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Executive Summary 

NCDOT’s Transportation Planning Branch seeks to utilize a method to estimate the 
impact of peak spreading based on capacity constraints that is found in the latest 
national guidance for traffic forecasting. To fully understand peak spreading impacts, it 
is necessary to understand how K-factor data changes. A model that tests factors that 
affect K-factor data, including site and socioeconomic characteristics, provides a useful 
guide for estimating reasonable levels of peak spreading. 

The purpose of this study was to determine how K-factor data changes to estimate the 
impact of peak spreading across different area types. Models were developed for 
forecasting peak spreading where peak spreading was measured as change in the K-
factor. Peak spreading occurs when the K-factor, defined as the proportion of the 24-
hour traffic volume that occurs during the peak hour, decreases in relation to an 
increase in traffic congestion. Peak spreading can result from change in the departure 
time of motorists to a non-peak hour in reaction to congested peak hour traffic 
conditions. Reliable estimates of K-factor change are important for the accurate 
estimation of travel demand and roadway performance, including travel speed and 
vehicle emissions. 

The research team sought to replicate the peak spreading study developed by Miller 
(2012) for the Northern Virginia area, but with some modifications in data sources and 
modeling inputs. Data were collected from 54 continuous count stations located on 
North Carolina roadways representing 34 of the 100 counties in the state for the period 
1995-2016. All stations gave two-directional counts, resulting in 108 station-direction 
combinations, or sites, for analysis purposes.  

Two before-and-after periods were included in the analysis: 2000/2010 and 2005/2015. 
For all sites with available data for the 2000/2010 period, the average annual K-factor 
adjusted for months for which data were not available increased by 0.0002, from 0.1012 
to 0.1014, during the period. The average annual 24-hour volume-to-capacity ratio, 
which was used as a surrogate for travel congestion, increased from 3.2838 to 3.2891. 
Neither change was statistically significant. For all sites with available data for the 
2005/2015 period, the average annual K-factor adjusted for months for which data were 
not available decreased by 0.0004, from 0.0998 to 0.0994, during the period. The 24-
hour volume-to-capacity ratio increased from 3.6808 to 3.9224. The change in average 
annual K-factor was not statistically significant. The change in average annual 24-hour 
volume-to-capacity ratio was statistically significant (p<0.001). The K-factor results for 
all sites with available data are to be expected since the annual K-factors are generated 
with data from many sites that experience random variation in the K-factor over time.  

Since many of the 108 sites appeared to experience non-commute travel patterns that 
would generate more random variation in K-factors rather than predictable variation 
that could be captured by the socioeconomic factors and roadway attributes included in 
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statistical testing, a subset of sites was used in exploratory peak spreading modeling 
efforts. While the ANOVA results indicate that site characteristics (such as facility 
functional class) and socioeconomic characteristics (including population and 
employment) affect the K-factor, exploratory modeling did not indicate that land use 
density was a statistically significant factor in K-factor change when including other 
variables in the model. 
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1. Introduction 

NCHRP 765 is the latest guidance for traffic forecasting. NCHRP 765 includes documentation for 
a method to estimate the impact of peak spreading based on capacity constraints. NCDOT’s 
Transportation Planning Branch seeks to use this method to help determine how traffic data 
used in the program development process may change in the future. To better understand the 
implications of the NCHRP 765 peak spreading documentation, it is necessary to understand 
how K-factor data changes. A model that tests factors that affect K-factor data, such as site and 
socioeconomic characteristics, provides a useful guide for estimating reasonable levels of peak 
spreading. 

The purpose of this project was to determine how K-factor data changes to estimate the impact 
of peak spreading across different area types. This project utilizes North Carolina traffic data in 
its modeling effort, and it also reviews peak spreading studies conducted in cities in other 
states for comparison. The results of this research will be useful to inform efficient and cost-
effective roadway project design and will help provide additional information to advise the 
NEPA process. 

1.1. Background and Research Need 

Chapter 8 of NCHRP 765 provides guidance for improving the temporal accuracy of traffic 
forecasts and includes information on peak spreading, defined as an adjustment in the 
temporal characteristics of travel in response to worsening traffic congestion that results in the 
flattening and widening of the peaks in diurnal distributions of travel. Peak spreading tools 
provide more realistic traffic forecasts that account for prolonged congestion effects since they 
constrain hourly traffic forecasts to available capacities. NCHRP 765 provides documentation 
for a basic approach to applying peak spreading to traffic forecasts based on a technique 
documented by the Ohio Department of Transportation (Smith et al., 2014). This approach 
involves shifting volumes in excess of capacity for the heaviest volume hours onto to the 
shoulder hours until there are no longer any hours of the day in which forecast volumes exceed 
capacity.  

The NCHRP 765 documentation forms the foundation of an Excel-based tool that NCDOT’s 
Transportation Planning Branch is developing to forecast peak spreading and K-factor impacts 
in North Carolina. The NCHRP 765 peak spreading approach can be improved as a forecasting 
tool by integrating findings concerning factors that affect K-factor data, such as rural/urban 
context and development density, in order to estimate reasonable levels of peak spreading. The 
Virginia Center for Transportation Innovation and Research recently completed research to 
generate a model for forecasting peak spreading that incorporates site characteristics (e.g., 
functional class, 24-hour volume-to-capacity ratio) and regional socioeconomic characteristics 
(e.g., jurisdictional employment growth) that may be used as a guide for the proposed project 
effort (Miller, 2012). 

Research supports that traffic forecasters should be aware of potential changes in traffic 
peaking over time, particularly in rapidly developing areas where relatively small variations in 
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peaking spreading can have a major impact (ITE, 2006). Research further suggests that 
inaccuracies in forecasting resulting from the exclusion of peak spreading in the process has 
consequences for the analysis of capital construction investments, air quality analysis, and 
analysis for transportation demand management (Barnes, 1998). Specifically, the failure to take 
into account peak spreading in the forecasting process can result in overestimation of 
forecasted traffic volumes in the peak hour and an underestimation of average speeds during 
this time as well as an underestimation of forecasted traffic volumes in the shoulders of the 
peak and an overestimation of average speed during these times (Barnes, 1998).  

1.2. Objectives 

The primary goal of this research effort is to determine how K-factor data changes in order to 
estimate the impact of peak spreading across different area types in North Carolina. The 
research results would provide a guide for estimating reasonable levels of peak spreading to 
inform more realistic traffic forecasts. The main study objectives were to: 

 Determine and assess factors that affect K-factor data and compare North Carolina K-
factor results with results from large cities in other states as a guide for determining 
reasonable levels of peak spreading 

 Generate North Carolina-specific K-factor documentation that can accompany and 
provide context for the NCHRP 765 peak spreading method that will be utilized by 
NCDOT’s Transportation Planning Branch 

The results of this research will be used by NCDOT’s Transportation Planning Branch as an input 
into an Excel-based tool that they are developing to forecast peak spreading in North Carolina. 
North Carolina-specific K-factor documentation will be included in the instructions for the peak 
spreading tool that will be used by traffic forecasters internal and external to NCDOT. The 
research product will provide traffic forecasters with data-driven guidance on what can be 
expected from potential urban population growth in relation to capacity on North Carolina 
roadways in order to inform future planning decisions. 

2. Literature Review 

An extensive literature review was conducted to determine the state of the practice regarding 
how peak spreading impacts are estimated and quantified and to inform an appropriate 
modeling approach for estimating K-factor changes in North Carolina. The review provides a 
summary of K-factor and peak spreading definitions, modeling approaches, and explanatory 
variables used to test variability in K-factors. 

2.1. K-Factor and Peak Spreading Definitions 

In general, the K-factor is defined as the proportion of annual average daily traffic (AADT) 
occurring in an hour. K-factors are typically generated using a year of data collected at a 
continuous count station. Two types of K-factors that are used in traffic planning and 
forecasting are the K30 and the K100. The K30 is known as the Design Hour Factor and is 
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calculated by dividing the 30th highest hourly volume by the AADT for the year in which data 
were collected. The K100 is known as the Planning Analysis Hour Factor and is calculated by 
dividing the 100th highest hourly volume by the AADT for the year in which data were collected. 

The K30 was introduced in the 1950 Highway Capacity Manual (HCM). In the 2010 HCM, the K30 

characteristics are described as follows: 

 The K-factor generally decreases as the AADT on a highway increases; 

 The reduction rate for high K-factors is faster than for lower values; 

 The K-factor decreases as development density increases; and  

 The highest K-factors generally occur on recreational facilities, followed by rural, 
suburban, and urban facilities, in descending order. 

The HCM recommends that the K30 be determined from local data for similar facilities with 
similar demand characteristics. In their state traffic manual (2007), the Ohio Department of 
Transportation (ODOT) notes that the K30 does not change considerably from year to year 
unless there are major changes in land use served by the roadway under consideration. 

As a part of their project level traffic forecasting process, several State Departments of 
Transportation (DOTs) utilize the K30 in forecast development and analysis, including ODOT and 
NCDOT. The Florida Department of Transportation (FDOT) is in the process of adopting 
standardized K-factors based on locations in the state where volumes are continuously 
monitored (FDOT, 2014). Standard K-factor values are fixed for roadways from planning 
through design and are set by the area type in which roadways are located and facility type 
(Exhibit 1). 
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Exhibit 1: FDOT Recommended Standard K-Factors by Area and Facility Type 

Abundant literature exists on peak spreading that provides multiple definitions of the concept. 
Research concerns govern how peak spreading is defined as a dependent variable in the 
existing research. Peak spreading has been defined by the length of the peak period (Karl and 
Gaffney, 2008), the proportion of peak hour volume during the peak 3- or 4-hour period 
(Cambridge Systematics, Inc., 1997; Allen, 1991, 1996; Ivan, 2000, 2001), the proportion of 
travel demand during a peak period associated with a particular mode (Sall, et al., 2010), and 
peak period congested travel time (Purvis, 1999). In general, peak spreading is a phenomenon 
where the proportion of traffic demand decreases in the most severely congested part of a 
peak period when travel conditions deteriorate and the decreased proportion moves outward 
to the shoulders of the most severely congested part. Peak spreading causes the peak period 
travel demand profile to be flatter and wider over time, as shown in Exhibit 2. 
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Exhibit 2: Demand Change in Peak Spreading 

Peak spreading can be a result of reactive responses of travelers to deteriorated traffic 
conditions. However, implementation of policies such as flextime work schedules and 
temporal/dynamic road pricing can encourage peak spreading, if implemented appropriately. In 
either way, peak spreading leads to a more efficient use of urban roadway networks during the 
peak period. Failure to take peak spreading into account can result in overestimation of 
forecasted traffic volumes in the peak hour (and thus underestimation of average speeds) and 
an underestimation of forecasted traffic volumes in the shoulder periods (and thus an 
overestimation of average speeds), which can lead to problematic subsequent analysis such as 
air quality analysis for conformity requirements and capital investment analysis for new 
projects. 

NCHRP 765 defines peak spreading as an adjustment in the temporal characteristics of travel in 
response to worsening traffic congestion that results in the flattening and widening of the 
peaks in diurnal distributions of travel (Smith, et al, 2014). However, several authors have made 
a distinction between “active” peak spreading and “passive” peak spreading. Jassmi and 
Ochieng (2015) defined active peak spreading as the peak spreading that occurs when the 
driver makes a conscious decision to make a trip at a time other than the most congested, 
eventually spreading the peak period. Passive spreading was defined as what occurs when the 
intensity of congestion during the peak period increases so that travel times become longer and 
therefore extends the peak period. Barnes (1998) also differentiates between active peak 
spreading and passive peak spreading. She defines active peak spreading as occurring when 
travelers purposely retime their trips to avoid all or part of the congested conditions of the 
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peak period. This means that travelers may begin their trips earlier to arrive at the same time as 
typical, or they may retime their trips to completely avoid the most congested time. This 
change in traveler behavior results in spreading the peak over time. Passive peak spreading 
consists of trips extending beyond the height of the peak as a consequence of increased delays 
due to congestion and results in no change in the demand profile. As congestion increases, 
travel times increase so that the peak period becomes more spread out because travelers are 
spending more time on the roadway for the same trip. Citing Porter, et al., Barnes emphasizes 
that both active and passive peak spreading results from differential growth in peak period 
travel. In practice, active and passive peak spreading could occur simultaneously to various 
degrees in all peak spreading situations. 

Holyoak (2007) defines peak spreading as a reduction in traffic proportions during the most 
congested part of the peak period with corresponding increases during the peak shoulders, and 
she distinguishes between passive and active peak spreading. The former is defined as the 
natural increase in the duration of peak travel as travel demand tests the capacity of a facility 
so that the levels of peak travel activity persist for a longer period, and the latter is defined as 
resulting from individual travelers deliberately changing their travel behavior to avoid peak 
periods or when transportation policies are enacted to encourage people to travel at times 
other than peak periods. 

Johnston (1987, 1991) provides a series of findings on peak spreading from a survey conducted 
in London and several models that he developed. His findings include: 

 Most peak-period trip retiming was reactive and marginal. 

 Most of the retiming of departure times in the morning peak was due to the simple 
fact that increased congestion makes the journey longer and most morning peak 
travelers are arrival time constrained. 

 Morning-peak travelers making a regular journey to work or education were those 
most likely to make departure time adjustments, while journeys for some other 
purposes (shopping, social) tended to avoid the peak period by retiming. 

 Relatively few peak travelers deliberately changed both departure and arrival times. 

 Short-journey travelers were much less inclined to change their journey patterns 
than long-journey travelers if congestion gets worse. This is simply because delays 
increase with distance. 

 Travelers valued very highly the predictability of travel time and were very sensitive 
to deterioration in travel time reliability. 

 Travelers were making trade-offs between retiming the travel and enduring 
prolonged travel time. The survey showed a wide variation in the willingness of 
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travelers to make such trade-offs and different types of travelers responded in quite 
different ways to changes in travel conditions. 

 Generally travelers seemed to need quite large relative changes in travel time before 
they would deliberately retime their journeys. 

 His model indicated that the utility value to travelers of traveling in the peak rather 
than in the off-peak is at least double the difference in travel time it takes to make 
the journey. 

 Anecdotal evidence suggests that there is “peak contraction,” which is the reverse of 
peak spreading, when road networks are improved. Specifically, drivers may retime 
their trips back if conditions improve, which re-sharpen the peak-period profile. 

Alternately, Gordon, et al. (1990) conducted a study which minimized the effect of congestion 
on peak spreading. Based on the National Personal Transportation Survey (NPTS) data for 1977 
and 1983, the researchers concluded that there is no evidence to support active spreading as 
the consequence of increased congestion in major metropolitan areas. Instead, they found that 
adjustments in locations for both residences and workplaces provided a much more solid 
explanation for congestion relief than “spontaneous” adjustments to work schedules at an 
aggregate level. They indicated that potential benefits that resulted from changing departure 
time may not be enough to offset the costs of adjustment in the activity patterns in non-
working hours. 

2.2. Peak Spreading Modeling Approaches 

Citing Jin and Chiao (2008), Miller (2012) provides three major approaches for forecasting peak 
spreading: 1) regional hourly proportion models, 2) link-specific hourly proportion models, and 
3) choice models. Barnes (1998) suggests that link-based and trip-based methods allow for a 
peak spreading analysis to be implemented within the steps of the traditional four-step travel 
demand modeling process. She further concludes that peak spreading modeling approaches 
can: 1) adjust the traditional four-step forecasting process to better accommodate the effects 
of peak spreading, 2) consist of sub-models that run independently of the four-step process, 
but the output can be used as input for a traditional forecasting model, or 3) consist of models 
that are developed to stand alone with no connection to a more extensive forecasting model.  

Barnes (1998) recommends a short-term and a long-term approach for peak spreading model 
development. The short-term approach consists of generating simple models from historic 
traffic data collected at key freeway locations representing a variety of area types with 
preference given to locations with the most historic data available. For the long-term approach, 
Barnes recommends that a departure time element be included in future research in order to 
understand future active peak spreading trends. She concludes that the most common 
approach to incorporating peak spreading into the forecasting process consists of adjusting the 
four-step modeling process to recognize the effects of congestion on peak conditions by 
constraining the trip matrix so demand cannot exceed capacity. She further suggests that peak 
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spreading treatments do not require activity-based modeling and detail beyond what is 
included in most urban area models, but that a model developed outside of a traditional 
forecasting model will require a considerable amount of data. 

The literature suggests that peak spreading is an aggregate phenomenon caused by complex 
individual motivations and behavior of travelers influenced/bounded by policies. Modeling peak 
spreading can therefore be very challenging, especially within the traditional four-step trip-
based modeling framework. Numerous attempts have been made to model peak spreading and 
incorporate it into transportation planning and forecasting. It is worth noting that none of the 
methods presented in this report represent the single answer to peak spreading issues or 
address peak spreading issues fully. Most of the methods have considerable limitations. 

The following sections provide a review of four major peak spreading modeling approaches 
recognized in the literature: 1) regional hourly proportion models, 2) link-based hourly 
proportion models, 3) trip-based models, and 4) choice models. 

2.2.1. Regional Hourly Proportion Models 

Regional hourly proportion models use factors derived from trip surveys or other data sources 
to assign a proportion of traffic to the peak hour. Traffic assignment is not link-specific, but is 
based on trip purpose and applies to an entire region. Regional hourly proportion models do 
not explicitly account for changes in congestion effects. 

Ivan produced two studies that utilized regional hourly proportion models. In one study, Ivan, 
et al. (2000) researched the peak period profile of ten freeway locations in Connecticut based 
on number of lanes, commuting direction, congestion (v/c ratio for the peak period), and 
distance from a central business district (CBD). The authors used hourly volume counts from a 
five-year period from permanent continuous count stations at locations with extensive 
congestion along the corridors during the peak period. The CBD variable was important in 
formulating the area type and in categorizing between business and personal trips. The authors 
employed OLS linear regression to relate the explanatory variables to the peak hour proportion 
for an afternoon peak period of 3 PM to 7 PM. 

Relative distance from a CBD for a given area to a site and the number of lanes at a site were 
found to be indicators of how the peak period profile is distributed at low levels of congestion. 
The CBD variable was found to be statistically significant, indicating that a count location which 
is further from the CBD for its area tends to have a peak period profile which is flatter at low 
levels of congestion than a site that is closer. The number of lanes variable was also found to be 
statistically significant, indicating that a site with more lanes will tend to have a peak period 
profile that is more peaked at low levels of congestion than a site with less lanes. The CBD 
variable was incorporated into area type and regional models, which were found to be the best 
in explaining scale and shape since they tend to consider overall differences between areas or 
regions rather than a single specific characteristic of the site or trip. 
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In a second study that builds on their previous research effort, Ivan, et al. (2001) attempted to 
enhance the four-step transportation planning procedure that traditionally predicts peak hour 
flow on links as a fixed percentage of the daily assignment by also considering congestion, 
region, and area type for predicting the K-factor. The authors use hourly volume counts from a 
five-year period to investigate peak spreading at ten freeway locations in Connecticut by using 
an exponential model transformed to OLS linear regression to relate a congestion measure and 
link-related variables to the peak hour proportion for a four-hour afternoon peak period of 3 
PM to 7 PM. Nine of the 10 count locations were categorized as urban and the other was 
categorized as rural, and all the locations experienced high (greater than 0.5) v/c ratios during 
peak periods. The authors used the v/c ratio for each link as the congestion measure that was 
related to the ratio of the peak hour volume to the four-hour peak period volume for each link. 
Commuting direction was also included as an explanatory variable. The freeway count locations 
were grouped by region within the state (Capitol, Southeast, Southwest, and New York Metro) 
and by area type (urban, suburban, ex-urban, shoreline, New York City Metro) for the modeling 
effort. The authors hypothesize that peak spreading is best captured by the congestion 
measure. 

The modeling results for the area type model indicated that peak spreading differs among the 
area types with change in the predictor variables associated with decreasing urbanization. For 
the regional model, peak spreading was not found to vary by direction for some of the regions 
included in the study. The authors point out that the use of an exponential model is ideal for 
capturing the diminishing benefit of commuting out of the peak as congestion increases and the 
four-hour peak period volume approaches saturation. 

Moses (2015) used National Household Travel Survey (NHTS) data to determine peaking 
characteristics by trip type in Florida’s large urbanized metropolitan areas – Jacksonville, 
Miami-Fort Lauderdale-Pompano Beach, Orlando-Kissimmee, and Tampa-St. Petersburg-
Clearwater. Peaking characteristics were analyzed for work trips (home-based work trips and 
non-home-based work trips combined) and all trips (all trip types combined). The results 
showed that the highest proportion of work trips occurred during the morning peak, and that 
the evening peak had a lower proportion of work related trips compared to the morning peak 
but experienced broader post peak shoulder than the morning post peak shoulder. Moses 
explains that this indicates a more extended peak period during the evening compared to the 
morning peak period. 

2.2.2. Link-Based Hourly Proportion Models 

Link-based hourly proportion models use aggregate travel patterns to forecast the proportion 
of peak hour volume for individual links within the transportation network, and they can be 
integrated with the traditional four-step travel demand modeling process. This type of model 
aims at obtaining more realistic traffic assignments for the peak hour. It works as a post-
assignment procedure, which applies link-specific peaking factors to three-hour peak period 
traffic volumes or area-and-roadway-functional-class specific peaking factors to daily traffic 
volumes to obtain peak hour traffic assignments. Link-based measures can be applied in the 
traffic assignment process to divert trips that exceed link capacity to the shoulders of the peak.   



NCDOT 2017-24 Project Final Report  
 
 
 

10 
 

Moses (2015) conducted a study using historical traffic data from 1996 to 2012 collected at 26 
permanent continuous count stations in large urbanized areas in Florida to analyze the 
relationship between 24-hour peaking characteristics and various performance measures. Two 
link-based models were generated to predict AM and PM peak volumes and hourly volume 
variations. The peak volume model included area type (urban, urbanized, large urbanized), 
facility type (freeways, divided arterials, undivided arterials, collectors, tollways, HOV lanes), 
speed limit of the roadway (30 mph to 70 mph in increments of 5 mph), and average daily 
traffic per lane (vehicles per hour) as predictor variables. The hourly volume model included 
area type, facility type, speed limit, and time of day (hour of day from 1 to 24). Moses chose not 
to include variables such as population, employment, or regional median income in the 
modeling effort since they were indirectly captured by the area type classification. Peak volume 
modeling was performed by AM and PM peak period using linear regression. High-fit linear 
models with R-square values of 0.86 and 0.87 were generated from the hourly data collected by 
lane. Facility type, ADT/lane, and speed limit were statistically significant variables in both the 
AM peak period and PM peak period models. Area type, however, was not a statistically 
significant variable, possibly due to the similarity of peaking characteristics in urban, urbanized, 
and large urbanized areas. Hourly volume modeling was performed using Gaussian functions to 
capture multiple peaks during the day. Gaussian models were found to model the weekday 
hourly volumes by reasonably replicating the peaking profiles with R-squared values higher 
than 0.95 for all facility types. The author notes that the hourly volume models do not 
represent actual travel demand on facilities during peak periods since the models are based on 
traffic counts which do not incorporate trip diversions to other routes due to demand 
exceeding facility capacity. The author suggests that Gaussian hourly volume models can be 
used to predict future traffic volumes if the characteristics of future trip making are known. 
Such characteristics can be used to modify or calibrate the amplitude, centroid, width and 
number of peak periods. 

Allen (1991) presents a methodology for projecting peak spreading as change in temporal 
patterns associated with capacity limitations using a modified Poisson distribution to describe 
the spread of 4-hour volumes across each 15-minute period on the I-80 corridor in northern 
New Jersey, a major commuting and trucking route. The model forecasts the future flattening 
or shifting of the peak hour based on specific links by estimating the total volume during the 4-
hour AM peak period (6-10 am) and by estimating the highest consecutive 60-minute volume 
during the peak period. Allen hypothesized that peaking patterns in the I-80 corridor are 
influenced by the extent to which employees have flexible working hours (flextime) that enable 
them to travel to work at nonstandard times and the level of traffic congestion. 

Trip origin and destination information were gathered through a roadside survey of I-80 
corridor motorists and used to develop both future estimates of eastbound AM 4-hour traffic 
and volume during the peak 60-minute period for each roadway link in the study area. The 
modeling approach related variables such as speed difference, downstream delay, average trip 
time, proximity to employment, work trip proportion, and average relative location to a 
congestion factor defined as the percentage of the 4-hour peak period volume that occurs in 
each 15-minute time interval. One Poisson model was fitted for all 13 links under study. 
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Louden, et al. (1988) implemented a link-based model based on data collected from 49 
corridors in Arizona, Texas, and California that covered a period from 5 to 20 years. 
Relationships between peak hour volume and peak period (3-hour) volume were modeled as a 
function of link facility type and link volume/capacity ratio in the peak period. The functional 
form of the peak spreading model is as follows: 

𝑃 =  
1

3
+ 𝑎 ∙ 𝑒(𝑏 ∙ 

𝑣
𝑐

) 

Where, 

 P = the ratio of peak hour volume to peak period (3-hour) volume 

 v/c = the volume / capacity ratio for the peak period (3-hour) period 

 a, b = model parameters 

The value of 1/3 in the model serves as a reasonable starting point, which assumes a uniform 
distribution of traffic volumes across the 3-hour peak period. 

In his study for the Virginia Center for Transportation Innovation and Research, Miller (2012) 
used the K-factor, defined as the proportion of the 24-hour traffic volume that occurs during 
the peak hour, as a measure of peak spreading. Data were collected from 32 continuous count 
stations (52 sites by direction) in the six Northern Virginia counties for the period 1997-2010. 
The data collected showed that the average annual K-factor decreased from 0.103 to 0.097 
during the period, while the 24-hour volume-to-capacity ratio increased from 7.3 to 8.0 on 
average. Both changes were statistically significant, according to the author. 

Two models were developed in the Virginia study, with model #1 for existing roads and model 
#2 for new roads. 

Model #1: 𝐾𝑛𝑒𝑤 = 0.019 + 0.758𝐾𝑜𝑙𝑑 + 0.022𝐸𝑚𝑝 − 0.011𝑇𝑤𝑜 − 0.007𝐹𝑟𝑒𝑒 −
0.012𝑅𝑢𝑟𝑎𝑙𝑀𝑢𝑙𝑡𝑖 

Where, 

 𝐾𝑛𝑒𝑤 = new K-factor to predict 

 𝐾𝑜𝑙𝑑 = historical K-factor 

 Emp = percentage change in number of filled jobs in a jurisdiction over the time period 

 Two = rural two-lane road dummy: 1 if yes, or 0 if not 

 Free = freeway or expressway dummy: 1 if yes, or 0 if not 

 RuralMulti = rural multilane road dummy: 1 if yes, or 0 if not 
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Model #2: 𝐾𝑛𝑒𝑤 = 0.080 + 0.059𝐸𝑚𝑝 − 0.010𝐶𝑖𝑟𝑐 − 0.002𝐹𝑟𝑒𝑒𝑤𝑎𝑦24𝑣𝑐 

Where, 

 𝐾𝑛𝑒𝑤 = new K-factor to predict 

 Emp = percentage change in number of filled jobs in a jurisdiction over the time period 

 Circ = circuity road type dummy: 1 if yes, or 0 if not 

 Freeway24vc = 24-hour volume divided by hourly capacity for freeway sites only 

The two models rely on site characteristics (e.g. functional class and 24-hour volume-to-
capacity ratio of freeways) and regional socioeconomic characteristics (e.g. jurisdictional 
employment change) to determine the value of K-factors. Except for new freeways, the models 
do not directly use a congestion measure (e.g. v/c ratio) as a predictor. However, employment 
changes may be a good indicator of the change of congestion level. 

Both the Phoenix and Virginia models have significant limitations for use in regional travel 
forecasting. Since peaking factors are link-specific, there is no guarantee of continuity of flow in 
the peak hour prediction. Two adjacent links without intersections in between could end up 
with different peak hour flows due to different peaking factors applied. These two methods 
seem to fit project-level peak spreading forecasting better than regional or even sub-area 
forecasting. 

2.2.3. Trip-Based Models 

Trip-based models selectively reduce the trip table interchanges for those links in which 
demand exceeds capacity and allow continuity of flow between adjacent links. This approach 
requires time period trip tables, or a pre-assignment factoring procedure. A report authored by 
Cambridge Systematics, Inc. (1997) on time-of-day modeling procedures provides three 
examples of trip-based models for peak spreading: 1) a subarea model in the San Francisco Bay 
Area (Tri-Valley model), 2) a model applied for a study in Boston, Massachusetts (Central 
Artery/Tunnel project), and 3) a model applied for a study in Washington, DC.  

The Tri-Valley model accounted for the overall constraint of the future highway network system 
capacity by time-of-day by limiting the assignment of trips to the present highway network 
based on the overall capacity of the future network at selected gateways. The model approach 
does not account for changes in traveler behavior due to congestion and does not assume that 
the excess trips on each congested interchange are not made. The model assumes that the 
excess trips cannot be completed in the peak hour and are forced to be taken outside of the 
peak hour. 

The Boston area model reduced individual origin-destination cells of the trip table according to 
congestion levels in the corridor corresponding to the origin-destination pair. This iterative-
factoring procedure was only applied to highway trips and attempted to account for and apply 
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peak spreading to adjust impossibly high future peak hour travel estimates resulting from 
growth projections in downtown Boston. The model’s selective reduction focuses on congested 
links and avoids changing uncongested corridors by unrealistic amounts. The Boston area 
model considered more links in its analysis than the Tri-Valley model, and it applies 
interchange-specific peak hour factors rather than a region wide factor. However, similarly to 
the Tri-Valley model, the Boston area model does not account for changes in traveler behavior 
due to congestion, and there is no explicit treatment of the trips being reduced. 

The Washington, DC model is a post-mode choice procedure applied to AM peak period 
automobile trips that was calibrated using household travel survey data. The travel survey data 
was stratified by trip purpose, including home-based work, home-based university, and three 
non-home-based trip purposes. The model estimated the percentage of peak period travel 
during the 3-hour AM peak period at the vehicle trip interchange level occurring during the 
peak hour based on the congested travel time minus free-flow travel time and trip distance. A 
set of curves was used to relate the percentage share of peak period trips to congested travel 
time difference and trip distance. The modeling procedure may be transferable to other areas 
(Cambridge Systematics, Inc., 1997). 

2.2.4. Choice Models 

Choice models are based on the concept of individual utility maximization, require knowledge 
of individual travel behavior, and apply to an entire region.  

Purvis (1999) suggests that peak spreading models are a great tool to moderate congestion 
forecasts in over-saturated situations and are a practical extension to traditional trip-based four 
step travel model systems. He discusses different methods for modeling peak spreading, 
including a time-of-day departure time choice model developed by the Metropolitan 
Transportation Commission (MTC) to estimate peak spreading for the San Francisco Bay Area. 
The time-of-day departure time choice model provided is a simple binomial logit choice model 
with the choices of two-hour AM peak period departure and non-AM peak period departure 
with the choice applied to daily home-to-work auto person trips. The model is estimated using 
data from the 1990 Bay Area household travel survey and includes variables such as free-flow 
travel time, AM peak period congested travel time, trip distance, household income, and 
dummy variables for bridge crossers, carpooling, and retail employment. The model shows that 
carpoolers are more likely to start their travel during peak periods, but bridge crossers are more 
likely to start outside of the peak period, and retail workers are more likely to start their 
commute after the AM peak period. Purvis discusses limitations to the model, including its 
tendency to divert trips from the peak period to the shoulders of the peak period due to 
increased congestion levels. In extreme cases, this results in higher shoulder hour travel 
demand than the peak period travel demand which, in turn, produces slower four-hour speeds 
than two-hour speeds. The author describes a “quick fix” to this issue whereby the lower of the 
two travel speeds was fed back into mode choice under the assumption that the lower speed is 
a more accurate and reasonable reflection of the AM peak two-hour period since the MTC 
mode choice models were estimated using AM peak two-hour travel times and costs. 
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Sall, et al. (2010) provides a choice model that considers mode choice and time of day within 
the regional travel demand planning process for the San Francisco area. The combined utility of 
five time periods (early morning, morning peak, midday, evening peak, and evening) and mode 
(including drive alone, a two-person auto trip, and transit) was estimated using a nested logit 
model. The time of day model was used at two levels, where the time of day and mode were 
determined (based on the combined utility of mode choice and time of day) and the specific 
half-hour in which automobile travel occurred was determined (based on congested auto travel 
times). 

2.3. Explanatory Variables 

The peak spreading modeling approaches offered by the available literature test a variety of 
variables in relation to K-factor change and peak spreading. The following sections provide a 
summary of several categories of factors that have been evaluated as predictors for peak 
spreading, including area type factors, congestion-related factors, socioeconomic factors, and 
seasonal factors. 

2.3.1. Area Type Factors 

Replogle (1990) discusses the calibration of a peak hour traffic model for planning use in 
Montgomery Country, Maryland. The model assumes that land use density/mix and the 
associated demographic character of an area along with the amount of peak hour congestion in 
the transportation system influence the peaking characteristics of traffic. Replogle further 
suggests that small towns, bedroom communities, and isolated industrial or office parks 
typically display higher peak hour factors since a greater portion of the total daily trips are 
made in the AM and PM peak hours of traffic compared to heterogeneous, high-density 
cosmopolitan urban centers. Replogle argues that homogenous land use areas such as office 
centers and residential communities attract or generate more of their daily trips in the peak 
hours than do places that attract human activity both day and night. 

Using data from the 1980 COG Auto Use Survey and Montgomery County turning movement 
counts from the 1970s through the 1980s, Replogle created a density-based AM peak hour trip 
table splitting model which incorporated vehicle miles of travel (VMT) and congestion as the 
volume to capacity (V/C) ratio and accounted for changes in peak hour factors responding to 
urbanization as a function of area type, household density, and employment density. The final 
model results suggested that more transportation infrastructure per unit of development is 
needed when the development is put into low density areas than if it goes into already built up 
areas, and that heterogeneous land uses at a small scale, which permit more travel demand to 
be met by non-motorized means, similarly require less transportation infrastructure per unit of 
development. 

2.3.2. Congestion-Related Factors 

In several studies, the 24-hour volume-to-capacity ratio is used as a congestion factor to 
forecast the degree of peak spreading (Ivan, 2000, 2001; Miller, 2012). Liu, et al. (2007) used 
the availability of a parallel route as an independent variable related to congestion. In his 
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congestion-based peak spreading model for northern New Jersey, Allen (1991) included a 
variable for the peak v/c ratio (highest 15-minute) and the average v/c ratio (averaged over four 
hours). For a different study based in the Washington, DC area, Allen (1996) employed two 
congestion measures – the ratio of the peak hour travel time to the off peak travel time and the 
difference between the peak hour travel time and the off peak travel time. 

2.3.3. Socioeconomic Factors 

Habib, et al. (2009) and Replogle (1990) accounted for socioeconomic factors when modeling 
peak spreading by including household and employment density as independent variables in 
their models. As previously mentioned, Replogle (1990) demonstrated that mixed land uses 
(e.g., an area containing residences, shopping destinations, and employers) show less peaking 
as lower K-factors than homogenous land uses. Applying data from the Greater Toronto Area to 
a choice and trip timing model, Habib, et al. (2009) showed that some variation in peak 
spreading occurs by industry type. Ivan (2001) and Sinha (2004) suggest that growth industry 
types should be included as independent variables since some industries, such as retail and 
food service, are more likely to have unconventional start times than others, such as finance. 
Additional variables that may influence work schedules include income, age, and area type. 
Purvis (2002) also considered travel time, distance, and income, as well as employment in the 
retail industry. 

2.3.4. Seasonal Factors 

Gunamardena, et al. (1996) used hourly volume counts from 1991 through 1993 collected at 60 
permanent continuous count stations in Indiana to generate AM and PM peak hour and peak-
directional factors by facility type (urban Interstate/freeway, urban arterial, rural Interstate, 
rural arterial, rural collector). Applying an ANOVA analysis, they found statistically significant 
factor effects for day of the week and season of the year for count station identification 
number, year, day of week, season of year, and month of season factor levels by roadway type. 
Liu and Sharma (2006) incorporated holiday traffic as a factor in their model for rural highways 
in Alberta, Canada and showed that holidays provide a substantial portion of the highest hourly 
volumes per year. Using statewide volume data from urban areas in Florida, Yang et al. (2009) 
showed that seasonal variation in peak spreading is also influenced by roadway type and 
socioeconomic characteristics such as number of retirees in an area. 

2.4. Modeling Peak Spreading in the Triangle Region 

ITRE’s Triangle Regional Model Service Bureau (2013) tested three modeling techniques to 
develop peak spreading models for the Triangle Region, which were intended to be sensitive to 
congestion. These techniques were discrete choice modeling, peaking factor diversion curves, 
and trip matrix reduction. Developing models using the first two techniques relies heavily on 
local household travel survey data, while the last one needs effective matrix adjustment 
procedures. The discrete choice modeling technique was used to develop a set of peak hour 
versus shoulder choice models; however, no satisfactory models were achieved. The peaking 
factor diversion curves derived from the survey data reveal that there was no substantial 
region-wide peak spreading phenomena back in 2006 when the survey was conducted, which 
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means the survey data do not support the development of peak spreading models for the study 
area. The idea of using an OD Matrix Estimation procedure in the trip matrix reduction process 
was later developed, which automatically constrains the trip matrix to peak hour highway 
network capacity. The approach worked well according to the preliminary testing. Based on the 
tests done on a few highway network scenarios in the study area, the results indicate that the 
method has great potential to handle peak spreading in large congested networks. Further 
research will be conducted in the future to optimize parameters in the method to improve 
convergence in a shorter run time. 

3. Methodology 

The research team developed a case study methodology informed by the literature review. The 
research team sought to replicate the peak spreading study developed by Miller (2012) for the 
Northern Virginia area, but with some modifications in data sources and modeling inputs. K-
factors were generated from count data from the population of continuous traffic count 
stations installed on North Carolina roadways. These data were analyzed and models were 
developed to forecast how these K-factors may change based on previous trends. In particular, 
a measure of development density was defined and related with changes in time of day travel 
at the continuous traffic count stations. 

3.1. Data Collection Plan for Generating K-Factors 

Data were collected from 54 continuous traffic count stations located on North Carolina 
roadways representing 34 of the 100 counties in the state for the period 1995-2016 (Exhibit 3). 
The research team planned to generate K-factors for every station by direction for one Tuesday, 
Wednesday, and Thursday block for every month during the period where data were available. 
The research team sought to avoid days with snow or ice and federal/state holidays so that the 
K-factors would be comparable. 
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Exhibit 3: Continuous Count Stations with Available Data in North Carolina 

Dates for North Carolina state holidays were obtained from the North Carolina Office of State 
Human Resources (NC-OHSR) and dates for federal holidays were obtained from the United 
States Office of Personnel Management (USOPM). Dates for snow and ice days were obtained 
from Weather Underground’s historic monthly weather data archive. Exhibit 4 provides the 
years, months, and dates used as a guide for obtaining the K-factors. 

Additional data were collected to perform the analyses, including socioeconomic data and 
roadway attributes for the links where the 54 continuous traffic count stations were located. A 
summary of the data sources is provided in the following: 

1. Socioeconomic data: Population data were obtained from the 2000 and 2010 United 
States Census and employment data were obtained from the United States Census 
Bureau’s Longitudinal Employer-Household Dynamics (LEHD) program. The LEHD data 
are provided quarterly by the United States Census Bureau and cover longitudinal 
workforce indicator information by industry, work force living location and work 
location, and industry employment gain and loss. Data were aggregated by county and 
year for the continuous traffic count station locations. 

2. Roadway attribute data: Characteristics of the roadway links associated with the 
continuous traffic count stations was obtained from NCDOT’s GIS Unit in the form of a 
geospatial file that included attribute information such as functional classification, 
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number of lanes, posted speed limit, and presence of median. Area type and default per 
lane capacities were obtained from the NCDOT Comprehensive Transportation Planning 
Manual (NCDOT, 2012) which derives its capacities from the 2000 Highway Capacity 
Manual (HCM).  

3. K-factors at the continuous traffic count stations for the period 1995-2016: NCDOT staff 
provided continuous traffic count data from the 54 stations by hour of day and direction 
for every date in the period 1995-2016 where data were available. Every station has 
some missing days of data, and some stations had a year or more of missing data. The 
data were provided in multiple Excel files that were aggregated into a single dataset 
with 672,681 records in total.  

The analysis dataset was composed of data extracted for the dates listed in Exhibit 4. This 
dataset contained 66,084 records, with each record representing a single day of continuous 
traffic data and its corresponding K-factor at a given station in a particular travel direction in the 
period 1995-2016. Exhibit 5 provides a summary of partial and complete year data availability 
for this dataset by total number of stations and total number of sites, where a site represents a 
station by direction. For each record, a set of variables in addition to the K-factor were available 
for use in the analysis. These variables are listed and described in Exhibit 6. The research team 
attempted to include the variables that were used in the Miller (2012) study, which included 
the 24-hour volume-to-capacity (V/C) ratio defined as “the ratio of a link’s 24-hour volume 
divided by its hourly capacity” and used as a surrogate for travel congestion. The research team 
acknowledges that this is not a standard use of capacity and may have limited usefulness for 
forecasting due to issues such as aggregation error. 
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Month 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

January 10-12 9-11 7-9 6-8 5-7 4-6 9-11 8-10 7-9 6-8 4-6 10-12 9-11 8-10 6-8 5-7 11-13 10-12 8-10 7-9 6-8 5-7 

February 14-16 13-15 11-13 10-12 9-11 8-10 13-15 12-14 11-13 10-12 8-10 7-9 13-15 12-14 10-12 9-11 15-17 7-9 5-7 4-6 3-5 2-4 

March 14-16 12-14 11-13 10-12 9-11 7-9 13-15 12-14 11-13 9-11 8-10 7-9 13-15 11-13 10-12 9-11 8-10 6-8 5-7 4-6 3-5 8-10 

April 11-13 16-18 15-17 14-16 13-15 11-13 17-19 16-18 15-17 13-15 12-14 11-13 17-19 15-17 14-16 13-15 12-14 10-12 9-11 8-10 7-9 5-7 

May 16-18 14-16 13-15 12-14 11-13 9-11 15-17 14-16 13-15 11-13 10-12 9-11 15-17 13-15 12-14 11-13 10-12 8-10 14-16 13-15 12-14 10-12 

June 20-22 25-27 24-26 23-25 22-24 20-22 26-28 25-27 24-26 22-24 21-23 20-22 26-28 24-26 23-25 22-24 21-23 19-21 18-20 24-26 23-25 21-23 

July 11-13 16-18 15-17 14-16 13-15 18-20 17-19 16-18 15-17 13-15 12-14 11-13 17-19 15-17 14-16 13-15 12-14 10-12 9-11 8-10 14-16 19-21 

August 15-17 13-15 12-14 11-13 10-12 8-10 14-16 13-15 12-14 10-12 9-11 8-10 14-16 12-14 11-13 10-12 9-11 14-16 13-15 12-14 11-13 9-11 

September 12-14 17-19 16-18 15-17 14-16 12-14 18-20 17-19 16-18 14-16 13-15 12-14 18-20 16-18 15-17 14-16 20-22 11-13 10-12 9-11 15-17 13-15 

October 17-19 22-24 21-23 20-22 19-21 17-19 23-25 22-24 21-23 19-21 18-20 17-19 23-25 21-23 20-22 19-21 25-27 23-25 22-24 21-23 20-22 25-27 

November 14-16 12-14 18-20 17-19 16-18 14-16 27-29 19-21 18-20 16-18 15-17 14-16 27-29 18-20 17-19 16-18 15-17 6-8 5-7 4-6 3-5 1-3 

December 5-7 10-12 9-11 8-10 7-9 5-7 11-13 10-12 9-11 7-9 6-8 5-7 11-13 9-11 8-10 7-9 6-8 4-6 3-5 2-4 8-10 6-8 

Exhibit 4: Data Collection Months and Dates for 1995-2016 Period 

Number of Partial Years 
Available 

Number of Stations for 
Which Data Were 

Available 

Number of Sites for Which 
Data Were Available 

Number of Complete Years 
Available 

Number of Stations for 
Which Data Were 

Available 

Number of Sites for Which 
Data Were Available 

22 28 56 18 1 2 

21 9 18 17 2 4 

20 3 6 16 2 4 

19 2 4 15 7 14 

18 2 4 14 8 16 

17 3 6 13 7 14 

13 1 2 12 9 18 

11 4 8 11 3 6 

10 2 4 10 6 12 

 

9 3 6 

8 2 4 

7 2 4 

6 2 4 

Exhibit 5: Summary of Partial and Complete Years of Data Available for Stations and Sites
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Variable Definition 

Station 
A continuous count station that provides volume data for a specified segment of a 
roadway facility 

Site 
A combination of a station and a direction, e.g., if one station provides both 
northbound and southbound counts, the station would constitute two sites 

Date The date on which volume data were collected, formatted mm/dd/yy 

Month Calendar month during which volume data were obtained 

Day The Tuesday, Wednesday, or Thursday during which volume data were obtained 

Year 
Calendar year (1995 through 2016) for which traffic volume or a county's population, 
employment, or labor force was obtained 

Direction Direction for which volume data were obtained 

County North Carolina county in which volume data were collected 

Area Type Area type where the roadway is located (Rural, Suburban, or Urban) 

Functional Class Code Numeric functional classification of the roadway as defined by the FHA  

Functional Class Description Functional classification description as defined by the FHA 

Median Denotes whether the roadway is median divided (1) or not (0) 

Number of Lanes 
Denotes the number of lanes (number of lanes in both directions for undivided 
roadways; number of lanes in one direction for divided roadways) 

Speed Limit Posted speed limit on the roadway 

Area and Functional Class 
Description 

Concatenation of area type and functional classification description of the roadway 

Functional Class Group 
Grouping of roadways by functional classification into one of seven groups (see 
Appendix A) 

Station Capacity PV/Hr/Ln 
Hourly maximum passenger vehicle capacity of roadway (LOS E) per lane for the 
station defined according to the NCDOT Comprehensive Transportation Planning 
Manual (see Appendix B) 

Site Capacity PV/Hr 
Total hourly maximum passenger vehicle capacity of the roadway (LOS E) for the site 
defined according to the NCDOT Comprehensive Transportation Manual 

24 Hour V/C 
24-hour volume-to-capacity ratio as the ratio of a roadway segment's 24-hour volume 
divided by its hourly capacity 

Population 
US Census 2000 or 2010 total population for the county where a station/site is 
located (2000 county population totals assigned to data years 1995-2009 and 2010 
county population totals assigned to data years 2010-2016) 

LEHD Employment Q1 
LEHD total employment for Quarter 1 for the county where a station/site is located 
and the calendar year 

Daily K-Factor Proportion of 24-hour volume that occurs during peak hour 

Peak Hour Volume The volume of the roadway segment during the peak hour of a 24-hour calendar day 

Peak Hour 
The single hour of a 24-hour calendar day with the highest traffic volume on a given 
roadway segment 

Total Daily Volume The total traffic volume over a 24-hour period 

Exhibit 6: Definitions of Variables Used in Analyses 

3.2. Data Analysis 

Two data analyses were performed prior to the development of models to forecast changes in 
K-factors: 

1. Variability in the K-factors for all sites and for a subset of sites were analyzed using 
analysis of variance (ANOVA) in order to identify which variables could potentially be 
used to forecast the change in K-factors over time. 

2. In order to test the change in K-factors over time, annual adjusted K-factors were 
generated to account for variability resulting from months with missing data. Sites were 
included in the analysis if at least nine months of data were available for both the first 
year (before period) and last year (after period) used for the comparison. 
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3.2.1. Variability in K-Factors – All Sites 

Data analyses were performed to determine the variability in the K-factors and whether the K-
factors had changed over time. 

An initial examination of the analysis dataset was performed using ANOVA to identify which 
variables were likely to explain variability in the K-factors and to be useful for forecasting the 
change in K-factors over time. This preliminary testing aids in showing the feasibility of 
forecasting a K-factor given the random variation in the data. Each daily K-factor for each site 
was treated as a single observation with no adjustments made to the dataset. 

The ANOVA results show that when a site was defined as the station and the direction of traffic, 
the Site variable explained most (55.2%) of all variation in the K-factors. The Site variable was 
established as a block in the ANOVA so that the influence of other variables could be detected 
while controlling for the variation across sites. With the Site variable as a block and including 
the Month and Year variables as main effects along with the interaction effect of the Month 
variable crossed with the Year variable, the model explained the same amount of variation in 
the K-factors, while adding Day as a main effect increased the explained variation to 55.9%. 

The effect of month but not year was statistically significant at p<0.05 in relation to variation in 
the K-factors when controlling only for the Site variable. Exhibit 7 provides the average K-
factors and their 95% confidence intervals by year and Exhibit 8 provides the average K-factors 
and their 95% confidence intervals by month. The practical difference in annual average K-
factors is small, and the reason for apparent variation in the factors is not accounted for in the 
charts. Exhibit 8 indicates significant seasonal variation in the K-factors that should be 
recognized when dealing with locations with missing months of data. 
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Exhibit 7: Average K-Factors for All Sites, All Dates by Year 

 
Exhibit 8: Average K-Factors for All Sites, All Dates by Month 
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When the Site variable was removed as an independent variable, less variation in the K-factors 
could be explained than when the Site variable was included. Exhibit 9 shows that the 
socioeconomic variables such as population and employment in combination with the roadway 
attribute variables could explain some variation in the K-factors where the Site variable was 
excluded from the model (4.2%). A model that includes the Site variable and the socioeconomic 
and roadway attribute variables explains 56.5% of the variation in the K-factors. This finding 
indicates that there is considerable amount of variation in K-factors between the sites that is 
not accounted for in the ANOVA. 

Variables 
% Variation 
Explained 

Discussion 

Site 55.2% 

Most of the variation in K-factors 
can be explained by the Site 
variable. Socioeconomic variables 
can partially but not completely 
replace the Site variable. 

Site, Month, Year, Month*Year 55.2% 

Site, Month, Year, Month*Year, Population, 
Employment (LEHD Q1), Functional Class Group 

55.3% 

Month, Year, Month*Year, Population, Employment 
(LEHD Q1), Functional Class Group 

4.0% 

Month, Year, Month*Year, Population, Employment 
(LEHD Q1) 

<1% 

Month, Year, Month*Year, Functional Class Group, 24 
Hour V/C as an integer 

3.6% Impact of congestion (defined as 24 
Hour V/C) varies by facility in 
relation to K-factors when 
controlling for socioeconomic 
variables. 

Same as previous but with Functional Class Group*24 
Hour V/C as an integer added 

3.6% 

Same as previous but with Population and Employment 
(LEHD Q1) added 

4.2% 

Site, Month, Year, Month*Year, Population, 
Employment (LEHD Q1), Functional Class Group, 24 Hour 
V/C as an integer, Functional Class Group*24 Hour V/C 
as an integer 

56.5% 

Socioeconomic and roadway 
attribute variables in combination 
account for only a fraction of the 
variation in the K-factors relative to 
the influence of the Site variable. 

Exhibit 9: Variation in K-Factors According to ANOVA Results for All Sites 

3.2.2. Variability in K-Factors – Subset of Sites 

Compared to the Northern Virginia study area analyzed by Miller (2012), the North Carolina 
study area appears to have more variation in roadway and area types in relation to the 
continuous traffic count station locations. The research team hypothesized that many stations 
contributing to the analysis dataset experience non-commute travel patterns that would 
generate more random variation in K-factors rather than predictable variation than could be 
captured by the socioeconomic and roadway attribute variables under consideration. To test 
this hypothesis, the research team focused on a subset of sites that, upon examination of their 
K-factors, peak hours, peak hour volumes, and county-level population and employment data 
plotted over time in years, appeared to show locations with commute patterns where the K-
factor was negatively correlated with peak hour volumes, population, and employment.  
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Fifteen sites total were included in the subset of data that was further tested using ANOVA. The 
dataset was comprised of 9,150 records. The sites and their attributes are listed in Exhibit 10. A 
summary of the correlation results for these sites in relation to all sites is provided in Exhibit 11. 
The subset of sites are mostly located on interstates and arterial roadways in rural, urban, and 
suburban areas. 
 

Site ID County Route Area Type Functional Classification 

A0501_Northbound Avery US 19E Rural Principal Arterial - Other 

A1001_Westbound Buncombe I-240 Urban Interstate 

A1101_Westbound Burke I-40 Urban Interstate 

A1801_Eastbound Chatham US 64 Rural Principal Arterial - Other 

A1801_Westbound Chatham US 64 Rural Principal Arterial - Other 

A2501_Northbound Cumberland SR 1007 (ALL AMERICAN EXPY) Urban Principal Arterial - Other Freeways and Expressways 

A2702_Westbound Dare US 64 Rural Principal Arterial - Other 

A3303_Westbound Forsyth SR 1120 (CLEMMONSVILLE RD) Urban Major Collector 

A4008_Southbound Guilford US 29 Urban Principal Arterial - Freeways and Expressways 

A4012_Eastbound Guilford I-40 BUS Urban Principal Arterial - Freeways and Expressways 

A5001_Eastbound Johnston I-40 Suburban Interstate 

A5001_Westbound Johnston I-40 Suburban Interstate 

A5301_Westbound Lenoir NC 55 Rural Major Collector 

A5903_Northbound Mecklenburg I-277 Urban Interstate 

A5903_Southbound Mecklenburg I-277 Urban Interstate 

Exhibit 10: Subset of Sites Included in Additional ANOVA Analysis 

Explanatory Variables 
All Sites  

(108 total – 66,084 observations) 
Subset of Sites  

(15 total – 9,150 observations) 

Daily K-Factor 

Month -0.0254*** -0.049*** 

Year -0.0039 -0.1153*** 

Functional Classification Group 0.1846*** 0.5673*** 

24 Hour V/C -0.1416*** -0.4566*** 

Population (2000, 2010) -0.0299*** -0.3466*** 

LEHD Quarter 1 Employment  -0.0229*** -0.3018*** 

Peak Hour Volume -0.2038*** -0.5287*** 

***Significance level: p<0.001 

Exhibit 11: Pairwise Pearson’s Correlation Coefficient Results for All Sites and Subset of Sites 

Exhibit 12 provides an example of the commuter-based attributes reflected in the subset of 
sites. This exhibit shows activity at a continuous count station located on I-40 in Johnston 
County. The daily K-factors recorded at this location show a significant decrease over time from 
1995-2016, while peak hour volumes and county-level employment increase during the period. 
The two sites that comprise the station both display commute patterns, with the eastbound 
lanes showing an evening peaking pattern and the westbound lanes showing a morning and 
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evening peaking pattern. 
 

 

 
Exhibit 12: Station A5001 on I-40 in Johnston County, North Carolina with Eastbound Site 
Data (top left) and Westbound Site Data (top right) 
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The same variables were considered in relation to variation in the K-factors for the site subset 
as with the complete analysis dataset. The results are provided in Exhibit 13. The ANOVA results 
show that when a site was defined as the station and the direction of traffic, the Site variable 
explained the majority (73.0%) of all variation in the K-factors. With the Site variable as a block 
and including the Month and Year variables as main effects along with the interaction effect of 
the Month variable crossed with the Year variable, the model explained slightly more variation 
in the K-factors (77.5%), while adding Day as a main effect increased the explained variation to 
78.7%. 

When the Site variable was removed as an independent variable, less variation in the K-factors 
could be explained than when the Site variable was included. However, socioeconomic 
variables explain a greater portion of variation in the K-factors for the subset of sites compared 
to when all sites are included in the analysis. Exhibit 13 shows that the socioeconomic variables 
such as population and employment in combination with the roadway attribute variables could 
explain over a third (38.6%) of the variation in the K-factors where the Site variable was 
excluded from the model. A model that includes the Site variable and the socioeconomic and 
roadway attribute variables explains 79.2% of the variation in the K-factors. This finding 
indicates that a considerable amount of variation in K-factors for the fifteen sites included in 
the analysis can be explained by the variables included in the ANOVA. 

Variables 
% Variation 
Explained 

Discussion 

Site 73.0% 

Most of the variation in K-factors 
can be explained by the Site 
variable. Socioeconomic variables 
can partially but not completely 
replace the Site variable. 
 

Site, Month, Year, Month*Year 77.5% 

Site, Month, Year, Month*Year, Population, 
Employment (LEHD Q1), Functional Class Group 

77.6% 

Month, Year, Month*Year, Population, Employment 
(LEHD Q1), Functional Class Group 

34.0% 

Month, Year, Month*Year, Population, Employment 
(LEHD Q1) 

15.1% 

Month, Year, Month*Year, Functional Class Group, 24 
Hour V/C as an integer 

33.4% 
Impact of congestion (defined as 24 
Hour V/C) varies by facility in 
relation to K-factors. 
 

Same as previous but with Functional Class Group*24 
Hour V/C as an integer added 

37.5% 

Same as previous but with Population and Employment 
(LEHD Q1) added 

38.6% 

Site, Month, Year, Month*Year, Population, 
Employment (LEHD Q1), Functional Class Group, 24 Hour 
V/C as an integer, Functional Class Group*24 Hour V/C 
as an integer 

79.2% 

Socioeconomic and roadway 
attribute variables in combination 
account for large portion of the 
variation in the K-factors relative to 
the influence of the Site variable. 

Exhibit 13: Variation in K-Factors According to ANOVA Results for 15 Site Subset 

The results of the two sets of ANOVA tests indicate that that the single best predictor of a K-
factor was the Site variable. This variable accounted for the majority of the variation in the K-
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factors for all sites and for the subset of sites. The results also suggest that other variables may 
explain the variation in K-factors to a lesser extent, and that it may be possible to develop a 
measure that incorporates socioeconomic data such as employment and land use to use as a 
predictor for change in the K-factors.  

A smaller dataset was used for exploratory modeling. This dataset was chosen based on data 
completeness, i.e., at least one decade between the first and last years that peak hour factors 
were available and at least nine months of data available for both the first year and the last 
year. The research team determined if the change in annual adjusted K-factors is statistically 
significant, then developed a linear model to forecast the change in the K-factor over the period 
as a function of a variety of independent variables. The research team then developed a second 
linear regression model to forecast a K-factor in the absence of an existing K-factor to be used 
for a site where a new facility is being constructed and for which there may be no historical 
data. 

3.2.3. Change in Annual Adjusted K-Factors 

In order to test the change in K-factors over time, annual adjusted K-factors were developed to 
account for variability resulting from months with missing data. Sites were included in the 
analysis of K-factor change over time if at least nine months of data were available for both the 
first year (before period) and last year (after period) used for the comparison. The analysis was 
performed using all sites that met this minimum data requirement and a subset of these sites 
that appeared to show locations with commute patterns where the K-factor was correlated 
with peak hour volumes and employment. This subset consists of those sites from the 15 site 
subset used in the previous ANOVA that fulfilled the minimum data requirement. Two time 
periods were considered when evaluating change in the annual adjusted K-factors: 

1. 2000-2010: This time period was chosen in order to examine change in K-factors that 
may be correlated with extreme changes in socioeconomic conditions represented by 
the “Dotcom Bubble,” resulting “Dotcom Crash,” and the “Great Recession” (NBER, 
2010). The height of the Dotcom Bubble occurred in the year 2000, with the subsequent 
crash beginning in 2001 onward. The Great Recession began in late 2007 and continued 
through 2009. Exhibit 14 provides a comparison of average K-factor trends for the 15 
site subset that exhibits a relationship between the K-factor and peak hour volumes and 
employment and all other sites. Especially for the 15 site subset that shows the most 
change in the average K-factor between 2000 and 2010, it is hypothesized that 
socioeconomic conditions resulting from the Dotcom Bubble/Crash and the Great 
Recession affected K-factor data and derived statistics. 

2. 2005-2015: This time period was chosen to examine moderate change in K-factors over 
a ten year time frame. While this time period contains the Great Recession, moderate 
change in average K-factors between 2005 and 2015 for the 15 site subset and for all 
other sites is reflected in Exhibit 14. 

 



NCDOT 2017-24 Project Final Report  
 
 
 

28 
 

 
Exhibit 14: Average K-Factors Comparison, All Dates by Year 

 
Exhibit 15: Average K-Factors Comparison, All Dates by Month 
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Exhibits 8 and 15 provide evidence of seasonal variation in K-factors which informed the 
development of annual K-factors that account for months with missing data. Annual adjusted K-
factors were generated for sites with no more than three months of missing data, but less than 
twelve months of data available for generating an annual K-factor. The factor adjustments were 
achieved by applying monthly expansion factors for each year. The monthly expansion factors 
were based on all sites for each year and were calculated as follows: 

𝑀𝐸𝑚𝑜𝑛𝑡ℎ =  
𝐾𝑦𝑒𝑎𝑟

𝐾𝑚𝑜𝑛𝑡ℎ
 

Where, 

 MEmonth = monthly expansion factor for a given month for all sites 

 Kyear = average K-factor for a given year 

 Kmonth = average K-factor for a given month 

Annual adjusted K-factors for sites with no more than three months of missing data, but less 
than twelve months of data were calculated as follows: 

 

𝑎𝑑𝑗𝐾𝑦𝑒𝑎𝑟 =  
𝐾𝑚𝑜𝑛𝑡ℎ 1 + 𝐾𝑚𝑜𝑛𝑡ℎ 2 +  … +  𝐾𝑚𝑜𝑛𝑡ℎ 12

𝑁
 

Where, 

 adjKyear = adjusted annual K-factor for a given year 

 Kmonth 1…12 = average K-factor for each month with available data  

 N = number of months for which an average K-factor was available (9, 10, or 11 months) 

For sites where twelve months were available for a given year, the annual K-factor represents 
the average of all daily K-factors for the year. 

For reference, Exhibit 16 provides a summary by year of available sites with no more than three 
months of missing data. Exhibit 17 provides a summary of the number of sites available for the 
years used in analysis (2000, 2005, 2010, and 2015) for all sites that met the minimum data 
requirement, while Exhibit 18 provides a summary of the number of sites available from the 15 
site subset that fulfilled the minimum data requirement.  
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Year 
Number of Sites with No More than 
(3) Months of Missing Data per Year 

Percent of All Sites 

1995 46 43% 

1996 8 7% 

1997 26 24% 

1998 64 59% 

1999 70 65% 

2000 86 80% 

2001 92 85% 

2002 94 87% 

2003 92 85% 

2004 96 89% 

2005 90 83% 

2006 94 87% 

2007 102 94% 

2008 104 96% 

2009 104 96% 

2010 104 96% 

2011 102 94% 

2012 102 94% 

2013 106 98% 

2014 104 96% 

2015 102 94% 

2016 74 69% 

Exhibit 16: Summary of Available Sites by Year 
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Year 

No. of Months 
Used to 

Calculate Annual 
K-Factor 

No. of Sites 

2000 

9 16 

10 18 

11 18 

12 32 

Total 84 sites 

2010 

9 2 

10 6 

11 12 

12 64 

Total 84 sites 

2005 

10 8 

11 16 

12 62 

Total 86 sites 

2015 

10 10 

11 10 

12 66 

Total 86 sites 

Exhibit 17: All Sites Used for Annual K-Factor Analysis 

 

Year 

No. of Months 
Used to 

Calculate Annual 
K-Factor 

No. of Sites 

2000 

10 4 

11 4 

12 2 

Total 10 sites 

2010 

9 1 

10 1 

11 1 

12 7 

Total 10 sites 

2005 

10 1 

11 1 

12 9 

Total 11 sites 

2015 
10 1 

12 10 

Total 11 sites 

Exhibit 18: Subset of Sites Used for Annual K-factor Analysis 
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3.2.4. Pairwise Comparison of Annual K-Factors at Individual Sites 

A smaller dataset was used to test whether the annual K-factor changed over time. 104 sites 
were available in the entire dataset. From these, sites were selected that fulfilled the minimum 
data requirement. The number of sites used in the comparison of annual K-factors for the years 
included in the analysis are summarized in Exhibits 17 and 18. A summary of the comparison 
results is provided in Exhibit 19. 

Unpaired and paired two-tailed Student’s t-tests were performed to determine if differences in 
the annual K-factors were statistically significant. A significance level of p<0.05 was used for the 
analyses. The results from the comparison of annual K-factors indicate the following: 

 2000/2010 Comparison 

o For the 84 sites included in the overall analysis, the average annual K-factor 
increased marginally by 0.0002, from 0.1012 to 0.1014. This change was not 
statistically significant (unpaired: t(83)=0.08, p=0.92; paired: t(83)=0.17, p=0.86). 
This result is to be expected since the annual K-factor in the overall analysis is 
generated with data from many sites that experience random variation in the K-
factor over time. The annual K-factor decreased for 37 sites and increased for 47 
sites. The average annual 24-hour volume-to-capacity ratio increased from 
3.2838 to 3.2891. This increase was not statistically significant (unpaired: 
t(83)=0.01, p=0.99; paired: t(83)=0.8, p=0.94). The annual 24-hour volume-to-
capacity ratio increased at 42 of the 84 sites.  

o For the subset of ten sites, the average annual K-factor decreased by 0.0094, 
from 0.1072 to 0.0977. This change was detected as statistically significant only 
when using the paired version of the Student’s t-test (unpaired: t(9)=1.56, 
p=0.14; paired: t(9)=6.09, p<0.001). The annual K-factor decreased for all ten 
sites. The average annual 24-hour volume-to-capacity ratio increased from 
3.6360 to 4.0150. This increase was statistically significant (unpaired: t(9)=0.34, 
p=0.74; paired: t(9)=3.00; p<0.05). The annual 24-hour volume-to-capacity ratio 
increased at eight of the ten sites.  

 2005/2015 Comparison 

o For the 86 sites included in the analysis, the average annual K-factor decreased 
by 0.0004, from 0.0998 to 0.0994. This change was not statistically significant 
(unpaired: t(85)=0.15, p=0.88; paired: t(85)=0.38, p=0.70). This result is to be 
expected since the annual K-factor in the overall analysis is generated with data 
from many sites that experience random variation in the K-factor over time. The 
annual K-factor decreased for 41 sites and increased for 45 sites. The annual 
average 24-hour volume-to-capacity ratio increased from 3.6808 to 3.9224. This 
increase was detected as statistically significant only when using the paired 
version of the Student’s t-test (unpaired: t(85)=0.48, p=0.63; paired: t(85)=2.93; 



NCDOT 2017-24 Project Final Report  
 
 
 

33 
 

p<0.01). The annual 24-hour volume-to-capacity ratio increased at 53 of the 86 
sites.  

o For the subset of eleven sites, the annual K-factor decreased by 0.0032, from 
0.1008 to 0.0976. This change was not statistically significant (unpaired: 
t(10)=0.47, p=0.64; paired: t(10)=1.39, p=0.19). The annual K-factor decreased 
for seven sites and increased for four sites.  The average annual 24-hour volume-
to-capacity ratio increased from 4.0721 to 4.5697. This increase was statistically 
significant (unpaired: t(10)=0.43, p=0.67; paired: t(10)=2.43; p<0.05). The annual 
24-hour volume-to-capacity ratio increased at ten of the eleven sites. 

Variation in the annual K-factors across sites when the year was held constant and across 
periods when the site was held constant was tested. A significance level of p<0.05 was used for 
the testing. ANOVA testing showed that the period (before year or after year) and the site (1 to 
n) were significant (p<0.001) in terms of explaining the annual K-factors for the subset of sites 
for only the 2000/2010 comparison. The site was significant (p<0.001) for the subset of sites for 
the 2005/2015 comparison and for all sites for both comparisons. For all sites and for the 
subset of sites, the sample variance of the site-by-site annual K-factor difference from the 
before to the after period was smaller than the sample variance of the sites within the before 
year or within the after year. 
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No. 
of 

Sites 
Period Year 

Average Annual 
K-Factor 

Std 
Dev  

Upper 
95% CI  

Lower 
95% CI  

Maximum  Minimum  

% of Sites 
with 

Decrease 
in Annual 
K-Factor 

Average 
Difference 
in Annual 
K-Factor 

from 
Before to 

After 

Difference Significant? 

84 

Before 2000 0.1012 0.0167 0.1048 0.0976 0.1776 0.0704 

44% 0.0002 

No (unpaired two-tailed t-test: 
t(83)=0.08, p=0.92); 

No (paired two-tailed t-test: 
t(83)=0.17, p=0.86) After 2010 0.1014 0.0169 0.1051 0.0977 0.1788 0.0695 

86 

Before 2005 0.0998 0.0174 0.1036 0.0961 0.1722 0.0711 

48% -0.0004 

No (unpaired two-tailed t-test: 
t(85)=0.15, p=0.88); 

No (paired two-tailed t-test: 
t(85)=0.38, p=0.70) After 2015 0.0994 0.0161 0.1029 0.0960 0.1444 0.0718 

10 

Before 2000 0.1072 0.0138 0.1171 0.0972 0.1245 0.0865 

100% -0.0094 

No (unpaired two-tailed t-test: 
t(9)=1.56, p=0.14); 

Yes (paired two-tailed t-test: 
t(9)=6.09, p<0.001) After 2010 0.0977 0.0132 0.1071 0.0883 0.1157 0.0785 

11 

Before 2005 0.1008 0.0167 0.1120 0.0896 0.1257 0.0769 

64% -0.0032 

No (unpaired two-tailed t-test: 
t(10)=0.47, p=0.64); 

No (paired two-t-tailed test: 
t(10)=1.39, p=0.19) After 2015 0.0976 0.0156 0.1080 0.0871 0.1186 0.0764 

Std Dev = Standard Deviation of the Average Annual K-Factor; Upper 95% CI = Upper Bound of the 95% Confidence Interval for the Average Annual K-Factor; 
Lower 95% CI = Lower Bound of the 95% Confidence Interval for the Average Annual K-Factor; Maximum = Maximum Annual K-Factor; Minimum = Minimum 
Annual K-Factor 

Exhibit 19: Summary of Annual K-Factor Comparison Results
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3.3. Development of Exploratory Models to Forecast a K-Factor 

As previously described, the results of the ANOVA tests indicate that it may be possible to 
develop a measure that incorporates socioeconomic data such as employment and land use to 
use as a predictor for change in the K-factors.  

Measures at different scales can be used depending on the purpose in the study. For example, 
county level data may be useful for developing screening criteria, because a richer set of data is 
available for counties. However, a smaller geography may be more useful for studying the area 
around chosen count stations of interest. 

Desirable characteristics of land use density measures for K-factor analysis include: 

1. Be based on land use measures that are available at appropriate geographies across the 

state of North Carolina 

2. Be available for and across appropriate time periods for analysis so they can show 

change in land use intensity  

Some literature suggests that individual households do not change their travel based on 
changes in the built environment (Brownstone, 2008). This suggests that changes to the built 
environment in already developed areas may not change the behavior of individual households, 
but it is not clear how households in undeveloped areas are affected by development. The 
measures of change that are of interest for their effect on K-factors need to address not how 
neighborhoods compare to each other, but how to measure change that leads to differences in 
choice of time to travel.  

Several possible methods for developing a suitable land use density measure were explored, 
including the use of USDA Urban Influence Codes (UIC) and the use of Rural-Urban Commuting 
Area Codes (RUIC). An evaluation of these methods are provided in Appendix C.  

While the use of UIC or RUIC codes was not deemed feasible for use in this study, a possible 
candidate measure for land use density is based on a measure used in the Triangle Regional 
Model developed by ITRE as a tool for analyzing current and future travel in the Research 
Triangle region of North Carolina. This measure relates population and employment in the 
vicinity of a continuous count station to population and employment in a larger region 
surrounding a continuous count station. The vicinity is defined as within a two mile radius of a 
continuous count station. The region surrounding the continuous count stations is defined as 
within an eleven mile radius which equals the weighted average trip distance for both peak and 
off-peak daily home-based work trips derived from the 2006 Triangle Household Travel survey 
(ITRE, 2011).  

The equation for calculating land use density in the vicinity of a continuous count station is: 
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𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖 =  

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖 +
∑ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗𝑗

∑ 𝑇𝑜𝑡𝑎𝑙 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑗𝑗
 × 𝑇𝑜𝑡𝑎𝑙 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖

𝐴𝑟𝑒𝑎𝑖
 

 

Where, 

Land use densityi = land use density for area within two miles of a continuous count 
station 

Populationi = US Census block-level population within two miles of a continuous count 
station 

Total Employmenti = total number of primary jobs for all workers in all sectors for US 
Census block groups within two miles of a continuous count station 

Areai = combined US Census block area in square miles within two miles of a continuous 
count station 

Total Populationj = US Census block-level population within eleven miles of a continuous 
count station 

Total Employmentj = total number of primary jobs for all workers in all sectors for US 
Census block groups within eleven miles of a continuous count station 

Population data were acquired from the 2000 and 2010 United States Census and employment 
data were obtained from the United States Census Bureau’s Longitudinal Employer-Household 
Dynamics (LEHD) program through their On the Map web-based tool. Data were obtained for 
US Census blocks within two and within eleven miles of each continuous count station included 
in the analysis. Population is defined as all people living in a geographic area for the data year. 
Employment is defined as the total number of primary jobs for all workers in all sectors in a 
geographic area for the data year.  

The subset of ten sites with annual K-factors for the years 2000 and 2010 were used to develop 
linear regression models to predict the K-factor as a function of several factors. Two exploratory 
models were generated: 1) a longitudinal model with an existing K-factor included as a 
predictor and 2) a longitudinal model that does not include an existing K-factor as a predictor. 
The explanatory variables that were considered in the model development are summarized in 
Exhibit 20. 
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Variable Definition 

Annual 24 Hour V/C 
Adjusted average annual 24-hour volume-to-capacity ratio as the ratio of a roadway 
segment's 24-hour volume divided by its hourly capacity for the year 2000 

Percent Change in Land 
Use Density 

Percent change in the measure for land use density within two miles of a continuous 
count station that incorporates population and employment data between the before 
and after year 

Rural Two-Lane Road Denotes whether the facility’s functional class is a rural two-lane road (1) or not (0) 

Rural Multilane Road Denotes whether the facility’s functional class is a rural multilane road (1) or not (0) 

Access Controlled Denotes whether the facility is access controlled (freeway or interstate) (1) or not (0) 

Old K-Factor 
Adjusted average annual proportion of 24-hour volume that occurs during peak hour 
for the year 2000 

New K-Factor 
Adjusted average annual proportion of 24-hour volume that occurs during peak hour 
for the year 2010; also called a prediction because the variable is being predicted as 
the dependent variable by the independent variables in the models 

Exhibit 20: Variables Included in Exploratory Model Development 

3.3.1. Longitudinal Model with Existing K-Factor 

Using the data from the subset of ten sites with annual K-factors for the years 2000 and 2010, a 
linear regression model was developed to predict the K-factor as a function of several variables 
described in Exhibit 20. The existing, old K-factor for 2000 was included in the exploratory 
model development to predict the future, new K-factor for 2010. Model building began by 
entering all variables into the linear regression model. Then variables that were not statistically 
significant were removed one at a time until only variables that were statistically significant at 
p<0.05 remained. 

The final model (Model 1) is provided in the following equation: 

𝑁𝑒𝑤 𝐾-𝐹𝑎𝑐𝑡𝑜𝑟 =  0.89014889(𝑂𝑙𝑑 𝐾-𝐹𝑎𝑐𝑡𝑜𝑟) + 0.0023386 

Where, 

 New K-Factor = new K-factor in 2010 

 Old K-Factor = old K-factor in 2000 

All terms represent variables that were statistically significant; p<0.0001 for Old K-Factor. With 
the inclusion of a previous, old K-factor, 86% of the variation was explained (adjusted R-square 
value was 0.8596). 

3.3.2. Longitudinal Model without Existing K-Factor 

Newly constructed facilities or facilities with limited historical data do not allow for a future 
year K-factor to be estimated from a previous K-factor. A second regression model was 
developed where the previous, old K-factor was excluded. 

In the same manner as Model 1, the data from the subset of ten sites with annual K-factors for 
the years 2000 and 2010 was used and a linear regression model was developed to predict the 
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K-factor as a function of several variables described in Exhibit 20. Model building began by 
entering all variables into the linear regression model. Then variables that were not statistically 
significant were removed one at a time until only variables that were statistically significant at 
p<0.05 remained. 

The final model (Model 2) is provided in the following equation: 

𝑁𝑒𝑤 𝐾-𝐹𝑎𝑐𝑡𝑜𝑟
=  −0.0119969(𝑅𝑢𝑟𝑎𝑙 𝑇𝑤𝑜-𝐿𝑎𝑛𝑒) − 0.0276329(𝐴𝑐𝑐𝑒𝑠𝑠 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑)
+ 0.11237084 

Where, 

 New K-Factor = new K-factor in 2010 

 Rural Two-Lane = facility’s functional class is a rural two-lane road (1) or not (0) 

 Access Controlled = facility is access controlled (freeway or interstate) (1) or not (0) 

All terms represent variables that were statistically significant; p<0.05 for Rural Two-Lane and 
p<0.001 for Access Controlled. Without a previous, old K-factor, 82% of the variation was 
explained (adjusted R-square value was 0.8172). 

Percent Change in Land Use Density was found to be significant at p<0.05 only when all other 
variables were removed from the model. A model including only Percent Change in Land Use 
Density (p<0.05) captured 46% of the variation in the K-factor (adjusted R-square value was 
0.4621) and indicated an increase in the K-factor associated with an increase in land use 
density. This suggests that the land use density measure used in the exploratory modeling 
efforts does not adequately capture the effect of development in relation to peak spreading for 
the subset of sites included. 

As previously discussed, the ANOVA for all sites and the subset of sites indicated that the site 
variable was the strongest predictor of the K-factor. Model 1 indicates that the initial K-factor, 
which appears to be acting as a site variable, explains the majority of the future K-factor value 
variation. In the absence of the initial K-factor for use in modeling, ANOVA results showed that 
population and employment could explain variation to a lesser degree. However, Model 2 
indicates that facility characteristics can explain variation in the K-factor to a greater degree 
than change in land use density as calculated from population and employment data.  

4. Discussion and Conclusions 

The purpose of this study was to determine how K-factor data changes in order to estimate the 
impact of peak spreading across different area types. Models were developed for forecasting 
peak spreading where peak spreading was measured as change in the K-factor. Peak spreading 
occurs when the K-factor, defined as the proportion of the 24-hour traffic volume that occurs 
during the peak hour, decreases in relation to an increase in traffic congestion. Active peak 
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spreading can result from change in the departure time of motorists to a non-peak hour in 
reaction to congested peak hour traffic conditions. Reliable estimates of K-factor change are 
important for the accurate estimation of travel demand and roadway performance, including 
travel speed and vehicle emissions. 

Data were collected from 54 continuous count stations located on North Carolina roadways 
representing 34 of the 100 counties in the state for the period 1995-2016. All stations gave two-
directional counts, resulting in 108 station-direction combinations, or sites, for analysis 
purposes.  

Two before-and-after periods were included in the analysis: 2000/2010 and 2005/2015. For all 
sites with available data for the 2000/2010 period, the average annual K-factor adjusted for 
months for which data were not available increased by 0.0002, from 0.1012 to 0.1014, during 
the period. The average annual 24-hour volume-to-capacity ratio, which was used as a 
surrogate for travel congestion, increased from 3.2838 to 3.2891. Both changes were not 
statistically significant. For all sites with available data for the 2005/2015 period, the average 
annual K-factor adjusted for months for which data were not available decreased by 0.0004, 
from 0.0998 to 0.0994, during the period. The 24-hour volume-to-capacity ratio increased from 
3.6808 to 3.9224. The change in average annual K-factor was not statistically significant. The 
change in average annual 24-hour volume-to-capacity ratio was statistically significant 
(p<0.001). The K-factor results for all sites with available data are to be expected since the 
annual K-factors are generated with data from many sites that experience random variation in 
the K-factor over time.  

Since many of the 108 sites appeared to experience non-commute travel patterns that would 
generate more random variation in K-factors rather than predictable variation that could be 
captured by the socioeconomic factors and roadway attributes included in statistical testing, a 
subset of sites was used in exploratory peak spreading modeling efforts. Two models to 
forecast K-factors were developed in this study. Model 1, for use with an established roadway 
with an existing K-factor, explained 86% of the variation in K-factors and is based on the 
previous K-factor only. Model 2, for use with a new roadway without an existing K-factor, 
explained 82% of the variation in K-factors and is based on whether the facility is a rural two-
lane road or not and whether the facility is access controlled (freeway or interstate) or not. 
These factors are favorable for use in modeling since they are typically obtainable from 
publically available datasets for varying time periods.  

While the ANOVA results indicate that site characteristics, such as facility functional class, and 
socioeconomic characteristics, including population and employment, affect the K-factor, 
exploratory modeling did not indicate that land use density was a statistically significant factor 
in K-factor change when including other variables in the model. In addition, the K-factor varies 
more across sites with the year held constant than across time periods with the site held 
constant. 
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The research team recommends a screening approach for incorporating K-factor data in the 
forecasting process that starts at the county level: 

1. Examine population and employment change using US Census and LEHD data (if no or 
little change, expect little change in K-factor) 

2. Examine road density change (if population and employment increase but road density 
does not, this could indicate areas where congestion will increase) 

Where more detailed data are available at a smaller geography (i.e., the block group level), 
additional evaluation of land use and development in the surrounding area can be pursued as 
an alternative to assuming the K-factor will remain constant. However, given that variability is 
generally greater across sites for a single time period than across time periods for a single site, 
site-specific studies may be more suitable where data and local knowledge are available. 

The land use density measure that was developed in this study was not found to be adequate 
when tested through exploratory modeling. The research team believes that a more accurate 
measure can be developed that takes into account proximity to employment centers. Further 
discussion on such a measure is provided in the following section.  

Unlike the research that this study was modeled on (Miller, 2012), which examined locations in 
Northern Virginia that experienced substantial congestion in both the before and after periods, 
the North Carolina sites with available data typically experienced mild to moderate congestion 
in both the before and after periods included in the analysis. This poses a potential study 
limitation, since a significant change (increase) in congestion is needed to generate measurable 
peak spreading. The research team attempted to control for the variability in congestion levels 
across the 108 sites by analyzing a subset of locations were K-factor variation appeared 
predictable rather than random in relation to the socioeconomic factors of interest. 

Additionally, the North Carolina sites with available data were more geographically dispersed 
than those included in Northern Virginia study (Miller, 2012). North Carolina count locations 
included those in rural and suburban areas, rather than almost entirely dense urban areas. 

5. Future Research 

The research team believes that modeling efforts can be improved in the future by 
incorporating an accessibility measure that takes into account proximity to employment 
centers. This measure may be useful for analyzing and understanding localized peak spreading 
since time-of-day departure decisions made relative to work arrival times are dependent on 
commuting distance and expected travel times. The land use density measure employed in this 
study focuses on the areas within two miles of the count station locations, and it may not 
accurately represent the entirety of the effect of employment on travel behavior that results in 
K-factor change. 
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While a detailed discussion of possible accessibility measures is outside of the scope of the 
present research, existing research shows that the development of such a measure is possible. 
For instance, the United States Department of Housing and Urban Development has developed 
a jobs proximity index that uses LEHD employment data (HUD, 2017). The index quantifies the 
accessibility of a given residential neighborhood as a function of its distance to all job locations 
within a Core Based Statistical Area (CBSA), with larger employment centers weighted more 
heavily. The index uses a gravity model, where the accessibility of a given residential block 
group is a summary description of the distance to all job locations, with the distance from any 
single job location positively weighted by the size of employment (job opportunities) at that 
location and inversely weighted by the labor supply (competition) to that location. The 
currently available jobs proximity index values are available at the block group level for the year 
2014 only. 
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7. Appendix A: Functional Classification Groupings 

Description Group 

Rural - Interstate 1 

Rural - Principal Arterial - Other Freeways and Expressways 1 

Suburban - Interstate 1 

Urban - Interstate 1 

Urban - Principal Arterial - Other Freeways and Expressways 1 

Urban - Minor Arterial 2 

Urban - Principal Arterial - Other 2 

Urban - Local 3 

Urban - Major Collector 3 

Suburban - Minor Arterial 4 

Suburban - Principal Arterial - Other 4 

Suburban - Local 5 

Suburban - Major Collector 5 

Rural - Minor Arterial 6 

Rural - Principal Arterial - Other 6 

Rural - Local 7 

Rural - Major Collector 7 

Rural - Minor Collector 7 
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8. Appendix B: LOS E Modeling Parameters 

FACILITY TYPE REGION TERRAIN AREA TYPE TRUCKS LOS E CAPACITY 

Freeway ALL Level Urban Average 2045 

Freeway ALL Level Urban High 2000 

Freeway ALL Level Suburban Average 2055 

Freeway ALL Level Suburban High 2005 

Freeway ALL Level Rural Average 2060 

Freeway ALL Level Rural High 2010 

Freeway PIED/MTNS Rolling Urban Average 1950 

Freeway PIED/MTNS Rolling Urban High 1825 

Freeway PIED/MTNS Rolling Suburban Average 1960 

Freeway PIED/MTNS Rolling Suburban High 1830 

Freeway PIED/MTNS Rolling Rural Average 1965 

Freeway PIED/MTNS Rolling Rural High 1835 

Freeway MTNS Mountainous Urban Average 1785 

Freeway MTNS Mountainous Urban High 1555 

Freeway MTNS Mountainous Suburban Average 1795 

Freeway MTNS Mountainous Suburban High 1560 

Freeway MTNS Mountainous Rural Average 1800 

Freeway MTNS Mountainous Rural High 1565 

Expressway ALL Level Urban Average 1685 

Expressway ALL Level Urban High 1645 

Expressway ALL Level Suburban Average 1770 

Expressway ALL Level Suburban High 1730 

Expressway ALL Level Rural Average 1860 

Expressway ALL Level Rural High 1815 

Expressway PIED/MTNS Rolling Urban Average 1605 

Expressway PIED/MTNS Rolling Urban High 1500 

Expressway PIED/MTNS Rolling Suburban Average 1685 

Expressway PIED/MTNS Rolling Suburban High 1575 

Expressway PIED/MTNS Rolling Rural Average 1775 

Expressway PIED/MTNS Rolling Rural High 1655 

Expressway MTNS Mountainous Urban Average 1470 

Expressway MTNS Mountainous Urban High 1280 

Expressway MTNS Mountainous Suburban Average 1545 

Expressway MTNS Mountainous Suburban High 1345 

Expressway MTNS Mountainous Rural Average 1620 

Expressway MTNS Mountainous Rural High 1410 
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FACILITY TYPE REGION DIVIDED AREA TYPE SPEED LIMIT LOS E CAPACITY 

Urban Arterial I ALL Yes Urban 55 1140 

Urban Arterial I ALL Yes Suburban 55 1175 

Urban Arterial I ALL Yes Rural 55 1350 

Urban Arterial I ALL Yes Rural 45 1305 

Urban Arterial II ALL Yes Urban 45 1075 

Urban Arterial II ALL Yes Suburban 45 1080 

Urban Arterial II ALL Yes Suburban 35 1030 

Urban Arterial III ALL Yes Suburban 35 1005 

Urban Arterial IV ALL Yes Urban 35 770 

Urban Arterial IV ALL Yes Urban 25 720 

Urban Arterial I ALL No Urban 55 965 

Urban Arterial I ALL No Suburban 55 1025 

Urban Arterial I ALL No Rural 55 1140 

Urban Arterial I ALL No Rural 45 1105 

Urban Arterial II ALL No Urban 45 860 

Urban Arterial II ALL No Suburban 45 895 

Urban Arterial II ALL No Suburban 35 875 

Urban Arterial III ALL No Suburban 35 795 

Urban Arterial IV ALL No Urban 35 635 

Urban Arterial IV ALL No Urban 25 590 

FACILITY TYPE REGION TERRAIN AREA TYPE SPEED LIMIT LOS E CAPACITY 

2-Lane Highway ALL Level - - 1235 

2-Lane Highway ALL Rolling  - - 1175 
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9. Appendix C: Review of Land Use Density Measures 

One of the focuses of this project was to determine how change in land use can influence K-
factors. This requires choosing an appropriate land use measure to which to compare K-factors 
over time. Measures can be used to compare areas to each other at the same point in time, or 
for one area across time periods. For this research project, it was desired to measure change 
across time. Some measures from the literature that were explored but not chosen are 
reviewed in the following and then a discussion of the measures is provided. 
 
A set of categorical variables called Urban Influence Codes (UIC) were developed by the US 
Department of Agriculture (USDA) (USDA ERS, 2017). These capture both the size of a county 
and whether it is adjacent to a micropolitan or metropolitan area. While the codes are based 
only on population, they illustrate the idea of classifying areas by whether they are influenced 
by a nearby larger area. The measures are intended to capture relationships among economies 
and thus provide a finer level of rural-urban information. Twelve codes are provided, including 
three for non-metropolitan micropolitan counties, and seven non-metropolitan, non-core 
counties. Codes were developed for 1993, 2003, and 2013. Counties are divided into “large” 
with greater than 1 million population and “small” with less than 1 million population. The UIC 
can be used to analyze trends in non-metro areas related to population density and urban 
influence. A summary of the 2013 UIC codes is provided in Exhibit 21. 
 

Code Description 

1 In large metro area of 1+ million residents 

2 In small metro area of less than 1 million residents 

3 Micropolitan area adjacent to large metro area 

4 Noncore adjacent to large metro area 

5 Micropolitan area adjacent to small metro area 

6 Noncore adjacent to small metro area and contains a town of at least 2,500 residents 

7 Noncore adjacent to small metro area and not contain a town of at least 2,500 residents 

8 Micropolitan area not adjacent to a metro area 

9 Noncore adjacent to micro area and contains a town of at least 2,500 residents 

10 Noncore adjacent to micro area and does not contain a town of at least 2,500 residents 

11 Noncore not adjacent to metro or micro area and contains a town of at least 2,500 residents 

12 Noncore not adjacent to metro or micro area and does not contain a town of at least 2,500 
residents 

Exhibit 21: 2013 Urban Influence Codes (UIC) 
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A recent effort to identify the Impacts of Land Use on Travel Behavior in Small Communities 
and Rural Areas for NCHRP 25-36 (Morton, 2014) explored measures that could be used to 
capture levels of land use activity related to travel behavior and apply them to appropriate 
units of analysis. The Commuting zone was chosen as the unit of analysis to include the “typical 
pattern of commuting trips in a spatially-defined labor market.” The study used the following 
variables: population density calculated over developed or developable land, road density 
calculated as road miles per square mile of developed or developable land, land use mix that 
measures potential for interaction between residents and establishments, and variation in 
population density computed as the coefficient of variation for population density across 
census block groups in commuting zones. 
 
Rural-Urban Commuting Area codes developed by the Economic Research Service use census 
tracts rather than counties (USDA ERS, 2017). The classification contains ten primary and 
twenty one secondary codes. The ten primary codes describe the largest commuting share. The 
twenty one secondary codes describe secondary flows. This allows for flexibility to describe 
areas for which the primary flow is local, but the secondary flow is to a metropolitan area. 
These codes were updated for the 2010 US Census using the 2006-2010 ACS commuting 
tabulations prepared for the Census Transportation Planning Products (CTPP). The primary 
RUCA codes are summarized in Exhibit 22 and the secondary RUCA codes are summarized in 
Exhibit 23. 
 

Code Description 

1 Metropolitan area core: primary flow within an urbanized area (UA) 

2 Metropolitan area high commuting: primary flow 30% or more to a UA  

3 Metropolitan area low commuting: primary flow 10% to 30% to a UA 

4 Micropolitan area core: primary flow within an urban cluster of 10,000 to 49,999 (large UC) 

5 Micropolitan high commuting: primary flow 30% or more to a large UC 

6 Micropolitan low commuting: primary flow 10% to 30% to a large UC 

7 Small town core: primary flow within an urban cluster of 2,500 to 9,999 (small UC) 

8 Small town high commuting: primary flow 30% or more to a small UC 

9 Small town low commuting: primary flow 10% to 30% to a small UC 

10 Rural areas: primary flow to a tract outside a UA or UC 

99  Not coded: Census tract has zero population and no rural-urban identifier information 

Exhibit 22: Primary Rural-Urban Commuting Area (RUCA) Codes 
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Code Description 

1.0 Metropolitan area core: primary flow with an urbanized area 

1.1 Secondary flow 30% to 50% to a larger UA 

2.0 Metropolitan area high commuting: primary flow 30% or more to a UA 

2.1 Secondary flow 30% to 50% to a larger UA 

3 Metropolitan area low commuting: primary flow 10% to 30% to a UA 

4 Micropolitan area core: primary flow within an urban within an urban cluster 

4.1 Secondary flow 30% to 50% to a UA 

5.0 Micropolitan high commuting: primary flow 30% or more to a large UC 

5.1 Secondary flows 30% to 50% to a UA 

6.0 Micropolitan low commuting: primary flow 10% to 30% to a large UC 

7.0 Small town core: primary flow within an urban cluster of 2,500 to 9,999 small UC 

7.1 Secondary flow 30% to 50% to a UA 

7.2 Secondary flow 30% to 50% to a large UC 

8.0 Small town high commuting: primary flow 30% or more to a small UC 

8.1 Secondary flow 30% to 50% to a UA 

8.2 Secondary flow 30% to 50% to a large UC 

9.0 Small town low commuting: primary flow 10% to 30% to a small UC 

10.0 Rural areas: primary flow to a tract outside a UA or UC 

10.1 Secondary flow 30% to 50% to a UA 

10.2 Secondary flow 30% to 50% to a large UC 

10.3 Secondary flow 30% to 50% to a small UC 

99 Not coded 

Exhibit 23: Secondary Urban-Rural Commuting Area (URCA) Codes 
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The Urban Influence Codes (UIC) were expected to be helpful for comparisons across years, 
since they were developed for counties and county boundaries are stable between census 
years. The UIC codes were developed for 1993, 2003, and 2013 (based on 1990, 2000, and 2010 
census data). The example of Johnston County in North Carolina is useful for illustrating these 
codes. In 1993 and 2000, the county’s code was 2 and in 2013 the county’s code was 1. The 
map shown in Exhibit 24 indicates that this code may not help reveal the relationship of 
Johnston County to the Triangle region since the code shows the county as part of the same 
region.  
 
The Rural Urban Commuting Area Codes (RUCA) were developed for census tracts and were 
expected to be more helpful for providing finer geographic detail, but less useful for 
comparisons across years since census tract boundaries are revised between census years, 
particularly for rapidly growing areas. The RUCA codes were developed for 1990, 2000, and 
2010. Similarly to the UIC codes example, the RUCA codes are not useful for showing the 
relationship between the continuous count station locations and the broader commuting area 
since there is little variability in the RUCAs in the study areas (Exhibit 25). 
 

 
Exhibit 24: North Carolina Urban Influence Codes (UIC) for 2013 

 

 
Exhibit 25: North Carolina Primary Rural-Urban Commuting Area Codes (RUCA) for 2010 


