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ABSTRACT

In an effort to improve pavement design for North Carolinads, NCDOT has adopted
the AASHTOWare Pavement ME Design software. A critical comgnt of the software
is the Enhanced Integrated Climatic Model (EICM), which@guts for environmental ef-
fects. The EICM requires hourly historical climate recofwisthe entire expected lifespan
of the road, yet NCDOT presently has access only to smallds-g@mples of climatologi-
cal data from select locations. These short records mustfesated to fill in data for long
analysis periods. Studies have shown that repeating saralles of climatic data may
adversely affect pavement performance predictions. Husnt describes the development
of long-term, high-quality, historical climate data (HCigs for use by the EICM at mul-
tiple locations across North Carolina. Ordinary kriginglasther spatial and short-term
temporal interpolation techniques address the signifigaps in data coverage present in
the observational record so that the new HCD files consisboficuous hourly data that
span a period of 35 years. Sensitivity tests assess the imp#we improved HCD files
on pavement performance predictions and reveal staligtgignificant differences in con-
crete pavement performance measures between Pavement$itih Benulations with and
without the new HCD files. The new climate data more subtlugrice pavement perfor-
mance predictions for flexible pavement designs. Nevegfiselthe poor quality of the
original climate data samples warrants a recommendatetiNEDOT use the improved
climate files in the development of future pavement designsobst confidence in pave-

ment performance predictions.
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1. Introduction

In an effort to improve pavement design for North Carolinads, NCDOT has adopted
the AASHTOWare Pavement ME Design software (also known aRWhk-ME), which
incorporates the guidelines set forth in the NCHRP (2004¢iaistic-Empirical Pave-
ment Design Guide (MEPDG). Kim and Muthadi (2007) descrheitnplementation of
the MEPDG in North Carolina. The software predicts stresseboth flexible and rigid
pavements over the expected lifespan of the roadway by atioguor design properties,
traffic volume and volume growth rates, expected vehicl&itigions, and environmental
influences. The MEPDG software accounts for environmeritatts through the incor-
poration of the Enhanced Integrated Climatic Model (EICK}ne-dimensional coupled
heat and moisture flux parameterization that simulates ¢eatypre and moisture gradients
within the pavement structure and returns this informatiicthe materials characterization,
structural response, and performance prediction moddlgedMEPDG software (Larson
and Dempsey 1997; NCHRP 2004; Zapata and Houston 2008).

To predict temperature and moisture profiles for all depitts,EICM requires hourly
data derived from historical observations in order to cti@réze the environmental condi-
tions appropriately. Required variables include air terapge, precipitation accumulation,
wind speed, percentage of possible sunshine, and relativédity observations through-
out the expected lifetime of the pavement. Additional datguired by the model include
latitude, longitude, elevation, and seasonal groundwatde depths (for use as a lower
boundary condition) for each station. NCHRP (2004) and dogek et al. (2010) detall

the use of each of these variables within the componented&M.



The EICM input variables vary in their degree of importane¢hte model. Air tem-
perature is the most important element because it diretfliyences the temperature of the
pavement through the surface energy balance. The air tamperlso determines frozen
and thawing periods and the number of freeze-thaw cycledHRIZ2004). Additionally,
the percentage of sunshine is critically important becéusgpacts the thermal gradients
generated within the pavement through calculations of thitase energy balance at all
times throughout a calendar day. The percentage of sunghdedined by the model de-
velopers as the inverse of cloudiness, where 100% corrdspoith clear skies and 0%
corresponds with overcast sky conditions. Together, thieaiperature and the percentage
of sunshine are the two most important input parameters.d\fpeed is less influential,
but this parameter impacts the convective heating or cgalirthe surface of the pavement.
The model uses precipitation both on a monthly basis andeicaltculation of the number
of wet days. Therefore, daily precipitation totals supplffisient information to the model.
The model uses mean monthly relative humidity to estimatistue warping of PCC slabs
and to model moisture gradients through JPCP and CRCP stalwgever, hourly relative
humidities impact drying shrinkage of JPCP and CRCP slalisrdluence crack spacing
(NCHRP 2004). Lastly, groundwater table depth plays a &wmit role in the moisture
content of the pavement and foundation materials. Kim andhiti (2007) report that
while groundwater table depths do not influence rigid pavendestresses, these values
significantly impact flexible pavement distresses. The EI®M accept either seasonal
average groundwater table depths or an annual average (B&pHRP 2004).

The construction of high-quality, long-term hourly clirmatecords remains challeng-
ing. The required climate data files provided for use withMePDG software therefore
generally represent only small samples of climatologiesédrom select locations, though
the period of record for each station varies considerabfgoAg the historical climate data
(HCD) files provided for use with the MEPDG software, the s$ésircontinuous period of

record (POR) among the available climate data locationgy&at and 8 months at Gillam,



Manitoba, Canada (station 15903), while the longest POR isaressive 55 years and 10
months at Pueblo, Colorado (station 93058). The median R@dtg all 1083 locations is
only 9 years and 2 months. In North Carolina, the shortest BCRyears and 5 months
and the longest is 9 years and 8 months, with a median POR aafict@available stations
of 7 years and 8 months. If the expected design life of the paw exceeds the length of
the climate record, the MEPDG software repeats these stmotdas back-to-back to fill in
data for long periods of pavement design prediction (Jobeket al. 2010). This approach
either misses or oversamples extreme events with longrptmods and fails to capture an
accurate representation of the interannual variabiligspnt in realistic climatic conditions
at one location over several decades. Such short samptelpefor example, may miss a
year where drought conditions prevail or a year with proli&imfall or unusually warm or
cold seasons that are well within the normal range of vditgbAlternatively, the repeti-
tion of extreme events within a small sample period will umdi@e the representativeness
of the resulting meteorological time series.

A discussion of climate normals—averaging periods widedgdito characterize the
most likely conditions experienced at a given location—inelp to put these short records
in context. Climatologists traditionally calculate nodsaver a 30-year period (e.g., Ar-
guez et al. 2012), but this recommendation derives fromdbethat 30 years corresponds
with the length of records available at a large number ofa@tatwhen climatologists first
devised the concept of climate normals in the early twemgentury (WMO 2007, 2011).
Nevertheless, this remains widely accepted as a suitaklagwg period (WMO 2007).
When intended for use as a predictor for future weatherjesuthve shown that a shorter
period of 10-15 years is a suitable analysis period for agsgshe likely long-term ex-
tremes in temperature. However, a short record of evenehugth could provide unrepre-
sentative results within individual months (WMO 2007). Adzhally, the WMO (2007)
recommends a minimum of 30 years of data to determine thistgtat distribution of pre-

cipitation at a given location. Though the WMO (2007) recoamaiations derive from daily



data, capturing representative extremes from hourly datddwnaturally require a similar
POR. Repeated short historical data records within the M&RDftware, therefore, will
likely fail to capture representative climate conditiong@iven location. Notably, hourly
climate normals derived from 30-year averages do existifostations in North Carolina
(Applequist et al. 2012) and the temptation may exist to suie hourly normals within
gaps in the observational record. While useful for charaztey the most likely diurnal
cycle at a given location, these hourly normals by their reatlo not include extremes.
The hourly climate data files ingested by the EICM must inelodserved extreme values
because it is these extremes that often result in pavemamntta

Studies have shown that missing or incomplete climatic data cause unreliable
MEPDG predictions (e.g, Johanneck et al. 2010; Heitzmar. &041). Heitzman et al.
(2011) studied the sensitivity of the climate input files e (MEPDG and found that re-
peating limited climatic data to predict pavement stresssr @@ to 40 years may result in
significantly higher predicted pavement stress. They cmled that the effort required to
produce climate input files for the EICM will produce a meale, long-term benefit.
Breakah et al. (2011) found that differences in historicatiadfiles developed from data
from the lowa Environmental Mesonet and those provided $erin the MEPDG software
resulted in significant differences in pavement perfornegmedictions, as did Saha et al.
(2014), who studied the impact of variations in data qualitg record length for stations
in Canada. Johanneck et al. (2010) provide some evidentsufgests that problems ex-
ist with the historical data files supplied by the MEPDG antbramend rigorous quality
control to correct these problems. They also suggest length the POR for each station
to capture interannual variability more reliably. SimijarJohanneck and Khazanovich
(2010) recommend removing incomplete and questionabke fdas to avoid adverse ef-
fects on pavement performance prediction.

For small periods of missing data (e.g., less than 12 hoursefoperature data or

perhaps a few days for cloud cover), the Pavement ME Desigelalgers have linearly



interpolated missing observations as necessary acrosgpladiours or days to create a
complete time series in the HCD files. For example, the d@ezkfill in short tempera-
ture gaps by interpolating between the closest daily masirand minimum temperatures.
However, this method fails to capture catastrophic cragkients such as those that would
occur under stresses induced by large thermal gradientsvitie pavement. While this
method would still capture extreme loading events such asgring days where the sub-
surface remains frozen, it would not address fast temperatiuianges, such as a strong
cold front that drops the temperature by several tens ofegsgfFahrenheit. Indeed, studies
have shown that the inclusion of incomplete data may deerdas quality of pavement
performance predictions (e.g., Johanneck et al. 2010).eS6€D files still contain large
gaps of a month or more. The EICM can fill in data gaps or eveatera virtual weather
station by interpolating data from up to six nearby exisstagions (Johanneck et al. 2010).
This method utilizes a simple weighting algorithm that aggas the influence of the nearby
stations according to the inverse of the square of the distemeach station. Spatial inter-
polations for temperature involve an additional correttior elevation differences using
the standard tropospheric lapse rate (i.e., a change6d°C per kilometer of ascent or
descent).

North Carolina is not the first state to attempt to produceiterm HCD files for use
with the MEPDG software. Heitzman et al. (2011) extendedRB&R for HCD files in
Mississippi to 40 years for locations along a dense spatidl grhey accomplished this
via a natural neighbor interpolation method using avaddimurly and daily observations.
However, the spatially-coarse nature of the hourly obgema forced the authors to down-
scale the daily high and low temperature observations tonstcuct an hourly time series
for temperature. Additionally, Heitzman et al. (2011) knky interpolated between valid
values in the temporal domain to fill in short-term gaps cdusg a lack of spatiotem-
poral coverage across the state. The authors also accdantidure climate variations

by using a regional climate model to adjust the historicahdar use in future pavement



performance predictions. Other states (e.g., Tennesseepaently exploring options for
extending and improving the Pavement ME Design HCD files.

Given the requirements of the EICM and the failure of shertrt climate records to
capture an accurate representation of the interannuability present in realistic cli-
matic conditions, it remains critical for NCDOT to obtaimbpterm, continuous, quality-
controlled, hourly data for multiple locations across Mdzarolina. The following sections
summarize the steps taken to achieve this goal to produggtéom climate input data
files for the MEPDG software spanning 35 years for each lonatiThis effort requires
the development of a robust gap-filling procedure to fill irssig hourly observations,
sometimes over long time periods, in order to generate igdiity, continuous historical
climate records. A sensitivity analysis in section 6 asse#ise impact of the improved cli-
mate data files on pavement performance predictions foraeMerth Carolina pavement

design projects.



2. Data Sources

The meteorological data used in the construction of lomgrteontinuous hourly data
files derive from the Integrated Surface Data databasehMorterican Regional Reanal-
ysis, and the Global Historical Climatology Network (GHCBaily climate summaries.
The geographical region from which these data are drawmded all of North Carolina
and parts of South Carolina, Georgia, Tennessee, and VArgounded by 33.0-37.5°N
latitude and 67.0-85.5°W longitude. All data span the mkeligJanuary 1979 through 31
December 2013.

2.1 Integrated Surface Data

The primary source for producing a long-term meteorolddicae series at any lo-
cation is of course the hourly observations themselves.lftegrated Surface Data (ISD)
database (digital data set DSI-3505; also called Intedi@ieface Hourly) from the NOAA/
National Climatic Data Cente{NCDC) contains hourly surface data for over 20,000 loca-
tions across the world (Del Greco et al. 2006; Smith et al120This dataset represents a
merged repository of both manual and automated surfacedrdatea multitude of original
data sources, including data from the Automated Surface®ivg System (ASOS), the
Automated Weather Observing System (AWOS), surface symoptservations, aviation

routine weather report (METAR) observations, and variaineis (Smith et al. 2011). Of

1The National Climatic Data Center recently merged with NGAXational Geophysical Data Center
and the National Oceanographic Data Center, which incltlie&ational Coastal Data Development Cen-
ter, to become the National Centers for Environmental imition (NCEI). For the purpose of the present
discussion, the name will remain the National Climatic Dagnter (NCDC).



the nearly 1000 data columns in each ISD data record (moshafhwepresent missing
data), only a handful provide important information for fhresent work. These include
observations of hourly 2-m air temperature, liquid preteifpon, and 10-m wind speed that,
after adjustments for units and observation times, feeectyr into new HCD files. The

hourly 2-m dewpoint temperature, when combined with theeairperature observations,
allows computation of the relative humidity. Hourly obsatiens of the fraction of the total
celestial dome covered by clouds or other phenomena allulesion of the percentage
of sunshine for use by the EICM. Details on these calculatappear in section 3.

Traditionally, hourly observations occur 6—7 minutes befive top of the hour, partic-
ularly for automated reports, but regular observations spetial reports may take place
at any time, depending on the station. Since the ISD datagoatiginal observations, it
becomes necessary to standardize these observation tragsatticular hour in order to
compare the data both spatially and temporally in a meaunivghy. Therefore, a script
rounds any observation that occurs at or later than 48 nsrafter the hour forward to the
nearest hour and any observation that occurs at or earher 28 minutes after the hour
backward to the nearest hour. The same script ignores angtaodard observation that
occurs between 13 and 47 minutes after the hour. If multggerts occur in the same hour
for the same station (e.g., a METAR report and a synopticrigpbe script always gives
preference to the latest METAR report for that hour.

An observing station may have either a United States Air &¢tESAF) or Weather
Bureau Army Navy (WBAN) number assigned to it, or both. Utfioately, these numbers
can change over decades, causing discontinuities in thedpafrrecord for a given station
and making it difficult to create a long time series basedlgae the station identifica-
tion number. For this reason, a script determines which UBAAN combinations are
assigned to the same geographic location and combines theéadereate a single period
of record. The script looks for shared station numbers, geshstation name and state, or

similar geographic coordinates. The maximum possibleftdistance for pairing similar
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FIG. 2.1: Integrated Surface Data (ISD) database sites in Noattolina and adjacent

states providing hourly historical data between 1979 ariB2Colors indicate the num-

ber of days with at least one observation for each site duhisgperiod. Sites far from

North Carolina have been removed.
sites is just over 1.43 kmH0.01 degrees latitude and/or longitude). Figure 2.1 shows the
location of all 243 unique ISD stations in the study domai@7(are in North Carolina),
along with a representation of the length of the period obrédetween 1979 and 2013 at

each site.

2.1.1 Data quality

NCDC applies quality control procedures to the ISD datat(004; Smith et al. 2011).
Unfortunately, problems remain in the database. The statietadata file provided with
the ISD data contains some questionable locations anastatevations. For example,
the list may indicate a reasonable name and state pairedyettraphic coordinates in a
different state or two station names and geographic coatesnmay match, but the station
elevations differ slightly. For minor discrepancies, thestguess for the station location
simply replaces the original station metadata here. Foonthgcrepancies, the station is
thrown out altogether. Additionally, data for some stasiomay include only sporadic ob-

servations that contradict the data from a more reliableaaikd site. Again, such stations
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were removed from the database. In some cases, the besteapgoo collecting a com-
plete set of observations at a given hour requires combivatig but irregular data from
one type of observation (e.g., a synoptic report) with aiplen¢port (e.g., a METAR report
with missing data) to create a full data record.

The ISD data contain data quality flags that indicate whetiarot the observation
passed quality control checks or if the observation is sttspeerroneous. Despite these
quality control procedures, there exist some observatiatshave passed NCDC's quality
control, yet obviously remain incorrect. For example, ¢hare instances where a temper-
ature or dewpoint sensor produces wild data and then rezafr several hours; where
the sensor may slowly die before NCDC’s quality control aidpon flags the data as sus-
pect, erroneous, or missing; where the value suddenly doopsro before recovering; or
where the value suddenly exceeds a state extreme for maxonammimum temperature
or precipitation. Examples include an observation of 1ZA.(81.0°C) at Boone, NC on 20
September 2009 and an observation of (coincidental¥}.8°F (—61.0°C) at Fayetteville,
NC on 6 March 2004. Overall, these issues account for a veal $raction of the tens of
millions of observations analyzed here, but it would be geatable for these problems to

filter into the final HCD files for use with the MEPDG software.

2.1.2 Initial quality assurance

To address some of these quality concerns, an initial passgh the data compares
each temperature and precipitation value with the montktieene value obtained from all
cooperative observing sites in each station’s respedite.slf an otherwise valid temper-
ature observation exceeds these bounds by a very genertfug1IBC), a script removes
it, along with all observations in the previous 12 hours amal following 48 hours. The
script also removes extreme short-term spikes in the temyoerand dewpoint data. More
rigorous quality control procedures (see section 4) ladadie additional spikes and other

values that exceed the state extreme maximum or minimumgeatyre, but remain within
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the £18°F (£10°C) threshold. Further, a script marks as missing allioaigemperature,
dewpoint, wind speed, precipitation, and cloud cover vaflagged as suspect or erroneous
via NCDC quality-control algorithms.

The ISD data often contain short-term gaps that occur fori@tyeof reasons. A script
addresses these missing data by performing a simple lineznpolation temporally be-
tween valid values across short gaps of 1-2 hours to repfatetwo consecutive missing
observations, akin to the procedure implemented by Hertzehal. (2011) for filling short-
term gaps in their analysis. This short-term gap-fillinggaure produces entirely appro-
priate estimates for all variables and saves computatioe tompared with more complex
spatial or temporal interpolation procedures. Indeed, spatial interpolation method is

unlikely to produce a more useful estimate on such a shoe sicale.

2.2 GHCN-Daily

Daily records of maximum and minimum temperatures acrossthdy region serve
as a check against poor-quality hourly observations orfijap-temperature values. Total
daily precipitation records also assist in the constructibhourly precipitation estimates.
The Global Historical Climatology Network (GHCN)-Daily tdset (Menne et al. 2012a)
provides daily observations at over 80,000 stations in X@htries and territories. A to-
tal of 2905 unique stations in North Carolina, South Camlifiennessee, Georgia, and
Virginia (Fig. 2.2) provide valid data during the 1979-2Q#8iod, with ample spatial cov-
erage across the region (many of the more than 4000 statiet®cated). Since NCDC
continually updates the dataset with new data and modificatirom quality assurance
algorithms, various versions of the dataset may contaitfiferig number of stations and
different values, depending on the download date from NC&xe (Menne et al. 2012b).

GHCN-Dalily data sources for the study region during theqzetinder consideration

include daily summaries from the NOAA/National Weathervgar (NWS) Cooperative
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FIG. 2.2: Global Historical Climatology Network-Daily (GHCRaily) sites in North
Carolina and adjacent states that provide daily obsemnsiid temperature and precipi-
tation. A total of 2905 unique stations in the region showrelemvering North Carolina
and parts of South Carolina, Tennessee, Georgia, and VArgiovide valid data during
the 1979-2013 period.

Observer Program (COOP), first-order stations, ASOS ststisurface METAR observa-
tions at major airports, the U.S. Climate Reference Netld&CRN), and the Community
Collaborative Rain, Hail, and Snow (CoCoRaHS) volunteexenber program. The obser-
vation time of the GHCN-Daily temperature and precipitattneasurements is an impor-
tant consideration when reconstructing hourly precitavalues or for determining the
maximum or minimum temperature on a given day, but obsemdimes vary depending
on the data source. A script removes some of the GHCN-Ddi®g $rom consideration

primarily because many COOP reports do not include the ghgen time, which varies

by station. The script also assigns observation times teratations that do not report
them based on the data source. For example, most summarg dfathproducts cover

the period midnight to midnight local standard time (LST;DC 2005a,b), as do USCRN
daily precipitation totals (NWS 2009). CoCoRaHS precijota observations do not con-

tain observation times, but the script assigns a time of 0G4l time since observers are
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encouraged to take their measurements at this time (Menale 2012a). The script also
adjusts observation times to account for daylight savimgtivhen appropriate.

NCDC regularly performs automated quality assurance megton the GHCN-Daily
dataset with occasional manual evaluation of the data (Metmal. 2012a). For the daily
temperatures, however, the maximum temperature in the GB&IlY data is sometimes
lower than the minimum temperature. While this could coveglly result from an observer
who records a morning minimum temperature as having ocduwmethe current day and
the morning maximum temperature as having occurred on tiaqars day, contrary to
standard practice (Menne et al. 2012a), it is somewhat aluiorough inspection of the
data that the temperature values are reversed in the nyagbrihe 1912 instances where
this occurred in the entire study region for the whole penbdecord. For this reason, a
script simply switches them back to more appropriate valaesse in the present work.
Similarly, there are instances where the maximum tempesata a given day is less than
the minimum temperature on the previous day and vice verstinah quality assurance
check handles these cases (see section 4). Additionab@ 28lues exceed the observed
state extremes for a given month by a small buffer+df08°F #0.60°C), though the
measurements often exceed this buffer by a wide margin inarityeof these instances. In
cases such as these, a script marks as missing both the nm@ntlminimum temperature
measurement for that day.

A handful of precipitation observations in the GHCN-Dailgtd appear questionable
as well. In some instances, the record indicates a traceegfitation, but the actual
precipitation amount is non-zero. More importantly, thead#so contain suspicious short-
term extreme rainfall events that exceed the state extreaityg recipitation total for a
given month, yet NCDC has not flagged these as having faileot guality assurance
procedures. To avoid incorporating these values into nev Hilés, a script marks as

missing such clearly incorrect values in the present work.
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FiG. 2.3: North American Regional Reanalysis (NARR) grid psiover North Carolina
and adjacent states. Surface data are available contilylfous 1979 through 2013 in
3-hour increments.

2.3 North American Regional Reanalysis

The National Centers for Environmental Prediction (NCEBJjtN American Regional
Reanalysis (NARR) is a long-term, dynamically consisthigh-resolution climate dataset
with 32-km spatial resolution and surface variables abéal@very three hours since 0000
UTC 1 January 1979 (Mesinger et al. 2006). Based on a prdyiop&rational version
of the NCEP Eta Model (Black 1988) used by weather forecasteross the country, the
NARR provides a best guess at the four-dimensional stateeoAtmosphere. The NARR
produces a good representation of extreme events such ds #ad droughts, successfully
captures broad precipitation patterns, and producesmabbn2-m temperatures and 10-m
wind vectors when compared with observations (Mesingel. &006). Figure 2.3 shows
the location of all NARR grid points bounded by the study dom@oundaries between

33.0-37.5°N latitude and 67.0—85.5°W longitude.
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FIG. 2.4: NARR 2-m air temperature at 1500 UTC 30 January 200Bduthe passage
of a strong cold front. Black contours every 3°F highlighe ihfluence of both terrain
and the cold front on surface air temperatures.

The data fields extracted from the NARR output include 2-nteanrperature, 2-m dew-
point temperature, 3-hr accumulated liquid precipitattotal cloud cover, 10-m wind vec-
tors, and the air temperature and geopotential height dirdienybrid model level (typi-
cally several tens of meters above the surface) and the &bl@val. Figure 2.4 illustrates
the NARR 2-m temperature field over North Carolina duringghssage of a strong cold
front. The model successfully captures the strong grasliant the spatial variability of
the air temperature. This figure also implies that a simpdéadice-weighted average be-
tween three adjacent, but widely-spaced, observing st different elevations or on
either side of the front would have the potential to produsergestimates of the tempera-
ture at a fourth location. The fine resolution of the NARR auttjields therefore produces
superior estimates for highly-variable meteorologicdbiBecompared with simple spatial

interpolations using measurements solely from widelyesgabserving locations.
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Estimates of variables derived from the NARR data requisagljregation to hourly
values from the original 3-hourly output. Three options foe temporal interpolation
procedure include a local harmonic analysis, cubic spimerpolation, and a simple lin-
ear interpolation. Letting a local harmonic analysis @eaperfect harmonic fit to seven
consecutive NARR data points, the interpolated valueshfertwo hours immediately pre-
ceding the middle NARR data point then fall on the resultimgnmonic curve. Though
the local harmonic fit perfectly reproduces the 3-hourhadatints, the disaggregated val-
ues often contain spurious deviations from these fixed galu@rder to achieve the fit.
A cubic spline interpolation mitigates the spurious ddwias, as does a simple linear in-
terpolation. The linear temporal interpolation method @infits a straight line between
adjacent NARR data points to create an estimate of hourly lbetween those points and
follows the approach of Chen et al. (2007), who use a linetarpolation of the three-
hourly analyses from the NCEP Eta Data Assimilation SystE®AS) regional coupled
forecast model (Rogers et al. 1995) to produce hourly valoethe National Center for
Atmospheric Research (NCAR) high-resolution land datar@ksion system (HRLDAS),
and Fan et al. (2006), who linearly interpolate 6-hourly NNSERICAR Global Reanalysis
(Kalnay et al. 1996; Kistler et al. 2001) data to hourly value

Hourly observations from the Asheville Regional Airportation 03812) provide a
way to test these three potential interpolation scheme®mparing actual measurements
with interpolated values between every third hour from 000 1 January 1985 to 0000
UTC 1 January 1986. Remarkably, there were no missing oasens for the entire year,
leaving 5842 estimate—observation pairs. Table 2.1 Isdfas accuracy measures for the
interpolated temperature, dewpoint, and wind speed (atoudr and precipitation are han-
dled differently; see section 3) compared with the obsemabdes at each houexcluding
the exact matches at each three-hour interval. For physaabns, the interpolation pro-
cedure prevents the dewpoint from exceeding the temperaflinough the cubic spline

interpolation performs best for temperature estimateslitiear interpolation produces the
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TABLE 2.1: Scalar accuracy measures for temporally-interpotetaperature, dewpoint,
and wind speed measurements using every third hour of cdigmmg at the Asheville
Regional Airport from 0000 UTC 1 January 1985 to 0000 UTC 1uday 1986. Inter-

polation methods include local harmonic analysis (Harmmgpicubic spline interpola-
tion (Spline), and a simple linear interpolation (LineaBold values indicate the best-
performing method.

Mean error (bias)

Harmonics  Spline Linear
Air temperature (K)  0.0098 0.0115 00116
Dewpoint (K) —0.0278  -0.0143 -0.0062

Wind speed (ms!) —0.0469  —0.0470 —0.0469

Mean absolute error
Harmonics  Spline Linear
Air temperature (K) ®B540 0.5454  0.5953
Dewpoint (K) 06224 05267 0.5106
Wind speed (ms?)  1.1030 10284  0.9682

Root-mean squared error

Harmonics  Spline Linear
Air temperature (K) (B892 0.7773  0.8445
Dewpoint (K) Q8805 Q7718 0.7617
Wwind speed (mst) 14321 13424  1.2705

best overall set of accuracy measures for all three vagabléese results and the work
of others, therefore, support the use of a linear tempotafpolation to disaggregate the
three-hourly NARR data to hourly values.

Since the NARR provides precipitation accumulation as egHrourly total, disaggre-
gation to hourly accumulations requires a different proced Any three-hour total less
than 0.015 mm is left as is for that hour and the previous 2 iemain zero. Otherwise,

the three-hour total is spread evenly over the precediregthours.

2.4 Groundwater

Recall that the EICM accepts hourly groundwater table de it the model uses only
quarterly groundwater table data in the simulation. Ideglloundwater table depths would
be found through profile characterization borings priorégsign (NCHRP 2004), but his-

torical groundwater levels would provide a satisfactorgstitution. The North Carolina
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FiG. 2.5: Location of groundwater wells providing irregularddieneasurements (red;
3542 stations) and daily observations (blue; 92 statiohgyaundwater depth in North
Carolina between 1979 and 2013. Many sites are colocated.

Water Science Center, a division of the U.S. Geological 8grgrovides these historical
groundwater levels. Daily data are available from 92 siteess North Carolina for long
periods of record, over half of which exceed a decade. Itegdield measurements are
available for 3542 sites in North Carolina. Three-monthsseal averages derived from
these data for each year could provide sufficient input tdii@M. Despite this wealth of
observations, the extreme clustering of the groundwatés \ieaves a rather sparse spatial
coverage in the historical data (Fig. 2.5). Actual grounidwvéevels at any single location
respond to a variety of factors that depend on the specifiarfes of that location (e.g.,
wells, rock or sediment types, topography, and discharggifes such as springs, streams
or rivers). Spatial interpolation beyond a particular ngesent site would require hun-
dreds of measurements and groundwater flow modeling (Jowifgersonal communica-
tion). Given the significant spatial dependence of groundn@epths and the inability to
interpolate groundwater depths spatially, the authormenends using the default values

in Pavement ME Design simulations in the absence of more mmgroundwater data.
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3. Gap Filling

The construction of a continuous time series of hourly metegical data for sev-
eral decades is a challenging prospect. No observing taiasts an unbroken set of
hourly observations for this length of time. As such, a relgap-filling technique must
achieve reliable estimates of meteorological values fan sbort and long temporal gaps
in the observed data. Given daily maximum and minimum teatpegs, Schaub (1991)
proposes a hyperbolic tangent curve-fitting proceduredagtiregate daily data to hourly
temperatures. In other circumstances this could proveilseit the availability of NARR
data precludes the need to guess at the evolution of theallicyole. Variables other than
temperature have no well-defined short-term temporal ayxdewould lend itself to dis-
aggregation from daily data. Spatial interpolation of 8rig meteorological data to fill in
temporal gaps at a given location using simple inverseaxdes weighting algorithms, as
presently implemented in the EICM to build virtual statipnan introduce large errors in
regions of varying topography, as in the mountains of Weskarth Carolina, and along
coasts where large discontinuities in meteorologicalam@fvariables may exist. Other
simplistic point estimation methods such as polygonahestes or triangulation use only
a few sample points and thus ignore nearby information. Maor&able options could in-
clude a natural neighbor interpolation (Liang and Hale 2@K0in Heitzman et al. (2011),
trend surface analysis and spline models (e.g., Jarvis arat&001), or more complex
empirical orthogonal function (EOF) analyses (e.g., Besland Rixen 2003), maximum
likelihood estimates for incomplete data (e.g., Schneif#)1), and artificial neural net-

works (e.g., Kashani and Dinpashoh 2012). Many other dpatexpolation methods exist
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(see Li and Heap 2008). However, a promising and populartggstical interpolation
technique is ordinary kriging, a statistical interpolatimethod that predicts a value at a
given location based on weighted linear combinations ofstineounding measurements.
Many authors in the geosciences have relied on kriging aat@éasmterpolation technique
(e.g., Ashley et al. 2003; Goovaerts 2000; Holdaway 1996éiteliand Meentemeyer 2005;
Li et al. 2005; Ray et al. 2003; Schuurmans et al. 2007), withers have shown that krig-
ing generally outperforms other spatial interpolationmoels (e.g., Dodd et al. 2015; Jarvis
and Stuart 2001; Stahl et al. 2006).

As with other interpolation methods, ordinary kriging istlbdinear and unbiased, in
that the mean error is zero, but unlike other methods, orgdikeging additionally at-
tempts to minimize the variance of the errors (Isaaks andaStava 1989). One of the
unique properties of kriging is that it assigns less weighgven a negative weight, to cer-
tain sample values if another sample falls between it andstimated point. This property
allows kriging to yield estimates larger than the largesagl@ value or smaller than the
smallest sample value (Isaaks and Srivastava 1989), any@specially suited to meteo-
rological data since widely-spaced sample locationsyikahnot capture the entire range
of variability in the real atmosphere. As implemented herdjnary kriging estimates fill
temporal gaps only in temperature, dewpoint temperature,vand speed records. For
reasons discussed fully in sections 3.5 and 3.6, estimatdsoth precipitation and cloud

cover derive from alternative approaches.

3.1 Ordinary kriging

The first step in point estimation via kriging involves builg a sample variogram,
which describes how the spatial continuity of a data fielcthgfes with distance (Isaaks and
Srivastava 1989). The classical variogram estimator (Bfath 1963) is defined as half the

average squared difference between all possible pairedvdaies within specified ranges
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of distances separating each pair. That is, the variogractifun is half the variance (i.e.,
the semivariance) between pairs of data points separategduific distance ranges. A
variogram (or semivariogram) displays a plot of the vargmgrfunctiony(h) against the
range of distancel, or lag, used to determine each value in the function. Thegem
begins at relatively low values for smaill often leaving a discontinuity at the origin called
the nugget effect, and increases before leveling off at ayreanstant maximum value,
called the sill, for large distances. The lag at which theogaam reaches the sill, called
the range, represents the distance at which the spatiat@uvétation between data pairs
becomes negligible. The kriging system employed here imptgs a robust variogram

estimator (Cressie 1985), given by

N, 4
> D=2
Nhizl i+h

b

= (0.457+934)

(3.1)

wherex denotes a data valul, is the number of data pairs at lagand the data value at
locationi 4 h is separated in space by a distance of approximétélym the data value at
locationi. Robust variogram estimator values at all lags differ gligfrom the classical
variogram estimator, but the former estimator remains sotmicontamination by outliers.

Assuming a spherical Earth with a constant radius woulathice large errors in dis-
tance calculations over the large domain of the study regitm avoid such errors, the
World Geodetic System 1984 (WGS 84) Ellipsoid (NIMA 2000dvyides the geographic
datum upon which to calculate distances between meteacalogfations given the geo-
graphic coordinates of each location. The most accuratrsevgeodetic formulae pre-
sented in Sodano (1965) yield the distances between dattspsis implemented here, the
lag separation distance for the sample variogram spans 3mkiooincides approximately
with the grid spacing for the NARR data.

There must exist one unique solution to the ordinary krigiggations that provide a
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FiG. 3.1: Variogram (dots) for lapse-rate corrected 2-m airderature (see section 3.2)
across the study region based on NARR model output at 1900 28T&pril 2011. An
automated scheme produces the weighted least squareslfitta co ~ 0.0°F?, ¢; =
17.16°F, anda = 857.46 km. The weighted least squares fit gives more weight to the
values near the origin that are actually used in the krigsigrete.

point estimate within a field of meteorological values. To#n only happen when the
kriging matrices satisfy a mathematical condition termedifive definiteness (Isaaks and
Srivastava 1989). Though the sample variogram providesrarsuy of the spatial conti-
nuity within a field of data points, the kriging system regsiknowledge of the variance
over a continuous function. This necessitates the use aftincmus variogram model and,
because of the positive definiteness requirement, limésriodel to only a few possible
functions that obey certain constraints (Marchant and 2&x¢4).

Of the limited choices for positive definite variogram majehe Gaussian model is
best suited for continuous fields such as meteorologica. d@ests show that the vari-
ograms for the meteorological data in North Carolina digplaery clear parabolic behav-

ior near the origin and display an inflection point beforevamg at the sill (e.g., Fig. 3.1).
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The Gaussian model is the only variogram model that displagse characteristics. The

theoretical variogram associated with the Gaussian medgVen by

y(h)=co+c1 (1— exp{%zth , (3.2)

wherey(h) = 0if h=0, ¢y is the nugget effect; is the scalegy+ ¢ is the sill, ancais the
practical range, arbitrarily defined as the distance at wthe variogram reaches 95% of
the value at the sill (Isaaks and Srivastava 1989). So tlgékysystem requires knowledge
of the nugget effect, sill, and range for the variogram malklal best fits the experimental
variogram. When determining a kriging estimate for up to adfal of data fields, hand
selection of these three parameters is a viable option. Mewnvéor the hundreds of thou-
sands of variogram models required to estimate values @meadis of hourly data gaps,
hand selection seems a bit impractical.

A few objective techniques can accomplish a best fit by mining error measures
between the experimental variogram values and the theargtiriogram model. The min-
imization scheme selected here is the method of weightest $eares (Cressie 1985). In
contrast to the simpler least squares method, a weightstidgaares fit gives more weight
to the values near the origin so that they contribute moomgty to the final estimate of a
sample point via kriging. This produces a reliable fit andrttethod performs well com-
pared with more computationally-demanding procedurem@@rman and Zimmerman

1991). The weighted least squares method seeks to minilmezenction

k v (i 2
j;Nh(” [ 7((th)) - 1] 59

with respect tocy, ¢1, anda (Brunell 1992; Cressie 1985). The Nelder-Mead simplex
algorithm (Nelder and Mead 1965; Wright 1996) accomplighesminimization given de-
fault values for the initial nugget effect, scale, and raagsuggested by Jian et al. (1996).

Though the Nelder-Mead simplex algorithm is relativelyt fasnay fail to converge. If this
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happens, the procedure attempts to use a modified PowelfsochéPowell 1964; Press et
al. 2007) to find the three parameters that minimize the fandh equation 3.3. Here, a
script forcexg > 0, ¢, > 0, and 0< a < hypax within the minimization scheme, whehg,ax
is half the distance to the farthest data point.

With the theoretical variogram parameters in hand, theikgigystem proceeds in a

relatively straightforward fashion. The covariance fumacts given by

- Co+Cq, ifd=0
C(d) = (3.4)

cwxp(%{‘z) , ifd>0
whered is then x n matrix of distances between all possible paired data pevittsn a
small search window and is the number of data pairs. Thea+ 1) x (n+ 1) matrix C

is then the values df(d), where the diagonal values equg| padded with ones on the

bottom and right sides and a zero in the bottom right corneln siat

Cu -~ Cin 1
c=| | (3.5)
Cu - Cin 1

The (n+1) x 1 matrixD is the set of covariance functions for the distances between
desired location of the kriging estimate and all other datiats, padded by a one at the

end of the column, such that

Cio
D=| |. (3.6)
Cn0
1

The set of weights that minimizes the error variance undexctnstraint that the weights
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sum to unity in order to satisfy the unbiasedness conditemoimes thén+ 1) x 1 matrix

Wq

W= E , (3.7)

wherepu is a Lagrange multiplier required to find a solution for thetsyn of equations.
Solving for the weights,

w=C1.D. (3.8)

By multiplying this set of weights by the matrix of values étcorresponding data points

X, the kriging system arrives at an estimate of the data valtleeadesired location:
n
MZme (3.9)
i=

Preliminary tests show that the ordinary kriging estimatassistently perform poorly
(i.e., they produce improbable meteorological valuespme parts of North Carolina, par-
ticularly in the Piedmont in the vicinity of several closedpaced observing locations, but
produce very reasonable estimates in other parts of the, stiath as Asheville, far away
from other ISD stations. The problem likely involves theraatuction of strong gradients
within the NARR gridded field with the inclusion of the actuwddservations. If a tempera-
ture observation differs from the nearest NARR grid pointueay a few degrees Celsius,
for example, then the strong local gradient will artificyalhflate the variance near the ori-
gin of the variogram and lead to inappropriate kriging pagters, which would introduce
the potential for large deviations from the mean of the eritéld in the final point estimate.
However, the ordinary kriging algorithm works exceptidpatell for isolated stations such
as Asheville when compared with actual observations.

To address this problem, all kriging estimates that fill irsemg temperature, dew-
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point, and wind speed observations neglect ISD obsenstiad instead rely solely on the
gridded NARR data field. This decision greatly improves tmporal continuity of the
independent hourly kriging estimates. The choice to abamdtual observations in favor
of a model data field does not abandon truly independent @a&use the data assimilation
scheme utilized by the NARR incorporates all availableazafwind and moisture obser-
vations over land. The wind and dewpoint fields should tleeeafnatch observations fairly
well. On the other hand, the NARR data assimilation schengs ¢t incorporate 2-m
temperature observations due to the detrimental effedi@miodeled vertical structure of
the atmosphere (Mesinger et al. 2006). For this reason, ARRRNoutput fields will not
exactly match the observed 2-m surface temperatures, gse telds remain temporally
and spatially consistent both horizontally and verticalljie overspecification of the sur-
face variables through the inclusion of ISD observationsildiaherefore result in sharp
gradients that would lead to erroneous kriging estimates.

The ordinary kriging algorithm remains completely autoegdbecause hand-checking
individual kriging parameters and estimates would provpdssible. Despite the overall
success of the ordinary kriging estimates compared witlerwbsions, some of the inde-
pendent hourly estimates can produce outliers. During pastessing, a quality-assurance
algorithm removes such outliers and replaces them witlseglvestimates (see section 4).
Of course, actual quality-controlled observations alwagpear in the final HCD files at

the target locations when available.

3.2 Temperature and dewpoint temperature

Elevation strongly influences temperature, making it imgiee to account for eleva-
tion differences in any spatial interpolation approach flagiips in missing temperature
data. Preliminary tests indicate that ignoring environtaklapse rates in kriging esti-

mates produces unsatisfactory results, particularlyatosts in Western North Carolina
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within relatively complex topography. Both Li et al. (200&)d Stahl et al. (2006) com-
bine ordinary kriging with adjustments to the temperatuasda on the local lapse rate in
mountainous terrain and find dramatic improvements in tm®pwance of the combined
approach when estimating temperatures.

Recall that the EICM uses the standard tropospheric lapsgitgen constructing virtual
stations, yet the actual change of temperature with heeyhtvary considerably depending
on ambient atmospheric conditions. The present approaehkftire accounts for the local
lapse rate of temperature defined at each NARR grid point deroto bring the entire
gridded temperature field to a common elevation at mean seh [Ehe ordinary kriging
procedure estimates the temperature at a given locatidrisatdmmon elevation and then
the estimated temperature receives an adjustment thagshtiback to the actual elevation
of that location based on the lapse rate at the NARR grid poéarest to that location.
This approach generally produces a larger diurnal spretmperatures that more closely
replicates observations when compared with results oddapy ignoring lapse rates in the
spatial interpolation.

The lapse-rate correction uses a local lapse rate defined as

Tgs0— Thybrid

) 3.10
Zg50— Zhybrid (3.10)

rIocal = -

whereTgso and Zgsg are the temperature and geopotential height at 850 mb, ceagy,
andThybrig andZnyprig are the temperature and geopotential height at the firstdyiodel
level, respectively. The choice to use the first hybrid mdelst| at several tens of meters
above the surface rather than the 2-m temperature avoitigepns introduced by extreme
lapse rates that occur regularly very close to the surfadeiléithe 925-mb height would
work well as the upper level in the lapse-rate calculatiortlie central and eastern part of
North Carolina, this level is actually below ground at highkevations in the western part

of the state. The 850-mb level is always well above the saréa@ll but the highest peaks
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FiG. 3.2: Hourly observations (blue) and quality-controlleigkg estimates of 2-m
air temperature (red) at the Asheville Regional Airpora{sin 03812) just south of
Asheuville, North Carolina, for the entire year of 1985.

in North Carolina.

Elevation does not have such a commanding and systematiema# on the moisture

content of the air, so NARR dewpoint temperatures remailjuséed for lapse rate within

the kriging system. At night, temperatures tend to fall te tewpoint temperature, but

for physical reasons, the temperature cannot fall belovdévepoint temperature. In cases

where the lapse rate is negative (a proxy for nocturnal baynidyer conditions; i.e., the

temperature increases with height) and the temperaturaastfalls below the dewpoint

estimate, the algorithm raises the temperature to matctiedwpoint. This produces much

better estimates of temperature when compared with achsdreations. Similarly, the

(quality-controlled) temperature provides an upper bdiendhe dewpoint estimate under
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FiG. 3.3: Asin Fig. 3.2, but for the Piedmont Triad Internatibiport (station 13723)
in Greensboro, North Carolina.
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FIG. 3.4: Hourly observations plotted against quality-colbkriging estimates of 2-m
air temperature for the entire year of 1985 at a) the AsteeRRibgional Airport (station
03812) just south of Asheville, North Carolina, and b) thedPnont Triad International
Airport (station 13723) in Greensboro, North Carolina. Tiie black line is the one-to-
one line.

normal lapse rate conditions.

Figures 3.2 and 3.3 compare actual measurements of houtlgnaperature with esti-
mates obtained via ordinary kriging with the lapse-rateaxiron for both Asheville, NC
and Greensboro, NC over the period 0000 UTC 1 January 198aghr0000 UTC 1 Jan-
uary 1986. Only NARR data contribute to the spatial inteaioh—no actual observations
contribute to the analysis—and each hourly estimate reiaimlependence from estimates
for adjacent hours. A quality assurance algorithm (seem@ed) has automatically re-
moved any anomalous spikes. The procedure produces tetmgeestimates that match
observations very well, including the all-time record laswiperatures for Asheville and
Greensboro of-16.1°F (—26.7°C) and—8.0°F (—22.2°C), respectively, both on 21 Jan-
uary 1985. During the warm season (April-September), teatpe estimates seem to
have trouble reaching the observed extremes in the diugcdd,cthough the largest ab-
solute errors in daily maximum and minimum temperatureslyagxceed 3.6°F (2.0°C).

The scatterplots in Figure 3.4 reveal the strong relatignisbtween air temperature mea-
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FiG. 3.5: Hourly observations (blue) and quality-controlleigkg estimates of 2-m
dewpoint temperature (red) at the Asheville Regional Aitigstation 03812) just south
of Asheville, North Carolina, for the entire year of 1985.

surements and estimates for the entire year at both Asbanildl Greensboro, where the
correlation coefficients are = 0.9648 ando = 0.9723, respectively.

Figures 3.5 and 3.6 compare actual measurements of howvjyailet temperature with
observations at both Asheville and Greensboro. While dewpstimates do not (and
could not) match observations exactly, there exists nor dgstematic daily or seasonal
bias shared by both stations. Dewpoint estimates at Greemshow a 3.2°F (1.8°C) high
bias, but this bias is not apparent at Asheville, as showngarg 3.7. The correlation co-
efficients for comparisons between dewpoint measurementgstimates arp = 0.9713
andp = 0.9771 at Asheville and Greensboro, respectively. Table Bdlalys scalar accu-

racy measures for both temperature and dewpoint estimitiesse two stations for all of

1985.
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FiG. 3.6: Asin Fig. 3.5, but for the Piedmont Triad Internatibiport (station 13723)
in Greensboro, North Carolina.
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TABLE 3.1: Scalar accuracy measures and correlation coeffiameicurly temperature
and dewpoint estimates compared with observations foff 4985 at Asheville, NC and
Greensboro, NC.

Temperature Dewpoint
Asheville Greensboro Asheville Greensboro
Mean error (°C) 0.1702 0.4105 -0.0110 1.8102
Mean absolute error (°C) 2.0271 1.8375 1.9156 2.2319
Root-mean-squared error  2.5913 2.3461 2.4903 2.9544
Pearson correlatiorp] 0.9648 0.9723 0.9713 0.9771
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FiG. 3.7: Hourly observations plotted against quality-colabkriging estimates of 2-m
dewpoint temperature for the entire year of 1985 at a) thestle Regional Airport
(station 03812) just south of Asheville, North Carolinag dx) the Piedmont Triad Inter-
national Airport (station 13723) in Greensboro, North Giaa The thin black line is the
one-to-one line.

3.3 Relative Humidity

The relative humidity describes the moisture content oftin@osphere as a percentage
of the amount of moisture required for saturation and isesged as the ratio of the ambient

vapor pressure to the saturation vapor pressure over water

RH=—. 3.11
e (3.11)
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The temperature uniquely determines the saturation vamsspre. The Bolton formula
(Bolton 1980) allows the calculation of the saturation vapi@ssure to within 0.1% over

the range-30°C to+35°C given a temperature according to

(3.12)

es:6112exp[ 17.671c }

Tc+2435]’

whereTc is the temperature in degrees Celsius eyid in Pascals. Equation 3.12 also gives
the ambient vapor pressuedy substituting the dewpoint temperatdgefor Tc. A quality
assurance algorithm (see section 4) prohibits the dewpmimperature from exceeding the
temperature for physical reasons, which necessarilydithé relative humidity to the range

0% to 100%.

3.4 Wind Speed

Tests indicate that the variogram models for net 10-m wirekdgproduce much bet-
ter estimates of the wind speed at a given station (compaitidolvservations) than the
variogram models for the individual zonal and meridionah@vcomponents. This likely

stems from the fact that while the spatial distribution oh@/speed can remain relatively
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FiG. 3.8: Hourly observations (blue) and quality-controlletjikng estimates of 10-m
wind speed (red) at the Asheville Regional Airport (stal@812) just south of Asheuville,
North Carolina, for April and May of 1985. Only two months bEtyear are shown for
clarity.
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FiG. 3.9: Asin Fig. 3.8, but for the Piedmont Triad Internatibiport (station 13723)
in Greensboro, North Carolina.

smooth, slight directional changes due to terrain or mededeatures can lead to large
variations in the wind components. Slight errors in theigpatterpolation of these vector
components compound when recalculating the resultant speed from those erroneous
components. Therefore, the ordinary kriging system esémaind speeds at each station
rather than the individual wind components. However, atviddal NARR grid points,

the three-hourly wind components are first temporally jméated and the resultant hourly
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Fic. 3.10: Hourly observations plotted against quality-coltéd kriging estimates of
10-m wind speed for the entire year of 1985 at a) the AsheRigional Airport (station
03812) just south of Asheville, North Carolina, and b) thedPnont Triad International
Airport (station 13723) in Greensboro, North Carolina. Tiie black line is the one-to-
one line.
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TABLE 3.2: Scalar accuracy measures and correlation coefficdettdurly wind speed
estimates compared with observations for all of 1985 at i#leeNC and Greensboro,

NC.
Asheville Greensboro
Mean error (m s?) 1.1229 0.5184
Mean absolute error (m$) 2.0497 1.1737
Root-mean-squared error (m§  2.5929 1.4792
Pearson correlatiom, 0.5168 0.6729

wind speed calculated from those components during théspderpolation process.
Allowing for the short-term temporal variability inherewith observed wind speeds,
the 10-m wind estimates match observations fairly well far ¢éntire year of 1985 at both
Asheville and Greensboro (Figs. 3.8—-3.10). Estimates tetdo drop to zero as often as
the observations at each location, and some differencéslpastem from the discretized
measurements originally reported in whole knots, but thgmiade of the wind estimates
generally compares well with the measurements. The essnatpressively capture the
character of both windy and calm periods with no unphysicaluirageous outliers. Table
3.2 displays scalar accuracy measures for wind speed faerttiee year of 1985 at both

locations.

3.5 Cloud cover

The EICM requires hourly observations of the percentageostible sunshine for its
calculations of both net shortwave and net longwave ramhafl hese intermediate results
affect the surface energy balance calculations that daterthe temperatures throughout
the pavement structure (NCHRP 2004). The input value asemehted in the EICM is
actually the relative sunshine duration (i.e., the pemgatof time that the Sun casts a
dark shadow), specifically defined as the number of actuatsna hours divided by the
maximum possible number of sunshine hours, for use in thesthoin-Prescott formula
for global solar radiation (Tahas et al. 2011; Martinezdmo et al. 1984; Gueymard et

al. 1995). Standard observing sites (e.g., ASOS) genatallyot directly measure relative
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sunshine duration on an hourly basis, but instead measauel doverage, typically in
oktas (i.e., eighths). The complement of the percentagaticover, however, supplies a
reasonable substitute for the relative sunshine duragomeur, even though studies have
found that ground-based cloud cover observations sligihtlyerestimate the percentage
of possible sunshine (e.g., Hoyt 1977; Essa and Etman 20@#}hat the relationship
between cloud coverage and sunshine duration is nonlisearGueymard et al. 1995). So
in the absence of a concrete source for measurements ofdheesunshine duration, the
present approach uses the complement of the observedfradtthe total celestial dome
covered by clouds or other obscuring phenomena availabhe the ISD data as a proxy
for the percentage of sunshine listed in the HCD files in amagogh similar to that used by
Heitzman et al. (2011).

Recall that the Gaussian variogram model works best forpotating continuous data
fields via ordinary kriging. Though temperature, moistarej wind speeds tend to exhibit
some spatial continuity, cloud cover may not, particulamlyhe vicinity of fronts or other
mesoscale phenomena. The physical bounds of 0% and 100%e¢mt cover compound
the problems with spatial interpolation. The difficultiegiwthe proper characterization
of clouds within numerical models (Stephens 2005) such@a®&RR do not help either.
Indeed, tests show that cloud cover estimates via kriginggdaompare well with observa-
tions. Instead of relying on geostatistical interpolatiechniques to estimate hourly cloud
cover values, a reasonable alternative could involve gubety the cloud cover from the
nearest NARR grid point, located at most 13.8 miles (22.3 &way from the subject sta-
tion. The total sky coverage between locations separateddiya short distance should be
nearly identical because they each consider almost the siayrdome. However, compar-
isons between observed cloud fractions at Chapel Hill, N&ti(g1 93785) and the nearest
NARR grid point at a distance of only 7.46 miles (12.01 km)wladmost no qualitative
association. This highlights the well-known difficultiegtfvthe proper characterization of

clouds within numerical models (Stephens 2005), so tharibf the NARR cloud fields
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to correspond with reality is not surprising. So the questieen becomes whether or not
the model cloud cover accurately represents a realisticdobover time series.

Consider a comparison between observations at the Clebattiglas International
Airport (station 13881) and the nearest NARR grid point atséaghce of 5.89 miles (9.48
km) to the northwest. The observations here contain all possible oktas (unlike some
other stations) and the long observation POR provides 0d0j&dividual model-obser-
vation pairs when compared with the original three-hourRR values. The Pearson
product-moment coefficient of linear correlatige) @nd Kendall'st can help to illuminate
any positive relationship between the observed and moaéded cover. With the NARR
cloud fractions discretized into oktas for a fair compamisdth observations, the NARR
data exhibit a Pearson correlation@t= 0.59, revealing a moderate positive relationship
with the observations. Most applicable to this situatioowaver, is Kendall'st, a robust
and resistant alternative to the Pearson correlation traiders the relationship between
all possible matchings of model-observation pairs (Wil D). A value of+-1 indicates
strong agreement and a value-ef indicates strong disagreement between the pairs. Since
the data include many ties (because of the discretizedaafuwrioud cover observations),
the 1, approach is the most appropriate form (Knight 1966). Kdidg] is 0.47, suggest-
ing a weak positive monotonic relationship between the tata dets.

The Wilcoxon signed-rank test is a nonparametric test finedasamples, where the
null hypothesis is that the data from each paired samplénatig from the same population
(Wilks 2011). Failing to reject the null hypothesis wouldypide sufficient evidence that
the NARR cloud cover produces a representative meteok@btime series, even though
the values may not exactly match the observations at a netakipn. The results of the
test indicate that, with statistical near-certainty, tieecetized NARR cloud cover data do
not come from the same distribution as the observations.reftre, the nearest NARR
cloud cover value is likely not a suitable replacement foraatual observation. Again,

this is not entirely unexpected because of the inherentdiffi with parameterizing cloud
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FiGc. 3.11: Distance (miles) from the Charlotte-Douglas In&tional Airport (station
13881) to the nearest ISD site for 300,586 valid observatairs.

cover within numerical models (Stephens 2005) and, evdreifrtodel produces clouds in
approximately the correct location, the character of tledifield can differ significantly
from observations.

Given the unimpressive results of both a spatial interpmiadnd a nearest-neighbor
approach for the estimation of hourly cloud cover using NAMRERa, it follows that actual
observations at the nearest ISD station may instead previgeful proxy for cloud cover
measurements at a given location. This at least guarantel@aatologically-appropriate
time series. Over time, the distance from a particular sitiaé¢ nearest ISD station fluctu-
ates as new stations are brought online and others are dassimned, but a histogram of
the distance to the nearest station with a valid cloud covservation indicates that, for ex-
ample, roughly three quarters of the 300,586 availablespaithe Charlotte-Douglas Inter-
national Airport (station 13881) fall within 62.1 miles (A&m) of the station (Fig. 3.11). In
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a comparison between the observation pairs, Kendgli's 0.57, suggesting a strong pos-
itive monotonic relationship between the two data setsjghahe Wilcoxon signed-rank
test still shows that they likely did not originate from tlase population. Interestingly, the
Pearson correlation between observation pairs is royght0.75 through 1995, but then
the correlation drops significantly for the remainder ofpileeiod of record (Fig. 3.12). This
may be related to the change from human observations to atedrobservations from the
ASOS sensor suite, which occurred across the U.S. betwe@h d®d 2004. The laser
beam ceilometer automatically measures both the heightewverage of clouds over the
station by transmitting a near-infrared laser beam vdlyiead timing the receipt of the
return signal. Since the atmosphere typically moves, theulzion that estimates total

cloud coverage is based on a 30-minute cloud-height obsenvyaeriod (NWS 1998). The
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FiG. 3.13: Observed cloud cover at the Charlotte-Douglas tiatésnal Airport (station
13881) compared with the observed cloud cover at the nei8Bsstation. The thick
black line is the linear least-squares regression line hedHin black line is the one-to-
one line. Both the size and the color of the circles represig number of observation
pairs in each category.

automated measurements, therefore, may not capture ctaiwrés that do not occur di-
rectly above the observing site, but that a human observeldveport. This could account
for the marked decrease in correlation coefficient as shavagure 3.12.

Importantly, Figure 3.13 shows that the most frequent pafirsbservations between
Charlotte-Douglas International Airport and adjacentistes are either both clear or both
overcast. Both the colors and the relative areas of theesiialthis scatterplot also indicate
that if the subject station has observed clear condititres) the nearest station is also more
likely to have observed clear conditions, and vice versail&\ffot perfect, this provides

strong evidence that a substitution of the nearest valid¢®Dd cover observation is an
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appropriate method for filling gaps in cloud cover measurgserhe development of the
final HCD files therefore relies on this approach.

A key exception to the method outlined above stems from thetfeat a total of 141
hours of cloud coverage data are missing from all ISD sitesikaneously for select hours
between 1998 and 2013. Occasional data outages from areagsprovider to NCDC
result in large-scale gaps in coverage only for data pengito sky conditions. NCDC has
no control over the data stream and these data are not retxdeein the handful of cases
where no ISD cloud cover data exist, estimates at subjeatitots instead correspond with

the cloud coverage at the nearest NARR grid point.

3.6 Precipitation

Recall that the EICM accounts for precipitation on a montidgis. Hence, daily pre-
cipitation totals would supply sufficient information teetmodel for Pavement ME Design
pavement performance predictions. The dense GHCN-Datlyar& could easily provide
the readily available daily precipitation totals at thejsgbstation or nearby stations. Look-
ing to the future, however, one could imagine that updatésdd=ICM could account for
short-duration, heavy rainfall events or conditions wheshort-lived thunderstorm drops
cold rain on hot pavement. The following gap-filling procesglitherefore, attempts to pro-
duce the most likely hourly precipitation totals rathentisamply placing a daily total in a
single hour as currently implemented in many of the oright@D files.

The gap-filling procedure for precipitation differs fromathof the temperature, dew-
point, and wind speed fields because of the inherently Variadture of precipitation on
small spatial scales (e.g., Fig. 3.14). In general, no ahaterpolation technique can truly
produce accurate point estimates of precipitation datéicpéarly for convective precipita-
tion. The NARR often captures the presence of precipitaimh as Mesinger et al. (2006)

report, the NARR precipitation field achieves very good agrent with observations, yet
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Fic. 3.14: Daily precipitation (inches) reported by voluntebservers for the CoCo-
RaHS network in Buncombe County, North Carolina for the 2f4driod ending at 0700
EDT 13 June 2015.

due to the nature of precipitation both in models and in tgahe quantity and location of

the precipitation at point locations is still prone to laggeors stemming from a number of
factors (Ebert and McBride 2000). Indeed, the poor perforceaf the NARR cloud cover

data supports the conclusion that three-hourly precipitdbtals for a particular grid point

may not realistically capture hourly precipitation.

A reasonable solution given sufficient spatial coverageoofly observations could in-
volve filling gaps in hourly precipitation data with hourlginfall totals from the nearest
ISD location with a valid hourly observation. However, thwserage of hourly observa-
tions across North Carolina remains sparse compared vatartbrmous spatial variability
inherent in precipitation patterns, particularly earlytire 1979-2013 period of record.

Indeed, the state’s driest and wettest locations (downtsireville and Lake Toxaway, re-
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spectively) are separated by only 40.6 miles (65.3 km). Cenisig only stations with rea-
sonably complete observations for the entire period ofne(079-2013), the nearest ISD
location to the Asheville Regional Airport (station 0381y example, is the Greenville—
Spartanburg International Airport (station 13886) in Gy&&£, a full 41.5 miles (66.8 km)
away, 1198 feet (365 m) lower in elevation, and climatolafiicvery different. There-
fore, neither a NARR-derived precipitation estimate noearest-neighbor approach using
hourly observations nor spatial smoothing algorithms seppropriate for filling gaps in
hourly precipitation data.

The daily precipitation total from the GHCN-Daily data prd® much better spatial
coverage than the ISD data at the expense of temporal resolihe gap-filling technique
employed here involves using the daily precipitation tétain the nearest GHCN-Daily
station to estimate hourly precipitation with the help of tNARR data, subject to the

following constraints:

1. The algorithm sets the daily rainfall total for either antirely or partially gap-filled
24-hr period equal to the daily rainfall total at the neaf@BItCN-Daily station (i.e.,
the new daily total may not exceed or fall short of the obsegdaily rainfall total at
the nearest GHCN-Daily site, excluding measured hourleteamounts). Of course,
any actual measurements during the 24-hr period remainamged. If the near-
est GHCN-Daily site measures no precipitation and no traceusat, then all of the
missing hours receive estimates of zero precipitationhdfsum of the valid hourly
ISD measurements during the 24-hr GHCN-Daily observatiemog meets or ex-
ceeds the GHCN-Dalily total, the algorithm fills gaps with@accumulation. The
analysis accounts for varying observation times in the GH®ily record, though it
truncates the minutes in the rare instances where obsamgaiccur on the half hour

(e.g., “1230 UTC” becomes “1200 UTC").

2. Since the NARR data likely provide a fair measure of whetrenot precipitation

has fallen in a given three-hour period (but not necesstrédyquantity), the NARR
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three-hour precipitation totals help to determine therigrof the precipitation. The
algorithm scales the three-hourly NARR totals (upward avidward) linearly, to the
nearest hundredth of an inch, during the gap such that tietdéls in the NARR
data match the GHCN-Daily observations. For example, if 40%e daily precip-
itation at the nearest NARR grid point falls during the 120880 UTC time frame,
then the algorithm assigns 40% of the daily total observetth@inearest GHCN-
Daily station to those three hours. The timing of the GHCNHpabservations may
vary, so the daily NARR totals equal the sum of the disagdezand scaled hourly
NARR values over the same 24 period as that covered by eachHNab#ily obser-

vation.

. For short-term gaps, if no precipitation occurred in thERR data during the gap,
but NARR precipitation fell at some point during the 24-hripd of the GHCN-
Daily total, the algorithm assigns the entire differencéwaen the GHCN-Daily
total and the ISD hourly total to the last hour of the gap,nglthe other hours with
zeros. If the observed ISD values exceed the GHCN-Daily thteng the period,

the algorithm fills the entire gap with zeros.

. If the nearest GHCN-Daily observation indicates thatmigation fell during the
day, and the nearest value from a NARR grid point or ISD sitesdwot show any
precipitation during that 24-hr period, then the analysismove to the next nearest
NARR grid point or ISD site and so on through the 12th-neak&sRR grid point
or ISD site until it finds a NARR period or ISD observation witecipitation. This
procedure gives some allowance for the incorrect placewieptecipitation in the
NARR data. If no precipitation fell during that 24-hr periatiany of the nearest 12
NARR grid points or ISD sites, then the entire GHCN-Dailylgaotal is assigned
only to the 0000 UTC hour for a completely missing day or to ldet hour of a

short gap. The approach in this last condition is based omptawsible assumptions.
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Either 1) the precipitation fell at the beginning or end o&enfall event that occurred
primarily on an adjacent day or 2) the NARR did not capture mveotive event in

which all of the precipitation likely fell in a single hour.irfge thunderstorms tend
to occur most frequently in the late afternoon, 0000 UTC igasonable hour in
which to assign such convective precipitation. Since themgains no way to tell the
difference between a multiday precipitation event (whioh NARR should capture
anyway) and consecutive days with afternoon thunderstoassigning the entire

precipitation total to the 0000 UTC hour seems like a seasapproach.

5. If the scaled hourly precipitation total becomes lesa th&@1 in (0.254 mm) for any
non-native NARR hour (e.g., 0100, 0200, 0400, 0500, 0704),ehen the algo-
rithm adds the accumulation to the next consecutive hotitdfa is missing. If the
next hour is not missing, the hourly result becomes a trabe. algorithm assigns a
trace to accumulations remaining less than 0.01 in (0.254 amth ending at a native
NARR hour (i.e., every third hour including 0000 UTC). Fontpgaps, this approach
results in light or trace precipitation every three hourshia filled time series, sim-
ilar to measurements by a tipping bucket rain gauge. Witllnstapproach, small
hourly totals would result in an unrealistic frequency e accumulations in many
consecutive hours. Trace amounts do not count against tlyetokal precipitation

estimate so that the daily total remains equal to the GHCHNyDaservation.

6. If the nearest GHCN-Daily station records a trace of piéatiion, then the algorithm
assigns a trace to all missing native hours with non-zero RARecipitation and
assigns zero accumulation to all other missing hours. Ti@ggnts excessive trace

precipitation estimates during a single 24-hr period.

The only exception to the constraints outlined here appiissations with missing data
on the first day in the 1979-2013 period of record. Since no RARta exist to inform

the timing of precipitation prior to 0000 UTC 1 January 197 algorithm estimates
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FiG. 3.15: Distance from the subject station to the nearest vaklCN-Daily precipi-
tation observation site for all hours with missing pre@fittn data at 41 stations in and
near North Carolina.

precipitation by substituting unscaled NARR data from tlesest NARR grid point to the
subject station if the nearest GHCN-Dalily site reports mere precipitation for this first
day that exceeds the shortened NARR total.

Sometimes, the nearest available GHCN-Daily station wéhdvprecipitation data
changes and the observation time changes to a later timesida If this happens, an
unfilled gap appears because the daily observations onr@824-hr period. To address
this, the algorithm uses data from the previous day at thealesest station with valid data
to fill in the gap for the previously-unfilled precipitatioalues.

Figure 3.15 illustrates the distances between subjegbstabind the nearest GHCN-
Daily sites tapped to provide precipitation data for the-gdipg algorithm for all 41 sta-

tions included in the set of new HCD files developed here. Tigisre does not show a
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handful of outliers that extend to the farthest distanceCaidles (64 km). The majority of
nearby GHCN-Daily sites (75%) lie within 6.2 miles (10.0 kof)the subject site, which
implies that the hourly precipitation estimates providéast a reasonable representation
of the actual precipitation. In Charlotte (station 138&t),example, the daily precipita-
tion measurements only 164 feet (0.05 km) away helped tanfidli 404 missing hourly

precipitation observations during the study period.
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4. Quality Assurance

All climate data, whether directly observed or inferred stundergo strict quality con-
trol procedures to check for internal consistency and ex¢realues before inclusion within
the final HCD files. The quality assurance algorithm impletedrere addresses two pri-
mary issues—errors with kriging estimates for temperauaee/point, and wind speed; and
remaining data quality problems after the initial, lessesiquality control of each obser-
vational dataset. The procedure outlined in section 3.@resshigh-quality precipitation

data. For the remaining variables, the algorithm perfotmedaollowing procedures:

1. Smooths out anomalous spikes by comparing each hourbreddgon with the ad-
jacent hours, followed by a comparison with the penadjabents (two away on
either side). The spikes mainly derive from the temporaiyependent nature of the
kriging estimates. Recall that each estimate is made wéh#ip of an algorithm
that automatically selects the variogram model based oolikerved variogram at
each hour because the millions of required estimates mteche use of the usual
hand-picked analysis parameters that work best for eachidiugl situation. With-
out human intervention in the selection of the parametarshi® variogram model,
the resulting kriging estimates have the potential to vaigely from hour to hour.
While large errors occur only for a small percentage of thal toumber of kriging
estimates, it remains very important to correct for the alsgc spikes that occur in
the time series for each variable. For both temperature anghoint estimates, the
threshold for identifying a spike is a rise of at least 8.14F{C) in one hour, fol-

lowed by a drop of the same magnitude in the next hour. Theidhgo also checks
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for unrealistic spikes in the observations, where the tiokesfor identifying bad val-

ues is 16.2°F (9.0°C). Intermediate thresholds catch hagdeature and dewpoint
observations shortly before a sensor dies. The algoritinmoves hourly wind speed
estimates that increase by more than three times the psewowd speed or by 10
m s, whichever is greater, and hourly wind speed observattuaisncrease by the
greater of either ten times the previous estimate or 30’'mBor spikes covering two
consecutive hours, the thresholds increase by a factobofThe algorithm removes
bad values and replaces them with a linear interpolationds valid values before
and after the run of bad data. The smoother makes three siwEeasses through

the data, each time checking for anomalous spikes.

. Ensures that all values adhere to physical bounds. Tloeithign makes sure that the
dewpoint remains less than or equal to the temperatureratiking any other neces-
sary quality-control adjustments for temperature andtti@apercentage of sunshine

is between 0% and 100%.

. Checks for temporal continuity so that each time seripsegents all hours in the

correct order.

. Checks each observation or estimate against recordsteftsimperature extremes
observed during the month and year under consideration. algwithm removes
and linearly interpolates over any estimate or otherwidiel tfamperature that falls
outside the bounds of an official monthly state extreme if stimeate exceeds that
extreme by more than 1.8°F (1.0°C) or if an observation exe#ee official extreme
by more than 3.0°F (1.7°C). Estimates of temperature thegexka state extreme by

less than 1.8°F (1.0°C) are set equal to the extreme.

. Checks hourly temperatures against observed maximumanichum temperatures
at the nearest GHCN-Daily site. Comparisons include a venegpus 8.5°C kmt

lapse-rate adjustment for differences in elevation an@waaicfor varying GHCN-
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Daily observation times. Tests show that typical diffeeshacross North Carolina
between observed daily maximum and minimum temperaturésrencorrespond-
ing values at the nearest GHCN-Dalily site (usually sevarabkvay) do not exceed
about 5.4°F (3.0°C). Above that threshold, examples irelndth plausible values
and clearly incorrect ones. Therefore, the algorithm rezsegtimateghat exceed
this threshold and linearly interpolates the adjacentivaiues to fill in the gap. No
adjustmentis made in instances where the observed GHCN-akimum temper-
ature on a given day is less than the minimum temperatureeprétvious day and
vice versa. The algorithm also flags as suspect any otheralgk observations if
they exceed twice this threshold at 10.8°F (6.0°C), buwalthose observations to
remain in the data. Even so, the algorithm flags as suspegtosinall percentage
of the temperature observations. At 0.1%, by far the largestentage of suspect

temperature observations occurs at Goldsboro, NC (sta8@a3).

6. Looks for sudden and rapid increases or decreases assbwi#h a dying tempera-
ture or dewpoint sensor and linearly interpolates betweasanable data on either

side of up to eight consecutive bad values.

7. Flags wind speeds in excess of the threshold for a catégouyricane (42.5 ms")

for manual inspection.

The quality assurance algorithm corrects for both inappatg kriging estimates and
poor-quality data that has passed the NCDC quality asseragorithms, including many
examples with dying sensors and sensor malfunctions. Qogitim automatically makes
adjustments, but in a handful of cases, questionable ISDGH@N-Daily observations
of temperature, dewpoint, wind speed, and precipitatigquired manual inspection and

removal.
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5. Historical Climate Data Files

5.1 Notable concerns with the original HCD files

Other authors have found that environmental influencesfgigntly impact pavement
performance predictions, including Johanneck et al. (20400 also recommend rigorous
quality control and the elimination of stations with miggotata within the climate database
intended for use with the Pavement ME Design software. Incthase of the current
investigation, several specific problems emerged witheetsip the original HCD files.

The original HCD files do not have observations listed at threect times. In meteo-
rology, both humans and automated observing systems matkeuaty observation about
seven minutes before the hour. For example, the conditibssrged and reported at 11:53
a.m. correspond with the noon observation. The original H{B3 instead truncate the
minutes for each observation, such that the noon obsenvapipears in the data as the 11
a.m. observation, even after accounting for time zones laadact that all times refer to
local standard time. This has consequences for the calmulat heat fluxes that depend
upon the quantity of incoming solar radiation determinethimithe EICM. Correcting the
HCD files by simply shifting the original data forward by oneun allows a test of the im-
pact of this error. Comparisons between Pavement ME Desagtigtions with the original
and corrected HCD files for various pavement types show naherrors (Figs. 5.1-5.4).
For example, the simulation for the concrete pavement prsjgown in Figure 5.4 yields
a predicted IRI of 141.0 in/mi, mean joint faulting of 0.08ikches, and JPCP transverse

cracking of 4.39% after 30 years with the original climatéadarhe revised climate data
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FiG. 5.1: Sensitivity of Pavement ME Design simulations to a-boar shift in hourly
climate data for an Interstate 440 project in Wake CountyPa)ement performance
measures calculated with the original Raleigh-Durham H@®(§itation 13722) for an
aggregate base course (ABC) pavement structure and bjetfiffes (corrected minus
original) between performance measures calculated witlotlyinal and time-corrected
HCD files. Both panels show IRI (blue), total pavement defation (green), and bottom-
up cracking (red).

change the results to a predicted IRI of 139.5 in/mi, meant faulting of 0.079 inches, and
JPCP transverse cracking of 4.25% after 30 years. Theseaéduedicted stresses after
30 years are the same as the values produced by the simuhatiothe original climate
data after only 29 years and 1 month.

In addition, the original HCD files contain some questioealidta. For example, the
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FiG. 5.2: Asin Fig. 5.1, but for a cement-treated aggregate basese (CTABC) pave-
ment structure.

relative humidity suddenly drops to unrealistic valuesn@ally 0—13%) for 23 hours at
Raleigh/Durham (station 13722) on 18 August 1996 beforeuwering to more reasonable
values. Inspection of the ISD data indicates that this mmbstems from the inclusion of
both suspect and missing dewpoint observations in the atgin of the original HCD
time series. This problem is not unique. Unreasonable spakso exist in the original
HCD files. Examples include cases where the temperaturalistreally rises to 122°F

from 57°F and falls back to 44°F before rising again to 67°Ednsecutive hours at Rocky
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FIG. 5.3: Asin Fig. 5.1, but for a full depth asphalt (FDA) pavernstructure.

Mount (station 93759) on 7 March 2002 and where the temperaimnspicuously drops
to 0°F from 73°F before slowly recovering at Cape Hatterteits 93729) on 15 October
2003. A wind speed value suddenly jumps from a light breeZ&lto.p.h. and back again
on 25 September 2002 at the Asheville Regional Airporti@ta®3812), yet the ISD data
show no such gust. Hourly precipitation jumps from zero tarZBes or more (up to 63.8
inches) and back to zero in several instances. The summarghie A.1, described in
section 5.2, contains some of these outliers.

More concerning is the lack of any temperature value at als&ect hours at 15 of
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the 30 original North Carolina and nearby station locatianalyzed here. The MEPDG
software most likely interprets a blank data value as 0°Hclwimay impact pavement
performance predictions, particularly when the problerouos in the summer when the
temperature instantly drops below freezing before redngdo a very warm temperature
in a subsequent hour. At Florence, SC, for example, thislpnolpersists for 48 hours
in one instance starting on 15 July 2003. Yet another congertains to the occasional

appearance of extraneous characters in the wind datadnsteamerical values. At station
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locations across the U.S. and Canada, 41.2% of the origd&3 HCD files contain some
combination of missing temperature, relative humiditywvimd data, as well as unrealistic
daily precipitation totals.

Two minor concerns arise in comparisons between the lomg4&CD files developed
here and the original HCD files. One discrepancy between tiggnal HCD files and
the new HCD files is that the original files contain integer dvépeeds in m.p.h. that are
often one m.p.h. less than in the new long-term HCD files. Tik&dy arises because of
a rounded conversation factor in the conversion fronttte m.p.h. in the original HCD
files. Another difference is that the hourly precipitaticues in the original HCD files
often represent daily totals, generally placed at noonllbeee on each day with zeros
at all other times, whereas the new HCD files contain hourbuawlations distributed
throughout the day as outlined in section 3.6.

Lastly, the period of record indicated in the list of staBdhe station.dat file) does
not necessarily reflect the actual temporal coverage of éhesponding HCD file. For
example, the data for station 04734 (Maniwaki, Québec, @anspan the period between
October 1990 and September 1992, but the station.dat erdiyaites a complete period
of record beginning in January 1953. Future dates also appdiae station.dat file. For
example, station 04712 (Montreal, Québec, Canada) hastimgtdate of January 2028.

All of these concerns highlight the need to develop impramdronmental input to the
EICM and support the effort involved with the constructidmew, long-term, high-quality

HCD files.

5.2 Long-term, high-quality HCD files

The procedure outlined above produced 41 HCD files contgimigh-quality, internal-
ly-consistent, and complete hourly meteorological datdife entire period of record from

1 January 1979 through 31 December 2013 (Fig. 5.5). Of thas, 18O files replace data for

55



FiG. 5.5: Locations with complete HCD files for the period 1979%2. Yellow markers
indicate locations with hourly observations from meteogital measurement stations.
Sites marked with a star represent stations included in ttiginal set of HCD files ac-
companying the Pavement ME Design software. Data at latatimarked in red are
solely derived from North American Regional Reanalysis R data and represent
model output with no direct observations.

existing stations in the archives distributed with the Paset ME Design software and 11
files provide historical climate data for new locations imlarear North Carolina. Though
some stations are just outside the state line, 26 of theostafall within the borders of
North Carolina. The three main North Carolina climate regiconsisting of the moun-
tains, piedmont, and coastal plain each contain 1, 9, andat®ss, respectively. Refer
to Table A.2 in Appendix A for tables that provide a brief assaent of the quality of the
data as measured by the percentage of direct observatatnsotinpose the entire POR for
each station. Stations with a large percentage of direcsarements will likely provide
a more accurate picture of the long-term climatic condgiahthat location than stations
with a large percentage of estimated values.

This work took place under the hypothesis that an extendeel sieries would capture
more extremes and would improve the characterization ofahg-term climate at each

station. Table A.1 lists statistical measures of centnadlémcy, spread, and extremes for

56



each variable in comparisons between the original and tineHED files at each of the
30 original site locations. In all cases, the longer filestaonmore extreme values, while
standard deviations remain similar between each data set.

As a supplement to the HCD files at stations where actual vasens take place, 847
HCD files built solely from temporally-interpolated threeurly NARR data can help to
fill in gaps in regional coverage (Fig. 5.5). The differenavieen these files and those
built from a combination of observations and spatial intdsgions as outlined above is
that both cloud cover and precipitation, as well as tempegatlewpoint, and wind speed,
correspond directly with gridded NARR model output fieldsc® these data files contain
no actual observations, they should be used with cautioroatydas a supplement to the
information provided by the stations marked in yellow in Giig 5.5. Pavement design

locations that are relatively close to a yellow marker sdade the observed data.
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6. Pavement ME Design Sensitivity Analysis

Comparisons of pavement distresses and smoothness ovdeslgn life of several
projects across North Carolina lend insight into the impdi¢he high-quality, continuous,
long-term historical climate data files in the final pavenmgrformance predictions by the
AASHTOWare Pavement ME Design software (version 2.1). €lsesisitivity tests involve
17 unique sites (two in the mountains, eight in the piedmamd, seven in the coastal plain
climate regions) in North Carolina, repeatedly drawingnelte data from nine different
locations, with various design selections that includéetgncrete, 16 ABC, one CTABC,
and 16 FDA pavement projects, for a total of 41 different gegirojects. In each case, the
MEPDG software received both the original HCD files (hemaféferred to as “baseline”
simulations) and the improved HCD files (hereafter refeteds “new” simulations) to
produce pavement performance predictions.

Tables A.3, A4, A5, and A.6 in Appendix A detail the resulffsthe comparisons
between the baseline and new simulations of performanterierifor each project and
pavement type. In each case, the design reliability indgtte probability that the actual
distress levels will not exceed the pavement performaredigtions over the design period
(AASHTO 2008). In other words, reliability refers to the pentage of actual road samples
that would not reach the predicted distress level. The targleie for each performance
criterion and project varies according to the requiremémt®ach project. For example,
the target distress for the X-2BB Cumberland County coeqpedject in Table A.3 is 15%
JPCP transverse cracking at 90% reliability. These talidediat the percentage difference

between the baseline and new simulations and whether oneg@rticular designs pass or
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TABLE 6.1: Summary measures for differences (new minus basefingvement dis-
tress for each pavement type. MAE refers to the mean absaiute Two-tailedp values
correspond witht distribution probabilities for differences of mean for gl samples.
Bold p values are statistically significant at the 95% level. Penfince criteria include
terminal IRI (inches milel), mean joint faulting (inches), JPCP transverse crackieg (
centage of slabs), permanent deformation (inches) for bwhtotal pavement struc-
ture and only the AC contribution, AC bottom-up and top-ddatigue cracking (feet
mile~1), and fatigue fracture in the chemically stabilized lay) (

Concrete

Performance Criterion n Mean (bias) MAE Median  Sample std. d p value
Terminal IRI 8 —4.057 4815 —3.384 4645 0.043
Mean joint faulting 8 —0.004 Q006  —0.003 Q007 0.110
JPCP transverse cracking 8 —2.189 2199 -1.978 1691 0.008
ABC

Performance Criterion n Mean (bias) MAE Median  Sample std. d p value
Terminal IRI 16 0720 1797 0699 2493 0.266
Perm. deform. — total 16 .010 0026 —0.003 Q043 0.383
Perm. deform. — AC 16 .005 0022  —0.005 Q042 0.645
AC bottom-up fatigue 16 363 2305 Q114 5222 0.313
AC top-down fatigue 16 11240 194026 10142 385639 0.239
CTABC

Performance Criterion n Mean (bias) MAE Median  Sample std. d p value
Terminal IRI 1 —0.021 0021 -0.021 — —
Perm. deform. — total 1 —0.006 Q006 —0.006 — —
Perm. deform. — AC 1 —0.013 Q013 -0.013 — —
AC bottom-up fatigue 1 —0.006 Q006 —0.006 — —
AC top-down fatigue 1 —85.839 85839 —85.839 — —
Chem. stab. — fatigue 1 .m0 Q140 Q140 — —
FDA

Performance Criterion n Mean (bias) MAE Median  Sample st. d p value
Terminal IRI 16 —0.319 1496 Q0196 2186 0.568
Perm. deform. — total 16 —0.012 0024 —0.009 Q035 0.202
Perm. deform. — AC 16 —0.010 Q015 -0.010 Q017 0.034
AC bottom-up fatigue 16 —0.136 1073 Q051 2970 0.858
AC top-down fatigue 16 a7 17747 —0.253 31578 0.427

fail based on the target criterion at the specified religbilrhis analysis does not consider
asphalt concrete (AC) thermal cracking predictions bee#tus MEPDG software does not
properly handle the predictions for this distress type.

The eight concrete projects generally show less distregstive new HCD files com-
pared with the baseline simulations (Table 6.1). JPCP ¥egee cracking decreased in all

but one project, but even where this distress increasexiit4d40 Wake County project,
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the magnitude of the increase remains small with a changelpf0.04% of the concrete
slabs, or a percentage difference @%. Similarly, terminal IRl decreases in six of the
eight projects and mean joint faulting decreases in severgeheral, the few increases
in pavement distress and smoothness with the new HCD filesaapplatively small in
magnitude compared with the large magnitude of the decsaaggavement distress and
smoothness present in the simulations for these concrejiects. A hypothesis test for dif-
ferences of mean for paired samples using ttistribution allows an objective assessment
of these results. Table 6.1 shows that the two-tadelues allow rejection of the null
hypothesis that there is no difference between the basatidemew pavement performance
predictions for both terminal IRI and JPCP transverse ¢nacht the 95% level. There-
fore, the improved long-term climate data yield a discelma@nd statistically significant
decrease in both smoothness and transverse cracking thigsrthat NCDOT may have
overdesigned concrete pavement designs developed witritheal HCD files.

Overall, the new HCD files have limited impact on the FDA paeefrtypes. Decreases
in AC rutting represent the only statistically significaesult. Individual comparisons
between the new and baseline simulations show mixed res@ltgperformance criteria
increase in four of the 16 FDA projects, all decrease in tlufene projects, and the re-
maining nine produce a variety of increased and decreasediar Of the FDA projects
that reach the terminal IRI target before reaching the ernttieflesign life of the project,
the MEPDG software produces both a 0.3% reduction and a Ox88ason in the 30-year
design life for the two projects in Yancey and Northamptoru@ees (R-2519B and R-
2582A), respectively. This is equivalent to a change of arlg month in design life for
each.

Comparisons between the 16 ABC projects show no statilstisiginificant differences
between the baseline and new simulations for any pavemeiarpence criterion. Pave-
ment performance predictions for individual projects, boer, can vary substantially be-

tween the baseline and new Pavement ME Design simulatiamsetames resulting in
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failed pavement designs that would have passed with thanatig CD files (e.g., AC crack-
ing for project R-2501C in Richmond County) and vice versg.(éerminal IRI for project
[-3802A in Cabarrus County). Five of the comparisons forABE projects yield relatively
large changes in predicted AC top-down fatigue with the n&DHiles compared with the
magnitude of the changes for the same project locations Ri¥A designs. Three ABC
projects show increases for all pavement performanceieré@d three show decreases for
all criteria. Some ABC projects exhibit large changes irdpred distresses with percent-
age differences exceeding 40%, but other projects onlybéxémall differences. Of the
performance criteria that reach the target value at thefsgeceliability before the end of
the design life for both the baseline and the new simulatiprigect R-3421C in Richmond
County exhibits the largest difference in the percentagbetesign life at failure with a
reduction of 1.9% of the 34-year design life using the new H{l¥3, or nearly 8 months.
While not statistically significant, it remains apparerdttthe use of the new HCD files in
the MEPDG software clearly has some influence on the outcdiine predicted distresses
and smoothness for individual ABC projects.

The new HCD files produce decreased pavement distressesianthsiess in the single
CTABC project, though this is admittedly a very small sangiie. The one exception is
that the fatigue cracking in the chemically stabilized lapereases. Unfortunately, a single
sample is insufficient to gauge statistical significance.

Since the climatological data vary by station, it could maseful to compare results
for different projects and pavement types that rely on daienfthe same single meteo-
rological station location to determine whether or not diataeinfluences pavement per-
formance predictions in a systematic way. For each stafiahle 6.2 shows two-tailed
p-values corresponding withdistribution probabilities for differences in mean for ieal
samples for all of the pavement design projects that relyistoffical climate data from
that single location. For example, Table 6.2 indicates ass$itzlly significant difference

in terminal IRl between the baseline and new simulatione@®6% level for the one con-

61



TABLE 6.2: Two-tailedp-values corresponding withdistribution probabilities for dif-
ferences in mean for paired samples for all of the pavemesijdgrojects that rely on
historical climate data from a single location. Only pavetrgerformance criteria with
more than one sample are included. Bpldalues are statistically significant at the 95%
level. Values in parentheses indicate the number of prejactuded in each statistical
test. Pavement performance criteria include terminal IRI)( permanent deformation
for both the total pavement structure (Total rutting) antlyadhe AC contribution (AC
rutting), AC bottom-up (AC bottom-up) and top-down (AC tdpwn) fatigue cracking,
mean joint faulting (Joint), and JPCP transverse cracKinarsverse).

Station IRI Total rutting AC rutting AC bottom-up  AC top-dow
Charlotte, NC (13881) 0.503 (4) 0.683(3) 0.624 (3) 0.400 (3) 0.596 (3)
Greensboro, NC (13723) 0.006 (3) 0.150(2) 0.219 (2) 0.294 (2) 0.529 (2)
Winston-Salem, NC (93807) 0.054(2) 0.117 (2) 0.129 (2) 0. 0.506 (2)
Wilmington, NC (13748) 0.012 (5) 0.384(5) 0.294 (5) 0.002 (5) 0.142 (5)
Asheville, NC (03812) 0.959 (4) 0.013(4) 0.002 (4) 0.410 (4) 0.303 (4)
Raleigh/Durham, NC (13722) 0.143(6) 0.101 (5) 0.081 (5) 00.%) 0.303 (5)
Hickory, NC (03810) 0.035(3) 0.049(2) 0.092(2) 0.483 (2) 0.496 (2)
Fayetteville, NC (93740) 0.099 (6) 0.411(4) 0.349 (4) 0.8%9 0.444 (4)
Maxton, NC (93782) 0.386 (2) 0.015(2) 0.102(2) 0.502 (2) 0.521 (2)
Station Joint Transverse

Fayetteville, NC (93740)  0.039 (2) _ 0.042 (2)

crete and two flexible pavement projects that rely on data fByeensboro (station 13723).
Table 6.2 excludes projects that draw historical data fromftipie stations in the baseline
simulations due to temporal gaps in the original HCD files.e Havement ME Design
simulations call upon the data from Fayetteville (stati@@40) for six projects, including
four for flexible pavements. Only Fayetteville providesal&ir more than one concrete
project, so it is the only station witp-values for the JPCP transverse cracking and mean
joint faulting performance measures, but the statistiesist for terminal IRI include this
measure from the concrete pavement projects. There exigigar influence on any given
flexible pavement performance criterion using the data frayetteville. Indeed, the sign
of each of the changes in pavement performance predictiffiesscbetween projects. Yet
the differences in JPCP transverse cracking and mean puiftirfg for concrete projects
that use the Fayetteville data are significant at the 95%.|&wen though the four flexible
pavement projects that use data from Asheville (statiorl@B&nd the five that use data

from Raleigh/Durham (13722) always produce a reductionath thotal and AC rutting,
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as well as a reduction in AC top-down fatigue (longitudinaaking), only the historical
climate data from Asheville produce statistically sigrafit differences in both total rutting
and AC rutting. The five projects that use data from Wilmimggstation 13748) all show
statistically significant increases in both terminal IRdaiC bottom-up fatigue (alliga-
tor) cracking. The long-term HCD files from Charlotte (statil3881), on the other hand,
do not remotely produce any statistically significant ddfeces in pavement performance
measures.

It appears that the new HCD files may in fact have the potetdiaifluence the final
pavement performance predictions for certain performarniteria, but that the magnitude,
sign, and statistical significance of those changes mayndeppon the HCD station se-
lected for the analysis. A larger selection of projects #wth draw climatological data
from these and other sites could help to show with more cgytavhether or not a par-
ticular HCD file has a systematic influence on the sign of tlilerdinces in the pavement

performance criteria between the baseline and new simukati
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7. Conclusions and Recommendations

The previous sections describe the development of long;teontinuous, quality-
controlled, hourly historical data for multiple locatioasross North Carolina for use as
input to the EICM within the MEPDG software, with the goal afproving confidence in
the resulting pavement performance predictions. As ewveermy the results of the auto-
mated quality assurance procedures outlined in sectignie fjuality of the original HCD
files remains sufficiently poor to warrant a recommendatian NCDOT cease further use
within Pavement ME Design. These original files may advgra#fect pavement perfor-
mance predictions and the pavement designs based on themfietijons. Tests show that
similar quality concerns exist for an alarming number (44)2f other station locations
across the United States and Canada. This conclusion alakesthe development of the
improved HCD files a worthwhile effort.

The sensitivity tests in section 6 indicate that concretepeent projects would likely
benefit the most from the improved HCD files. Based on the PameME Design com-
parisons, it appears that engineers currently overdesigm grojects. NCDOT engineers
could minimize costs by making small design changes sucledsctions in pavement
structure layer thicknesses to address this concern.

While all pavement performance predictions change withitt@duction of the new
HCD files within the MEPDG software, the only statisticallgrficant differences at the
95% level for flexible pavements involve AC rutting in FDA gawent designs. As section 6
explains, the HCD station selected for use within the MEPDfasare may influence the

magnitude and sign of the differences in pavement perfocaamnedictions between the
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baseline and new simulations. For future projects, theegforemains important to select
the station that best characterizes the climatologicaflitmms at the project site in order
to produce the most reliable predictions.

Recall that the virtual station feature of the MEPDG sofenalfows a user to construct
an hourly time series for any location based on an inverseuace weighting algorithm and
a standard tropospheric lapse-rate correction. This agpraay produce a realistic time
series for very closely-spaced stations, but would gelyeaakrage out hourly extremes,
dilute the hourly temperature gradient in the vicinity afrits, and would produce partic-
ularly poor results in the mountains, along coasts, or acctimate regions. In order to
provide some guidance about when to use the virtual statiatufe, it seems prudent to
quantify the distance from a meteorological observingatatvithin which that station’s
observations provide a good representation of the regigeather. In an approach similar
to Hubbard (1994), the coefficient of determinati®f)(represents the proportion of the
variation at every other GHCN-Daily site that is describediocounted for by the daily
observations at a given target location. Systematic elretaeen two sites do not affect
theR? value, so elevation differences between sites make naelifte in temperature com-
parisons under the assumption that the lapse rate of tetnperamains constant, as in the
MEPDG software. To avoid the influence of seasonality, whictuld artificially inflate
the R? value, the analysis considers daily data separately for th@ months of January
and July, following Hubbard (1994). Figures 7.1-7.3 sliwalues for comparisons be-
tween the quality-controlled daily observations at onstaxg HCD station near the center
of each of North Carolina’s three climate regions and theosunding GHCN-Daily obser-
vations of maximum and minimum temperature and precipitefior a period spanning 10
years (2000-09). Spatial interpolation between two statiwith some measure of confi-
dence would require a reasonably laRfevalue in excess of 0.90, so only these regions
are shaded in each subfigure. In all cases, these resultgishiosxtension of the daily pre-

cipitation beyond a few kilometers from the site would bepimapriate. Daily maximum
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FiG. 7.1: Contoured coefficients of determinatid®f) for daily observation pairs of a)
maximum temperature in January and b) July, ¢) minimum teatpee in January and d)
July, and e) precipitation in January and f) July at the AgleeRegional Airport (station
03812; “+’ symbol) and each of the surrounding GHCN-Daily statiored(dots) over
the period 2000-09. Shaded regions correspond®ith 0.90.

and minimum temperatures could be spatially interpolatedard by at most a county or

two with reasonable confidence.
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FiG. 7.2: As in Fig. 7.1, but for the Burlington Alamance RegibA&port (station
93783).

Since GHCN-Daily data do not contain information on moistwind speed, or cloud
cover, the three-hourly gridded NARR data can provide adatimate of the mean dis-

tance within which thé?? value first falls below 0.90 for these variables. Table &ftslthe
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FiG. 7.3: As in Fig. 7.1, but for the New Bern Craven County Regidhirport (station
93719).

limiting distances for three NARR grid points near the apprate center of each climate
region for five years of three-hourly NARR data (2000-04giageparated into only two

months. For exampldz? = 0.862 for all pairs of January temperatures at grid points be-
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TABLE 7.1: Distances within which the coefficient of determinatig?, first falls below
0.90 in comparisons between NARR variables at one target griiot pnd surrounding
grid points in each of North Carolina’s three climate regiomhree-hourly data pairs
are grouped into 20-km distance bins for both January arydolr the five-year period
2000-04.

Location: Candler, NC
Climate Region: Mountains

January July
Variable Distance (km) R?>  Distance (km) R?
Temperature 40 0.862 20 0.842
Dewpoint 60 0.877 20 0.800
Wind speed 20 0.814 20 0.827
Cloud cover 40 0.883 20 0.810
Precipitation 40 0.891 20 0.769

Location: Denton, NC
Climate Region: Piedmont

January July
Variable Distance (km) R?  Distance (km) R?
Temperature 100 0.899 80 0.895
Dewpoint 120 0.878 40 0.846
Wind speed 20 0.885 20 0.861
Cloud cover 60 0.861 20 0.888
Precipitation 60 0.840 20 0.822

Location: Hookerton, NC
Climate Region: Coastal Plain

January July
Variable Distance (km) R?  Distance (km) R2?
Temperature 80 0.878 80 0.865
Dewpoint 80 0.876 40 0.897
Wind speed 60 0.719 40 0.887
Cloud cover 60 0.887 20 0.870
Precipitation 60 0.833 20 0.868

tween 20-40 km away from the target grid point in the moumstairhese results indicate
that a long-distance spatial averaging procedure wouddhitail to produce a realistic time
series of hourly data. For this reason, the author recomsagainst the use of the virtual
station feature within the MEPDG software. A better appho&cto use a nearby HCD
station that is climatologically similar to the desiredation.

Alternatively, the large quantity of HCD files derived sgié&dom NARR data, repre-
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senting model output with no direct observations, provideadistic picture of the climate
at hundreds of sites in and near North Carolina (see Fig. B&)ever, the impact of these
HCD files on pavement performance predictions remains tedegthin the MEPDG soft-
ware. Such tests would help to determine the feasibilitysifg these files in remote lo-
cations where there may exist large spatial and temporal igapourly data (e.g., northern
Maine, western states, Alaska, or even Western North Cepli

The design projects analyzed in section 6 represent onlyadl sample for each pave-
ment type. Ideally, a more conclusive sensitivity analydithe differences in pavement
performance predictions using the new and the original HG3 fivould take advantage
of a large number of design projects for each pavement tydeaasorrespondingly large
number of projects using each climatological station lecatWith such a small sample of
projects (e.g., one CTABC pavement project), it remaingadilt to assess the changes in
predicted pavement conditions from a statistical persgect he use of the distribution
in statistical tests partially mitigates the problem of §reample sizes, but more projects
would instill more confidence in the conclusions presente h

Lastly, a word of caution is warranted regarding the intetation of the results of the
sensitivity analysis. Model developers often calibratalsis to produce reasonable results
for test cases. The parameters selected for use with the NBERITtware are no excep-
tion. Even with an improved characterization of certairgpaeters, such as climatological
data, the resulting predictions by the model can suffer inagyanpacts and even diverge
from reality under the influence of the modified input valud$ough one would hope
that improving the HCD files would instill more confidence netpavement performance

predictions, one must interpret these results throughsadéhealthy skepticism.
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Appendix A. Supplemental Tables

TABLE A.1: Statistical measures for each meteorological timeséor both the original
(Old) and the new (New) HCD files at each of the 30 original Rzet ME Design site
locations. Variables include 2-m air temperature (TAIR), “F0-m wind speed (WSPD,
m s 1), percentage of possible sunshine (PSUN, %), daily pretipn totals ending at
midnight local standard time (PREC, in), and relative hutgi(RELH, %). Parentheses
indicate removal of missing temperatures, assumed zeth,wslue shown giving the
next lowest temperature in the record. Asterisks (*) inthaanreasonable values in the

record. The new 35-yr HCD files have a period of record fromriuday 1979 to 31
December 2013.

Station 03812 (Asheville, NC)
Original period of record: 1 July 1996—28 February 2006 §.€ars)

TAIR WSPD PSUN PREC RELH

Old New Old New Old New Old New Old  New
Maximum 93.9 98.1 74.0* 48.0 100.0 100.0 442 4.47 100.0 @oo0.
Minimum 5.0 -16.1 0.0 0.0 0.0 0.0 0.00 0.00 0.0 8.0
Mean 55.4 55.3 5.3 6.8 59.6 50.0 0.12 0.13 73.8 734
25th percentile  43.0 43.0 0.0 3.0 0.0 0.0 0.00 0.00 58.0 57.0
Median 57.0 57.0 5.0 6.0 75.0 50.0 0.00 0.00 79.0 78.0
75th percentile 68.0 68.0 8.0 10.0 100.0 100.0 0.07 0.05 93.93.0
Sample std. dev. 16.0 16.4 4.8 5.6 43.8 43.7 0.33 0.35 21.1 5 21.

Station 13723 (Greensboro, NC)
Original period of record: 1 July 1996—28 February 2006 §y.€ars)

TAIR WSPD PSUN PREC RELH

Old New Old New Old New Old New Old New
Maximum 97.0 102.9 34.0 47.0 100.0 100.0 416 5.11 100.0 (0100.
Minimum 70 -80 0.0 0.0 0.0 0.0 0.00 0.00 11.0 8.0
Mean 58.6 58.6 6.0 7.1 48.9 47.7 0.11 0.11 69.3 67.3
25th percentile  46.0 45.0 4.0 5.0 0.0 0.0 0.00 0.00 53.0 51.0
Median 60.1 60.1 6.0 7.0 50.0 50.0 0.00 0.00 71.0 69.0
75th percentile  72.0 72.0 8.0 9.0 100.0 100.0 0.04 0.03 89.06.0 8
Sample std. dev. 16.6 17.0 40 44 40.6 42.3 0.32 0.33 21.0 1 21.
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TABLE A.1: (Continued)

Station 13882 (Chattanooga, TN)

Original period of record: 1 July 1996—28 February 2006 §.€ars)

TAIR WSPD PSUN PREC RELH
Old New Old New Old  New Old New Old  New
Maximum 100.0 106.0 27.0 46.0 100.0 100.0 5.24 9.49 100.0 .0100
Minimum 7.0 -99 00 0.0 0.0 0.0 0.00 0.00 0.0 10.0
Mean 60.7 60.4 42 51 60.3 47.4 0.15 0.15 71.4 70.4
25th percentile 48.0 46.9 0.0 0.0 25.0 0.0 0.00 0.00 56.0 55.0
Median 63.0 62.1 40 50 75.0 50.0 0.00 0.00 75.0 74.0
75th percentile 73.9 73.9 70 8.0 100.0 100.0 0.06 0.06 90.09.0 8
Sample std. dev.  16.8 17.3 41 47 41.0 421 0.37 0.39 20.4 5 20.
Station 13744 (Florence, SC)
Original period of record: 1 April 1999-28 February 200@®@Gyears)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 1029 106.0 33.0 64.0 100.0 100.0 422 4.26 100.0 .0100
Minimum (9.8) 01 00 0.0 0.0 0.0 0.00 0.00 11.0 9.0
Mean 63.1 63.3 6.0 7.2 68.8 55.7 0.10 0.05 70.8 69.9
25th percentile 51.0 51.1 40 5.0 25.0 12.0 0.00 0.00 54.0 0 53.
Median 66.0 64.9 6.0 7.0 100.0 75.0 0.00 0.00 74.0 73.0
75th percentile 75.0 75.0 8.0 10.0 100.0 100.0 0.02 0.00 90.89.0
Sample std. dev.  16.1 16.3 3.9 45 41.4  43.7 0.32 0.24 21.7 2 21.
Station 13877 (Bristol/Johnson City/Kingsport, TN)
Original period of record: 1 July 1996—28 February 2006 §y.€ars)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 99.0 102.0 31.0 62.0 100.0 100.0 3.50 3.50 103.0 0100.
Minimum 5.0 -200 00 0.0 0.0 0.0 0.00 0.00 0.0 8.0
Mean 55.6 55.6 3.6 4.7 53.6 43.0 0.12 0.11 739 718
25th percentile 42.1 42.1 0.0 0.0 0.0 0.0 0.00 0.00 59.0 57.0
Median 57.0 57.0 30 50 50.0 25.0 0.00 0.00 78.0 75.0
75th percentile 69.0 69.1 6.0 7.0 100.0 88.0 0.08 0.08 92.0 .0 89
Sample std. dev.  17.1 17.4 41 47 41.8 414 0.29 0.27 19.8 9 19.
Station 13722 (Raleigh/Durham, NC)
Original period of record: 1 July 1996—28 February 2006 §Y.€ars)
TAIR WSPD PSUN PREC RELH
Old New Old New Old  New Old New Old  New
Maximum 1029 105.1 42.0 54.0 100.0 100.0 5.33 5.64 100.0 .0100
Minimum 80 -71 00 0.0 0.0 0.0 0.00 0.00 0.0 8.0
Mean 59.9 60.0 52 6.7 455 423 0.13 0.12 71.3 694
25th percentile 46.9 46.9 3.0 30 0.0 0.0 0.00 0.00 54.0 52.0
Median 62.0 62.1 50 7.0 25.0 25.0 0.00 0.00 740 720
75th percentile 73.0 73.0 80 9.0 75.0 75.0 0.04 0.04 91.0 0 89.
Sample std. dev.  16.9 171 40 44 38.9 404 0.36 0.33 21.6 4 21.
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TABLE A.1: (Continued)

Station 93785 (Chapel Hill, NC)

Original period of record: 1 July 1999-28 February 2006 §6.6ars)

TAIR WSPD PSUN PREC RELH
Old New Old New Old  New Old New Old  New
Maximum 100.0 103.2 24.0 36.0 100.0 100.0 5.28 5.23 100.0 .0100
Minimum (5.1) -6.1 00 0.0 0.0 0.0 0.00 0.00 0.0 10.0
Mean 50.1 59.6 3.8 6.7 70.3 517 0.11 0.12 711 702
25th percentile 46.0 46.4 00 40 25.0 0.0 0.00 0.00 54.0 57.0
Median 61.0 611 40 6.0 100.0 50.0 0.00 0.00 74.0 72.0
75th percentile 720 734 6.0 9.0 100.0 100.0 0.03 0.06 91.06.0 8
Sample std. dev. 169 17.2 33 44 412 435 0.31 0.34 215 9 17.
Station 93765 (Beaufort, NC)
Original period of record: 1 May 2000—-28 February 2006 (5/88rs)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 940 98.1 39.0 48.0 100.0 100.0 552 7.89 100.0 100.0
Minimum (9.0) 86 00 0.0 0.0 0.0 0.00 0.00 16.0 14.0
Mean 63.4 66.0 8.4 10.9 67.9 51.9 0.15 0.15 777 77.2
25th percentile 52.0 57.2 50 7.0 25.0 12.0 0.00 0.00 69.0 0 70.
Median 66.0 68.0 8.0 10.0 100.0 50.0 0.00 0.00 81.0 79.0
75th percentile 76.0 77.0 11.0 14.0 100.0 100.0 0.05 0.09 09087.0
Sample std. dev. 15.0 12.9 48 5.6 39.5 407 0.43 0.42 16.0 8 12.
Station 03810 (Hickory, NC)
Original period of record: 1 January 1998-28 February 2@0865 years)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 100.9 102.9 25.0 69.0 100.0 100.0 6.31 6.31 100.0 .0100
Minimum (3.2) -78 00 0.0 0.0 0.0 0.00 0.00 0.0 6.0
Mean 58.5 58.7 43 55 68.3 544 0.12 0.07 69.1 684
25th percentile 46.0 46.0 00 30 25.0 0.0 0.00 0.00 51.0 51.0
Median 60.0 60.1 40 6.0 100.0 75.0 0.00 0.00 71.0 70.0
75th percentile 71.0 720 6.0 8.0 100.0 100.0 0.04 0.00 90.08.0 8
Sample std. dev. 16.3  16.7 36 4.2 42.0 445 0.34 0.26 21.8 9 21.
Station 93740 (Fayetteville, NC)
Original period of record: 1 April 1998-28 February 200@®{7years)
TAIR WSPD PSUN PREC RELH
Old New Old New Old  New Old New Old  New
Maximum 102.0 109.0 40.0 63.0 100.0 100.0 493 4.33 100.0 .0100
Minimum 13.0 -27 00 0.0 0.0 0.0 0.00 0.00 0.0 7.0
Mean 62.5 62.2 6.4 7.1 68.7 56.4 0.11 0.09 70.0 69.9
25th percentile 50.0 49.7 40 5.0 250 120 0.00 0.00 53.0 0 53.
Median 64.9 64.2 60 7.0 100.0 75.0 0.00 0.00 723 73.0
75th percentile 75.0 75.0 9.0 9.0 100.0 100.0 0.02 0.01 90.09.0 8
Sample std. dev. 16.4  16.7 39 44 416 43.1 0.34 0.30 219 7 21.
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TABLE A.1: (Continued)

Station 13881 (Charlotte, NC)

Original period of record: 1 July 1998-28 February 2006§7%.€ars)

TAIR WSPD PSUN PREC RELH
Old  New Old New Old  New Old New Old  New
Maximum 100.0 102.9 34.0 63.0 100.0 100.0 4.14 6.33 100.0 .0100
Minimum 10.0 -5.1 00 0.0 0.0 0.0 0.00 0.00 11.0 6.0
Mean 60.4 60.8 49 6.6 41.1 416 0.11 0.11 69.6 66.6
25th percentile 48.0 48.0 3.0 50 0.0 0.0 0.00 0.00 52.0 50.0
Median 62.1 63.0 50 6.0 250 25.0 0.00 0.00 71.0 68.0
75th percentile 73.0 73.0 70 9.0 75.0 75.0 0.03 0.03 90.0 0 86.
Sample std. dev. 16.3 16.6 34 42 37.3 405 0.31 0.33 21.7 3 21.
Station 93719 (New Bern, NC)
Original period of record: 1 October 1997-28 February 2@ years)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 100.0 100.9 32.0 70.0 100.0 100.0 6.52 9.73 100.0 .0100
Minimum (4.0) -38 00 0.0 0.0 0.0 0.00 0.00 0.0 11.0
Mean 61.6 624 58 6.7 66.3 54.4 0.14 0.08 75.4 73.6
25th percentile 49.0 50.0 3.0 40 25.0 0.0 0.00 0.00 61.0 60.0
Median 64.0 64.9 6.0 7.0 100.0 75.0 0.00 0.00 80.0 78.0
75th percentile 74.0 75.0 80 9.0 100.0 100.0 0.06 0.00 93.00.0 9
Sample std. dev. 16.0 16.1 41 4.6 41.7 439 0.40 0.33 19.4 5 19.
Station 93807 (Winston-Salem, NC)
Original period of record: 1 December 1998-28 February 0054 years)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 98.1 102.0 25.0 63.0 100.0 100.0 5,52 5.52 100.0 0100.
Minimum (9.4) -81 00 0.0 0.0 0.0 0.00 0.00 0.0 5.0
Mean 58.9 58.8 48 6.3 66.3 52.7 0.12 0.09 67.1 674
25th percentile 46.0 457 3.0 30 25.0 0.0 0.00 0.00 50.0 53.0
Median 61.0 605 50 6.0 100.0 75.0 0.00 0.00 67.5 69.0
75th percentile 720 722 70 8.0 100.0 100.0 0.04 0.01 87.04.0 8
Sample std. dev. 16.5 16.9 36 4.2 43.0 44.2 0.32 0.28 21.7 8 19.
Station 13776 (Lumberton, NC)
Original period of record: 1 March 1999-28 February 2000@%.ears)
TAIR WSPD PSUN PREC RELH
Old  New Old New Old  New Old New Old  New
Maximum 102.0 106.0 34.0 38.0 100.0 100.0 762 7.41 100.0 .0100
Minimum 13.0 -0.2 00 0.0 0.0 0.0 0.00 0.00 13.0 10.0
Mean 62.1 625 54 7.3 69.5 56.9 0.11 0.12 73.1 734
25th percentile 50.0 50.0 30 50 250 120 0.00 0.00 57.0 0 60.
Median 65.0 644 50 7.0 100.0 75.0 0.00 0.00 78.0 76.0
75th percentile 75.0 754 8.0 10.0 100.0 100.0 0.03 0.04 9389.0
Sample std. dev. 16.5 16.6 42 45 41.3 43.2 0.37 0.34 21.0 2 18.
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TABLE A.1: (Continued)

Station 13737 (Norfolk, VA)

Original period of record: 1 July 1996—28 February 2006§%.éars)

TAIR WSPD PSUN PREC RELH
Old New Old New Old  New Old New Old  New
Maximum 100.0 104.0 41.0 68.0 100.0 100.0 6.23 8.93 100.0 .0100
Minimum 8.3) —-29 00 0.0 0.0 0.0 0.00 0.00 13.0 9.0
Mean 60.4 60.5 79 9.8 58.1 50.6 0.13 0.13 73.2 69.8
25th percentile 47.0 46.9 50 6.0 25.0 0.0 0.00 0.00 60.0 56.0
Median 62.0 62.1 70 9.0 75.0 50.0 0.00 0.00 76.0 72.0
75th percentile 73.9 739 11.0 13.0 100.0 100.0 0.04 0.04 0 8986.0
Sample std. dev. 16.0 16.4 48 55 383 415 0.37 0.39 18.5 7 18.
Station 93783 (Burlington, NC)
Original period of record: 1 July 1998-28 February 2006§7%.€ars)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 100.0 104.0 28.0 32.0 100.0 100.0 410 4.69 100.0 .0100
Minimum 2.7y -53 00 0.0 0.0 0.0 0.00 0.00 0.0 7.0
Mean 58.9 59.2 46 7.0 68.7 51.2 0.11 0.12 68.7 69.9
25th percentile 46.0 45.8 00 5.0 25.0 0.0 0.00 0.00 51.0 57.0
Median 61.0 60.8 40 7.0 100.0 50.0 0.00 0.00 720 72.0
75th percentile 720 732 70 9.0 100.0 100.0 0.04 0.05 89.05.0 8
Sample std. dev. 17.3  17.3 39 43 419 437 0.33 0.33 21.8 1 18.
Station 93782 (Maxton, NC)
Original period of record: 1 June 1998-28 February 20065(years)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 102.0 107.1 33.0 40.0 100.0 100.0 447 5.72 100.0 .0100
Minimum (9.1) -03 00 0.0 0.0 0.0 0.00 0.00 0.0 8.0
Mean 619 621 56 6.8 70.0 56.7 0.09 0.12 725 727
25th percentile 49.0 494 3.0 40 250 120 0.00 0.00 56.0 0 60.
Median 64.0 64.0 50 6.0 100.0 75.0 0.00 0.00 77.0 76.0
75th percentile 75.0 752 80 9.0 100.0 100.0 0.02 0.04 93.09.0 8
Sample std. dev. 16.9 16.7 40 4.2 415 431 0.32 0.33 215 5 18.
Station 13728 (Danville, VA)
Original period of record: 1 August 2000—28 February 2006%%ears)
TAIR WSPD PSUN PREC RELH
Old New Old New Old  New Old New Old  New
Maximum 100.0 102.9 28.0 63.0 100.0 100.0 3.12 581 100.0 .0100
Minimum 6.0 —-90 00 0.0 0.0 0.0 0.00 0.00 11.0 6.0
Mean 57.2 585 49 64 67.2 51.1 0.11 0.10 705 684
25th percentile 43.0 446 3.0 40 25.0 0.0 0.00 0.00 520 51.0
Median 50.0 60.1 50 6.0 100.0 62.0 0.00 0.00 740 71.0
75th percentile 71.0 720 70 9.0 100.0 100.0 0.04 0.03 92.08.0 8
Sample std. dev. 17.4 17.5 39 42 425 443 0.28 0.30 22.3 4 21.
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TABLE A.1: (Continued)

Station 93759 (Rocky Mount, NC)

Original period of record: 1 October 2000-28 February 281 years)

TAIR WSPD PSUN PREC RELH
Old  New Old New Old  New Old  New Old  New
Maximum 122.0* 104.0 36.0 66.0 100.0 100.0 439 7.53 100.00.a0
Minimum (390 -38 00 0.0 0.0 0.0 0.00 0.00 7.0 8.0
Mean 58.8 60.3 52 7.0 70.1 54.0 0.09 0.12 746 72.4
25th percentile 45.0 46.9 30 50 25.0 0.0 0.00 0.00 57.0 57.0
Median 61.0 62.1 50 7.0 100.0 75.0 0.00 0.00 79.0 77.0
75th percentile 73.0 73.9 80 90 100.0 100.0 0.02 0.04 94.00.0 9
Sample std. dev. 175 17.2 41 45 41.0 439 0.29 0.33 21.6 3 20.
Station 93846 (Anderson, SC)
Original period of record: 1 November 1998-28 February 20083 years)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 100.9 106.0 31.0 68.0 100.0 100.0 568 4.85 100.0 .0100
Minimum 9.0 -49 00 0.0 0.0 0.0 0.00 0.00 0.0 9.0
Mean 60.5 61.3 51 65 69.4 56.8 0.12 0.09 70.6  69.2
25th percentile 48.0 48.9 3.0 30 25.0 0.0 0.00 0.00 53.0 52.0
Median 62.0 63.0 50 6.0 100.0 75.0 0.00 0.00 74.0 720
75th percentile 73.0 73.9 80 90 100.0 100.0 0.03 0.00 90.09.0 8
Sample std. dev. 16.1 16.5 42 438 419 441 0.37 0.29 21.6 6 21.
Station 53870 (Gastonia, NC)
Original period of record: 1 February 1999-28 February 20087 years)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 100.0 105.1 22.0 31.0 100.0 100.0 3.31 4.70 100.0 .0100
Minimum 50 -21 00 0.0 0.0 0.0 0.00 0.00 0.0 7.0
Mean 60.2 60.3 3.7 6.0 73.1 515 0.11 0.12 70.2 70.7
25th percentile 48.0 47.2 00 30 50.0 0.0 0.00 0.00 53.0 57.0
Median 62.0 61.9 40 6.0 100.0 50.0 0.00 0.00 73.0 73.0
75th percentile 720 737 6.0 8.0 100.0 100.0 0.03 0.04 90.06.0 8
Sample std. dev. 16.3 16.8 33 39 39.8 435 0.30 0.32 21.8 3 18.
Station 13748 (Wilmington, NC)
Original period of record: 1 July 1996—28 February 2006§3.6ars)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 102.9 102.9 51.0 62.0 100.0 100.0 6.77 13.50 100.00.010
Minimum 14.0 10 00 0.0 0.0 0.0 0.00 0.00 140 10.0
Mean 63.4 634 6.6 7.8 69.3 56.8 0.15 0.15 75.1 733
25th percentile 52.0 52.0 40 50 25.0 0.0 0.00 0.00 62.0 60.0
Median 66.0 66.0 6.0 8.0 100.0 75.0 0.00 0.00 79.0 78.0
75th percentile 759 75.9 9.0 11.0 100.0 100.0 0.06 0.05 9090.0
Sample std. dev. 155 15.7 46 51 41.1  43.7 0.46 0.48 19.0 2 19.
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TABLE A.1: (Continued)

Station 93729 (Cape Hatteras, NC)

Original period of record: 1 July 1996—28 February 2006 §3.éars)

TAIR WSPD PSUN PREC RELH
Old New Old New Old  New Old  New Old  New
Maximum 92.0 98.1 46.0 68.0 100.0 100.0 58.10* 11.42 104.00.a0
Minimum (4.1%) 6.1 00 0.0 0.0 0.0 0.00 0.00 0.0 12.0
Mean 62.9 63.2 8.3 10.0 715 57.9 0.17 0.16 777  76.2
25th percentile 52.0 52.0 50 7.0 25.0 0.0 0.00 0.00 67.0 65.0
Median 64.0 64.9 80 9.0 100.0 75.0 0.00 0.00 81.0 79.0
75th percentile 75.0 75.0 11.0 13.0 100.0 100.0 0.06 0.05 09089.0
Sample std. dev. 14.0 14.3 42 51 40.4  43.7 1.07 0.49 15.9 8 15.
Station 13891 (Knoxville, TN)
Original period of record: 1 July 1996—28 February 2006 §3.éars)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 96.1 105.1 38.0 43.0 100.0 100.0 3.70 5.75 104.0 0100.
Minimum 50 -231 00 0.0 0.0 0.0 0.00 0.00 0.0 11.0
Mean 59.1 58.8 53 6.0 50.0 46.0 0.14 0.13 725 715
25th percentile 46.0 45.0 3.0 30 0.0 0.0 0.00 0.00 58.0 57.0
Median 61.0 61.0 50 6.0 50.0 50.0 0.00 0.00 75.0 74.0
75th percentile 72.0 72.0 70 8.0 100.0 100.0 0.08 0.07 89.09.0 8
Sample std. dev. 16.8 17.3 43 4.7 39.7 417 0.34 0.34 19.0 5 19.
Station 13883 (Columbia, SC)
Original period of record: 1 July 1996—28 February 2006 §3.éars)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 104.0 108.0 34.0 62.0 100.0 100.0 5.17 6.45 100.0 .0100
Minimum 13.0 -0.0 00 0.0 0.0 0.0 0.00 0.00 11.0 8.0
Mean 63.6 63.4 52 6.3 55.5 48.0 0.11  0.09 69.1 68.8
25th percentile 51.1 51.1 3.0 30 25.0 0.0 0.00 0.00 51.0 51.0
Median 66.0 66.0 50 6.0 50.0 50.0 0.00 0.00 73.0 73.0
75th percentile 76.0 75.9 80 9.0 100.0 100.0 0.02 0.00 89.09.0 8
Sample std. dev. 16.4 16.8 40 4.6 41.0 417 0.33 0.30 21.7 1 22.
Station 53872 (Monroe, NC)
Original period of record: 1 February 1999-28 February 20087 years)
TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New
Maximum 100.0 104.1 34.0 39.0 100.0 100.0 4.06 6.98 100.0 .0100
Minimum 10.0 -0.8 00 0.0 0.0 0.0 0.00 0.00 4.0 4.0
Mean 60.1 60.8 53 6.9 68.1 50.8 0.10 0.12 70.1 70.6
25th percentile 48.0 48.0 3.0 50 25.0 0.0 0.00 0.00 53.0 58.0
Median 62.0 62.4 50 7.0 100.0 50.0 0.00 0.00 720 72.0
75th percentile 72.0 74.1 80 9.0 100.0 100.0 0.02 0.04 90.06.0 8
Sample std. dev. 16.3 16.7 38 41 42.1 43.2 0.30 0.33 21.8 0 18.
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TABLE A.1: (Continued)

Station 93781 (Roanoke Rapids, NC)

Original period of record: 1 November 1998-28 February 20083 years)

TAIR WSPD PSUN PREC RELH

Old New Old New Old New Old New Old New
Maximum 101.0 107.0 32.0 38.0 100.0 100.0 191.40* 6.95 100100.0
Minimum (6.6) —4.6 00 0.0 0.0 0.0 0.00 0.00 3.0 9.0
Mean 59.1 595 45 7.4 66.9 54.0 0.18 0.12 70.7 727
25th percentile 46.0 46.0 0.0 5.0 25.0 0.0 0.00 0.00 54.0 60.0
Median 61.0 60.8 40 7.0 100.0 75.0 0.00 0.00 73.0 75.0
75th percentile 720 734 7.0 10.0 100.0 100.0 0.02 0.05 90.88.0
Sample std. dev. 16.8 17.4 36 44 428 44.4 3.73 0.34 21.1 2 18.

Station 93741 (Newport News, VA)

Original period of record: 1 December 2000-28 February 26054 years)

TAIR WSPD PSUN PREC RELH
Old  New Old New Old  New Old New Old  New

Maximum 102.0 105.1 40.0 70.0 100.0 100.0 4,15 7.18 100.0 .0100
Minimum (9.6) Q2 0.0 0.0 0.0 0.0 0.00 0.00 12.0 8.0
Mean 58.6 594 6.4 8.2 66.8 52.3 0.11 0.05 722 70.9
25th percentile 446  46.0 4.0 5.0 25.0 0.0 0.00 0.00 56.0 56.0
Median 60.0 61.0 6.0 8.0 100.0 75.0 0.00 0.00 75.0 74.0
75th percentile 73.0 734 9.0 11.0 100.0 100.0 0.03 0.00 90.88.0
Sample std. dev. 174 17.2 4.3 4.9 42.8 435 0.33 0.25 20.6 9 19.

Station 13786 (Elizabeth City, NC)

Original period of record: 1 March 1998-28 February 2006@8.ears)

TAIR WSPD PSUN PREC RELH

Old  New Old New Old  New Old New Old  New
Maximum 98.1 102.0 43.0 63.0 100.0 100.0 440 7.56 100.0 0100.
Minimum (2.4) 29 0.0 0.0 0.0 0.0 0.00 0.00 16.0 8.0
Mean 60.7 614 8.0 9.1 66.8 53.5 0.12 0.12 769 755
25th percentile 48.0 49.2 5.0 6.0 25.0 0.0 0.00 0.00 64.0 65.0
Median 63.0 63.0 8.0 9.0 100.0 75.0 0.00 0.00 80.0 79.0
75th percentile 740 74.0 11.0 12.0 100.0 100.0 0.04 0.06 0 9389.0
Sample std. dev. 16.4 15.5 4.7 5.0 41.8 42.6 0.34 0.33 18.0 4 16.

Station 03870 (Greer, SC)

Original period of record: 1 July 1996—28 February 2006§3.6ars)

TAIR WSPD PSUN PREC RELH

Old  New Old New Old  New Old New Old  New
Maximum 102.9 106.0 28.0 63.0 100.0 100.0 468 9.32 100.0 .0100
Minimum 4.9 -40 0.0 0.0 0.0 0.0 0.00 0.00 7.0 4.0
Mean 60.6 60.3 5.5 6.7 66.0 55.3 0.13 0.13 69.4 68.0
25th percentile 48.0 48.0 3.0 3.0 25.0 0.0 0.00 0.00 53.0 51.0
Median 62.0 62.1 5.0 6.0 100.0 75.0 0.00 0.00 71.0 70.0
75th percentile 73.0 73.0 8.0 9.0 100.0 100.0 0.05 0.04 89.07.0 8
Sample std. dev. 159 16.3 3.9 45 43.1 443 0.37 0.37 21.4 7 21.
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TABLE A.2: Percentages of the complete 35-year time series ofjndata at each station
categorized by the source and disposition of the obsensatad estimates for 2-m air
temperature (TAIR), 2-m dewpoint temperature (DEWP), 1@vind speed (WSPD),

cloud cover (CLCV), and precipitation (PREC). Direct ohsdions refer to unmodified

measurements at the given station, but may include shontteanporal gaps of two hours
or less filled via linear interpolation for air temperatudewpoint temperature, and wind
speed measurements. Values in parentheses indicate theenafihours (observations)
in each category.

Station 03812 (Asheville, NC)

TAIR DEWP WSPD
Direct observations 99.967% (306739) 99.938% (306651) 97MI% (306751)
Estimates 0.031% (94) 0.055% (168) 0.029% (89)
Quality-controlled observations 0.001% (3) 0.001% (4) 00% (0)
Quality-controlled estimates 0.000% (0) 0.006% (17) 0%q0)
Suspect estimates 0.001% (4) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCcv PREC
Direct observations 97.720% (299845) 99.843% (306357)
Linearly-interpolated observations 0.843% (2587) 0.0188)
Nearest observations 1.053% (3230)
Linearly-interpolated nearest observations ~ 0.338% (1037
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.142% (437)
Total direct observations 99.488% (1526343)
Total other 0.512% (7857)
Station 93765 (Beaufort, NC)

TAIR DEWP WSPD
Direct observations 35.047% (107539) 35.051% (107552) 05846 (107563)
Estimates 64.357% (197474) 64.877% (199068) 64.945% (@P92
Quality-controlled observations 0.002% (7) 0.001% (3) 00% (0)
Quality-controlled estimates 0.009% (27) 0.071% (217) 00% (0)
Suspect estimates 0.5849% (1793) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCcV PREC
Direct observations 33.418% (102539) 34.041% (104450)
Linearly-interpolated observations 0.843% (2587) 1.0682¢8)
Nearest observations 61.835% (189736)
Linearly-interpolated nearest observations  3.858% (7183
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 64.891% (199112)
Total direct observations 34.522% (529643)
Total other 65.478% (1004557)
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TABLE A.2: (Continued)

Station 93783 (Burlington, NC)

TAIR DEWP WSPD
Direct observations 35.076% (107626) 35.062% (107584) 625% (106242)
Estimates 64.661% (198407) 64.892% (199116) 65.375% @&)05
Quality-controlled observations 0.002% (7) 0.000% (1) 00% (0)
Quality-controlled estimates 0.001% (3) 0.045% (139) 0%Qq0)
Suspect estimates 0.260% (797) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 33.852% (103870) 33.759% (103587)
Linearly-interpolated observations 0.445% (1366) 1.27894.2)
Nearest observations 64.501% (197915)
Linearly-interpolated nearest observations  1.156% (3548
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 64.966% (199341)
Total direct observations 34.475% (528909)
Total other 65.525% (1005291)
Station 93729 (Cape Hatteras, NC)

TAIR DEWP WSPD
Direct observations 99.597% (305602) 98.821% (303223) 97846 (303704)
Estimates 0.342% (1048) 0.925% (2839) 1.022% (3136)
Quality-controlled observations 0.058% (178) 0.005% (14)  0.000% (0)
Quality-controlled estimates 0.000% (1) 0.249% (764) 0%0)
Suspect estimates 0.004% (11) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 93.718% (287565) 97.296% (298542)
Linearly-interpolated observations 1.360% (4174) 2.332%4)
Nearest observations 4.453% (13663)
Linearly-interpolated nearest observations  0.423% (1297
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.373% (1144)
Total direct observations 97.682% (1498636)

Total other 2.318% (35564)
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TABLE A.2: (Continued)

Station 93785 (Chapel Hill, NC)

TAIR DEWP WSPD
Direct observations 34.588% (106131) 34.482% (105804) 038% (104427)
Estimates 65.182% (200004) 65.482% (200926) 65.967% ()24
Quality-controlled observations 0.008% (26) 0.002% (7) 000% (0)
Quality-controlled estimates 0.000% (0) 0.034% (103) 0%Qq0)
Suspect estimates 0.221% (679) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 32.942% (101078) 33.719% (103464)
Linearly-interpolated observations 0.624% (1914) 0.892983)
Nearest observations 65.522% (201048)
Linearly-interpolated nearest observations  0.867% (2659
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 65.390% (200643)
Total direct observations 33.953% (520904)
Total other 66.047% (1013296)
Station 13881 (Charlotte, NC)

TAIR DEWP WSPD
Direct observations 99.987% (306799) 99.987% (306799) 986 (306799)
Estimates 0.013% (41) 0.013% (41) 0.013% (41)
Quality-controlled observations 0.000% (0) 0.000% (0) 00% (0)
Quality-controlled estimates 0.000% (0) 0.000% (0) 0.0q0Y6
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 97.975% (300627) 99.864% (306423)
Linearly-interpolated observations 1.381% (4237) 0.0@a3)y
Nearest observations 0.540% (1658)
Linearly-interpolated nearest observations  0.058% (177)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.132% (404)
Total direct observations 99.560% (1527447)

Total other 0.440% (6753)
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TABLE A.2: (Continued)

Station 13786 (Elizabeth City, NC)

TAIR DEWP WSPD
Direct observations 55.084% (169019) 54.904% (168467) 2&B4% (169637)
Estimates 44.791% (137438) 45.059% (138260) 44.715% (AR72
Quality-controlled observations 0.004% (12) 0.015% (47) .000% (0)
Quality-controlled estimates 0.000% (0) 0.022% (66) 0%q0)
Suspect estimates 0.112% (343) 0.000% (0)
Suspect observations 0.009% (28) 0.000% (0)

CLCcVv PREC
Direct observations 52.252% (160331) 53.015% (162671)
Linearly-interpolated observations 1.661% (5096) 2.146%66)
Nearest observations 43.573% (133700)
Linearly-interpolated nearest observations ~ 2.468% (Y572
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 44.845% (137603)
Total direct observations 54.108% (830125)
Total other 45.892% (704075)
Station 93740 (Fayetteville, NC)

TAIR DEWP WSPD
Direct observations 89.016% (273136) 88.433% (271349) 684 (275187)
Estimates 10.916% (33496)  11.383% (34928) 10.316% (31653)
Quality-controlled observations 0.018% (55) 0.022% (66) .000% (0)
Quality-controlled estimates 0.002% (6) 0.162% (497) 0%0)
Suspect estimates 0.0449% (135) 0.000% (0)
Suspect observations 0.004% (12) 0.000% (0)

CLCcV PREC
Direct observations 85.900% (263576) 81.248% (249301)
Linearly-interpolated observations 2.836% (8702) 8.312%600)
Nearest observations 10.823% (33208)
Linearly-interpolated nearest observations  0.395% (1213
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 10.442% (32039)
Total direct observations 86.856% (1332549)
Total other 13.144% (201651)
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TABLE A.2: (Continued)

Station 53870 (Gastonia, NC)

TAIR DEWP WSPD
Direct observations 34.986% (107352) 34.976% (107321) 6B (106456)
Estimates 64.601% (198221) 64.932% (199237) 65.306% @003
Quality-controlled observations 0.001% (4) 0.000% (0) 00% (0)
Quality-controlled estimates 0.002% (6) 0.092% (282) 0%Qq0)
Suspect estimates 0.409% (1256) 0.000% (0)
Suspect observations 0.000% (1) 0.000% (0)

CLCVv PREC
Direct observations 33.832% (103809) 33.763% (103597)
Linearly-interpolated observations 0.460% (1410) 1.2383%89)
Nearest observations 64.796% (198819)
Linearly-interpolated nearest observations  0.867% (2661
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 65.003% (199454)
Total direct observations 34.450% (528535)
Total other 65.550% (1005665)
Station 13723 (Greensboro, NC)

TAIR DEWP WSPD
Direct observations 99.986% (306798) 99.986% (306798) 9886 (306798)
Estimates 0.014% (42) 0.014% (42) 0.014% (42)
Quality-controlled observations 0.000% (0) 0.000% (0) 00% (0)
Quality-controlled estimates 0.000% (0) 0.000% (0) 0.0q0Y6
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 96.480% (296038) 99.836% (306338)
Linearly-interpolated observations 1.713% (5255) 0.026%
Nearest observations 1.601% (4913)
Linearly-interpolated nearest observations  0.161% (493)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.143% (438)
Total direct observations 99.255% (1522770)

Total other 0.745% (11430)
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TABLE A.2: (Continued)

Station 03810 (Hickory, NC)

Direct observations
Estimates

TAIR
88.834% (272579)
11.125% (34137)

DEWP WSPD
88.778% (272407) 848 (272605)
10.992% (33727)  11.157% (34235)

Quality-controlled observations 0.001% (4) 0.006% (19) 000% (0)
Quality-controlled estimates 0.000% (0) 0.224% (687) 0%Qq0)
Suspect estimates 0.037% (112) 0.000% (0)
Suspect observations 0.003% (8) 0.000% (0)
CLCVv PREC
Direct observations 84.841% (260327) 77.564% (237998)
Linearly-interpolated observations 2.463% (7557) 1098893718)
Nearest observations 12.256% (37606)
Linearly-interpolated nearest observations  0.394% (1209
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 11.447% (35124)
Total direct observations 85.772% (1315916)
Total other 14.228% (218284)
Station 13776 (Lumberton, NC)
TAIR DEWP WSPD

Direct observations

Estimates

Quality-controlled observations
Quality-controlled estimates
Suspect estimates

Suspect observations

41.459% (127214)

58.216% (178630)
0.001% (2)
0.001% (3)
0.323% (991)
0.000% (0)

41.428% (127118) 85M¥ (125357)
58.529% (179589) 59.146% @BH14
0.000% (1) 00% (0)
0.043% (132) 0%G0)
0.000% (0)
0.000% (0)

Direct observations
Linearly-interpolated observations
Nearest observations

Linearly-interpolated nearest observations

Nearest NARR grid point
GHCN-Daily/NARR filled

CLCV PREC
39.886% (122385) 39.717% (121868)
0.858% (2633) 1.745283)

56.477% (173293)
2.734% (388
0.046% (141)
58.577% (179739)

Total direct observations
Total other

40.669%
59.331%

(623942)
(910258)
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TABLE A.2: (Continued)

Station 93782 (Maxton, NC)

TAIR DEWP WSPD
Direct observations 41.710% (127982) 41.705% (127968) 362P46 (126916)
Estimates 58.121% (178339) 58.252% (178739) 58.638% @4)99
Quality-controlled observations 0.003% (8) 0.000% (1) 00% (0)
Quality-controlled estimates 0.001% (3) 0.043% (132) 0%Qq0)
Suspect estimates 0.166% (508) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 40.358% (123833) 40.009% (122765)
Linearly-interpolated observations 0.658% (2020) 1.663%04)
Nearest observations 56.466% (173259)
Linearly-interpolated nearest observations ~ 2.473% (Y587
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 58.327% (178971)
Total direct observations 41.029% (629464)
Total other 58.971% (904736)
Station 53872 (Monroe, NC)

TAIR DEWP WSPD
Direct observations 35.134% (107806) 35.134% (107804) 913?46 (107140)
Estimates 64.688% (198489) 64.845% (198970) 65.083% (A®97
Quality-controlled observations 0.002% (7) 0.001% (2) 00% (0)
Quality-controlled estimates 0.001% (3) 0.021% (64) 0%0)
Suspect estimates 0.173% (530) 0.000% (0)
Suspect observations 0.002% (5) 0.000% (0)

CLCVv PREC
Direct observations 34.053% (104487) 33.902% (104026)
Linearly-interpolated observations 0.402% (1234) 1.213%4 6)
Nearest observations 64.639% (198339)
Linearly-interpolated nearest observations  0.860% (2639
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 64.887% (199098)
Total direct observations 34.628% (531263)
Total other 65.372% (1002937)
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TABLE A.2: (Continued)

Station 93719 (New Bern, NC)

TAIR DEWP WSPD
Direct observations 96.871% (297239) 96.851% (297179) 87k (297242)
Estimates 2.901% (8901) 2.611% (8013) 3.118% (9567)
Quality-controlled observations 0.002% (7) 0.001% (2) 00% (0)
Quality-controlled estimates 0.170% (521) 0.536% (1646) .010% (31)
Suspect estimates 0.056% (172) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 92.741% (284566) 85.659% (262836)
Linearly-interpolated observations 2.484% (7623) 10%9733668)
Nearest observations 4.427% (13583)
Linearly-interpolated nearest observations  0.302% (927)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 3.369% (10336)
Total direct observations 93.799% (1439062)
Total other 6.201% (95138)
Station 13722 (Raleigh/Durham, NC)

TAIR DEWP WSPD
Direct observations 99.965% (306733) 99.955% (306703) 9686 (306743)
Estimates 0.035% (107) 0.043% (131) 0.032% (97)
Quality-controlled observations 0.000% (0) 0.000% (1) 00% (0)
Quality-controlled estimates 0.000% (0) 0.002% (5) 0.0q0Y6
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 97.069% (297845) 99.802% (306231)
Linearly-interpolated observations 0.779% (2390) 0.022%)
Nearest observations 1.821% (5587)
Linearly-interpolated nearest observations  0.286% (877)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.174% (534)
Total direct observations 99.352% (1524255)

Total other 0.648% (9945)
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TABLE A.2: (Continued)

Station 93781 (Roanoke Rapids, NC)

TAIR DEWP WSPD
Direct observations 28.694% (88044)  28.687% (88024) IBR@B6590)
Estimates 70.920% (217610) 71.211% (218503) 71.780% &R02
Quality-controlled observations 0.001% (2) 0.001% (3) 00% (0)
Quality-controlled estimates 0.003% (8) 0.101% (310) 0%Qq0)
Suspect estimates 0.383% (1176) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCcVv PREC
Direct observations 28.156% (86394)  27.133% (83255)
Linearly-interpolated observations 0.522% (1601) 1.542865)
Nearest observations 68.176% (209192)
Linearly-interpolated nearest observations ~ 3.100% (9512
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 71.285% (218730)
Total direct observations 28.178% (432307)
Total other 71.822% (1101893)
Station 93759 (Rocky Mount, NC)

TAIR DEWP WSPD
Direct observations 68.087% (208919) 67.992% (208626) 668R6 (207635)
Estimates 31.777% (97506)  31.905% (97896)  32.330% (99200)
Quality-controlled observations 0.009% (29) 0.011% (34) .000% (0)
Quality-controlled estimates 0.021% (65) 0.093% (284) 02% (5)
Suspect estimates 0.099% (304) 0.000% (0)
Suspect observations 0.006% (17) 0.000% (0)

CLCcV PREC
Direct observations 64.806% (198850) 60.301% (185027)
Linearly-interpolated observations 2.223% (6820) 6.883%4.19)
Nearest observations 32.091% (98469)
Linearly-interpolated nearest observations  0.834% (2560
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 32.816% (100694)
Total direct observations 65.771% (1009057)
Total other 34.229% (525143)
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TABLE A.2: (Continued)

Station 13748 (Wilmington, NC)

TAIR DEWP WSPD
Direct observations 99.959% (306713) 99.944% (306669) 9786 (306749)
Estimates 0.038% (116) 0.049% (149) 0.030% (91)
Quality-controlled observations 0.003% (9) 0.001% (2) 00% (0)
Quality-controlled estimates 0.001% (2) 0.007% (20) 0%q0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCcVv PREC
Direct observations 96.954% (297494) 99.729% (306008)
Linearly-interpolated observations 0.946% (2902) 0.11638)
Nearest observations 1.992% (6112)
Linearly-interpolated nearest observations  0.062% (191)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.161% (494)
Total direct observations 99.311% (1523633)
Total other 0.689% (10567)
Station 93807 (Winston-Salem, NC)

TAIR DEWP WSPD
Direct observations 67.344% (206638) 59.868% (183698) 827346 (226530)
Estimates 32.549% (99874)  39.562% (121393) 26.173% (80310
Quality-controlled observations 0.033% (100) 0.024% (74)  0.000% (0)
Quality-controlled estimates 0.004% (12) 0.546% (1675) 000% (0)
Suspect estimates 0.070% (216) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCcV PREC
Direct observations 70.537% (216437) 68.270% (209481)
Linearly-interpolated observations 2.799% (8587) 5.5719095)
Nearest observations 25.840% (79286)
Linearly-interpolated nearest observations  0.779% (2389
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 26.158% (80264)
Total direct observations 67.969% (1042784)
Total other 32.031% (491416)
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TABLE A.2: (Continued)

Station 13877 (Bristol/Johnson City/Kingsport, TN)

TAIR DEWP WSPD
Direct observations 99.963% (306726) 99.942% (306661) 99945 (306816)
Estimates 0.037% (114) 0.050% (154) 0.008% (24)
Quality-controlled observations 0.000% (0) 0.002% (5) 00% (0)
Quality-controlled estimates 0.000% (0) 0.007% (20) 0%q0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCcVv PREC
Direct observations 96.237% (295293) 99.646% (305753)
Linearly-interpolated observations 0.828% (2540) 0.226%6)
Nearest observations 2.559% (7852)
Linearly-interpolated nearest observations  0.330% (1014
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.134% (412)
Total direct observations 99.156% (1521249)
Total other 0.844% (12951)
Station 13728 (Danville, VA)

TAIR DEWP WSPD
Direct observations 85.789% (263236) 85.447% (262185) 5@3% (262352)
Estimates 14.160% (43449)  14.483% (44439)  14.499% (44488)
Quality-controlled observations 0.014% (43) 0.010% (31) .000% (0)
Quality-controlled estimates 0.004% (11) 0.060% (185) 00% (0)
Suspect estimates 0.028% (85) 0.000% (0)
Suspect observations 0.005% (16) 0.000% (0)

CLCcV PREC
Direct observations 80.436% (246810) 75.258% (230923)
Linearly-interpolated observations 3.292% (10100) 1098731361)
Nearest observations 15.835% (48587)
Linearly-interpolated nearest observations  0.392% (1202
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 14.521% (44556)
Total direct observations 82.486% (1265506)
Total other 17.514% (268694)
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TABLE A.2: (Continued)

Station 13882 (Chattanooga, TN)

TAIR DEWP WSPD
Direct observations 99.982% (306785) 99.977% (306768) 9% (306817)
Estimates 0.018% (55) 0.021% (65) 0.007% (23)
Quality-controlled observations 0.000% (0) 0.002% (7) 00% (0)
Quality-controlled estimates 0.000% (0) 0.000% (0) 0.0q0Yo
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 96.752% (296875) 99.838% (306342)
Linearly-interpolated observations 0.8119% (2488) 0.0¢2%
Nearest observations 2.002% (6143)
Linearly-interpolated nearest observations  0.389% (1193
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.154% (471)
Total direct observations 99.308% (1523587)
Total other 0.692% (10613)
Station 13891 (Knoxville, TN)

TAIR DEWP WSPD
Direct observations 99.996% (306827) 99.987% (306799) 9946 (306832)
Estimates 0.004% (13) 0.011% (35) 0.003% (8)
Quality-controlled observations 0.000% (0) 0.000% (1) 00% (0)
Quality-controlled estimates 0.000% (0) 0.002% (5) 0.0q0Y6
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 97.038% (297751) 99.859% (306408)
Linearly-interpolated observations 1.391% (4267) 0.0@q®%)
Nearest observations 1.409% (4323)
Linearly-interpolated nearest observations  0.117% (358)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.135% (413)
Total direct observations 99.375% (1524617)

Total other 0.625% (9583)
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TABLE A.2: (Continued)

Station 93741 (Newport News, VA)

TAIR DEWP WSPD
Direct observations 98.126% (301090) 97.095% (297927) 24846 (301451)
Estimates 1.835% (5632) 2.690% (8253) 1.756% (5389)
Quality-controlled observations 0.009% (27) 0.007% (22) .000% (0)
Quality-controlled estimates 0.003% (9) 0.208% (638) 0%Qq0)
Suspect estimates 0.002% (7) 0.000% (0)
Suspect observations 0.024% (75) 0.000% (0)

CLCVv PREC
Direct observations 92.794% (284730) 84.889% (260473)
Linearly-interpolated observations 4.106% (12600) 10%339674)
Nearest observations 2.699% (8281)
Linearly-interpolated nearest observations  0.355% (1088
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 2.181% (6693)
Total direct observations 94.230% (1445671)
Total other 5.770% (88529)
Station 13737 (Norfolk, VA)

TAIR DEWP WSPD
Direct observations 99.977% (306770) 99.881% (306475) 96396 (306739)
Estimates 0.021% (65) 0.077% (236) 0.033% (101)
Quality-controlled observations 0.002% (5) 0.001% (3) 00% (0)
Quality-controlled estimates 0.000% (0) 0.041% (126) 0%0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 97.736% (299894) 99.817% (306279)
Linearly-interpolated observations 1.031% (3165) 0.0263)
Nearest observations 1.133% (3475)
Linearly-interpolated nearest observations  0.054% (165)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.162% (498)
Total direct observations 99.476% (1526157)

Total other 0.524% (8043)
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TABLE A.2: (Continued)

Station 13744 (Florence, SC)

TAIR DEWP WSPD
Direct observations 99.003% (303781) 98.879% (303399) 1396 (304173)
Estimates 0.984% (3020) 1.092% (3352) 0.869% (2667)
Quality-controlled observations 0.003% (10) 0.004% (12) .000% (0)
Quality-controlled estimates 0.003% (8) 0.025% (77) 0%q0)
Suspect estimates 0.005% (15) 0.000% (0)
Suspect observations 0.002% (6) 0.000% (0)

CLCVv PREC
Direct observations 94.365% (289550) 86.826% (266418)
Linearly-interpolated observations 3.439% (10553) 13%Z36891)
Nearest observations 1.881% (5772)
Linearly-interpolated nearest observations  0.269% (824)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 1.151% (3531)
Total direct observations 95.641% (1467321)
Total other 4.359% (66879)
Station 03870 (Greer, SC)

TAIR DEWP WSPD
Direct observations 99.969% (306745) 99.959% (306715) 96896 (306742)
Estimates 0.031% (95) 0.039% (119) 0.032% (98)
Quality-controlled observations 0.000% (0) 0.000% (1) 00% (0)
Quality-controlled estimates 0.000% (0) 0.002% (5) 0.0q0Y6
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCVv PREC
Direct observations 97.890% (300365) 99.671% (305830)
Linearly-interpolated observations 1.127% (3457) 0.178%6)
Nearest observations 0.855% (2625)
Linearly-interpolated nearest observations  0.082% (252)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.151% (464)
Total direct observations 99.491% (1526397)

Total other 0.509% (7803)
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TABLE A.2: (Continued)

Station 13883 (Columbia, SC)

TAIR DEWP WSPD
Direct observations 99.921% (306598) 99.917% (306585) 99946 (306814)
Estimates 0.079% (241) 0.082% (251) 0.008% (26)
Quality-controlled observations 0.000% (0) 0.000% (1) 00% (0)
Quality-controlled estimates 0.000% (1) 0.001% (3) 0.0q0Yo
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCcVv PREC
Direct observations 97.129% (298030) 93.139% (285789)
Linearly-interpolated observations 0.696% (2136) 6.7930860)
Nearest observations 1.907% (5851)
Linearly-interpolated nearest observations  0.222% (682)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.062% (191)
Total direct observations 98.020% (1503816)
Total other 1.980% (30384)
Station 93846 (Anderson, SC)

TAIR DEWP WSPD
Direct observations 91.605% (281082) 91.517% (280810) 6(BL6 (281074)
Estimates 8.359% (25648) 8.456% (25945) 8.397% (25766)
Quality-controlled observations 0.005% (15) 0.008% (25) .000% (0)
Quality-controlled estimates 0.001% (2) 0.020% (60) 0%0)
Suspect estimates 0.030% (93) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCcV PREC
Direct observations 86.806% (266354) 82.780% (254003)
Linearly-interpolated observations 3.508% (10764) 8%8485609)
Nearest observations 9.215% (28274)
Linearly-interpolated nearest observations  0.426% (1307
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 8.874% (27228)
Total direct observations 88.862% (1363323)
Total other 11.138% (170877)
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TABLE A.2: (Continued)

Station 13750 (Norfolk, VA)

TAIR DEWP WSPD
Direct observations 99.544% (305441) 99.458% (305176) 65886 (305793)
Estimates 0.420% (1289) 0.500% (1535) 0.341% (1047)
Quality-controlled observations 0.004% (12) 0.003% (8) 000% (0)
Quality-controlled estimates 0.000% (0) 0.039% (121) 0%Qq0)
Suspect estimates 0.002% (6) 0.000% (0)
Suspect observations 0.030% (92) 0.000% (0)

CLCcVv PREC
Direct observations 96.806% (297039) 89.100% (273393)
Linearly-interpolated observations 1.525% (4680) 10%2%82295)
Nearest observations 1.198% (3676)
Linearly-interpolated nearest observations ~ 0.425% (1304
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.375% (1152)
Total direct observations 96.913% (1486842)
Total other 3.087% (47358)
Station 93735 (Fort Eustis, VA)

TAIR DEWP WSPD
Direct observations 60.193% (184695) 60.039% (184225) 986 (184052)
Estimates 39.702% (121823) 39.853% (122285) 40.017% @227
Quality-controlled observations 0.001% (3) 0.016% (50) 000% (0)
Quality-controlled estimates 0.000% (0) 0.091% (280) 0%0)
Suspect estimates 0.101% (310) 0.000% (0)
Suspect observations 0.003% (9) 0.000% (0)

CLCcV PREC
Direct observations 58.532% (179601) 53.957% (165563)
Linearly-interpolated observations 0.630% (1932) 6.1479862)
Nearest observations 38.591% (118414)
Linearly-interpolated nearest observations  2.200% (5752
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 39.895% (122415)
Total direct observations 58.541% (898136)
Total other 41.459% (636064)
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TABLE A.2: (Continued)

Station 13769 (Virginia Beach, VA)

TAIR DEWP WSPD
Direct observations 99.451% (305156) 99.310% (304724) 56896 (305504)
Estimates 0.540% (1656) 0.619% (1900) 0.435% (1336)
Quality-controlled observations 0.006% (18) 0.005% (15) .000% (0)
Quality-controlled estimates 0.001% (2) 0.066% (201) 0%Qq0)
Suspect estimates 0.001% (2) 0.000% (0)
Suspect observations 0.002% (6) 0.000% (0)

CLCVv PREC
Direct observations 96.652% (296568) 88.946% (272923)
Linearly-interpolated observations 1.434% (4400) 109%7182457)
Nearest observations 1.453% (4458)
Linearly-interpolated nearest observations  0.415% (1273
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.476% (1460)
Total direct observations 96.785% (1484875)
Total other 3.215% (49325)
Station 13702 (Hampton, VA)

TAIR DEWP WSPD
Direct observations 98.725% (302928) 98.802% (303165) 92846 (303540)
Estimates 1.185% (3635) 1.191% (3653) 1.075% (3300)
Quality-controlled observations 0.002% (5) 0.001% (4) 00% (0)
Quality-controlled estimates 0.000% (0) 0.006% (18) 0%0)
Suspect estimates 0.010% (31) 0.000% (0)
Suspect observations 0.079% (241) 0.000% (0)

CLCVv PREC
Direct observations 96.848% (297169) 87.741% (269223)
Linearly-interpolated observations 0.822% (2522) 1192484502)
Nearest observations 1.896% (5817)
Linearly-interpolated nearest observations  0.388% (1191
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 1.015% (3115)
Total direct observations 96.208% (1476025)

Total other 3.792% (58175)
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TABLE A.2: (Continued)

Station 93737 (Fort Bragg, NC)

TAIR DEWP WSPD
Direct observations 93.731% (287604) 93.718% (287565) 261346 (286162)
Estimates 6.242% (19153) 6.278% (19262) 6.739% (20678)
Quality-controlled observations 0.003% (9) 0.004% (12) 000% (0)
Quality-controlled estimates 0.000% (0) 0.000% (1) 0.0q0Yo
Suspect estimates 0.024% (74) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCcVv PREC
Direct observations 91.803% (281688) 82.418% (252890)
Linearly-interpolated observations 0.941% (2887) 119%4@95008)
Nearest observations 6.836% (20977)
Linearly-interpolated nearest observations  0.374% (1147
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 6.173% (18942)
Total direct observations 90.986% (1395909)
Total other 9.014% (138291)
Station 13713 (Goldsboro, NC)

TAIR DEWP WSPD
Direct observations 95.233% (292214) 95.299% (292416) 028 (291569)
Estimates 4.448% (13648) 4.228% (12972) 4.973% (15258)
Quality-controlled observations 0.002% (5) 0.001% (3) 00% (0)
Quality-controlled estimates 0.159% (487) 0.472% (1449) .000% (13)
Suspect estimates 0.056% (172) 0.000% (0)
Suspect observations 0.102% (314) 0.000% (0)

CLCcV PREC
Direct observations 93.165% (285869) 84.071% (257964)
Linearly-interpolated observations 1.005% (3083) 1192634555)
Nearest observations 5.382% (16515)
Linearly-interpolated nearest observations  0.402% (1232
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 4.667% (14321)
Total direct observations 92.558% (1420032)
Total other 7.442% (114168)
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TABLE A.2: (Continued)

Station 13754 (Havelock, NC)

TAIR DEWP WSPD
Direct observations 99.560% (305490) 99.393% (304977) 619896 (305667)
Estimates 0.395% (1211) 0.484% (1484) 0.382% (1173)
Quality-controlled observations 0.018% (55) 0.002% (7) 000% (0)
Quality-controlled estimates 0.017% (52) 0.121% (372) 00% (0)
Suspect estimates 0.001% (4) 0.000% (0)
Suspect observations 0.009% (28) 0.000% (0)

CLCcVv PREC
Direct observations 96.843% (297154) 88.341% (271067)
Linearly-interpolated observations 1.660% (5094) 1192@q84377)
Nearest observations 1.181% (3624)
Linearly-interpolated nearest observations ~ 0.270% (827)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.455% (1396)
Total direct observations 96.751% (1484355)
Total other 3.249% (49845)
Station 93753 (Jacksonville, NC)

TAIR DEWP WSPD
Direct observations 57.048% (175045) 56.809% (174314) 30®Ps (188120)
Estimates 42.655% (130882) 42.946% (131774) 38.691% @@87
Quality-controlled observations 0.048% (147) 0.152% §467  0.000% (0)
Quality-controlled estimates 0.002% (7) 0.093% (285) 0%0)
Suspect estimates 0.188% (577) 0.000% (0)
Suspect observations 0.059% (182) 0.000% (0)

CLCcV PREC
Direct observations 50.009% (153447) 54.567% (167434)
Linearly-interpolated observations 4.587% (14075) 5%5%%8273)
Nearest observations 44.412% (136274)
Linearly-interpolated nearest observations  0.946% (2903
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 39.478% (121133)
Total direct observations 55.948% (858360)
Total other 44.052% (675840)
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TABLE A.2: (Continued)

Station 93726 (Kinston, NC)

TAIR DEWP WSPD
Direct observations 73.098% (224293) 72.765% (223273) 20886 (233828)
Estimates 26.319% (80757)  26.193% (80370)  23.782% (72974)
Quality-controlled observations 0.010% (30) 0.019% (59) .000% (0)
Quality-controlled estimates 0.270% (828) 1.023% (3138) .01R% (38)
Suspect estimates 0.257% (788) 0.000% (0)
Suspect observations 0.047% (144) 0.000% (0)

CLCVv PREC
Direct observations 71.197% (218462) 67.844% (208172)
Linearly-interpolated observations 4.016% (12324) 8%8235537)
Nearest observations 24.145% (74085)
Linearly-interpolated nearest observations  0.596% (1828
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 23.834% (73131)
Total direct observations 72.222% (1108028)
Total other 27.778% (426172)
Station 13714 (Pope Field, NC)

TAIR DEWP WSPD
Direct observations 98.777% (303088) 98.765% (303052) 8386 (303271)
Estimates 1.203% (3691) 1.228% (3767) 1.163% (3569)
Quality-controlled observations 0.001% (4) 0.001% (3) 00% (0)
Quality-controlled estimates 0.001% (3) 0.006% (18) 0%0)
Suspect estimates 0.006% (18) 0.000% (0)
Suspect observations 0.012% (36) 0.000% (0)

CLCVv PREC
Direct observations 96.536% (296211) 87.282% (267817)
Linearly-interpolated observations 1.082% (3321) 119%5%85456)
Nearest observations 2.055% (6306)
Linearly-interpolated nearest observations  0.281% (861)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 1.162% (3567)
Total direct observations 96.040% (1473439)

Total other 3.960% (60761)
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TABLE A.2: (Continued)

Station 13717 (Myrtle Beach, SC)

TAIR DEWP WSPD
Direct observations 76.346% (234261) 76.076% (233433) 93196 (245259)
Estimates 22.695% (69638)  23.107% (70903)  20.058% (61547)
Quality-controlled observations 0.088% (269) 0.210% 644  0.000% (0)
Quality-controlled estimates 0.278% (853) 0.606% (1860) .010% (34)
Suspect estimates 0.538% (1652) 0.000% (0)
Suspect observations 0.054% (167) 0.000% (0)

CLCVv PREC
Direct observations 67.753% (207892) 66.526% (204128)
Linearly-interpolated observations 6.267% (19231) 13%B&41060)
Nearest observations 24.469% (75081)
Linearly-interpolated nearest observations ~ 1.465% (#495
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 20.093% (61652)
Total direct observations 73.326% (1124973)
Total other 26.674% (409227)
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TABLE A.3: Comparison of Pavement ME Design pavement distresstsest the spec-
ified reliability (%) for baseline simulations (Baseling)dasimulations using the new
long-term climate data files (New) for a selection of corerptojects. Performance
criteria include terminal IRI (inches mité), JPCP transverse cracking (percentage of
slabs), and mean joint faulting (inches).

Project/location: X-2BB Cumberland Co. Pavement type: Concrete
Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years

Predicted Stress Pass/Fall
Performance Criterion  Reliability Target Baseline New 9ff DiBaseline New
Terminal IR 90 172.00 142.98 133.78 —6.44 Pass Pass
Mean joint faulting 90 0.12 0.10 0.09-10.83 Pass Pass

JPCP transverse cracking 90 15.00 11.57 6.7641.60 Pass Pass

Project/location: I-3802A Cabarrus Co. Pavement type: Concrete
Primary data source: Charlotte, NC (13881)
Design life: 30.0 years

Predicted Stress Pass/Fall
Performance Criterion  Reliability Target Baseline New 9ff DiBaseline New
Terminal IR 90 185.00 158.49 159.77 .80 Pass Pass
Mean joint faulting 20 0.15 0.11 0.12 Bl Pass Pass
JPCP transverse cracking 90 10.00 6.95 4.2538.84 Pass Pass
Project/location: R-2554BB Wayne Co. Pavement type: Concrete

Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years
Predicted Stress Pass/Fail

Performance Criterion  Reliability Target Baseline New 9ff DiBaseline New

Terminal IRI 90 172.00 142.60 133.17 —6.62 Pass Pass
Mean joint faulting 20 0.12 0.10 0.09-1223 Pass Pass
JPCP transverse cracking 90 15.00 10.59 6.3839.80 Pass Pass

Project/location: 1-5110 Guilford Co. Pavement type: Concrete
Primary data source: Greensboro, NC (13723)
Design life: 30.0 years

Predicted Stress Pass/Fall

Performance Criterion  Reliability Target Baseline New 9ff DiBaseline New

Terminal IRI 90 185.00 151.25 153.00 .16 Pass Pass
Mean joint faulting 20 0.15 0.10 0.10 -0.25 Pass Pass
JPCP transverse cracking 90 10.00 5.84 5.41-7.34 Pass Pass
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TABLE A.3: (Continued)

Project/location: 1-440, Wake Co. Pavement type: Concrete
Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fall
Performance Criterion Reliability Target Baseline New 9% DiBaseline New
Terminal IR 90 172.00 14450 143.32 -0.82 Pass Pass
Mean joint faulting 20 0.12 0.09 0.09 -256 Pass Pass
JPCP transverse cracking 90 15.00 5.11 5.15 .800 Pass Pass
Project/location: R-3421C, Richmond Co. Pavement type: Concrete

Primary data source: Maxton, NC (93782)
Secondary data sources for baseline simulation: Monroe, N(53872); Fayetteville, NC (93740)
Design life: 34.0 years

Predicted Stress Pass/Fall
Performance Criterion Reliability —Target Baseline New 9% DiBaseline New
Terminal IRI 920 172.00 99.37 95.39 —4.01 Pass Pass
Mean joint faulting 920 0.12 0.02 0.02 —-4.59 Pass Pass
JPCP transverse cracking 90 10.00 8.69 6.8021.75 Pass Pass
Project/location: R-2303D, Sampson Co. Pavement type: Concrete

Primary data source: Fayetteville, NC (93740)
Secondary data sources for baseline simulation: LumbertoyrNC (13776); Wilmington, NC (13748)
Design life: 30.0 years

Predicted Stress Pass/Fall
Performance Criterion Reliability —Target Baseline New 9% DiBaseline New
Terminal IRI 20 172.00 146.00 143.22 —-1.91 Pass Pass
Mean joint faulting 920 0.12 0.10 0.10 —4.23 Pass Pass
JPCP transverse cracking 90 15.00 12.03 10.5911.93 Pass Pass
Project/location: R-3100A Catawba Co. Pavement type: Concrete
Primary data source: Hickory, NC (03810)
Design life: 30.0 years

Predicted Stress Pass/Fall
Performance Criterion Reliability —Target Baseline New 9% DiBaseline New
Terminal IRI 20 172.00 140.85 131.95 —6.32 Pass Pass
Mean joint faulting 920 0.15 0.08 0.07 -15.85 Pass Pass
JPCP transverse cracking 90 10.00 8.49 6.4224.33 Pass Pass
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TABLE A.4: Comparison of Pavement ME Design pavement distresstsest the spec-
ified reliability (%) for baseline simulations (Baseline)dasimulations using the new
long-term climate data files (New) for a selection of ABC pug. Performance criteria
include terminal IRI (inches milet), permanent deformation (inches) for both the to-
tal pavement structure and only the AC contribution, and A@dm-up and top-down
fatigue cracking (feet milel). AC thermal cracking is not included here due to its incor-
rect representation within Pavement ME Design. Values nemtheses in the pass/fail
column indicate the percentage of the design life at thetpahren the distress at the
specified reliability reaches the indicated target vallergpntages not available for AC
rutting).

Project/location: R-2303D, Sampson Co. Pavement type: ABC
Primary data source: Fayetteville, NC (93740)

Secondary data sources for baseline simulation: LumbertonNC (13776); Wilmington, NC (13748)
Design life: 20.0 years

Predicted Stress Pass/Fail

Performance CriterionReliability Target Baseline New 9% Di Baseline New
Terminal IR 90 172.00 139.81  140.93 .79 Pass Pass
Perm. deform. — total 90 0.75 0.39 041 78 Pass Pass
Perm. deform. — AC 90 0.25 0.18 0.18 .43 Pass Pass
AC bottom-up fatigue 90 25.00 6.88 12.14 36 Pass Pass
AC top-down fatigue 90 2000.00 832.61 891.43 .07 Pass Pass
Project/location: R-3421C, Richmond Co. Pavement type: ABC

Primary data source: Maxton, NC (93782)
Secondary data sources for baseline simulation: Monroe, N(53872); Fayetteville, NC (93740)
Design life: 34.0 years

Predicted Stress Pass/Fail
Performance CriterionReliability Target Baseline New 9% Di Baseline New
Terminal IRI 920 172.00 187.21 190.14 56 Fail(88.2%) Fail(86.3%)
Perm. deform. — total 90 0.75 0.40 045 .94 Pass Pass
Perm. deform. — AC 90 0.25 0.27 0.30 .06 Fail Fail
AC bottom-up fatigue 90 25.00 2.39 296 .08 Pass Pass
AC top-down fatigue 90 2000.00 286.39 299.32 54 Pass Pass
Project/location: R-4047 Haywood Co. Pavement type: ABC
Primary data source: Asheville, NC (03812)
Design life: 20.0 years

Predicted Stress Pass/Fail
Performance CriterionReliability Target Baseline New 9% Di Baseline New
Terminal IRI 90 172.00 137.73 137.89 .14 Pass Pass
Perm. deform. — total 90 0.75 0.25 0.23 -5.26 Pass Pass
Perm. deform. — AC 90 0.25 0.11 0.09-16.61 Pass Pass
AC bottom-up fatigue 90 25.00 2.04 221 28 Pass Pass
AC top-down fatigue 90 2000.00 1296.22 1232.28—-4.93 Pass Pass
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TABLE A.4: (Continued)

Project/location: R-2501C, Richmond Co.
Primary data source: Maxton, NC (93782)
Design life: 30.0 years

Pavement type: ABC

Predicted Stress Pass/Fall
Performance Criterion  Reliability Target Baseline New 9% DiBaseline New
Terminal IRI 90 172.00 164.16 167.44 .0D Pass Pass
Perm. deform. — total 90 0.50 0.47 0.45 —3.67 Pass Pass
Perm. deform. — AC 90 0.40 0.26 0.23 —9.15 Pass Pass
AC bottom-up fatigue 90 15.00 3.38 2286 5IF Pass Fail (56.4%)
AC top-down fatigue 920 2000.00 1941.83 3287.02 .269 Pass Fail (26.7%)
Project/location: R-3432, Brunswick Co. Pavement type: ABC
Primary data source: Wilmington, NC (13748)
Design life: 20.0 years

Predicted Stress Pass/Fall
Performance Criterion  Reliability Target Baseline New 9% DiBaseline New
Terminal IRI 20 172.00 127.06  128.29 Qg Pass Pass
Perm. deform. — total 90 0.75 0.21 0.22 .13 Pass Pass
Perm. deform. — AC 90 0.25 0.08 0.07 —4.14 Pass Pass
AC bottom-up fatigue 90 25.00 1.72 1.84 .22 Pass Pass
AC top-down fatigue 90 2000.00 1017.74 1232.18 .0Z1 Pass Pass

Project/location: U-2707, Forsyth Co.
Primary data source: Winston-Salem, NC (93807)
Design life: 30.0 years

Pavement type: ABC

Predicted Stress Pass/Fall
Performance Criterion  Reliability Target Baseline New 9% DiBaseline New
Terminal IRI 20 172.00 171.49 169.80 —0.98 Pass Pass
Perm. deform. — total 90 0.75 0.29 0.27 —5.23 Pass Pass
Perm. deform. — AC 90 0.25 0.11 0.10-10.02 Pass Pass
AC bottom-up fatigue 90 25.00 2.60 2.36 —9.31 Pass Pass
AC top-down fatigue 920 2000.00 1658.06 1685.91 .68 Pass Pass
Project/location: X-2BB Cumberland Co. Pavement type: ABC
Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years

Predicted Stress Pass/Fall
Performance Criterion  Reliability Target Baseline New 9% DiBaseline New
Terminal IRI 90 172.00 169.92 170.93 .60 Pass Pass
Perm. deform. — total 90 0.75 0.43 045 24 Pass Pass
Perm. deform. — AC 90 0.25 0.30 0.31 .82 Fail Fail
AC bottom-up fatigue 90 25.00 3.05 575 BB Pass Pass
AC top-down fatigue 920 2000.00 540.77 797.33 .4  Pass Pass
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TABLE A.4: (Continued)

Project/location: R-2519B, Yancey Co.
Primary data source: Asheville, NC (03812)
Design life: 30.0 years

Pavement type: ABC

Predicted Stress Pass/Fail
Performance Criterion  Reliability Target Baseline New 9% Di Baseline New
Terminal IRI 920 172.00 181.21 180.71 —0.28 Fail(91.9%) Fail (92.5%)
Perm. deform. — total 90 0.75 0.43 0.42 —4.06 Pass Pass
Perm. deform. — AC 90 0.25 0.14 0.12-1275 Pass Pass
AC bottom-up fatigue 90 25.00 18.10 14.48-19.98 Pass Pass
AC top-down fatigue 920 2000.00 1060.10 576.40-45.63 Pass Pass
Project/location: R-3100A Catawba Co. Pavement type: ABC
Primary data source: Hickory, NC (03810)
Design life: 20.0 years

Predicted Stress Pass/Fail
Performance Criterion  Reliability Target Baseline New o Di Baseline New
Terminal IR 90 172.00 14471  139.30 —-3.74 Pass Pass
Perm. deform. — total 90 0.75 0.34 0.30-10.92 Pass Pass
Perm. deform. — AC 90 0.25 0.17 0.15-15.10 Pass Pass
AC bottom-up fatigue 90 25.00 16.72 13.53-19.08 Pass Pass
AC top-down fatigue 90 2000.00 1258.28 1794.99 .6&2 Pass Pass
Project/location: 1-4733 Catawba Co. Pavement type: ABC
Primary data source: Charlotte, NC (13881)
Design life: 30.0 years

Predicted Stress Pass/Fail
Performance Criterion  Reliability Target Baseline New 9% Di Baseline New
Terminal IRI 90 172.00 182,96 183.34 .20 Fail(90.8%) Fail (90.6%)
Perm. deform. — total 90 0.50 0.40 0.39 -1.38 Pass Pass
Perm. deform. — AC 90 0.25 0.23 0.22 —2.34 Pass Pass
AC bottom-up fatigue 90 10.00 22.12 22.03 —0.38 Fail (56.9%) Fail (57.5%)
AC top-down fatigue 90 1000.00 2247.42 2221.28-1.16 Fail(18.3%) Fail (20.8%)

Project/location: 1-3802A Cabarrus Co.
Primary data source: Charlotte, NC (13881)
Design life: 30.0 years

Pavement type: ABC

Predicted Stress Pass/Fail
Performance Criterion  Reliability Target Baseline New 9% Di Baseline New
Terminal IRI 920 185.00 181.21 18745 43 Pass Fail (98.3%)
Perm. deform. — total 90 0.75 0.40 055 .59 Pass Pass
Perm. deform. — AC 90 0.25 0.24 0.39 .82 Pass Fail
AC bottom-up fatigue 90 10.00 18.54 18.24 —1.60 Fail (80.0%) Fail (82.5%)
AC top-down fatigue 920 1000.00 287.09 294.45 5@ Pass Pass
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TABLE A.4: (Continued)

Project/location: R-2582A, Northampton Co. Pavement type: ABC
Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fall
Performance Criterion  Reliability Target Baseline New 94Di Baseline New
Terminal IRI 90 172.00 175.83 175.59-0.14 Fail(96.7%) Fail (96.9%)
Perm. deform. — total 90 0.75 0.38 0.37-1.85 Pass Pass
Perm. deform. — AC 90 0.25 0.15 0.14-3.94 Pass Pass
AC bottom-up fatigue 90 10.00 2.58 2.52-2.22 Pass Pass
AC top-down fatigue 920 500.00 310.79 306.70-1.32 Pass Pass
Project/location: R-2554BB Wayne Co. Pavement type: ABC
Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years

Predicted Stress Pass/Fall
Performance Criterion  Reliability Target Baseline New 94Di Baseline New
Terminal IRI 20 172.00 167.17 166.40-0.46 Pass Pass
Perm. deform. — total 90 0.75 0.38 0.36—4.57 Pass Pass
Perm. deform. — AC 90 0.25 0.25 0.24—-6.64 Fail Pass
AC bottom-up fatigue 90 25.00 2.03 1.99-2.15 Pass Pass
AC top-down fatigue 90 2000.00 368.07 349.84-4.95 Pass Pass
Project/location: U-3338B, New Hanover Co. Pavement type: ABC
Primary data source: Wilmington, NC (13748)
Design life: 30.0 years

Predicted Stress Pass/Fall
Performance Criterion  Reliability Target Baseline New 9 Di Baseline New
Terminal IRI 20 172.00 162.30 164.13 .1B Pass Pass
Perm. deform. — total 90 0.75 0.25 0.27 .93 Pass Pass
Perm. deform. — AC 90 0.25 0.14 0.14 .4aQ Pass Pass
AC bottom-up fatigue 90 25.00 1.66 1.76 .28 Pass Pass
AC top-down fatigue 920 2000.00 511.72 550.00 .4¥ Pass Pass
Project/location: 1-440, Wake Co. Pavement type: ABC

Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fail
Performance Criterion  Reliability Target Baseline New 94Di Baseline New
Terminal IRI 90 185.00 181.25 181.50 .1@ Pass Pass
Perm. deform. — total 90 0.50 0.40 0.40-0.01 Pass Pass
Perm. deform. — AC 90 0.25 0.24 0.23-1.59 Pass Pass
AC bottom-up fatigue 90 10.00 3.85 455 .38 Pass Pass
AC top-down fatigue 920 1000.00 281.36 277.56-1.35 Pass Pass
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TABLE A.4: (Continued)

Project/location: 1-5110 Guilford Co. Pavement type: ABC
Primary data source: Greensboro, NC (13723)
Design life: 30.0 years

Predicted Stress Pass/Fall
Performance Criterion  Reliability Target Baseline New 94 Di Baseline New
Terminal IRI 90 185.00 186.47 188.19 .92 Fail(98.9%) Fail(97.5%)
Perm. deform. — total 90 0.75 0.49 051 .24 Pass Pass
Perm. deform. — AC 90 0.50 0.32 0.33 .88 Pass Pass
AC bottom-up fatigue 90 10.00 2153 21.75 .02 Fail(67.5%) Fail(67.8%)
AC top-down fatigue 920 1000.00 335.71 329.33-1.90 Pass Pass

TABLE A.5: Comparison of Pavement ME Design pavement distresstsest the spec-
ified reliability (%) for baseline simulations (Baseling)dasimulations using the new
long-term climate data files (New) for a CTABC project. Penfiance criteria include
terminal IRI (inches milel), permanent deformation (inches) for both the total pave-
ment structure and only the AC contribution, AC bottom-ugd &op-down fatigue crack-
ing (feet mile 1), and fatigue fracture in the chemically stabilized lay).(AC thermal
cracking is not included here due to its incorrect repreg@nt within Pavement ME
Design.

Project/location: 1-440, Wake Co. Pavement type: CTABC

Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fail
Performance CriterionReliability Target Baseline New 9ff DiBaseline New
Terminal IRI 90 185.00 182.14 182.12 —-0.01 Pass Pass
Perm. deform. — total 90 0.50 0.45 0.44 —1.27 Pass Pass
Perm. deform. — AC 90 0.25 0.33 0.32 —3.89 Fail Fail
AC bottom-up fatigue 90 10.00 1.52 1.51 —-0.40 Pass Pass
AC top-down fatigue 90 1000.00 387.07 301.23-22.18 Pass Pass
Chem. stab. — fatigue - 25.00 0.96 1.10 B8 Pass Pass
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TABLE A.6: Comparison of Pavement ME Design pavement distresstsest the spec-
ified reliability (%) for baseline simulations (Baseline)dasimulations using the new
long-term climate data files (New) for a selection of FDA paig. Performance criteria
include terminal IRI (inches milet), permanent deformation (inches) for both the to-
tal pavement structure and only the AC contribution, and A@dm-up and top-down
fatigue cracking (feet milel). AC thermal cracking is not included here due to its incor-
rect representation within Pavement ME Design. Values nemtheses in the pass/fail
column indicate the percentage of the design life at thetpafren the distress at the
specified reliability reaches the indicated target vallergpntages not available for AC
rutting).

Project/location: I-3802A Cabarrus Co. Pavement type: FDA
Primary data source: Charlotte, NC (13881)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance CriterionReliability Target Baseline New 9% Di Baseline New
Terminal IRI 90 185.00 182.85 180.42 —1.33 Pass Pass
Perm. deform. — total 90 0.75 0.46 0.40-12.35 Pass Pass
Perm. deform. — AC 90 0.50 0.30 0.26-14.57 Pass Pass
AC bottom-up fatigue 90 10.00 13.27 3.89-70.71 Fail (93.1%) Pass

AC top-down fatigue 90 1000.00 257.63 257.41-0.09 Pass Pass
Project/location: R-3421C, Richmond Co. Pavement type: FDA

Primary data source: Maxton, NC (93782)
Secondary data sources for baseline simulation: Monroe, N(53872); Fayetteville, NC (93740)
Design life: 34.0 years

Predicted Stress Pass/Fail
Performance CriterionReliability Target Baseline New 9% Di Baseline New
Terminal IRI 90 172.00 175.43 178.75 .8D Fail(97.1%) Fail (94.4%)
Perm. deform. — total 90 0.75 0.39 0.44 32 Pass Pass
Perm. deform. — AC 90 0.25 0.24 0.27 .49 Pass Fail
AC bottom-up fatigue 90 25.00 4.29 10.95 146 Pass Pass
AC top-down fatigue 90 2000.00 398.85 464.69 .86 Pass Pass
Project/location: R-3432, Brunswick Co. Pavement type: FDA
Primary data source: Wilmington, NC (13748)
Design life: 20.0 years

Predicted Stress Pass/Fail
Performance CriterionReliability Target Baseline New 9% Di Baseline New
Terminal IRI 90 172.00 126.15 127.23 .86 Pass Pass
Perm. deform. — total 90 0.75 0.19 0.20 .38 Pass Pass
Perm. deform. — AC 90 0.25 0.06 0.06 —5.22 Pass Pass
AC bottom-up fatigue 90 25.00 1.67 1.74 .20 Pass Pass
AC top-down fatigue 90 2000.00 1070.44 1159.25 .38 Pass Pass
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TABLE A.6: (Continued)

Project/location: R-4047 Haywood Co. Pavement type: FDA
Primary data source: Asheville, NC (03812)
Design life: 20.0 years

Predicted Stress Pass/Fall

Performance Criterion  Reliability Target Baseline New O9fDiBaseline New

Terminal IRI 90 172.00 137.76 137.88 .09 Pass Pass
Perm. deform. — total 90 0.75 0.24 0.23 -4.79 Pass Pass
Perm. deform. — AC 90 0.25 0.08 0.07-16.74 Pass Pass
AC bottom-up fatigue 920 25.00 1.72 1.76 .22 Pass Pass
AC top-down fatigue 90 2000.00 347.24 333.70-3.90 Pass Pass
Project/location: U-3338B, New Hanover Co. Pavement type: FDA

Primary data source: Wilmington, NC (13748)
Design life: 30.0 years
Predicted Stress Pass/Fall

Performance Criterion  Reliability Target Baseline New O9fDiBaseline New

Terminal IRI 90 172.00 161.52 163.34 .1B Pass Pass
Perm. deform. — total 90 0.75 0.23 0.25 .15 Pass Pass
Perm. deform. — AC 90 0.25 0.12 0.12 .50 Pass Pass
AC bottom-up fatigue 90 25.00 1.71 1.84 61 Pass Pass
AC top-down fatigue 90 2000.00 562.46 591.76 2B Pass Pass
Project/location: R-3100A Catawba Co. Pavement type: FDA

Primary data source: Hickory, NC (03810)
Design life: 20.0 years

Predicted Stress Pass/Fall

Performance Criterion  Reliability Target Baseline New 9% DiBaseline New

Terminal IRI 90 172.00 139.68 134.68 —3.58 Pass Pass
Perm. deform. — total 90 0.75 0.26 0.23-12.29 Pass Pass
Perm. deform. — AC 90 0.25 0.13 0.11-15.01 Pass Pass
AC bottom-up fatigue 90 25.00 1.83 1.75 —4.70 Pass Pass
AC top-down fatigue 90 2000.00 306.04 309.69 .19 Pass Pass
Project/location: X-2BB Cumberland Co. Pavement type: FDA

Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years

Predicted Stress Pass/Fail
Performance Criterion  Reliability Target Baseline New 9fDiBaseline New
Terminal IRI 90 172.00 168.48 163.83 —2.76 Pass Pass
Perm. deform. — total 90 0.75 0.41 0.30-26.11 Pass Pass
Perm. deform. — AC 90 0.25 0.19 0.18 —2.11 Pass Pass
AC bottom-up fatigue 90 25.00 1.76 1.80 .72 Pass Pass
AC top-down fatigue 90 2000.00 266.44 26791 5% Pass Pass
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TABLE A.6: (Continued)

Project/location: 1-440, Wake Co. Pavement type: FDA
Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion  Reliability Target Baseline New 9% Di Baseline New
Terminal IRI 90 185.00 179.86 179.08 —0.43 Pass Pass
Perm. deform. — total 90 0.50 0.36 0.34 —6.90 Pass Pass
Perm. deform. — AC 90 0.25 0.20 0.18-14.11 Pass Pass
AC bottom-up fatigue 90 10.00 3.51 3.76 .11 Pass Pass
AC top-down fatigue 920 1000.00 269.23 265.43-1.41 Pass Pass
Project/location: R-2303D, Sampson Co. Pavement type: FDA

Primary data source: Fayetteville, NC (93740)
Secondary data sources for baseline simulation: LumbertonNC (13776); Wilmington, NC (13748)
Design life: 20.0 years

Predicted Stress Pass/Fail
Performance Criterion  Reliability Target Baseline New 9% Di Baseline New
Terminal IRI 20 172.00 135.33 135.90 A2 Pass Pass
Perm. deform. — total 90 0.75 0.30 0.32 .02 Pass Pass
Perm. deform. — AC 90 0.25 0.12 0.13 .33 Pass Pass
AC bottom-up fatigue 90 25.00 1.92 203 .78 Pass Pass
AC top-down fatigue 90 2000.00 283.36 287.56 .48 Pass Pass
Project/location: R-2519B, Yancey Co. Pavement type: FDA
Primary data source: Asheville, NC (03812)
Design life: 30.0 years

Predicted Stress Pass/Fail
Performance Criterion  Reliability Target Baseline New 9% Di Baseline New
Terminal IRI 90 172.00 175.11 175.38 .16 Fail (97.5%) Fail (97.2%)
Perm. deform. — total 90 0.75 0.33 0.32 —1.99 Pass Pass
Perm. deform. — AC 90 0.25 0.09 0.08-1294 Pass Pass
AC bottom-up fatigue 90 25.00 2.00 1.91 —4.29 Pass Pass
AC top-down fatigue 920 2000.00 27792 270.77-2.57 Pass Pass
Project/location: R-2582A, Northampton Co. Pavement type: FDA

Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fail
Performance Criterion  Reliability Target Baseline New 9% Di Baseline New
Terminal IRI 90 172.00 173.63 173.38 —0.14 Fail (98.6%) Fail (98.9%)
Perm. deform. — total 90 0.75 0.33 0.32 —-2.13 Pass Pass
Perm. deform. — AC 90 0.25 0.10 0.10 —3.72 Pass Pass
AC bottom-up fatigue 90 10.00 2.35 2.31 -1.68 Pass Pass
AC top-down fatigue 90 500.00 273.82 273.46-0.13 Pass Pass
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TABLE A.6: (Continued)

Project/location: U-2707, Forsyth Co. Pavement type: FDA
Primary data source: Winston-Salem, NC (93807)
Design life: 30.0 years

Predicted Stress Pass/Fall

Performance Criterion  Reliability Target Baseline New O9fDiBaseline New

Terminal IRI 90 172.00 166.82 165.41 —0.85 Pass Pass
Perm. deform. — total 90 0.75 0.19 0.18 -5.44 Pass Pass
Perm. deform. — AC 90 0.25 0.08 0.07-10.10 Pass Pass
AC bottom-up fatigue 920 25.00 1.49 1.48 —0.51 Pass Pass
AC top-down fatigue 90 2000.00 260.03 259.75-0.11 Pass Pass
Project/location: 1-5110 Guilford Co. Pavement type: FDA

Primary data source: Greensboro, NC (13723)
Design life: 30.0 years
Predicted Stress Pass/Fall

Performance Criterion  Reliability Target Baseline New O9fDiBaseline New

Terminal IRI 90 185.00 177.68 179.04 .70 Pass Pass
Perm. deform. — total 90 0.75 0.32 0.33 .0@ Pass Pass
Perm. deform. — AC 90 0.50 0.16 0.17 52 Pass Pass
AC bottom-up fatigue 90 10.00 2.60 2.67 .83 Pass Pass
AC top-down fatigue 90 1000.00 257.44 257.73 1D Pass Pass
Project/location: R-3601 Brunswick Co. Pavement type: FDA

Primary data source: Wilmington, NC (13748)
Design life: 20.0 years

Predicted Stress Pass/Fall

Performance Criterion  Reliability Target Baseline New 9% DiBaseline New

Terminal IRI 90 172.00 130.41 130.69 20 Pass Pass
Perm. deform. — total 90 0.75 0.29 0.28 —5.08 Pass Pass
Perm. deform. — AC 90 0.25 0.16 0.13-19.97 Pass Pass
AC bottom-up fatigue 90 25.00 1.83 1.89 .13 Pass Pass
AC top-down fatigue 90 2000.00 290.10 277.20-4.45 Pass Pass
Project/location: R-2501C, Richmond Co. Pavement type: FDA

Primary data source: Maxton, NC (93782)
Design life: 30.0 years

Predicted Stress Pass/Fail
Performance Criterion  Reliability Target Baseline New 9fDiBaseline New
Terminal IRI 90 172.00 158.87 159.46 .30 Pass Pass
Perm. deform. — total 90 0.50 0.35 0.33 —4.68 Pass Pass
Perm. deform. — AC 90 0.40 0.19 0.17 —9.14 Pass Pass
AC bottom-up fatigue 90 15.00 2.53 247 —2.42 Pass Pass
AC top-down fatigue 90 2000.00 588.55 543.30-7.69 Pass Pass
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TABLE A.6: (Continued)

Project/location: R-2554BB Wayne Co.
Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years

Pavement type: FDA

Predicted Stress Pass/Fall
Performance Criterion  Reliability Target Baseline New 94 Di Baseline New
Terminal IRI 90 172.00 174.34 174.33-0.00 Fail(98.1%) Fail (98.1%)
Perm. deform. — total 90 0.75 0.49 0.49 .00 Pass Pass
Perm. deform. — AC 90 0.25 0.26 0.24-4.92 Fail Pass
AC bottom-up fatigue 90 25.00 20.44  20.49 .20 Pass Pass
AC top-down fatigue 90 2000.00 518.62 511.72-1.33 Pass Pass
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