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Executive Summary 

Dry detention basins (DDBs) are a common type of stormwater control measure (SCM) 

designed to mitigate the adverse impacts of increased runoff associated with urbanization.  

Under current standards, DDBs are primarily designed to mitigate issues related to water 

volume, such as flooding and erosion.  However, attention is increasingly turning to issues of 

water quality.   The documented water quality performance of standard DDBs varies widely, but 

pollutant removal is generally limited.   

Methods 

This study examined four retrofit designs and their abilities to improve DDB pollutant removal 

efficiency via a series of controlled plot trials conducted on a DDB at North Carolina State 

University’s Sediment and Erosion Control Research and Education Facility (SECREF) in 

Raleigh, NC.  Basin configurations included: 

• the addition of porous coir baffles (B) 

• a floating skimmer outlet (S) 

• an internal water storage (IWS) system 

• a dual retrofit design that employed a skimmer outlet and porous baffles in tandem (S+B) 

• a standard DDB to be used as a control (C)  

Each of the five configurations were tested using pollutant-spiked water to simulate runoff from 

13-, 25-, and 50-mm rain events from a 400 m2 watershed.  Each configuration was tested at 

each storm size in duplicate, resulting in n=6 for each configuration.  Water quality was 

quantified via comparisons of influent and effluent concentrations of the following parameters: 

• total suspended solids (TSS) 

• total Kjeldahl nitrogen (TKN) 

• ammonia nitrogen (NH4
+) 

• nitrate/nitrite nitrogen (NOX) 

• total nitrogen (TN), orthophosphate (OPO4
-) 

• total phosphorus (TP) 

• a series of dissolved metals (Cd, Cu, Pb, Zn) 

Results  

All basin configurations, including the control, significantly and substantially reduced TSS from 

the inlet to the outlet at rates higher than those reported in the literature and in crediting 
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documents, but there was no evidence of differences in TSS removal among designs.  While no 

particular basin configuration provided significantly better nitrogen removal, data suggests that 

retrofits causing prolonged saturation (S, S+B, IWS) could improve denitrifications potential.  

The IWS basin captured TP at significantly higher rates than the other designs, but effluent 

concentrations from all designs were substantially lower than the TP effluent concentration 

credit assigned by the North Carolina Department of Environmental Quality (NCDEQ).  The 

optimal hydraulic retention time (HRT), highly controlled influent concentrations, and relatively 

large particle sizes could partially account for the observed TSS, TN, and TP removal.  With the 

exception of the baffles basin exporting Cd, none of the configurations had any significant 

impacts on the effluent concentrations of the dissolved metals.   

Recommendations 

This study does not provide evidence that any of the analyzed basin configurations improve 

water quality treatment of DDBs in both significant and substantial ways, likely due to the high 

overall performance of every basin design.  However, data trends suggest that retrofitting DDBs 

with an IWS system could improve cumulative load reductions.  Future research is needed to 

assess the hydrologic performance of IWS in DDBs. 
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Introduction 

As the population across the United States continues to urbanize, proper stormwater 

management is crucial to the health and preservation of our water resources (US EPA, 2003).  

With increased development comes an increase in an area’s impervious surface coverage.  By 

limiting the ability of water to naturally infiltrate into the soil, impervious surfaces increase the 

volume and velocity of the landscape’s associated runoff during storm events, resulting in 

flooding, erosion, ecosystem disturbances, property damage, and public safety issues (Paul & 

Meyer, 2001).  Among the many tools stormwater engineers have at their disposal to mitigate 

these adverse impacts is the dry detention basin (DDB), but DDB’s have historically been 

designed primarily to address the issues of flooding and erosion, with minimal regard for 

pollutant removal (Stanley, 1996).   

Research focused on other stormwater control measures (SCMs) as well as sediment and 

erosion control practices suggests that simple retrofit design elements could improve the water 

quality performance of DDBs.  The addition of porous baffles and a skimmer outlet have 

improved the particulate pollutant removal of sedimentation basins (Thaxton & McLaughlin, 

2005), while installing an internal water storage (IWS) system improved the overall water quality 

treatment of both permeable pavement systems and bioretention cells (Wardynski et al., 2013; 

Brown & Hunt, 2011).  The potential for porous baffles, a skimmer outlet, and an IWS system to 

improve a DDB’s water quality performance is the subject of this study. 
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Result of Literature Review  

Current Design and Performance 

In the United States, the EPA regulates stormwater discharge as a part of the National Pollutant 

Discharge Elimination System (NPDES) (Clean Water Act, 33 U.S.C. §1251 et seq., 1972).  

Under the NPDES program, the EPA delegates permitting and regulatory authority to the state 

governments.  This division of authority results in a variety of design standards and performance 

thresholds across the nation.  Most DDBs, however, share several design elements.  DDBs are 

typically shallow, grassed depressions that collect runoff during storm events and release it 

slowly over time (NCDOT, 2012).   

Standard design for DDBs includes a small drawdown orifice at the bottom of the basin such 

that peak flow out is much lower than peak flow into the basin for a given design storm 

(Middleton & Barrett, 2008).  This drawdown orifice is typically housed within a larger, multi-

stage riser structure that allows the DDB to pass large storms safely and with some peak flow 

mitigation.  Some states have additional design requirements, such as trash racks, to help 

prevent clogging and filter debris (NCDEQ, 2017a).  In all cases, water immediately begins 

draining from the DDB upon entering, and little or no water stays in the basin indefinitely or 

between storm events.  Therefore, DDBs provide modest particulate pollutant removal via 

sedimentation.  However, recent research suggested that other pollutant removal mechanisms 

could be employed through basin modification (Middleton & Barrett, 2008; McPhillips & Walter, 

2015).   

Published mean DDB pollutant removal efficiency data varied widely with geographic location, 

specific pollutant, and DDB sizing (Table 1).  Differences in storm size, influent concentration, 

and meteorological conditions lead to performance variation within the same basin in ways that 

have not yet been directly quantified or modelled (Shammaa et al., 2002).    

Because peer-reviewed studies were conducted in different locations, under different conditions, 

and with different calculation methodologies, it was not possible to make direct comparisons.  

Additionally, the wide range of reported performance limited any generalized characterization of 

DDB removal efficiency.  When taken together, however, DDBs generally removed particulate 

pollutants much better than dissolved pollutants.  This trend is consistent with research that 

showed that the primary pollutant removal mechanism in DDBs is sedimentation (Middleton & 

Barrett, 2008).   
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Table 1. Mean pollutant removal efficiencies (%) in dry detention basin studies  
 DDB Study 

 Birch et al. 
(2006) 

Guo 
(1997) 

Pope & 
Hess 

(1988) 

Stanley 
(1996) Schueler et al. (1992) 

Location Sydney, 
Australia NJ Topeka, 

KS 
Greenville, 

NC VA1 VA2 MD1 MD2 TX KS 

Drainage 
Area 
(ac) 

- 7,240 - 81,000 88 11.4 34 16.8 28 12.3 

Design 
Storm 

(in) 
- - - 0.5 - 0.22 0.3 0.5 0.5 3.42 

Shape Rectangular Square - Square - - - - - - 

TSS 40 65 2.5 68 14 51.5 70 87 30 3 

TDP* - - 0 (-16) - - - - - - 

PO4* - - - 19 - - - - - - 

PP - - - 34 - - - - - - 

TP (-5) - 18.5 14 20 48 13 26 18 19 

NOx* (-46) - 20 (-8) 9 - - (-10) 52 20 

NH4* - - 69 (-2) - - - - - - 

DKN* - - - (-11) - - - - - - 

TKN 56 - - - - 30 - - - - 

PN - - - 47 - - - - - - 

TN 28 - - 26 10 42.5 24 - 35 - 

Cd - - - 24 - - - - - - 

Cr 0 - - 42 - - - - - - 

Cu 23 - - 29 - - - - 31 - 

Fe 3 - - - - - - - - - 
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Porous Baffles 

Porous baffles are permeable barriers that transect the flow path within a practice and are 

commonly used in sedimentation basins to treat construction runoff (Figure 1).  In a set of 

controlled field experiments, Thaxton and McLaughlin (2005) demonstrated that the presence of 

porous jute/coir baffles increased the sediment capture effectiveness of a sediment retention 

pond, as compared to (1) a pond without baffles and (2) a pond with baffles made of different 

materials.  While the study was conducted on a sediment retention pond rather than a DDB, 

Mn 43 - - - - - - - - - 

Ni 1 - - 40 - - - - - - 

Pb 41 - 66 44 - 32 62 - 29 66 

Zn 41 - 65 27 (-10) 32 57 - (-38) 65 

* Indicates dissolved pollutant species 

Analyzed parameters include: total suspended solids (TSS), total dissolved phosphorus (TDP), 

orthophosphate (PO4), particulate phosphate (PP), total phosphate (TP), nitrate/nitrite (NOx), ammonia (NH4), 

dissolved Kjeldahl nitrogen (DKN), total Kjeldahl nitrogen (TKN), particulate nitrogen (PN), and total nitrogen 

(TN) 

 

Figure 1. Typical sediment basin with baffles (McLaughlin, 2015) 
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sedimentation is the primary pollutant removal mechanism for both, and their construction is 

quite similar (Thaxton & McLaughlin, 2005).   

Research conducted by Vaze and Chiew (2004) indicated that capturing smaller particles is 

critical for improving water quality.  Sediment is a pollutant to which other pollutants readily 

adsorb, such as heavy metals and nutrients (Hunt & Lord, 2006).  In stormwater, dissolved 

nitrogen and phosphorous comprise only 20 - 50% of the total nutrient load, with the remainder 

attached primarily to small sediment particles (Vaze & Chiew, 2004).  While nearly half of the 

sediment load associated with runoff is of the coarsest fraction, the coarsest particles carry less 

than 15% of the associated nutrient load (Vaze & Chiew, 2004).     

 

 

Skimmer Outlet Structures 

Sediment capture can be improved by employing a skimmer.  A skimmer is a specialized outlet 

structure that discharges water from the pond’s surface, rather than the pond’s bottom (Millen et 

al., 1997).  While other designs are currently being researched (Pilon et al., 2016), a skimmer 

typically consists of a buoyant head containing a small orifice that is connected to the main 

outlet pipe at the bottom of the basin via a series of pipes and flexible hoses (Figure 2). This 

allows the basin to dewater at a constant rate from the top of the water column where water 

contains the least amount of sediment (Millen et al., 1997). In this way, skimmer outlet 

Figure 2. Typical Skimmer Outlet Device (Millen et al., 1997) 
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modification increases sedimentation without requiring hydraulic residence time to increase 

(Jarrett, 2001; Pilon et al., 2016).  

In a set of field experiments, the addition of a skimmer outlet device reduced effluent TSS 

concentrations by 45% and decreased the average size of the captured particles (Millen et al., 

1997).  While all basins captured 100% of particles over 75 µm, the basin with the skimmer 

outlet captured 10% more particles between 6 and 12 µm (Millen et al., 1997).  Jarrett (2001) 

conducted another series of controlled experiments with similar results.  The basin with a typical 

drawdown orifice exported 1.8 times more TSS than the basin with a skimmer outlet, despite 

each having the same hydraulic residence time (Jarrett, 2001). 

 

Skimmer Outlet and Porous Baffles 

The North Carolina Department of Transportation’s (NCDOT) standard skimmer sedimentation 

basin employs a skimmer outlet and porous baffles in tandem (Figure 3; NCDOT, 2015).  In a 

monitoring study conducted by McCaleb and McLaughlin (2008), this configuration captured 

99% of influent sediment with proper maintenance, while basins with traditional outlet structures 

and no baffles captured <40%.  Skimmer maintenance was a factor in performance, however, 

Figure 3. Typical sediment basin with porous baffles and a skimmer outlet (NCDOT, 2015) 
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and when it became “mired in sediment” the basin captured only 76% of TSS (McCaleb & 

McLaughlin, 2008).  In a subsequent monitoring study, the inclusion of a skimmer outlet had 

negligible impact on TSS removal in a sediment basin equipped with porous baffles and 

polyacrylamide treatment (a flocculating agent) (McLaughlin et al., 2009).  

Internal Water Storage (IWS) 

Internal Water Storage (IWS) is a specific type of a subsurface saturation zone that has been 

studied within the context of various SCMs.  Typically found in filtration practices with 

underdrains, IWS uses an elevated outlet to store water below the surface and within a fill 

media (Figure 4).  When implemented within bioretention cells in North Carolina and Texas, 

IWS systems increased the removal of NOX, suggesting the creation of an anoxic environment 

that induced denitrification (Brown & Hunt, 2011; Li et al., 2014).  However, the presence of an 

IWS system did not guarantee saturation or the accompanying conditions that are conducive to 

denitrification.  Rather, it was dependent on underlying infiltration rates and media composition 

(Hunt et al., 2012).  If runoff exfiltrated too quickly, anoxic conditions did not form, and 

denitrification was limited (Hunt et al., 2012). 

While it can limit denitrification in IWS systems, increased exfiltration improved SCMs’ removal 

of pollutant loads (Hunt et al., 2012).  By reducing the total runoff volume entering receiving 

Figure 4. Bioretention cell schematic showing the location of IWS (Brown et al., 2009) 

Figure 4. Bioretention cell schematic showing the location of IWS (Brown et al., 2009) 
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waterways, exfiltration in SCMs necessarily reduces the associated pollutant loads while 

simultaneously providing additional peak flow mitigation.  IWS use in bioretention and 

permeable pavement designs yielded higher removal efficiencies for dissolved pollutant loads, 

even among low hydraulic conductivity in clay soils (Hunt et al., 2006; Wardynski et al., 2013).  

Even among clay soils with low hydraulic conductivity, permeable pavement systems with IWS 

resulted in a 22% volume reduction via exfiltration (Braswell et al., 2018).   

While exfiltration is currently a minimal consideration in the construction and performance of 

standard DDBs (NCDEQ, 2017b), it can be the primary dewatering mechanism, and many 

DDBs can completely dewater in less than seven days through exfiltration alone (Bidelspach et 

al., 2004).  However, infiltration-dependent designs are project-specific, as infiltration rates 

depend on the site conditions and underlying soil characteristics (NCDEQ, 2017b).  Because 

IWS retrofits decrease DDB storage capacity with the addition of a fill media and retain water 

inter-event, if infiltration rates are sufficiently low, flooding risks can increase during successive 

storm events (Papa et al., 1999). 

Discussion and Future Work 

At the present, the majority of DDB research is conducted through field monitoring alone 

(McPhillips & Walter, 2015; Middleton & Barrett, 2008; Birch et al., 2006; Stanley, 1996).  While 

field monitoring is a valuable way to assess DDB function, the lack of controlled variables 

makes it difficult to compare DDB design variations among various studies.  Researchers are 

reliant on (often unpredictable) weather during field monitoring, leading to small data sets and 

difficulty in drawing conclusions.   

To directly analyze whether the retrofit options outlined in this paper will improve DDB water 

quality treatment, a plot study was used to test a control against multiple design adjustments.  

Having a robust and extensive set of experimental data that mimics field conditions but controls 

for variables that are not being directly analyzed is key.  A series of designed experiments that 

controls for variables such as geographic location, influent concentration, storm size, and HRT 

allowed for a direct comparison of pollutant removal performance between basin designs and 

retrofit options. 

Materials and Methods 

QAPP Process 
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An original QAPP was submitted to and approved by DOT in April 2019, however, changes 

were made in July 2019 to the proposed antecedent dry period.  However, further changes were 

jointly decided upon by NCSU and NCDOT in May 2020 in response to the covid-19 pandemic 

as well as preliminary lab results.  Originally, all configuration and storm size combinations were 

to be performed in triplicate (n=54).  Combinations were, instead, performed in duplicate (n=36) 

to accommodate the abridged timeline presented by the covid-19 pandemic.  Additionally, the 

NCSU-BAE lab was to perform the sample analysis with some duplicates analyzed by the EPA 

certified lab at NCSU’s Center for Applied Aquatic Ecology (CAAE) for comparison.  After 

unsatisfactory performance regarding blank analysis and holding times in the BAE lab, all 

samples were to be analyzed by CAAE.  The result was that only 3 trials (all baffles basin 

configuration trials) from 2019 were included in the final data set, and all others were completed 

in 2020. 

The updated QAPP reflecting these changes and the ultimate experimental protocol was 

officially submitted in July 2020 and is attached to this report. 

Site Description and Constraints 

The controlled plot trials were conducted at NC State University’s (NCSU) Sediment and 

Erosion Control Research and Education Facility (SECREF), located on Lake Wheeler Road in 

Figure 5. NCSU’s Sediment and Erosion Control Research and 
Education Facility location (Google Maps, 2020) 
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Raleigh, NC (Figure 5).  SECREF is five miles from NCSU’s campus and hosts educational 

workshops and research projects pertaining to stormwater management and sediment and 

erosion control. 

DDB Characterization 

A pond was converted into a DDB and retrofitted with each design configuration.  The resulting 

DDB was approximately 30 ft long, 15 ft wide, and held a maximum volume of approximately 

1000 ft3 (Figure 6, Table 2).  A stage-storage table was calculated using survey data and 

AutoCad Civil 3D 2021 (Autodesk, San Rafael, CA).  Side slopes varied from 3:1 to 1:1, with the 

steepest slopes being near the outlet.   
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Figure 6. Trial DDB topography with the inlet noted at the top (100.45’). A. Basin with 
skimmer connection (97.68’) and control outlet (97.67’) elevations noted.  C, B, S+B, and 
S basins all shared this topography B. Basin with IWS topography and outlet elevation 
noted C. Control basin drawdown position (figure is not representative of vegetation 
during trials) 

B A 

C 
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Hydrology 

Soil saturated hydraulic conductivity (KSAT) measurements were attempted using a Modified 

Philip-Dunn (MPD) Triple Infiltrometer (Upstream Technologies, New Brighton, MN) (ASTM, 

2018).  Three separate attempts each produced a KSAT of effectively zero.  A full-basin retention 

test was also conducted by filling the basin and monitoring the water level to assess side slope 

infiltration rates.  The water level dropped less than 0.5 inches in 48 hours.  

An earthen dam replaced a metal sluice gate during the DDB’s initial construction.  After 

preliminary hydrology and infiltration tests, water began seeping through the dam during trials at 

variable and hard to measure rates.  Given these constraints, this study focused solely on the 

water quality treatment provided by DDBs as quantified by pollutant event mean concentrations 

(EMCs), rather than by total load reductions or any metrics of hydrologic performance. 

 

 

Table 2. Control DDB stage-storage table 

Contour 
Elevation (ft) 

Contour 
Area (ft2) 

Incremental 
Depth (ft) 

Average End Method Conic Method 

Incremental 
Volume (ft3) 

Cumulative 
Volume (ft3) 

Incremental 
Volume (ft3) 

Cumulative 
Volume (ft3) 

97.75 46.08 N/A N/A 0.00 N/A 0.00 

98.00 137.68 0.25 22.97 22.97 21.95 21.95 

98.25 204.41 0.25 42.76 65.73 42.49 64.44 

98.50 255.69 0.25 57.51 123.24 57.39 121.83 

98.75 302.03 0.25 69.72 192.96 69.63 191.47 

99.00 337.05 0.25 79.89 272.84 79.85 271.31 

99.25 368.18 0.25 88.15 361.00 88.13 359.44 

99.50 399.41 0.25 95.95 456.95 95.92 455.36 

99.75 431.89 0.25 103.91 560.86 103.89 559.25 

100.00 467.22 0.25 112.39 673.25 112.36 671.61 

100.25 504.17 0.25 121.42 794.67 121.40 793.00 

100.50 538.94 0.25 130.39 925.06 130.36 923.36 
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Retrofit Configuration Descriptions 

This study compares the water quality treatment of four DDB retrofit design additions: porous 

baffles, skimmer outlet, porous baffles and skimmer outlet, and an IWS system.  These retrofit 

configurations were also compared to a standard, or control, DDB design.  

Control 

The control configuration was constructed in accordance with standard DDB guidance and 

requirements (NCDEQ, 2017c).  This included a 0.5-inch drawdown orifice drilled into the PVC 

outlet pipe cap (Figure 7) positioned on the DDB’s bottom (Figure 8).  Fescue sod was installed 

during construction but prolonged inundation inhibited growth (Figure 6c).  Volunteer vegetation 

was allowed to colonize the DDB and covered approximately 95% of the surface area at the 

time of trials (Figure 8).  No vegetative maintenance (mowing, trimming, etc.) occurred in the 

DDB during the four months of testing.  While some DDBs in residential or highly trafficked 

areas may receive regular vegetative maintenance, many on commercial and government 

properties are only mowed once or twice a year (NCDOT, 2010).  NCDOT, for example, lists no 

required, mowing interval for DDB’s in its maintenance and inspection manual (NCDOT, 2010).  

Maintenance conditions for this study are, therefore, reflective of field conditions experienced by 

many DDBs.  

Figure 8. Control DDB configuration with 
representative vegetation  

Outlet 

Figure 7. Baseline outlet orifice drilled 
into outlet pipe cap  
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Porous Baffles 

Two porous coir baffles with 0.5-inch openings (65 g/ft2) (Figure 9), were installed across the 

width of the basin in the standard, double layer design achieved by folding over the baffle 

material.  The baffles were 3-ft high, placed every 10-ft along the basin length (Figure 10, Figure 

11), and constructed according to NCDOT’s standard specifications with one important 

divergence (NCDOT, 2012).  Design standards require metal posts and hanging wire to secure 

the baffles, but because dissolved metals were a parameter of study, these were replaced with 

wooden posts and nylon wire to avoid introducing additional metals.  The same outlet structure 

was used as described for the control.  Due to the previously detailed need to switch labs during 

the middle of the project, half of the baffles trials were conducted in the summer of 2019, while 

the other half were conducted in the summer of 2020.  All construction, methods, and analyses 

were constant for both periods. 

  

Figure 9. Coir baffle material  Figure 10. DDB with porous baffles 
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Skimmer 

A 2.0-inch Faircloth Skimmer (J. W. Faircloth & Son, Inc., Hillsborough, NC) with a 0.5-inch 

drawdown orifice (Figure 12) was installed per the manufacturer’s instructions (J.W. Faircloth & 

Son, Inc., 2020).  Sizing was determined using the manufacturer’s instructions such that the 

approximate drawdown times for each storm size were equivalent to those of other 

configurations.  The skimmer was attached to an outlet pipe that was separate from the 

drawdown shared by the control, baffles, and IWS confirmations, but the two were in close 

proximity to one another within the DDB (Figure 13).  The control outlet pipe remained in the 

basin during the skimmer trials but was capped.  The configuration that employed the skimmer 

and baffles in tandem (Figure 14) used the same installation specifications previously detailed. 

Figure 12. 2-inch skimmer with 13mm plug orifice 

Figure 11. Baffle installation guidance (McLaughlin, 2015) 
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Figure 13. Skimmer outlet placement in relation to the control outlet (capped) 

Control Outlet 

Skimmer Outlet 

Figure 14. DDB configuration with porous baffles and skimmer in tandem 
(photo taken in 2019 before trials began) 
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Internal Water Storage (IWS) 

To install the IWS system, the control drawdown orifice was elevated approximately 1-ft (Figure 

15).  This orifice elevation was roughly one-third the total depth of the basin and nearly one-half 

the maximum water depth of the largest storm.  Washed #57 stone was used as fill up to the 

orifice level (Figure 16).  This IWS design differs from many standard designs used in 

bioretention or permeable pavement systems (NCDEQ, 2017b) in that is contains no underdrain 

system.  Site constraints and the existing outlet structure prevented the use of an underdrain, 

and an elevated orifice was used instead.  The skimmer outlet shown in Figure 15 was capped.  

Experimental Design and Set-Up 

5x3 Factorial Cross and Randomization 

The controlled plot trials had a 5x3 full factorial design.  The five basin configurations were 

crossed with three storm sizes (small, medium, and large), and each cross was replicated once, 

resulting in a total sample size of n = 30 (6 trials for each basin configuration) (Table 3). 

  

Figure 15. Elevated outlet orifice in IWS 
configuration pre-gravel installation 

 

Figure 16. IWS basin configuration with 
#57 stone fill 

Control Outlet Elevation 

IWS Outlet Elevation 

IWS Outlet  

Capped Skimmer 
Outlet Pipe 
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Trials could not be completely randomized based on basin configuration due to construction and 

installation constraints.  Therefore, all 6 trials for a given basin design were completed 

consecutively before the next basin design was installed.  The sequence of the 6 trials for each 

basin design was randomized with respect to storm size; however, this randomization was 

sometimes altered to maximize timeline efficiency according to the weather.  For instance, if the 

randomized order called for a large storm but the forecast predicted rain within the drawdown 

period, a small or medium storm trial was conducted in its place, rather than postponing the trial.  

The implications of this randomization strategy are discussed along with statistical analysis. 

Storm Sizes 

The three storm sizes refer to increasing water depths within the experimental DDB.  They are 

denoted “small,” “medium,” and “large,” and correspond to total volumes of approximately 200, 

400, 800 ft3, respectively.  These storm sizes act as a proxy for hydraulic residence time (HRT), 

with the larger storms having a greater HRT.  Because HRT impacts pollutant removal but is not 

the object of study (Shammaa et al., 2002), its systematic variation allowed for the associated 

effects to be statistically isolated and quantified.   

The small, medium, and large storm trials occurred over the course of 20, 30, and 60 minutes, 

respectively, and took approximately 12, 18, and 24 hours to draw down (Table 4).  Additionally, 

each storm was split into time steps, or increments of time, which determined the flow pacing for 

the trial and the storm’s inflow hydrograph. 

Table 3. Controlled Plot Trials Replications: 5 x 3 Factorial Cross Design 

Storm Size 

Basin Configuration 

Control Baffles Skimmer Skimmer + 
Baffles IWS 

Small 2 2 2 2 2 

Medium 2 2 2 2 2 

Large 2 2 2 2 2 
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Temperature and Influent Concentration Controls 

Trials were only conducted when the ambient air temperatures were above 50°F, as lower 

temperatures increase water’s viscosity, thereby decreasing sedimentation rates (Roseen et al., 

2009).  Influent concentration was controlled by pre-measuring pollutant inputs and adding them 

to ambient water to create synthetic stormwater runoff.  Influent event mean concentration 

(EMC) targets were determined based on average concentrations from field data collected 

during other DDB studies within NCSU’s Biological and Agricultural Engineering stormwater 

research group (Table 6; Wissler et al., 2020).  Pollutant inputs were calculated by multiplying 

target concentrations (mg/L) by target storm volumes (L) (Table 5).  Amounts of water-soluble 

chemical compounds containing each pollutant were pre-measured by mass in the lab and 

taken to the field for use in the trials.   

Table 4. Storm size details summary 

Storm Size Approximate 
Volume (m3) 

Inflow Time 
(mins) 

Approximate 
Outflow Time (hrs) 

Time Step 
(mins) 

Small 200 20 12 5 

Medium 400 30 18 5 

Large 800 60 24 10 
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Experimental Procedures 

Inflow Hydrograph 

Each trial was a simulated storm event and was conducted in the same way, regardless of basin 

design.  A large source pond was connected to the experimental DDB through an underground 

pipe network (Figure 17).  A butterfly valve that could be incrementally opened by turning a 

handle controlled the flow through the system and was used to create center-weighted storms 

for each target storm size (Figure 18; Table 6).  

Table 5. Pollutant spike values summary 

Pollutant 

Influent 
EMC 

Target 
(µg/L)* 

Chemical 
Compound 

Added 

Total Mass Added Per Storm (g) 

Small Medium Large 

TSS 48 mg/L Soil 581.74 1201.54 2302.5 

Total Nitrogen 1700 Sodium Nitrate 
(NNaO3) 

10.30 21.28 40.77 

Total 
Phosphorus 

TP 
280 

Sodium 
Phosphate 
(Na2HPO4) 

1.70 3.50 6.72 

Cd 0.5 
Cadmium 
Chloride 
(CdCl2) 

0.03 0.05 0.10 

Cu 5.4 Copper Sulfate 
(CuSO4) 

0.07 0.14 0.26 

Pb 20 Lead Nitrate 
(N2O6Pb) 0.06 0.13 0.25 

Zn 28 Zinc Chloride 
(ZnCl2) 

0.34 0.70 1.34 

*unless otherwise noted 
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Figure 17. Trial DDB experimental set-up 

Inlet 

Mixing Tank 
Source 

 
Butterfly Valve 

Figure 18. Idealized design storm hydrographs used in controlled plot trials 
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The idealized, target storms are based on expected flow rates for given turn increments (e.g., 

one half-turn was expected to produce a flow of 0.078 cfs).  However, the relationship between 

flow and valve-turns was dependent on many variables, such as the stage of the source pond 

and lubrication of the valve.  The storms presented in Table 6 were the framework for each 

storm but were manually calibrated at each time-step.  Immediately after the valve was turned, 

stage measurements and adjustments were made to ensure adequate flow.  Representative 

inflow hydrographs for each storm size are included in Appendix A. 

Matrix Spikes 

Premeasured pollutant masses (Table 5) were transported to the field site for each trial.  

Sediment was sourced from Triangle Landscape Supply and contained approximately 69% 

sand, 19% silt, and 12% clay before processing.  Sediment was dried for at least 24 hours at 

38°C, hand ground with a mortar and pestle, then passed through #10 (0.08-inch) and #35 

(0.02-inch) sieves and weighed.  Therefore, the resulting sediment input contained medium 

sand and finer.  The measured nutrient and metal loads were combined with sediment inputs 

and transported in plastic zip-top bags. 

Table 6. Time-step duration, flow, and volume for each idealized storm size 
Small Medium Large 

Time 
Step 

(minute) 

Flow 
Rate 
(cfs) 

Cumulat
ive 

Volume 
(ft3) 

Time 
Step 

(minute) 

Flow 
Rate 
(cfs) 

Cumulat
ive 

Volume 
(ft3) 

Time 
Step 

(minute) 

Flow 
Rate 
(cfs) 

Cumulat
ive 

Volume 
(ft3) 

0:00 0.078 0 0:00 0.078 0 0:00 0.078 0 

0:05 0.23 23.4 0:05 0.23 23.4 0:10 0.23 46.8 

0:09 0.38 78.6 0:10 0.38 92.4 0:20 0.38 184.8 

0:12 0.23 147 0:13 0.5 160.8 0:29 0.5 390 

0:15 0.078 188.4 0:17 0.38 280.8 0:32 0.38 480 

0:20 0 211.8 0:20 0.23 349.2 0:40 0.23 662.4 

   0:25 0.078 418.2 0:50 0.078 800.4 

   0:30 0 441.6 0:60 0 847.2 



33 
 

Before the simulated storms, a 50-gallon mixing tank and a 100-gallon reservoir tank were filled 

with ambient water from the source pond.  The entire mass of pollutants was added to the 

mixing tank before the trial began and was stirred by a small, battery-powered boat motor for at 

least 15 minutes (Figure 19).  During the trial, the valve of the mixing tank was opened, allowing 

the mixture to drain.  This highly concentrated pollutant slurry mingled with the inflowing ambient 

pond water in the pipe network to create the synthetic stormwater entering the DDB (Figure 17).  

When the water level of the mixing tank dropped to 25 gallons, it was refilled by pumping water 

from the reservoir.   

The mixing tank had an adjustable butterfly valve, and the degree to which it was opened during 

the trial corresponded to the length of the storm.  To ensure all the pollutants drained from the 

mixing tank, the flow rate was adjusted such that the mixing tank was replenished four times 

(using all the water in the reservoir tank), regardless of storm length.  Therefore, the small storm 

required the valve to be open 2/3, the medium storm required it to be half open, and the large 

storm required it to be only 1/3 open. 

Figure 19. Matrix spike set-up  

50-Gallon Mixing Tank 

100-Gallon Reservoir Tank 

Pump 

Boat Motor 

Pipe Network to DDB Inlet 
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This matrix spiking process resulted in the highest concentration of pollutants entering the basin 

during the beginning of the storm, as the pollutant slurry was diluted each time water was added 

to the mixing tank from the reservoir.  While partially due to site constraints, this process also 

represents the “first-flush” phenomenon, whereby the first portion of stormwater carries the 

highest proportion of the pollutant load (Hathaway & Hunt, 2011; Shammaa et al., 2002).  

Additionally, all water quality samples were collected as flow-paced composite samples taken 

across the length of the entire storm.  Therefore, the impacts of the pollutant input timing were 

assumed minimal.    

Antecedent and Concurrent Weather Conditions 

Previously, a tiered antecedent dry period was to be observed before all trials, based on the 

size of the rain event.  0-0.5” events would require no antecedent dry period, 0.5-1.0” events 

would require a 12 hour antecedent dry period, and 1.0”+ events would require a 24 hours 

antecedent dry period.  However, due to time constraints exacerbated by the Covid-19 

pandemic, this antecedent dry period protocol was shortened to 12 hours after any ponded 

water, be it from natural or simulated storm events.  All trials were conducted after at least 12 

hours had passed since the previous event’s outflow.  This condition was met regardless of 

whether the flow was caused by natural or simulated storm events and regardless of which 

drawdown orifice was active.  In the rare case of simultaneous natural and simulated storms, 

the trial was considered valid only if the fraction of precipitation that fell within the basin was less 

than 20% of the simulated storm volume.  This means that at least 80% of every trial storm 

inflow was captured for analysis; any such anomalies are noted in Appendix B. 

Data Collection 

Water Quality Sampling 

Water quality samples were collected from the inlet and outlet for each simulated storm event.  

Each sample was a composite comprised of at least fifty 100 mL, flow-paced subsamples.  100 

mL subsamples were taken after the appropriate volume had passed over the weir for the given 

storm size (Table 7) and were deposited in a single 10 L collection bottle.  Both the inlet and 

outlet sampling were paced at the same flow increments.  The concentrations associated with 

the resulting influent and effluent composite samples represented the trial’s event mean 

concentrations (EMCs).   

 



35 
 

 

 

 

 

 

Samples were collected with an automated portable sampler (Model 6712; Teledyne-Isco™, 

Lincoln, NE).  Manning’s Equation (Manning, 1891) was used to calculate influent velocity (Eq 

1) and flow (Eq 2) for the 300mm diameter PVC inlet pipe (Figure 20).  Flow area and wetted 

perimeter were calculated using water depth within the pipe, as measured by an ISCO™ 730 

bubbler modules (Teledyne-Isco™, Lincoln, NE).  A roughness coefficient of 0.01 was used 

(Bishop & Jeppson, 1975).   
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Table 7. Composite sample flow-pacing for each storm size (ft3/subsample) 
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Because the drawdown for the control, baffles, and IWS configurations used a different outlet 

pipe network than the skimmer and skimmer + baffles configuration, two separate outlet weir 

boxes were constructed (Figure 21).  Both were outfitted with 22.5º v-notch weirs and ISCO™ 

730 bubbler modules (Teledyne-Isco™, Lincoln, NE) with which to measure depth and calculate 

flow via the weir equation (Eq 3, Francis, 1884). 

𝑄𝑄 = 𝐶𝐶𝑑𝑑(𝐻𝐻2.5)           Eq. 3 

𝑄𝑄 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �
𝑓𝑓𝑓𝑓3
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𝐻𝐻 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑓𝑓𝑓𝑓)  

 

Figure 20. Inlet pipe 

 

Figure 21. Outlet weir boxes with un-
pictured ISCO sampler to the left 

Skimmer Weir Box 

Baseline Weir Box 
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Because both outlet weir boxes were open to ambient conditions (Figure 21), they were 

scrubbed by hand with a soft-bristle brush and flushed with water from a nearby well for at least 

20 minutes before each trial.  This process removed any organic detritus such as leaves or 

grass clippings as well as any algal accumulation that occurred between trials (Figure 22) that 

might have artificially inflated outlet nutrient concentrations. 

Hydrologic monitoring 

While hydrology was not a focus of this study and site constraints limited the possibility of 

hydrologic analyses, hydrologic data were collected for the purposes of the flow-paced water 

quality sampling previously described and for storm characterization.  The same ISCO samplers 

collecting water quality samples also recorded flow data at the inlet and outlet.  HOBO™ Water 

Level Data Loggers (Model U20L-04; Onset Computer Corporation, Bourne, MA) were used to 

record the water levels in the DDB for each trial.  

Water Quality Analysis 

Water quality performance was quantified using removal efficiency (RE) (Eq. 4) for all measured 

constituents (Table 9). 

Figure 22. Algae and organic debris 
removed from outlet weir box before 
sampling 
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𝑅𝑅𝑅𝑅 (%) =  100 ∗ �1− 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

�       Eq. 4 

𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Nutrient species and TSS were analyzed at North Carolina State University’s Center for Applied 

Aquatic Ecology (CAAE) Laboratory, and dissolved metal species were analyzed at the North 

Carolina Department of Environmental Quality’s (DEQ) Water Sciences Laboratory.  Standard 

EPA-approved analytical methods and sample handling/preservation were used (Table 8). 

Statistical Analysis 

The significance of each basin configuration’s RE for each pollutant was tested with a two-tailed 

t-test (H0: RE=0; HA: RE≠0).  Data were visually inspected for extreme divergences from 

normality, but no formal normality tests were conducted as sample sizes (n=6) were too small to 

generate adequate power.  Required t-test assumptions were considered met, given that, with 

the exception of cases of extreme skew, two-tailed t-tests are sufficiently robust against type I 

errors for many non-normal distributions (Lumley et al., 2002; Sawilowsky & Blair, 1992), often 

even in samples sizes as small as n=5 (Sullivan & D’Agostino, 1992). 

Differences in the REs for each pollutant parameter due to basin configuration were tested 

using a 2-factor, analysis of covariance (ANCOVA).  Basin configuration was a fixed, 

categorical, independent variable, while removal efficiency was the dependent variable.  Due to 

the documented relationship between hydraulic retention time and removal efficiency 

(Shammaa et al., 2002; Whipple & Randall, 1983), the models also included storm size as a 

fixed, categorical, blocking factor that was crossed with basin configuration.  The term was 

included in the models regardless of statistical significance as a description and characterization 

of the experimental structure (E. Griffith, professional communication, November 10, 2020). 
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Table 8. Water Quality Analysis – Constituent and Methods Summary 
Constituent Analysis Method PQL 

(µg/L) Handling Preservation 

Total Suspended 
Solids (TSS) 

Std. Method 2540D - 1 L plastic bottle On ice 

Ammonia Nitrogen 
(NH4+) 

Std. Method 4500 NH3 
HEPA Method 350-1 17.5 125 mL plastic bottle On ice 

Total Kjeldahl 
Nitrogen 
(TKN) 

EPA Method 351.1 280 125 mL plastic bottle On ice 

Nitrate/Nitrite 
Nitrogen 

(NOX) 

Std. Method 4500 NO3 
FEPA Method 353.3 11.2 125 mL plastic bottle On ice 

Total Nitrogen 
(TN) 

TN = NOX+TKN - - - 

Ortho-Phosphate 
(OPO4-) 

Std. Method 4500 P 
FEPA Method 365.1 12 glass bottle filtered 

in field 
(0.45 micron syringe) 

On ice; bottle 
pre-acidified 

by lab 

Total Phosphorus 
(TP) 

Std. Method 4500 P 
FEPA Method 365.1 10 125 mL plastic bottle On ice 

Dissolved 
Cadmium (Cd) 

EPA Method 200.8 0.5 500mL plastic bottle; 
filtered in field 

(0.45 micron vacuum) 

1 + 1 HNO3 to 
pH < 226 

Dissolved Copper 
(Cu) 

EPA Method 200.8 2.0 500mL plastic bottle; 
filtered in field 

(0.45 micron vacuum) 

1 + 1 HNO3 to 
pH < 226 

Dissolved Lead 
(Pb) 

EPA Method 200.8 2.0 500mL plastic bottle; 
filtered in field 

(0.45 micron vacuum) 

1 + 1 HNO3 to 
pH < 226 

Dissolved Zinc 
(Zn) EPA Method 200.8 10 

500mL plastic bottle; 
filtered in field 

(0.45 micron vacuum) 

1 + 1 HNO3 to 
pH < 226 
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Influent concentration was used as a fixed, continuous, covariate variable, because influent 

concentration necessarily impacts removal efficiency, both mathematically and logically (Eq. 4).  

Models were first fit with an interaction effect between basin configuration and influent 

concentration but were refit without the interaction if it was determined statistically insignificant.  

An alpha value of 0.05 was used for all analyses.  Residuals were visually inspected for 

normality and constant variance.  If, in the initial ANCOVA, the basin configuration was found to 

have statistically significant impacts on removal efficiency, a Tukey’s multiple comparison 

procedure was conducted on the least-squares means to determine which pairwise differences 

in basin configuration were statistically significant.   

All statistical analyses were conducted using SAS statistical computing software (Version 3.8, 

SAS Institute Inc., Cary, NC).  Example SAS code is included in Appendix C. 

Statistical Implications of Non-Random Experimental Structure 

The experiments were not conducted according to a completely randomized design.   This is 

common in agricultural and industrial research, where logistical constraints often partially 

determine experimental design and procedure, particularly in split-plot designs (Box, 1996).  

The impacts of such non-random, split-plot experimental structures typically have minimal 

impact on the conclusions one is able to draw from the resulting data (Box, 1996).  While the 

study presented herein is not a true split-plot design due to the lack of whole-plot (basin 

configuration) replicates, a visual inspection of the data similarly suggested that the impacts of 

the non-random design are minimal.  Data were inspected for trends in RE according to storm 

size order, basin configuration order, as well as trial order, and there were no indications of 

trends substantial enough to warrant further statistical quantification (E. Griffith, professional 

communication, November 10, 2020).  Sample plots used for data inspection can be found in 

Appendix D.   

Results and Discussion 

Total Suspended Solids 

Each basin configuration significantly reduced the amount of TSS from inlet to outlet (Table 9).  

Significant EMC reductions are consistent with the literature (Birch et al., 2006; Stanley, 1996); 

however, the magnitude of reduction for every basin configuration, including the control, is much 

larger than most documented values and current removal credits (NCDEQ, 2017a).  
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In North Carolina, SCMs are categorized as either primary or secondary practices based upon 

their TSS removal rates, as documented in research studies (NCDEQ, 2017a).  Primary 

practices provide adequate water quality treatment to act as stand-alone practices, while 

secondary SCMs are used in series and/or for pretreatment (NCDEQ, 2017a).  Because DDBs 

are classified as a secondary practice, it was unexpected that the mean effluent EMCs were all 

markedly below the maximum allowable value for a primary practice (Figure 23).   

 

  

Table 9. TSS EMCs and MREs for each basin configuration.  Values in bold indicate a MRE 
that is significantly different than 0 (p<0.05). 

Basin 
Configuration 

Mean Concentration (mg/L) Mean Removal 
Efficiency (%) p-value 

Influent Effluent 

B 59.2 9.98 82.67 <0.0001 

C 80.3 8.93 88.50 <0.0001 

IWS 73.8 6.75 90.67 <0.0001 

S 78.5 7.75 89.67 <0.0001 

S+B 99.6 12.43 85.67 <0.0001 
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Figure 23. Mean effluent TSS EMCs for each basin configuration as compared to 
the primary practice threshold (NCDEQ, 2017a). 
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The designs were specifically chosen for study based on their ability to increase sedimentation 

in other practices, so such results are not entirely surprising for each of the retrofit 

configurations.  Expectedly, basin configuration had a significant effect on TSS RE in the 

ANCOVA analysis (Table 10).  Unexpectedly, the retrofits did not remove TSS at a rate 

significantly different than that of the control basin, nor did any one retrofit outperform the others 

by any statistically significant margin (Table 11).  The ANCOVA analysis indicated that more 

variance in REs existed between basin configurations than within them (after controlling for 

influent concentration and storm size).  However, the absence of any significant pairwise 

difference suggests that the effect of basin configuration was too small to detect given the 

sample size and/or there was too much variability within the samples to make confident claims.   

 

The IWS basin was on the cusp of outperforming the B and S+B basins by statistically 

significant margins (p=0.0888 and p=0.0683, respectively).  However, even if considered 

statistically significant, the difference is unsubstantial, with less than 6mg/L difference between 

the mean effluent concentrations for the basins. 

  

Table 10. ANCOVA model parameter significance for each basin configuration’s TSS RE. 
Values in bold indicate that the parameter has a statistically significant effect on TSS RE 
(p<0.05).   

Model Parameter p-value 

Basin Configuration 0.0115 

Influent Concentration 0.0249 

Basin Configuration * Influent Concentration N/A 

Storm Size 0.3977 
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Nitrogen 

All basin configurations except B significantly reduced both NH4
+ and NOX concentrations from 

inlet to outlet (Table 12).  Conversely, the B configuration was the only basin with a significant 

MRE for TKN, and it was negative.  The export of TKN with no significant change in NH4
+ 

suggests an influx of organic nitrogen, the source of which is uncertain.  Vegetation 

decomposition could have been the source, though none was directly observed.  It is important 

to note that the baffles basin was the only configuration with trials split between 2019 and 2020 

(Appendix B).  While no performance variance between the two years was detected, this could 

have impacted the basin’s organic nitrogen performance.  If the baffles themselves were the 

source of organic nitrogen, the same result would be expected of the S+B basin, but its 

insignificant export prevents such a conclusion. 

 

 

 

 

Table 11. Pairwise comparisons of each basin’s TSS RE.  Values in bold indicate that the 
TSS RE least squares means for the pair are significantly different after the Tukey-Kramer 
adjustment (p<0.05). 

Comparison Pair p-value 

B C 0.5398 

B IWS 0.0888 

B S 0.2589 

B S+B 0.9995 

C IWS 0.7963 

C S 0.9816 

C S+B 0.4004 

IWS S 0.9773 

IWS S+B 0.0683 

S S+B 0.1795 
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While all but the B configuration produced positive MREs for TN, only the IWS and S+B basins 

had MREs that varied significantly from zero (Table 12).  The IWS and skimmer outlet basins 

were unique in that they allowed some amount of ponded water to remain within the basin 

between storm events.  This is true, too, for the S basin, which did not meet the threshold for 

statistical significance but was on the cusp (p=0.0513).  Such persistent saturation could have 

created the necessary anoxic conditions for denitrification to occur (Collins et al., 2010).  

Denitrification rates vary widely and are dependent on many different factors (Sirivedhin & Gray, 

2006).  Given this variability as well as the lack of significant pairwise comparisons (Table 14), it 

Table 12. Nitrogen species EMCs and REs for each basin configuration.  Values in bold 
indicate a MRE that is significantly different than 0 (p<0.05). 
Nitrogen 
Species 

Basin 
Configuration 

Mean Concentration 
(µg/L) 

Mean Removal 
Efficiency (%) 

p-value 

Influent Effluent 

NH4
+ 

B 98.43 61.39 18.5 0.3479 

C 45.01 22.89 39.0 0.0041 
IWS 43.92 25.77 39.0 0.0001 

S 51.96 31.65 38.5 0.0064 

S+B 62.57 31.65 45.8 0.0011 

TKN 

B 1040 1213 -17.17 0.0209 
C 938.9 974.7 -4.33 0.5116 

IWS 896.9 873.9 2.50 0.3512 
S 1092 1136 -4.50 0.5501 

S+B 1238 1234 -0.167 0.9579 

NOX 

B 327.3 270.0 8.00 0.7202 
C 426.1 233.3 44.8 0.0002 

IWS 432.4 279.3 35.0 0.0002 
S 487.6 211.0 53.8 0.0003 

S+B 577.7 234.8 50.2 0.0015 

TN 

B 1368 1483 -10.33 0.1001 

C 1365 1208 11.00 0.1091 
IWS 1329 1153 13.17 0.0014 

S 1580 1347 13.50 0.0513 
S+B 1815 1469 16.83 0.0219 
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is impossible to definitively claim increased denitrification with the presented data. However, 

increased denitrification is consistent both with the positive, significant NOX REs for IWS, S, and 

S+B configurations in this study as well as peer-reviewed studies naming subsurface saturation 

as a driver of denitrification in DDBs (McPhillps & Walter, 2015).   

Importantly, all basin configurations, excepting the baffles basin, performed better in terms of 

total nitrogen than current crediting documents predicted in terms of exceedance probability 

(Eq. 5, Figure 24). 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 100 ∗ 𝑚𝑚
𝑛𝑛+1

       Eq. 5 

𝑚𝑚 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (1) 𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑛𝑛) 

𝑛𝑛 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

Basin configuration had a significant effect on NOX and TN RE, and both NH4
+ (p=0.0712) and 

TKN (p=0.0526) were near the boundary of significance (Table 13).  However, only TKN and TN 

exhibit any significant pairwise differences, all between the baffles configuration and others 

(Table 14).  These differences are likely due to the suspected organic nitrogen inputs previously 

discussed.  
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Figure 24. Exceedance probability of TN EMC for each basin configuration 
compared with the NCDEQ credit of 1.65 mg/L (NCDEQ, 2017a) 
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There is a significant interaction between the effects of basin configuration and influent 

concentration on NOX RE, which muddles the interpretation of the pairwise differences and 

indicates that the B configuration (and to a lesser extent, the C configuration) performs worse 

than the others in clean watersheds where influent concentration is lower, and better than the 

others in dirty watersheds where influent concentration is high (Figure 25).  However, the data 

set is small (n=6) and primarily clustered where RE differences are smallest (200 µm/L < NOi < 

500 µm/L), making further extrapolation unfounded. 

Table 13. ANCOVA model parameter significance for each basin configurations RE of 
nitrogen species. Values in bold indicate that the parameter has a statistically significant 
effect on removal efficiency (p<0.05).   

Model Parameter 
p-value 

NH4
+ TKN NOX TN 

Basin Configuration 0.0712 0.0526 0.0027 0.0003 

Influent Concentration 0.0223 0.2556 0.0090 0.0011 

Basin Configuration * Influent Concentration N/A N/A 0.0090 N/A 

Storm Size 0.7319 0.3622 0.5008 0.2254 

Table 14. Pairwise basin configuration comparisons of REs of nitrogen species.  Values in 
bold indicate that RE least squares means for the pair are significantly different after the 
Tukey-Kramer adjustment (p<0.05). 

Comparison Pair 
p-value 

NH4
+ TKN NOX TN 

B C 0.0593 0.2283 0.8496 0.0014 

B IWS 0.1591 0.0326 0.3696 0.0003 

B S 0.2114 0.4508 0.9194 0.0104 

B S+B 0.1065 0.4814 0.6961 0.0877 

C IWS 0.9768 0.7767 0.7878 0.9630 

C S 0.9372 0.9877 0.9978 0.9656 

C S+B 0.9925 0.9986 0.9955 0.8169 

IWS S 0.9997 0.5843 0.5418 0.7210 

IWS S+B 0.9999 0.8060 0.9297 0.5229 

S S+B 0.9970 0.9999 0.9456 0.9762 
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Phosphorus 

While each retrofit design resulted in a reduction of TP from the inlet to the outlet, only the IWS 

basin produced a significant MRE (Table 15).  Basin configuration did have a significant effect 

on TP (Table 16), with the IWS basin removing significantly more TP than the B, C, and S+B 

basins (Table 17).  Phosphorous readily adsorbs to soil particles (Sparks, 2003), and adsorption 

is a primary phosphorous removal mechanism in SCMs (Rosenquist et al., 2010).  IWS’s TP 

capture could be a function of its high TSS capture.  Though not statistically different than the 

other configurations, the IWS basin did have the highest sediment capture rate (91%, Table 15). 

The C, IWS, S, and S+B basins significantly reduced OPO4
-  EMCs.  The baffles basin was the 

only configuration to not significantly reduce OPO4
- .  Notably, the baffles basin also had the 

lowest influent OPO4
- concentration.  It was not possible to directly control the influent OPO4

- 

concentrations, only the TP concentrations.  Since the TP concentrations for the baffles do not 

significantly differ from the others, the OPO4
- concentration differences were likely due to 

Figure 25. Interaction plot between the effects of influent NOX (NOi) concentration 
and basin configuration on NOX removal efficiency (NOre), averaged over the effect 
of storm size 
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environmental impacts.  Given that the methods for preparing the synthetic stormwater and all 

environmental factors kept as constant as possible (temperature, mixing time, etc.) it is unclear 

why this difference occurred, but it likely impacted removal efficiency.   

Basin configuration did have a significant effect on OPO4
- RE (Table 16), with the S+B removing 

significantly more OPO4
- than the B and C basins (Table 17).  OPO4

- reductions for all basins 

were higher than most documented ranges for DDBs in North Carolina (Stanley, 1996; Mazer, 

2018; Wissler, 2019), and every basin, including the control, produced effluent EMCs well below 

the NCDEQ effluent TP concentration credit (Figure 26). 

 

Nitrogen 
Species 

Basin 
Configuration 

Mean Concentration 
(µg/L) Mean Removal 

Efficiency (%) p-value 
Influent Effluent 

TP 

B 142.8 140.9 -1.83 0.8787 

C 149.3 133.0 10.8 0.1407 

IWS 140.6 87.0 37.8 <0.0001 
S 173.7 123.4 26.0 0.3896 

S+B 201.9 142.5 22.0 0.0664 

OPO4
- 

B 33.48 26.51 24.5 0.2006 
C 80.10 60.05 24.8 0.0228 

IWS 80.2 33.1 59.7 0.0021 
S 85.3 34.3 59.8 0.0003 

S+B 65.7 6.42 83.7 <0.0001 

 

Model Parameter 
p-value 

TP OPO4
- 

Basin Configuration 0.0003 0.0011 

Influent Concentration <0.0001 0.8906 

Basin Configuration * Influent Concentration N/A N/A 

Storm Size 0.0233 0.1206 

Table 15. Phosphorous species EMCs and REs for each basin configuration.  Values in bold 
indicate a MRE that is significantly different than 0 (p<0.05). 

Table 16. ANCOVA model parameter significance for each basin configurations RE of 
phosphorous species. Values in bold indicate that the parameter has a statistically 
significant effect on removal efficiency (p<0.05).   
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Heavy Metals  

There was no significant Cd EMC change from inlet to outlet in any basin configuration (Table 

18).   Every design exported Cu and Zn, and while only a few were statistically significant (Table 

Table 17. Pairwise basin configuration comparisons of RE of phosphorous species.  Values in 
bold indicate that RE least squares means for the pair are significantly different after the 
Tukey-Kramer adjustment (p<0.05). 

Comparison Pair 
p-value 

TP OPO4
- 

B C 0.6047 1.0000 1.0000 

B IWS 0.0002 0.1701 0.1701 

B S 0.1378 0.1820 0.1820 

B S+B 0.9283 0.0038 0.0038 

C IWS 0.0053 0.1167 0.1167 

C S 0.8254 0.1133 0.1133 

C S+B 0.9838 0.0029 0.0029 

IWS S 0.0703 1.0000 1.0000 

IWS S+B 0.0040 0.4499 0.4499 

S S+B 0.5083 0.4715 0.4715 
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Figure 26.  Exceedance probability of TP EMCs for each basin configuration as 
compared with the NCDEQ credit of 0.66 mg/L (NCDEQ, 2017a) 
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18), it reflected a trend consistent with DDB field studies (Wissler, 2019).  Cd, Cu, and Zn 

readily bind to dissolved organic carbon (DOC) (Sparks, 2003), which could have leached from 

the basin during trials (Shafer et al., 1997).  Though all four metals readily adsorb to soil 

particles, Pb has the least affinity for DOC, existing primarily in suspended particulate matter 

(Shafer et al., 1997).  This higher likelihood of Pb removal via sedimentation could explain why 

the B, IWS, and S+B basins significantly reduced Pb, and why Pb was the only dissolved metal 

with primarily positive REs.   

 

Dissolved 
Metal 

Basin 
Configuration 

Mean Concentration 
(µg/L) Mean Removal 

Efficiency (%) p-value 
Influent Effluent 

Dissolved 
Cd 

B 1.44 2.33 -100 0.3727 
C 1.70 1.70 -3.83 0.6951 

IWS 2.43 2.98 -36.8 0.2796 

S 1.55 1.65 -10.7 0.4455 
S+B 1.57 1.42 3.83 0.7487 

Dissolved 
Cu 

B 5.08 6.90 -38.2 0.0462 
C 6.65 7.38 -13.5 0.2121 

IWS 6.31 8.27 -38.7 0.1734 

S 5.68 7.37 -34.8 0.0193 
S+B 7.07 8.00 -22.8 0.3606 

Dissolved 
Pb 

B 4.80 3.12 28.5 0.0181 
C 5.75 3.53 28.5 0.2598 

IWS 5.53 3.22 41.2 0.0003 
S 5.32 4.53 -5.50 0.8995 

S+B 6.65 3.07 45.2 0.0045 

Dissolved 
Zn 

B 13.8 20.2 -54.8 0.0914 
C 19.2 23.0 -39.0 0.1972 

IWS 25.2 31.0 -51.7 0.2119 

S 14.3 22.3 -64.0 0.0078 
S+B 18.5 22. -41.8 0.1164 

Basin configuration did not have an impact on the RE of Cu, Pb, nor Zn (Table 19).  While Zn 

was on the cusp (p=0.0550), the IWS and B configurations were the only two that differed 

Table 18. Dissolved heavy metals EMCs and REs for each basin configuration.  Values in 
bold indicate a MRE that is significantly different than 0 (p<0.05). 
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significantly, with MREs of -51.7% and -54.8%, respectively (Table 20).  This difference’s 

significance is likely due to IWS’s large spread of values, more so than a reflection of 

performance.   

While some configurations resulted in statistically significant removal efficiencies, the lack of 

statistically significant pairwise comparisons limits any substantive conclusions about relative 

performance.  

 

Table 19. ANCOVA model parameter significance for each basin configurations RE of 
dissolved heavy metals. Values in bold indicate that the parameter has a statistically 
significant effect on removal efficiency (p<0.05).   

Model Parameter 
p-value 

Cd Cu Pb Zn 

Basin Configuration 0.0070 0.5421 0.5293 0.0550 

Influent Concentration 0.0003 <0.0001 0.0124 <0.0001 

Basin Configuration * Influent Concentration 0.0117 N/A N/A N/A 

Storm Size 0.3437 0.0350 0.4037 0.1090 

Table 20. Pairwise basin configuration comparisons of RE of dissolved heavy metals.  
Values in bold indicate that RE least squares means for the pair are significantly different 
after the Tukey-Kramer adjustment (p<0.05). 

Comparison Pair 
p-value 

Cd Cu Pb Zn 

B C 0.7498 0.9951 0.9919 0.8941 

B IWS 0.0842 0.6118 0.9999 0.0400 

B S 0.7539 0.9854 0.5863 0.9725 

B S+B 0.9281 0.6821 0.9992 0.9175 

C IWS 0.3193 0.8132 0.9790 0.1422 

C S 1.0000 1.0000 0.8348 0.9978 

C S+B 0.9922 0.8344 0.9997 1.0000 

IWS S 0.3701 0.8668 0.5101 0.1142 

IWS S+B 0.2153 1.0000 0.9958 0.1292 

S S+B 0.9901 0.8971 0.7510 0.9992 
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Basin configuration did have an effect on Cd RE, but interpreting it is complicated by the 

interaction effect between basin configuration and influent concentration (Table 19, Figure 27).  

The small sample size, tightly clustered data set, and fact that no basin had a Cd RE 

significantly different than 0, make it imprudent to draw definitive conclusions (see a similar 

discussion for NOX in Section 3.2.2).  Additionally, while statistically significant, basin 

configuration was unsubstantial in regards to Cd MRE, as no basin had a MRE significantly 

different than zero (Table 18). 

 

 

Influent Concentration and Storm Size 

As expected, influent concentration had a statistically significant effect on most pollutant REs.  

Only TKN and OPO4
-  REs were not impacted by influent concentration.  For TKN, this is 

consistent with the idea that the significant exports in the B configuration were likely due to 

external organic nitrogen inputs (such as decomposing vegetation), independent of the 

controlled influent concentrations.  

Figure 27. Interaction plot between the effects of influent dissolved Cd (Cdi) 
concentration and basin configuration on dissolved Cd RE (Cdre), averaged over the 
effect of storm size 
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Importantly, OPO4
-  samples have the shortest holding time of the measured analytes (48hrs).  

Due to the Covid-19 pandemic, the analysis lab was functioning at decreased capacity and 7 

(23%) samples were thus analyzed outside of the proper holding time.  Because filtered 

orthophosphate samples that are stored under different conditions produce significantly different 

concentration measurements (Moore & Locke, 2013), the delay in analysis could have impacted 

statistical analysis.   

Storm size, a proxy for HRT, had a significant effect only on TP and Cu removal.  In past 

studies, increasing hydraulic retention time increased sedimentation and RE for its associated 

pollutants (Whipple & Randall, 1983; Bidelspach, et al., 2004); however, the lack of a significant 

storm size effect supports the proposal by Shammaa et al. (2002) that there is an optimal 

drawdown period, beyond which water quality benefits are minimal.  They suggest an optimal 

HRT of 12-40 hours, a range within which all three storm sizes fall. 

While not entirely outside of the range of recorded water quality performance in the field 

(Stanley, 1996), the TSS and nutrient REs reported herein do not reflect average DDB 

performance (Birch et al., 2006; Stanley, 1996).  The optimal HRT, coupled with the highly 

controlled influent concentrations, could partially explain why every basin configuration, 

including the control, performed better than average DDB performance documented in the 

literature (Birch et al., 2006; NCDEQ, 2017a).  This study controlled influent concentrations, and 

while the resulting mean influent EMCs reflected average values reported elsewhere in North 

Carolina field studies (Wissler, 2019; Schueler, 1996), they did not exhibit the same variability.  

Because influent concentration had a significant impact on nearly all REs, a wider range of 

influent concentrations would likely result in a wider range of REs and, therefore, a different 

average removal. 

Temperature, Particle Size, and Performance 

The temperature and particle size distribution of stormwater also impact performance, 

particularly in SCMs, such as DDBs, that utilize sedimentation as the primary pollutant removal 

mechanism (Roseen et al., 2009; Charters et al., 2015).  Higher temperatures result in lower 

water viscosities, thereby increasing sedimentation rates (Roseen et al., 2009), and 

performance variation due to temperature was evident in the data (Table D-3).  Sedimentation 

rates were greatest during the months of July and August, when temperatures were highest.  

However, because all trials were conducted when temperatures were above 10°C, 

sedimentation conditions were favorable during the trials in ways that are not reflective of field 

conditions year-round.  
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Additionally, the sediment inputs may not have been reflective of field conditions.  Sediment was 

dried and sieved to a final d100 of 0.500mm, a value at the high end of the range of values 

reported in particle size distribution (PSD) field data collected along NC highways (Table 21).  

Because differences in PSD can result in treatment uncertainty and variability (Charters et al., 

2015), if the influent particles during trials were generally larger than those in the field, it would 

be expected that the trial DDBs would capture more sediment. 

 
While relating the d90 values of past studies and the and d100 value produced here is an 

indirect and limited means of comparison, it does indicate that the PSD of the influent 

stormwater could be largely responsible for the high water quality performances observed in this 

study in all basin configurations.  Future controlled plot trials should include PSD analyses to 

investigate this possibility. 

Future Research 

Hydrology 

While not always by a statistically significant margin, the IWS basin had the highest TSS and TP 

REs and reduced TN concentrations substantially, results consistent with its performance in 

other SCMs (Hunt et al., 2006; Brown & Hunt, 2011; Braswell et al., 2018).  One of the primary 

pollutant removal mechanisms enhanced by IWS additions is infiltration, a mechanism that was 

not monitored during this study due to site constraints (Hunt et al., 2012).  Infiltration can be a 

primary pollutant removal mechanism in some DDB’s even without retrofit (Bidelspach, 2004), 

and IWS’ demonstrated ability to improve infiltration rates even among clay soils with low 

conductivity (Hunt et al., 2006; Wardynski et al., 2013; Braswell et al., 2018) bodes well for 

future possibilities in DDB enhancement.  Future research should integrate hydrologic 

monitoring to investigate if the data trends observed in this study are confirmed when analyzed 

in the context of retrofit impacts on DDB hydrology and total load reductions of pollutants.   

 

 

Table 21. D90 values for NC highway runoff (mm) 
 Study 
 Winston & Hunt (2017) Wissler (2019) 

Locale Black 
Mountain Brevard Jack 

Bennett 
Hanks 
Chapel Faison Benson Wilson Goldsboro Knightdale Archdale 

d90 0.426 0.594 0.113 0.591 0.522 0.131 0.506 0.072 11.2 0.092 0.088 0.076 
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Increasing statistical power 

For several pollutants (TSS, NOX, OPO4
-, Cd) basin configuration had a significant impact on 

RE, but few, if any, significant differences existed between the retrofit designs.  Practically, this 

indicates that while there is more variation among configurations than within them, there is not 

enough evidence to confidently differentiate between the performances of any two 

configurations.  Statistically, this is a function of different levels of power for the different 

procedures (ANCOVA vs Multiple Comparisons).  For example, according to power analyses 

conducted in SAS (Version 3.8, SAS Institute Inc., Cary, NC), the ANCOVA procedure’s power 

associated with detecting the effects of basin configuration on TSS RE was 0.608.  For 

comparison, the power associated with the process of detecting a difference in the least-

squares-means of the IWS basin’s TSS RE versus the C basin was only 0.138.  (Sample SAS 

code is included in Appendix C.) 

Typically there are three ways to increase statistical power: (1) increase the magnitude of the 

effect in question (2) decrease the amount of variation within like-groups (3) increase sample 

size (McClelland, 2000).  The magnitude of the effects is the subject of study and therefore 

cannot be purposefully manipulated.  Importantly, the magnitude of the effects for most of the 

studied pollutant parameters is small.  All basin configurations, including the control, provided 

better water quality treatment than is reported in the literature (Stanley, 1996; Birch et al., 2006) 

and credit documents (NCDEQ, 2017c).  Comparing retrofits against a high-performing control, 

makes any effect more difficult to ascertain.  The amount of variation within like-groups was 

already minimized to the extent that was logistically possible by controlling for temperature and 

quantifying the effects of storm size and influent concentration within the model.  Therefore, to 

improve these trials future research should increase the sample size.   

Originally this study was designed such that each trial was run in triplicate (n=9 for each basin).  

The Covid-19 pandemic shortened the available timeframe in which trials could occur, requiring 

each to be run in duplicate (n=6).  While larger sample size would have increased statistical 

power, the degree of increase varies from test to test.  For example, the comparison of least-

squares-means of the IWS basin’s TSS RE with that of the C basin was 0.138, but if the sample 

size were increased to n=9 (assuming the same means, standard deviation, and α), power only 

increases to 0.194.  Alternatively, comparisons of least-squares-means of the IWS basin’s TSS 

RE with that of the S+B basin produces powers of 0.625 and 0.827 for n=6 and n=9, 

respectively.  Increasing the sample size in future studies will increase the analysis’ associated 

statistical power; however, it is uncertain if this increase will lead to different conclusions. 
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Conclusions 

This study examined 5 DDB configurations to examine the potential for water quality treatment 
improvements through retrofit designs.  The following conclusions were made. 

• Each retrofit basin configuration and the control significantly and substantially reduced TSS 
from the inlet to the outlet at rates higher than those in the literature and in crediting 
documents (NCDEQ, 2017a).  There was no evidence for TSS RE performance differences 
among basin configurations. 

• There is no significant evidence that indicates a particular basin configuration provided 
better nitrogen removal.  However, data suggest that retrofits causing prolonged saturation 
(IWS, S, S+B) could improve denitrification potential.  The baffle configuration significantly 
exported TN, likely the result of external organic nitrogen inputs. 

• The IWS basin captured TP at significantly higher rates than the other basin configurations, 
but all effluent concentrations were substantially lower than the TP effluent concentration 
credit assigned by NCDEQ (2017a). 

• Though the baffles basin significantly exported Cd, none of the basin configurations had a 
substantial effect on the removal efficiencies of dissolved Cd, Cu, Pb, or Zn. 

• The results of this study do not provide evidence that any of the analyzed basin 
configurations improve water quality treatment of DDBs in both significant and substantial 
ways.  However, data trends suggest that the IWS basin could improve cumulative load 
reductions.  Future research is needed to assess the hydrologic performance of IWS in 
DDBs. 
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Recommendations 

The capacity for the research presented herein to recommend implementing DDB retrofit 

designs at scale is limited.  However, evidence exists for watersheds with a particular interest in 

limiting effluent phosphorus that an IWS retrofit offers significant benefit.  This could have 

specific application in DDBs receiving high TP concentrations from agricultural areas and/or in 

nutrient-sensitive waters such as the Neuse River watershed (NCDEQ, 2020). 

Field-Vetted Retrofits  

The experimental trials of this study yielded limited retrofit recommendations, but wetland 

conversion and basin naturalization are field-vetted DDB retrofit designs that improved water 

quality treatment.  Constructed stormwater wetlands (CSW) are primary SCMs that provide 

pollutant removal through enhanced sedimentation, chemical process such as sorption and 

denitrification, and biochemical processes including evapotranspiration, microbial degradation, 

and nitrogen assimilation (Bavor et al., 2001; Haarstad et al., 2011).  By elevating the drawdown 

orifice and planting wetland vegetation, many of the same pollutant removal processes can 

occur within DDBs (Mazer, 2018).  Mazer (2018) studied one such retrofit, and, compared to the 

pre-retrofit DDB, the wetland conversion reduced annual effluent loads of TSS, TP, OP, TN, 

TKN, NH3, and by 89, 60, 57, 71, 75, and 69%, respectively.  While not on par with CSWs, these 

reductions were substantial improvements from typical DDB performance (Mazer, 2018).   

Because DDBs allow for greater ponding depths than CSWs (NCDEQ, 2017b), wetland 

conversion can lead to a decrease in storage capacity.  While this decrease can pose safety 

risks associated with flooding during successive storm events (Papa et al., 1999), research 

suggests that they still contribute positively to water quality treatment, despite being undersized 

(Hathaway & Hunt, 2009). 

For sites where flood mitigation is a high priority and storage capacity must be preserved, basin 

naturalization is a water-quality enhancing option (Wissler, 2019).  Simply neglecting routine 

vegetative maintenance (i.e., no mowing) and allowing local vegetation to colonize the DDB 

improved pollutant load reductions (Wissler, 2019).  In North Carolina, two naturalized DDBs 

had volume reduction rates of 39 and 54%, resulting in significant pollutant load reductions for 

every constituent (Wissler, 2020).  Specifically, the presence of trees and woody vegetation 

enhanced volume reduction through uptake, canopy interception, and increased infiltration due 

to root channeling without significantly decreasing storage capacity (Wissler, 2020).  This retrofit 

not only improves the water quality treatment of the DDB but also reduces maintenance costs.  
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Implementation and Technology Transfer plan 

This report is the first/primary step toward transferring the synthesized results of project 2018-

03.  A current webinar targeted to the technical design community that includes this and other 

research is scheduled for February 23, 2021.  The webinar is to be offered via NC State 

Biological and Agricultural Engineering.  A future NCDOT-specific seminar/webinar is available 

upon request. 
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Appendix A: Representative Inflow Hydrographs 

Figure A-1. Representative inflow hydrograph for a small storm, as compared to target flow 
rates 
 

 
Figure A-2. Representative inflow hydrograph for a medium storm, as compared to target flow 
rates 
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Figure A-3. Representative inflow hydrograph for a large storm, as compared to target flow 
rates 
 

 

  

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 5 10 15 20 25 30 35 40 45 50 55 60

Fl
ow

 R
at

e 
(m

3 /
s)

Minute

Trial Hydrograph Target Flow Rate



66 
 

Appendix B: Simulated Storm Log 

Storm 
Date 

Storm 
Size 

Basin 
Configuration Relevant Field Notes 

6/3/2020 LARGE S+B  
6/8/2020 LARGE S+B  

6/21/2020 MEDIUM S+B  
6/22/2020 MEDIUM S+B Surrounding area was being mowed 

during trial, no visible impacts 
6/23/2020 SMALL S+B  
6/24/2020 SMALL S+B  
6/29/2020 LARGE B   
7/1/2020 LARGE B   
7/6/2020 MEDIUM B   

7/13/2020 LARGE S   
7/15/2020 LARGE S   
7/20/2020 MEDIUM S   
7/21/2020 MEDIUM S   
7/22/2020 SMALL S   
7/27/2020 SMALL S   
7/28/2020 LARGE C  
8/11/2020 LARGE C  
8/17/2020 MEDIUM C  

8/19/2020 MEDIUM C 
~50mm rain event during drawdown, 
adding ~2m3 of water (17% of storm 
volume) 

8/24/2020 SMALL C  
8/26/2020 SMALL C  
9/15/2020 LARGE IWS  
9/21/2020 MEDIUM IWS  
9/23/2020 LARGE IWS  
9/27/2020 SMALL IWS  

9/28/2020 MEDIUM IWS 

Battery died mid-trial, missing ~2 
minutes (minutes 12 & 13) and an 
estimated 0.4m3 (~3% of storm 
volume) 

9/30/2020 SMALL IWS  
8/26/2019 SMALL B  
9/10/2019 SMALL B  
9/16/2019 MEDIUM B   

 

Table B-1. Simulated Storm Log 
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Appendix C: Example SAS Code for Data Analysis 

All sample code uses TSS data as the example, but code was written for each pollutant 

parameter. 

Step 1. Load data set. 

 

Step 2. Construct Boxplots  

 

Step 3. Two-tailed T-test for H0: RE=0; HA: RE≠0 and visual inspection for normality 

 

 

 

 

 

Example SAS Output used to visually inspect for normality (Configuration B)  
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69 
 

Step 4. ANCOVA and Tukey’s multiple comparisons procedure 
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Appendix D: Data Trend Inspection Plots 

All sample plots are of TSS, but plots were created for each pollutant parameter. 

Sample SAS code and plot outputs 

Storm Size Order 

 

 

Figure D-1. Scatter plot of TSS removal efficiency by storm index 
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Basin Configuration Order 

 

 

Figure D-2. Scatter plot of TSS removal efficiency by basin configuration order 
 

Trial Order 
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Figure D-3. Scatter plot of TSS removal efficiency by trial number 


