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EXECUTIVE SUMMARY 
________________________________________ 

The NCDOT has partnered with several federal agencies in funding the development of standard QL2 

LiDAR elevation data for the North Carolina (NC) coastal region [7]. This effort follows both national and 

international recognition [6-10] of the importance in developing and integrating airborne LiDAR digital 

imagery and pattern-recognition technology into a GIS-based method for 21st century transportation and 

environment monitoring, measurement, and inventory. As part of this process, NCDOT noted that sufficient 

datasets depicting tidal wetlands are outdated and/or not accurate enough to use in the NEPA/LEDPA 

(National Environmental Policy Act/Least Environmentally Damaging Practicable Alternative) selection 

process. NCDOT has used prediction models in non-tidal portions of the state for palustrine wetlands [3, 

8], but it is expected that different models will need to be developed for tidal wetlands. With the arrival of 

the new QL2 LiDAR, additional research will be needed to determine how to utilize and optimize the 

voluminous dataset [6].  

Our goal for this project is to provide an advanced QL2 LiDAR-based tidal wetland prediction method and 

automation tools based on ArcGIS for the NC coastal region. Based on the NCDOT’s needs [6], we have 

proposed a scope of work in this project as follows: 

• Conduct a literature review and investigate the status of existing methods and models of LiDAR-based 

tidal wetland prediction and use of the QL2 standard LiDAR data; 

• Determine the optimal resolution of DEM and subsequent terrain derivatives, and any other variables 

needed to predict wetlands via orthogonal test design approach [14] on QL2 LiDAR data and other 

related data; 

• Develop appropriate methods to model tidal wetland boundary locations via first-hand experience of 

wetland scientists [4, 10, 5], regression method Logit (logistic regression), machine learning method 

RF (random forest) [15, 60, 68];  

• Develop tools to automate the process of sampling, interpolation, variable creation, and model 

development and application where it is appropriate and feasible to do so; 

• Validate our developing methods and models through field testing; and 

• Prepare deliverable products including the proposed methods, models, algorithms, and tools [10.A– F].  

The ultimate methods offer tidal wetland prediction models with machine learning (ML) methods for 

modeling and prediction. The automation tools vividly display the results of the process based on the GIS 

platform (ArcGIS and ArcMap) that NCDOT currently uses.   

The PI and his research team at UNCC have worked closely with wetland scientists from Axiom 

Environmental, Inc. as a joint research team for this project.  

This project has been successfully completed and can enhance identification and prediction of tidal 

wetlands using QL2 LiDAR data, machine learning, pattern recognition, and GIS, thereby significantly 

reducing the time and cost of field delineations.  The results of this project will also provide a cost-effective 

source of potential wetland impacts that will improve the efficiency of initial project planning [8] and the 

NEPA process [9].  
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1.  Introduction 

This Final Report is for the NCDOT Research Project RP 2016-19, titled “NCDOT Wetland 

Modeling Program: Development of Tidal Wetland Models using QL2 Lidar” during 04-01-2015 

through 08-15-2018. It concludes several main achievements of this project as follows:  

(i) Automation and its Tools of Tidal Wetland Identification and Analysis Process, which we 

call WAM Automation Tools – Tidal or WAMAT–Tidal in short;  

(ii) Systematic Methods of Tidal Wetland Identification Process including Machine Learning 

Methods;  

(iii) Reliability and Flexibility of the Developed Tools and Methods;   

(iv) Best Resolution Determination Method along with Taguchi approach; and 

(v) User Friendly Deliverables as listed in Attachments [10.A – 10.D, 10.F, 10.G] 

This project is based on previous projects, e.g., the 2011 FHWA Environmental Excellence 

Awards (EEA) winner NCDOT and NCDENR “GIS-based Wetland and Stream Predictive Models” 

[8], and the 2015 National “Sweet Sixteen” High Value Research Award winner NCDOT Research 

Project 2013-13 “Improvements to NCDOT’s Wetland Prediction Model” [1-3, 5, 69].   

As recognized nationally and internationally [6-8], there is a trend toward development and 

integration of airborne LiDAR, digital imagery [1-3, 6-8], and machine learning pattern 

recognition technology [2, 15, 17, 19, 68] for 21st century transportation and environmental 

monitoring, measurement, and inventory.  This technology supports enhanced wetland prediction 

and enables reliable identification of wetland locations, thus reducing the time and cost of field 

delineations and providing early awareness of potential wetland impact areas in NC [8]. 

NCDOT has sponsored research into and development of an automated wetland prediction 

model to supplant the majority of field-based wetland delineations as part of a major streamlining 

initiative during the NEPA process.  The results of the model give NCDOT the ability to compare 

alternatives of road projects while greatly decreasing the need for field delineated wetlands.  

However, much of that research has been focused on palustrine wetlands in the North Carolina 
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interior. Additionally, NCDOT is making a significant investment to partially fund an update of 

the statewide LiDAR dataset collected at the QL2 standard. 

The need definition of the NCDOT addressed by this project is to enhance research into and 

development of an automated wetland prediction model, especially an automated tidal wetland 

prediction model, to supplant the majority of field-based wetland delineations. Sufficient datasets 

depicting tidal wetlands are outdated and/or not accurate enough to use in the NEPA/LEDPA 

selection process. With the arrival of the new QL2 LiDAR, this research completes the need to 

determine how to utilize and optimize the voluminous dataset.  The above-mentioned 

achievements fit the NCDOT research needs. 

The goal of this project is to provide an advanced QL2 LiDAR-based tidal wetland prediction 

method and automation tools based on ArcGIS for the NC coastal region. The benefits to NCDOT 

include significantly reducing the time and cost of field delineations and providing early awareness 

of potential wetland impact areas in NC.   

The significance of LiDAR implementation into wetland identification and modeling, as stated 

by the FHWA is to exemplify “how innovative technologies can be used to speed the 

environmental assessment process and ultimately advance transportation projects while protecting 

the environment” [8]. Therefore, this project research, e.g., [66 – 69], is important and highly 

needed. In addition, it contributes to NCDOT by keeping the leading status in this important area 

of research [10.A – 10.G], which can benefit NCDOT by innovative modeling and predicting 

automation tools and significant labor saving in the NEPA process [9].   

This project includes a number of valuable research topics related to wetland and tidal wetland 

prediction, such as process automation, variables exploration, data mining, machine learning, and 

statistical analysis. According to the project proposal [1], our goal for this project is to provide 

improved NCDOT LiDAR-based tidal wetland prediction models with highly automated, reliable, 

and user-friendly tools for NCDOT based on ArcGIS. In addition, this project provides a method 

to identify the best resolution for modeling and prediction. Therefore, we mainly concentrate on 

the topics of process automation and modeling and prediction methods for this project.  
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The rest of this report is organized in the following manner. Chapter 2 is to summarize our 

developed key deliverable tools: Tidal Wetland Prediction Automation Tools, called WAM 

Automation Tools – Tidal or WAMAT-Tidal in short. Chapter 3 describes the research results of 

our tidal wetland prediction models, including the tidal wetland variable set and two models of 

Logit and Random Forest (RF). Chapter 4 presents the process automation in tidal wetland 

prediction. In Chapter 5, case studies are conducted by applying our models and automation 

process to Brunswick and New Hanover counties, NC. Chapter 6 is about the best resolution 

research. Finally, Chapter 7 provides summary remarks of the project with the highlight of our 

deliverable research results. In addition, following the conclusions, the published papers and 

presentations are listed in Chapter 8, the References are listed in Chapter 9, and the Attachments 

are listed in Chapter 10 as Appendix. 

This final report also includes the attached deliverables: automation tools package of 

WAMAT-Tidal for the Tidal Wetland Prediction Process Automation with its Users’ Guide to the 

Tools directly to NCDOT, and the updated automation tools package of WAMAT v.4.4 and v.5.1 

for the wetland prediction process automation with their Users’ Guides. 

2.  WAMAT-Tidal: Tidal Wetland Prediction Automation Tools  

This NCDOT project has a key deliverable that is the tidal wetland prediction automation tools 

package. It is developed based on our WAMAT (WAM Automation Tools) for the key task of this 

research project to complete the tidal wetland prediction process automation. This tools package 

is called WAMAT–Tidal in short.  It includes the automation of the following processes: 

(i) Tidal wetland variable generation process,  

(ii) Tidal wetland model generation process,  

(iii) Tidal wetland prediction process,   

(iv) Tidal wetland evaluation process, and 

(v) Full process of tidal wetland prediction including these above individual automation 

processes as a combined process for automatic run just by one click of the WAMAT-

Tidal.  
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All automated processes are simple to run. In addition, WAMAT–Tidal has a function to easily 

remove individual variables, e.g., land cover or soils, and add new variables based on users’ 

choices. Thus, it has flexibility not only in model selection, but also in variable selection. 

The main structure of tidal wetland automatic prediction process WAMAT–Tidal is shown in 

Fig.1. 

 

Figure 1.  Key structure of WAMAT-Tidal for automatic tidal wetland prediction process  

In WAMAT-Tidal, the tidal wetland variable set is based on QL2 LiDAR data and some special 

variables as described in the next chapter for this research project. As mentioned above, the 

WAMAT–Tidal has flexibility of its predictor variable selection. 

The provided models including Logit and Random Forest (RF) based on the tidal wetland 

prediction variable set as described in Chapter 4. The prediction process can be run by either Logit 

model or RF model from the modeling process. After the prediction, the accuracy is evaluated in 

the evaluation process by the ground truth input data with colors.  

During this project period, the UNCC WAM Research Team has further developed the 

WAMAT as the updated version v.4 (including v.4.0, v.4.1, v.4.2, v.4.3 and v.4.4) from the 

previous version v.3.2. Its function upgrade is summarized in Figure 2 below. 
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Figure 2.  WAMAT Enhancement from v.3 to v.4 as v4.0 through v4.4 

This updated WAMAT provides the NCDOT with enhanced automation and flexibility in 

variable selection (e.g., with both, either, or neither soil and/or land cover), model building RF on 

R outside ArcGIS, that leads to enhanced speed and accuracy. It also keeps the variable maps for 

the user to see and make use of. This makes it particularly easy for the user to run the model in 

new areas.  

Further, the updated WAMAT adds a Big-Data (large area) Prediction ability for “New” and 

“TAS” approaches, while previously only the preferable “Regular” approach has set this Big-Data 

Prediction function. Moreover, the user interface is clean and easy; for example, there is a single 

interface where users can set their input files once, then click one button to run the whole process 

automatically.  

The resultant prediction map is generated to show wetland and non-wetland areas in green and 

yellow, respectively, as well as the evaluation colors to depict prediction accuracy 1-1 as 1 (correct 

tidal wetland prediction, in dark green), 0-0 as 0 (correct non-wetland prediction, in grey), 2-2 as 

2 (correct non-tidal wetland prediction, in green), and -1 (incorrect prediction, i.e., error, in red). 
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The WAMAT update provides a powerful base for the WAMAT-Tidal tools. The WAMAT-

Tidal tools structure is shown in Fig. 3.  

 

 

 

 

 

 

Figure 3.  WAMAT-Tidal tools structure 

Some additional information of WAMAT–Tidal for automation will be described further in 

Chapter 4. We shall describe the new tidal variable set, the models and the prediction methods in 

Chapter 3.  

3. Tidal Wetland Prediction Models 

In this chapter, we summarize the wetland prediction models and their methods we applied and 

developed with their performances by using QL2 LiDAR. We developed two models for the tidal 

wetlands prediction as follows.  

(1) Logistic Regression model, and 

(2) Random Forest model. 

The first step is to determine the variable set for building prediction models. That is as 

described in the next Section (Section 3.1). After the model variable set has been determined, the 

next step is to build models by the following two methods as briefly described in Sections 3.2 and 

3.3, followed by the intersection with the TIZ map for tidal wetland prediction described in Section 

3.4. 

3.1 Tidal Wetland Prediction Variables   

For the tidal wetland prediction, we take the following predictor variable set as in Table 1.  

Tidal 
Wetland 

Variable Set 
Generation 

Tidal 
Wetland 
Models 

Generation 

Tidal 
Wetland 

Prediction 

Tidal 
Influence 

Zone 

Tidal 
Wetland 

Prediction 
Map 
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Table 1. Tidal Wetland Prediction Variable Set used to build the models from QL2 Data 

Variable Full Name Formula and illustration 

TIZ Tidal Influence Zone Map A classification variable 

TWA Tidal Water Amplitude TWA = Max_elev - DEM 

MHHW_elev Mean Higher High Water 

Elevation 
A digital variable 

Max_elev Maximum water elevation A digital variable 

veg-l Low Vegetation/Strata low QL2 class 3 – low 

veg-m Medium Vegetation/Strata 

low 

QL2 class 4 – medium 

veg-h High Vegetation/Strata high QL2 class 5 – high 

Qvcm QL2 vegetation dominant 

class  Qvcm(x, y) = {

3, max(𝑃𝑙, 𝑃𝑚, 𝑃ℎ) = 𝑃𝑙

4, max(𝑃𝑙, 𝑃𝑚, 𝑃ℎ) = 𝑃𝑚

5, max(𝑃𝑙, 𝑃𝑚, 𝑃ℎ) = 𝑃ℎ

 

where 𝑃𝑙 means number of low vegetation las points in one 

cell,  𝑃𝑚 means number of medium vegetation las points in one 

cell, 𝑃ℎ means number of high vegetation las points in one cell. 

vden Vegetation density Area & volume of all vegetation types in its neighborhood 

vden(x, y) =
𝑃𝑙 + 𝑃𝑚 + 𝑃ℎ

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑜𝑛𝑒 𝑐𝑒𝑙𝑙
 

 

Vl-l Intensity of low vegetation 

returns 

The classification of vegetation points is labeled as: 

Low vegetation – 3 

Medium vegetation – 4 

High vegetation – 5 

High intensity values represent photosynthetically active 

vegetation, while lower intensity values are likely to represent 

wet surface condition or less photosynthetically active 

vegetation 

Vl-m Intensity of medium 

vegetation returns 

A digital variable 

Vl-h Intensity of high vegetation 

returns 

A digital variable 

water QL2 water class QL2 class 9 

bldg QL2 building class QL2 class 6 

rw QL2 road QL2 class 13 

elev Elevation  Elevation of each cell: z(x, y) 

soil Soil data Soil types in Axiom’s soil table: 

mineral -- 1 

organic -- 3 

Other --2 
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Table 1. Tidal Wetland Prediction Variable Set used to build the models from QL2 Data 

(Continued) 

Variable Full Name Formula and illustration 

slp Slope In degree: 

slp(x, y) = 57.29578 × atan (√(
𝑑𝑧

𝑑𝑥
)

2

+ (
𝑑𝑧

𝑑𝑦
)

2

  ) 

cv Curvature 

cv(x, y) = 57.29578 × atan (√(𝑑
𝑠𝑙𝑝

𝑑𝑥
)

2

+ (𝑑
𝑠𝑙𝑝

𝑑𝑦
)

2

  ) 

curv5 Smooth curvature Each cell gets mean value of curvature from its 5*5 neighbors. 

curv5(x, y) =
∑ 𝑐𝑣(𝑖)𝑖25

𝑖=𝑖1

25
 

prcv Profile curvature Curvature on vertical (y) direction 

plcv Plan curvature Curvature on horizontal (x) direction 

wei Wetness Elevation Index Series of increasingly larger neighborhoods used to determine 

the relative landscape 

weiRe Reclassification of wei Wei value of each cell will be reclassified as 0 if original value 

is bigger than a predefined threshold, else is reclassified as 1 

asp Aspect 
asp(x, y) = 57.29578 × atan2 ([

𝑑𝑧

𝑑𝑦
] , − [

𝑑𝑧

𝑑𝑥
]) 

mdec Maximum Downslope 

Elevation Change 

Maximum difference of z(x,y) between the cell and its 

neighbor cells. 

mdec = Max(zi - z) 

zi is the elevation of a neighbor cell 

batwi Ratio of slope and drainage 

area 

batwi = slp / drainage contributing area (calculated with 

breached DEM) 

gap Land Cover Data Categorized land use types 

 

Table 1 lists the variables for building the models by their features via Logit method and RF 

method.  Here, we point out that these variables are derived and generated from QL2 LiDAR data, 

except the Tidal Influence Zone (TIZ) and Tidal Water Amplitude (TWA), which are two 

important variables for the tidal wetland modeling and prediction generated with the help of our 

partner Axiom Environmental. TIZ and TWA will be described below in detail.  Also, these 

variables are listed in the Attachment [B] “WAMAT-Tidal Users’ Guide, v.4.1”. And TIZ is 

documented in the attachment [H] “Tidal Influence Zone Dataset”. Compared with the original 

WAMAT tools, this variable set includes newly proposed tidal influence zone, tidal water 
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amplitude, vegetation variables (high, medium, low), etc. The other regular variables are the same 

as the ones that our WAMAT uses for wetland identification.  

The new TIZ variable is described briefly here. Our partner Axiom key investigators have 

provided the UNCC Team with a Tidal Influence Zone (TIZ) map for the coastal region of North 

Carolina. The map has been developed using National Oceanographic and Atmospheric 

Administration (NOAA) data found at the following web site:  https://coast.noaa.gov/slr/. The TIZ 

map utilizes predicted daily and wind-driven tidal water elevations to predict tidal wetland extent. 

TIZ generation generally consisted of correlating maximum water elevations and depths provided 

by NOAA with QL2 LiDAR-derived elevation data (2014, Phase 1 and 2015, Phase II LiDAR). 

Areas of equal elevation were identified and grouped by 14-digit Hydrologic Unit (HUs) that were 

separated where appropriate to more accurately define changes in maximum water elevation. 

Subsequently, Axiom has continued investigations for refining the TIZ map including field-

verifying mapped water levels.   

The updated TIZ map provides a more precise estimate of the areas in North Carolina affected 

by astronomical and/or wind tides than currently available data. Its main improvements include 

the following:  

• The addition of new and useful attributes: 

o elevations of tidal water,  

o potential coastal island locations,  

o influence of salt or fresh water; 

• Division of the Tidal Influence Zone into three parts based on geographic location; 

• Assignment of individual Hydrologic Unit identifiers; and  

• More precise tidal data modified by field work. 

Axiom’s new TIZ data are divided into three areas: 

(1) TIZ Area A 

Area A consists of the areas draining to and adjacent to the Albemarle Sound, including barrier 

islands. It encompasses the northern portion of the NC TIZ, generally from the NC-Virginia border 

https://coast.noaa.gov/slr/
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to Oregon Inlet. 

(2) TIZ Area B 

Area B consists of the areas draining to and adjacent to the Pamlico Sound, including barrier 

islands. It encompasses the central portion of the NC TIZ, generally from Oregon Inlet to Beaufort 

Inlet. 

(3) TIZ Area C 

Area C consists of the areas draining to and adjacent to the Cape Fear River and the southern 

coast, including barrier islands.  It encompasses the southern portion of the NC TIZ, generally 

from Beaufort Inlet to the NC-South Carolina border. 

The relationship between tidal wetlands and astronomical and wind tides are provided below: 

a. The TIZ occupies the area within the Maximum Elevation that water reaches due to 

astronomical tides (or astronomical tides plus wind tides, where applicable). 

b. Astronomical tides occur daily, and the highest average elevation that it reaches (the 

average of the higher of the two daily high tides) is the Mean Higher High Water Elevation 

(MHHW_elev). 

• All areas that are inundated daily (i.e. in the TIZ and at or lower than the MHHW_elev) 

are predicted to be wetlands. 

c. Wind tides occur occasionally and can push the water above the MHHW level. The highest 

level they can normally reach is the Maximum Water Elevation (Max_elev). In areas not 

subject to wind tides, Max_elev = MHHW_elev. 

• Areas within the TIZ but at an elevation higher than the MHHW elevation may or may 

not be wetlands, but the wetlands that are found here are considered tidal. 

Another variable, Tidal Water Amplitude (TWA) can be derived at individual sites as a 

function of the Maximum Water Elevation minus the Site Elevation. For example, at the inland 

(maximum) extent of the TIZ, the TWA is zero and increases moving seaward.   
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These two variables together with others as listed in Table 1 are applied to our tools. These 

variable layers are included with the tools. The TIZ variable plays a key role to delineate the tidal 

influence regions and non-tidal influence regions, similar to the riparian variable to delineate the 

riparian regions and non-riparian regions. Thus, we utilize the TIZ in the variable set, but also in 

the final intersection with the predicted wetland map in the coastal areas, which helps to generate 

the tidal wetlands and non-tidal wetlands.  

It is to be emphasized that the methods, models and tools are valid for all various areas when 

the DEM LiDAR data and TIZ data are available. 

In addition, we show some new variables as vden (Vegetation density) and qvcm (QL2 

vegetation dominant class) in following Figure 4 and Figure 5, respectively. Our tools 

automatically generate these two variables vden and qvcm from the input LiDAR data by the 

formulas as listed in Table 1. These two variables are calculated based on the data of QL2 class 3 

(veg-l), class 4 (veg-m) and class 5 (veg-h). Thus, the classified point cloud is required as the input 

data. Currently, we have successfully run our tools for the test areas in Brunswick County. In the 

future, we will further test for the maximum sized area that the model can be applied to in view of 

possible computational restriction and ArcGIS limit. 

 

Figure 4.  Variable vden (cells with higher values contain higher amounts of vegetation) 
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Figure 5.  Variable qvcm ( 0 indicates no vegetation) 

In the next two sections, the methods of Logit and RF used to run modeling and prediction of 

tidal wetlands identification are described. They are also described as in our final report of NCDOT 

RP 2013-13. 

3.2 Logistic Regression (Logit) Model 

First, we have applied the logistic regression model to classify the landscape into two 

categories (wetland and non-wetland) for tidal wetland identification. Before we describe the 

logistic regression model, let’s first describe a linear regression model as in (1), which predicts the 

occurrence of wetland as a function 𝑦(𝒙) of the selected explanatory variable vector 𝒙 at a data 

point as  

𝑦(𝒙) = 𝜷𝑇𝒙 + 𝜀                                                                       (1)  

where 𝒙  is the wetland variables vector 𝒙 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑚]𝑇 , 𝑦  is a response variable as the 

prediction result, 𝜷 is the coefficient vector as a “weighting factor” for the variable vector, and 𝜀 

is an estimator/noise error or adjustment of this linear estimator. In a prediction area, each point 

(e.g., 20 × 20 feet2 as a point), the variable vector x can be arranged in a matrix 𝑋 , and the 

corresponding response variable y can be presented as a vector y, where each row represents a data 

point. Then we have the following linear regression model in a matrix-vector format as  
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𝒚(𝑋) = 𝑋𝜷 + 𝜺                                                                 (2) 

Because the response vector should be a binary-valued vector, i.e., the prediction model is a two-

category classification; therefore, a binary-valued model is used with a logistic function transform 

to (1) and called logistic regression. Logistic regression is just to take a transform on the 

continuous-valued response variable to predict a binary response with a “probability” value in [0, 

1]. In statistics, the probability describing the possible outcomes of a single trial is modeled as a 

function of predictor variables, using a logistic function 

𝑝(𝒙) = 𝐹(𝑡) =  
𝑒𝑡

1+𝑒𝑡
=

1

1+𝑒−𝑡
                                                                 (3) 

where 𝑡 = 𝜷𝑇𝒙 + 𝜀, i.e., to transform a continuous response 𝑦(𝑥) in (1) to a binary response. After 

the logistic function transform, we may have a generalized linear model for binary response in 

probability as  

𝑦̂ = 𝑙𝑜𝑔𝑖𝑡 (𝐸[𝑦|𝒙 ]) = 𝑙𝑜𝑔𝑖𝑡 (𝑝) = ln (
𝑝

1−𝑝
) = 𝑡 = 𝜷𝑇𝒙 + 𝜀                           (4) 

𝑝 = 𝐸[𝑦|𝒙 ] =  
1

1+𝑒−𝜷𝑇𝒙−𝜀
                                                       (5) 

Sometimes, it is simply written as a new response variable y as follows 

𝑦 =   
1

1+𝑒−𝜷𝑇𝒙−𝜀
                                                                  (6) 

Also, please notice that the Logit model may be extended for multi-category classification. 

3.4 Random Forest (RF) 

In order to reduce the sensitivity to data noise and the overfitting problem, we have applied a 

decision tree-based classification method Random Forest (RF), a machine learning method, with 

the derivative variables in Table 1 to identify wetlands for tidal wetland prediction. Random trees 

in RF are built by a set of rules that uses a bagging technique to randomly select sub-datasets and 

optimization technique to determine the best decision tree nodes from a randomly selected sub-set 

of variables [15, 68]. Thus, it leads to a random forest. Then, in the prediction process, RF can 

recursively partition the data into categories.  
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 The classification tree analysis (CTA), also referred to as classification and regression trees 

(CART), is a typical tree-based classification method. RF aims at improving predictive ability by 

taking the majority vote result from the prediction results of multiple trees in classification mode, 

or taking the average result of the prediction results of multiple trees in regression mode. Thus, 

this method is not sensitive to noise or overtraining, as resampling is not based on weighting. 

Furthermore, it is computationally much lighter than methods based on boosting and somewhat 

lighter than simple bagging. In the literature, it is used for land cover classification [32], and 

recently used for the first time for wetland identification in our publications [68].   

 Here, we have developed and applied the RF model for the tidal wetland classification by using 

new QL2 LiDAR, especially using the newly listed variable set in Table 1 for modeling and 

prediction. For prediction, each tree in the forest generates a class result based on randomly 

selected input data and a randomly selected sub-set of variable features. Then the method collects 

the voting results from the resulting trees. It is described in Figure 6. 

 In the selection of the variables at each node, one of the optimal searches is to calculate the 

decrease of Gini index (an impurity measure) and another is to calculate the decrease in error, 

every time a new variable is introduced. These are used for building decision trees. 

 

Figure 6.  Random Forest Method  
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Similarly, please notice that the RF model may also work for multi-category classification 

problems, e.g., tidal wetlands, non-tidal wetlands, and non-wetlands. 

4. Automation Process 

In this Chapter, we summarize the automation process and the tools we have developed for 

WAMAT–Tidal, similar to [2, 3, 68] as developed for WAMAT (RP 2013-13) [5]. The detail of 

WAMAT-Tidal (WAM Automation Tools–Tidal) [10.A] can be found in the Users’ Guide as 

Appendix [10.B].   

These tools can be flexibly and automatically run to implement several tasks related to tidal 

wetland prediction. The main tasks of tidal wetland prediction include:  

(a) Data pre-processing of QL2, especially for TIZ and TWA;  

(b) Model training;  

(c) Predicting;  

(d) Wetland mapping;  

(e) Intersection with TIZ to generate tidal wetlands, non-tidal wetlands, and non-wetlands;  

(f) Model performance evaluation; and  

(g) Tidal wetland map display.  

The automation tools are developed based on ArcGIS 10.1.  

During the project period, we have provided NCDOT five new major versions of our WAMAT 

as v.4.0 through v.4.4, with their User Guides [10.C, 10.D]. It is as summarized above in Figure 2, 

Chapter 2. In addition, recently we developed new version WAMAT v.5.1 to fit the NCDOT 

special requirement to overcome the computation limitation in the current GIS [*10.F, *10.G]. 

4.1. Advantages of the Automation Tool WAMAT–Tidal   

There are some important features of the WAMAT-Tidal based on WAMAT new versions as 

summarized below. 

(1) Flexible: 
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WAMAT-Tidal has all flexibility from WAMAT. In addition, it has flexibility to easily add or 

remove the predictor variables for building models and running predictions. 

(2) Efficient: 

The algorithm and tools are both enhanced to be able to predict large areas based on WAMAT. 

We efficiently divide the data in big areas and then combine their results in the algorithm, thus 

it can be quickly calculated and run well.  

(3) User friendly: 

The simple interface is more straightforward and applicable. Users can easily change their data 

files, such as linking them to the files in different folds for different areas for running tidal 

wetland modeling and prediction in different areas.  

 In addition, we applied the automation tools for tidal wetland detection using input with 

different resolutions to test and identify the best resolution in modeling and prediction. 

5.  Case Study and Field Validation 

This Chapter describes the field visit and the case studies. The field visit areas are in Brunswick 

County.  

5.1 Tidal wetland prediction of Brunswick and New Hanover Counties 

We have implemented the automation process of tidal wetland prediction for several areas in 

Brunswick and New Hanover counties. Our prediction models are built by the sampled training 

QL2 data from areas provided by Axiom and NCDOT (Figure 7) and the TIZ map (Figure 8). It is 

emphasized that the predicted areas are not in the training areas, but are extended areas along two 

directions as NW and E from the two wide-sides of the training area (Fig. 7).  
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Figure 7.  Wetland training area 

 

Figure 8. Tidal influence zone (TIZ) 

5.2. Model construction 

We have run the following process of building our models and predicting tidal wetlands. It 

runs our models including two machine learning methods: (1) Logistic Regression method, and (2) 
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Random Forest method. We have also run the process via an “approach A” and “dynamic 

resolution” for study. 

Approach A. To build wetland model with wetland types, 

(i) To predict wetland types by the above-built model,  

(ii) To combine predicted wetland types into a combined wetlands prediction, 

(iii) To run intersection of the combined wetlands prediction with the TIZ for 

resultant tidal wetlands (and types if needed). 

Dynamic Resolution is to let the source data have various resolutions for modeling and prediction.  

 

5.3. Field validation  

Axiom has visited appropriate sites within the TIZ to field-verify the results of TIZ generation 

and tidal water extents in various areas. Wetland areas have been delineated across a representative 

sample of ecoregions, and the data have been provided to UNCC team for analysis and model 

refinement. 

With expert Sandy Smith at Axiom Environmental, our team executed a validation visit to 

Brunswick and New Hanover counties on August 1 and 2, 2018, two full days. Expert Scott Davis 

at Axiom also provided useful maps for the team to run this field visit.  

The goals of this field trip are: (1) to validate automated wetland identification digital maps 

generated by using Logistic Regression (Logit) model and Random Forest (RF) model; (2) to 

differentiate the tidal and non-tidal wetlands; and (3) to collect wetland types for future further 

studies and applications.  

 Methodology has been developed with the machine learning-based RF method and a regression 

Logit method. We first identify the wetland areas via approach A and dynamic resolution by using 

our developing WAMAT–Tidal tools, then overlay the identified wetland areas on the TIZ map to 

determine if the predicted wetland is potentially tidal. 

A brief summary of the field test is as follows.  

 Study area 
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– Wetland training area: it is located in Brunswick County provided by Axiom, as shown in 

Figure 7 in above Section 5.1.  

– Wetland and transect area: it is also shown in Figure 7 above. 

– Tidal Influence Zone: as provided by Axiom, it is shown in Figure 8 in above Section 5.1. 

– Areas for modeling verification: It takes the intersection of the training area and the TIZ, as 

shown below on Figure 9. We then verified the prediction result for this tidal wetland.  

     

Figure 9. Tidal wetland verification area for model building 

– Regions for tidal wetland prediction verification: We investigated the four extended regions, 

as shown in Figure 10, where we visited 8 sites. Then, we verified the prediction results for the 

tidal wetlands during the field visit.  
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Figure 10.  Regions used for tidal wetland prediction and verification 

The field validation results in this field test show that 

(i) In modeling, RF has better results than Logit; i.e., RF results in less modeling error. 

(ii) In non-tidal wetland prediction, Logit usually gives more accurate wetland predictions 

than RF. 

(iii) In tidal wetland prediction, both Logit and RF models provide the same very highly 

accurate tidal wetland predictions.  

(iv) Within the TIZ, RF results are better because RF shows better performance in 

excluding roads/water 

A summary for tidal wetland predictions of two models, Logit and RF in Brunswick and New 

Hanover counties is described in detail in the Attachment [10.E].  
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6. Method for Best Resolution Identification and Test 

6.1 Best resolution determination method  

For the best resolution determination in modeling and prediction, the PI has introduced a new 

method for a dynamic multi-resolution scheme test and analysis of tidal wetland modeling and 

prediction by the orthogonal experiment design using the Taguchi method [14, 24]. Based on that 

new method, we have run experiments for the best resolution selection/identification as listed in 

Table 2 below.  

 The object of this experiment is to find resolutions of input and output that achieve the higher 

accuracy, i.e., to find the best resolution.   

 The study area is in Brunswick County with the training data from Axiom’s field work is shown 

in Figure 7. We applied the Taguchi orthogonal method to reduce number of tests to obtain the 

best resolution solution. 

6.2 Best resolution test of QL2 data for tidal wetland prediction 

Digital Elevation Models (DEMs) representing the QL2 data have been provided by the NC 

Division of Emergency Management (NCDEM) with resolutions of 5, 10, 20, and 50 feet, 

respectively. So, what is the best resolution of QL2 data for tidal wetland prediction? The goal is 

to determine the best resolution among a combination of data files for the best accuracy of 

prediction. Here, we consider choices among the 5, 10, and 20-foot DEMs in view of 50 feet is too 

large for accurate prediction, thus there are three levels for each factor.  

The setting of resolution parameters test is from the Taguchi method, and its experiments lead 

to the following best resolution set for Logit and RF respectively as shown in Table 2.  
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Table 2.  Best Resolution Recommendations 

 logit RF 

DEM 5 20 

Soil  10 20 

Vegetation  20 20 

Output normalized 10 5 

 

We ran a validation analysis for the final suggested best resolution from Table 2 based on 

Taguchi method and the PI’s dynamic multi-resolution test. The results are shown in the following 

figures. 

 

Figure 11.  Accuracy and error rate validation of the recommended RF resolution 

 

Figure 12.  Accuracy and error rate validation of the recommended logit resolution 
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Figure 13.  Map for RF with the recommended resolution  
[Green color for 1-1, i.e., tidal-wetland – predicted tidal-wetland as correct; Red color for 1-0, i.e., tidal-

wetland – predicted non-tidal-wetland as missing; Grey color for 0-0, i.e., non-tidal-wetland – predicted 

non-tidal-wetland as correct; Yellow color for 0-1, i.e., as over predicted tidal-wetland.] 

 

Figure 14.  Map for Logit with the recommended resolution 
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7. Conclusion 

This project mainly focuses on the following major objectives:  

(a) To develop an effective predictor variable set for tidal wetland prediction; 

(b) To develop effective methods for modeling tidal wetlands by using QL2 LiDAR data; 

(c) To develop new automated practical tools for tidal wetland identification and prediction by 

using QL2 LiDAR data based on the developed methods; 

(d) To run a field test to validate and evaluate the developed methods and tools;  

(e) To develop the best resolution determination method; and 

(f) To have deliverable automated tidal wetland prediction tools. 

According to the results, we summarize this project completion status as follows: 

(1) We have successfully completed this important project for the NCDOT needs of tidal 

wetland modeling and prediction. 

(2) During this project period, we have further developed and updated our WAMAT (patent 

supported) to v.4.4 with extended functions and easy run interface, which is easy to install 

and user-friendly to use with a full process automation and/or a module process automation 

as user’s choice. That helps the development of tools for tidal wetland prediction. 

(3) We have successfully developed tidal wetland prediction automation tools, WAMAT-Tidal, 

as a deliverable product for NCDOT to use internally. The Users’ Guide of WAMAT-Tidal 

is also ready for deliverable with the tools together.  

(4) Two systematic models are presented and developed with the automation. They are logistic 

regression model (Logit) and Random Forest model (RF).  

(5) The models with automation have been applied to predict wetlands and tidal wetlands for 

Brunswick County. The resultant data and digital maps are delivered to NCDOT as 

attachment [10.E]. 

(6) A field visit to Brunswick and New Hanover counties has been conducted with Axiom 
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Environmental support.  Our prediction results are mainly based on the QL2 data with soil 

and TIZ data, which may change over time. But the tools can be run based on updated data. 

(7) Further research and study in this important research area and direction is needed to 

advance our developed system and the NCDOT’s excellent NC WAM work to continue 

leading in the nation.  

The deliverable products include: 

(i) WAMAT-Tidal v.4.1, 

(ii) WAMAT-Tidal v.4.1 Users’ Guide, 

(iii) WAMAT v.4.4, (as well as v.4.1 ~ 4.3), 

(iv) WAMAT v.4.4 Users’ Guide, (as well as v.4.1 ~ 4.3 User’s Guides), 

(v) Systematic Logit model and RF model for tidal wetland prediction in automation 

tools,  

(vi) Digital tidal wetland maps from the above models for Brunswick County regions,  

(vii) WAMAT v.5.1, and  

(viii) WAMAT v.5.1 Users’ Guide. 

During this project period, we have published 3 papers as listed in the next Chapter. Among 

them are one at the International Conference on Ecology and Transportation, held in Raleigh, NC, 

2015 [8.1], and another two at Transportation Research Board (TRB) Annual Meetings, 2017 and 

2018 respectively [8.2 – 8.3].   

The PI and NCDOT were invited to present our research of NCDOT RP 2013-13 with demos 

as the 2015 Sweet Sixteen High Value Research awarded project at the 2016 TRB Annual Meeting 

in Washington, D.C., January 2016 [8.4].  

Furthermore, just recently, our research result has led to a US Patent issued by USPTO on 07-

17-2018 [8.5].  

A summary for that is listed in the next Chapter as follows. 



35 

  

8. Papers Published and Patent Awarded in the Project Period 

Published Papers and/or Presentations: 

[8.1] S.-G. Wang, J. Deng, M.-Z. Chen, M. Weatherford, and L. Paugh, “Random Forest 

Classification and Automation for Wetland Identification based on DEM Derivatives”, 

2015 ICOET (International Conference on Ecology and Transportation), paper 778, 

session 408-2, Raleigh, US, pp.1-17, Sept. 2015.  

[8.2] J. Deng, A.S. Smith, S. Davis, M. Weatherford, L. Paugh, and S.-G. Wang*, “Identification 

of NC Wetland Types by Lidar Data and Tree Based Machine Learning Methods”, the TRB 

96th Annual Meeting, National Academies of Sciences-Engineering-Medicine, Paper 

No.17-01199, pp.1-16, Washington DC, Jan. 2017. 

[8.3] J. Deng, S.-G. Wang*, A.S. Smith, S. Davis, M. Weatherford, L. Paugh, and S. Jiang, 

“Scale Analysis of a Wetland Classification Model based on LiDAR Data and Machine 

Learning Methodology”, TRB 97th Annual Meeting, National Academies of Sciences-

Engineering-Medicine, Paper No. 18-01812, pp.1-16, Washington DC, Jan. 2018.  

[8.4] S.-G. Wang†, M. Weatherford, L. Paugh, N. Mastin†, and J. Kirby, “Improvements to 

NCDOT’s Wetland Prediction Model”, State Department of Transportation High Value 

Research, 2015 AASHTO-RAC Awarded Sweet 16 High Value Research Project, at the 

TRB 95th Annual Meeting, National Academies of Sciences-Engineering-Medicine, 

Washington DC, Jan. 10-14, 2016.    (†Invited Presenters/Speakers) 

* Corresponding Author 

US Patent issued by USPTO: 

[8.5] S.-G. Wang, L. Bai, J. Deng, M. Jia, M. Weatherford, L. Paugh, W. Tang, M. Chen and S. 

Chen, “Wetland Modeling and Prediction”, Invention Documents, UNC Charlotte, April 

18, 2014.  US 10,026,221, 07-17-2018. (14/724,787, 05-28-2015) 
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