of the laboratory analyses for discrete samples (Units: mg/L; concentrations 

with significant ‘degradation’ not included) 

 NO3-N NH4-N TDN TKN DOC TP PO4-P TSS 

UP 

No. samples 230 67 228 218 213 216 138 212 

Mean± 

Standard 

deviation 

2.98±0.61 0.19±0.16 3.50±0.63 0.61±0.29 5.03±1.60 0.09±0.15 0.02±0.03 16.46±32.74 

Minimum 1.0 0.10 1.8 0.28 2.6 0.01 0.01 0.33 

Maximum 4.2 1.2 4.8 2.2 13.4 1.3 0.36 367 

MD 

No. samples 102 79 101 98 102 58 54 81 

Mean± 

Standard 

deviation 

2.60±0.59 0.14±0.06 3.16±0.54 0.65±0.25 6.10±2.12 0.08±0.05 0.01±0.02 21.51±31.47 

Minimum 1.1 0.10 1.7 0.3 3.0 0.02 0.01 2.0 

Maximum 3.6 0.41 4.1 1.3 12.5 0.25 0.14 218 

DN 

No. samples 176 72 176 161 193 159 130 166 

Mean± 

Standard 

deviation 

2.41±0.50 0.20±0.12 2.96±0.52 0.71±0.27 6.14±1.88 0.11±0.10 0.02±0.01 23.74±29.70 

Minimum 0.8 0.10 1.5 0.3 3.7 0.02 0.01 1.0 

Maximum 3.4 0.85 4.0 1.9 14.7 0.65 0.10 250 

(Note: The detection limit is 0.1 mg/L for NO3-N, NH4-N, TDN, and DOC; 0.28 mg/L for 

TKN; 0.01 mg/L for TP and PO4-P; no detection limit for TSS.) 
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Global Calibration versus discrete sample results 

The global calibration that came with the instrument was used directly without local 

calibration and compared with discrete concentrations.  The results show significant linear 

correlations between the discrete and the raw instrument values, but show large departure 

from the one to one line (Figure 2.4 and Figure 2.5; Table 2.2).  Additionally, the RMSE of 

each regression are equivalent to 10% to 25% of the absolute concentrations.  

This entirely justify the need to find methods to create local calibration that can correct 

for slope, intercept and RMSE; hence the PLSR approach suggested by Torres and Bertrand-

Krajewski (2008), Rieger et al., (2006), Langergraber et al. (2003), and Etheridge et al. 

(2014, 2015) to improve predictions for water quality concentrations.  
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Figure 2.4  

The linear regression relationship between Global Calibration and Discrete Samples for 

NO3-N at UP. (Black solid line: 1 to 1 line; Black dash line: Regression line) 
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Figure 2.5 

The linear regression relationship between Global Calibration and Discrete Samples for 

DOC at UP. (Black solid line: 1 to 1 line; Black dash line: Regression line) 

Table 2.2  

Summary of linear regressions between Global Calibration and discrete samples results 

for NO3-N and DOC among the three monitoring stations 

 
NO3-N DOC 

Station No. 

Observations 

Regression 

Equation 

R² RMSE No. Observations Regression 

Equation 

R² 

 

RMSE 

UP 230 
Y = 0.8397 X 

+ 0.8507 
0.79 0.53 213 

Y = 0.3781 X 

+ 2.5402 
0.61 2.78 

MD 93 
Y = 0.7438 X 

+ 0.6002 
0.87 0.27 91 

Y = 0.6975 X 

+ 1.7408 
0.72 1.00 

DN 154 
Y = 0.5547 X 

+ 0.9488 
0.73 0.46 167 

Y = 0.5577 X 

+ 1.9064 
0.65 1.56 

(Note: 1. Y = Discrete Samples Results, and X = Global Calibration.) 
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Large improvement provided by the PLSR method on nitrate and DOC concentrations 

Using the method developed by Etheridge et al. (2014, 2015), we have been able to create 

much better calibrations than the global calibration (Figure 2.6). 

 

 

 
Figure 2.6: Large improvement in the prediction of Nitrate and DOC using the PLSR 

method. 
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The improvement is quite obvious from the differences in chemographs between the 

instrument concentrations and from the PLSR generated concentrations (Figure 2.7). 

 
Figure 2.7: Improvement of the nitrate concentrations predicted by the PLSR method, 

compared to the ones predicted by the ‘global calibration’ directly from the instrument 

 

It is possible to go beyond the instrument advertised capabilities and create Water 

Quality Rating Curves for most parameters tested  

Our main hypothesis in this chapter was that the spectrophotometers could be used to 

predict not only nitrate, DOC and TSS, as advertised by the manufacturer, but go beyond that 

and use the PLSR method to create calibration for other parameters.  

The details of the exact results are available in Lin (2017). We feel important to report 

here that the out of the 42 PLS regressions for the 7 parameters tested, 3 stations and 2 major 

climatic periods (fall-winter and spring-summer), 31 of them were found to predict 
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concentration on a robust basis. Eleven (11) were found not to predict concentration on a 

robust basis, these include mostly ammonium and phosphate. We used several criteria to 

evaluate the robustness of the predictions, the main one of which being the Nash Sutcliffe 

Efficiency (NSE) and its empirical distribution. In short, when the NSE values were lower 

than 0,65, more than 5% of the time, the regressions/predictions were deemed unsatisfied and 

rejected. The results from Lin (2017) are condensed in Table 2.3 below. 

Table 2.3  

The summary of PLSR calibration for NO3-N, NH4-N, TDN, TKN, DOC TP, and PO4-P 

at the three stations (UP, MD, DN)  

  NO3-N NH4-N TDN TKN DOC TP PO4-P 

UP in spring and summer 

NSE 

(% unsatif.) 

0.93 

(0%) 

0.17 

(100%)** 

0.88 

(0%) 

0.87 

(0%) 

0.91 

(0%) 

0.95 

(0%) 

0.94 

(7.4%) 

UP in fall and winter 

NSE 

(% unsatif.) 

0.94 

(0%) 

0.97 

(15%)** 

0.89  

(0%) 

0.87 

(0.1%) 

0.85 

(0%) 

0.97  

(0%) 

0.88 

(33%)** 

MD in spring and summer 

NSE 

(% unsatif.) 

0.98 

(0%) 

0.80  

(2%) 

0.92  

(0%) 

0.87  

(0%) 

0.92 

(0%) 

0.88 

(0.1%) 

0.92  

(9.4%) 

MD in fall and winter 

NSE 

(% unsatif.) 

0.95 

(0%) 

0.75 

(35%)** 

0.94  

(0%) 

0.71 

(22%)** 

0.93 

(0%) 

0.81 

(8.8%) 

0.74  

(29%)** 

DN in spring and summer 

NSE 

(% unsatif.) 

0.93 

(0%) 

0.10 

(100%)** 

0.85  

(0%) 

0.80 

(5.2%) 

0.91 

(0%) 

0.95 

(0%) 

0.94 

(0%) 

DN in fall and winter 

NSE 

(% unsatif.) 

0.93 

(0%) 

0.71  

(39%)** 

0.85  

(0.1%) 

0.84 

(2.7%) 

0.92 

(0%) 

0.97 

(0%) 

0.95 

(1%) 
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TSS Predictions from PLSR and Turbidity 

An intriguing result was the applications of two distinct and somewhat independent 

techniques, for the prediction of TSS. Indeed, turbidity is a parameter given directly by the 

instrument, and can be used as an index data, just like the whole absorbance spectrum to 

predict TSS.  

We applied the PLSR method to TSS and found highly significant correlations and robust 

models for the UP and DN stations (R² = 0.94, RMSE between 8 and 10 mg/L) but not so for 

the MD station (R²=0.68, RMSE = 29 mg/L), which model appears invalid using the 0.1 

criterion for NSE.  The better results for the UP and DN stations appear related, again, to the 

few high concentration values 5 to 10 times the median concentrations.   

Using correlations reported before (e.g., Birgand et al., 2005; Skarbøvik and Roseth, 

2015; Ramos et al., 2015; and Gippel, 1995), we also obtained highly significant correlations 

between turbidity values and TSS (R² greater than 0.96; details in Lin, 2017).  The RMSE 

from turbidity predictions are 4, 3, 15 mg/L at the UP, MD and DN stations, respectively.   

It becomes interesting to compare their performance side by side, to predict the total TSS 

annual loads. The TSS cumulative loads calculated from PLSR and turbidity calibrations 

show very similar results at the UP station, i.e 224 and 223 kg/ha, respectively.  However, 

loads computed with the PLSR calibrations at the MD and DN stations overestimate by about 

30% those predicted using turbidity (MD: 340 vs 262 kg/ha, 29.6% difference; DN: 544.4 vs 

405.2 kg/ha; 34% difference).  These results are discussed below. 
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Dicsussion: can we reliably measure nutrient concentrations and loads with Water 

Quality Rating Curves? 

The use of PLSR with UV-vis spectro::photometers had been reported in waste water 

(Torres, and Bertrand-Krajewski,), in a tidal marsh (Etheridge et al., 2013; 2014), and in a 

lake (Birgand et al., 2016).  This study shows an application in the more standard setting of 

monitoring stations in streams and rivers.  We have coined the concept of Water Quality 

Rating Curves by analogy to other rating curves often used in hydrology, such as stage-

discharge relationships.   

We have found that in an agricultural stream of the Coastal Plain, it was possible to 

establish significant and robust correlations between light absorbance between the UV and 

the visible and many parameters of interest for the N, P, and C cycles, although we were 

unable to establish valid correlations between absorbance and NH4-N and PO4-P for most of 

the time and stations, however.   

The results for TSS predictions using PLSR as a rating method or turbidity as index data, 

point out another extremely important point and potential risk when using water quality 

rating curves.  After review of the concentration time series, the large overestimations of the 

TSS loads at the MD and DN stations using PLSR compared to the turbidity based 

predictions, are associated with concentration peaks at or near flow peaks, which predictions 

are outside the calibration ranges.   

The first consequence of this observation is that it is very important, for all parameters, to 

try to capture the largest concentration range during calibration, and identify the 
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concentrations predicted outside the calibration range.  Ideally, this should correspond to a 

minimum percentage of the time.  For parameters that exhibit a concentration effect, the 

concentrations tend to peak during flow peaks, which makes their ‘capture’ or sampling 

difficult, and also their incorporation in the calibration pool, because these events are rare by 

definition.  The errors associated with extrapolating outside the calibration range are 

particularly amplified because they are associated with the flow peaks.  The consequences of 

predictions outside the calibration range are inherently less problematic for parameters that 

exhibit ‘dilution effects’ during events, such as nitrate for the studied watersheds (see chapter 

2 and 3).  

The second consequence for TSS specifically, is that some of the concentration peaks 

predicted with the PLSR appear unrealistically high (>1000 mg/L).  For Turbidity values less 

than 500 NTU, it is generally accepted that the TSS and turbidity increase linearly.  For 

higher values (>500 NTU), the turbidity do not increase linearly with TSS anymore as some 

of the particles are in the shadows of others that have already absorbed light.  It is thus likely 

that the predictions of TSS concentrations outside the calibration range using turbidity as 

index data are underestimated, yet bounded.  In the end, there seems to be too much risk with 

the PLSR predicted TSS loads and Turbidity predicted loads are the preferred choice. 

Beyond water quality rating curves: additional local concentration corrections 

Most of the time, PSLR could reliably predict continuous water quality concentrations 

and fit well with the discrete samples results, despite the fact that some fouling was observed 

after two weeks most of the time.  This suggests that the PLSR did correct for most of the 
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fouling. Nonetheless, the time series revealed that just before and/or just after field servicing 

and optics cleaning, the predicted concentrations appeared offset compared to the lab values.  

This coincides with PLSR ability to correct for fouling, as on average it corrects well but 

might ‘not correct enough’ just before field servicing, and ‘too much’ just after servicing.  

The concentration predictions from PLSR thus appear as an artifact of the method, which we 

decided to correct manually using the AQUARIUS software, such as in the figures below. 

 

 

Figure 2.8  

An example of “stray” data points because of biofouling. Continuous NO3-N 

concentrations from PLSR calibration (black line), NO3-N concentrations from Discrete 

Samples (red dots), Flow rate (blue line), and Field visit date (gray vertical line) at UP 

on February 5-20 in 2014.  
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Figure 2.9  

Continuous NO3-N concentrations from PLSR calibration with correction by using 

AQUARIUS software (black line), NO3-N concentrations from Discrete Samples (red 

dots), Flow rate (blue line), and Field visit date (gray vertical line) at UP on February 5-

20 in 2014. 

 

Results for filling missing flow and concentration data 

Missing data is a true problem with these instruments. We have learned the hard way that 

one must find ways to fill in the data, with some robust methods. All the details are provided 

in Lin (2017). We feel important to summarize the methods used for this purpose.  
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In order to compensate the loss of flow data, we developed regression relationships 

among the monitoring stations to fill the gap. This was a simple but tedious task, but shows 

the importance of the experimental design with 3 stations. 

As discussed previously, the monitoring system did not always function properly during 

several periods. The percentages of properly functioning period for the monitoring systems 

were 60.7, 54.4, and 64.0 % at UP, MD, and DN respectively and most of periods with gap 

were not synchronous for the three stations.  

A total of three methods were compared to fill in the data.  The first ‘do nothing’ method 

consisted in linearly interpolating between continuous discrete samples, regardless of the 

changes of flow.  The second, the ‘Manual method’ consisted, during events, in taking into 

account the likely changes of concentrations associated with flow changes, by adding 

concentration points just before an event and at the flow peaks, using ‘visual expertise’ using 

adjacent events as guides.  Although fast, the manual method is highly subjective.  The third 

‘Semi-Automatic method’ took the subjectivity out of the manual method by creating 

regression relationships between flow rates and water quality concentrations from 

adjacent/similar storm events (details in Lin, 2017).   

Overall, the results show that all three methods are rather comparable and do not generate 

large relative uncertainties (Table 2.4). The ‘do nothing’ method is not particularly attractive 

as it is obvious that the chemographs generated do not represent well, at times, concentration 

variations during storms 
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Table 2.4 

Summary of NO3-N cumulative loads for Manual method and Semi-Automatic method 

Station Manual Method % Absolute 

difference 

between A and B 

NO3-N cumulative 

loads for Semi-

Automatic Method 

(C) 

% Absolute 

difference 

between A and C 
NO3-N 

cumulative loads 

with Manual 

Method (A) 

NO3-N cumulative 

loads the ‘do 

nothing’ method (B) 

UP 19.6 19.7 +0.7% 19.3 +1.2% 

MD 15.6 15.8 +1.7% 14.9 -4.2% 

DN 16.5 16.9 +2.4% 16.6 +0.5% 

 

Challenges and maintenance for the application of UV-Vis spectrophotometers in situ  

There are several main challenges associated with obtaining high-frequency water quality 

and hydrology data continuously, and keeping the monitoring system (UV-Vis 

spectrophotometers, multi-parameter sonde and flow meter) working properly in situ 

including: (1) biofouling on optics surface, (2) sufficient power supply, (3) heat supply in 

adverse weather, (4) animal effects and equipment maintenance. The details were addressed 

as following: (1) Biofouling on optics surface, would affect the measurements quality of UV-

Vis spectrophotometers, therefore, with 2 % HCl was applied. (2) Sufficient power supply: 

adequate power was required for the several electronic instruments (ex: UV-Vis 

spectrophotometers, flow meter, multi-parameter sonde, and discrete sampler) installed at 

monitoring stations. To meet this need, rechargeable batteries and solar panel boards were set 

up at each monitoring station. (3) Heat supply in adverse weather: in winter, the water would 

freeze in the tubes if the temperature was below 0°C and affect the transportation of water in 

tubes, thus preventing water quality measurements by UV-Vis spectrophotometers. It has 
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been suggested to use tube insulation to cover tubes. Furthermore, Skarbøvik and Roseth 

(2015) suggest applying a heating cable or heating lamp in-situ. (4) Animal effects and 

equipment maintenances: There were several animals (e.g., mouse and turtles) that bit the 

cables, wires, and tubes, hence, the applications of hard covers to protect the cables, wires 

and tubes were necessary. Additionally, changing the pump tubing was necessary since the 

tubing would wear out within a month. Overall, the maintenance of the monitoring stations in 

situ was essential to ensure that the measuring equipment would collect high quality data. 

2.4 Conclusion  

We observe that the effects of stream restoration on e.g., bank erosion, habitat, or 

macroinvertebrate communities seems to be relatively well established.  We observe that in 

these examples, the indicators used are ‘integrative indicators’ as they integrate over time the 

effect of the pulsation nature of streams and the effect of restoration.  There has been no 

equivalent consensus on the effects of stream restoration on water quality for at least two 

main reasons: either because they are very small and/or because the methods used until now 

were not robust enough and did not integrated over long continuous periods of time the 

nutrient fluxes.   

We hypothesize that one way to address the water quality impact of restoration is to 

provide methods to obtain reliable integrative water quality indicators, e.g., nutrient and 

material loads.  The arrival of continuous water quality sensors to obtain concentration values 

on a continuous basis provides a solution to what had remained an obstacle until now.  We 

have proposed to use UV-Vis spectrophotometers as index data source and the creation of 
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Water Quality Rating Curves to obtain concentration data on a high frequency basis to 

calculate robust N, P, C, and material fluxes.   

We have shown that in an agricultural stream of the coastal plain of North Carolina, it 

was possible to construct robust Water Quality Rating Curves to measure nitrate, TDN, TKN, 

DOC, and TP, using the absorbance data as index data and PLSR as a rating method.  We 

have also shown that this method did not work well for NH4-N and PO4-P, although it is 

possible that this was the result of not optimal calibration points pool.  Our results suggest 

that to obtain robust Water Quality Rating Curves, it is necessary to have as large as possible 

a calibration concentration range, where calibration concentrations are as stratified as 

possible.  Extrapolating beyond the calibration range is inherently risky and may result in 

errors, and in the case of parameters that exhibit concentration effect during events, large 

overestimation as we showed for TSS predicted using PLSR.  For TSS, we suggest that it is 

preferable to use the more conservative turbidity based method.  

We have also shown that the concentrations calculated by the algorithms embedded on 

the instruments are not reliable without local calibration, but that after calibration, can yield 

more acceptable results for nitrate and DOC.  However, the PLSR rating seems to be more 

robust, is not technically over complicated and can be applied to other parameters.  The 

uncertainties induced by the combination of absorbance data and Water Quality Rating 

Curves is explored in Chapter 2.  To obtain fully continuous nutrient flux data, it is necessary 

to provide methods to fill the gaps.  We have proposed methods to fill flow and concentration 

data, the latter of which seem robust.   
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Chapter 3: Uncertainties assessment for continuous and infrequent 

sampling in measuring nutrient loads with the application of UV-Visual 

spectrophotometers in an agricultural coastal plain stream 

3.1 Introduction 

Water quality monitoring in situ probes uncertainties need assessing 

There is a fast increasing number of articles that have reported the use of water quality 

sensors in tidal marshes since 2010 (Etheridge et al., 2013, 2014, 2015), rural (Bowes et al., 

2015; Skarbøvik and Roseth, 2015;Cassidy and Jordan, 2011), and urban catchments 

(Halliday et al., 2015). However, and to our knowledge, there are few reports on the 

uncertainties associated with these sensors, although this is crucial to warrant the investment 

into these very expensive pieces of equipment. 

Among the very interesting applications of PLSR is that it seems possible to obtain good 

calibrations with parameters not known to absorb light such as Organic Nitrogen, (ON), 

bromide (Br-), phosphate (PO4-P), total phosphorus (TP), Iron and Silica (Etheridge et al., 

2014; 2015; Birgand et al., 2016; Chapter 2).  We have thus proposed the concept of ‘water 

quality rating curves’, where absorbance spectra is used as ‘index data’ (sensu Morlock et al., 

2002) and PLSR corresponds to the ‘rating method’.  We have shown that water quality 

rating might be used for parameters not known to absorb light, because we hypothesized that 

in many watersheds, there might be covariability of the ‘color matrix’ of the water with 

concentrations (Birgand et al., 2016; Chapter 2). 
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 Research questions and hypotheses 

Measured, or rather predicted concentrations are thus fraught with uncertainty directly 

linked to the residuals associated with the regressions founds.  Like in all calibrations, the 

values and robustness of the regressions depend on the number and the distribution of 

calibration points, which may vary from parameter to parameter, and from station to station.  

Additionally, despite cleaning systems and techniques, the optics of these instruments, tend 

to foul due to metal oxide precipitation and/or the growth of biological and microbial agents 

over time (e.g., Whelan and Regan, 2006; Flemming, 2011; Etheridge et al., 2013; Tait et al., 

2014; this report).  

By estimating residuals, the PLSR approach can be directly used to calculate the 

uncertainty associated with these continuous water quality instruments, which does not 

appear to have been done before.  Rieger et al. (2006) and Langergraber et al. (2003) 

suggested the calibration points cover the entire prediction range and be distributed equally. 

More calibration points may suggest more robust rating curves, but the number of points 

must remain small enough not to add to the already high investment and maintenance costs. 

The research questions become: 1) what kind of uncertainty should one expect on 

concentration and load values from continuous water quality instruments? 2) Can one 

develop guidance on how to minimize uncertainty with the use of these instruments using an 

affordable number of calibration points? 3) How do uncertainties associated with the UV-Vis 

sensors compare with those associated with infrequent sampling on the annual load 

indicator?  
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Objectives 

The objective of this chapter is to report the uncertainties that one might expect using 

UV-Vis instruments in streams and rivers on concentration and load values for nitrate [(NO3-

N], total dissolved nitrogen [TDN], Total Kjeldahl Nitrogen [TKN], dissolved organic carbon 

[DOC], total phosphorus [TP], and total suspended solids [TSS].  We used in situ UV-Vis 

spectrophotometers and continuous monitoring of hydrology at two stations in the upper 

coastal plain of North Carolina, USA.  

As a result, the objectives of the research were addressed as follows: 1) Evaluate the 

uncertainties on concentration values and of annual loads calculated by the ‘global 

calibration’ provided by the manufacturer, and calculated using PLSR depending upon the 

number and the distribution of the calibration points used. 2) Compare these uncertainties to 

those that would be induced by infrequent sampling on estimating annual loads with best 

load algorithm methods; 3) Provide guidance to users to minimize uncertainties and 

maximize the potential of their UV-Vis spectrophotometers. 

3.2 Methods 

We followed the procedures for PLSR calibration described in chapter 2 using the pls 

package (Mevik et al., 2011) in the R software (R Core Team, 2016).  Briefly, this package 

takes 90% of the points to create a calibration model and cross validates on the remaining 

10%, and calculates indicators such as Root Mean-Square Error of Prediction (RMSEP), 

percentage of variance of wavelengths being explained and R² for a given number of 
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components. The model was initially run for 20 components.” The optimum number of 

PLSR components for each analysis was chosen based on the two conditions. First, RMSEP 

values decreased dramatically as the increasing of number of components; then, RMSEP 

values became stable after the first turning point of the number of the component. Thus, the 

number of component related to the first transition point for RMSEP values was considered 

in the first condition. Second, the first number of component where the percentage of 

variance of wavelengths was higher than 99.95 % was considered. At last, the minimum of 

the number of component obtained from the two condition was determined for PLSR 

calibration. With PLSR calibrations, the 15-minutes continuous concentrations for NO3-N, 

TDN, TKN, DOC, TP, and TSS were predicted from the spectral data and discrete sample 

results.   

Reference load 

The cumulative nutrient and material loads (L) is the integral over a given time (t) of 

instantaneous loads calculated as the product of solute concentration (C(t)) with flow rate 

(Q(t); Equation 2).  In reality, this integral can be approached by the summation of 

instantaneous 15-min loads calculated from the 15-min flow (Qi) and concentration (Ci) data 

(Equation 3), where K is the unit adjustment factor and N is the number of 15 min intervals in 

t.   
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All loads calculated from calculated 15-min concentration data were calculated using 

Equation 3.  

Resampling the existing calibration points 

In order to evaluate the uncertainty associated with the use of UV-vis 

spectrophotometers, we numerically resampled the existing calibration points by using 

bootstrap, random and stratified sample subsets from the original dataset, and applied PLSR 

on these subsets, and predicted 15-min concentration data from the 15-min absorbance 

spectra.  We then compared the computed loads and compared them to the reference ones 

and expressed the differences in percentages.   

Bootstrap sampling 

Bootstrap sampling refers to random sampling with replacement from all the original 

existing calibration points. The sample size of the new datasets is identical with the number 

of original calibration points, and the bootstrap sampling in this research is referred to case 

bootstrap resampling. Bootstrap sampling was applied to NO3-N, TDN, TKN, DOC, TP and 

TSS at both the UP and DN stations.   

Random subset sampling 

Random subset sampling refers to generating a new dataset by selecting a subset 

randomly without replacement from the original dataset. In this research, we chose the 

samples sizes with subset sampling to be 52, 24 and 12 data points, so that the uncertainties 

would be comparable to those induced by weekly, biweekly, and monthly discrete sampling, 
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respectively. The sample sizes with 52, 24 and 12 points were applied to NO3-N, TDN, TKN, 

DOC, TP and TSS at UP and DN stations. The sample sizes with 52 were not applied to TSS 

at DN because the maximum number of original calibration points was only 45. 

Stratified sampling  

In order to obtain higher quality of PLSR calibrations, Rieger et al. (2003) and 

Langergraber et al. (2006) suggested that the discrete samples be distributed equally over the 

given concentration range. Stratified sampling refers to separating the original dataset into 

mutually exclusive subgroups and using random sampling without replacement within each 

bin (or stratum). The details of how this was done are available in Lin (2017). 

Uncertainties estimation on annual loads as hydrological indicator with resampling  

We obtained 1000 different calibration point datasets for each sampling method. We then 

ran PLSR to create a calibration for each of the dataset.  The optimum number of 

components was selected based on the description in the Methods section.  From each of 

these calibrations, we predicted the continuous concentrations and thus obtained 1000 load 

estimates for each of the parameters tested.  Additionally to the PLSR calibrations, we 

created 1000 TSS vs turbidity rating curves.  For TSS, we thus obtained 1000 estimates of 

TSS loads using PLSR and 1000 estimates using turbidity as index data.  

We estimated the uncertainties for annual loads as a percentage error to reference loads 

(Equation 5):   
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100%(%) percentageError 



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                                (Equation 5) 

Where Lr is the reference load using the continuous concentrations predicted from all 

existing original calibration points (for TSS, we obtained two reference load values for PLSR 

and turbidity based methods) and where Le is one of the 1000 estimated loads calculated as 

described above.  We thus obtained a distribution of 1000 error percentages from which we 

extracted the average error (eavg), the median value (e50) (both estimates of accuracy or bias), 

as well as the 5th (e5) and 95th (e95) percentiles between which 90% of the total uncertainty is 

included, as a way to express the range of uncertainties. 

Uncertainties estimation on annual loads as hydrological indicator with infrequent 

sampling  

For comparison purposes, we calculated the uncertainties expected on the annual loads 

that would have been induced by infrequent sampling.  Many algorithms have been 

developed to estimate loads from infrequent concentration and continuous flow data (e.g., 

Phillips et al., 1999; Johnes, 2007; Birgand et al., 2010; Cassidy and Jordan, 2011). In this 

research, we used two algorithms: the flow-weighted concentration average estimator method 

and the linear interpolation method as they have been shown to perform best in coastal plain 

streams (Birgand et al., 2010).   

For the first method, the annual flow weighted concentration average was estimated for a 

given sampling frequency from the summation of instantaneous loads obtained at the times 

of sampling divided by the summation of flow at the same times.  This concentration was 
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then multiplied by the flow volume calculated from continuous flow records.  The first 

method is often referred to as the M5 method (Table 3.1; Phillips et al., 1999; Birgand et al., 

2010). For the second method, 15 min concentrations were calculated from linear 

interpolation from discrete concentrations obtained at regular intervals. The second method is 

often referred to as the M6 method (Table 1; Phillips et al., 1999; Birgand et al., 2010). 

Table 3.1 

Methods applied to calculate the annual loads in this research (Adapted from Johnes, 

2007; Birgand et al., 2010; Cassidy and Jordan, 2011) 

Method Number Equation  Description  

M5 








n

i

ii

n

i

ii

QC

QC

KVLoad

1

1
 

Product of the annual flow 

volume and the flow weighted 

average of the concentration 

(Littlewood, 1992). 

M6 




365

1

int

j

jj QCKLoad  
Product of linear interpolation of 

concentrations and continuous 

flow rates (Qj) 

(Moatar and Meybeck, 2005). 

n Number of samples  

K Conversion factor accounts for units and intervals of sampling  

Ci Instantaneous concentration measured at the time and day of the ith samples (mg L-1) 

Qi Instantaneous flow rate measured at the time and day of the ith samples (m3 s-1) 

Qj Continuous flow rate (m3 s-1) 

V Annual cumulative flow volume (m3 s-1) 

Cint Linearly interpolation concentration between the two consecutive samples 

 

To estimate uncertainties induced by infrequent sampling, the reference continuous 

concentrations were numerically resampled at the tested fixed intervals (weekly, biweekly 

and monthly).  We thus generated 1000 sets of fixed intervals discrete concentrations, for 

each of which the M5 and M6 loads were calculated.  The error percentage between the 

estimated loads and the reference loads were calculated using Equation 5.  The uncertainties 

induced by infrequent sampling were evaluated for NO3-N, TDN, TKN, DOC, TP, and TSS 

at UP and DN.  
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Filling missing values in the spectral results  

During the 16-month monitoring period (from December 2013 to March 2015), human 

errors and equipment failure (e.g. power outage) caused distinct gaps in spectral data 

measured by the UV-Vis spectrophotometers. For the purpose of the uncertainty calculations, 

we created a synthetic dataset over a full hydrological year (as defined by USGS, the 

hydrological year in the U.S. is from October 1 for any given year to September 30 in the 

following year.) for each station.  Fifteen-minute flow data were almost always available, so 

gap filling was applied mostly to concentration data. First, we identified the missing spectral 

data periods. We then searched in the previous/next year if there were spectral data available 

that roughly corresponded to the same periods with similar storm events.  Great care was 

taken to make sure that the flow and concentration peaks/troughs were fully synchronous.  

For example, data were missing from October 2013 to November 2013. As a result, the 

spectral data measured from October 2014 to November 2014 was used to patch the missing 

2013 period.  When no fitting concentration data were available, the concentration data were 

duplicated to best fit the flow events.  In the end, there were very few duplication of 

instantaneous loads because most of the flow data were original. 

3.3 Results and Discussion 

Redundant potential in the annual spectral data 

The details of the value of the synthetic dataset used for the uncertainty analysis are 

detailed in Lin (2017) and the conclusions are that the synthetic data created can be used as a 
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realistic representation of flow and concentration dynamics that could have been recorded in 

these watersheds and therefore suitable datasets for uncertainty calculations.  From the 

synthetic datasets created at the UP and DN stations, it was possible to evaluate the 

uncertainties. The details of the reference/synthetic datasets statistics are in Lin (2017). 

The method used allows for very small uncertainties compared to standard monitoring 

methods 

The indicators for all simulations for parameters tested are detailed in Lin (2017). For the 

bootstrap method, which assesses rather closely the uncertainty expected on the annual loads 

to be used to quantify the effects of stream restoration, the uncertainties appear small, which 

gives high hopes that the system we have put together will be good enough to detect 

restoration effects, even if they are small (Table 3.2). Besides for TP, most of the 

uncertainties are within  3.5% or better. 

 

 

 

Table 3.2: Uncertainty estimation expressed in percentage error compared to the 

reference annual load for the bootstrap method over a range of parameters  

 Bootstrap UP DN 

Nitrate -1.3 to +1.0  -1.2 to +3.8 

TDN -0.7 to +0.9 -1.4 to +3.1 

TKN -3.5 to +3.6 -3.5 to +7.6 
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DOC -3.0 to +2.5 -2.2 to +2.1 

TP -6.5 to +13.8 -4.5 to +8.0 

TSS (PLSR) -4.9 to +2.3 -4.3 to +3.1 

TSS (Turbidity) -2.4 to +2.4 -4.4 to +4.3 

 

Across all simulations for both stations and all parameters, the bootstrap resampling gave 

the smallest uncertainties, most of which within -3.5% to +3.5% (Table 3.2).  This was 

expected as the number of calibration points are 5 to 30 times more numerous.  We obtained 

the smallest uncertainties for TDN (-0.7% to +0.9%) and the largest for TP (-6.5% to 

+13.8%).   

The uncertainty distributions with bootstrap sampling were symmetrical for all 

parameters at UP and DN stations and generally centered around 0, except for TP at UP 

station, suggesting that the bias (eavg) and median-bias (e50) have the same trend.  

The relatively large uncertainty for TP probably comes from the skewness of calibration 

points, as 90% of the points are within 15% of the total calibration range corresponding to 

the lowest concentrations at UP station.  Even with bootstrap sampling, there were high 

probabilities for calibration points to be selected from the lower range (0.01 to 0.30 mg/L at 

UP). As a result, some of the bootstrap subsampling do not capture the high concentrations, 

which can generate higher uncertainties, particularly since the high concentrations occurred 

around flow peaks (Chapter 2).  Consequently, the uncertainty range for estimating loads is 

larger for TP than TDN.   

Our results also show that standard monthly sampling would have produced, on annual 

loads, uncertainties of the order of  10% for nitrate,  12% for TDN,  30% for TKN,  
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17% for DOC, -60 to +100% for TP and -80 to +150% for TSS (details in Lin, 2017). This 

amply justify the needs to change from common sampling strategies and the benefits of using 

our proposed system. 

To obtain good results, the in situ WQ sensors need to be properly calibrated  

While the previous results are highly encouraging, they presuppose that a lot of samples 

be collected for calibration. Many agencies such as DOT cannot afford but the equivalent of 

monthly or maybe bimonthly samples to calibrate their probes. For this reason, we explored 

the uncertainties that would be associated with a limited number of calibration samples and 

how the distribution (randomly or stratified) of these samples would matter on the 

uncertainties. 

As stated in the methods part, the uncertainties can be characterized by their range (90% 

of the uncertainty included between the 5th  – e5 – and 95th – e95 – percentile of the 

distribution, and their median – e50. The uncertainty indicators and the uncertainty 

distributions are illustrated in Figure 3.1 below for nitrate and DOC for random and stratified 

sampling for 24 samples. All distribution histograms and all the numbers corresponding to 

each histogram are available in Lin  (2017). 
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A

 

B

 

C

 

D

 

Figure 3.1: Distribution of uncertainties of annual loads for nitrate (top row; A and 

B) and DOC (bottom row ; C and D) corresponding to 24 stratified (left column; A 

and C) and random (B and D) samples used to create the calibrations 
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Much lower uncertainties from stratified compared to random sampling and infrequent 

sampling 

Similarly to what Rieger et al. (2003) and Langergraber et al. (2006) reported, we found 

that uncertainties associated with stratified sampling are always better than those associated 

with random sampling, regardless of the number of calibration samples, the parameter, and 

the station (details in Lin, 2017).   

For TKN and DOC, the uncertainty associated with 12 or 24 random sampling for PLSR 

calibration are large and of the same order as those that would be induced with regular 

interval discrete sampling calculated using M5 and M6. For TP and TSS, discrete infrequent 

sampling generates much higher uncertainties, than the PLSR results.  However, the 

uncertainties even with 52 samples can still be high using random sampling for TP at the 

upstream station (-11.2% to +27.6%). 

With increasing number of samples (from 12 to 52), the bias associated with random 

sampling tends to converge toward zero.  This is expected as this tends toward the reference 

calibration set.  Two notable exception are TP at UP and TKN at DN, although the bias 

absolute values diminish, they are at -5.6% and +7%, respectively for 52 samples. 

Interestingly, the bias associated with stratified sampling tends to converge towards 

negative numbers for nitrate and TDN and positive numbers for DOC and TKN, which 

reference sample distributions have more high and low concentrations, respectively.  This 

suggests that the annual nitrate and TDN loads, and DOC and TKN loads, tend to be 

underestimated and overestimated, respectively, with a smaller stratified subset of sample for 

calibration.  This could be due to an overrepresentation of the lower frequency concentrations 
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in the stratified calibration subsets, and/or an overrepresentation of the higher frequency 

concentrations in the reference calibration set.   

Because the biases, tend to stay relatively stable with stratified sampling, and because the 

skewness of regression residuals of the respectively lower and higher ranges (data not 

shown) of concentrations for nitrate and TDN, and DOC and TKN, we conclude that the 

reference loads are likely systematically overestimating and underestimating, respectively, 

the actual loads.  We also conclude that the annual loads computed from stratified calibration 

sets are likely less biased than the reference loads.   

More stratification is better 

For nitrate and TDN, it was possible to test whether the number of bins or the 

stratification of the calibration samples improves prediction.  Although this corresponds to a 

small improvement, it does seem that stratifying from 2 to 3 to 5 bins, does lower the overall 

uncertainties for these two parameters at the two stations, using 30 calibration samples.  For 

example, the uncertainties for TDN at UP improved from -2.7% to +3.5% using two bins, to -

2.5% to +2.2% using three bins, and to -2.0% to +1.5% using 5 bins (Error! Reference 

source not found.).  The relatively small improvement might be due to the small 

uncertainties to start with for TDN and nitrate parameters. 

Uncertainties and calibration robustness depend on parameters 

Among all parameters, stations, and best estimation methods, uncertainties calculated on 

annual loads are lowest to highest in that order: nitrate, TDN (uncertainties very close to 
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those of nitrate), DOC, TSS (both methods performing about the same), TKN and TP 

(Error! Reference source not found.).   

Table 3.3 

 Summary of calculated uncertainties for all parameters, stations and method leading to 

lowest uncertainty 

 Best method UP Best method DN 

Nitrate Strat 52 -2.8 to +1.0 Strat 52 -2.3 to +3.0 

TDN Strat 52 -2.0 to +1.3 Strat 52 -3.6 to +5.1 

TKN Rand 52 -11.7 to +16.1 Rand 52 -7.0 to +33.5 

DOC Strat 24 -1.3 to +8.6 Strat 24 -0.1 to +5.2 

TP Rand 52 -11.2 to +27.6 Rand 52 -7.8 to +17.0 

TSS (PLSR) Rand 52 -7.0 to +2.9 NA NA 

TSS (turbidity) Rand 52 -3.8 to +4.9 NA NA 

 

Not surprisingly, uncertainties on nitrate and TDN are very similar since TDN was 

predominantly composed by NO3-N (50% to 90% for both stations) in the Claridge Canal 

based on the continuous concentrations. The improvement of the uncertainty from 12 to 24, 

which suggests that with few samples, PLSR is able to better reproduce the relationship 

between absorbance and concentrations with nitrate, than it is with TDN or DOC.  Nitrate is 

known to strongly absorb light between 190 nm to 250 nm (Crumpton et al. 1992; Suzuki 

and Kuroda 1987; Finch et al. 1998; Olsen, 2008), while TDN and DOC represent an 

ensemble of molecules of many different origins.  There theoretically is a lesser correlation 
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with identified wavelengths.  Nonetheless, the uncertainties for DOC at DN are of the same 

order of the ones for nitrate.  For this station, PLSR was able to provide a more robust 

predictions of the DOC annual loads.  This might be due to the intermittent addition of DOC 

from the Little River during very high flow events. 

The much higher uncertainties for TKN and TP are due in large part to the fact that they 

report calibration with random sampling.  The bootstrap results do show however, that for 

these two parameters, PLSR calibrations were the least robust  

3.4 Discussion and conclusions  

To our knowledge, this report is the first to report uncertainties on concentrations and 

annual loads using in situ spectrophotometers.  The PLS rating approach allows the 

systematic exploration of the level of uncertainty expected on concentrations and loads.  The 

strength of the PLSR ratings are very similar to those found in chapter 2, which suggests that 

the synthetic dataset built was realistic and the gap filling method using data duplication in a 

small proportion of the times did not have obvious apparent consequences.  We therefore 

believe that the results of this study are representative of those expected on the data collected 

between 2013 and 2015. 

The first striking result is that the uncertainties are much lower using stratified sampling 

rather than random sampling.  In other words, the first recommendation to obtain robust 

water quality rating curves is to obtain stratified concentrations in the calibration sample 

pool.  The second striking result is that it is likely that even the robust, i.e., precise, 

calibrations obtained with 100+ samples, as the bootstrapping results suggest, might be 
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inaccurate. Calibration might be biased towards overestimation for parameters exhibiting 

dilution effects during storms (such as nitrate and TDN in our case), and biased towards 

underestimation for parameters that exhibit concentration effects during storms, such as 

DOC, TP, and TSS.  The third striking result is that a potential major source of uncertainty is 

the extrapolation of concentration predictions beyond the calibration range, as the results of 

the PLSR-based vs turbidity-based results suggest.   

Now, within the guidelines described above, it is possible to make other complementary 

observations.  Our results suggest that for nitrate (or TDN mostly made of nitrate) that is 

known to absorb light in a narrow UV range, very small uncertainties can be expected, i.e., 

within ±2% for 52 stratified samples.  However, in these reactive watersheds 12 stratified 

samples to calibrate the instrument would yield uncertainties on annual loads within ±7%, 

which is not small, although three times less than uncertainty using standard monthly 

sampling.   

For DOC, which is also known to generally absorb light but which correspond to a large 

array of molecules, the uncertainty increase to -1% to +9% or a 10 percentage point spread, 

compared to a 6 percentage point spread for nitrate for 24 samples for calibration.  We 

believe that the +4% bias corresponds to the systematic underestimation of the reference 

load, while we believe that stratified sampling induces less bias. 

For other parameters such as TKN and TP, which are not known to absorb light and for 

which we hypothesize that there is a covariability of light absorbing constituents with 

concentrations to derive Water Quality Rating Curves, the uncertainties can be much higher 
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than for nitrate and DOC.  For these two, we were unable to test our recommended stratified 

sampling from the sample pool we were able to obtain.  Nonetheless, the uncertainties for 52 

calibration points (randomly sampled) could yield uncertainties within a 30 to 40 percentage 

points, which is not too different from the equivalent 40 and 50 percentage points 

uncertainties induced from weekly regular interval discrete sampling.  It thus seems that 

although we were able to establish robust water quality rating curves for all parameter tested, 

one should expect large uncertainties on the annual loads for TKN and TP unless the number 

of calibration points be much more than 52, and that their concentrations be stratified.  As a 

result, water quality rating curves might not be used as a routine practice for standard 

monitoring stations, and might remain an efficient research tool.   

In chapter 1, we showed that it might be possible to obtain water quality rating curves for 

ammonium and phosphate.  The small calibration pool did not allow exploring uncertainties 

with these parameters, but it is fair to say that the conclusions for TKN and TP also apply for 

these parameters too. 

We should note that the level of uncertainties computed with the M5 and M6 methods 

correspond to highly reactive watersheds, where uncertainties tend to be higher (e.g., Birgand 

et al., 2010).  It is thus possible that the level of uncertainties on annual loads for all 

parameters and all subsampling techniques are on the higher range and that smaller 

uncertainties might be expected for less reactive watersheds. 
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Finally, we believe that the bootstrap and other subsampling techniques should be 

routinely used to estimate the uncertainty on computed annual loads when using in situ field 

spectrophotometers.   
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Chapter 4: General Conclusion 

The context of this research is the quantification of water quality benefits of stream 

restoration.  This information is needed to associate nutrient credits to this practice. To fill 

this void in the literature, North Carolina Department of Transportation (NC DOT), North 

Carolina Forest Service (NCFS) and North Carolina State University (NCSU) have 

collaborated to conduct a pilot study. 

Until now, there has not been any clear evidence that stream restoration can provide 

water quality benefits (e.g., Bernhardt et al., 2005; Craig et al., 2008; Alexander and Allan, 

2006; Castillo et al., 2016; Daigneault et al., 2017; Eshleman and Sabo, 2016), much less 

accepted numbers on the water quality benefits. The reasons for this might be that the 

benefits are too small to be measurable, and/or that the uncertainties on the quantification 

methods were just too large to detect benefits. We have shown that the uncertainties on 

robust indicators, which we believe annual cumulative loads to be, can easily reach 20 to 

40% using standard weekly or biweekly sampling methods (Chapter 3), leaving little chance 

to quantify with any confidence water quality improvement of the same magnitude. This 

reason alone could explain the reasons for the lack of recognized water quality benefits. One 

chance to dramatically reduce the uncertainties on loads, and therefore on the bulk water 

quality effect, is to obtain concentration values at a pace that can capture the dynamics of the 

sometime rapid concentration changes with flow.   

Because water quality benefits largely depend on residence time (e.g. Craig et al., 2008), 

it is likely that the water quality improvements in restored streams are inherently small.  We 
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estimated the residence in our 2,200 m stream to be around 5 hours during April base flow 

conditions (see details in Lin, 2017).  In constructed wetland with long water residence time, 

the removal efficiencies have been measured to reach up to 97%, 32%, 25%, and 53% for 

nitrate, TDN, ammonium, and soluble active phosphorous, respectively (Ardón et al., 2010). 

The advent of new water quality sensors able to measure concentration at frequency in par 

with those of flow or stage sensors, opens the possibility to reduce uncertainty to much lower 

levels, and should the water quality effects be much higher than the measurement 

uncertainties, to quantify these benefits. Continuous hydrology and water quality monitoring 

were applied in the Claridge Canal which was restored in Goldsboro, North Carolina.  

This report is thus a methodological piece of work at its core. It first required to test 

whether new optical based sensors could even be used in the low gradient streams of the 

coastal plain of North Carolina.  In particular, we were very interested to know whether we 

could (1) Apply in situ ultraviolet-visual (UV-Vis) spectrophotometers and create water 

quality rating curves with using Partial Least Squares Regression (PLSR) to measure water 

quality parameters (NO3-N, NH4-N, TDN, TKN, DOC, PO4-P, TP and TSS) on a continuous 

basis in the agricultural coastal plain stream; whether we could (2) Quantify the uncertainties 

on measuring the cumulative loads associated with the data generated by UV-Vis 

spectrophotometers and provide guidelines for robust sampling strategies.  

Ability to create Water Quality Rating Curves for UV-Vis spectrophotometers 

UV-Vis spectrophotometers were used as index data source and to create Water Quality 

Rating Curves to obtain concentration data on a high frequency basis to calculate robust N, P, 
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C, and material fluxes. The PLSR rating seems to be more robust than the algorithms 

embedded on the instruments for our studied stream. The results demonstrated that it was 

possible to construct robust Water Quality Rating Curves to measure nitrate, TDN, TKN, 

DOC, and TP, using the absorbance data as index data and Partial Least Squares Regression 

(PLSR) as a rating method in an agricultural stream of the coastal plain of North Carolina. 

The results also indicated that this method did not work well for NH4-N and PO4-P, although 

it is possible that optimal calibration point pools were not obtained. Extrapolating beyond the 

calibration range is inherently risky and may result in errors, and in the case of parameters 

that exhibit concentration effect during events, large overestimation for TSS predicted using 

PLSR. For predicting TSS, it is suggested to use the more conservative turbidity based 

method. To obtain fully continuous nutrient flux data, it is necessary to provide methods to 

fill the gaps.  This research demonstrated that acceptable methods were developed to fill 

missing flow and concentration data.  

Reduce errors on measuring loads with using UV-Vis spectrophotometers and the most 

robust sampling method for affordable number of calibration points 

This research is the first to report uncertainties on concentrations and annual loads using 

in situ spectrophotometers, induced by the errors on sensor concentrations. The existing 

calibration points were numerically resampled by using bootstrap, random and stratified 

sample subsets from the original dataset, and applied PLSR on these subsets to estimate the 

uncertainties on annual loads. From the bootstrap resampling results, continuous monitoring 

with the application of UV-Vis spectrophotometers can reduce errors on measuring loads, 
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e.g., within ±5% measuring error for nitrate, TDN, TKN, DOC and TSS; and approximately 

±10% for TP.   

The uncertainties are much lower using stratified sampling rather than random sampling. 

It is likely that even the robust, i.e., precise, calibrations obtained with over 100 samples, as 

the bootstrapping results suggest, might be inaccurate. Calibration might be biased towards 

overestimation for parameters exhibiting dilution effects during storms (such as nitrate and 

TDN), and biased towards underestimation for parameters that exhibit concentration effects 

during storms, such as DOC, TP, and TSS in this research.  

The results suggested that for nitrate (or TDN mostly made of nitrate) that is known to 

absorb light in a narrow UV range, very small uncertainties can be expected, i.e., within ±2% 

for 52 stratified samples. For DOC, which is also known to generally absorb light but which 

correspond to a large array of molecules, the uncertainty increase from -1% to +9% or a 10-

percentage point spread, compared to a 6-percentage point spread for nitrate for 24 samples 

for calibration. For other parameters, such as TKN and TP, which are not known to absorb 

light, we hypothesized that there is a co-variability of light absorbing constituents with 

concentrations to derive Water Quality Rating Curves, the uncertainties can be much higher 

than for nitrate and DOC.  

The level of uncertainties computed with the flow-weighted concentration average 

estimator method (M5) and the linear interpolation method (M6) correspond to highly 

reactive watersheds, where uncertainties tend to be higher (e.g., Birgand et al., 2010). It is 

thus possible that the level of uncertainties on annual loads for all parameters and all 
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subsampling techniques are on the higher range and that smaller uncertainties might be 

expected for less reactive watersheds. This research suggested the bootstrap and other 

subsampling techniques should be routinely used to estimate the uncertainty on computed 

annual loads when using in situ field spectrophotometers.   

Our results thus show that the level of uncertainty on the annual load cumulative 

indicator of is indeed largely reduced compared to the infrequent sampling methods that have 

been applied in past stream restoration monitoring. Now, our monitoring design and methods 

involved a lot of time and resources. We thought interesting to evaluate the relative effort 

that this type of monitoring would represent in the whole stream restoration costs. 

Costs comparisons between continuous monitoring and stream restoration projects   

From 1990, United States government has invested at least $1 billion every year in stream 

restoration projects (Bernhardt et al., 2005). In addition, there were 1,345 stream restoration 

projects implemented from 1970 to 2004 with 444 million investment in the Upper Midwest, 

USA. (Michigan, Ohio, Wisconsin; Alexander and Allan, 2006). Water quality management 

as one of top restoration goals have been invested in $60 million of total costs for 108 

projects (median cost is $234,500). There were only 33% of water quality management 

projects being monitored in the Upper Midwest. More expensive projects had more 

opportunities to be monitored. Furthermore, the lack of monitoring information became 

inhibitions to evaluate the improvements for stream restoration projects; thus, establishing 

standardization of monitoring is essentially needed (Alexander and Allan, 2006). The same 

authors (Alexander and Allan, 2007) interviewed the staff in 39 projects among 1,345 stream 
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restoration projects in Upper Midwest, USA. The results indicated that the highest constraint 

was “lack of people power or staff time” for the projects without monitoring.  

The costs for stream restoration projects were mostly affected by the type and size of the 

watersheds (Bonham and Stephenson, 2004). Table 4.1 summarizes the costs analysis with 

linear foot for several stream restoration projects. The construction costs ($30-$70/ft.) for the 

different projects are comparable except for the project in Long Creek, Bessemer City, North 

Carolina. In addition, the total costs for stream restoration projects during 2016-2017 

reported by NC Division of Mitigation Services (NCDMS) is $391/ft.    

Based on the estimated budget from the research proposal (Birgand, 2013), the total fees 

for continuous monitoring in pre-restoration period in three years (2013-2016) were about 

$353,000 for the Claridge Canal with 2,200 m in length. Thus, the continuous monitoring 

fees in the Claridge Canal were $16.23/ft., including $5.53/ft. (34%) for personnel, and 

$10.7/ft. (66%) for field supplies/material, monitoring equipment, and transportation. When 

comparing the continuous monitoring costs for the Claridge Canal and the total costs for 

stream restoration estimated by NCDMS, the continuous monitoring costs is 4.15% of the 

total costs for stream restoration. Thus, it is fair to say that the costs for pre-restoration 

continuous monitoring represented a small proportion of the overall project.  The post-

restoration costs increase this percentage to about 10% (Birgand, personal communication). 
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Table 4.1 Costs analysis for the stream restoration projects (Unit: $/ft.) 

Description Pre-

construction 

Site 

Acquisition 

Construction Post- 

Construction 

Total 

Costs 

Restoration 

Goal 

References 

Small 

Stream 

(<3,001 ft.) 

26.14 5.65 68.35 18.81 118.96 
Reduce the 

impacts by 

surface coal 

mining in 

the 

Southern 

Appalachian 

Region 

Bonham 

and 

Stephenson 

(2004) 

Medium 

Stream 

(3,001 – 

10,000 ft.) 

21.25 4.21 57.28 10.01 92.74 

Large 

stream 

(>10,000 

ft.) 

13.04 -  45.82 6.37 65.22 

Long 

Creek, 

Bessemer 

City, NC 

- - 13.33 - - 

Improve 

stability and 

habitat 

Jennings et 

al. (2005) 

Kentucky 

Creek, 

Newland, 

NC 

- - 33.33 - - 

East Prong 

Roaring 

River, 

Stone 

Mountain 

State Park, 

NC 

- - 60 - - 

Little 

Garvin 

Creek, 

Clemson, 

NC 

- - 50 - - 

Stream 

restoration 

fees in 

North 

Carolina 

(NC) during 

2016-2017  

- - - - 391 - 

The 

website 

from NC 

Division of 

Mitigation 

Services 

-: data not applicable  
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