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ABSTRACT

In an effort to improve pavement design for North Carolina roads, NCDOT has adopted

the AASHTOWare Pavement ME Design software. A critical component of the software

is the Enhanced Integrated Climatic Model (EICM), which accounts for environmental ef-

fects. The EICM requires hourly historical climate recordsfor the entire expected lifespan

of the road, yet NCDOT presently has access only to small 5-year samples of climatologi-

cal data from select locations. These short records must be repeated to fill in data for long

analysis periods. Studies have shown that repeating small samples of climatic data may

adversely affect pavement performance predictions. This report describes the development

of long-term, high-quality, historical climate data (HCD)files for use by the EICM at mul-

tiple locations across North Carolina. Ordinary kriging and other spatial and short-term

temporal interpolation techniques address the significantgaps in data coverage present in

the observational record so that the new HCD files consist of continuous hourly data that

span a period of 35 years. Sensitivity tests assess the impact of the improved HCD files

on pavement performance predictions and reveal statistically significant differences in con-

crete pavement performance measures between Pavement ME Design simulations with and

without the new HCD files. The new climate data more subtly influence pavement perfor-

mance predictions for flexible pavement designs. Nevertheless, the poor quality of the

original climate data samples warrants a recommendation that NCDOT use the improved

climate files in the development of future pavement designs to boost confidence in pave-

ment performance predictions.
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1. Introduction

In an effort to improve pavement design for North Carolina roads, NCDOT has adopted

the AASHTOWare Pavement ME Design software (also known as DARWin-ME), which

incorporates the guidelines set forth in the NCHRP (2004) Mechanistic-Empirical Pave-

ment Design Guide (MEPDG). Kim and Muthadi (2007) describe the implementation of

the MEPDG in North Carolina. The software predicts stressesfor both flexible and rigid

pavements over the expected lifespan of the roadway by accounting for design properties,

traffic volume and volume growth rates, expected vehicle distributions, and environmental

influences. The MEPDG software accounts for environmental effects through the incor-

poration of the Enhanced Integrated Climatic Model (EICM),a one-dimensional coupled

heat and moisture flux parameterization that simulates temperature and moisture gradients

within the pavement structure and returns this informationto the materials characterization,

structural response, and performance prediction modules of the MEPDG software (Larson

and Dempsey 1997; NCHRP 2004; Zapata and Houston 2008).

To predict temperature and moisture profiles for all depths,the EICM requires hourly

data derived from historical observations in order to characterize the environmental condi-

tions appropriately. Required variables include air temperature, precipitation accumulation,

wind speed, percentage of possible sunshine, and relative humidity observations through-

out the expected lifetime of the pavement. Additional data required by the model include

latitude, longitude, elevation, and seasonal groundwatertable depths (for use as a lower

boundary condition) for each station. NCHRP (2004) and Johanneck et al. (2010) detail

the use of each of these variables within the components of the EICM.

1



The EICM input variables vary in their degree of importance to the model. Air tem-

perature is the most important element because it directly influences the temperature of the

pavement through the surface energy balance. The air temperature also determines frozen

and thawing periods and the number of freeze-thaw cycles (NCHRP 2004). Additionally,

the percentage of sunshine is critically important becauseit impacts the thermal gradients

generated within the pavement through calculations of the surface energy balance at all

times throughout a calendar day. The percentage of sunshineis defined by the model de-

velopers as the inverse of cloudiness, where 100% corresponds with clear skies and 0%

corresponds with overcast sky conditions. Together, the air temperature and the percentage

of sunshine are the two most important input parameters. Wind speed is less influential,

but this parameter impacts the convective heating or cooling at the surface of the pavement.

The model uses precipitation both on a monthly basis and in the calculation of the number

of wet days. Therefore, daily precipitation totals supply sufficient information to the model.

The model uses mean monthly relative humidity to estimate moisture warping of PCC slabs

and to model moisture gradients through JPCP and CRCP slabs.However, hourly relative

humidities impact drying shrinkage of JPCP and CRCP slabs and influence crack spacing

(NCHRP 2004). Lastly, groundwater table depth plays a significant role in the moisture

content of the pavement and foundation materials. Kim and Muthadi (2007) report that

while groundwater table depths do not influence rigid pavement distresses, these values

significantly impact flexible pavement distresses. The EICMwill accept either seasonal

average groundwater table depths or an annual average depth(NCHRP 2004).

The construction of high-quality, long-term hourly climate records remains challeng-

ing. The required climate data files provided for use with theMEPDG software therefore

generally represent only small samples of climatological data from select locations, though

the period of record for each station varies considerably. Among the historical climate data

(HCD) files provided for use with the MEPDG software, the shortest continuous period of

record (POR) among the available climate data locations is 1year and 8 months at Gillam,

2



Manitoba, Canada (station 15903), while the longest POR is an impressive 55 years and 10

months at Pueblo, Colorado (station 93058). The median POR among all 1083 locations is

only 9 years and 2 months. In North Carolina, the shortest PORis 5 years and 5 months

and the longest is 9 years and 8 months, with a median POR amongall 20 available stations

of 7 years and 8 months. If the expected design life of the pavement exceeds the length of

the climate record, the MEPDG software repeats these short records back-to-back to fill in

data for long periods of pavement design prediction (Johanneck et al. 2010). This approach

either misses or oversamples extreme events with long return periods and fails to capture an

accurate representation of the interannual variability present in realistic climatic conditions

at one location over several decades. Such short sample periods, for example, may miss a

year where drought conditions prevail or a year with prolificrainfall or unusually warm or

cold seasons that are well within the normal range of variability. Alternatively, the repeti-

tion of extreme events within a small sample period will undermine the representativeness

of the resulting meteorological time series.

A discussion of climate normals—averaging periods widely used to characterize the

most likely conditions experienced at a given location—mayhelp to put these short records

in context. Climatologists traditionally calculate normals over a 30-year period (e.g., Ar-

guez et al. 2012), but this recommendation derives from the fact that 30 years corresponds

with the length of records available at a large number of stations when climatologists first

devised the concept of climate normals in the early twentieth century (WMO 2007, 2011).

Nevertheless, this remains widely accepted as a suitable averaging period (WMO 2007).

When intended for use as a predictor for future weather, studies have shown that a shorter

period of 10–15 years is a suitable analysis period for assessing the likely long-term ex-

tremes in temperature. However, a short record of even this length could provide unrepre-

sentative results within individual months (WMO 2007). Additionally, the WMO (2007)

recommends a minimum of 30 years of data to determine the statistical distribution of pre-

cipitation at a given location. Though the WMO (2007) recommendations derive from daily
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data, capturing representative extremes from hourly data would naturally require a similar

POR. Repeated short historical data records within the MEPDG software, therefore, will

likely fail to capture representative climate conditions at a given location. Notably, hourly

climate normals derived from 30-year averages do exist for six stations in North Carolina

(Applequist et al. 2012) and the temptation may exist to substitute hourly normals within

gaps in the observational record. While useful for characterizing the most likely diurnal

cycle at a given location, these hourly normals by their nature do not include extremes.

The hourly climate data files ingested by the EICM must include observed extreme values

because it is these extremes that often result in pavement failure.

Studies have shown that missing or incomplete climatic datacan cause unreliable

MEPDG predictions (e.g, Johanneck et al. 2010; Heitzman et al. 2011). Heitzman et al.

(2011) studied the sensitivity of the climate input files in the MEPDG and found that re-

peating limited climatic data to predict pavement stress over 20 to 40 years may result in

significantly higher predicted pavement stress. They concluded that the effort required to

produce climate input files for the EICM will produce a measurable, long-term benefit.

Breakah et al. (2011) found that differences in historical data files developed from data

from the Iowa Environmental Mesonet and those provided for use in the MEPDG software

resulted in significant differences in pavement performance predictions, as did Saha et al.

(2014), who studied the impact of variations in data qualityand record length for stations

in Canada. Johanneck et al. (2010) provide some evidence that suggests that problems ex-

ist with the historical data files supplied by the MEPDG and recommend rigorous quality

control to correct these problems. They also suggest lengthening the POR for each station

to capture interannual variability more reliably. Similarly, Johanneck and Khazanovich

(2010) recommend removing incomplete and questionable data files to avoid adverse ef-

fects on pavement performance prediction.

For small periods of missing data (e.g., less than 12 hours for temperature data or

perhaps a few days for cloud cover), the Pavement ME Design developers have linearly
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interpolated missing observations as necessary across multiple hours or days to create a

complete time series in the HCD files. For example, the developers fill in short tempera-

ture gaps by interpolating between the closest daily maximum and minimum temperatures.

However, this method fails to capture catastrophic cracking events such as those that would

occur under stresses induced by large thermal gradients within the pavement. While this

method would still capture extreme loading events such as hot spring days where the sub-

surface remains frozen, it would not address fast temperature changes, such as a strong

cold front that drops the temperature by several tens of degrees Fahrenheit. Indeed, studies

have shown that the inclusion of incomplete data may decrease the quality of pavement

performance predictions (e.g., Johanneck et al. 2010). Some HCD files still contain large

gaps of a month or more. The EICM can fill in data gaps or even create a virtual weather

station by interpolating data from up to six nearby existingstations (Johanneck et al. 2010).

This method utilizes a simple weighting algorithm that averages the influence of the nearby

stations according to the inverse of the square of the distance to each station. Spatial inter-

polations for temperature involve an additional correction for elevation differences using

the standard tropospheric lapse rate (i.e., a change of±6.5°C per kilometer of ascent or

descent).

North Carolina is not the first state to attempt to produce long-term HCD files for use

with the MEPDG software. Heitzman et al. (2011) extended thePOR for HCD files in

Mississippi to 40 years for locations along a dense spatial grid. They accomplished this

via a natural neighbor interpolation method using available hourly and daily observations.

However, the spatially-coarse nature of the hourly observations forced the authors to down-

scale the daily high and low temperature observations to reconstruct an hourly time series

for temperature. Additionally, Heitzman et al. (2011) linearly interpolated between valid

values in the temporal domain to fill in short-term gaps caused by a lack of spatiotem-

poral coverage across the state. The authors also accountedfor future climate variations

by using a regional climate model to adjust the historical data for use in future pavement
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performance predictions. Other states (e.g., Tennessee) are currently exploring options for

extending and improving the Pavement ME Design HCD files.

Given the requirements of the EICM and the failure of short-term climate records to

capture an accurate representation of the interannual variability present in realistic cli-

matic conditions, it remains critical for NCDOT to obtain long-term, continuous, quality-

controlled, hourly data for multiple locations across North Carolina. The following sections

summarize the steps taken to achieve this goal to produce long-term climate input data

files for the MEPDG software spanning 35 years for each location. This effort requires

the development of a robust gap-filling procedure to fill in missing hourly observations,

sometimes over long time periods, in order to generate high-quality, continuous historical

climate records. A sensitivity analysis in section 6 assesses the impact of the improved cli-

mate data files on pavement performance predictions for several North Carolina pavement

design projects.
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2. Data Sources

The meteorological data used in the construction of long-term continuous hourly data

files derive from the Integrated Surface Data database, North American Regional Reanal-

ysis, and the Global Historical Climatology Network (GHCN)-Daily climate summaries.

The geographical region from which these data are drawn includes all of North Carolina

and parts of South Carolina, Georgia, Tennessee, and Virginia bounded by 33.0–37.5°N

latitude and 67.0–85.5°W longitude. All data span the period 1 January 1979 through 31

December 2013.

2.1 Integrated Surface Data

The primary source for producing a long-term meteorological time series at any lo-

cation is of course the hourly observations themselves. TheIntegrated Surface Data (ISD)

database (digital data set DSI-3505; also called Integrated Surface Hourly) from the NOAA/

National Climatic Data Center1 (NCDC) contains hourly surface data for over 20,000 loca-

tions across the world (Del Greco et al. 2006; Smith et al. 2011). This dataset represents a

merged repository of both manual and automated surface datafrom a multitude of original

data sources, including data from the Automated Surface Observing System (ASOS), the

Automated Weather Observing System (AWOS), surface synoptic observations, aviation

routine weather report (METAR) observations, and various others (Smith et al. 2011). Of

1The National Climatic Data Center recently merged with NOAA’s National Geophysical Data Center
and the National Oceanographic Data Center, which includesthe National Coastal Data Development Cen-
ter, to become the National Centers for Environmental Information (NCEI). For the purpose of the present
discussion, the name will remain the National Climatic DataCenter (NCDC).
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the nearly 1000 data columns in each ISD data record (most of which represent missing

data), only a handful provide important information for thepresent work. These include

observations of hourly 2-m air temperature, liquid precipitation, and 10-m wind speed that,

after adjustments for units and observation times, feed directly into new HCD files. The

hourly 2-m dewpoint temperature, when combined with the airtemperature observations,

allows computation of the relative humidity. Hourly observations of the fraction of the total

celestial dome covered by clouds or other phenomena allow calculation of the percentage

of sunshine for use by the EICM. Details on these calculations appear in section 3.

Traditionally, hourly observations occur 6–7 minutes before the top of the hour, partic-

ularly for automated reports, but regular observations andspecial reports may take place

at any time, depending on the station. Since the ISD data contain original observations, it

becomes necessary to standardize these observation times to a particular hour in order to

compare the data both spatially and temporally in a meaningful way. Therefore, a script

rounds any observation that occurs at or later than 48 minutes after the hour forward to the

nearest hour and any observation that occurs at or earlier than 12 minutes after the hour

backward to the nearest hour. The same script ignores any non-standard observation that

occurs between 13 and 47 minutes after the hour. If multiple reports occur in the same hour

for the same station (e.g., a METAR report and a synoptic report), the script always gives

preference to the latest METAR report for that hour.

An observing station may have either a United States Air Force (USAF) or Weather

Bureau Army Navy (WBAN) number assigned to it, or both. Unfortunately, these numbers

can change over decades, causing discontinuities in the period of record for a given station

and making it difficult to create a long time series based solely on the station identifica-

tion number. For this reason, a script determines which USAF/WBAN combinations are

assigned to the same geographic location and combines the data to create a single period

of record. The script looks for shared station numbers, a shared station name and state, or

similar geographic coordinates. The maximum possible cutoff distance for pairing similar
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FIG. 2.1: Integrated Surface Data (ISD) database sites in NorthCarolina and adjacent
states providing hourly historical data between 1979 and 2013. Colors indicate the num-
ber of days with at least one observation for each site duringthis period. Sites far from
North Carolina have been removed.

sites is just over 1.43 km (±0.01 degrees latitude and/or longitude). Figure 2.1 shows the

location of all 243 unique ISD stations in the study domain (107 are in North Carolina),

along with a representation of the length of the period of record between 1979 and 2013 at

each site.

2.1.1 Data quality

NCDC applies quality control procedures to the ISD data (Lott 2004; Smith et al. 2011).

Unfortunately, problems remain in the database. The station metadata file provided with

the ISD data contains some questionable locations and station elevations. For example,

the list may indicate a reasonable name and state paired withgeographic coordinates in a

different state or two station names and geographic coordinates may match, but the station

elevations differ slightly. For minor discrepancies, the best guess for the station location

simply replaces the original station metadata here. For major discrepancies, the station is

thrown out altogether. Additionally, data for some stations may include only sporadic ob-

servations that contradict the data from a more reliable colocated site. Again, such stations
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were removed from the database. In some cases, the best approach for collecting a com-

plete set of observations at a given hour requires combiningvalid but irregular data from

one type of observation (e.g., a synoptic report) with a partial report (e.g., a METAR report

with missing data) to create a full data record.

The ISD data contain data quality flags that indicate whetheror not the observation

passed quality control checks or if the observation is suspect or erroneous. Despite these

quality control procedures, there exist some observationsthat have passed NCDC’s quality

control, yet obviously remain incorrect. For example, there are instances where a temper-

ature or dewpoint sensor produces wild data and then recovers after several hours; where

the sensor may slowly die before NCDC’s quality control algorithm flags the data as sus-

pect, erroneous, or missing; where the value suddenly dropsto zero before recovering; or

where the value suddenly exceeds a state extreme for maximumor minimum temperature

or precipitation. Examples include an observation of 141.8°F (61.0°C) at Boone, NC on 20

September 2009 and an observation of (coincidentally)−77.8°F (−61.0°C) at Fayetteville,

NC on 6 March 2004. Overall, these issues account for a very small fraction of the tens of

millions of observations analyzed here, but it would be unacceptable for these problems to

filter into the final HCD files for use with the MEPDG software.

2.1.2 Initial quality assurance

To address some of these quality concerns, an initial pass through the data compares

each temperature and precipitation value with the monthly extreme value obtained from all

cooperative observing sites in each station’s respective state. If an otherwise valid temper-

ature observation exceeds these bounds by a very generous 18°F (10°C), a script removes

it, along with all observations in the previous 12 hours and the following 48 hours. The

script also removes extreme short-term spikes in the temperature and dewpoint data. More

rigorous quality control procedures (see section 4) later handle additional spikes and other

values that exceed the state extreme maximum or minimum temperature, but remain within
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the±18°F (±10°C) threshold. Further, a script marks as missing all original temperature,

dewpoint, wind speed, precipitation, and cloud cover values flagged as suspect or erroneous

via NCDC quality-control algorithms.

The ISD data often contain short-term gaps that occur for a variety of reasons. A script

addresses these missing data by performing a simple linear interpolation temporally be-

tween valid values across short gaps of 1–2 hours to replace up to two consecutive missing

observations, akin to the procedure implemented by Heitzman et al. (2011) for filling short-

term gaps in their analysis. This short-term gap-filling procedure produces entirely appro-

priate estimates for all variables and saves computation time compared with more complex

spatial or temporal interpolation procedures. Indeed, anyspatial interpolation method is

unlikely to produce a more useful estimate on such a short time scale.

2.2 GHCN-Daily

Daily records of maximum and minimum temperatures across the study region serve

as a check against poor-quality hourly observations or gap-filled temperature values. Total

daily precipitation records also assist in the construction of hourly precipitation estimates.

The Global Historical Climatology Network (GHCN)-Daily dataset (Menne et al. 2012a)

provides daily observations at over 80,000 stations in 180 countries and territories. A to-

tal of 2905 unique stations in North Carolina, South Carolina, Tennessee, Georgia, and

Virginia (Fig. 2.2) provide valid data during the 1979–2013period, with ample spatial cov-

erage across the region (many of the more than 4000 stations are colocated). Since NCDC

continually updates the dataset with new data and modifications from quality assurance

algorithms, various versions of the dataset may contain a differing number of stations and

different values, depending on the download date from NCDC (see Menne et al. 2012b).

GHCN-Daily data sources for the study region during the period under consideration

include daily summaries from the NOAA/National Weather Service (NWS) Cooperative
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FIG. 2.2: Global Historical Climatology Network-Daily (GHCN-Daily) sites in North
Carolina and adjacent states that provide daily observations of temperature and precipi-
tation. A total of 2905 unique stations in the region shown here covering North Carolina
and parts of South Carolina, Tennessee, Georgia, and Virginia provide valid data during
the 1979–2013 period.

Observer Program (COOP), first-order stations, ASOS stations, surface METAR observa-

tions at major airports, the U.S. Climate Reference Network(USCRN), and the Community

Collaborative Rain, Hail, and Snow (CoCoRaHS) volunteer observer program. The obser-

vation time of the GHCN-Daily temperature and precipitation measurements is an impor-

tant consideration when reconstructing hourly precipitation values or for determining the

maximum or minimum temperature on a given day, but observation times vary depending

on the data source. A script removes some of the GHCN-Daily sites from consideration

primarily because many COOP reports do not include the observation time, which varies

by station. The script also assigns observation times to other stations that do not report

them based on the data source. For example, most summary of the day products cover

the period midnight to midnight local standard time (LST; NCDC 2005a,b), as do USCRN

daily precipitation totals (NWS 2009). CoCoRaHS precipitation observations do not con-

tain observation times, but the script assigns a time of 0700local time since observers are
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encouraged to take their measurements at this time (Menne etal. 2012a). The script also

adjusts observation times to account for daylight saving time when appropriate.

NCDC regularly performs automated quality assurance routines on the GHCN-Daily

dataset with occasional manual evaluation of the data (Menne et al. 2012a). For the daily

temperatures, however, the maximum temperature in the GHCN-Daily data is sometimes

lower than the minimum temperature. While this could conceivably result from an observer

who records a morning minimum temperature as having occurred on the current day and

the morning maximum temperature as having occurred on the previous day, contrary to

standard practice (Menne et al. 2012a), it is somewhat obvious through inspection of the

data that the temperature values are reversed in the majority of the 1912 instances where

this occurred in the entire study region for the whole periodof record. For this reason, a

script simply switches them back to more appropriate valuesfor use in the present work.

Similarly, there are instances where the maximum temperature on a given day is less than

the minimum temperature on the previous day and vice versa. Afinal quality assurance

check handles these cases (see section 4). Additionally, 2966 values exceed the observed

state extremes for a given month by a small buffer of±1.08°F (±0.60°C), though the

measurements often exceed this buffer by a wide margin in a majority of these instances. In

cases such as these, a script marks as missing both the maximum and minimum temperature

measurement for that day.

A handful of precipitation observations in the GHCN-Daily data appear questionable

as well. In some instances, the record indicates a trace of precipitation, but the actual

precipitation amount is non-zero. More importantly, the data also contain suspicious short-

term extreme rainfall events that exceed the state extreme daily precipitation total for a

given month, yet NCDC has not flagged these as having failed their quality assurance

procedures. To avoid incorporating these values into new HCD files, a script marks as

missing such clearly incorrect values in the present work.
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FIG. 2.3: North American Regional Reanalysis (NARR) grid points over North Carolina
and adjacent states. Surface data are available continuously from 1979 through 2013 in
3-hour increments.

2.3 North American Regional Reanalysis

The National Centers for Environmental Prediction (NCEP) North American Regional

Reanalysis (NARR) is a long-term, dynamically consistent,high-resolution climate dataset

with 32-km spatial resolution and surface variables available every three hours since 0000

UTC 1 January 1979 (Mesinger et al. 2006). Based on a previously operational version

of the NCEP Eta Model (Black 1988) used by weather forecasters across the country, the

NARR provides a best guess at the four-dimensional state of the atmosphere. The NARR

produces a good representation of extreme events such as floods and droughts, successfully

captures broad precipitation patterns, and produces reasonable 2-m temperatures and 10-m

wind vectors when compared with observations (Mesinger et al. 2006). Figure 2.3 shows

the location of all NARR grid points bounded by the study domain boundaries between

33.0–37.5°N latitude and 67.0–85.5°W longitude.
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FIG. 2.4: NARR 2-m air temperature at 1500 UTC 30 January 2008 during the passage
of a strong cold front. Black contours every 3°F highlight the influence of both terrain
and the cold front on surface air temperatures.

The data fields extracted from the NARR output include 2-m airtemperature, 2-m dew-

point temperature, 3-hr accumulated liquid precipitation, total cloud cover, 10-m wind vec-

tors, and the air temperature and geopotential height at thefirst hybrid model level (typi-

cally several tens of meters above the surface) and the 850-mb level. Figure 2.4 illustrates

the NARR 2-m temperature field over North Carolina during thepassage of a strong cold

front. The model successfully captures the strong gradients and the spatial variability of

the air temperature. This figure also implies that a simple distance-weighted average be-

tween three adjacent, but widely-spaced, observing stations at different elevations or on

either side of the front would have the potential to produce poor estimates of the tempera-

ture at a fourth location. The fine resolution of the NARR output fields therefore produces

superior estimates for highly-variable meteorological fields compared with simple spatial

interpolations using measurements solely from widely-spaced observing locations.
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Estimates of variables derived from the NARR data require disaggregation to hourly

values from the original 3-hourly output. Three options forthe temporal interpolation

procedure include a local harmonic analysis, cubic spline interpolation, and a simple lin-

ear interpolation. Letting a local harmonic analysis create a perfect harmonic fit to seven

consecutive NARR data points, the interpolated values for the two hours immediately pre-

ceding the middle NARR data point then fall on the resulting harmonic curve. Though

the local harmonic fit perfectly reproduces the 3-hourly data points, the disaggregated val-

ues often contain spurious deviations from these fixed values in order to achieve the fit.

A cubic spline interpolation mitigates the spurious deviations, as does a simple linear in-

terpolation. The linear temporal interpolation method simply fits a straight line between

adjacent NARR data points to create an estimate of hourly data between those points and

follows the approach of Chen et al. (2007), who use a linear interpolation of the three-

hourly analyses from the NCEP Eta Data Assimilation System (EDAS) regional coupled

forecast model (Rogers et al. 1995) to produce hourly valuesfor the National Center for

Atmospheric Research (NCAR) high-resolution land data assimilation system (HRLDAS),

and Fan et al. (2006), who linearly interpolate 6-hourly NCEP–NCAR Global Reanalysis

(Kalnay et al. 1996; Kistler et al. 2001) data to hourly values.

Hourly observations from the Asheville Regional Airport (station 03812) provide a

way to test these three potential interpolation schemes by comparing actual measurements

with interpolated values between every third hour from 0000UTC 1 January 1985 to 0000

UTC 1 January 1986. Remarkably, there were no missing observations for the entire year,

leaving 5842 estimate–observation pairs. Table 2.1 lists scalar accuracy measures for the

interpolated temperature, dewpoint, and wind speed (cloudcover and precipitation are han-

dled differently; see section 3) compared with the observedvalues at each hour,excluding

the exact matches at each three-hour interval. For physicalreasons, the interpolation pro-

cedure prevents the dewpoint from exceeding the temperature. Though the cubic spline

interpolation performs best for temperature estimates, the linear interpolation produces the
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TABLE 2.1: Scalar accuracy measures for temporally-interpolated temperature, dewpoint,
and wind speed measurements using every third hour of observations at the Asheville
Regional Airport from 0000 UTC 1 January 1985 to 0000 UTC 1 January 1986. Inter-
polation methods include local harmonic analysis (Harmonics), cubic spline interpola-
tion (Spline), and a simple linear interpolation (Linear).Bold values indicate the best-
performing method.

Mean error (bias)
Harmonics Spline Linear

Air temperature (K) 0.0098 0.0115 0.0116
Dewpoint (K) −0.0278 −0.0143 −0.0062
Wind speed (m s−1) −0.0469 −0.0470 −0.0469

Mean absolute error
Harmonics Spline Linear

Air temperature (K) 0.6540 0.5454 0.5953
Dewpoint (K) 0.6224 0.5267 0.5106
Wind speed (m s−1) 1.1030 1.0284 0.9682

Root-mean squared error
Harmonics Spline Linear

Air temperature (K) 0.8892 0.7773 0.8445
Dewpoint (K) 0.8805 0.7718 0.7617
Wind speed (m s−1) 1.4321 1.3424 1.2705

best overall set of accuracy measures for all three variables. These results and the work

of others, therefore, support the use of a linear temporal interpolation to disaggregate the

three-hourly NARR data to hourly values.

Since the NARR provides precipitation accumulation as a three-hourly total, disaggre-

gation to hourly accumulations requires a different procedure. Any three-hour total less

than 0.015 mm is left as is for that hour and the previous 2 hours remain zero. Otherwise,

the three-hour total is spread evenly over the preceding three hours.

2.4 Groundwater

Recall that the EICM accepts hourly groundwater table depths, but the model uses only

quarterly groundwater table data in the simulation. Ideally, groundwater table depths would

be found through profile characterization borings prior to design (NCHRP 2004), but his-

torical groundwater levels would provide a satisfactory substitution. The North Carolina
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FIG. 2.5: Location of groundwater wells providing irregular field measurements (red;
3542 stations) and daily observations (blue; 92 stations) of groundwater depth in North
Carolina between 1979 and 2013. Many sites are colocated.

Water Science Center, a division of the U.S. Geological Survey, provides these historical

groundwater levels. Daily data are available from 92 sites across North Carolina for long

periods of record, over half of which exceed a decade. Irregular field measurements are

available for 3542 sites in North Carolina. Three-month seasonal averages derived from

these data for each year could provide sufficient input to theEICM. Despite this wealth of

observations, the extreme clustering of the groundwater wells leaves a rather sparse spatial

coverage in the historical data (Fig. 2.5). Actual groundwater levels at any single location

respond to a variety of factors that depend on the specific features of that location (e.g.,

wells, rock or sediment types, topography, and discharge features such as springs, streams

or rivers). Spatial interpolation beyond a particular measurement site would require hun-

dreds of measurements and groundwater flow modeling (J. Wilcox, personal communica-

tion). Given the significant spatial dependence of groundwater depths and the inability to

interpolate groundwater depths spatially, the author recommends using the default values

in Pavement ME Design simulations in the absence of more complete groundwater data.
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3. Gap Filling

The construction of a continuous time series of hourly meteorological data for sev-

eral decades is a challenging prospect. No observing location boasts an unbroken set of

hourly observations for this length of time. As such, a robust gap-filling technique must

achieve reliable estimates of meteorological values for both short and long temporal gaps

in the observed data. Given daily maximum and minimum temperatures, Schaub (1991)

proposes a hyperbolic tangent curve-fitting procedure to disaggregate daily data to hourly

temperatures. In other circumstances this could prove useful, but the availability of NARR

data precludes the need to guess at the evolution of the diurnal cycle. Variables other than

temperature have no well-defined short-term temporal cyclethat would lend itself to dis-

aggregation from daily data. Spatial interpolation of existing meteorological data to fill in

temporal gaps at a given location using simple inverse-distance weighting algorithms, as

presently implemented in the EICM to build virtual stations, can introduce large errors in

regions of varying topography, as in the mountains of Western North Carolina, and along

coasts where large discontinuities in meteorological surface variables may exist. Other

simplistic point estimation methods such as polygonal estimates or triangulation use only

a few sample points and thus ignore nearby information. Moresuitable options could in-

clude a natural neighbor interpolation (Liang and Hale 2010) as in Heitzman et al. (2011),

trend surface analysis and spline models (e.g., Jarvis and Stuart 2001), or more complex

empirical orthogonal function (EOF) analyses (e.g., Beckers and Rixen 2003), maximum

likelihood estimates for incomplete data (e.g., Schneider2001), and artificial neural net-

works (e.g., Kashani and Dinpashoh 2012). Many other spatial interpolation methods exist
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(see Li and Heap 2008). However, a promising and popular geostatistical interpolation

technique is ordinary kriging, a statistical interpolation method that predicts a value at a

given location based on weighted linear combinations of thesurrounding measurements.

Many authors in the geosciences have relied on kriging as a spatial interpolation technique

(e.g., Ashley et al. 2003; Goovaerts 2000; Holdaway 1996; Hunter and Meentemeyer 2005;

Li et al. 2005; Ray et al. 2003; Schuurmans et al. 2007), whileothers have shown that krig-

ing generally outperforms other spatial interpolation methods (e.g., Dodd et al. 2015; Jarvis

and Stuart 2001; Stahl et al. 2006).

As with other interpolation methods, ordinary kriging is both linear and unbiased, in

that the mean error is zero, but unlike other methods, ordinary kriging additionally at-

tempts to minimize the variance of the errors (Isaaks and Srivastava 1989). One of the

unique properties of kriging is that it assigns less weight,or even a negative weight, to cer-

tain sample values if another sample falls between it and theestimated point. This property

allows kriging to yield estimates larger than the largest sample value or smaller than the

smallest sample value (Isaaks and Srivastava 1989), a property especially suited to meteo-

rological data since widely-spaced sample locations likely cannot capture the entire range

of variability in the real atmosphere. As implemented here,ordinary kriging estimates fill

temporal gaps only in temperature, dewpoint temperature, and wind speed records. For

reasons discussed fully in sections 3.5 and 3.6, estimates for both precipitation and cloud

cover derive from alternative approaches.

3.1 Ordinary kriging

The first step in point estimation via kriging involves building a sample variogram,

which describes how the spatial continuity of a data field changes with distance (Isaaks and

Srivastava 1989). The classical variogram estimator (Matheron 1963) is defined as half the

average squared difference between all possible paired data values within specified ranges
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of distances separating each pair. That is, the variogram function is half the variance (i.e.,

the semivariance) between pairs of data points separated byspecific distance ranges. A

variogram (or semivariogram) displays a plot of the variogram functionγ(h) against the

range of distancesh, or lag, used to determine each value in the function. The variogram

begins at relatively low values for smallh, often leaving a discontinuity at the origin called

the nugget effect, and increases before leveling off at a nearly-constant maximum value,

called the sill, for large distances. The lag at which the variogram reaches the sill, called

the range, represents the distance at which the spatial autocorrelation between data pairs

becomes negligible. The kriging system employed here implements a robust variogram

estimator (Cressie 1985), given by

γr(h) =

(
1

Nh

Nh

∑
i=1

|xi+h−xi |
1
2

)4

2
(

0.457+ 0.494
Nh

) , (3.1)

wherex denotes a data value,Nh is the number of data pairs at lagh, and the data value at

locationi +h is separated in space by a distance of approximatelyh from the data value at

location i. Robust variogram estimator values at all lags differ slightly from the classical

variogram estimator, but the former estimator remains robust to contamination by outliers.

Assuming a spherical Earth with a constant radius would introduce large errors in dis-

tance calculations over the large domain of the study region. To avoid such errors, the

World Geodetic System 1984 (WGS 84) Ellipsoid (NIMA 2000) provides the geographic

datum upon which to calculate distances between meteorological stations given the geo-

graphic coordinates of each location. The most accurate inverse geodetic formulae pre-

sented in Sodano (1965) yield the distances between data points. As implemented here, the

lag separation distance for the sample variogram spans 35 kmand coincides approximately

with the grid spacing for the NARR data.

There must exist one unique solution to the ordinary krigingequations that provide a
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FIG. 3.1: Variogram (dots) for lapse-rate corrected 2-m air temperature (see section 3.2)
across the study region based on NARR model output at 1900 UTC28 April 2011. An
automated scheme produces the weighted least squares fit (red) with c0 ≈ 0.0°F2, c1 =
17.16°F2, anda = 857.46 km. The weighted least squares fit gives more weight to the
values near the origin that are actually used in the kriging estimate.

point estimate within a field of meteorological values. Thiscan only happen when the

kriging matrices satisfy a mathematical condition termed positive definiteness (Isaaks and

Srivastava 1989). Though the sample variogram provides a summary of the spatial conti-

nuity within a field of data points, the kriging system requires knowledge of the variance

over a continuous function. This necessitates the use of a continuous variogram model and,

because of the positive definiteness requirement, limits that model to only a few possible

functions that obey certain constraints (Marchant and Lark2004).

Of the limited choices for positive definite variogram models, the Gaussian model is

best suited for continuous fields such as meteorological data. Tests show that the vari-

ograms for the meteorological data in North Carolina display a very clear parabolic behav-

ior near the origin and display an inflection point before arriving at the sill (e.g., Fig. 3.1).
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The Gaussian model is the only variogram model that displaysthese characteristics. The

theoretical variogram associated with the Gaussian model is given by

γ̃(h) = c0+c1

(
1−exp

[
−3h2

a2

])
, (3.2)

whereγ̃(h) = 0 if h= 0,c0 is the nugget effect,c1 is the scale,c0+c1 is the sill, anda is the

practical range, arbitrarily defined as the distance at which the variogram reaches 95% of

the value at the sill (Isaaks and Srivastava 1989). So the kriging system requires knowledge

of the nugget effect, sill, and range for the variogram modelthat best fits the experimental

variogram. When determining a kriging estimate for up to a handful of data fields, hand

selection of these three parameters is a viable option. However, for the hundreds of thou-

sands of variogram models required to estimate values over decades of hourly data gaps,

hand selection seems a bit impractical.

A few objective techniques can accomplish a best fit by minimizing error measures

between the experimental variogram values and the theoretical variogram model. The min-

imization scheme selected here is the method of weighted least squares (Cressie 1985). In

contrast to the simpler least squares method, a weighted least squares fit gives more weight

to the values near the origin so that they contribute more strongly to the final estimate of a

sample point via kriging. This produces a reliable fit and themethod performs well com-

pared with more computationally-demanding procedures (Zimmerman and Zimmerman

1991). The weighted least squares method seeks to minimize the function

k

∑
j=1

Nh( j)

[
γr(h j)

γ̃(h j)
−1

]2

(3.3)

with respect toc0, c1, anda (Brunell 1992; Cressie 1985). The Nelder-Mead simplex

algorithm (Nelder and Mead 1965; Wright 1996) accomplishesthe minimization given de-

fault values for the initial nugget effect, scale, and rangeas suggested by Jian et al. (1996).

Though the Nelder-Mead simplex algorithm is relatively fast, it may fail to converge. If this

23



happens, the procedure attempts to use a modified Powell’s method (Powell 1964; Press et

al. 2007) to find the three parameters that minimize the function in equation 3.3. Here, a

script forcesc0 ≥ 0, c1 > 0, and 0< a≤ hmax within the minimization scheme, wherehmax

is half the distance to the farthest data point.

With the theoretical variogram parameters in hand, the kriging system proceeds in a

relatively straightforward fashion. The covariance function is given by

C̃(d) =





co+c1, if d = 0

c1exp
(
−3h2

a2

)
, if d > 0

, (3.4)

whered is then×n matrix of distances between all possible paired data pointswithin a

small search window andn is the number of data pairs. The(n+ 1)× (n+ 1) matrix C

is then the values of̃C(d), where the diagonal values equalc0, padded with ones on the

bottom and right sides and a zero in the bottom right corner such that

C =




C̃11 · · · C̃1n 1
...

...
...

...

C̃n1 · · · C̃nn 1

1 · · · 1 0




. (3.5)

The (n+ 1)×1 matrixD is the set of covariance functions for the distances betweenthe

desired location of the kriging estimate and all other data points, padded by a one at the

end of the column, such that

D =




C̃10

...

C̃n0

1




. (3.6)

The set of weights that minimizes the error variance under the constraint that the weights
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sum to unity in order to satisfy the unbiasedness condition becomes the(n+1)×1 matrix

w =




w̃1

...

w̃n

µ




, (3.7)

whereµ is a Lagrange multiplier required to find a solution for the system of equations.

Solving for the weights,

w = C−1 ·D. (3.8)

By multiplying this set of weights by the matrix of values at the corresponding data points

x, the kriging system arrives at an estimate of the data value at the desired location:

x0 =
n

∑
i=1

wixi . (3.9)

Preliminary tests show that the ordinary kriging estimatesconsistently perform poorly

(i.e., they produce improbable meteorological values) in some parts of North Carolina, par-

ticularly in the Piedmont in the vicinity of several closely-spaced observing locations, but

produce very reasonable estimates in other parts of the state, such as Asheville, far away

from other ISD stations. The problem likely involves the introduction of strong gradients

within the NARR gridded field with the inclusion of the actualobservations. If a tempera-

ture observation differs from the nearest NARR grid point value by a few degrees Celsius,

for example, then the strong local gradient will artificially inflate the variance near the ori-

gin of the variogram and lead to inappropriate kriging parameters, which would introduce

the potential for large deviations from the mean of the entire field in the final point estimate.

However, the ordinary kriging algorithm works exceptionally well for isolated stations such

as Asheville when compared with actual observations.

To address this problem, all kriging estimates that fill in missing temperature, dew-
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point, and wind speed observations neglect ISD observations and instead rely solely on the

gridded NARR data field. This decision greatly improves the temporal continuity of the

independent hourly kriging estimates. The choice to abandon actual observations in favor

of a model data field does not abandon truly independent data because the data assimilation

scheme utilized by the NARR incorporates all available surface wind and moisture obser-

vations over land. The wind and dewpoint fields should therefore match observations fairly

well. On the other hand, the NARR data assimilation scheme does not incorporate 2-m

temperature observations due to the detrimental effect on the modeled vertical structure of

the atmosphere (Mesinger et al. 2006). For this reason, the NARR output fields will not

exactly match the observed 2-m surface temperatures, yet those fields remain temporally

and spatially consistent both horizontally and vertically. The overspecification of the sur-

face variables through the inclusion of ISD observations would therefore result in sharp

gradients that would lead to erroneous kriging estimates.

The ordinary kriging algorithm remains completely automated because hand-checking

individual kriging parameters and estimates would prove impossible. Despite the overall

success of the ordinary kriging estimates compared with observations, some of the inde-

pendent hourly estimates can produce outliers. During post-processing, a quality-assurance

algorithm removes such outliers and replaces them with revised estimates (see section 4).

Of course, actual quality-controlled observations alwaysappear in the final HCD files at

the target locations when available.

3.2 Temperature and dewpoint temperature

Elevation strongly influences temperature, making it imperative to account for eleva-

tion differences in any spatial interpolation approach to fill gaps in missing temperature

data. Preliminary tests indicate that ignoring environmental lapse rates in kriging esti-

mates produces unsatisfactory results, particularly at stations in Western North Carolina
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within relatively complex topography. Both Li et al. (2005)and Stahl et al. (2006) com-

bine ordinary kriging with adjustments to the temperature based on the local lapse rate in

mountainous terrain and find dramatic improvements in the performance of the combined

approach when estimating temperatures.

Recall that the EICM uses the standard tropospheric lapse rate when constructing virtual

stations, yet the actual change of temperature with height can vary considerably depending

on ambient atmospheric conditions. The present approach therefore accounts for the local

lapse rate of temperature defined at each NARR grid point in order to bring the entire

gridded temperature field to a common elevation at mean sea level. The ordinary kriging

procedure estimates the temperature at a given location at this common elevation and then

the estimated temperature receives an adjustment that brings it back to the actual elevation

of that location based on the lapse rate at the NARR grid pointnearest to that location.

This approach generally produces a larger diurnal spread intemperatures that more closely

replicates observations when compared with results obtained by ignoring lapse rates in the

spatial interpolation.

The lapse-rate correction uses a local lapse rate defined as

Γlocal = −
T850−Thybrid

Z850−Zhybrid
, (3.10)

whereT850 andZ850 are the temperature and geopotential height at 850 mb, respectively,

andThybrid andZhybrid are the temperature and geopotential height at the first hybrid model

level, respectively. The choice to use the first hybrid modellevel at several tens of meters

above the surface rather than the 2-m temperature avoids problems introduced by extreme

lapse rates that occur regularly very close to the surface. While the 925-mb height would

work well as the upper level in the lapse-rate calculation for the central and eastern part of

North Carolina, this level is actually below ground at higher elevations in the western part

of the state. The 850-mb level is always well above the surface at all but the highest peaks
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FIG. 3.2: Hourly observations (blue) and quality-controlled kriging estimates of 2-m
air temperature (red) at the Asheville Regional Airport (station 03812) just south of
Asheville, North Carolina, for the entire year of 1985.

in North Carolina.

Elevation does not have such a commanding and systematic influence on the moisture

content of the air, so NARR dewpoint temperatures remain unadjusted for lapse rate within

the kriging system. At night, temperatures tend to fall to the dewpoint temperature, but

for physical reasons, the temperature cannot fall below thedewpoint temperature. In cases

where the lapse rate is negative (a proxy for nocturnal boundary layer conditions; i.e., the

temperature increases with height) and the temperature estimate falls below the dewpoint

estimate, the algorithm raises the temperature to match thedewpoint. This produces much

better estimates of temperature when compared with actual observations. Similarly, the

(quality-controlled) temperature provides an upper boundfor the dewpoint estimate under
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FIG. 3.3: As in Fig. 3.2, but for the Piedmont Triad International Airport (station 13723)
in Greensboro, North Carolina.
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FIG. 3.4: Hourly observations plotted against quality-controlled kriging estimates of 2-m
air temperature for the entire year of 1985 at a) the Asheville Regional Airport (station
03812) just south of Asheville, North Carolina, and b) the Piedmont Triad International
Airport (station 13723) in Greensboro, North Carolina. Thethin black line is the one-to-
one line.

normal lapse rate conditions.

Figures 3.2 and 3.3 compare actual measurements of hourly air temperature with esti-

mates obtained via ordinary kriging with the lapse-rate correction for both Asheville, NC

and Greensboro, NC over the period 0000 UTC 1 January 1985 through 0000 UTC 1 Jan-

uary 1986. Only NARR data contribute to the spatial interpolation—no actual observations

contribute to the analysis—and each hourly estimate retains independence from estimates

for adjacent hours. A quality assurance algorithm (see section 4) has automatically re-

moved any anomalous spikes. The procedure produces temperature estimates that match

observations very well, including the all-time record low temperatures for Asheville and

Greensboro of−16.1°F (−26.7°C) and−8.0°F (−22.2°C), respectively, both on 21 Jan-

uary 1985. During the warm season (April–September), temperature estimates seem to

have trouble reaching the observed extremes in the diurnal cycle, though the largest ab-

solute errors in daily maximum and minimum temperatures rarely exceed 3.6°F (2.0°C).

The scatterplots in Figure 3.4 reveal the strong relationship between air temperature mea-
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FIG. 3.5: Hourly observations (blue) and quality-controlled kriging estimates of 2-m
dewpoint temperature (red) at the Asheville Regional Airport (station 03812) just south
of Asheville, North Carolina, for the entire year of 1985.

surements and estimates for the entire year at both Asheville and Greensboro, where the

correlation coefficients areρ = 0.9648 andρ = 0.9723, respectively.

Figures 3.5 and 3.6 compare actual measurements of hourly dewpoint temperature with

observations at both Asheville and Greensboro. While dewpoint estimates do not (and

could not) match observations exactly, there exists no clear systematic daily or seasonal

bias shared by both stations. Dewpoint estimates at Greensboro show a 3.2°F (1.8°C) high

bias, but this bias is not apparent at Asheville, as shown in Figure 3.7. The correlation co-

efficients for comparisons between dewpoint measurements and estimates areρ = 0.9713

andρ = 0.9771 at Asheville and Greensboro, respectively. Table 3.1 displays scalar accu-

racy measures for both temperature and dewpoint estimates at these two stations for all of

1985.
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FIG. 3.6: As in Fig. 3.5, but for the Piedmont Triad International Airport (station 13723)
in Greensboro, North Carolina.
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TABLE 3.1: Scalar accuracy measures and correlation coefficient for hourly temperature
and dewpoint estimates compared with observations for all of 1985 at Asheville, NC and
Greensboro, NC.

Temperature Dewpoint
Asheville Greensboro Asheville Greensboro

Mean error (°C) 0.1702 0.4105 −0.0110 1.8102
Mean absolute error (°C) 2.0271 1.8375 1.9156 2.2319
Root-mean-squared error 2.5913 2.3461 2.4903 2.9544
Pearson correlation (ρ) 0.9648 0.9723 0.9713 0.9771
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FIG. 3.7: Hourly observations plotted against quality-controlled kriging estimates of 2-m
dewpoint temperature for the entire year of 1985 at a) the Asheville Regional Airport
(station 03812) just south of Asheville, North Carolina, and b) the Piedmont Triad Inter-
national Airport (station 13723) in Greensboro, North Carolina. The thin black line is the
one-to-one line.

3.3 Relative Humidity

The relative humidity describes the moisture content of theatmosphere as a percentage

of the amount of moisture required for saturation and is expressed as the ratio of the ambient

vapor pressuree to the saturation vapor pressure over wateres,

RH =
e
es

. (3.11)
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The temperature uniquely determines the saturation vapor pressure. The Bolton formula

(Bolton 1980) allows the calculation of the saturation vapor pressure to within 0.1% over

the range−30°C to+35°C given a temperature according to

es = 611.2exp

[
17.67TC

TC +243.5

]
, (3.12)

whereTC is the temperature in degrees Celsius andes is in Pascals. Equation 3.12 also gives

the ambient vapor pressureeby substituting the dewpoint temperatureTd for TC. A quality

assurance algorithm (see section 4) prohibits the dewpointtemperature from exceeding the

temperature for physical reasons, which necessarily limits the relative humidity to the range

0% to 100%.

3.4 Wind Speed

Tests indicate that the variogram models for net 10-m wind speed produce much bet-

ter estimates of the wind speed at a given station (compared with observations) than the

variogram models for the individual zonal and meridional wind components. This likely

stems from the fact that while the spatial distribution of wind speed can remain relatively
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FIG. 3.8: Hourly observations (blue) and quality-controlled kriging estimates of 10-m
wind speed (red) at the Asheville Regional Airport (station03812) just south of Asheville,
North Carolina, for April and May of 1985. Only two months of the year are shown for
clarity.
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FIG. 3.9: As in Fig. 3.8, but for the Piedmont Triad International Airport (station 13723)
in Greensboro, North Carolina.

smooth, slight directional changes due to terrain or mesoscale features can lead to large

variations in the wind components. Slight errors in the spatial interpolation of these vector

components compound when recalculating the resultant windspeed from those erroneous

components. Therefore, the ordinary kriging system estimates wind speeds at each station

rather than the individual wind components. However, at individual NARR grid points,

the three-hourly wind components are first temporally interpolated and the resultant hourly
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FIG. 3.10: Hourly observations plotted against quality-controlled kriging estimates of
10-m wind speed for the entire year of 1985 at a) the AshevilleRegional Airport (station
03812) just south of Asheville, North Carolina, and b) the Piedmont Triad International
Airport (station 13723) in Greensboro, North Carolina. Thethin black line is the one-to-
one line.
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TABLE 3.2: Scalar accuracy measures and correlation coefficient for hourly wind speed
estimates compared with observations for all of 1985 at Asheville, NC and Greensboro,
NC.

Asheville Greensboro
Mean error (m s−1) 1.1229 0.5184
Mean absolute error (m s−1) 2.0497 1.1737
Root-mean-squared error (m s−1) 2.5929 1.4792
Pearson correlation,ρ 0.5168 0.6729

wind speed calculated from those components during the spatial interpolation process.

Allowing for the short-term temporal variability inherentwith observed wind speeds,

the 10-m wind estimates match observations fairly well for the entire year of 1985 at both

Asheville and Greensboro (Figs. 3.8–3.10). Estimates tendnot to drop to zero as often as

the observations at each location, and some differences partially stem from the discretized

measurements originally reported in whole knots, but the magnitude of the wind estimates

generally compares well with the measurements. The estimates impressively capture the

character of both windy and calm periods with no unphysical or outrageous outliers. Table

3.2 displays scalar accuracy measures for wind speed for theentire year of 1985 at both

locations.

3.5 Cloud cover

The EICM requires hourly observations of the percentage of possible sunshine for its

calculations of both net shortwave and net longwave radiation. These intermediate results

affect the surface energy balance calculations that determine the temperatures throughout

the pavement structure (NCHRP 2004). The input value as implemented in the EICM is

actually the relative sunshine duration (i.e., the percentage of time that the Sun casts a

dark shadow), specifically defined as the number of actual sunshine hours divided by the

maximum possible number of sunshine hours, for use in the Ångström-Prescott formula

for global solar radiation (Tahâş et al. 2011; Martínez-Lozano et al. 1984; Gueymard et

al. 1995). Standard observing sites (e.g., ASOS) generallydo not directly measure relative
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sunshine duration on an hourly basis, but instead measure cloud coverage, typically in

oktas (i.e., eighths). The complement of the percentage of cloud cover, however, supplies a

reasonable substitute for the relative sunshine duration per hour, even though studies have

found that ground-based cloud cover observations slightlyunderestimate the percentage

of possible sunshine (e.g., Hoyt 1977; Essa and Etman 2004) and that the relationship

between cloud coverage and sunshine duration is nonlinear (see Gueymard et al. 1995). So

in the absence of a concrete source for measurements of the relative sunshine duration, the

present approach uses the complement of the observed fraction of the total celestial dome

covered by clouds or other obscuring phenomena available from the ISD data as a proxy

for the percentage of sunshine listed in the HCD files in an approach similar to that used by

Heitzman et al. (2011).

Recall that the Gaussian variogram model works best for interpolating continuous data

fields via ordinary kriging. Though temperature, moisture,and wind speeds tend to exhibit

some spatial continuity, cloud cover may not, particularlyin the vicinity of fronts or other

mesoscale phenomena. The physical bounds of 0% and 100% for cloud cover compound

the problems with spatial interpolation. The difficulties with the proper characterization

of clouds within numerical models (Stephens 2005) such as the NARR do not help either.

Indeed, tests show that cloud cover estimates via kriging donot compare well with observa-

tions. Instead of relying on geostatistical interpolationtechniques to estimate hourly cloud

cover values, a reasonable alternative could involve substituting the cloud cover from the

nearest NARR grid point, located at most 13.8 miles (22.3 km)away from the subject sta-

tion. The total sky coverage between locations separated bysuch a short distance should be

nearly identical because they each consider almost the samesky dome. However, compar-

isons between observed cloud fractions at Chapel Hill, NC (station 93785) and the nearest

NARR grid point at a distance of only 7.46 miles (12.01 km) show almost no qualitative

association. This highlights the well-known difficulties with the proper characterization of

clouds within numerical models (Stephens 2005), so the failure of the NARR cloud fields
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to correspond with reality is not surprising. So the question then becomes whether or not

the model cloud cover accurately represents a realistic cloud cover time series.

Consider a comparison between observations at the Charlotte-Douglas International

Airport (station 13881) and the nearest NARR grid point at a distance of 5.89 miles (9.48

km) to the northwest. The observations here contain all ninepossible oktas (unlike some

other stations) and the long observation POR provides 100,804 individual model-obser-

vation pairs when compared with the original three-hourly NARR values. The Pearson

product-moment coefficient of linear correlation (ρ) and Kendall’sτ can help to illuminate

any positive relationship between the observed and modeledcloud cover. With the NARR

cloud fractions discretized into oktas for a fair comparison with observations, the NARR

data exhibit a Pearson correlation ofρ = 0.59, revealing a moderate positive relationship

with the observations. Most applicable to this situation, however, is Kendall’sτ, a robust

and resistant alternative to the Pearson correlation that considers the relationship between

all possible matchings of model–observation pairs (Wilks 2011). A value of+1 indicates

strong agreement and a value of−1 indicates strong disagreement between the pairs. Since

the data include many ties (because of the discretized nature of cloud cover observations),

theτb approach is the most appropriate form (Knight 1966). Kendell’s τb is 0.47, suggest-

ing a weak positive monotonic relationship between the two data sets.

The Wilcoxon signed-rank test is a nonparametric test for paired samples, where the

null hypothesis is that the data from each paired sample originate from the same population

(Wilks 2011). Failing to reject the null hypothesis would provide sufficient evidence that

the NARR cloud cover produces a representative meteorological time series, even though

the values may not exactly match the observations at a nearbystation. The results of the

test indicate that, with statistical near-certainty, the discretized NARR cloud cover data do

not come from the same distribution as the observations. Therefore, the nearest NARR

cloud cover value is likely not a suitable replacement for anactual observation. Again,

this is not entirely unexpected because of the inherent difficulty with parameterizing cloud
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FIG. 3.11: Distance (miles) from the Charlotte-Douglas International Airport (station
13881) to the nearest ISD site for 300,586 valid observationpairs.

cover within numerical models (Stephens 2005) and, even if the model produces clouds in

approximately the correct location, the character of the cloud field can differ significantly

from observations.

Given the unimpressive results of both a spatial interpolation and a nearest-neighbor

approach for the estimation of hourly cloud cover using NARRdata, it follows that actual

observations at the nearest ISD station may instead providea useful proxy for cloud cover

measurements at a given location. This at least guarantees aclimatologically-appropriate

time series. Over time, the distance from a particular site to the nearest ISD station fluctu-

ates as new stations are brought online and others are decommissioned, but a histogram of

the distance to the nearest station with a valid cloud cover observation indicates that, for ex-

ample, roughly three quarters of the 300,586 available pairs for the Charlotte-Douglas Inter-

national Airport (station 13881) fall within 62.1 miles (100 km) of the station (Fig. 3.11). In
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FIG. 3.12: Pearson correlation between valid cloud cover observation pairs at the Char-
lotte-Douglas International Airport (station 13881) and the nearest ISD station (blue; left
axis), the mean annual distance to the nearest ISD station (green; right axis), and the
number of valid observation pairs per year (red; right axis,scaled by a factor of 100).

a comparison between the observation pairs, Kendell’sτb is 0.57, suggesting a strong pos-

itive monotonic relationship between the two data sets, though the Wilcoxon signed-rank

test still shows that they likely did not originate from the same population. Interestingly, the

Pearson correlation between observation pairs is roughlyρ = 0.75 through 1995, but then

the correlation drops significantly for the remainder of theperiod of record (Fig. 3.12). This

may be related to the change from human observations to automated observations from the

ASOS sensor suite, which occurred across the U.S. between 1991 and 2004. The laser

beam ceilometer automatically measures both the height andcoverage of clouds over the

station by transmitting a near-infrared laser beam vertically and timing the receipt of the

return signal. Since the atmosphere typically moves, the calculation that estimates total

cloud coverage is based on a 30-minute cloud-height observation period (NWS 1998). The
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FIG. 3.13: Observed cloud cover at the Charlotte-Douglas International Airport (station
13881) compared with the observed cloud cover at the nearestISD station. The thick
black line is the linear least-squares regression line and the thin black line is the one-to-
one line. Both the size and the color of the circles represents the number of observation
pairs in each category.

automated measurements, therefore, may not capture cloud features that do not occur di-

rectly above the observing site, but that a human observer would report. This could account

for the marked decrease in correlation coefficient as shown in Figure 3.12.

Importantly, Figure 3.13 shows that the most frequent pairsof observations between

Charlotte-Douglas International Airport and adjacent stations are either both clear or both

overcast. Both the colors and the relative areas of the circles in this scatterplot also indicate

that if the subject station has observed clear conditions, then the nearest station is also more

likely to have observed clear conditions, and vice versa. While not perfect, this provides

strong evidence that a substitution of the nearest valid ISDcloud cover observation is an
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appropriate method for filling gaps in cloud cover measurements. The development of the

final HCD files therefore relies on this approach.

A key exception to the method outlined above stems from the fact that a total of 141

hours of cloud coverage data are missing from all ISD sites simultaneously for select hours

between 1998 and 2013. Occasional data outages from an upstream provider to NCDC

result in large-scale gaps in coverage only for data pertaining to sky conditions. NCDC has

no control over the data stream and these data are not recoverable. In the handful of cases

where no ISD cloud cover data exist, estimates at subject locations instead correspond with

the cloud coverage at the nearest NARR grid point.

3.6 Precipitation

Recall that the EICM accounts for precipitation on a monthlybasis. Hence, daily pre-

cipitation totals would supply sufficient information to the model for Pavement ME Design

pavement performance predictions. The dense GHCN-Daily network could easily provide

the readily available daily precipitation totals at the subject station or nearby stations. Look-

ing to the future, however, one could imagine that updates tothe EICM could account for

short-duration, heavy rainfall events or conditions wherea short-lived thunderstorm drops

cold rain on hot pavement. The following gap-filling procedure, therefore, attempts to pro-

duce the most likely hourly precipitation totals rather than simply placing a daily total in a

single hour as currently implemented in many of the originalHCD files.

The gap-filling procedure for precipitation differs from that of the temperature, dew-

point, and wind speed fields because of the inherently variable nature of precipitation on

small spatial scales (e.g., Fig. 3.14). In general, no spatial interpolation technique can truly

produce accurate point estimates of precipitation data, particularly for convective precipita-

tion. The NARR often captures the presence of precipitationand, as Mesinger et al. (2006)

report, the NARR precipitation field achieves very good agreement with observations, yet
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FIG. 3.14: Daily precipitation (inches) reported by volunteerobservers for the CoCo-
RaHS network in Buncombe County, North Carolina for the 24-hr period ending at 0700
EDT 13 June 2015.

due to the nature of precipitation both in models and in reality, the quantity and location of

the precipitation at point locations is still prone to largeerrors stemming from a number of

factors (Ebert and McBride 2000). Indeed, the poor performance of the NARR cloud cover

data supports the conclusion that three-hourly precipitation totals for a particular grid point

may not realistically capture hourly precipitation.

A reasonable solution given sufficient spatial coverage of hourly observations could in-

volve filling gaps in hourly precipitation data with hourly rainfall totals from the nearest

ISD location with a valid hourly observation. However, the coverage of hourly observa-

tions across North Carolina remains sparse compared with the enormous spatial variability

inherent in precipitation patterns, particularly early inthe 1979–2013 period of record.

Indeed, the state’s driest and wettest locations (downtownAsheville and Lake Toxaway, re-
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spectively) are separated by only 40.6 miles (65.3 km). Considering only stations with rea-

sonably complete observations for the entire period of record (1979–2013), the nearest ISD

location to the Asheville Regional Airport (station 03812), for example, is the Greenville–

Spartanburg International Airport (station 13886) in Greer, SC, a full 41.5 miles (66.8 km)

away, 1198 feet (365 m) lower in elevation, and climatologically very different. There-

fore, neither a NARR-derived precipitation estimate nor a nearest-neighbor approach using

hourly observations nor spatial smoothing algorithms seemappropriate for filling gaps in

hourly precipitation data.

The daily precipitation total from the GHCN-Daily data provide much better spatial

coverage than the ISD data at the expense of temporal resolution. The gap-filling technique

employed here involves using the daily precipitation totalfrom the nearest GHCN-Daily

station to estimate hourly precipitation with the help of the NARR data, subject to the

following constraints:

1. The algorithm sets the daily rainfall total for either an entirely or partially gap-filled

24-hr period equal to the daily rainfall total at the nearestGHCN-Daily station (i.e.,

the new daily total may not exceed or fall short of the observed daily rainfall total at

the nearest GHCN-Daily site, excluding measured hourly trace amounts). Of course,

any actual measurements during the 24-hr period remain unchanged. If the near-

est GHCN-Daily site measures no precipitation and no trace amount, then all of the

missing hours receive estimates of zero precipitation. If the sum of the valid hourly

ISD measurements during the 24-hr GHCN-Daily observation period meets or ex-

ceeds the GHCN-Daily total, the algorithm fills gaps with zero accumulation. The

analysis accounts for varying observation times in the GHCN-Daily record, though it

truncates the minutes in the rare instances where observations occur on the half hour

(e.g., “1230 UTC” becomes “1200 UTC”).

2. Since the NARR data likely provide a fair measure of whether or not precipitation

has fallen in a given three-hour period (but not necessarilythe quantity), the NARR
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three-hour precipitation totals help to determine the timing of the precipitation. The

algorithm scales the three-hourly NARR totals (upward or downward) linearly, to the

nearest hundredth of an inch, during the gap such that the daily totals in the NARR

data match the GHCN-Daily observations. For example, if 40%of the daily precip-

itation at the nearest NARR grid point falls during the 1200–1500 UTC time frame,

then the algorithm assigns 40% of the daily total observed atthe nearest GHCN-

Daily station to those three hours. The timing of the GHCN-Daily observations may

vary, so the daily NARR totals equal the sum of the disaggregated and scaled hourly

NARR values over the same 24 period as that covered by each GHCN-Daily obser-

vation.

3. For short-term gaps, if no precipitation occurred in the NARR data during the gap,

but NARR precipitation fell at some point during the 24-hr period of the GHCN-

Daily total, the algorithm assigns the entire difference between the GHCN-Daily

total and the ISD hourly total to the last hour of the gap, filling the other hours with

zeros. If the observed ISD values exceed the GHCN-Daily total during the period,

the algorithm fills the entire gap with zeros.

4. If the nearest GHCN-Daily observation indicates that precipitation fell during the

day, and the nearest value from a NARR grid point or ISD site does not show any

precipitation during that 24-hr period, then the analysis will move to the next nearest

NARR grid point or ISD site and so on through the 12th-nearestNARR grid point

or ISD site until it finds a NARR period or ISD observation withprecipitation. This

procedure gives some allowance for the incorrect placementof precipitation in the

NARR data. If no precipitation fell during that 24-hr periodat any of the nearest 12

NARR grid points or ISD sites, then the entire GHCN-Daily daily total is assigned

only to the 0000 UTC hour for a completely missing day or to thelast hour of a

short gap. The approach in this last condition is based on twoplausible assumptions.
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Either 1) the precipitation fell at the beginning or end of a rainfall event that occurred

primarily on an adjacent day or 2) the NARR did not capture a convective event in

which all of the precipitation likely fell in a single hour. Since thunderstorms tend

to occur most frequently in the late afternoon, 0000 UTC is a reasonable hour in

which to assign such convective precipitation. Since thereremains no way to tell the

difference between a multiday precipitation event (which the NARR should capture

anyway) and consecutive days with afternoon thunderstorms, assigning the entire

precipitation total to the 0000 UTC hour seems like a sensible approach.

5. If the scaled hourly precipitation total becomes less than 0.01 in (0.254 mm) for any

non-native NARR hour (e.g., 0100, 0200, 0400, 0500, 0700, etc.), then the algo-

rithm adds the accumulation to the next consecutive hour if it too is missing. If the

next hour is not missing, the hourly result becomes a trace. The algorithm assigns a

trace to accumulations remaining less than 0.01 in (0.254 mm) and ending at a native

NARR hour (i.e., every third hour including 0000 UTC). For long gaps, this approach

results in light or trace precipitation every three hours inthe filled time series, sim-

ilar to measurements by a tipping bucket rain gauge. Withoutthis approach, small

hourly totals would result in an unrealistic frequency of trace accumulations in many

consecutive hours. Trace amounts do not count against the daily total precipitation

estimate so that the daily total remains equal to the GHCN-Daily observation.

6. If the nearest GHCN-Daily station records a trace of precipitation, then the algorithm

assigns a trace to all missing native hours with non-zero NARR precipitation and

assigns zero accumulation to all other missing hours. This prevents excessive trace

precipitation estimates during a single 24-hr period.

The only exception to the constraints outlined here appliesto stations with missing data

on the first day in the 1979–2013 period of record. Since no NARR data exist to inform

the timing of precipitation prior to 0000 UTC 1 January 1979,the algorithm estimates
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FIG. 3.15: Distance from the subject station to the nearest valid GHCN-Daily precipi-
tation observation site for all hours with missing precipitation data at 41 stations in and
near North Carolina.

precipitation by substituting unscaled NARR data from the closest NARR grid point to the

subject station if the nearest GHCN-Daily site reports non-zero precipitation for this first

day that exceeds the shortened NARR total.

Sometimes, the nearest available GHCN-Daily station with valid precipitation data

changes and the observation time changes to a later time in the day. If this happens, an

unfilled gap appears because the daily observations only cover a 24-hr period. To address

this, the algorithm uses data from the previous day at the next closest station with valid data

to fill in the gap for the previously-unfilled precipitation values.

Figure 3.15 illustrates the distances between subject stations and the nearest GHCN-

Daily sites tapped to provide precipitation data for the gap-filling algorithm for all 41 sta-

tions included in the set of new HCD files developed here. Thisfigure does not show a

45



handful of outliers that extend to the farthest distance of 40 miles (64 km). The majority of

nearby GHCN-Daily sites (75%) lie within 6.2 miles (10.0 km)of the subject site, which

implies that the hourly precipitation estimates provide atleast a reasonable representation

of the actual precipitation. In Charlotte (station 13881),for example, the daily precipita-

tion measurements only 164 feet (0.05 km) away helped to fill in all 404 missing hourly

precipitation observations during the study period.
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4. Quality Assurance

All climate data, whether directly observed or inferred, must undergo strict quality con-

trol procedures to check for internal consistency and extreme values before inclusion within

the final HCD files. The quality assurance algorithm implemented here addresses two pri-

mary issues—errors with kriging estimates for temperature, dewpoint, and wind speed; and

remaining data quality problems after the initial, less-strict quality control of each obser-

vational dataset. The procedure outlined in section 3.6 ensures high-quality precipitation

data. For the remaining variables, the algorithm performs the following procedures:

1. Smooths out anomalous spikes by comparing each hourly observation with the ad-

jacent hours, followed by a comparison with the penadjacenthours (two away on

either side). The spikes mainly derive from the temporally-independent nature of the

kriging estimates. Recall that each estimate is made with the help of an algorithm

that automatically selects the variogram model based on theobserved variogram at

each hour because the millions of required estimates preclude the use of the usual

hand-picked analysis parameters that work best for each individual situation. With-

out human intervention in the selection of the parameters for the variogram model,

the resulting kriging estimates have the potential to vary widely from hour to hour.

While large errors occur only for a small percentage of the total number of kriging

estimates, it remains very important to correct for the unrealistic spikes that occur in

the time series for each variable. For both temperature and dewpoint estimates, the

threshold for identifying a spike is a rise of at least 8.1°F (4.5°C) in one hour, fol-

lowed by a drop of the same magnitude in the next hour. The algorithm also checks
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for unrealistic spikes in the observations, where the threshold for identifying bad val-

ues is 16.2°F (9.0°C). Intermediate thresholds catch bad temperature and dewpoint

observations shortly before a sensor dies. The algorithm removes hourly wind speed

estimates that increase by more than three times the previous wind speed or by 10

m s−1, whichever is greater, and hourly wind speed observations that increase by the

greater of either ten times the previous estimate or 30 m s−1. For spikes covering two

consecutive hours, the thresholds increase by a factor of 1.5. The algorithm removes

bad values and replaces them with a linear interpolation between valid values before

and after the run of bad data. The smoother makes three successive passes through

the data, each time checking for anomalous spikes.

2. Ensures that all values adhere to physical bounds. The algorithm makes sure that the

dewpoint remains less than or equal to the temperature aftermaking any other neces-

sary quality-control adjustments for temperature and thatthe percentage of sunshine

is between 0% and 100%.

3. Checks for temporal continuity so that each time series represents all hours in the

correct order.

4. Checks each observation or estimate against records of state temperature extremes

observed during the month and year under consideration. Thealgorithm removes

and linearly interpolates over any estimate or otherwise valid temperature that falls

outside the bounds of an official monthly state extreme if an estimate exceeds that

extreme by more than 1.8°F (1.0°C) or if an observation exceeds the official extreme

by more than 3.0°F (1.7°C). Estimates of temperature that exceed a state extreme by

less than 1.8°F (1.0°C) are set equal to the extreme.

5. Checks hourly temperatures against observed maximum andminimum temperatures

at the nearest GHCN-Daily site. Comparisons include a very generous 8.5°C km−1

lapse-rate adjustment for differences in elevation and account for varying GHCN-
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Daily observation times. Tests show that typical differences across North Carolina

between observed daily maximum and minimum temperatures and the correspond-

ing values at the nearest GHCN-Daily site (usually several km away) do not exceed

about 5.4°F (3.0°C). Above that threshold, examples include both plausible values

and clearly incorrect ones. Therefore, the algorithm removesestimatesthat exceed

this threshold and linearly interpolates the adjacent valid values to fill in the gap. No

adjustment is made in instances where the observed GHCN-Daily maximum temper-

ature on a given day is less than the minimum temperature on the previous day and

vice versa. The algorithm also flags as suspect any otherwisevalid observations if

they exceed twice this threshold at 10.8°F (6.0°C), but allows those observations to

remain in the data. Even so, the algorithm flags as suspect only a small percentage

of the temperature observations. At 0.1%, by far the largestpercentage of suspect

temperature observations occurs at Goldsboro, NC (station13713).

6. Looks for sudden and rapid increases or decreases associated with a dying tempera-

ture or dewpoint sensor and linearly interpolates between reasonable data on either

side of up to eight consecutive bad values.

7. Flags wind speeds in excess of the threshold for a category2 hurricane (42.5 m s−1)

for manual inspection.

The quality assurance algorithm corrects for both inappropriate kriging estimates and

poor-quality data that has passed the NCDC quality assurance algorithms, including many

examples with dying sensors and sensor malfunctions. The algorithm automatically makes

adjustments, but in a handful of cases, questionable ISD andGHCN-Daily observations

of temperature, dewpoint, wind speed, and precipitation required manual inspection and

removal.
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5. Historical Climate Data Files

5.1 Notable concerns with the original HCD files

Other authors have found that environmental influences significantly impact pavement

performance predictions, including Johanneck et al. (2010), who also recommend rigorous

quality control and the elimination of stations with missing data within the climate database

intended for use with the Pavement ME Design software. In thecourse of the current

investigation, several specific problems emerged with respect to the original HCD files.

The original HCD files do not have observations listed at the correct times. In meteo-

rology, both humans and automated observing systems make anhourly observation about

seven minutes before the hour. For example, the conditions observed and reported at 11:53

a.m. correspond with the noon observation. The original HCDfiles instead truncate the

minutes for each observation, such that the noon observation appears in the data as the 11

a.m. observation, even after accounting for time zones and the fact that all times refer to

local standard time. This has consequences for the calculation of heat fluxes that depend

upon the quantity of incoming solar radiation determined within the EICM. Correcting the

HCD files by simply shifting the original data forward by one hour allows a test of the im-

pact of this error. Comparisons between Pavement ME Design predictions with the original

and corrected HCD files for various pavement types show minimal errors (Figs. 5.1–5.4).

For example, the simulation for the concrete pavement project shown in Figure 5.4 yields

a predicted IRI of 141.0 in/mi, mean joint faulting of 0.081 inches, and JPCP transverse

cracking of 4.39% after 30 years with the original climate data. The revised climate data
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FIG. 5.1: Sensitivity of Pavement ME Design simulations to a one-hour shift in hourly
climate data for an Interstate 440 project in Wake County. a)Pavement performance
measures calculated with the original Raleigh-Durham HCD file (station 13722) for an
aggregate base course (ABC) pavement structure and b) differences (corrected minus
original) between performance measures calculated with the original and time-corrected
HCD files. Both panels show IRI (blue), total pavement deformation (green), and bottom-
up cracking (red).

change the results to a predicted IRI of 139.5 in/mi, mean joint faulting of 0.079 inches, and

JPCP transverse cracking of 4.25% after 30 years. These reduced predicted stresses after

30 years are the same as the values produced by the simulationwith the original climate

data after only 29 years and 1 month.

In addition, the original HCD files contain some questionable data. For example, the
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FIG. 5.2: As in Fig. 5.1, but for a cement-treated aggregate basecourse (CTABC) pave-
ment structure.

relative humidity suddenly drops to unrealistic values (generally 0–13%) for 23 hours at

Raleigh/Durham (station 13722) on 18 August 1996 before recovering to more reasonable

values. Inspection of the ISD data indicates that this problem stems from the inclusion of

both suspect and missing dewpoint observations in the construction of the original HCD

time series. This problem is not unique. Unreasonable spikes also exist in the original

HCD files. Examples include cases where the temperature unrealistically rises to 122°F

from 57°F and falls back to 44°F before rising again to 67°F inconsecutive hours at Rocky
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FIG. 5.3: As in Fig. 5.1, but for a full depth asphalt (FDA) pavement structure.

Mount (station 93759) on 7 March 2002 and where the temperature conspicuously drops

to 0°F from 73°F before slowly recovering at Cape Hatteras (station 93729) on 15 October

2003. A wind speed value suddenly jumps from a light breeze to74 m.p.h. and back again

on 25 September 2002 at the Asheville Regional Airport (station 03812), yet the ISD data

show no such gust. Hourly precipitation jumps from zero to 23inches or more (up to 63.8

inches) and back to zero in several instances. The summary inTable A.1, described in

section 5.2, contains some of these outliers.

More concerning is the lack of any temperature value at all for select hours at 15 of
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FIG. 5.4: As in Fig. 5.1, but for a concrete pavement structure. Both panels show IRI
(blue), mean joint faulting (green), and JPCP transverse cracking (red).

the 30 original North Carolina and nearby station locationsanalyzed here. The MEPDG

software most likely interprets a blank data value as 0°F, which may impact pavement

performance predictions, particularly when the problem occurs in the summer when the

temperature instantly drops below freezing before recovering to a very warm temperature

in a subsequent hour. At Florence, SC, for example, this problem persists for 48 hours

in one instance starting on 15 July 2003. Yet another concernpertains to the occasional

appearance of extraneous characters in the wind data instead of numerical values. At station
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locations across the U.S. and Canada, 41.2% of the original 1083 HCD files contain some

combination of missing temperature, relative humidity, orwind data, as well as unrealistic

daily precipitation totals.

Two minor concerns arise in comparisons between the long-term HCD files developed

here and the original HCD files. One discrepancy between the original HCD files and

the new HCD files is that the original files contain integer wind speeds in m.p.h. that are

often one m.p.h. less than in the new long-term HCD files. Thislikely arises because of

a rounded conversation factor in the conversion from m s−1 to m.p.h. in the original HCD

files. Another difference is that the hourly precipitation values in the original HCD files

often represent daily totals, generally placed at noon local time on each day with zeros

at all other times, whereas the new HCD files contain hourly accumulations distributed

throughout the day as outlined in section 3.6.

Lastly, the period of record indicated in the list of stations (the station.dat file) does

not necessarily reflect the actual temporal coverage of the corresponding HCD file. For

example, the data for station 04734 (Maniwaki, Québec, Canada) span the period between

October 1990 and September 1992, but the station.dat entry indicates a complete period

of record beginning in January 1953. Future dates also appear in the station.dat file. For

example, station 04712 (Montreal, Québec, Canada) has a starting date of January 2028.

All of these concerns highlight the need to develop improvedenvironmental input to the

EICM and support the effort involved with the construction of new, long-term, high-quality

HCD files.

5.2 Long-term, high-quality HCD files

The procedure outlined above produced 41 HCD files containing high-quality, internal-

ly-consistent, and complete hourly meteorological data for the entire period of record from

1 January 1979 through 31 December 2013 (Fig. 5.5). Of this total, 30 files replace data for
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FIG. 5.5: Locations with complete HCD files for the period 1979–2013. Yellow markers
indicate locations with hourly observations from meteorological measurement stations.
Sites marked with a star represent stations included in the original set of HCD files ac-
companying the Pavement ME Design software. Data at locations marked in red are
solely derived from North American Regional Reanalysis (NARR) data and represent
model output with no direct observations.

existing stations in the archives distributed with the Pavement ME Design software and 11

files provide historical climate data for new locations in and near North Carolina. Though

some stations are just outside the state line, 26 of the stations fall within the borders of

North Carolina. The three main North Carolina climate regions consisting of the moun-

tains, piedmont, and coastal plain each contain 1, 9, and 16 stations, respectively. Refer

to Table A.2 in Appendix A for tables that provide a brief assessment of the quality of the

data as measured by the percentage of direct observations that compose the entire POR for

each station. Stations with a large percentage of direct measurements will likely provide

a more accurate picture of the long-term climatic conditions at that location than stations

with a large percentage of estimated values.

This work took place under the hypothesis that an extended time series would capture

more extremes and would improve the characterization of thelong-term climate at each

station. Table A.1 lists statistical measures of central tendency, spread, and extremes for
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each variable in comparisons between the original and the new HCD files at each of the

30 original site locations. In all cases, the longer files contain more extreme values, while

standard deviations remain similar between each data set.

As a supplement to the HCD files at stations where actual observations take place, 847

HCD files built solely from temporally-interpolated three-hourly NARR data can help to

fill in gaps in regional coverage (Fig. 5.5). The difference between these files and those

built from a combination of observations and spatial interpolations as outlined above is

that both cloud cover and precipitation, as well as temperature, dewpoint, and wind speed,

correspond directly with gridded NARR model output fields. Since these data files contain

no actual observations, they should be used with caution andonly as a supplement to the

information provided by the stations marked in yellow in Figure 5.5. Pavement design

locations that are relatively close to a yellow marker should use the observed data.
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6. Pavement ME Design Sensitivity Analysis

Comparisons of pavement distresses and smoothness over thedesign life of several

projects across North Carolina lend insight into the impactof the high-quality, continuous,

long-term historical climate data files in the final pavementperformance predictions by the

AASHTOWare Pavement ME Design software (version 2.1). These sensitivity tests involve

17 unique sites (two in the mountains, eight in the piedmont,and seven in the coastal plain

climate regions) in North Carolina, repeatedly drawing climate data from nine different

locations, with various design selections that include eight concrete, 16 ABC, one CTABC,

and 16 FDA pavement projects, for a total of 41 different design projects. In each case, the

MEPDG software received both the original HCD files (hereafter referred to as “baseline”

simulations) and the improved HCD files (hereafter referredto as “new” simulations) to

produce pavement performance predictions.

Tables A.3, A.4, A.5, and A.6 in Appendix A detail the resultsof the comparisons

between the baseline and new simulations of performance criteria for each project and

pavement type. In each case, the design reliability indicates the probability that the actual

distress levels will not exceed the pavement performance predictions over the design period

(AASHTO 2008). In other words, reliability refers to the percentage of actual road samples

that would not reach the predicted distress level. The target value for each performance

criterion and project varies according to the requirementsfor each project. For example,

the target distress for the X-2BB Cumberland County concrete project in Table A.3 is 15%

JPCP transverse cracking at 90% reliability. These tables also list the percentage difference

between the baseline and new simulations and whether or not the particular designs pass or
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TABLE 6.1: Summary measures for differences (new minus baseline)in pavement dis-
tress for each pavement type. MAE refers to the mean absoluteerror. Two-tailedp values
correspond witht distribution probabilities for differences of mean for paired samples.
Bold p values are statistically significant at the 95% level. Performance criteria include
terminal IRI (inches mile−1), mean joint faulting (inches), JPCP transverse cracking (per-
centage of slabs), permanent deformation (inches) for boththe total pavement struc-
ture and only the AC contribution, AC bottom-up and top-downfatigue cracking (feet
mile−1), and fatigue fracture in the chemically stabilized layer (%).

Concrete
Performance Criterion n Mean (bias) MAE Median Sample std. dev. p value
Terminal IRI 8 −4.057 4.815 −3.384 4.645 0.043
Mean joint faulting 8 −0.004 0.006 −0.003 0.007 0.110
JPCP transverse cracking 8 −2.189 2.199 −1.978 1.691 0.008

ABC
Performance Criterion n Mean (bias) MAE Median Sample std. dev. p value
Terminal IRI 16 0.720 1.797 0.699 2.493 0.266
Perm. deform. – total 16 0.010 0.026 −0.003 0.043 0.383
Perm. deform. – AC 16 0.005 0.022 −0.005 0.042 0.645
AC bottom-up fatigue 16 1.363 2.305 0.114 5.222 0.313
AC top-down fatigue 16 118.240 194.026 10.142 385.639 0.239

CTABC
Performance Criterion n Mean (bias) MAE Median Sample std. dev. p value
Terminal IRI 1 −0.021 0.021 −0.021 — —
Perm. deform. – total 1 −0.006 0.006 −0.006 — —
Perm. deform. – AC 1 −0.013 0.013 −0.013 — —
AC bottom-up fatigue 1 −0.006 0.006 −0.006 — —
AC top-down fatigue 1 −85.839 85.839 −85.839 — —
Chem. stab. – fatigue 1 0.140 0.140 0.140 — —

FDA
Performance Criterion n Mean (bias) MAE Median Sample std. dev. p value
Terminal IRI 16 −0.319 1.496 0.196 2.186 0.568
Perm. deform. – total 16 −0.012 0.024 −0.009 0.035 0.202
Perm. deform. – AC 16 −0.010 0.015 −0.010 0.017 0.034
AC bottom-up fatigue 16 −0.136 1.073 0.051 2.970 0.858
AC top-down fatigue 16 6.447 17.747 −0.253 31.578 0.427

fail based on the target criterion at the specified reliability. This analysis does not consider

asphalt concrete (AC) thermal cracking predictions because the MEPDG software does not

properly handle the predictions for this distress type.

The eight concrete projects generally show less distress with the new HCD files com-

pared with the baseline simulations (Table 6.1). JPCP transverse cracking decreased in all

but one project, but even where this distress increases in the I-440 Wake County project,
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the magnitude of the increase remains small with a change of only +0.04% of the concrete

slabs, or a percentage difference of 0.80%. Similarly, terminal IRI decreases in six of the

eight projects and mean joint faulting decreases in seven. In general, the few increases

in pavement distress and smoothness with the new HCD files appear relatively small in

magnitude compared with the large magnitude of the decreases in pavement distress and

smoothness present in the simulations for these concrete projects. A hypothesis test for dif-

ferences of mean for paired samples using thet distribution allows an objective assessment

of these results. Table 6.1 shows that the two-tailedp values allow rejection of the null

hypothesis that there is no difference between the baselineand new pavement performance

predictions for both terminal IRI and JPCP transverse cracking at the 95% level. There-

fore, the improved long-term climate data yield a discernable and statistically significant

decrease in both smoothness and transverse cracking that implies that NCDOT may have

overdesigned concrete pavement designs developed with theoriginal HCD files.

Overall, the new HCD files have limited impact on the FDA pavement types. Decreases

in AC rutting represent the only statistically significant result. Individual comparisons

between the new and baseline simulations show mixed results. All performance criteria

increase in four of the 16 FDA projects, all decrease in threeof the projects, and the re-

maining nine produce a variety of increased and decreased criteria. Of the FDA projects

that reach the terminal IRI target before reaching the end ofthe design life of the project,

the MEPDG software produces both a 0.3% reduction and a 0.3% extension in the 30-year

design life for the two projects in Yancey and Northampton Counties (R-2519B and R-

2582A), respectively. This is equivalent to a change of onlyone month in design life for

each.

Comparisons between the 16 ABC projects show no statistically significant differences

between the baseline and new simulations for any pavement performance criterion. Pave-

ment performance predictions for individual projects, however, can vary substantially be-

tween the baseline and new Pavement ME Design simulations, sometimes resulting in

60



failed pavement designs that would have passed with the original HCD files (e.g., AC crack-

ing for project R-2501C in Richmond County) and vice versa (e.g., terminal IRI for project

I-3802A in Cabarrus County). Five of the comparisons for theABC projects yield relatively

large changes in predicted AC top-down fatigue with the new HCD files compared with the

magnitude of the changes for the same project locations withFDA designs. Three ABC

projects show increases for all pavement performance criteria and three show decreases for

all criteria. Some ABC projects exhibit large changes in predicted distresses with percent-

age differences exceeding 40%, but other projects only exhibit small differences. Of the

performance criteria that reach the target value at the specified reliability before the end of

the design life for both the baseline and the new simulations, project R-3421C in Richmond

County exhibits the largest difference in the percentage ofthe design life at failure with a

reduction of 1.9% of the 34-year design life using the new HCDfiles, or nearly 8 months.

While not statistically significant, it remains apparent that the use of the new HCD files in

the MEPDG software clearly has some influence on the outcome of the predicted distresses

and smoothness for individual ABC projects.

The new HCD files produce decreased pavement distresses and smoothness in the single

CTABC project, though this is admittedly a very small samplesize. The one exception is

that the fatigue cracking in the chemically stabilized layer increases. Unfortunately, a single

sample is insufficient to gauge statistical significance.

Since the climatological data vary by station, it could prove useful to compare results

for different projects and pavement types that rely on data from the same single meteo-

rological station location to determine whether or not a station influences pavement per-

formance predictions in a systematic way. For each station,Table 6.2 shows two-tailed

p-values corresponding witht distribution probabilities for differences in mean for paired

samples for all of the pavement design projects that rely on historical climate data from

that single location. For example, Table 6.2 indicates a statistically significant difference

in terminal IRI between the baseline and new simulations at the 95% level for the one con-
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TABLE 6.2: Two-tailedp-values corresponding witht distribution probabilities for dif-
ferences in mean for paired samples for all of the pavement design projects that rely on
historical climate data from a single location. Only pavement performance criteria with
more than one sample are included. Boldp values are statistically significant at the 95%
level. Values in parentheses indicate the number of projects included in each statistical
test. Pavement performance criteria include terminal IRI (IRI), permanent deformation
for both the total pavement structure (Total rutting) and only the AC contribution (AC
rutting), AC bottom-up (AC bottom-up) and top-down (AC top-down) fatigue cracking,
mean joint faulting (Joint), and JPCP transverse cracking (Transverse).

Station IRI Total rutting AC rutting AC bottom-up AC top-down
Charlotte, NC (13881) 0.503 (4) 0.683 (3) 0.624 (3) 0.400 (3) 0.596 (3)
Greensboro, NC (13723) 0.006 (3) 0.150 (2) 0.219 (2) 0.294 (2) 0.529 (2)
Winston-Salem, NC (93807) 0.054 (2) 0.117 (2) 0.129 (2) 0.480 (2) 0.506 (2)
Wilmington, NC (13748) 0.012 (5) 0.384 (5) 0.294 (5) 0.002 (5) 0.142 (5)
Asheville, NC (03812) 0.959 (4) 0.013 (4) 0.002 (4) 0.410 (4) 0.303 (4)
Raleigh/Durham, NC (13722) 0.143 (6) 0.101 (5) 0.081 (5) 0.304 (5) 0.303 (5)
Hickory, NC (03810) 0.035 (3) 0.049 (2) 0.092 (2) 0.483 (2) 0.496 (2)
Fayetteville, NC (93740) 0.099 (6) 0.411 (4) 0.349 (4) 0.379(4) 0.444 (4)
Maxton, NC (93782) 0.386 (2) 0.015 (2) 0.102 (2) 0.502 (2) 0.521 (2)

Station Joint Transverse
Fayetteville, NC (93740) 0.039 (2) 0.042 (2)

crete and two flexible pavement projects that rely on data from Greensboro (station 13723).

Table 6.2 excludes projects that draw historical data from multiple stations in the baseline

simulations due to temporal gaps in the original HCD files. The Pavement ME Design

simulations call upon the data from Fayetteville (station 93740) for six projects, including

four for flexible pavements. Only Fayetteville provides data for more than one concrete

project, so it is the only station withp-values for the JPCP transverse cracking and mean

joint faulting performance measures, but the statistical tests for terminal IRI include this

measure from the concrete pavement projects. There exists no clear influence on any given

flexible pavement performance criterion using the data fromFayetteville. Indeed, the sign

of each of the changes in pavement performance predictions differs between projects. Yet

the differences in JPCP transverse cracking and mean joint faulting for concrete projects

that use the Fayetteville data are significant at the 95% level. Even though the four flexible

pavement projects that use data from Asheville (station 03812) and the five that use data

from Raleigh/Durham (13722) always produce a reduction in both total and AC rutting,
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as well as a reduction in AC top-down fatigue (longitudinal cracking), only the historical

climate data from Asheville produce statistically significant differences in both total rutting

and AC rutting. The five projects that use data from Wilmington (station 13748) all show

statistically significant increases in both terminal IRI and AC bottom-up fatigue (alliga-

tor) cracking. The long-term HCD files from Charlotte (station 13881), on the other hand,

do not remotely produce any statistically significant differences in pavement performance

measures.

It appears that the new HCD files may in fact have the potentialto influence the final

pavement performance predictions for certain performancecriteria, but that the magnitude,

sign, and statistical significance of those changes may depend upon the HCD station se-

lected for the analysis. A larger selection of projects thateach draw climatological data

from these and other sites could help to show with more certainty whether or not a par-

ticular HCD file has a systematic influence on the sign of the differences in the pavement

performance criteria between the baseline and new simulations.
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7. Conclusions and Recommendations

The previous sections describe the development of long-term, continuous, quality-

controlled, hourly historical data for multiple locationsacross North Carolina for use as

input to the EICM within the MEPDG software, with the goal of improving confidence in

the resulting pavement performance predictions. As evidenced by the results of the auto-

mated quality assurance procedures outlined in section 5.1, the quality of the original HCD

files remains sufficiently poor to warrant a recommendation that NCDOT cease further use

within Pavement ME Design. These original files may adversely affect pavement perfor-

mance predictions and the pavement designs based on those predictions. Tests show that

similar quality concerns exist for an alarming number (41.2%) of other station locations

across the United States and Canada. This conclusion alone makes the development of the

improved HCD files a worthwhile effort.

The sensitivity tests in section 6 indicate that concrete pavement projects would likely

benefit the most from the improved HCD files. Based on the Pavement ME Design com-

parisons, it appears that engineers currently overdesign such projects. NCDOT engineers

could minimize costs by making small design changes such as reductions in pavement

structure layer thicknesses to address this concern.

While all pavement performance predictions change with theintroduction of the new

HCD files within the MEPDG software, the only statistically significant differences at the

95% level for flexible pavements involve AC rutting in FDA pavement designs. As section 6

explains, the HCD station selected for use within the MEPDG software may influence the

magnitude and sign of the differences in pavement performance predictions between the
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baseline and new simulations. For future projects, therefore, it remains important to select

the station that best characterizes the climatological conditions at the project site in order

to produce the most reliable predictions.

Recall that the virtual station feature of the MEPDG software allows a user to construct

an hourly time series for any location based on an inverse-distance weighting algorithm and

a standard tropospheric lapse-rate correction. This approach may produce a realistic time

series for very closely-spaced stations, but would generally average out hourly extremes,

dilute the hourly temperature gradient in the vicinity of fronts, and would produce partic-

ularly poor results in the mountains, along coasts, or across climate regions. In order to

provide some guidance about when to use the virtual station feature, it seems prudent to

quantify the distance from a meteorological observing station within which that station’s

observations provide a good representation of the regionalweather. In an approach similar

to Hubbard (1994), the coefficient of determination (R2) represents the proportion of the

variation at every other GHCN-Daily site that is described or accounted for by the daily

observations at a given target location. Systematic errorsbetween two sites do not affect

theR2 value, so elevation differences between sites make no difference in temperature com-

parisons under the assumption that the lapse rate of temperature remains constant, as in the

MEPDG software. To avoid the influence of seasonality, whichwould artificially inflate

the R2 value, the analysis considers daily data separately for only the months of January

and July, following Hubbard (1994). Figures 7.1–7.3 showR2 values for comparisons be-

tween the quality-controlled daily observations at one existing HCD station near the center

of each of North Carolina’s three climate regions and the surrounding GHCN-Daily obser-

vations of maximum and minimum temperature and precipitation for a period spanning 10

years (2000–09). Spatial interpolation between two stations with some measure of confi-

dence would require a reasonably largeR2 value in excess of 0.90, so only these regions

are shaded in each subfigure. In all cases, these results showthat extension of the daily pre-

cipitation beyond a few kilometers from the site would be inappropriate. Daily maximum
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FIG. 7.1: Contoured coefficients of determination (R2) for daily observation pairs of a)
maximum temperature in January and b) July, c) minimum temperature in January and d)
July, and e) precipitation in January and f) July at the Asheville Regional Airport (station
03812; ‘+’ symbol) and each of the surrounding GHCN-Daily stations (red dots) over
the period 2000–09. Shaded regions correspond withR2 ≥ 0.90.

and minimum temperatures could be spatially interpolated outward by at most a county or

two with reasonable confidence.
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FIG. 7.2: As in Fig. 7.1, but for the Burlington Alamance Regional Airport (station
93783).

Since GHCN-Daily data do not contain information on moisture, wind speed, or cloud

cover, the three-hourly gridded NARR data can provide a fairestimate of the mean dis-

tance within which theR2 value first falls below 0.90 for these variables. Table 7.1 lists the
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FIG. 7.3: As in Fig. 7.1, but for the New Bern Craven County Regional Airport (station
93719).

limiting distances for three NARR grid points near the approximate center of each climate

region for five years of three-hourly NARR data (2000–04), again separated into only two

months. For example,R2 = 0.862 for all pairs of January temperatures at grid points be-
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TABLE 7.1: Distances within which the coefficient of determination,R2, first falls below
0.90 in comparisons between NARR variables at one target grid point and surrounding
grid points in each of North Carolina’s three climate regions. Three-hourly data pairs
are grouped into 20-km distance bins for both January and July over the five-year period
2000–04.

Location: Candler, NC
Climate Region: Mountains

January July

Variable Distance (km) R2 Distance (km) R2

Temperature 40 0.862 20 0.842
Dewpoint 60 0.877 20 0.800
Wind speed 20 0.814 20 0.827
Cloud cover 40 0.883 20 0.810
Precipitation 40 0.891 20 0.769

Location: Denton, NC
Climate Region: Piedmont

January July

Variable Distance (km) R2 Distance (km) R2

Temperature 100 0.899 80 0.895
Dewpoint 120 0.878 40 0.846
Wind speed 20 0.885 20 0.861
Cloud cover 60 0.861 20 0.888
Precipitation 60 0.840 20 0.822

Location: Hookerton, NC
Climate Region: Coastal Plain

January July

Variable Distance (km) R2 Distance (km) R2

Temperature 80 0.878 80 0.865
Dewpoint 80 0.876 40 0.897
Wind speed 60 0.719 40 0.887
Cloud cover 60 0.887 20 0.870
Precipitation 60 0.833 20 0.868

tween 20–40 km away from the target grid point in the mountains. These results indicate

that a long-distance spatial averaging procedure would likely fail to produce a realistic time

series of hourly data. For this reason, the author recommends against the use of the virtual

station feature within the MEPDG software. A better approach is to use a nearby HCD

station that is climatologically similar to the desired location.

Alternatively, the large quantity of HCD files derived solely from NARR data, repre-

69



senting model output with no direct observations, provide arealistic picture of the climate

at hundreds of sites in and near North Carolina (see Fig. 5.5). However, the impact of these

HCD files on pavement performance predictions remains untested within the MEPDG soft-

ware. Such tests would help to determine the feasibility of using these files in remote lo-

cations where there may exist large spatial and temporal gaps in hourly data (e.g., northern

Maine, western states, Alaska, or even Western North Carolina).

The design projects analyzed in section 6 represent only a small sample for each pave-

ment type. Ideally, a more conclusive sensitivity analysisof the differences in pavement

performance predictions using the new and the original HCD files would take advantage

of a large number of design projects for each pavement type and a correspondingly large

number of projects using each climatological station location. With such a small sample of

projects (e.g., one CTABC pavement project), it remains difficult to assess the changes in

predicted pavement conditions from a statistical perspective. The use of thet distribution

in statistical tests partially mitigates the problem of small sample sizes, but more projects

would instill more confidence in the conclusions presented here.

Lastly, a word of caution is warranted regarding the interpretation of the results of the

sensitivity analysis. Model developers often calibrate models to produce reasonable results

for test cases. The parameters selected for use with the MEPDG software are no excep-

tion. Even with an improved characterization of certain parameters, such as climatological

data, the resulting predictions by the model can suffer negative impacts and even diverge

from reality under the influence of the modified input values.Though one would hope

that improving the HCD files would instill more confidence in the pavement performance

predictions, one must interpret these results through a lens of healthy skepticism.
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Appendix A. Supplemental Tables

TABLE A.1: Statistical measures for each meteorological time series for both the original
(Old) and the new (New) HCD files at each of the 30 original Pavement ME Design site
locations. Variables include 2-m air temperature (TAIR, °F), 10-m wind speed (WSPD,
m s−1), percentage of possible sunshine (PSUN, %), daily precipitation totals ending at
midnight local standard time (PREC, in), and relative humidity (RELH, %). Parentheses
indicate removal of missing temperatures, assumed zero, with value shown giving the
next lowest temperature in the record. Asterisks (*) indicate unreasonable values in the
record. The new 35-yr HCD files have a period of record from 1 January 1979 to 31
December 2013.

Station 03812 (Asheville, NC)
Original period of record: 1 July 1996–28 February 2006 (9.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 93.9 98.1 74.0* 48.0 100.0 100.0 4.42 4.47 100.0 100.0
Minimum 5.0 −16.1 0.0 0.0 0.0 0.0 0.00 0.00 0.0 8.0
Mean 55.4 55.3 5.3 6.8 59.6 50.0 0.12 0.13 73.8 73.4
25th percentile 43.0 43.0 0.0 3.0 0.0 0.0 0.00 0.00 58.0 57.0
Median 57.0 57.0 5.0 6.0 75.0 50.0 0.00 0.00 79.0 78.0
75th percentile 68.0 68.0 8.0 10.0 100.0 100.0 0.07 0.05 93.093.0
Sample std. dev. 16.0 16.4 4.8 5.6 43.8 43.7 0.33 0.35 21.1 21.5

Station 13723 (Greensboro, NC)
Original period of record: 1 July 1996–28 February 2006 (9.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 97.0 102.9 34.0 47.0 100.0 100.0 4.16 5.11 100.0 100.0
Minimum 7.0 −8.0 0.0 0.0 0.0 0.0 0.00 0.00 11.0 8.0
Mean 58.6 58.6 6.0 7.1 48.9 47.7 0.11 0.11 69.3 67.3
25th percentile 46.0 45.0 4.0 5.0 0.0 0.0 0.00 0.00 53.0 51.0
Median 60.1 60.1 6.0 7.0 50.0 50.0 0.00 0.00 71.0 69.0
75th percentile 72.0 72.0 8.0 9.0 100.0 100.0 0.04 0.03 89.0 86.0
Sample std. dev. 16.6 17.0 4.0 4.4 40.6 42.3 0.32 0.33 21.0 21.1
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TABLE A.1: (Continued)

Station 13882 (Chattanooga, TN)
Original period of record: 1 July 1996–28 February 2006 (9.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 100.0 106.0 27.0 46.0 100.0 100.0 5.24 9.49 100.0 100.0
Minimum 7.0 −9.9 0.0 0.0 0.0 0.0 0.00 0.00 0.0 10.0
Mean 60.7 60.4 4.2 5.1 60.3 47.4 0.15 0.15 71.4 70.4
25th percentile 48.0 46.9 0.0 0.0 25.0 0.0 0.00 0.00 56.0 55.0
Median 63.0 62.1 4.0 5.0 75.0 50.0 0.00 0.00 75.0 74.0
75th percentile 73.9 73.9 7.0 8.0 100.0 100.0 0.06 0.06 90.0 89.0
Sample std. dev. 16.8 17.3 4.1 4.7 41.0 42.1 0.37 0.39 20.4 20.5

Station 13744 (Florence, SC)
Original period of record: 1 April 1999–28 February 2006 (6.91 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 102.9 106.0 33.0 64.0 100.0 100.0 4.22 4.26 100.0 100.0
Minimum (9.8) 0.1 0.0 0.0 0.0 0.0 0.00 0.00 11.0 9.0
Mean 63.1 63.3 6.0 7.2 68.8 55.7 0.10 0.05 70.8 69.9
25th percentile 51.0 51.1 4.0 5.0 25.0 12.0 0.00 0.00 54.0 53.0
Median 66.0 64.9 6.0 7.0 100.0 75.0 0.00 0.00 74.0 73.0
75th percentile 75.0 75.0 8.0 10.0 100.0 100.0 0.02 0.00 90.089.0
Sample std. dev. 16.1 16.3 3.9 4.5 41.4 43.7 0.32 0.24 21.7 21.2

Station 13877 (Bristol/Johnson City/Kingsport, TN)
Original period of record: 1 July 1996–28 February 2006 (9.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 99.0 102.0 31.0 62.0 100.0 100.0 3.50 3.50 103.0 100.0
Minimum 5.0 −20.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 8.0
Mean 55.6 55.6 3.6 4.7 53.6 43.0 0.12 0.11 73.9 71.8
25th percentile 42.1 42.1 0.0 0.0 0.0 0.0 0.00 0.00 59.0 57.0
Median 57.0 57.0 3.0 5.0 50.0 25.0 0.00 0.00 78.0 75.0
75th percentile 69.0 69.1 6.0 7.0 100.0 88.0 0.08 0.08 92.0 89.0
Sample std. dev. 17.1 17.4 4.1 4.7 41.8 41.4 0.29 0.27 19.8 19.9

Station 13722 (Raleigh/Durham, NC)
Original period of record: 1 July 1996–28 February 2006 (9.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 102.9 105.1 42.0 54.0 100.0 100.0 5.33 5.64 100.0 100.0
Minimum 8.0 −7.1 0.0 0.0 0.0 0.0 0.00 0.00 0.0 8.0
Mean 59.9 60.0 5.2 6.7 45.5 42.3 0.13 0.12 71.3 69.4
25th percentile 46.9 46.9 3.0 3.0 0.0 0.0 0.00 0.00 54.0 52.0
Median 62.0 62.1 5.0 7.0 25.0 25.0 0.00 0.00 74.0 72.0
75th percentile 73.0 73.0 8.0 9.0 75.0 75.0 0.04 0.04 91.0 89.0
Sample std. dev. 16.9 17.1 4.0 4.4 38.9 40.4 0.36 0.33 21.6 21.4
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TABLE A.1: (Continued)

Station 93785 (Chapel Hill, NC)
Original period of record: 1 July 1999–28 February 2006 (6.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 100.0 103.2 24.0 36.0 100.0 100.0 5.28 5.23 100.0 100.0
Minimum (5.1) −6.1 0.0 0.0 0.0 0.0 0.00 0.00 0.0 10.0
Mean 59.1 59.6 3.8 6.7 70.3 51.7 0.11 0.12 71.1 70.2
25th percentile 46.0 46.4 0.0 4.0 25.0 0.0 0.00 0.00 54.0 57.0
Median 61.0 61.1 4.0 6.0 100.0 50.0 0.00 0.00 74.0 72.0
75th percentile 72.0 73.4 6.0 9.0 100.0 100.0 0.03 0.06 91.0 86.0
Sample std. dev. 16.9 17.2 3.3 4.4 41.2 43.5 0.31 0.34 21.5 17.9

Station 93765 (Beaufort, NC)
Original period of record: 1 May 2000–28 February 2006 (5.83years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 94.0 98.1 39.0 48.0 100.0 100.0 5.52 7.89 100.0 100.0
Minimum (9.0) 8.6 0.0 0.0 0.0 0.0 0.00 0.00 16.0 14.0
Mean 63.4 66.0 8.4 10.9 67.9 51.9 0.15 0.15 77.7 77.2
25th percentile 52.0 57.2 5.0 7.0 25.0 12.0 0.00 0.00 69.0 70.0
Median 66.0 68.0 8.0 10.0 100.0 50.0 0.00 0.00 81.0 79.0
75th percentile 76.0 77.0 11.0 14.0 100.0 100.0 0.05 0.09 90.0 87.0
Sample std. dev. 15.0 12.9 4.8 5.6 39.5 40.7 0.43 0.42 16.0 12.8

Station 03810 (Hickory, NC)
Original period of record: 1 January 1998–28 February 2006 (8.16 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 100.9 102.9 25.0 69.0 100.0 100.0 6.31 6.31 100.0 100.0
Minimum (3.2) −7.8 0.0 0.0 0.0 0.0 0.00 0.00 0.0 6.0
Mean 58.5 58.7 4.3 5.5 68.3 54.4 0.12 0.07 69.1 68.4
25th percentile 46.0 46.0 0.0 3.0 25.0 0.0 0.00 0.00 51.0 51.0
Median 60.0 60.1 4.0 6.0 100.0 75.0 0.00 0.00 71.0 70.0
75th percentile 71.0 72.0 6.0 8.0 100.0 100.0 0.04 0.00 90.0 88.0
Sample std. dev. 16.3 16.7 3.6 4.2 42.0 44.5 0.34 0.26 21.8 21.9

Station 93740 (Fayetteville, NC)
Original period of record: 1 April 1998–28 February 2006 (7.91 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 102.0 109.0 40.0 63.0 100.0 100.0 4.93 4.33 100.0 100.0
Minimum 13.0 −2.7 0.0 0.0 0.0 0.0 0.00 0.00 0.0 7.0
Mean 62.5 62.2 6.4 7.1 68.7 56.4 0.11 0.09 70.0 69.9
25th percentile 50.0 49.7 4.0 5.0 25.0 12.0 0.00 0.00 53.0 53.0
Median 64.9 64.2 6.0 7.0 100.0 75.0 0.00 0.00 72.3 73.0
75th percentile 75.0 75.0 9.0 9.0 100.0 100.0 0.02 0.01 90.0 89.0
Sample std. dev. 16.4 16.7 3.9 4.4 41.6 43.1 0.34 0.30 21.9 21.7
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TABLE A.1: (Continued)

Station 13881 (Charlotte, NC)
Original period of record: 1 July 1998–28 February 2006 (7.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 100.0 102.9 34.0 63.0 100.0 100.0 4.14 6.33 100.0 100.0
Minimum 10.0 −5.1 0.0 0.0 0.0 0.0 0.00 0.00 11.0 6.0
Mean 60.4 60.8 4.9 6.6 41.1 41.6 0.11 0.11 69.6 66.6
25th percentile 48.0 48.0 3.0 5.0 0.0 0.0 0.00 0.00 52.0 50.0
Median 62.1 63.0 5.0 6.0 25.0 25.0 0.00 0.00 71.0 68.0
75th percentile 73.0 73.0 7.0 9.0 75.0 75.0 0.03 0.03 90.0 86.0
Sample std. dev. 16.3 16.6 3.4 4.2 37.3 40.5 0.31 0.33 21.7 21.3

Station 93719 (New Bern, NC)
Original period of record: 1 October 1997–28 February 2006 (8.41 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 100.0 100.9 32.0 70.0 100.0 100.0 6.52 9.73 100.0 100.0
Minimum (4.0) −3.8 0.0 0.0 0.0 0.0 0.00 0.00 0.0 11.0
Mean 61.6 62.4 5.8 6.7 66.3 54.4 0.14 0.08 75.4 73.6
25th percentile 49.0 50.0 3.0 4.0 25.0 0.0 0.00 0.00 61.0 60.0
Median 64.0 64.9 6.0 7.0 100.0 75.0 0.00 0.00 80.0 78.0
75th percentile 74.0 75.0 8.0 9.0 100.0 100.0 0.06 0.00 93.0 90.0
Sample std. dev. 16.0 16.1 4.1 4.6 41.7 43.9 0.40 0.33 19.4 19.5

Station 93807 (Winston-Salem, NC)
Original period of record: 1 December 1998–28 February 2006(7.24 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 98.1 102.0 25.0 63.0 100.0 100.0 5.52 5.52 100.0 100.0
Minimum (9.4) −8.1 0.0 0.0 0.0 0.0 0.00 0.00 0.0 5.0
Mean 58.9 58.8 4.8 6.3 66.3 52.7 0.12 0.09 67.1 67.4
25th percentile 46.0 45.7 3.0 3.0 25.0 0.0 0.00 0.00 50.0 53.0
Median 61.0 60.5 5.0 6.0 100.0 75.0 0.00 0.00 67.5 69.0
75th percentile 72.0 72.2 7.0 8.0 100.0 100.0 0.04 0.01 87.0 84.0
Sample std. dev. 16.5 16.9 3.6 4.2 43.0 44.2 0.32 0.28 21.7 19.8

Station 13776 (Lumberton, NC)
Original period of record: 1 March 1999–28 February 2006 (7.00 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 102.0 106.0 34.0 38.0 100.0 100.0 7.62 7.41 100.0 100.0
Minimum 13.0 −0.2 0.0 0.0 0.0 0.0 0.00 0.00 13.0 10.0
Mean 62.1 62.5 5.4 7.3 69.5 56.9 0.11 0.12 73.1 73.4
25th percentile 50.0 50.0 3.0 5.0 25.0 12.0 0.00 0.00 57.0 60.0
Median 65.0 64.4 5.0 7.0 100.0 75.0 0.00 0.00 78.0 76.0
75th percentile 75.0 75.4 8.0 10.0 100.0 100.0 0.03 0.04 93.089.0
Sample std. dev. 16.5 16.6 4.2 4.5 41.3 43.2 0.37 0.34 21.0 18.2
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TABLE A.1: (Continued)

Station 13737 (Norfolk, VA)
Original period of record: 1 July 1996–28 February 2006 (9.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 100.0 104.0 41.0 68.0 100.0 100.0 6.23 8.93 100.0 100.0
Minimum (8.3) −2.9 0.0 0.0 0.0 0.0 0.00 0.00 13.0 9.0
Mean 60.4 60.5 7.9 9.8 58.1 50.6 0.13 0.13 73.2 69.8
25th percentile 47.0 46.9 5.0 6.0 25.0 0.0 0.00 0.00 60.0 56.0
Median 62.0 62.1 7.0 9.0 75.0 50.0 0.00 0.00 76.0 72.0
75th percentile 73.9 73.9 11.0 13.0 100.0 100.0 0.04 0.04 89.0 86.0
Sample std. dev. 16.0 16.4 4.8 5.5 38.3 41.5 0.37 0.39 18.5 18.7

Station 93783 (Burlington, NC)
Original period of record: 1 July 1998–28 February 2006 (7.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 100.0 104.0 28.0 32.0 100.0 100.0 4.10 4.69 100.0 100.0
Minimum (1.7) −5.3 0.0 0.0 0.0 0.0 0.00 0.00 0.0 7.0
Mean 58.9 59.2 4.6 7.0 68.7 51.2 0.11 0.12 68.7 69.9
25th percentile 46.0 45.8 0.0 5.0 25.0 0.0 0.00 0.00 51.0 57.0
Median 61.0 60.8 4.0 7.0 100.0 50.0 0.00 0.00 72.0 72.0
75th percentile 72.0 73.2 7.0 9.0 100.0 100.0 0.04 0.05 89.0 85.0
Sample std. dev. 17.3 17.3 3.9 4.3 41.9 43.7 0.33 0.33 21.8 18.1

Station 93782 (Maxton, NC)
Original period of record: 1 June 1998–28 February 2006 (7.75 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 102.0 107.1 33.0 40.0 100.0 100.0 4.47 5.72 100.0 100.0
Minimum (9.1) −0.3 0.0 0.0 0.0 0.0 0.00 0.00 0.0 8.0
Mean 61.9 62.1 5.6 6.8 70.0 56.7 0.09 0.12 72.5 72.7
25th percentile 49.0 49.4 3.0 4.0 25.0 12.0 0.00 0.00 56.0 60.0
Median 64.0 64.0 5.0 6.0 100.0 75.0 0.00 0.00 77.0 76.0
75th percentile 75.0 75.2 8.0 9.0 100.0 100.0 0.02 0.04 93.0 89.0
Sample std. dev. 16.9 16.7 4.0 4.2 41.5 43.1 0.32 0.33 21.5 18.5

Station 13728 (Danville, VA)
Original period of record: 1 August 2000–28 February 2006 (5.58 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 100.0 102.9 28.0 63.0 100.0 100.0 3.12 5.81 100.0 100.0
Minimum 6.0 −9.0 0.0 0.0 0.0 0.0 0.00 0.00 11.0 6.0
Mean 57.2 58.5 4.9 6.4 67.2 51.1 0.11 0.10 70.5 68.4
25th percentile 43.0 44.6 3.0 4.0 25.0 0.0 0.00 0.00 52.0 51.0
Median 59.0 60.1 5.0 6.0 100.0 62.0 0.00 0.00 74.0 71.0
75th percentile 71.0 72.0 7.0 9.0 100.0 100.0 0.04 0.03 92.0 88.0
Sample std. dev. 17.4 17.5 3.9 4.2 42.5 44.3 0.28 0.30 22.3 21.4
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TABLE A.1: (Continued)

Station 93759 (Rocky Mount, NC)
Original period of record: 1 October 2000–28 February 2006 (5.41 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 122.0* 104.0 36.0 66.0 100.0 100.0 4.39 7.53 100.0 100.0
Minimum (3.9) −3.8 0.0 0.0 0.0 0.0 0.00 0.00 7.0 8.0
Mean 58.8 60.3 5.2 7.0 70.1 54.0 0.09 0.12 74.6 72.4
25th percentile 45.0 46.9 3.0 5.0 25.0 0.0 0.00 0.00 57.0 57.0
Median 61.0 62.1 5.0 7.0 100.0 75.0 0.00 0.00 79.0 77.0
75th percentile 73.0 73.9 8.0 9.0 100.0 100.0 0.02 0.04 94.0 90.0
Sample std. dev. 17.5 17.2 4.1 4.5 41.0 43.9 0.29 0.33 21.6 20.3

Station 93846 (Anderson, SC)
Original period of record: 1 November 1998–28 February 2006(7.33 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 100.9 106.0 31.0 68.0 100.0 100.0 5.68 4.85 100.0 100.0
Minimum 9.0 −4.9 0.0 0.0 0.0 0.0 0.00 0.00 0.0 9.0
Mean 60.5 61.3 5.1 6.5 69.4 56.8 0.12 0.09 70.6 69.2
25th percentile 48.0 48.9 3.0 3.0 25.0 0.0 0.00 0.00 53.0 52.0
Median 62.0 63.0 5.0 6.0 100.0 75.0 0.00 0.00 74.0 72.0
75th percentile 73.0 73.9 8.0 9.0 100.0 100.0 0.03 0.00 90.0 89.0
Sample std. dev. 16.1 16.5 4.2 4.8 41.9 44.1 0.37 0.29 21.6 21.6

Station 53870 (Gastonia, NC)
Original period of record: 1 February 1999–28 February 2006(7.07 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 100.0 105.1 22.0 31.0 100.0 100.0 3.31 4.70 100.0 100.0
Minimum 5.0 −2.1 0.0 0.0 0.0 0.0 0.00 0.00 0.0 7.0
Mean 60.2 60.3 3.7 6.0 73.1 51.5 0.11 0.12 70.2 70.7
25th percentile 48.0 47.2 0.0 3.0 50.0 0.0 0.00 0.00 53.0 57.0
Median 62.0 61.9 4.0 6.0 100.0 50.0 0.00 0.00 73.0 73.0
75th percentile 72.0 73.7 6.0 8.0 100.0 100.0 0.03 0.04 90.0 86.0
Sample std. dev. 16.3 16.8 3.3 3.9 39.8 43.5 0.30 0.32 21.8 18.3

Station 13748 (Wilmington, NC)
Original period of record: 1 July 1996–28 February 2006 (9.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 102.9 102.9 51.0 62.0 100.0 100.0 6.77 13.50 100.0 100.0
Minimum 14.0 1.0 0.0 0.0 0.0 0.0 0.00 0.00 14.0 10.0
Mean 63.4 63.4 6.6 7.8 69.3 56.8 0.15 0.15 75.1 73.3
25th percentile 52.0 52.0 4.0 5.0 25.0 0.0 0.00 0.00 62.0 60.0
Median 66.0 66.0 6.0 8.0 100.0 75.0 0.00 0.00 79.0 78.0
75th percentile 75.9 75.9 9.0 11.0 100.0 100.0 0.06 0.05 90.090.0
Sample std. dev. 15.5 15.7 4.6 5.1 41.1 43.7 0.46 0.48 19.0 19.2
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TABLE A.1: (Continued)

Station 93729 (Cape Hatteras, NC)
Original period of record: 1 July 1996–28 February 2006 (9.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 92.0 98.1 46.0 68.0 100.0 100.0 58.10* 11.42 104.0 100.0
Minimum (4.1*) 6.1 0.0 0.0 0.0 0.0 0.00 0.00 0.0 12.0
Mean 62.9 63.2 8.3 10.0 71.5 57.9 0.17 0.16 77.7 76.2
25th percentile 52.0 52.0 5.0 7.0 25.0 0.0 0.00 0.00 67.0 65.0
Median 64.0 64.9 8.0 9.0 100.0 75.0 0.00 0.00 81.0 79.0
75th percentile 75.0 75.0 11.0 13.0 100.0 100.0 0.06 0.05 90.0 89.0
Sample std. dev. 14.0 14.3 4.2 5.1 40.4 43.7 1.07 0.49 15.9 15.8

Station 13891 (Knoxville, TN)
Original period of record: 1 July 1996–28 February 2006 (9.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 96.1 105.1 38.0 43.0 100.0 100.0 3.70 5.75 104.0 100.0
Minimum 5.0 −23.1 0.0 0.0 0.0 0.0 0.00 0.00 0.0 11.0
Mean 59.1 58.8 5.3 6.0 50.0 46.0 0.14 0.13 72.5 71.5
25th percentile 46.0 45.0 3.0 3.0 0.0 0.0 0.00 0.00 58.0 57.0
Median 61.0 61.0 5.0 6.0 50.0 50.0 0.00 0.00 75.0 74.0
75th percentile 72.0 72.0 7.0 8.0 100.0 100.0 0.08 0.07 89.0 89.0
Sample std. dev. 16.8 17.3 4.3 4.7 39.7 41.7 0.34 0.34 19.0 19.5

Station 13883 (Columbia, SC)
Original period of record: 1 July 1996–28 February 2006 (9.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 104.0 108.0 34.0 62.0 100.0 100.0 5.17 6.45 100.0 100.0
Minimum 13.0 −0.0 0.0 0.0 0.0 0.0 0.00 0.00 11.0 8.0
Mean 63.6 63.4 5.2 6.3 55.5 48.0 0.11 0.09 69.1 68.8
25th percentile 51.1 51.1 3.0 3.0 25.0 0.0 0.00 0.00 51.0 51.0
Median 66.0 66.0 5.0 6.0 50.0 50.0 0.00 0.00 73.0 73.0
75th percentile 76.0 75.9 8.0 9.0 100.0 100.0 0.02 0.00 89.0 89.0
Sample std. dev. 16.4 16.8 4.0 4.6 41.0 41.7 0.33 0.30 21.7 22.1

Station 53872 (Monroe, NC)
Original period of record: 1 February 1999–28 February 2006(7.07 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 100.0 104.1 34.0 39.0 100.0 100.0 4.06 6.98 100.0 100.0
Minimum 10.0 −0.8 0.0 0.0 0.0 0.0 0.00 0.00 4.0 4.0
Mean 60.1 60.8 5.3 6.9 68.1 50.8 0.10 0.12 70.1 70.6
25th percentile 48.0 48.0 3.0 5.0 25.0 0.0 0.00 0.00 53.0 58.0
Median 62.0 62.4 5.0 7.0 100.0 50.0 0.00 0.00 72.0 72.0
75th percentile 72.0 74.1 8.0 9.0 100.0 100.0 0.02 0.04 90.0 86.0
Sample std. dev. 16.3 16.7 3.8 4.1 42.1 43.2 0.30 0.33 21.8 18.0
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TABLE A.1: (Continued)

Station 93781 (Roanoke Rapids, NC)
Original period of record: 1 November 1998–28 February 2006(7.33 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 101.0 107.0 32.0 38.0 100.0 100.0 191.40* 6.95 100.0100.0
Minimum (6.6) −4.6 0.0 0.0 0.0 0.0 0.00 0.00 3.0 9.0
Mean 59.1 59.5 4.5 7.4 66.9 54.0 0.18 0.12 70.7 72.7
25th percentile 46.0 46.0 0.0 5.0 25.0 0.0 0.00 0.00 54.0 60.0
Median 61.0 60.8 4.0 7.0 100.0 75.0 0.00 0.00 73.0 75.0
75th percentile 72.0 73.4 7.0 10.0 100.0 100.0 0.02 0.05 90.088.0
Sample std. dev. 16.8 17.4 3.6 4.4 42.8 44.4 3.73 0.34 21.1 18.2

Station 93741 (Newport News, VA)
Original period of record: 1 December 2000–28 February 2006(5.24 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 102.0 105.1 40.0 70.0 100.0 100.0 4.15 7.18 100.0 100.0
Minimum (9.6) 0.2 0.0 0.0 0.0 0.0 0.00 0.00 12.0 8.0
Mean 58.6 59.4 6.4 8.2 66.8 52.3 0.11 0.05 72.2 70.9
25th percentile 44.6 46.0 4.0 5.0 25.0 0.0 0.00 0.00 56.0 56.0
Median 60.0 61.0 6.0 8.0 100.0 75.0 0.00 0.00 75.0 74.0
75th percentile 73.0 73.4 9.0 11.0 100.0 100.0 0.03 0.00 90.088.0
Sample std. dev. 17.4 17.2 4.3 4.9 42.8 43.5 0.33 0.25 20.6 19.9

Station 13786 (Elizabeth City, NC)
Original period of record: 1 March 1998–28 February 2006 (8.00 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 98.1 102.0 43.0 63.0 100.0 100.0 4.40 7.56 100.0 100.0
Minimum (2.4) 2.9 0.0 0.0 0.0 0.0 0.00 0.00 16.0 8.0
Mean 60.7 61.4 8.0 9.1 66.8 53.5 0.12 0.12 76.9 75.5
25th percentile 48.0 49.2 5.0 6.0 25.0 0.0 0.00 0.00 64.0 65.0
Median 63.0 63.0 8.0 9.0 100.0 75.0 0.00 0.00 80.0 79.0
75th percentile 74.0 74.0 11.0 12.0 100.0 100.0 0.04 0.06 93.0 89.0
Sample std. dev. 16.4 15.5 4.7 5.0 41.8 42.6 0.34 0.33 18.0 16.4

Station 03870 (Greer, SC)
Original period of record: 1 July 1996–28 February 2006 (9.66 years)

TAIR WSPD PSUN PREC RELH
Old New Old New Old New Old New Old New

Maximum 102.9 106.0 28.0 63.0 100.0 100.0 4.68 9.32 100.0 100.0
Minimum (4.9) −4.0 0.0 0.0 0.0 0.0 0.00 0.00 7.0 4.0
Mean 60.6 60.3 5.5 6.7 66.0 55.3 0.13 0.13 69.4 68.0
25th percentile 48.0 48.0 3.0 3.0 25.0 0.0 0.00 0.00 53.0 51.0
Median 62.0 62.1 5.0 6.0 100.0 75.0 0.00 0.00 71.0 70.0
75th percentile 73.0 73.0 8.0 9.0 100.0 100.0 0.05 0.04 89.0 87.0
Sample std. dev. 15.9 16.3 3.9 4.5 43.1 44.3 0.37 0.37 21.4 21.7
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TABLE A.2: Percentages of the complete 35-year time series of hourly data at each station
categorized by the source and disposition of the observations and estimates for 2-m air
temperature (TAIR), 2-m dewpoint temperature (DEWP), 10-mwind speed (WSPD),
cloud cover (CLCV), and precipitation (PREC). Direct observations refer to unmodified
measurements at the given station, but may include short-term temporal gaps of two hours
or less filled via linear interpolation for air temperature,dewpoint temperature, and wind
speed measurements. Values in parentheses indicate the number of hours (observations)
in each category.

Station 03812 (Asheville, NC)
TAIR DEWP WSPD

Direct observations 99.967% (306739) 99.938% (306651) 99.971% (306751)
Estimates 0.031% (94) 0.055% (168) 0.029% (89)
Quality-controlled observations 0.001% (3) 0.001% (4) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.006% (17) 0.000% (0)
Suspect estimates 0.001% (4) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 97.720% (299845) 99.843% (306357)
Linearly-interpolated observations 0.843% (2587) 0.015%(46)
Nearest observations 1.053% (3230)
Linearly-interpolated nearest observations 0.338% (1037)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.142% (437)
Total direct observations 99.488% (1526343)
Total other 0.512% (7857)

Station 93765 (Beaufort, NC)
TAIR DEWP WSPD

Direct observations 35.047% (107539) 35.051% (107552) 35.055% (107563)
Estimates 64.357% (197474) 64.877% (199068) 64.945% (199277)
Quality-controlled observations 0.002% (7) 0.001% (3) 0.000% (0)
Quality-controlled estimates 0.009% (27) 0.071% (217) 0.000% (0)
Suspect estimates 0.584% (1793) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 33.418% (102539) 34.041% (104450)
Linearly-interpolated observations 0.843% (2587) 1.068%(3278)
Nearest observations 61.835% (189736)
Linearly-interpolated nearest observations 3.858% (11837)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 64.891% (199112)
Total direct observations 34.522% (529643)
Total other 65.478% (1004557)
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TABLE A.2: (Continued)

Station 93783 (Burlington, NC)
TAIR DEWP WSPD

Direct observations 35.076% (107626) 35.062% (107584) 34.625% (106242)
Estimates 64.661% (198407) 64.892% (199116) 65.375% (200598)
Quality-controlled observations 0.002% (7) 0.000% (1) 0.000% (0)
Quality-controlled estimates 0.001% (3) 0.045% (139) 0.000% (0)
Suspect estimates 0.260% (797) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 33.852% (103870) 33.759% (103587)
Linearly-interpolated observations 0.445% (1366) 1.275%(3912)
Nearest observations 64.501% (197915)
Linearly-interpolated nearest observations 1.156% (3548)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 64.966% (199341)
Total direct observations 34.475% (528909)
Total other 65.525% (1005291)

Station 93729 (Cape Hatteras, NC)
TAIR DEWP WSPD

Direct observations 99.597% (305602) 98.821% (303223) 98.978% (303704)
Estimates 0.342% (1048) 0.925% (2839) 1.022% (3136)
Quality-controlled observations 0.058% (178) 0.005% (14) 0.000% (0)
Quality-controlled estimates 0.000% (1) 0.249% (764) 0.000% (0)
Suspect estimates 0.004% (11) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 93.718% (287565) 97.296% (298542)
Linearly-interpolated observations 1.360% (4174) 2.332%(7154)
Nearest observations 4.453% (13663)
Linearly-interpolated nearest observations 0.423% (1297)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.373% (1144)
Total direct observations 97.682% (1498636)
Total other 2.318% (35564)
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TABLE A.2: (Continued)

Station 93785 (Chapel Hill, NC)
TAIR DEWP WSPD

Direct observations 34.588% (106131) 34.482% (105804) 34.033% (104427)
Estimates 65.182% (200004) 65.482% (200926) 65.967% (202413)
Quality-controlled observations 0.008% (26) 0.002% (7) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.034% (103) 0.000% (0)
Suspect estimates 0.221% (679) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 32.942% (101078) 33.719% (103464)
Linearly-interpolated observations 0.624% (1914) 0.891%(2733)
Nearest observations 65.522% (201048)
Linearly-interpolated nearest observations 0.867% (2659)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 65.390% (200643)
Total direct observations 33.953% (520904)
Total other 66.047% (1013296)

Station 13881 (Charlotte, NC)
TAIR DEWP WSPD

Direct observations 99.987% (306799) 99.987% (306799) 99.987% (306799)
Estimates 0.013% (41) 0.013% (41) 0.013% (41)
Quality-controlled observations 0.000% (0) 0.000% (0) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.000% (0) 0.000%(0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 97.975% (300627) 99.864% (306423)
Linearly-interpolated observations 1.381% (4237) 0.004%(13)
Nearest observations 0.540% (1658)
Linearly-interpolated nearest observations 0.058% (177)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.132% (404)
Total direct observations 99.560% (1527447)
Total other 0.440% (6753)
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TABLE A.2: (Continued)

Station 13786 (Elizabeth City, NC)
TAIR DEWP WSPD

Direct observations 55.084% (169019) 54.904% (168467) 55.285% (169637)
Estimates 44.791% (137438) 45.059% (138260) 44.715% (137203)
Quality-controlled observations 0.004% (12) 0.015% (47) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.022% (66) 0.000% (0)
Suspect estimates 0.112% (343) 0.000% (0)
Suspect observations 0.009% (28) 0.000% (0)

CLCV PREC
Direct observations 52.252% (160331) 53.015% (162671)
Linearly-interpolated observations 1.661% (5096) 2.140%(6566)
Nearest observations 43.573% (133700)
Linearly-interpolated nearest observations 2.468% (7572)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 44.845% (137603)
Total direct observations 54.108% (830125)
Total other 45.892% (704075)

Station 93740 (Fayetteville, NC)
TAIR DEWP WSPD

Direct observations 89.016% (273136) 88.433% (271349) 89.684% (275187)
Estimates 10.916% (33496) 11.383% (34928) 10.316% (31653)
Quality-controlled observations 0.018% (55) 0.022% (66) 0.000% (0)
Quality-controlled estimates 0.002% (6) 0.162% (497) 0.000% (0)
Suspect estimates 0.044% (135) 0.000% (0)
Suspect observations 0.004% (12) 0.000% (0)

CLCV PREC
Direct observations 85.900% (263576) 81.248% (249301)
Linearly-interpolated observations 2.836% (8702) 8.311%(25500)
Nearest observations 10.823% (33208)
Linearly-interpolated nearest observations 0.395% (1213)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 10.442% (32039)
Total direct observations 86.856% (1332549)
Total other 13.144% (201651)
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Station 53870 (Gastonia, NC)
TAIR DEWP WSPD

Direct observations 34.986% (107352) 34.976% (107321) 34.694% (106456)
Estimates 64.601% (198221) 64.932% (199237) 65.306% (200384)
Quality-controlled observations 0.001% (4) 0.000% (0) 0.000% (0)
Quality-controlled estimates 0.002% (6) 0.092% (282) 0.000% (0)
Suspect estimates 0.409% (1256) 0.000% (0)
Suspect observations 0.000% (1) 0.000% (0)

CLCV PREC
Direct observations 33.832% (103809) 33.763% (103597)
Linearly-interpolated observations 0.460% (1410) 1.235%(3789)
Nearest observations 64.796% (198819)
Linearly-interpolated nearest observations 0.867% (2661)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 65.003% (199454)
Total direct observations 34.450% (528535)
Total other 65.550% (1005665)

Station 13723 (Greensboro, NC)
TAIR DEWP WSPD

Direct observations 99.986% (306798) 99.986% (306798) 99.986% (306798)
Estimates 0.014% (42) 0.014% (42) 0.014% (42)
Quality-controlled observations 0.000% (0) 0.000% (0) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.000% (0) 0.000%(0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 96.480% (296038) 99.836% (306338)
Linearly-interpolated observations 1.713% (5255) 0.021%(64)
Nearest observations 1.601% (4913)
Linearly-interpolated nearest observations 0.161% (493)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.143% (438)
Total direct observations 99.255% (1522770)
Total other 0.745% (11430)
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TABLE A.2: (Continued)

Station 03810 (Hickory, NC)
TAIR DEWP WSPD

Direct observations 88.834% (272579) 88.778% (272407) 88.843% (272605)
Estimates 11.125% (34137) 10.992% (33727) 11.157% (34235)
Quality-controlled observations 0.001% (4) 0.006% (19) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.224% (687) 0.000% (0)
Suspect estimates 0.037% (112) 0.000% (0)
Suspect observations 0.003% (8) 0.000% (0)

CLCV PREC
Direct observations 84.841% (260327) 77.564% (237998)
Linearly-interpolated observations 2.463% (7557) 10.989% (33718)
Nearest observations 12.256% (37606)
Linearly-interpolated nearest observations 0.394% (1209)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 11.447% (35124)
Total direct observations 85.772% (1315916)
Total other 14.228% (218284)

Station 13776 (Lumberton, NC)
TAIR DEWP WSPD

Direct observations 41.459% (127214) 41.428% (127118) 40.854% (125357)
Estimates 58.216% (178630) 58.529% (179589) 59.146% (181483)
Quality-controlled observations 0.001% (2) 0.000% (1) 0.000% (0)
Quality-controlled estimates 0.001% (3) 0.043% (132) 0.000% (0)
Suspect estimates 0.323% (991) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 39.886% (122385) 39.717% (121868)
Linearly-interpolated observations 0.858% (2633) 1.705%(5233)
Nearest observations 56.477% (173293)
Linearly-interpolated nearest observations 2.734% (8388)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 58.577% (179739)
Total direct observations 40.669% (623942)
Total other 59.331% (910258)
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TABLE A.2: (Continued)

Station 93782 (Maxton, NC)
TAIR DEWP WSPD

Direct observations 41.710% (127982) 41.705% (127968) 41.362% (126916)
Estimates 58.121% (178339) 58.252% (178739) 58.638% (179924)
Quality-controlled observations 0.003% (8) 0.000% (1) 0.000% (0)
Quality-controlled estimates 0.001% (3) 0.043% (132) 0.000% (0)
Suspect estimates 0.166% (508) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 40.358% (123833) 40.009% (122765)
Linearly-interpolated observations 0.658% (2020) 1.663%(5104)
Nearest observations 56.466% (173259)
Linearly-interpolated nearest observations 2.473% (7587)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 58.327% (178971)
Total direct observations 41.029% (629464)
Total other 58.971% (904736)

Station 53872 (Monroe, NC)
TAIR DEWP WSPD

Direct observations 35.134% (107806) 35.134% (107804) 34.917% (107140)
Estimates 64.688% (198489) 64.845% (198970) 65.083% (199700)
Quality-controlled observations 0.002% (7) 0.001% (2) 0.000% (0)
Quality-controlled estimates 0.001% (3) 0.021% (64) 0.000% (0)
Suspect estimates 0.173% (530) 0.000% (0)
Suspect observations 0.002% (5) 0.000% (0)

CLCV PREC
Direct observations 34.053% (104487) 33.902% (104026)
Linearly-interpolated observations 0.402% (1234) 1.211%(3716)
Nearest observations 64.639% (198339)
Linearly-interpolated nearest observations 0.860% (2639)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 64.887% (199098)
Total direct observations 34.628% (531263)
Total other 65.372% (1002937)
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TABLE A.2: (Continued)

Station 93719 (New Bern, NC)
TAIR DEWP WSPD

Direct observations 96.871% (297239) 96.851% (297179) 96.872% (297242)
Estimates 2.901% (8901) 2.611% (8013) 3.118% (9567)
Quality-controlled observations 0.002% (7) 0.001% (2) 0.000% (0)
Quality-controlled estimates 0.170% (521) 0.536% (1646) 0.010% (31)
Suspect estimates 0.056% (172) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 92.741% (284566) 85.659% (262836)
Linearly-interpolated observations 2.484% (7623) 10.972% (33668)
Nearest observations 4.427% (13583)
Linearly-interpolated nearest observations 0.302% (927)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 3.369% (10336)
Total direct observations 93.799% (1439062)
Total other 6.201% (95138)

Station 13722 (Raleigh/Durham, NC)
TAIR DEWP WSPD

Direct observations 99.965% (306733) 99.955% (306703) 99.968% (306743)
Estimates 0.035% (107) 0.043% (131) 0.032% (97)
Quality-controlled observations 0.000% (0) 0.000% (1) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.002% (5) 0.000%(0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 97.069% (297845) 99.802% (306231)
Linearly-interpolated observations 0.779% (2390) 0.024%(75)
Nearest observations 1.821% (5587)
Linearly-interpolated nearest observations 0.286% (877)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.174% (534)
Total direct observations 99.352% (1524255)
Total other 0.648% (9945)
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TABLE A.2: (Continued)

Station 93781 (Roanoke Rapids, NC)
TAIR DEWP WSPD

Direct observations 28.694% (88044) 28.687% (88024) 28.220% (86590)
Estimates 70.920% (217610) 71.211% (218503) 71.780% (220250)
Quality-controlled observations 0.001% (2) 0.001% (3) 0.000% (0)
Quality-controlled estimates 0.003% (8) 0.101% (310) 0.000% (0)
Suspect estimates 0.383% (1176) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 28.156% (86394) 27.133% (83255)
Linearly-interpolated observations 0.522% (1601) 1.582%(4855)
Nearest observations 68.176% (209192)
Linearly-interpolated nearest observations 3.100% (9512)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 71.285% (218730)
Total direct observations 28.178% (432307)
Total other 71.822% (1101893)

Station 93759 (Rocky Mount, NC)
TAIR DEWP WSPD

Direct observations 68.087% (208919) 67.992% (208626) 67.669% (207635)
Estimates 31.777% (97506) 31.905% (97896) 32.330% (99200)
Quality-controlled observations 0.009% (29) 0.011% (34) 0.000% (0)
Quality-controlled estimates 0.021% (65) 0.093% (284) 0.002% (5)
Suspect estimates 0.099% (304) 0.000% (0)
Suspect observations 0.006% (17) 0.000% (0)

CLCV PREC
Direct observations 64.806% (198850) 60.301% (185027)
Linearly-interpolated observations 2.223% (6820) 6.883%(21119)
Nearest observations 32.091% (98469)
Linearly-interpolated nearest observations 0.834% (2560)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 32.816% (100694)
Total direct observations 65.771% (1009057)
Total other 34.229% (525143)
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TABLE A.2: (Continued)

Station 13748 (Wilmington, NC)
TAIR DEWP WSPD

Direct observations 99.959% (306713) 99.944% (306669) 99.970% (306749)
Estimates 0.038% (116) 0.049% (149) 0.030% (91)
Quality-controlled observations 0.003% (9) 0.001% (2) 0.000% (0)
Quality-controlled estimates 0.001% (2) 0.007% (20) 0.000% (0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 96.954% (297494) 99.729% (306008)
Linearly-interpolated observations 0.946% (2902) 0.110%(338)
Nearest observations 1.992% (6112)
Linearly-interpolated nearest observations 0.062% (191)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.161% (494)
Total direct observations 99.311% (1523633)
Total other 0.689% (10567)

Station 93807 (Winston-Salem, NC)
TAIR DEWP WSPD

Direct observations 67.344% (206638) 59.868% (183698) 73.827% (226530)
Estimates 32.549% (99874) 39.562% (121393) 26.173% (80310)
Quality-controlled observations 0.033% (100) 0.024% (74) 0.000% (0)
Quality-controlled estimates 0.004% (12) 0.546% (1675) 0.000% (0)
Suspect estimates 0.070% (216) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 70.537% (216437) 68.270% (209481)
Linearly-interpolated observations 2.799% (8587) 5.571%(17095)
Nearest observations 25.840% (79286)
Linearly-interpolated nearest observations 0.779% (2389)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 26.158% (80264)
Total direct observations 67.969% (1042784)
Total other 32.031% (491416)
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TABLE A.2: (Continued)

Station 13877 (Bristol/Johnson City/Kingsport, TN)
TAIR DEWP WSPD

Direct observations 99.963% (306726) 99.942% (306661) 99.992% (306816)
Estimates 0.037% (114) 0.050% (154) 0.008% (24)
Quality-controlled observations 0.000% (0) 0.002% (5) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.007% (20) 0.000% (0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 96.237% (295293) 99.646% (305753)
Linearly-interpolated observations 0.828% (2540) 0.220%(675)
Nearest observations 2.559% (7852)
Linearly-interpolated nearest observations 0.330% (1014)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.134% (412)
Total direct observations 99.156% (1521249)
Total other 0.844% (12951)

Station 13728 (Danville, VA)
TAIR DEWP WSPD

Direct observations 85.789% (263236) 85.447% (262185) 85.501% (262352)
Estimates 14.160% (43449) 14.483% (44439) 14.499% (44488)
Quality-controlled observations 0.014% (43) 0.010% (31) 0.000% (0)
Quality-controlled estimates 0.004% (11) 0.060% (185) 0.000% (0)
Suspect estimates 0.028% (85) 0.000% (0)
Suspect observations 0.005% (16) 0.000% (0)

CLCV PREC
Direct observations 80.436% (246810) 75.258% (230923)
Linearly-interpolated observations 3.292% (10100) 10.221% (31361)
Nearest observations 15.835% (48587)
Linearly-interpolated nearest observations 0.392% (1202)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 14.521% (44556)
Total direct observations 82.486% (1265506)
Total other 17.514% (268694)
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TABLE A.2: (Continued)

Station 13882 (Chattanooga, TN)
TAIR DEWP WSPD

Direct observations 99.982% (306785) 99.977% (306768) 99.993% (306817)
Estimates 0.018% (55) 0.021% (65) 0.007% (23)
Quality-controlled observations 0.000% (0) 0.002% (7) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.000% (0) 0.000%(0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 96.752% (296875) 99.838% (306342)
Linearly-interpolated observations 0.811% (2488) 0.009%(27)
Nearest observations 2.002% (6143)
Linearly-interpolated nearest observations 0.389% (1193)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.154% (471)
Total direct observations 99.308% (1523587)
Total other 0.692% (10613)

Station 13891 (Knoxville, TN)
TAIR DEWP WSPD

Direct observations 99.996% (306827) 99.987% (306799) 99.997% (306832)
Estimates 0.004% (13) 0.011% (35) 0.003% (8)
Quality-controlled observations 0.000% (0) 0.000% (1) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.002% (5) 0.000%(0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 97.038% (297751) 99.859% (306408)
Linearly-interpolated observations 1.391% (4267) 0.006%(19)
Nearest observations 1.409% (4323)
Linearly-interpolated nearest observations 0.117% (358)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.135% (413)
Total direct observations 99.375% (1524617)
Total other 0.625% (9583)
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TABLE A.2: (Continued)

Station 93741 (Newport News, VA)
TAIR DEWP WSPD

Direct observations 98.126% (301090) 97.095% (297927) 98.244% (301451)
Estimates 1.835% (5632) 2.690% (8253) 1.756% (5389)
Quality-controlled observations 0.009% (27) 0.007% (22) 0.000% (0)
Quality-controlled estimates 0.003% (9) 0.208% (638) 0.000% (0)
Suspect estimates 0.002% (7) 0.000% (0)
Suspect observations 0.024% (75) 0.000% (0)

CLCV PREC
Direct observations 92.794% (284730) 84.889% (260473)
Linearly-interpolated observations 4.106% (12600) 12.930% (39674)
Nearest observations 2.699% (8281)
Linearly-interpolated nearest observations 0.355% (1088)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 2.181% (6693)
Total direct observations 94.230% (1445671)
Total other 5.770% (88529)

Station 13737 (Norfolk, VA)
TAIR DEWP WSPD

Direct observations 99.977% (306770) 99.881% (306475) 99.967% (306739)
Estimates 0.021% (65) 0.077% (236) 0.033% (101)
Quality-controlled observations 0.002% (5) 0.001% (3) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.041% (126) 0.000% (0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 97.736% (299894) 99.817% (306279)
Linearly-interpolated observations 1.031% (3165) 0.021%(63)
Nearest observations 1.133% (3475)
Linearly-interpolated nearest observations 0.054% (165)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.162% (498)
Total direct observations 99.476% (1526157)
Total other 0.524% (8043)
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TABLE A.2: (Continued)

Station 13744 (Florence, SC)
TAIR DEWP WSPD

Direct observations 99.003% (303781) 98.879% (303399) 99.131% (304173)
Estimates 0.984% (3020) 1.092% (3352) 0.869% (2667)
Quality-controlled observations 0.003% (10) 0.004% (12) 0.000% (0)
Quality-controlled estimates 0.003% (8) 0.025% (77) 0.000% (0)
Suspect estimates 0.005% (15) 0.000% (0)
Suspect observations 0.002% (6) 0.000% (0)

CLCV PREC
Direct observations 94.365% (289550) 86.826% (266418)
Linearly-interpolated observations 3.439% (10553) 12.023% (36891)
Nearest observations 1.881% (5772)
Linearly-interpolated nearest observations 0.269% (824)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 1.151% (3531)
Total direct observations 95.641% (1467321)
Total other 4.359% (66879)

Station 03870 (Greer, SC)
TAIR DEWP WSPD

Direct observations 99.969% (306745) 99.959% (306715) 99.968% (306742)
Estimates 0.031% (95) 0.039% (119) 0.032% (98)
Quality-controlled observations 0.000% (0) 0.000% (1) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.002% (5) 0.000%(0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 97.890% (300365) 99.671% (305830)
Linearly-interpolated observations 1.127% (3457) 0.178%(546)
Nearest observations 0.855% (2625)
Linearly-interpolated nearest observations 0.082% (252)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.151% (464)
Total direct observations 99.491% (1526397)
Total other 0.509% (7803)

98



TABLE A.2: (Continued)

Station 13883 (Columbia, SC)
TAIR DEWP WSPD

Direct observations 99.921% (306598) 99.917% (306585) 99.992% (306814)
Estimates 0.079% (241) 0.082% (251) 0.008% (26)
Quality-controlled observations 0.000% (0) 0.000% (1) 0.000% (0)
Quality-controlled estimates 0.000% (1) 0.001% (3) 0.000%(0)
Suspect estimates 0.000% (0) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 97.129% (298030) 93.139% (285789)
Linearly-interpolated observations 0.696% (2136) 6.798%(20860)
Nearest observations 1.907% (5851)
Linearly-interpolated nearest observations 0.222% (682)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.062% (191)
Total direct observations 98.020% (1503816)
Total other 1.980% (30384)

Station 93846 (Anderson, SC)
TAIR DEWP WSPD

Direct observations 91.605% (281082) 91.517% (280810) 91.603% (281074)
Estimates 8.359% (25648) 8.456% (25945) 8.397% (25766)
Quality-controlled observations 0.005% (15) 0.008% (25) 0.000% (0)
Quality-controlled estimates 0.001% (2) 0.020% (60) 0.000% (0)
Suspect estimates 0.030% (93) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 86.806% (266354) 82.780% (254003)
Linearly-interpolated observations 3.508% (10764) 8.346% (25609)
Nearest observations 9.215% (28274)
Linearly-interpolated nearest observations 0.426% (1307)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 8.874% (27228)
Total direct observations 88.862% (1363323)
Total other 11.138% (170877)
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TABLE A.2: (Continued)

Station 13750 (Norfolk, VA)
TAIR DEWP WSPD

Direct observations 99.544% (305441) 99.458% (305176) 99.659% (305793)
Estimates 0.420% (1289) 0.500% (1535) 0.341% (1047)
Quality-controlled observations 0.004% (12) 0.003% (8) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.039% (121) 0.000% (0)
Suspect estimates 0.002% (6) 0.000% (0)
Suspect observations 0.030% (92) 0.000% (0)

CLCV PREC
Direct observations 96.806% (297039) 89.100% (273393)
Linearly-interpolated observations 1.525% (4680) 10.525% (32295)
Nearest observations 1.198% (3676)
Linearly-interpolated nearest observations 0.425% (1304)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.375% (1152)
Total direct observations 96.913% (1486842)
Total other 3.087% (47358)

Station 93735 (Fort Eustis, VA)
TAIR DEWP WSPD

Direct observations 60.193% (184695) 60.039% (184225) 59.983% (184052)
Estimates 39.702% (121823) 39.853% (122285) 40.017% (122788)
Quality-controlled observations 0.001% (3) 0.016% (50) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.091% (280) 0.000% (0)
Suspect estimates 0.101% (310) 0.000% (0)
Suspect observations 0.003% (9) 0.000% (0)

CLCV PREC
Direct observations 58.532% (179601) 53.957% (165563)
Linearly-interpolated observations 0.630% (1932) 6.147%(18862)
Nearest observations 38.591% (118414)
Linearly-interpolated nearest observations 2.200% (6752)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 39.895% (122415)
Total direct observations 58.541% (898136)
Total other 41.459% (636064)
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TABLE A.2: (Continued)

Station 13769 (Virginia Beach, VA)
TAIR DEWP WSPD

Direct observations 99.451% (305156) 99.310% (304724) 99.565% (305504)
Estimates 0.540% (1656) 0.619% (1900) 0.435% (1336)
Quality-controlled observations 0.006% (18) 0.005% (15) 0.000% (0)
Quality-controlled estimates 0.001% (2) 0.066% (201) 0.000% (0)
Suspect estimates 0.001% (2) 0.000% (0)
Suspect observations 0.002% (6) 0.000% (0)

CLCV PREC
Direct observations 96.652% (296568) 88.946% (272923)
Linearly-interpolated observations 1.434% (4400) 10.578% (32457)
Nearest observations 1.453% (4458)
Linearly-interpolated nearest observations 0.415% (1273)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.476% (1460)
Total direct observations 96.785% (1484875)
Total other 3.215% (49325)

Station 13702 (Hampton, VA)
TAIR DEWP WSPD

Direct observations 98.725% (302928) 98.802% (303165) 98.925% (303540)
Estimates 1.185% (3635) 1.191% (3653) 1.075% (3300)
Quality-controlled observations 0.002% (5) 0.001% (4) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.006% (18) 0.000% (0)
Suspect estimates 0.010% (31) 0.000% (0)
Suspect observations 0.079% (241) 0.000% (0)

CLCV PREC
Direct observations 96.848% (297169) 87.741% (269223)
Linearly-interpolated observations 0.822% (2522) 11.244% (34502)
Nearest observations 1.896% (5817)
Linearly-interpolated nearest observations 0.388% (1191)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 1.015% (3115)
Total direct observations 96.208% (1476025)
Total other 3.792% (58175)
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TABLE A.2: (Continued)

Station 93737 (Fort Bragg, NC)
TAIR DEWP WSPD

Direct observations 93.731% (287604) 93.718% (287565) 93.261% (286162)
Estimates 6.242% (19153) 6.278% (19262) 6.739% (20678)
Quality-controlled observations 0.003% (9) 0.004% (12) 0.000% (0)
Quality-controlled estimates 0.000% (0) 0.000% (1) 0.000%(0)
Suspect estimates 0.024% (74) 0.000% (0)
Suspect observations 0.000% (0) 0.000% (0)

CLCV PREC
Direct observations 91.803% (281688) 82.418% (252890)
Linearly-interpolated observations 0.941% (2887) 11.409% (35008)
Nearest observations 6.836% (20977)
Linearly-interpolated nearest observations 0.374% (1147)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 6.173% (18942)
Total direct observations 90.986% (1395909)
Total other 9.014% (138291)

Station 13713 (Goldsboro, NC)
TAIR DEWP WSPD

Direct observations 95.233% (292214) 95.299% (292416) 95.023% (291569)
Estimates 4.448% (13648) 4.228% (12972) 4.973% (15258)
Quality-controlled observations 0.002% (5) 0.001% (3) 0.000% (0)
Quality-controlled estimates 0.159% (487) 0.472% (1449) 0.004% (13)
Suspect estimates 0.056% (172) 0.000% (0)
Suspect observations 0.102% (314) 0.000% (0)

CLCV PREC
Direct observations 93.165% (285869) 84.071% (257964)
Linearly-interpolated observations 1.005% (3083) 11.262% (34555)
Nearest observations 5.382% (16515)
Linearly-interpolated nearest observations 0.402% (1232)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 4.667% (14321)
Total direct observations 92.558% (1420032)
Total other 7.442% (114168)
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TABLE A.2: (Continued)

Station 13754 (Havelock, NC)
TAIR DEWP WSPD

Direct observations 99.560% (305490) 99.393% (304977) 99.618% (305667)
Estimates 0.395% (1211) 0.484% (1484) 0.382% (1173)
Quality-controlled observations 0.018% (55) 0.002% (7) 0.000% (0)
Quality-controlled estimates 0.017% (52) 0.121% (372) 0.000% (0)
Suspect estimates 0.001% (4) 0.000% (0)
Suspect observations 0.009% (28) 0.000% (0)

CLCV PREC
Direct observations 96.843% (297154) 88.341% (271067)
Linearly-interpolated observations 1.660% (5094) 11.204% (34377)
Nearest observations 1.181% (3624)
Linearly-interpolated nearest observations 0.270% (827)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 0.455% (1396)
Total direct observations 96.751% (1484355)
Total other 3.249% (49845)

Station 93753 (Jacksonville, NC)
TAIR DEWP WSPD

Direct observations 57.048% (175045) 56.809% (174314) 61.309% (188120)
Estimates 42.655% (130882) 42.946% (131774) 38.691% (118720)
Quality-controlled observations 0.048% (147) 0.152% (467) 0.000% (0)
Quality-controlled estimates 0.002% (7) 0.093% (285) 0.000% (0)
Suspect estimates 0.188% (577) 0.000% (0)
Suspect observations 0.059% (182) 0.000% (0)

CLCV PREC
Direct observations 50.009% (153447) 54.567% (167434)
Linearly-interpolated observations 4.587% (14075) 5.955% (18273)
Nearest observations 44.412% (136274)
Linearly-interpolated nearest observations 0.946% (2903)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 39.478% (121133)
Total direct observations 55.948% (858360)
Total other 44.052% (675840)

103



TABLE A.2: (Continued)

Station 93726 (Kinston, NC)
TAIR DEWP WSPD

Direct observations 73.098% (224293) 72.765% (223273) 76.205% (233828)
Estimates 26.319% (80757) 26.193% (80370) 23.782% (72974)
Quality-controlled observations 0.010% (30) 0.019% (59) 0.000% (0)
Quality-controlled estimates 0.270% (828) 1.023% (3138) 0.012% (38)
Suspect estimates 0.257% (788) 0.000% (0)
Suspect observations 0.047% (144) 0.000% (0)

CLCV PREC
Direct observations 71.197% (218462) 67.844% (208172)
Linearly-interpolated observations 4.016% (12324) 8.323% (25537)
Nearest observations 24.145% (74085)
Linearly-interpolated nearest observations 0.596% (1828)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 23.834% (73131)
Total direct observations 72.222% (1108028)
Total other 27.778% (426172)

Station 13714 (Pope Field, NC)
TAIR DEWP WSPD

Direct observations 98.777% (303088) 98.765% (303052) 98.837% (303271)
Estimates 1.203% (3691) 1.228% (3767) 1.163% (3569)
Quality-controlled observations 0.001% (4) 0.001% (3) 0.000% (0)
Quality-controlled estimates 0.001% (3) 0.006% (18) 0.000% (0)
Suspect estimates 0.006% (18) 0.000% (0)
Suspect observations 0.012% (36) 0.000% (0)

CLCV PREC
Direct observations 96.536% (296211) 87.282% (267817)
Linearly-interpolated observations 1.082% (3321) 11.555% (35456)
Nearest observations 2.055% (6306)
Linearly-interpolated nearest observations 0.281% (861)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 1.162% (3567)
Total direct observations 96.040% (1473439)
Total other 3.960% (60761)

104



TABLE A.2: (Continued)

Station 13717 (Myrtle Beach, SC)
TAIR DEWP WSPD

Direct observations 76.346% (234261) 76.076% (233433) 79.931% (245259)
Estimates 22.695% (69638) 23.107% (70903) 20.058% (61547)
Quality-controlled observations 0.088% (269) 0.210% (644) 0.000% (0)
Quality-controlled estimates 0.278% (853) 0.606% (1860) 0.011% (34)
Suspect estimates 0.538% (1652) 0.000% (0)
Suspect observations 0.054% (167) 0.000% (0)

CLCV PREC
Direct observations 67.753% (207892) 66.526% (204128)
Linearly-interpolated observations 6.267% (19231) 13.382% (41060)
Nearest observations 24.469% (75081)
Linearly-interpolated nearest observations 1.465% (4495)
Nearest NARR grid point 0.046% (141)
GHCN-Daily/NARR filled 20.093% (61652)
Total direct observations 73.326% (1124973)
Total other 26.674% (409227)
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TABLE A.3: Comparison of Pavement ME Design pavement distress results at the spec-
ified reliability (%) for baseline simulations (Baseline) and simulations using the new
long-term climate data files (New) for a selection of concrete projects. Performance
criteria include terminal IRI (inches mile−1), JPCP transverse cracking (percentage of
slabs), and mean joint faulting (inches).

Project/location: X-2BB Cumberland Co. Pavement type: Concrete
Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 142.98 133.78 −6.44 Pass Pass
Mean joint faulting 90 0.12 0.10 0.09−10.83 Pass Pass
JPCP transverse cracking 90 15.00 11.57 6.76−41.60 Pass Pass

Project/location: I-3802A Cabarrus Co. Pavement type: Concrete
Primary data source: Charlotte, NC (13881)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 185.00 158.49 159.77 0.80 Pass Pass
Mean joint faulting 90 0.15 0.11 0.12 6.51 Pass Pass
JPCP transverse cracking 90 10.00 6.95 4.25−38.84 Pass Pass

Project/location: R-2554BB Wayne Co. Pavement type: Concrete
Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 142.60 133.17 −6.62 Pass Pass
Mean joint faulting 90 0.12 0.10 0.09−12.23 Pass Pass
JPCP transverse cracking 90 15.00 10.59 6.38−39.80 Pass Pass

Project/location: I-5110 Guilford Co. Pavement type: Concrete
Primary data source: Greensboro, NC (13723)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 185.00 151.25 153.00 1.16 Pass Pass
Mean joint faulting 90 0.15 0.10 0.10 −0.25 Pass Pass
JPCP transverse cracking 90 10.00 5.84 5.41−7.34 Pass Pass
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TABLE A.3: (Continued)

Project/location: I-440, Wake Co. Pavement type: Concrete
Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 144.50 143.32 −0.82 Pass Pass
Mean joint faulting 90 0.12 0.09 0.09 −2.56 Pass Pass
JPCP transverse cracking 90 15.00 5.11 5.15 0.80 Pass Pass

Project/location: R-3421C, Richmond Co. Pavement type: Concrete
Primary data source: Maxton, NC (93782)
Secondary data sources for baseline simulation: Monroe, NC(53872); Fayetteville, NC (93740)
Design life: 34.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 99.37 95.39 −4.01 Pass Pass
Mean joint faulting 90 0.12 0.02 0.02 −4.59 Pass Pass
JPCP transverse cracking 90 10.00 8.69 6.80−21.75 Pass Pass

Project/location: R-2303D, Sampson Co. Pavement type: Concrete
Primary data source: Fayetteville, NC (93740)
Secondary data sources for baseline simulation: Lumberton, NC (13776); Wilmington, NC (13748)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 146.00 143.22 −1.91 Pass Pass
Mean joint faulting 90 0.12 0.10 0.10 −4.23 Pass Pass
JPCP transverse cracking 90 15.00 12.03 10.59−11.93 Pass Pass

Project/location: R-3100A Catawba Co. Pavement type: Concrete
Primary data source: Hickory, NC (03810)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 140.85 131.95 −6.32 Pass Pass
Mean joint faulting 90 0.15 0.08 0.07−15.85 Pass Pass
JPCP transverse cracking 90 10.00 8.49 6.42−24.33 Pass Pass
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TABLE A.4: Comparison of Pavement ME Design pavement distress results at the spec-
ified reliability (%) for baseline simulations (Baseline) and simulations using the new
long-term climate data files (New) for a selection of ABC projects. Performance criteria
include terminal IRI (inches mile−1), permanent deformation (inches) for both the to-
tal pavement structure and only the AC contribution, and AC bottom-up and top-down
fatigue cracking (feet mile−1). AC thermal cracking is not included here due to its incor-
rect representation within Pavement ME Design. Values in parentheses in the pass/fail
column indicate the percentage of the design life at the point when the distress at the
specified reliability reaches the indicated target value (percentages not available for AC
rutting).

Project/location: R-2303D, Sampson Co. Pavement type: ABC
Primary data source: Fayetteville, NC (93740)
Secondary data sources for baseline simulation: Lumberton, NC (13776); Wilmington, NC (13748)
Design life: 20.0 years

Predicted Stress Pass/Fail

Performance CriterionReliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 139.81 140.93 0.79 Pass Pass
Perm. deform. – total 90 0.75 0.39 0.41 6.71 Pass Pass
Perm. deform. – AC 90 0.25 0.18 0.18 2.45 Pass Pass
AC bottom-up fatigue 90 25.00 6.88 12.14 76.54 Pass Pass
AC top-down fatigue 90 2000.00 832.61 891.43 7.07 Pass Pass

Project/location: R-3421C, Richmond Co. Pavement type: ABC
Primary data source: Maxton, NC (93782)
Secondary data sources for baseline simulation: Monroe, NC(53872); Fayetteville, NC (93740)
Design life: 34.0 years

Predicted Stress Pass/Fail

Performance CriterionReliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 187.21 190.14 1.56 Fail (88.2%) Fail (86.3%)
Perm. deform. – total 90 0.75 0.40 0.45 11.94 Pass Pass
Perm. deform. – AC 90 0.25 0.27 0.30 13.00 Fail Fail
AC bottom-up fatigue 90 25.00 2.39 2.96 24.06 Pass Pass
AC top-down fatigue 90 2000.00 286.39 299.32 4.51 Pass Pass

Project/location: R-4047 Haywood Co. Pavement type: ABC
Primary data source: Asheville, NC (03812)
Design life: 20.0 years

Predicted Stress Pass/Fail

Performance CriterionReliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 137.73 137.89 0.11 Pass Pass
Perm. deform. – total 90 0.75 0.25 0.23 −5.26 Pass Pass
Perm. deform. – AC 90 0.25 0.11 0.09−16.61 Pass Pass
AC bottom-up fatigue 90 25.00 2.04 2.21 8.24 Pass Pass
AC top-down fatigue 90 2000.00 1296.22 1232.28−4.93 Pass Pass
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TABLE A.4: (Continued)

Project/location: R-2501C, Richmond Co. Pavement type: ABC
Primary data source: Maxton, NC (93782)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 164.16 167.44 2.00 Pass Pass
Perm. deform. – total 90 0.50 0.47 0.45 −3.67 Pass Pass
Perm. deform. – AC 90 0.40 0.26 0.23 −9.15 Pass Pass
AC bottom-up fatigue 90 15.00 3.38 22.86 577.15 Pass Fail (56.4%)
AC top-down fatigue 90 2000.00 1941.83 3287.02 69.27 Pass Fail (26.7%)

Project/location: R-3432, Brunswick Co. Pavement type: ABC
Primary data source: Wilmington, NC (13748)
Design life: 20.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 127.06 128.29 0.97 Pass Pass
Perm. deform. – total 90 0.75 0.21 0.22 4.13 Pass Pass
Perm. deform. – AC 90 0.25 0.08 0.07 −4.14 Pass Pass
AC bottom-up fatigue 90 25.00 1.72 1.84 7.22 Pass Pass
AC top-down fatigue 90 2000.00 1017.74 1232.18 21.07 Pass Pass

Project/location: U-2707, Forsyth Co. Pavement type: ABC
Primary data source: Winston-Salem, NC (93807)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 171.49 169.80 −0.98 Pass Pass
Perm. deform. – total 90 0.75 0.29 0.27 −5.23 Pass Pass
Perm. deform. – AC 90 0.25 0.11 0.10−10.02 Pass Pass
AC bottom-up fatigue 90 25.00 2.60 2.36 −9.31 Pass Pass
AC top-down fatigue 90 2000.00 1658.06 1685.91 1.68 Pass Pass

Project/location: X-2BB Cumberland Co. Pavement type: ABC
Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 169.92 170.93 0.60 Pass Pass
Perm. deform. – total 90 0.75 0.43 0.45 4.24 Pass Pass
Perm. deform. – AC 90 0.25 0.30 0.31 2.81 Fail Fail
AC bottom-up fatigue 90 25.00 3.05 5.75 88.75 Pass Pass
AC top-down fatigue 90 2000.00 540.77 797.33 47.44 Pass Pass
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TABLE A.4: (Continued)

Project/location: R-2519B, Yancey Co. Pavement type: ABC
Primary data source: Asheville, NC (03812)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 181.21 180.71 −0.28 Fail (91.9%) Fail (92.5%)
Perm. deform. – total 90 0.75 0.43 0.42 −4.06 Pass Pass
Perm. deform. – AC 90 0.25 0.14 0.12−12.75 Pass Pass
AC bottom-up fatigue 90 25.00 18.10 14.48−19.98 Pass Pass
AC top-down fatigue 90 2000.00 1060.10 576.40−45.63 Pass Pass

Project/location: R-3100A Catawba Co. Pavement type: ABC
Primary data source: Hickory, NC (03810)
Design life: 20.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 144.71 139.30 −3.74 Pass Pass
Perm. deform. – total 90 0.75 0.34 0.30−10.92 Pass Pass
Perm. deform. – AC 90 0.25 0.17 0.15−15.10 Pass Pass
AC bottom-up fatigue 90 25.00 16.72 13.53−19.08 Pass Pass
AC top-down fatigue 90 2000.00 1258.28 1794.99 42.65 Pass Pass

Project/location: I-4733 Catawba Co. Pavement type: ABC
Primary data source: Charlotte, NC (13881)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 182.96 183.34 0.21 Fail (90.8%) Fail (90.6%)
Perm. deform. – total 90 0.50 0.40 0.39 −1.38 Pass Pass
Perm. deform. – AC 90 0.25 0.23 0.22 −2.34 Pass Pass
AC bottom-up fatigue 90 10.00 22.12 22.03 −0.38 Fail (56.9%) Fail (57.5%)
AC top-down fatigue 90 1000.00 2247.42 2221.28−1.16 Fail (18.3%) Fail (20.8%)

Project/location: I-3802A Cabarrus Co. Pavement type: ABC
Primary data source: Charlotte, NC (13881)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 185.00 181.21 187.45 3.44 Pass Fail (98.3%)
Perm. deform. – total 90 0.75 0.40 0.55 37.55 Pass Pass
Perm. deform. – AC 90 0.25 0.24 0.39 64.41 Pass Fail
AC bottom-up fatigue 90 10.00 18.54 18.24 −1.60 Fail (80.0%) Fail (82.5%)
AC top-down fatigue 90 1000.00 287.09 294.45 2.56 Pass Pass
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TABLE A.4: (Continued)

Project/location: R-2582A, Northampton Co. Pavement type: ABC
Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 175.83 175.59−0.14 Fail (96.7%) Fail (96.9%)
Perm. deform. – total 90 0.75 0.38 0.37−1.85 Pass Pass
Perm. deform. – AC 90 0.25 0.15 0.14−3.94 Pass Pass
AC bottom-up fatigue 90 10.00 2.58 2.52−2.22 Pass Pass
AC top-down fatigue 90 500.00 310.79 306.70−1.32 Pass Pass

Project/location: R-2554BB Wayne Co. Pavement type: ABC
Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 167.17 166.40−0.46 Pass Pass
Perm. deform. – total 90 0.75 0.38 0.36−4.57 Pass Pass
Perm. deform. – AC 90 0.25 0.25 0.24−6.64 Fail Pass
AC bottom-up fatigue 90 25.00 2.03 1.99−2.15 Pass Pass
AC top-down fatigue 90 2000.00 368.07 349.84−4.95 Pass Pass

Project/location: U-3338B, New Hanover Co. Pavement type: ABC
Primary data source: Wilmington, NC (13748)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 162.30 164.13 1.13 Pass Pass
Perm. deform. – total 90 0.75 0.25 0.27 4.93 Pass Pass
Perm. deform. – AC 90 0.25 0.14 0.14 0.41 Pass Pass
AC bottom-up fatigue 90 25.00 1.66 1.76 6.27 Pass Pass
AC top-down fatigue 90 2000.00 511.72 550.00 7.48 Pass Pass

Project/location: I-440, Wake Co. Pavement type: ABC
Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 185.00 181.25 181.50 0.14 Pass Pass
Perm. deform. – total 90 0.50 0.40 0.40−0.01 Pass Pass
Perm. deform. – AC 90 0.25 0.24 0.23−1.59 Pass Pass
AC bottom-up fatigue 90 10.00 3.85 4.55 18.34 Pass Pass
AC top-down fatigue 90 1000.00 281.36 277.56−1.35 Pass Pass
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TABLE A.4: (Continued)

Project/location: I-5110 Guilford Co. Pavement type: ABC
Primary data source: Greensboro, NC (13723)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 185.00 186.47 188.19 0.92 Fail (98.9%) Fail (97.5%)
Perm. deform. – total 90 0.75 0.49 0.51 4.24 Pass Pass
Perm. deform. – AC 90 0.50 0.32 0.33 3.85 Pass Pass
AC bottom-up fatigue 90 10.00 21.53 21.75 1.02 Fail (67.5%) Fail (67.8%)
AC top-down fatigue 90 1000.00 335.71 329.33−1.90 Pass Pass

TABLE A.5: Comparison of Pavement ME Design pavement distress results at the spec-
ified reliability (%) for baseline simulations (Baseline) and simulations using the new
long-term climate data files (New) for a CTABC project. Performance criteria include
terminal IRI (inches mile−1), permanent deformation (inches) for both the total pave-
ment structure and only the AC contribution, AC bottom-up and top-down fatigue crack-
ing (feet mile−1), and fatigue fracture in the chemically stabilized layer (%). AC thermal
cracking is not included here due to its incorrect representation within Pavement ME
Design.

Project/location: I-440, Wake Co. Pavement type: CTABC
Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance CriterionReliability Target Baseline New % Diff Baseline New
Terminal IRI 90 185.00 182.14 182.12 −0.01 Pass Pass
Perm. deform. – total 90 0.50 0.45 0.44 −1.27 Pass Pass
Perm. deform. – AC 90 0.25 0.33 0.32 −3.89 Fail Fail
AC bottom-up fatigue 90 10.00 1.52 1.51 −0.40 Pass Pass
AC top-down fatigue 90 1000.00 387.07 301.23−22.18 Pass Pass
Chem. stab. – fatigue – 25.00 0.96 1.10 14.58 Pass Pass
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TABLE A.6: Comparison of Pavement ME Design pavement distress results at the spec-
ified reliability (%) for baseline simulations (Baseline) and simulations using the new
long-term climate data files (New) for a selection of FDA projects. Performance criteria
include terminal IRI (inches mile−1), permanent deformation (inches) for both the to-
tal pavement structure and only the AC contribution, and AC bottom-up and top-down
fatigue cracking (feet mile−1). AC thermal cracking is not included here due to its incor-
rect representation within Pavement ME Design. Values in parentheses in the pass/fail
column indicate the percentage of the design life at the point when the distress at the
specified reliability reaches the indicated target value (percentages not available for AC
rutting).

Project/location: I-3802A Cabarrus Co. Pavement type: FDA
Primary data source: Charlotte, NC (13881)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance CriterionReliability Target Baseline New % Diff Baseline New
Terminal IRI 90 185.00 182.85 180.42 −1.33 Pass Pass
Perm. deform. – total 90 0.75 0.46 0.40−12.35 Pass Pass
Perm. deform. – AC 90 0.50 0.30 0.26−14.57 Pass Pass
AC bottom-up fatigue 90 10.00 13.27 3.89−70.71 Fail (93.1%) Pass
AC top-down fatigue 90 1000.00 257.63 257.41−0.09 Pass Pass

Project/location: R-3421C, Richmond Co. Pavement type: FDA
Primary data source: Maxton, NC (93782)
Secondary data sources for baseline simulation: Monroe, NC(53872); Fayetteville, NC (93740)
Design life: 34.0 years

Predicted Stress Pass/Fail

Performance CriterionReliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 175.43 178.75 1.89 Fail (97.1%) Fail (94.4%)
Perm. deform. – total 90 0.75 0.39 0.44 12.33 Pass Pass
Perm. deform. – AC 90 0.25 0.24 0.27 12.49 Pass Fail
AC bottom-up fatigue 90 25.00 4.29 10.95 155.41 Pass Pass
AC top-down fatigue 90 2000.00 398.85 464.69 16.51 Pass Pass

Project/location: R-3432, Brunswick Co. Pavement type: FDA
Primary data source: Wilmington, NC (13748)
Design life: 20.0 years

Predicted Stress Pass/Fail

Performance CriterionReliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 126.15 127.23 0.86 Pass Pass
Perm. deform. – total 90 0.75 0.19 0.20 3.35 Pass Pass
Perm. deform. – AC 90 0.25 0.06 0.06 −5.22 Pass Pass
AC bottom-up fatigue 90 25.00 1.67 1.74 4.20 Pass Pass
AC top-down fatigue 90 2000.00 1070.44 1159.25 8.30 Pass Pass
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TABLE A.6: (Continued)

Project/location: R-4047 Haywood Co. Pavement type: FDA
Primary data source: Asheville, NC (03812)
Design life: 20.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 137.76 137.88 0.09 Pass Pass
Perm. deform. – total 90 0.75 0.24 0.23 −4.79 Pass Pass
Perm. deform. – AC 90 0.25 0.08 0.07−16.74 Pass Pass
AC bottom-up fatigue 90 25.00 1.72 1.76 2.27 Pass Pass
AC top-down fatigue 90 2000.00 347.24 333.70−3.90 Pass Pass

Project/location: U-3338B, New Hanover Co. Pavement type: FDA
Primary data source: Wilmington, NC (13748)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 161.52 163.34 1.13 Pass Pass
Perm. deform. – total 90 0.75 0.23 0.25 5.15 Pass Pass
Perm. deform. – AC 90 0.25 0.12 0.12 0.59 Pass Pass
AC bottom-up fatigue 90 25.00 1.71 1.84 7.61 Pass Pass
AC top-down fatigue 90 2000.00 562.46 591.76 5.21 Pass Pass

Project/location: R-3100A Catawba Co. Pavement type: FDA
Primary data source: Hickory, NC (03810)
Design life: 20.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 139.68 134.68 −3.58 Pass Pass
Perm. deform. – total 90 0.75 0.26 0.23−12.29 Pass Pass
Perm. deform. – AC 90 0.25 0.13 0.11−15.01 Pass Pass
AC bottom-up fatigue 90 25.00 1.83 1.75 −4.70 Pass Pass
AC top-down fatigue 90 2000.00 306.04 309.69 1.19 Pass Pass

Project/location: X-2BB Cumberland Co. Pavement type: FDA
Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 168.48 163.83 −2.76 Pass Pass
Perm. deform. – total 90 0.75 0.41 0.30−26.11 Pass Pass
Perm. deform. – AC 90 0.25 0.19 0.18 −2.11 Pass Pass
AC bottom-up fatigue 90 25.00 1.76 1.80 2.74 Pass Pass
AC top-down fatigue 90 2000.00 266.44 267.91 0.55 Pass Pass
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TABLE A.6: (Continued)

Project/location: I-440, Wake Co. Pavement type: FDA
Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 185.00 179.86 179.08 −0.43 Pass Pass
Perm. deform. – total 90 0.50 0.36 0.34 −6.90 Pass Pass
Perm. deform. – AC 90 0.25 0.20 0.18−14.11 Pass Pass
AC bottom-up fatigue 90 10.00 3.51 3.76 7.11 Pass Pass
AC top-down fatigue 90 1000.00 269.23 265.43−1.41 Pass Pass

Project/location: R-2303D, Sampson Co. Pavement type: FDA
Primary data source: Fayetteville, NC (93740)
Secondary data sources for baseline simulation: Lumberton, NC (13776); Wilmington, NC (13748)
Design life: 20.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 135.33 135.90 0.42 Pass Pass
Perm. deform. – total 90 0.75 0.30 0.32 7.02 Pass Pass
Perm. deform. – AC 90 0.25 0.12 0.13 2.38 Pass Pass
AC bottom-up fatigue 90 25.00 1.92 2.03 5.79 Pass Pass
AC top-down fatigue 90 2000.00 283.36 287.56 1.48 Pass Pass

Project/location: R-2519B, Yancey Co. Pavement type: FDA
Primary data source: Asheville, NC (03812)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 175.11 175.38 0.15 Fail (97.5%) Fail (97.2%)
Perm. deform. – total 90 0.75 0.33 0.32 −1.99 Pass Pass
Perm. deform. – AC 90 0.25 0.09 0.08−12.94 Pass Pass
AC bottom-up fatigue 90 25.00 2.00 1.91 −4.29 Pass Pass
AC top-down fatigue 90 2000.00 277.92 270.77−2.57 Pass Pass

Project/location: R-2582A, Northampton Co. Pavement type: FDA
Primary data source: Raleigh/Durham, NC (13722)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 173.63 173.38 −0.14 Fail (98.6%) Fail (98.9%)
Perm. deform. – total 90 0.75 0.33 0.32 −2.13 Pass Pass
Perm. deform. – AC 90 0.25 0.10 0.10 −3.72 Pass Pass
AC bottom-up fatigue 90 10.00 2.35 2.31 −1.68 Pass Pass
AC top-down fatigue 90 500.00 273.82 273.46−0.13 Pass Pass
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TABLE A.6: (Continued)

Project/location: U-2707, Forsyth Co. Pavement type: FDA
Primary data source: Winston-Salem, NC (93807)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 166.82 165.41 −0.85 Pass Pass
Perm. deform. – total 90 0.75 0.19 0.18 −5.44 Pass Pass
Perm. deform. – AC 90 0.25 0.08 0.07−10.10 Pass Pass
AC bottom-up fatigue 90 25.00 1.49 1.48 −0.51 Pass Pass
AC top-down fatigue 90 2000.00 260.03 259.75−0.11 Pass Pass

Project/location: I-5110 Guilford Co. Pavement type: FDA
Primary data source: Greensboro, NC (13723)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 185.00 177.68 179.04 0.77 Pass Pass
Perm. deform. – total 90 0.75 0.32 0.33 4.00 Pass Pass
Perm. deform. – AC 90 0.50 0.16 0.17 3.52 Pass Pass
AC bottom-up fatigue 90 10.00 2.60 2.67 2.83 Pass Pass
AC top-down fatigue 90 1000.00 257.44 257.73 0.11 Pass Pass

Project/location: R-3601 Brunswick Co. Pavement type: FDA
Primary data source: Wilmington, NC (13748)
Design life: 20.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 130.41 130.69 0.21 Pass Pass
Perm. deform. – total 90 0.75 0.29 0.28 −5.08 Pass Pass
Perm. deform. – AC 90 0.25 0.16 0.13−19.97 Pass Pass
AC bottom-up fatigue 90 25.00 1.83 1.89 3.17 Pass Pass
AC top-down fatigue 90 2000.00 290.10 277.20−4.45 Pass Pass

Project/location: R-2501C, Richmond Co. Pavement type: FDA
Primary data source: Maxton, NC (93782)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 158.87 159.46 0.37 Pass Pass
Perm. deform. – total 90 0.50 0.35 0.33 −4.68 Pass Pass
Perm. deform. – AC 90 0.40 0.19 0.17 −9.14 Pass Pass
AC bottom-up fatigue 90 15.00 2.53 2.47 −2.42 Pass Pass
AC top-down fatigue 90 2000.00 588.55 543.30−7.69 Pass Pass
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TABLE A.6: (Continued)

Project/location: R-2554BB Wayne Co. Pavement type: FDA
Primary data source: Fayetteville, NC (93740)
Design life: 30.0 years

Predicted Stress Pass/Fail

Performance Criterion Reliability Target Baseline New % Diff Baseline New
Terminal IRI 90 172.00 174.34 174.33−0.00 Fail (98.1%) Fail (98.1%)
Perm. deform. – total 90 0.75 0.49 0.49 0.00 Pass Pass
Perm. deform. – AC 90 0.25 0.26 0.24−4.92 Fail Pass
AC bottom-up fatigue 90 25.00 20.44 20.49 0.27 Pass Pass
AC top-down fatigue 90 2000.00 518.62 511.72−1.33 Pass Pass
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