

RESEARCH & DEVELOPMENT

The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility

Andreas Hoffrichter, PhD Nick Little Shanelle Foster, PhD Raphael Isaac, PhD Orwell Madovi Darren Tascillo

Center for Railway Research and Education Michigan State University Henry Center for Executive Development 3535 Forest Road, Lansing, MI 48910

NCDOT Project 2019-43 FHWA/NC/2019-43 October 2020

FEASIBILITY REPORT

The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility

October 2020

Prepared by

Center for Railway Research and Education Eli Broad College of Business Michigan State University

> 3535 Forest Road Lansing, MI 48910 USA

> > Prepared for

North Carolina Department of Transportation – Rail Division 860 Capital Boulevard Raleigh, NC 27603

Technical Report Documentation Page

1. Report No. FHWA/NC/2019-43	2. Government Accession No.	3.	Recipient's Catalog No.					
4. Title and Subtitle The Piedmont Service: Hydrogen Fuel	5.	Report Date October 2020						
7. Author(s) Andreas Hoffrichter, PhD, http Nick Little Shanelle N. Foster, PhD, https:/ Raphael Isaac, PhD Orwell Madovi Darren M. Tascillo	8.	Performing Organization Report No.						
 9. Performing Organization Name and A 	Address	10.	Work Unit No. (TRAIS)					
Center for Railway Research and Edu Michigan State University Henry Center for Executive Developr 3535 Forest Road Lansing, MI 48910		11.	Contract or Grant No.					
 Sponsoring Agency Name and Addree Research and Development Unit 	288	13.	Type of Report and Period Covered Final Report					
104 Fayetteville Street Raleigh, North Carolina 27601			December 2018 – October 2020					
		14.	Sponsoring Agency Code RP2019-43					
Supplementary Notes:								
16. Abstract The North Carolina Department of Transp connects Raleigh and Charlotte. The bench passenger cars, and a cab control unit. Die emissions. The Rail Division desires to react the opportunity to eliminate harmful exhat feasibility of diesel, hydrogen and hybrid and powertrain configurations was conduct simulation was utilized for feasibility asse emissions and energy. 25 train configurati evaluated in addition to the diesel and elec hydrogen only option would be feasible for possible. Energy reduction from operation locomotive fuel cell hybrid plugin powerth renewables offers the highest well-to-whe refueling site. Hydrogen delivery from a c Electrolysis with electricity from the SER greenhouse gas emissions on a WTW basi emissions and energy consumption. Based diesel hybrid configuration. Significant fu significantly, the results indicate that hydr 17. Key Words Rail, hydrail, life cycle assessment, criteri well-to-wheel, single train simulation, more the set of the set of	hmark locomotive-hauled trains comprise sel combustion results in exhaust containi- duce emissions. Battery and hydrogen fue- ast emissions with potential for a low- or a options with batteries for the Piedmont ser- ted, and energy and emission impacts esti- ssment of powertrains while GREET was ons and powertrain options were modelled ctricity supply. Results show that diesel and or the Piedmont and that a low- or zero-can s ranged from 14% for a two locomotive rain. Hydrogen production from electrolys el (WTW) energy savings without emission entral location with the same method resu C grid would result in energy and emission s compared to the diesel-electric. Product on the results of this study, energy and er rther WTW reductions could be realized w ail technology is feasible for the Piedmon 18. Distribution Statemen a pollutants,	a diese ng air j l cell te zero-en rvice w mated emplo d, and n d hydr rbon hy diesel a sis whe bons in t lts in a n incre ion from mission vith a h	el-electric locomotive, intermediate pollutants and greenhouse gas echnologies applied to railways offer nission energy supply chain. Technical vere assessed. Modeling of various train on a well-to-wheel basis. Single train yed to estimate well-to-wheel nine hydrogen supply options were ogen hybrid options as well as a ydrogen supply chain could likely be and battery option to 48% for a single re electricity is provided from he supply chain if produced at the small amount of emissions. asses for some criteria pollutants and m natural gas or biomass would reduce n reductions could be achieved with a hydrogen rail (hydrail) option. Most					
19. Security Classif. (of this report) 20 Unclassified 21). Security Classif. (of this page) 21 Unclassified 21	. No. 72	of Pages 22. Price					
Form DOT F 1700.7 (8-72) Re	eproduction of completed page authorized							

DISCLAIMER

The contents of this report reflect the views of the author(s) and not necessarily the views of Michigan State University. The author(s) are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of either the North Carolina Department of Transportation or any federal agency, such as the Federal Department of Transportation and Federal Railroad Administration at the time of publication. This report does not constitute a standard, specification, or regulation.

ACKNOWLEDGEMENTS

The authors would like to thank the North Carolina DOT Rail Division and DOT R&D Division for funding this project. Lynn Harris has assisted with provision of information that improved the precision of the modelling and provided useful feedback throughout the project. Dave Cook from Rail Propulsion System has provided guidance regarding the current equipment from his experience with previous North Carolina Rail Division projects. Various possible component and energy suppliers provided information that assisted with the project. The utilized single train simulator is an evolution and combination of tools first developed at the Birmingham Center for Railway Research and Education and WMG at the University of Warwick.

EXECUTIVE SUMMARY

The North Carolina Department of Transportation Rail Division (NCDOT) has responsibility for the Piedmont passenger rail service between Raleigh and Charlotte, NC. Standard train configuration is two locomotives in a pull-pull configuration with three to four railcars depending on daily ridership demands. NCDOT plans to switch to a locomotive plus cab control unit (CCU) push-pull configuration by mid-2021. Counties along the route were previously in EPA air quality non-attainment status. Combustion of diesel results in EPA regulated pollutants as defined in 40CFR1033. NCDOT has the desire to reduce their environmental impact from rail operations, specifically emissions impacting air quality. Previous projects included the extensive testing of biodiesel and trial installation of aftertreatment systems to the existing locomotives to reduce exhaust emission pollutants.

Hydrogen fuel cell propulsion technology, known as "hydrail", offers the possibility to eliminate all harmful emissions from operations as the exhaust is water, primarily in vapor form, and therefore is considered a zero-emission option. NCDOT commissioned the Center for Railway Research and Education (CRRE) at Michigan State University (MSU) to assess the technical feasibility of a hydrogen fuel cell powertrain for the Piedmont service and estimate energy as well as emission impacts through the respective supply chain for diesel hybrid and hydrail options. Hydrogen is an energy carrier and, therefore, can be produced from many different feedstocks including fossil fuels, biomass, and electricity with varying impacts on emissions and energy consumption.

The authors utilized modelling tools to estimate feasibility, energy and emissions impacts. For train operations the CRRE single train simulator was adapted and modified; for the supply chain well-to-wheel (WTW) assessment, the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model was employed.

Route and train information were required inputs as well as efficiency maps for all major powertrain components, such as traction motors, generator, diesel engine, and fuel cell system. Where data was not available from NCDOT, pre-existing data in the modelling tools and information from literature was utilized. A traction motor map was developed at MSU.

The train configuration with a diesel-electric locomotive and CCU was used as the benchmark. The simulator was validated with recorded data made available from NCDOT; simulation results were within acceptable margins compared with recorded data. In total 25 train configurations were modelled including battery hybrids, and nine hydrogen production pathways evaluated in addition to the conventional diesel supply chain.

Primary results were that diesel hybrid options have the potential to reduce emissions and energy both from operations and on a WTW basis. However, implementation of the required propulsion components in an existing diesel locomotive is likely not possible due to space and weight constraints. Conversion of a CCU to house batteries or hydrail components appears to be a feasible choice. Zero-emissions cannot be achieved with a diesel hybrid as hydrocarbon combustion continues onboard the unmodified diesel locomotive. A hydrail solution is feasible as it is likely that all powertrain components could be installed on a locomotive or converted CCU. Refueling after one roundtrip would be necessary if a single locomotive plus unconverted CCU train configuration were adopted while it is likely that two roundtrips could be completed if a locomotive and converted CCU or two locomotive option would be implemented. Continuing to follow existing protocols of plugging in trains every night upon return to Raleigh would reduce overall energy consumption if batteries were also recharged. The lowest energy reduction of feasible solutions was 14% for the diesel plus battery option. Lowest energy reduction for the evaluated hydrogen options was 19%, resulting from a fuel cell powertrain without batteries if the locomotive would haul a train with a non-operating diesel (as an emergency backup) on the other end. The highest energy reduction of all evaluated options is 48% achieved with a single locomotive fuel cell hybrid plugin powertrain. Options with a single locomotive and CCU configuration have higher energy reduction compared to a single locomotive and converted CCU options. However, the difference in energy reduction between these options is small.

An option where the powertrain is distributed across two vehicles is the only feasible option for hybridization with a diesel locomotive and would make implementation of a fuel cell system (FCS) and hydrogen storage tanks easier as more space is available and weight constraints are reduced. All hybrid options perform better than the corresponding version without a battery while all plugin options offer the highest reductions within a powertrain category. For the fuel cell hybrid options, a reduction in output from the powerplant (downsizing) has been considered with the objective of reducing the number of fuel cell systems to make more volume available for hydrogen storage and reduce capital cost. The impact on energy reduction from downsizing is small.

Operational risk could be reduced through an implementation program to better understand and gain operating experience with the new technology. An option would be to install the new powertrain components in the CCUs and operating diesel plus converted CCU trains until confidence with the technology is sufficient to fully retrofit diesel locomotives with hydrail powertrains, thereby achieving full zero-emission trains. This procedure is a standard practice when introducing new technology to an existing service.

The recommended hydrail configuration for the Piedmont service would be the two locomotive (i.e. converted CCUs) fuel cell hybrid downsized plugin, based on ease of implementation, refueling frequency, capital cost, and energy and emission reductions. Such a configuration would probably consist of two converted CCUs, each with 800 kW FCS power, a 1350 kWh battery, and 200 kg of hydrogen storage. If hydrogen storage were approximately doubled, it is likely that refueling after two roundtrips could take place rather than after one. Options are either two traction motors per converted CCU or four traction motors per converted CCU if power were limited during acceleration. A version where all eight wheelsets of the converted CCUs are not limited in power was also evaluated and would lead to an approximately 10 minute journey time decrease for a one-way trip, but energy reduction would drop from 45% to 28%.

The highest energy and emission reduction on a WTW basis are achieved when electrolysis at the refueling site would take place and the electricity would be produced entirely from non-carbon sources, such as renewables (e.g., hydro, solar, wind) or nuclear. Existing hydro powerplants are approximately 110 miles from a likely refueling location. For renewable hydrogen production from

electrolysis at a central location with 110 mile delivery to the refueling site, emission and energy decrease are only marginally affected when transportation is as a gas; for the liquid hydrogen option emission reductions are also only slightly affected but energy consumption would increase by a small margin. Electrolysis with electricity from the SERC grid, of which North Carolina is a part, would likely lead to increases in energy consumption, greenhouse gases, and in some cases particulate matter emissions on WTW basis compared to the diesel benchmark. This option should only be used if a substantial decarbonization of grid electricity would occur as long as the primary objective is to reduce WTW emissions. Currently, most of the hydrogen is produced from natural gas in the U.S. through a process called steam methane reforming (SMR) and this option would lead to emission and energy reductions if produced at the refueling site and lower reductions if delivered. Production from biomass leads to similar results as SMR but with higher energy and emission reductions.

The results from the analysis show that a diesel plus battery train configuration would result in energy and emission reductions, and a hydrail option could be implemented on the Piedmont corridor, which would offer energy reduction and zero emissions in operations. On a WTW basis, emission and energy reduction are possible with several production pathways and a 100% renewable option could potentially be implemented. A phased technology adoption would be possible with the first phase being a diesel locomotive with battery CCU. At the same time, a proof-of-concept hydrail locomotive could be constructed to validate simulation results and test and demonstrate feasibility in actual operation.

CONTENTS

1	Intr	oduction	l
	1.1	Scope and Limitations	2
	1.2	Structure of Report	3
2	Bacl	kground	4
	2.1	Piedmont Route Information	1
	2.2	Current Equipment on the Piedmont Route	5
	2.3	Overview of Current Energy Use and Emissions in the U.S. Rail System	3
		2.3.1 Air Quality-Impacting Emissions	2
		2.3.1 Greenhouse Gas Emissions	3
	2.4	Previous NCDOT Efforts to Reduce Emissions14	1
3	Intr	oduction to Hydrogen Rail Technology15	5
	3.1	Hydrogen Characteristics15	5
	3.2	Hydrogen Production15	5
	3.3	Hydrogen Transportation, Distribution, and Storage17	7
	3.4	Hydrogen Transportation, Distribution and Storage)
		3.4.1 Pipeline	9
		3.4.2 Transportation as a Gas or Liquid	2
	3.5	Hydrogen Storage	4
		3.5.1 Common Gas Pressures for Vehicles	4
		3.5.2 Hydrogen Tank Materials	5
	3.6	Hydrogen Safety	5
	3.7	Fuel Cell Systems)
	3.8	Battery Technology Overview	2
	3.9	Examples of Hydrail Vehicles and Related Projects	4
		3.9.1 Commercially Available Vehicles	5
		3.9.2 Proof-of-Concept/Demonstrator Vehicles	7
		3.9.3 Ongoing Projects in North America	3
4	Met	hodology4(D
	4.1	Single Train Simulator40)

		4.1.1 Traction Motor Map Development	41
		4.1.2 Simulator Validation	
	4.2	Greenhouse Gases, Regulated Emissions, and Energy Use in Transportati (GREET) Model	
5	Pow	vertrain Technologies and Hydorgen Production	46
	5.1	Powertrain Options	46
	5.2	Hydrogen Production Alternatives	48
6	Sim	ulation Results and Discussion	52
	6.1	High-level Technical Feasibility	52
	6.2	Pump-to-Wheel	55
	6.3	Well-to-Wheel Energy and Emission Impact	58
7	Con	clusion	69
	7.1	Key Findings	69
	7.2	Recommendations	70
8	Refe	erences	72
9	Арр		
•		endix	77
,	9.1	Regenerative Braking Illustrations	
,	9.1 9.2		77
,		Regenerative Braking Illustrations Speed Profile for Train Configuration with Two Locomotives and Eight	77
,	9.2	Regenerative Braking Illustrations Speed Profile for Train Configuration with Two Locomotives and Eight Traction Motors at Full Capability	77
,	9.2	Regenerative Braking Illustrations Speed Profile for Train Configuration with Two Locomotives and Eight Traction Motors at Full Capability Well-to-Wheel Results	77
,	9.2	Regenerative Braking Illustrations Speed Profile for Train Configuration with Two Locomotives and Eight Traction Motors at Full Capability Well-to-Wheel Results 9.3.1 Diesel-Electric Benchmark	
,	9.2	Regenerative Braking IllustrationsSpeed Profile for Train Configuration with Two Locomotives and Eight Traction Motors at Full CapabilityWell-to-Wheel Results9.3.1Diesel-Electric Benchmark9.3.2Diesel Hybrid	
,	9.2	Regenerative Braking IllustrationsSpeed Profile for Train Configuration with Two Locomotives and Eight Traction Motors at Full CapabilityWell-to-Wheel Results9.3.1Diesel-Electric Benchmark9.3.2Diesel Hybrid9.3.3Diesel Hybrid Plugin	
,	9.2	Regenerative Braking IllustrationsSpeed Profile for Train Configuration with Two Locomotives and Eight Traction Motors at Full CapabilityWell-to-Wheel Results9.3.1Diesel-Electric Benchmark9.3.2Diesel Hybrid9.3.3Diesel Hybrid Plugin9.3.4Hydrogen Fuel Cell	
,	9.2	Regenerative Braking IllustrationsSpeed Profile for Train Configuration with Two Locomotives and Eight Traction Motors at Full CapabilityWell-to-Wheel Results9.3.1Diesel-Electric Benchmark9.3.2Diesel Hybrid9.3.3Diesel Hybrid Plugin9.3.49.3.5Hydrogen Fuel Cell9.3.6Hydrogen Fuel Cell Hybrid Plugin9.3.7Hydrogen Fuel Cell Hybrid Downsized	
	9.2	Regenerative Braking IllustrationsSpeed Profile for Train Configuration with Two Locomotives and Eight Traction Motors at Full CapabilityWell-to-Wheel Results9.3.1Diesel-Electric Benchmark9.3.2Diesel Hybrid9.3.3Diesel Hybrid Plugin9.3.4Hydrogen Fuel Cell9.3.5Hydrogen Fuel Cell Hybrid9.3.6Hydrogen Fuel Cell Hybrid Downsized9.3.8Hydrogen Fuel Cell Hybrid Downsized Plugin	
	9.2	Regenerative Braking IllustrationsSpeed Profile for Train Configuration with Two Locomotives and Eight Traction Motors at Full CapabilityWell-to-Wheel Results9.3.1Diesel-Electric Benchmark9.3.2Diesel Hybrid9.3.3Diesel Hybrid Plugin9.3.49.3.5Hydrogen Fuel Cell9.3.6Hydrogen Fuel Cell Hybrid Plugin9.3.7Hydrogen Fuel Cell Hybrid Downsized9.3.8Hydrogen Fuel Cell Hybrid Downsized Plugin9.3.9Diesel and Battery	
	9.2	Regenerative Braking IllustrationsSpeed Profile for Train Configuration with Two Locomotives and Eight Traction Motors at Full CapabilityWell-to-Wheel Results9.3.1Diesel-Electric Benchmark9.3.2Diesel Hybrid9.3.3Diesel Hybrid Plugin9.3.4Hydrogen Fuel Cell9.3.5Hydrogen Fuel Cell Hybrid9.3.6Hydrogen Fuel Cell Hybrid Downsized9.3.8Hydrogen Fuel Cell Hybrid Downsized Plugin	

9.3.12	Fuel Cell Hybrid and Diesel
9.3.13	Fuel Cell Hybrid Plugin and Diesel
9.3.14	Fuel Cell Hybrid Downsized and Diesel116
9.3.15	Fuel Cell Hybrid Downsized Plugin and Diesel
9.3.16	Fuel Cell and Battery
9.3.17	Fuel Cell and Battery Plugin
9.3.18	Fuel Cell Downsized and Battery
9.3.19	Fuel Cell Downsized + Battery Plugin
9.3.20	Two Fuel Cell Hybrid
9.3.21	Two Fuel Cell Hybrid Plugin
9.3.22	Two Fuel Cell Hybrid Downsized
9.3.23	Two Fuel Cell Hybrid Downsized Plugin
9.3.24	Two Fuel Cell Hybrid Downsized with Eight Traction Motors
9.3.25	Two Fuel Cell Hybrid Downsized Plugin with Eight Traction Motors

LIST OF FIGURES

Figure 2-1: Illustration of the Piedmont Route	4
Figure 2-2: Gradient and Altitude Change of the Piedmont Route,	5
Figure 2-3: F59PH Diesel-Electric Locomotive Employed on the Piedmont	6
Figure 2-4: Block Diagram of a Diesel-Electric Powertrain with AC Traction Motors	7
Figure 2-5: Exterior Photos of Passenger Cars Used of the Piedmont	7
Figure 2-6: Cab Control Unit	8
Figure 2-7: Wayside Electrification with an Overhead Contact System in Denver	9
Figure 2-8: Railway Energy Consumption in Petajoules in the U.S	10
Figure 2-9: Potential for Regenerative Braking at the Wheels	11
Figure 2-10: Locomotive Emission Standards	12
Figure 2-11: Potential Tier 5 Emission Standards Applicable to Railway Motive Power as Proposed by California	13
Figure 2-12: EPA Tiers and NCDOT Demonstration Project Performance	14
Figure 3-1: Illustration of Feedstock for Hydrogen Production	16
Figure 3-2: Current Hydrogen Production Locations in the U.S.	17
Figure 3-3: Energy Density of Various Fuels and Energy Carriers	18
Figure 3-4: Large-Scale Energy Storage Options	19
Figure 3-5: Example of Pipeline Networks in Industrial Areas,	20
Figure 3-6: Energy Transport of 600 MW each	21
Figure 3-7: Hydrogen Distribution and Storage in Gas Tube Trailer	22
Figure 3-8: 200 bar Compressed Hydrogen Cylinder Installed in a Hydrogen Locomotive	22
Figure 3-9: Trailer With Compressed Gas Hydrogen Cylinders in Bundles	23
Figure 3-10: Liquid Hydrogen Trailer	23
Figure 3-11: Dual-Phase Tanker Delivering Hydrogen to a Filling Station	24
Figure 3-12: Schematic of a Typical Compressed Hydrogen Gas Composite Tank	25
Figure 3-13: 350 bar Hydrogen Tanks	26
Figure 3-14: Illustration of a PEM Fuel Cell	29
Figure 3-15: Illustration of the Components in a Fuel Cell System	30
Figure 3-16: Examples of Fuel Cell Systems; train module (left) and truck (right)	30
Figure 3-17: Illustration of Fuel Cell System Efficiency Curves in Light Duty Vehicles	31
Figure 3-18: Indicative Heavy-Duty Diesel Generator-Set and FCS Efficiency Curves	32

Figure 3-19: Illustration of Various Battery Chemistry Energy Densities	33
Figure 3-20: Alstom Corodia iLINT	35
Figure 3-21: CRRC Hydrail Streetcar in Foshan	36
Figure 3-22: TIG/m Streetcars	36
Figure 3-23: Vehicle Projects and BNSF Proof-of-Concept Switcher Locomotive	37
Figure 3-24: Hydrail Proof-of-Concept Vehicles in the UK	38
Figure 4-1: Flow Diagram of the Single Trains Simulator	41
Figure 4-2: Example Torque Speed Curve of an Induction Motor	42
Figure 4-3: Induction Motor Equivalent Circuit of one Phase	43
Figure 4-4: Traction Motor Efficiency Map	43
Figure 4-5: Simulated Train Speed Compared to Recorded Speed	44
Figure 4-6: Illustration of Well-to-Wheel Cycle (Argonne National Laboratory, 2019)	45
Figure 5-1: Illustration of Train Configuration Examples	47
Figure 5-2: Regional Reliability Corporations for the Electric Grid in the U.S.	49
Figure 5-3: SERC Electricity Production Mix in 2019	50
Figure 6-1: Tractive Effort, Resistance, and Acceleration Force for a Single Locomotive Configuration	53
Figure 6-2: Tractive Effort, Resistance, and Acceleration Force for a Two Locomotive Configuration with Eight Traction Motors	54
Figure 6-3: Simulated Speed Profile of a Single Locomotive Option over a Roundtrip	54
Figure 6-4: Simulated Running Diagram of a Single Locomotive Option over a Roundtrip	55
Figure 6-5: Impact of Diesel Hybrid Options on Energy and Emissions from Operation	56
Figure 6-6: Energy Reduction Compared to the Diesel Benchmark	57
Figure 6-7: Diesel Hybrid Options WTW Energy and Emission Impact	58
Figure 6-8: Single Locomotive Fuel Cell Options WTW Energy	60
Figure 6-9: Single Locomotive Fuel Cell Options WTW GHG	61
Figure 6-10:Single Locomotive Fuel Cell Options WTW NOx	62
Figure 6-11: Single Locomotive Fuel Cell Options WTW PM2.5	63
Figure 6-12: Single Locomotive Fuel Cell Options WTW PM10	64
Figure 6-13: Single Locomotive Fuel Cell Options WTW CO	65
Figure 6-14: Two Locomotive Fuel Cell Hybrid Downsized Plugin WTW Energy and Emission Impact	67
Figure 15: Legend for Appendix Graphs	78

LIST OF TABLES

Table 2-1: List of Stations Locations and Dwell Time for a Roundtrip	5
Table 3-1: Characteristics of Main Lithium-Ion Battery Chemistries	33
Table 5-1: General Characteristics of the Modelled Trains	48
Table 5-2: Hydrogen Production and Delivery Options	49
Table 6-1: Feasibility of Single Locomotive Fuel Cell Options	52

ABBREVIATIONS/GLOSSARY

ACAlternating CurrentBATSBlended After-Treatment SystemBCRREBirmingham Centre for Railway Research and EducationBoPBalance-of-PlantCCUCab Control UnitCH4MethaneCOCarbon monoxideCO2Carbon dioxideCRECenter for Railway Research and Education, Michigan State UniversityDCDirect CurrentDOEUnited States Department of EnergyEPAUnited States Environmental Protection AgencyESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelHCHydrogenH2OWaterHCHydrogenHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Titanate OxidemMeter(s)m³Cubic meter	Term	Explanation / Meaning / Definition
BCRREBirmingham Centre for Railway Research and EducationBoPBalance-of-PlantCCUCab Control UnitCH4MethaneCOCarbon monoxideCO2Carbon dioxideCRECenter for Railway Research and Education, Michigan State UniversityDCDirect CurrentDOEUnited States Department of EnergyEPAUnited States Environmental Protection AgencyESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GaseGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Titanate OxidemMeter(s)	AC	Alternating Current
BoPBalance-of-PlantCCUCab Control UnitCH4MethaneCOCarbon monoxideCO2Carbon dioxideCQ2Carbon dioxideCRECenter for Railway Research and Education, Michigan State UniversityDCDirect CurrentDOEUnited States Department of EnergyEPAUnited States Environmental Protection AgencyESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gase, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH40WaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometers per hourLFPLithium Ferro PhosphateLTOLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	BATS	Blended After-Treatment System
CCUCab Control UnitCH4MethaneCOCarbon monoxideCO2Carbon dioxideCO2Carbon dioxideCRECenter for Railway Research and Education, Michigan State UniversityDCDirect CurrentDOEUnited States Department of EnergyEPAUnited States Environmental Protection AgencyESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gase, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	BCRRE	Birmingham Centre for Railway Research and Education
CH4MethaneCOCarbon monoxideCO2Carbon dioxideCO2Carbon dioxideCRECenter for Railway Research and Education, Michigan State UniversityDCDirect CurrentDOEUnited States Department of EnergyEPAUnited States Environmental Protection AgencyESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometers per hourLFPLithium Fierro PhosphateLTOLithium Titanate OxidemMeter(s)	BoP	Balance-of-Plant
COCarbon monoxideCO2Carbon dioxideCRECenter for Railway Research and Education, Michigan State UniversityDCDirect CurrentDOEUnited States Department of EnergyEPAUnited States Environmental Protection AgencyESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	CCU	Cab Control Unit
CO2Carbon dioxideCRRECenter for Railway Research and Education, Michigan State UniversityDCDirect CurrentDOEUnited States Department of EnergyEPAUnited States Environmental Protection AgencyESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Titanate OxidemMeter(s)	CH ₄	Methane
CRRECenter for Railway Research and Education, Michigan State UniversityDCDirect CurrentDOEUnited States Department of EnergyEPAUnited States Environmental Protection AgencyESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GaseGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHEPHead-End PowerIEAInternational Energy AgencykmKilometers per hourLFPLithium Titanate OxidemMeter(s)	СО	Carbon monoxide
DCDirect CurrentDOEUnited States Department of EnergyEPAUnited States Environmental Protection AgencyESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometers (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Titanate OxidemMeter(s)	CO ₂	Carbon dioxide
DOEUnited States Department of EnergyEPAUnited States Environmental Protection AgencyESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Titanate OxidemMeter(s)	CRRE	Center for Railway Research and Education, Michigan State University
EPAUnited States Environmental Protection AgencyESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Titanate OxidemMeter(s)	DC	Direct Current
ESSEnergy Storage SystemFCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Titanate OxidemMeter(s)	DOE	United States Department of Energy
FCFuel CellFCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	EPA	United States Environmental Protection Agency
FCSFuel Cell SystemFRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	ESS	Energy Storage System
FRAFederal Railroad AdministrationGHGGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	FC	Fuel Cell
GHGGreenhouse GasGREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	FCS	Fuel Cell System
GREETGreenhouse Gases, Regulated Emissions, and Energy Use in Transportation modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	FRA	Federal Railroad Administration
modelGWPGlobal Warming PotentialH2HydrogenH2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	GHG	Greenhouse Gas
H2HydrogenH2OWaterHCHydrocarbonsHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	GREET	
H2OWaterHCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	GWP	Global Warming Potential
HCHydrocarbonsHEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	H ₂	Hydrogen
HEPHead-End PowerIEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	H ₂ O	Water
IEAInternational Energy AgencykmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	НС	Hydrocarbons
kmKilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	HEP	Head-End Power
km/hKilometers per hourLFPLithium Ferro PhosphateLTOLithium Titanate OxidemMeter(s)	IEA	International Energy Agency
LFP Lithium Ferro Phosphate LTO Lithium Titanate Oxide m Meter(s)	km	Kilometer (1 mile ~ 1.6 km; 1 km.~ 0.62 mile)
LTOLithium Titanate OxidemMeter(s)	km/h	Kilometers per hour
m Meter(s)	LFP	Lithium Ferro Phosphate
	LTO	Lithium Titanate Oxide
m ³ Cubic meter	m	Meter(s)
	m ³	Cubic meter

Term	Explanation / Meaning / Definition
mph	Miles per hour
MSU	Michigan State University
MU	Multiple Unit train
N ₂ O	Nitrous oxide
NCDOT	North Carolina Department of Transportation
NG	Natural Gas
NH ₃	Anhydrous ammonia
NMC	Lithium Nickel Manganese Cobalt Oxide
NOx	Oxides of nitrogen
O ₂	Oxygen
PEM	Proton Exchange Membrane
РМ	Particulate matter
PTW	Pump-to-wheel
RSSB	Rail Safety and Standards Board in the UK
SAE	Society of Automotive Engineers
SBCTA	San Bernardino County Transportation Authority
SMR	Steam-Methane Reforming
SOC	State-of-Charge
t	Metric tonne(s) (1.016 US tons)
TIRCP	Transit and Intercity Rail Capital Program
USA	United States of America
WTP	Well-to-pump
WTW	Well-to-wheel

1 INTRODUCTION

The Piedmont passenger rail service connects Raleigh, NC, and Charlotte, NC and is maintained by the North Carolina Department of Transportation's Rail Division (NCDOT). NCDOT seeks to reduce the environmental impact of its operations, particularly exhaust emissions that impact local air quality, as well as overall Greenhouse Gas (GHG) emissions. NCDOT also wishes to reduce energy consumption, become a rail technology leader, demonstrate the State's commitment to innovation and technology capabilities, and highlight opportunities for further development.

In this report, the authors assess various low- and zero-emission powertrain technologies and associated energy supply chains that may be suitable for the Piedmont service and meet NCDOT's goals. A technical feasibility study utilizing simulation-based modelling was conducted with an emphasis on hydrogen fuel cell technologies applied to railway vehicles (hydrail) in combination with battery-based onboard energy storage. These options do not require continuous wayside power infrastructure such as overhead contact systems while eliminating harmful emissions at the point-of-use and enable a relatively long range of travel before refueling is required due to the high energy density of hydrogen.

The Center for Railway Research and Education at Michigan State University (CRRE) is the leading North American academic research resource with expertise in low- and zero-emission railway propulsion. NCDOT appointed CRRE to research and evaluate technical feasibility and performance of several powertrain configurations for the Piedmont service. CRRE conducted similar research for the San Bernardino County Transportation Authority (SBCTA) in California (MSU CRRE & BCRRE, 2019) with a focus on a multiple-unit passenger rail vehicle over a shorter route, which highlighted technical hydrail feasibility. However, the Piedmont service characteristics differ significantly to the SBCTA case, being locomotive hauled, having higher power requirements, and operating over a much longer route, which required an additional study considering these parameters. Nevertheless, general technology feasibility has been shown in the SBCTA feasibility study and through various prototypes and commercial service operation of multiple-units in Germany. Currently, the Piedmont service would be the hydrail project with the highest power requirement and longest operating route, therefore, offering the potential to demonstrate the technology on a larger scale.

1.1 Scope and Limitations

In the presented research, the authors evaluated several powertrain configurations covering diesel, hydrogen fuel cell and hybrids of these with battery technology where components are either installed in a single locomotive or split between two locomotives, one on either end of the train. In addition, a well-to-wheel (WTW) analysis was conducted to estimate the total energy an emission impact of various hydrogen supply options. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model was employed to estimate emissions and energy requirements.

Power and energy requirements were determined using a single train simulation model. This also identified relative size of major powertrain components, such as energy storage systems, fuel cell system (FCS), and hydrogen storage tanks required for the Piedmont service and respective powertrain. A comparison between different options was then possible and high-level technical feasibility could be assessed considering NCDOT's current locomotives and cab control units. The focus of the technical feasibility was on utilizing existing equipment where possible.

Neither physical plant nor component testing was part of the project. Results were determined through single train computer simulation. Results enabled sizing of components in terms of volume and mass. Virtual integration of the new drive trains into the existing locomotive shell in computer-aided design (CAD) or through engineering drawings was not part of the work to be performed. Component selection and performance data is generic and not linked to a manufacturer. Information was sourced through literature and existing data in the simulator. Specific supplier product data may vary compared to the generic characteristics simulated. Data provided by NCDOT was utilized wherever possible. This project did not include simulation verification with experimental test but use of measured data, where available, was utilized to compare simulated results of the benchmark diesel-electric configuration with the provided data to calibrate the model.

The pump-to-wheel energy consumption resulting from the single train simulation was the basis to estimate point-of-use emission, well-to-pump, and WTW energy and emissions. The data, including decrease in GHG emissions for low- and zero-emissions motive power options reflect current fuel sources that could become less polluting over time thereby impacting the overall WTW supply chain. This is largely dependent upon factors such as the original production feedstock, and electricity production. No actual measurements or energy and emission audits where part of the work but the authors relied primarily on existing data in the GREET model.

All the work was conducted through literature review or modelling with information obtained from NCDOT, literature, or pre-existing data in the modeling tools, therefore all results are estimates. No detailed powertrain design or optimization of the powertrains and associated components has been performed as the objective of the work as to assess overall technical feasibility. More detailed work is required to design a prototype locomotive and the results contained in this report can be used as a start. Commercial considerations regrading price of energy and components have not been considered in any detail and only been incorporated through the potential of smaller powerplant in terms of power due to the current price differential between batteries and fuel cell system and the assumption that lower energy consumption from operations is desirable as less diesel, hydrogen, or electricity would have to be purchased. A more detailed economic feasibility

study would be required to compare the various energy supply options and the value of emission reductions.

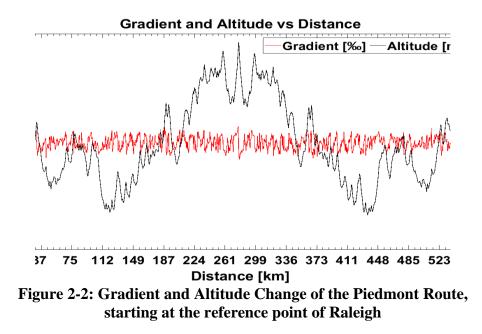
1.2 Structure of Report

Following this introduction, the report covers the background to the research consisting of information regarding the Piedmont service including equipment currently used, an overview of the current U.S. rail system energy use, regulated emissions resulting from railway operation, high-level information on GHGs, finishing the section with briefly highlighting previous NCDOT efforts to reduce emissions. Next an introduction to hydrogen and its application to railways is provided – a true zero emissions option when the hydrogen supply chain is powered fully by renewables. The report then continues with a description of the methodology employed to determine both energy requirements (simulation) for train operation and the tool utilized to estimate supply chain energy and emission impacts (GREET, using industry specific data). 23 primary powertrain configurations were assessed each with their applicable energy production method while several hydrogen supply options were considered for the applicable cases. production methods. Next, simulation results are presented and discussed before finishing with conclusions including key findings and recommendations. Detailed results are provided in the appendix for reference.

2 BACKGROUND

In this section, the authors provide information about the Piedmont service starting with the route followed by the current equipment employed before providing an overview of U.S. rail energy consumption and emission regulation. The section finishes with a summary of NCDOT's previous efforts to reduce emissions.

2.1 Piedmont Route Information


Figure 2-1: Illustration of the Piedmont Route (Harris, 2019)

The Piedmont service corridor is a 173-mile (~278 kilometers) one-way rail line with two terminal stations (Raleigh and Charlotte) and seven intermediate passenger rail stations. The route is illustrated in Figure 2-1. Table 2-1Each roundtrip is 348 miles (~560 route kilometers) and a one-way trip takes 3 hours and 10 minutes including nine total stops; the location of the stops and dwell time is presented in Table 2-1. The Piedmont service is marketed by Amtrak. Current service frequency is three southbound and three northbound trains spread across the peak travel hours of the day. Plans exist to increase daily service frequency by adding an additional roundtrip.

Station	km	miles	Dwell time
Station	KIII	mittes	in minutes
RALEIGH	0	0	2
Cary	14	9	2
Durham	42	26	2
Burlington	97	60	1
Greensboro	132	82	2
High Point	154	96	1
Salisbury	210	131	1
Kannapolis	235	146	1
CHARLOTTE	278	173	50
Kannapolis	321	200	1
Salisbury	346	215	1
High Point	402	250	1
Greensboro	424	264	2
Burlington	459	285	1
Durham	514	319	2
Cary	541	336	2
RALEIGH	560	348	2

Table 2-1: List of Stations Locations and Dwell Time for a Roundtrip

Maximum train speed on the route is 79 mph (~127 km/h), average speed is 63 mph (~100 km/h), and it is possible that in the future the maximum line speed will be raised to 110 mph (~177 km/h) in places plus potential for additional stops. The speed limit and speed profile of the train are presented in the Simulation Results and Discussion section. Topographic elevation changes result in several gradients along the route, both illustrated in Figure 2-2.

Gradients have a significant impact on the resistance to motion encountered by the train and therefore significantly influence traction and braking requirements of equipment operated over the route.

2.2 Current Equipment on the Piedmont Route

The Piedmont service is provided by locomotive-hauled trains that typically consists of a locomotive, three or four intermediate passenger and luggage cars depending on daily ridership demands, and a second locomotive. NCDOT has a fleet of six F59PH and two F59PHI dieselelectric locomotives rated at 2.2MW (~3000HP). A train of the described configuration operates in pull-pull mode where the lead locomotive pulls the train in each direction, a standard passenger railroad operating practice. In Figure 2-3, examples of NCDOT's F59PH locomotives are shown.

Figure 2-3: F59PH Diesel-Electric Locomotive Employed on the Piedmont (Hoffrichter, 2013, 2019)

A F59PH has a weight of approximately 123t and has a fuel tank holding approximately 1,800 gallons (~6800 liters), as provided by Harris from NCDOT. The powertrain contributes approximately 42t (Electro-Motive Diesel, 1994) to the total.

Diesel-electric locomotives employ a diesel combustion engine connected to a generator to produce electricity that is utilized in traction motors to drive the wheels in truck assemblies. The current NCDOT locomotive flees utilized DC traction motors, more recent locomotives typically employ AC motors. In Figure 2-4 a block diagram of a diesel-electric powertrain with an AC traction motor is depicted. All major components and their respective efficiency maps or curves were considered in the train simulation, providing the pump-to-wheel part of the work.

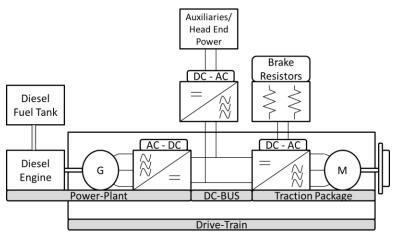


Figure 2-4: Block Diagram of a Diesel-Electric Powertrain with AC Traction Motors (Hoffrichter, 2013)

Passenger cars, typically three or four (depending on demand) in each train, provide space for luggage and have seats for customers. Power to the cars for lighting and climate control is provided by the locomotive, usually referred to as auxiliary, hotel or head end power (HEP). NCDOT's locomotives have a separate HEP diesel-generator-set that cannot be used for traction. The cars are pulled or pushed by the locomotive and cannot provide traction required for motion, which distinguishes them from multiple-units. In Figure 2-5 photos of the passenger cars employed on the Piedmont are depicted.

Figure 2-5: Exterior Photos of Passenger Cars Used of the Piedmont (Hoffrichter, 2013)

Cab control units are non-powered vehicles that offer a cab for the engineer and allow control of the locomotive on the other end of the train, similar to Amtrak's Non-Powered Control Units. Easier and faster operation at terminals is possible with this arrangement as the need to move the locomotive to the new head end of the train is eliminated while avoiding the requirement of a second locomotive on the train. Cab control units are converted from locomotives where the powertrain, at the end of its service life, is removed while driving controls retained.

Figure 2-6: Cab Control Unit (Hoffrichter, 2018)

Cab control units (CCUs) offer NCDOT the opportunity to utilize the space previously occupied by the diesel-electric powerplant for components of an alternative powertrain, such as fuel cell systems or batteries. The volume available in a CCU is approximately 52.5m³ if one of the two walkways would be eliminated (~41m³ if both walkways were retained), determined by initial, high-level measurements conducted by Harris from NCDOT and Hoffrichter from CRRE. The weight of a CCU is approximately 82t, enabling a 41t powertrain if a similar weight to the locomotive is the target, and a powertrain weight of up to 48t would be possible if the maximum operating axle load on the route of 32.5t would fully utilized, according to Harris, but a lower weight would be desirable.

A further advantage of converting existing CCUs is the potentially lower cost compared to a new locomotive. In addition, redundancy is introduced as two powered vehicles would be present on a train; this is particularly useful if a new technology would be tested as the impact on the service in case of a malfunction would be limited.

2.3 Overview of Current Energy Use and Emissions in the U.S. Rail System

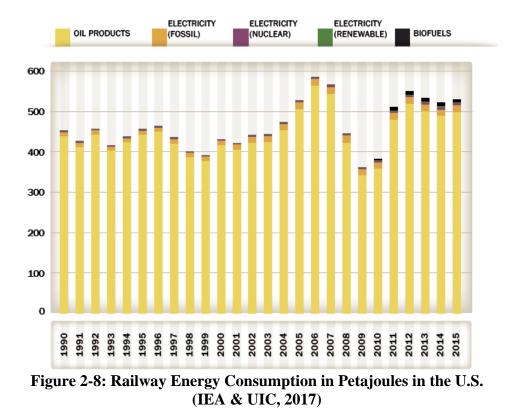

The two primary power provision options for railways are wayside electrification or on-board generation. Wayside electrification, often simply referred to as electric, requires continuous infrastructure on the right-of-way to supply electricity to the train. This is typically through either overhead wires or through ground-level third rail, the latter popular in subway systems. A modern, alternating current (AC) overhead contact system is shown in Figure 2-7.

Figure 2-7: Wayside Electrification with an Overhead Contact System in Denver (Hoffrichter, 2016)

In the U.S., on-board power generation is typically achieved with a diesel engine connected to an electricity generator. The resulting electricity is subsequently used to operate traction motors. This powertrain is diesel-electric, often simply referred to as diesel, and used in NCDOT's locomotives. Figure 2-4 illustrates a diesel-electric powertrain with a three-phase generator and three-phase traction motors, representing a typical modern arrangement for passenger and freight motive power vehicles in North America.

Energy consumption from diesel-electric motive power dominates in the U.S. while the remainder is provided by electricity from wayside infrastructure (ORNL, 2019). Electric motive power is primarily utilized in urban railways, such as the LYNX system in Charlotte, NC and high-density passenger operation, such as Amtrak's North-East Corridor (Washington, DC to Boston, MA). In Figure 2-8 the energy consumption of the railway system in the U.S. is illustrated, and the dominance of diesel can clearly be seen.

Wayside electrification eliminates emissions at the point-of-use but requires extensive infrastructure with associated significant capital expenditure. The overall environmental performance is dependent on the source utilized for electricity generation. Lower emissions compared to diesel can be achieved if primarily renewables are the source, or an increase is possible if coal is the primary source. Continuous wayside electrification is likely economically unfeasible for the Piedmont service due to the high capital expenditure and infrastructure installation along the right-of-way. Therefore, this option has not been considered further in this study.

During braking phases of the train, energy must be dissipated. All trains have a mechanical braking system, where brake pads or shoes are applied to the wheel or a brake disc controlled through pneumatic connections along the train with air provided by the locomotive. An alternative method is the utilization of the traction motors as generators where the resulting electricity is converted to heat in resistor grids, known as dynamic braking. With appropriate technology, most of the generated electricity from braking can be stored onboard of the train, an option known as regenerative braking. Figure 2-9 illustrates the theoretical potential for regenerative braking at the wheels as depends on stopping frequency and speed. It can be seen that the stopping frequency has a large impact than the speed of the train.

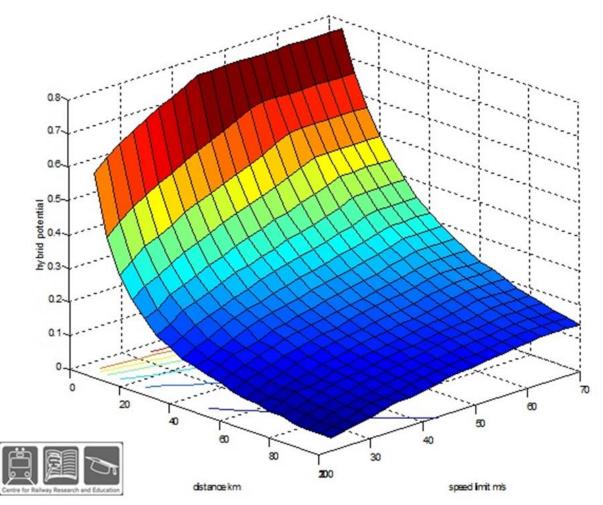


Figure 2-9: Potential for Regenerative Braking at the Wheels (Shaofeng Lu et al., 2008)

On-board energy storage systems (ESS) enable capture of energy resulting from braking, particularly on downhill segments and when approaching station stops, this energy can then the employed in the next acceleration phase decreasing the primary fuel requirement. The route characteristics of the Piedmont service feature elevation changes and several stops with relatively high-speed operation, therefore potential for regenerative braking is present. Installation of a battery-based ESS would enable regenerative braking and create a hybrid powertrain where the primary power plant would be either the diesel-generator-set or a fuel cell system. A further option is installation of the ESS in a CCU, effectively creating a battery locomotive if traction motors are added, both options are considered in the conducted work. In addition to charging the batteries through braking energy, they could be charged from an external source through a connection to the vehicle, creating a plugin version, which has been evaluated as part of the study. Several possibilities for charging equipment could the installed, such as charge bars, wireless power transfer or connection with a cable. Assessing the feasibility and appropriateness of the various charging infrastructure options are outside the scope of this study but should be evaluated if NCDOT would choose a plugin solution.

The space in a CCU could also be employed for an entire alternative powertrain consisting of hydrogen storage, fuel cell system, and traction motors with the potential option of adding batteries creating a hybrid powertrain. In the conducted work, both options including a plugin version are considered to estimate the impact on energy consumption and emissions.

More detailed information about the modelled options is provided in the Powertrain Technologies section.

2.3.1 Air Quality-Impacting Emissions

The combustion of hydrocarbons, such as coal, diesel, and natural gas results in emissions that impact air quality and greenhouse gas (GHG) emissions. The U.S. Environmental Protection Agency (EPA) regulates the allowable emissions resulting from hydrocarbon combustion on railway vehicles (EPA, 2016). Standards for exhaust emissions have become progressively more stringent, and the latest for railway motive power vehicles is Tier 4 effective for locomotives built from 2015 onwards. The applicable EPA standards (reflected in 40CFR1033) are depicted in Figure 2-10. NCDOT's F59PH locomotives currently achieve a Tier 0+ standard (Harris, 2019).

Locomotives. Exhaust Emission Standards										
	Duty-Cycle ^b	Tier	Year °	HC ¹ (g/hp-hr)	NOx (g/bhp-hr)	PM (g/bhp-hr)	CO (g/bhp-hr)	Smoke (percentage) ^m	Minimum Useful Life (hours / years / miles) ⁿ	Warranty Period (hours / years / miles) ⁿ
		Tier 0	1973- 1992 ^{d, e}	1.00	9.5 [ABT]	0.22 [ABT]	5.0	30 / 40 / 50	(7.5 x hp) / 10 / 750,000 °	
	Line-haul	Tier 1	1993- 2004 ^{d, e}	0.55	7.4 [ABT]	0.22 [ABT]	2.2	25 / 40 / 50	(7.5 x hp) / 10 / 750,000 ° (7.5 x hp) / 10 / -	
		Tier 2	2005- 2011 ^d	0.30	5.5 [ABT]	0.10 * [ABT]	1.5	20 / 40 / 50	(7.5 x hp) / 10 / -	
		Tier 3	2012- 2014 ^r	0.30	5.5 [ABT]	0.10 [ABT]	1.5	20 / 40 / 50	(7.5 x hp) / 10 / -	
Federal ^a		Tier 4	2015+ 9	0.14	1.3 [ABT]	0.03 [ABT]	1.5	-	(7.5 x hp) / 10 / -	1/3 * Useful Life
reuerar	Switch	Tier 0	1973- 2001	2.10	11.8 [ABT]	0.26 [ABT]	8.0	30 / 40 / 50	(7.5 x hp) / 10 / 750,000 °	175 Oseful Life
		Tier 1	2002- 2004 ^h	1.20	11.0 [ABT]	0.26 [ABT]	2.5	25 / 40 / 50	(7.5 x hp) / 10 / -	
		Tier 2	2005- 2010 ^h	0.60	8.1 [ABT]	0.13 ¹ [ABT]	2.4	20 / 40 / 50	(7.5 x hp) / 10 / -	
		Tier 3	2011- 2014	0.60	5.0 [ABT]	0.10 [ABT]	2.4	20 / 40 / 50	(7.5 x hp) / 10 / -	
		Tier 4	2015+	0.14 ^J	1.3 ^J [ABT]	0.03 [ABT]	2.4	-	(7.5 x hp) / 10 / -	

Locomotives: Exhaust Emission Standards

Figure 2-10: Locomotive Emission Standards (EPA, 2016)

California has ambitions to reduce emissions beyond the Tier 4 standard and developed a further progression, referred to as Tier 5, illustrated in Figure 2-11. Currently, this proposed standard is under consideration by the EPA and the suggested implementation date would be 2025. In addition to the emissions regulated in the previous Tiers, GHG have been added and a provision for zero-emission capabilities has been introduced. Definition of "designated areas" for air quality is not yet defined. It could cover all EPA non-attainment or even EPA maintenance areas, in which case most, if not all, of the Piedmont corridor would be affected.

Descent	Bronocod	NOx		РМ		GHG		нс		Proposed
Tier Level	Proposed Year of Manufacture	Standard (g/bhp- hr) ¹	Percent Control ²	Standard (g/bhp- hr) ¹	Percent Control ²	Standard (g/bhp- hr) ¹	Percent Control ¹	Standard (g/bhp- hr)	Percent Control ²	Effective Date
5	2025	0.2	99+	<0.01	99	NA	10-25%	0.02	98	2025
	2025	v	Vith capab	ility for ze	ro-emissio	n operatio	n in design	ated areas	5.	

Potential Amended Emission Standards for Newly Manufactured Locomotives and Locomotive Engines

Figure 2-11: Potential Tier 5 Emission Standards Applicable to Railway Motive Power as Proposed by California (Nichols, 2017)

A trend to reduce emissions further, even beyond Tier 5, could be implied with the goal of some states, such as California, to reach zero-emission railway operation. Current locomotives produced do not meet this standard, hence the focus on low- and zero-emission technologies. NCDOT has the desire to significantly reduce emissions with the potential implementation of zero-emission technology when feasible.

2.3.1 Greenhouse Gas Emissions

Combustion of hydrocarbons with oxygen (or air) leads to carbon-based emissions, such as carbon dioxide, which contributes to the greenhouse effect. Scientist found evidence suggesting that utilization of hydrocarbons by humans and the subsequent release of GHGs is leading to climate change resulting from global temperature rise (IPCC, 2020). More details about science of climate change can be found in publications of the Intergovernmental Panel on Climate Change (IPCC, 2020).

There are several GHGs. Their relative impact on the climate can be illustrated by the metric Global Warming Potential (GWP) (EPA, 2019). The primary GHGs related to transportation activity are the following compounds:

- Carbon dioxide (CO₂), which represents the baseline GHG with a GWP of 1. The compound results when hydrocarbons are combusted, which is the case in diesel engines and powerplants that rely on coal, natural gas, or petroleum, among others.
- Methane (CH₄) is the primary component in natural gas. Its GWP is 28 to 36. Methane's warming impacts dissipate relatively quickly, lasting about a decade, but this fact is considered in its GWP score. Methane is also a precursor to ozone, another GHG, and this factor is also reflected in its GWP score. Methane is commonly used in electricity generation and as fuel in some transportation applications.
- Nitrous Oxide (N₂O) is one of many by-products of combustion with air, such as in diesel engines, and its GWP is 265-298 times of CO₂, or approximately ten times that of methane.

Modal shift from road to rail reduces energy consumption and emissions from the transportation sector even if current diesel technology is employed. Efforts to introduce low- or zero-emission motive power options will increase the rail advantage and are necessary for the mode to remain competitive given lower emission options emerging in the road sector.

2.4 Previous NCDOT Efforts to Reduce Emissions

The Piedmont travels through many counties that were registered by the EPA for non-attainment of air quality standards in the past (EPA, 2020). As a public entity, NCDOT has a desire to limit their impact on air quality from rail operations and to achieve that objective, the Rail Division has previously examined use of alternative fuels for railway motive power. Efforts included testing of biodiesel and blends of petro- and bio-diesel, including B20 biodiesel, which demonstrated up to a 60% emissions reduction of CO, HC, PM2.5 with limited impact on NOx when these fuels where tested in three in-service locomotives (Frey, Graver, & Hu, 2016; Harris, 2019). Additionally, an EPA certified (JRPSK0710B01-001) Blended After-Treatment System (BATS) was implemented and improved emissions from Tier 0+ to Tier 3+ with Tier 4 upgrades planned for future systems (Harris, 2019). Figure 2-12 illustrates the results of the BATS testing in relation to the EPA emission standards.

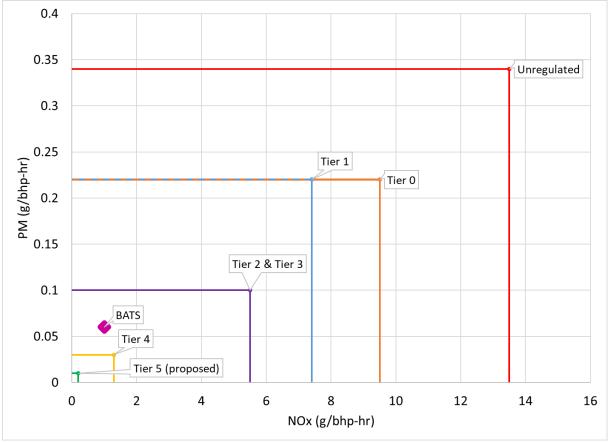


Figure 2-12: EPA Tiers and NCDOT Demonstration Project Performance (Cook, 2016 as quoted in Harris, 2019; EPA, 2016; Nichols, 2017)

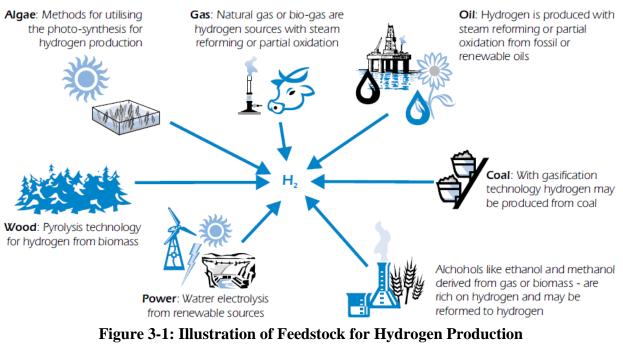
Previous efforts of NCDOT have shown commitment to reduce emissions and willingness to trial new technology. A combination of options including BATS, biofuel, and a plugin hybrid powertrain are likely to result in significant emission reduction but will not lead to a zero-emission option. Therefore, investigation of hydrogen as a potential fuel for NCDOT's rail operation is warranted and complements previous efforts.

3 INTRODUCTION TO HYDROGEN RAIL TECHNOLOGY

This section describes hydrogen characteristics and hydrail applications. It includes production, storage, and transportation; hydrogen fuel cell systems followed by an overview of batteries. At the end of the section, examples of hydrail vehicles are provided.

3.1 Hydrogen Characteristics

Hydrogen (H₂) is the most common element in the universe and a common element on Earth, occurring in compounds such as water (H₂O) and hydrocarbons such as natural gas or petroleum. To obtain pure hydrogen, the associated compound must be split. Therefore, H₂ is an energy carrier (or vector) rather than an energy source, similar to electricity in this respect. As an energy carrier, it can be produced from many feedstocks enabling a zero-emission energy supply chain.


Hydrogen is a colorless, odorless gas at ambient temperature and the lightest element. It has the largest energy density by mass, ~120MJ/kg low heating value, of any fuel but low volumetric energy density. Thus, it requires compression or liquification to enable storage densities that allow practical travel ranges for vehicle applications. One kilogram of hydrogen has a similar energy as a gallon of diesel. Hydrogen is not a GHG and will escape into the atmosphere and eventually to space due to its buoyancy. Hydrogen combustion with air results in water and small amounts of NOx. The latter will be avoided when hydrogen is used in fuel cells.

Hydrogen is an attractive option for an alternative fuel since it does not contain any carbon. When utilized in fuel cells, it avoids all harmful emissions, has a relatively high energy density, and can function as large-scale storage. Currently, hydrogen is used in many industrial processes, such as petroleum refining and fertilizer (ammonia) production and is available as a gas or liquid for commercial purposes.

3.2 Hydrogen Production

Hydrogen, as an energy carrier, can be produced from many different sources, illustrated in Figure 3-1. Currently, the most common feedstock in the U.S. is natural gas. Water and natural gas are reformed to create hydrogen and CO_2 . This method is known as Steam Methane Reforming (SMR), alternatively gas derived from biomass could be employed as a substitute for natural gas. SMR has been considered as part of the evaluation.

Another alternative method is electrolysis of water, where water is split into oxygen and hydrogen with an electric current, the opposite process to a fuel cell. Electrolysis is attractive as electricity from renewable power sources or nuclear power stations could be used for hydrogen generation, avoiding emissions from production with the possibility of an entirely renewable energy supply chain. Electrolysis where power is provided by the grid and an option where solely renewable sources are utilized are included in the study.

(IEA, 2006)

A hydrogen production option from biomass has been evaluated as part of this study and could be an attractive possibility as renewable sources would be utilized, which may have a positive impact on emissions. More detail on hydrogen production methods can be found in the PhD dissertation by Hoffrichter (2013).

There are two possible production locations for hydrogen considered in this study: either a unit is constructed at the refueling site and hydrogen produced locally or hydrogen is produced at a central location and transported to NCDOT facilities. Evaluated onsite options include SMR, requiring a gas supply, and electrolysis, requiring a high-power electrical supply, while both require water. If hydrogen would be sourced from a central location, delivery is necessary and would most likely occur by truck as a liquid or in gaseous form, both options were considered. Hydrogen production locations in the U.S. are shown in Figure 3-2, and it can be seen that there is no major production in North Carolina currently, requiring transportation from out-of-state. However, it is possible that North Carolina could start producing hydrogen if the NCDOT opportunity was realized, because, for instance, both the Raleigh and Charlotte railyards are in close proximity to nuclear power plants, and hog farms (methane) and fertilizer production are major industries in eastern North Carolina and could be sources of hydrogen.

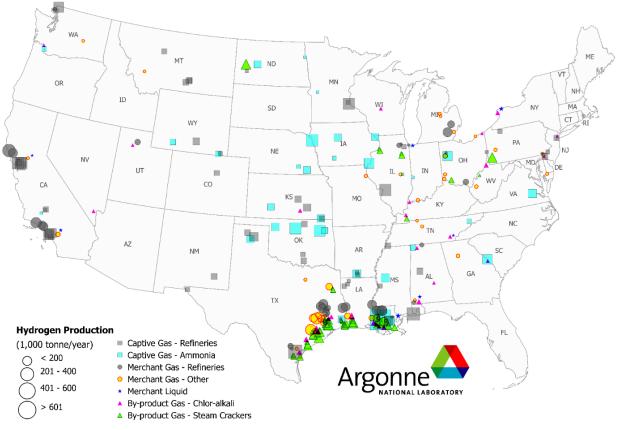
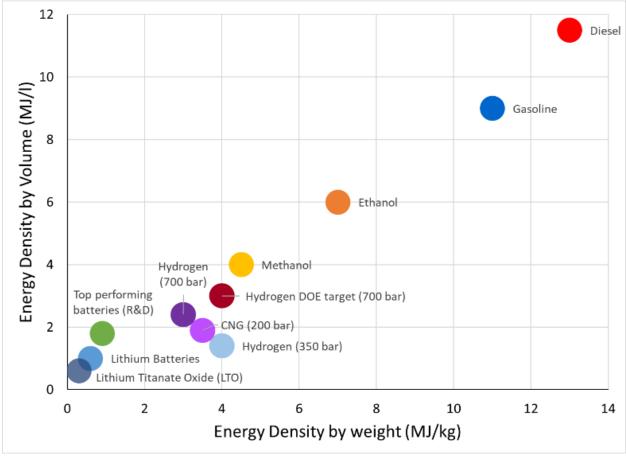
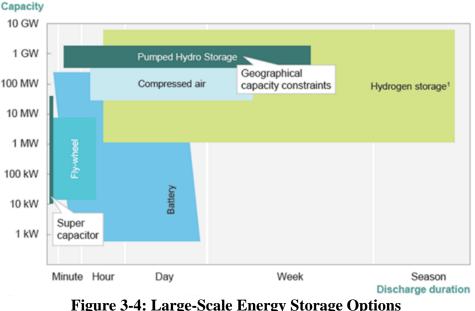


Figure 3-2: Current Hydrogen Production Locations in the U.S. (Satyapal, 2019b)


The various feedstocks and associated production methods have different impacts on hydrogen cost and environmental performance. Selection of appropriate hydrogen production pathways and sourcing will depend on NCDOT's objectives, availability, and price of H₂ and trade-offs are likely required.

3.3 Hydrogen Transportation, Distribution, and Storage

Hydrogen is produced as a merchant gas sold to customers through various methods, primarily dependent on the quantities required. The most common options are described in this section and several on the technologies employed for the transportation of hydrogen could also be utilized for on-board storage tanks on a locomotive.


In Figure 3-3 the volumetric and gravimetric energy density of various fuels and storage devices is depicted. The top right corner represents the highest energy density by mass and volume while the bottom left corner represents the lowest. It can be seen that liquid hydrocarbon fuels have the highest energy density, therefore requiring the least amount of space and are the lightest of all options. Batteries are at the opposite end with a relatively low energy density by mass and volume, thus being relatively heavy and requiring a significant amount of space in a typical rail application. Hydrogen has a lower energy density than hydrocarbons but higher than batteries, and if the mass of the diesel-generator-set is considered total weight of the powertrain between the diesel and

hydrogen option is similar. Nevertheless, hydrogen requires approximately 3-4 times the volume for the same amount of energy stored as diesel. This higher volume requirement affects transportation vehicle design, delivery frequency, and onboard storage systems. Unlike the automotive industry, rail applications are less constrained by weight or space. NCDOT locomotives are likely to have adequate volume available if the diesel powertrain were removed to accommodate fuel cell systems, hydrogen storage and batteries. This makes hydrogen an attractive option for rail compared to utilization in road-based modes of transportation such as automobiles and trucks.

Figure 3-3: Energy Density of Various Fuels and Energy Carriers including tank system weight and volume and accounting for typical powertrain efficiencies (Hexagon, 2019; IEA, 2009; Johnson Matthey Battery Systems, 2017)

The relatively high energy density of hydrogen per mass and production capability from electricity make the element a suitable option for large-scale energy storage, see Figure 3-4, which is required if more renewables are to be part of the future electricity grid.

gure 3-4: Large-Scale Energy Storage Optic (Satyapal, 2019a)

The illustration also provides information about the suitability of ESS options that could be considered for rail applications, highlighting that supercapacitors would be useful for high power provision for short periods of time, while batteries could provide power and energy over medium time periods, but their weight presents a challenge (see Figure 3-3) while a hydrogen system could provide relatively high energy storage and power, which is required for the Piedmont service.

3.4 Hydrogen Transportation, Distribution and Storage

Hydrogen is utilized in large quantities for industrial processes. Thus, most hydrogen is transported, for the entire distance or in part, through pipelines. Where hydrogen is required in lesser quantities, not justifying a pipeline, transportation by truck is used (Gillette & Kolpa, 2008).

3.4.1 Pipeline

Individual large-user industrial sites are often linked by pressurized gas pipeline networks, see Figure 3-5, and there are approximately 1,600 miles of hydrogen pipeline in the U.S. (Satyapal, 2019b). Pipelines have a share of more than two thirds of the merchant hydrogen transportation market. Pipeline transport of hydrogen has been practiced since the 1930s in Germany (Winter, 2009) and is now common in many countries, including the U.S.

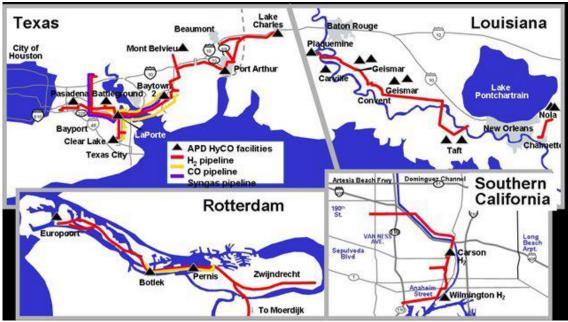


Figure 3-5: Example of Pipeline Networks in Industrial Areas, H₂ pipeline shown in red (Miller et al., 2009)

About 16,000 km (~10,000 miles) of hydrogen pipeline exists globally, and many have a length up to 400 km (~250 miles) in several parts of the world. Most of the existing hydrogen pipelines have a diameter of 100 mm (~4 inches) with operating pressure up to 100 bar (Perrin, 2007).

The transportation capacity of pipelines carrying chemicals, such as hydrogen or natural gas is significant. Figure 3-6 illustrates a 600 MW capacity for a standard AC high voltage system and an appropriately sized hydrogen pipeline. Centralized hydrogen production and distribution to major customers through pipelines, as currently practiced in the petro-chemical industry, could be employed for railway applications where existing production facilities are in relative proximity to refueling sites.

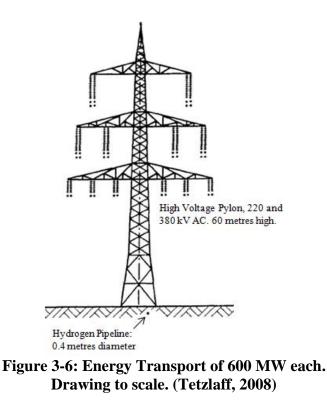


Figure 3-6 shows that the impact of a hydrogen pipeline may be lower than an electrical energy transportation system and that underground installation is possible.

Traditionally, hydrogen pipelines are constructed of steel, but more recently, composites are being adopted within industrial plants. At a given pressure, hydrogen has about one-third of the energy density of natural gas but flows about three times as fast as natural gas at the same pipe diameter and pressure. Therefore, hydrogen pipeline sizes and requirements are similar to natural gas pipes.

The following example in Southern California illustrates central hydrogen production capacity, pipeline transportation, and railway refueling:

Vehicle Projects' Hydrogen-Hybrid Switcher locomotive, in collaboration with BNSF railway, was demonstrated from fall 2009 into 2010. Hydrogen for the trials was supplied by Air Products, which operates several SMR plants in Los Angeles connected to a pipeline distribution network petroleum refineries, see Figure 3-5. The hydrogen supplier stated that about 2% of the current production capacity in the Los Angeles area would be sufficient to fuel approximately 200 switcher locomotives, and that a connection to the pipeline network would be possible. At the time, the cost for hydrogen from the pipeline was between 2 - 3 per kg of H₂ (Miller et al., 2011), while retail diesel costs were 3 - 4 per US gallon (EIA, 2013). Thus, hydrogen was available at lower prices compared to diesel on an energy content basis.

The example shows that hydrogen production and distribution, as currently employed by the petrochemical industry could be adapted for railway requirements and that hydrogen can be available at competitive prices in specific circumstances.

For railway refueling sites in industrial areas, connection by pipeline to hydrogen producers seems the most suitable option. This might not always be possible or economical, especially for demonstration projects or a small fleet. No major merchant hydrogen production is located close to the Piedmont corridor and therefore a pipeline connection is unlikely and not considered further in this study. However other distribution methods currently employed to supply smaller quantities of hydrogen to customers could be suitable for NCDOT.

3.4.2 Transportation as a Gas or Liquid

Hydrogen, like other chemical fuels, can be transported in its storage medium on the road, railways, or boats. The main states in which hydrogen is currently stored to be transported are: (1) in gaseous form and (2) in liquid state. Another option is onsite generation of hydrogen at vehicle refueling stations as already described in the hydrogen production section. Hydrogen can be stored and hauled in cylinders at different pressures. Depending on the hydrogen quantity required, the gas tanks have different sizes, ranging from about one meter to truck trailer length. Pressurized hydrogen is often transported in a 200 bar tube trailer, 200 bar to 480 bar cylinder bundle, or a 500 bar dual-phase tanker (Williamson, 2011) described in more detail in the Liquid section of this report. The 200 bar tube trailer used for refueling of the Vehicle Projects / BNSF proof-of-concept locomotive is shown on the left in Figure 3-7, and a mobile refueler used for fuel cell trucks is shown on the right. Both might be options for NCDOT.

Figure 3-7: Hydrogen Distribution and Storage in Gas Tube Trailer 200 bar trailer on the left and 450 bar mobile refueler on the right (Hoffrichter, 2009, 2019)

Cylinder bundles usually consist of several individual gas tanks, a single steel bottle, installed in a hydrogen proof-of-concept locomotive, is shown in Figure 3-8. Cylinder bundles on a trailer are shown in Figure 3-9.

Figure 3-8: 200 bar Compressed Hydrogen Cylinder Installed in a Hydrogen Locomotive Courtesy and Copyright Jonathan Tutcher, 2012

Figure 3-9: Trailer With Compressed Gas Hydrogen Cylinders in Bundles (Perrin, 2007)

Hydrogen gas trailers usually have a capacity of 180 kg to 540 kg (Air Products, 2013; Perrin, 2007). Transportation on the road as a pressurised gas is primarily suitable for relatively low daily energy requirements to reduce delivery frequency. As a feasible delivery option for NCDOT, transportation as a gas has been considered in this study.

Hydrogen can be transported in its liquid state requiring low temperatures of -253°C (-423°F) and therefore super-insulated trailer. A significant amount of energy of about 30 % to 40 % is lost in the liquefaction of hydrogen (IEA, 2006), having an impact on the overall supply chain, which has been considered in this study. Liquid hydrogen's advantage is its larger energy density per volume compared to compressed hydrogen: A super-insulated truck can transport up to 4,000 kg of hydrogen as a liquid (Air Products, 2013), more than six times the quantity of a compressed gas trailer allowing fewer deliveries and enabling more economical transportation over longer distances. A liquid delivery trailer connected to vaporizer located in a 40ft container combined with some high-pressure intermediate storage is depicted in Figure 3-10, as used to refuel a hydrogen multiple unit train in Germany. Delivery as a liquid is a feasible option for NCDOT and has been considered in this study.

Figure 3-10: Liquid Hydrogen Trailer (Hoffrichter, 2019)

Most hydrogen stored on-board vehicles has been in pressurized cylinders. Therefore, conversion from liquid to gas form is necessary; a process that can take place at the fueling point/filling station or in case of a dual-phase tanker, on the vehicle (Ahluwalia, Wang, & Kumar, 2012). Air Products' dual-phase tanker delivering hydrogen to a filling station is shown in Figure 3-11.

Figure 3-11: Dual-Phase Tanker Delivering Hydrogen to a Filling Station (Williamson, 2011)

Hydrogen transportation and distribution processes are well-established. Delivery as a gas or liquid are suitable options for NCDOT together with onsite generation. Delivery is the most likely option for a prototype locomotive application.

3.5 Hydrogen Storage

Hydrogen can be stored in a variety of states and the employed method is usually dependent on the quantity of storage required. The primary two options for vehicle applications are storage as a gas or as a liquid, very similar to the hydrogen transportation options described in the previous subsection. All full-scale hydrogen-powered railway vehicles to date have employed storage as a gas, usually at 350bar and this would be the most likely option for NCDOT. Higher pressure gas storage, typically at 700bar is often used in cars and some trucks, and this could be an option for NCDOT. Lower pressure is preferable due to being technically less complex and lower capital requirements. Storage as a liquid would be a possibility if relatively large quantities of hydrogen would be required, but this option is technically complex and has a relatively large energy penalty as described in the previous subsection, therefore, the authors deem it less suitable for the Piedmont service and is not considered further in this report. More detail on hydrogen storage as a liquid can be found in Hoffrichter (2013). Should liquid storage be necessary for NCDOT's application, then a more detailed analysis would have to be conducted.

3.5.1 Common Gas Pressures for Vehicles

Hydrogen is always produced as gas, as shown in the Hydrogen Productions section, and therefore, storage in its gaseous form is an obvious choice. The low volumetric density of hydrogen at atmospheric pressure requires compression to achieve acceptable tank sizes. Common pressures are 200 bar, 350 bar, and 700 bar (Hexagon Lincoln, 2017; IEA, 2006; Williamson, 2011). In general, the move is towards higher pressures, and 700 bar is currently favored by the automotive

industry due to space constrains while 350 bar is the preferred choice for heavy duty applications, including railways. However, at these high pressures hydrogen is outside the ideal gas region and a rise of pressure from 350 bar to 700 bar increases the energy content in the tank by 55 %, rather than 100 % and an additional 10% of energy is required to compress to 700 bar compared to 350 bar (Hansen, Sato, & Yan, 2010). For NCDOT's application it is likely that a 350 bar option would be employed due to the price and energy advantage but 700 bar is a possibility if available volume would be a challenge. In the study, hydrogen quantity is presented in kilograms so either storage pressure would be possible.

3.5.2 Hydrogen Tank Materials

Hydrogen tanks are traditionally manufactured from steel, and for lower pressures, up to 200 bar, it is still the most common cylinder material (Winter, 2009), see Figure 3-8, but composite tanks are more common at higher pressure and their weight advantage (IEA, 2006). An illustration of a typical composite tank designed for onboard usage is shown in Figure 3-12, while examples installed in a truck are depicted in Figure 3-13 on the left and on the right mounted on a train.

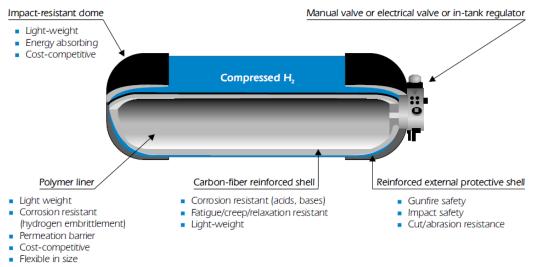


Figure 3-12: Schematic of a Typical Compressed Hydrogen Gas Composite Tank (IEA, 2006)

Figure 3-13: 350 bar Hydrogen Tanks Left in a truck, right on a train (Hoffrichter, 2019)

The majority of railway vehicles powered by hydrogen, either as demonstrators or in-service, utilize compressed-gas storage, typically at 350bar. It is likely that a hydrogen solution for NCDOT would also employ compressed-gas storage at that pressure as the tanks are commercially available and already used in other railway applications. For this initial assessment, the authors assumed that approximately 24kg (~800kWh) of hydrogen could be storage in one cubic meter at a weight of 320kg based on a commercially available tank (Hexagon Lincoln, 2017). However, other tank arrangements might be possible enable more hydrogen storage in the same space at lower mass and a more detailed assessment would be required during a design phase for a proof-of-concept vehicle.

3.6 Hydrogen Safety

The properties of hydrogen are different to commonly used liquid fuels, such as gasoline or diesel, and some of these properties make it safer than the conventional fuels (Raj, 1997), such as being non-toxic and not resulting in toxic emission if combusted in air (i.e., no toxic smoke). The low radiant heat of burning hydrogen can also be an advantage as fewer areas are directly impacted. Additionally, hydrogen is the lightest element, significantly lighter than air, leading to relatively quick dissipation in case of release.

However, some of the properties require additional engineering controls for its safe use. The wider range of flammable concentrations in air and relatively low ignition energy result in easier ignition compared to conventional fuels. Adequate ventilation and leak detection are essential in a safe hydrogen system design. Flame detectors are required as hydrogen burns nearly invisibly. In addition, some materials including certain metals can become brittle when exposed to hydrogen for long periods of time. Appropriate material selection for hydrogen pipes and storage tanks is necessary. Hydrogen can also leak into other pipes, so hydrogen pipes should be installed above others to prevent this occurring.

Similar to natural gas, hydrogen is colorless and odorless making it difficult for humans to detect. It is possible to add an odorant, as the industry does for natural gas, however this contamination tends to damage fuel cells and is therefore not a feasible mitigation for NCDOT. Instead, hydrogen sensors have been used by the hydrogen industry for decades with success.

Hydrogen gas is typically stored and dispensed at very high pressures, as described in the previous subsections, which poses its own hazards. Careful design, certification, operation and inspections of vessels and dispensers used for hydrogen systems must be implemented. The Society of Automotive Engineers (SAE) has developed standards for hydrogen storage and dispensing equipment in automotive applications and these may be appropriate for use in a rail environment. Additional knowledge transfer can occur from bus applications and operation of the trains in Germany.

In many applications, including in railway vehicles, hydrogen is typically stored as a gas instead of a liquid. As such, hydrogen fuel's properties and resulting safety risks are different compared to diesel. Hydrogen requires a much higher temperature before autoignition occurs and higher concentration in air, as compared to diesel fuel. On the other hand, hydrogen requires a lower energy of ignition than does diesel fuel and has a wider range of composition in air in which it will burn. Hydrogen has been assessed as being safer compared to gasoline (Raj, 1997).

Due to its buoyancy, hydrogen tends to burn straight upwards if the leak has little pressure, otherwise, in the direction of the occurring leak. This characteristic can be used in risk mitigation, for example, through installation of tanks in designated areas that are well-ventilated in the upward direction and flame detectors.

In both production and storage, proper ventilation will support in mitigating hydrogen safety risks. Ventilation is especially important as hydrogen can permeate some of the materials that it may be stored in, for example, high-strength steel is subject to embrittlement. However, many other forms of steel and aluminum are unlikely to be affected given typical operating conditions, therefore appropriate material selection is essential. Embrittlement can lead to hydrogen escaping its container, and this means mixing with air. Limiting the rates and amounts of escape is a priority to keep the gaseous mixture below the flammability limits. Once a significant release occurs, avoiding sources of ignition will become key, as any explosion that could result is more dangerous than the more straightforward release of a hydrogen flame. More information on the optical and thermal sensors involved in flame detection can be found H₂Tools website (Pacific Northwest National Laboratory, 2019).

As with any fuel, periodic inspection and leak testing, will also be necessary. Leak testing is more complicated for a gaseous fuel than a liquid fuel. In addition, ensuring that venting is both large enough to relieve pressure yet small enough to limit size of any resulting hydrogen "cloud" is also crucial in design risk mitigation.

Dispensing of the fuel involves most of the same risks as the other aspects of hydrogen fuel handing, while also requiring regular inspection of the component parts, emergency off switches, and leak checks immediately prior to refueling. Leak check detection is often automated as part of the standard installation of hydrogen sensors at refueling equipment.

Currently, hydrogen is safely used as a transportation fuel in several different applications, for example, cars and forklifts. In the forklift case, operation is usually in enclosed facilities and the associated risk are managed. Further improving the safe use of hydrogen in partially enclosed and indoor facilities is subject of ongoing research. Initial findings by a group at the Sandia National Laboratories suggest that aiming some air flow at the vehicle while under repair (though this could also apply to refueling), even if the facility is fully enclosed, would greatly reduce the risk of flame occurrence.

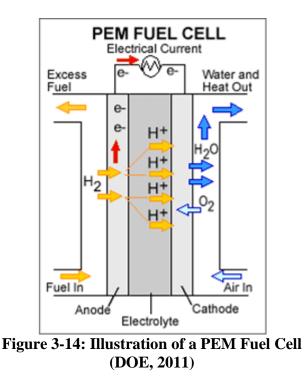
A fully enclosed area is likely not ideal for hydrogen refueling while for maintenance work a partially enclosed area would be adequate or installation of appropriate ventilation systems. For NCDOT, fueling outside would be recommend, similar to the current practice of diesel refueling. During the refueling station implementation process, it is suggested to incorporate national standards developed by the National Fire Protection Association (NFPA). The NFPA 2 Hydrogen Technologies provides information relating to installation and handling (NFPA, 2019).

In total, there are now 40 public hydrogen refueling stations located in the U.S. (Satyapal, 2019a), the majority located in California. Experience with these stations will increase knowledge about safely handling hydrogen with subsequent improvements in safety.

For NCDOT it is likely that some new methods and procedures to handle hydrogen safely are required, but these are not likely to be particularly costly nor technologically new. For example, pressure sensors and leak detectors, along with related warning systems, will be necessary since hydrogen is an odorless and colorless gas.

Information on hydrogen safety is readily available and the Department of Energy has set up the H₂Tools website for educational purposes (Pacific Northwest National Laboratory, 2019). The website includes a link to a hydrogen incident database. The site also provides information regarding safe hydrogen handling and equipment implementation. For a more technical appraisal of the risks associated with hydrogen for a given production and refueling site, the Department of Energy has also set up a risk assessment model (Sandia National Laboratories, 2019). More information on the model, including instructions on how to access it, can be found at reference provided. Information from this tool could be incorporated in a detailed risk and mitigation design analysis.

Currently, SBCTA is going through the process of introducing a hydrogen-powered train in the U.S., which requires engagement and permission to operate from the Federal Railroad Administration (FRA). If NCDOT would implement a hydrogen solution there might be collaboration options with SBCTA and some of their learning and engagement with the FRA could be incorporated in the project.


In will also be necessary to inform the public about operation of a hydrogen-powered train. Due to the public's relatively limited experience with hydrogen as a fuel, along with an oversimplified understanding of its role in the Hindenburg disaster in the popular imagination, hydrogen fuel's public acceptance has been challenging, with concerns that the fuel is more dangerous than widely used fuel sources. But different risks are not necessarily greater risks and hydrogen can be safely

employed in a rail application. Public education and outreach will be required prior to full implementation.

A more detailed safety analysis regarding NCDOTs case will have to be conducted as part of a proof-of-concept or prototype vehicle, including assessment of refueling procedures and the Rail Division's available facilities.

3.7 Fuel Cell Systems

Fuel cells consist of electrochemical devices where fuel, such as hydrogen, is combined with oxygen to produce electricity, heat, and exhaust in the form of water. While there are many ways to construct a fuel cell, the most popular way for vehicles is the proton exchange membrane (PEM), also known as polymer electrolyte membrane (DOE, 2016). Their efficiency, low operating temperature, start-up capabilities, and relatively long operating lifetime make them the preferred option for almost all vehicle operations, including all railway applications to date. An illustration of the operation of a PEM fuel cell is provided in Figure 3-14.

The process in a PEM has three primary stages (Schlapbach, 2009):

- 1. Hydrogen enters the cell at the anode side where the hydrogen molecule is split into atoms.
- 2. An anode catalyst separates the electrons from the atom creating hydrogen ions, which pass to the cathode, whereas the electrons move across an electric circuit to arrive at the cathode.
- 3. Oxygen from air is directed to the cathode, where it combines with the hydrogen ions and electrons to form water, which then leaves the cell.

For vehicle applications, several cells are combined in a stack to produce the required power. Hydrogen, air, and thermal management components, referred to as balance-of-plant, combined with one or more fuel stacks create a fuel cell system (FCS), also referred to a module, and the generic components are illustrated in Figure 3-15. In heavy-duty applications, power output levels are typically 30kW, 50kW, 80kW, 100kW, and 200kW. More power can be obtained by combining several FCS, which would be required for NCDOT's application.

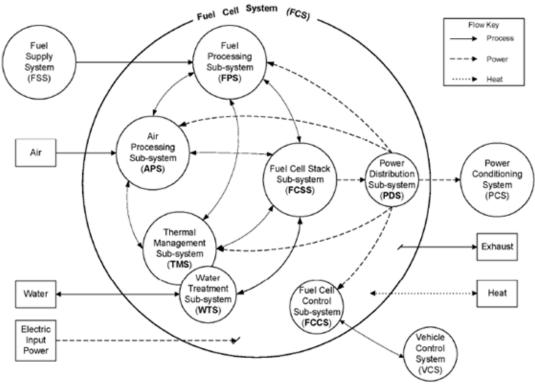


Figure 3-15: Illustration of the Components in a Fuel Cell System (SAE International, 2011)

Figure 3-16 shows train and truck FCS modules in use.

Figure 3-16: Examples of Fuel Cell Systems; train module (left) and truck (right) (Hoffrichter, 2019)

In addition to having pure water as exhaust, therefore eliminating all air pollutant and GHG emissions, FCS typically have a high efficiency over the entire operating range, as illustrated in Figure 3-17.

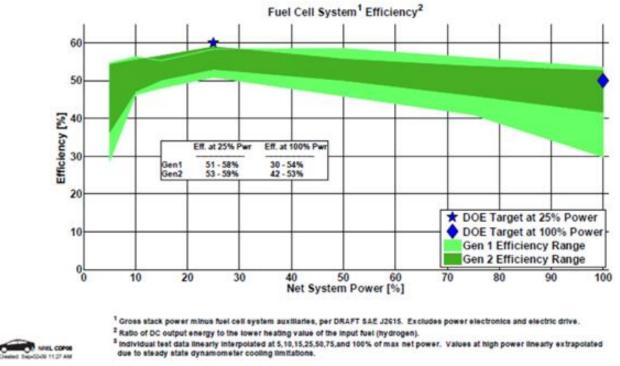


Figure 3-17: Illustration of Fuel Cell System Efficiency Curves in Light Duty Vehicles (Wipke et al., 2012)

The information presented in Figure 3-17 was obtained from the operation of FCS in cars, showing varying performance according to vehicle and FCS manufacturer. It can be seen that some of the tested systems never drop below 50% efficiency and further that the highest efficiencies occur at partial load. Efficiencies of heavy-duty systems are typically a few percentage points lower than for light-duty applications, therefore the curve is included for illustrative purposes only. Continued research and development efforts are increasing the efficiency of FCS in both types of applications.

In general, the efficiency of FCS is higher than for comparable diesel engine generator set, as illustrated in Figure 3-18. Only indicative values are shown as more precise data was not available in the public domain.

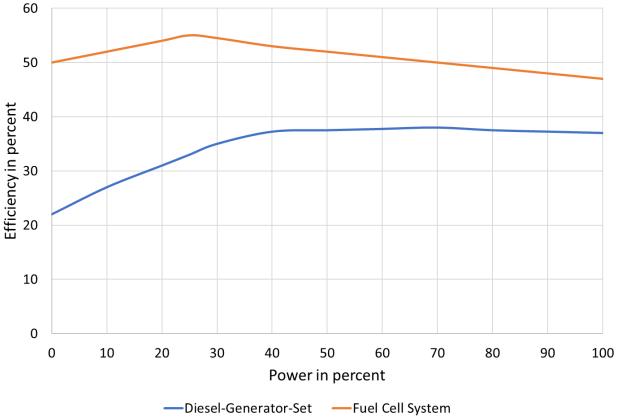


Figure 3-18: Indicative Heavy-Duty Diesel Generator-Set and FCS Efficiency Curves

The higher overall efficiency of FCS enables a reduction in energy consumption along with allowing for less on-board energy storage with comparable range to a gasoline or diesel vehicle. Efficiency curves for both diesel-generator-set and FCS have been included in the pump-to-wheel analysis as part of the simulation. Lifetimes of heavy-duty FCS have exceeded 30,000 hours (Eudy, 2019) and these are still in operation. Similar systems would be utilized in railway vehicle applications. For this assessment, the authors assumed that a FCS module could provide 200 kW while requiring a space of 0.7 m^3 with weight of 550 kg, actual power output, size, and weight vary with manufacturer and the assumed values are indicative.

3.8 Battery Technology Overview

ESS enables capture of regenerative braking as described in the Background section while allowing the possibility to operate the primary powerplant in its most efficient region, both reducing energy consumption and resulting emissions. Several ESS systems are possible but for NCDOT the most appropriate is a battery option. Batteries are electro-chemical devices where electricity is chemically 'stored'. Single use and rechargeable options are available and for NCDOT a rechargeable option would be required. Individual battery cells have a low voltage and are typically combined into large arrangements and combined with thermal and power management to create a battery system. Several different chemistries are available with varying performance regarding charge and discharge capability (C-Rate), lifetime, energy density, safety, and cost. The choice is usually a trade-off between these primary determinants. A comparison of

energy density for various chemistries is illustrated in Figure 3-19, while the main characteristics of several lithium-ion options are show in Table 2-1. More detailed information about batteries can be found in the battery guide by Johnson Matthey Battery Systems (2017).

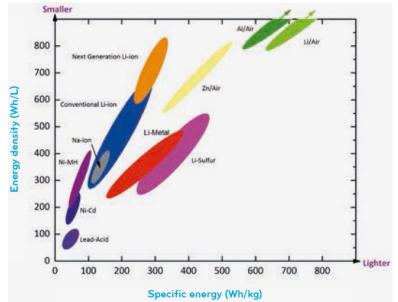


Figure 3-19: Illustration of Various Battery Chemistry Energy Densities (Johnson Matthey Battery Systems, 2017)

There has been a progression in energy density through the development of lithium-ion chemistries compared to more traditional options, such as lead-acid. Nevertheless, the energy density, particularly the specific energy, often prohibits sufficient energy storage for long range railway applications, as already illustrated in Figure 3-3.

	Cell level specific energy (Wh/kg)	Cell level energy density (Wh/I)	Typical power (C-rate)	Approx. safety thermal runaway onset	Typical nominal potential (V)	Typical temp. range (ambient)	Year of introduction into market
LCO	175-240	400-640	~1C	150°C	3.6	-20 to 60°C	1991
NCA (EV)	130-240	490-670	2-3C	150°C	3.6	-20 to 60°C	1999
LFP (EV/PHEV)	90-150	190-300	5C cont 10C pulse	270°C	3.2	-20 to 60°C	1996
LFP (HEV)	70-110	100-170	30C cont 40C pulse	270°C	3.2	-30 to 60°C	1996
NCM (EV/PHEV)	100-200	260-400	3C cont 6C pulse	210°C	3.7	-20 to 60°C	2008
NCM (HEV)	70-100	150-200	10C cont 40C pulse	210°C	3.7	-20 to 60°C	2008
LTO	90-130	170-230	10C cont 60C pulse	Not susceptible	2.4	-30 to 75°C	2008
LMO (EV/PHEV)	150-240	240-360	3-10C	250°C	3.8	-20 to 60°C	1996

 Table 3-1: Characteristics of Main Lithium-Ion Battery Chemistries

Main Li-ion cell variants

In hybrid applications, where batteries are either charged periodically from wayside infrastructure, such as the QLine streetcar system in Detroit, or are combined with a primary power plant, such as in hydrail multiple units (MSU CRRE & BCRRE, 2019), these ESS have been successful in reducing energy consumption and providing autonomy from continuous wayside infrastructure. Most railway applications that have a powertrain with substantial batteries employ lithium-ion technology, example include: Alstom iLINT with lithium nickel manganese cobalt oxide (NMC or NCM) (Akasol, 2018), TIG/m streetcars utilizing lithium ferro phosphate (LFP) (Read, 2019; TIG/m, 2020), and some Siemens trains using lithium titanate oxide (LTO) (Reidinger, 2018).

When analyzing different forms of battery technology, multiple factors must be considered when making a decision based on the use case. For example, the energy/power density relates the volume and mass of a battery to the respective output The power rate of a battery determines how quickly a battery can be discharged/charged to allow a locomotive to accelerate and how effectively it can charge from regenerative braking. Safety is also a major concern on locomotives as overcharging or a damaged battery can bring harm to those on board. The FRA has published a report about battery utilization for railway vehicles in the U.S. (Brady, 2017). Other factors include volume, weight and cost of a battery system.

The battery type assumed in this study is LTO due to its superior safety characteristics; performance, including a large temperature range of operation and charge/discharge rates; and lifetime (Brady, 2017; Cowie, 2015; Johnson Matthey Battery Systems, 2017). It is likely for these reasons that this chemistry is increasingly utilized in railway vehicles in both passenger and freight (Barrow, 2019; Reidinger, 2018; Zasiadko, 2019). The main downsides to LTO are a lower energy density and a higher price compared to other chemistries. In this initial assessment, the authors assumed that between 108 kWh/m³ to 230 kWh/m³ at a mass of 1.4t to 2t could be stored in a battery (Akasol, 2018; Altair Nano Technologies, 2016; Johnson Matthey Battery Systems, 2017), the more conservative values were utilized for the first assessment. Other chemistries might be suitable for NCDOT's application and selection of an appropriate battery-type would be part of a more detailed vehicle design for a proof-of-concept / demonstrator locomotive; another possible option would be NMC due to superior weight and price considerations compared to LTO.

3.9 Examples of Hydrail Vehicles and Related Projects

The information presented in this section illustrates that hydrogen fuel cell or hydrogen fuel cell hybrid powertrains can be implemented in railway applications. Several relevant examples are presented but not all previous projects are covered. Other heavy-duty applications would also provide information about technology feasibility, which can be found in publications of the Department of Energy, specifically the Fuel Cell Technology Office. Regular reporting is provided about buses (Eudy, 2019) and cars (Kurtz, Sprik, Ainscough, & Saur, 2017), while information about trucks and rail applications is to be published soon. Dr. Isaac's PhD dissertation (Isaac, 2019) provides hydrail studies in a U.S. context while a report published by SBCTA (MSU CRRE & BCRRE, 2019) provides details for a multiple-unit case.

3.9.1 Commercially Available Vehicles

Currently, there are only a few hydrail vehicles that are offered commercially or are in service operation. The most significant is the Alstom iLINT multiple unit train, which has been in service in Germany since 2018 (Alstom, 2018). The train consists of two passenger cars with a hybrid powertrain where the PEM FCS provides a combined power of 400kW while the NMC batteries offer 450kW enabling a maximum speed of 140km/h (~87mph). A range of up to 1,000km (~620 miles) achieved with approximately 180kg to 260kg of hydrogen. Refueling takes about 15min. Figure 3-20 depicts the train.

Figure 3-20: Alstom Corodia iLINT (Hoffrichter, 2019)

The project was successful for Alstom, with several orders pending in Germany, the UK, the Netherlands, France, among others. In addition, other major manufactures are developing similar vehicles, such as Siemens and Stadler.

CRRE is offering hydrail streetcars / light rail vehicles in China. Development started at the beginning of the last decade with trials in Qingdao and Tangshan (Barrett, 2017). Commercial operation started in late 2019/early 2020 in Foshan (Metro Report International, 2019). The inservice vehicle is depicted in Figure 3-21.

Figure 3-21: CRRC Hydrail Streetcar in Foshan (Metro Report International, 2019)

The CRRE trams have a maximum speed of 70km/h (~44mph) and will operate on a 17.4km long line; eight have been ordered.

TIG/m is a manufacturer of streetcars in Chatsworth, CA and the company offers self-powered, zero-emission vehicles. Among the powertrain choices are hydrogen-hybrids with PEM fuel cells and LFP batteries (Read, 2019). The company has sold hydrail streetcars to Aruba, Dubai, and Qatar and offers heritage and modern style options. Examples of TIG/m trams are depicted in Figure 3-22.

Figure 3-22: TIG/m Streetcars Heritage style on the left, modern style on the right (Read, 2019)

The company offers various power-levels and options that are fully battery operated. The powertrain selection is dependent on the duty-cycle of the vehicles.

All vehicles that are currently in service or are commercially sold are of a multiple-unit configuration and operate at significantly lower power than NCDOT's service. The closest vehicle is the iLINT and components could likely be scalded to meet the requirements of the Piedmont service.

3.9.2 Proof-of-Concept/Demonstrator Vehicles

Several proof-of-concept or demonstrator hydrail vehicles have been constructed and a selection is presented here.

Vehicle Projects together with BNSF in a project funded by the Department of Defense demonstrated a switcher locomotive in the Los Angeles area in 2009-2010. The locomotive weighed 130t and stored 68kg of hydrogen in 350bar tanks, peak power of 1.5MW was provided by a 240kW PEM FCS consisting of two modules, and lead-acid batteries (Miller et al., 2011). The project demonstrated that a locomotive option is feasible with hydrail technology. Figure 3-23 depicts the locomotive and FCS.

Figure 3-23: Vehicle Projects and BNSF Proof-of-Concept Switcher Locomotive (Hoffrichter, 2009)

In 2012, a team at the University of Birmingham developed, designed, and constructed the first practical hydrogen-powered locomotive in the UK, called hydrogen pioneer (Coombe et al., 2016) and Hoffrichter was the systems engineer for the project. The locomotive had a PEM fuel cell and lead-acid battery and could be operated from a metal hydride or compressed gas tank. It was a scaled version of a full-sized locomotive and demonstrated that the hybrid powertrain concept with a hydrogen FCS is technically feasible. The project started development of further vehicles in Europe and a full-scale demonstrator multiple-unit train, called Hydroflex, was constructed in 2019. Hydroflex has a PEM fuel cell and lithium ion batteries. Both are depicted in Figure 3-24. More details about the Hydrogen Pioneer can be found in (Andreas Hoffrichter, 2013; Andreas Hoffrichter, Fisher, Tutcher, Hillmansen, & Roberts, 2014)

Figure 3-24: Hydrail Proof-of-Concept Vehicles in the UK Hydrogen Pioneer on the left in 2012, Hydroflex on the right in 2019 (Hoffrichter, 2012, 2019)

In Japan multiple-unit proof-of-concept vehicles where constructed and demonstrated in 2008. Japan East Railway (Kawasaki, Takeda, & Furuta, 2008) had a project and the Railway Technical Research Institute (Yamamoto, Hasegawa, Furuya, & Ogawa, 2010) had a project. Both were successful and employed PEM FCS and lithium ion batteries. Neither entered commercial operation but recently Japan East Railway started a project for a new hydrail train (Railway Gazette International, 2019).

3.9.3 Ongoing Projects in North America

In North America several hydrail projects are ongoing. The most advanced a two-car multiple-unit produced by Stadler for SBCTA. The train will be a hybrid with a PEM FCS and lithium-ion batteries, most likely LTO. More information about the project can be found on SBCTA's website and in associated reports (MM, MSU CRRE, & SBCTA, 2019; MSU CRRE & BCRRE, 2019). In Canada, Metrolinx in Toronto has a program to electrify part of their operations and hydrail technology is being considered instead of conventional wayside electrification (CH2M Hill, Ernst & Young, & Canadian Nuclear Laboratories, 2018). Initial feasibility of hydrail has been suggested in the report. This application would be similar to the Piedmont as high-power locomotive-hauled trains would be used. Further initiatives are ongoing in British Columbia, where Prof. Lovegrove is leading two hydrail projects, one involves the conversion of a switcher locomotive and the other, longer-term project, involves a multiple-unit passenger train (Lovegrove, 2018). A prototype hydrail speeder is currently being constructed and application for funds to convert the switcher have been submitted.

The previous examples demonstrate that hydrail technology is in principle feasible for the Piedmont service. However, it is necessary to consider the Piedmont service context in more detail to estimate if the technology would be suitable. The first step in a technical appraisal is often modelling to determine the most suitable options before construction of proof-of-concept vehicles.

In the next section, the authors describe the modelling approach employed in this study, followed by the considered train configurations, and the results of the simulation.

4 METHODOLOGY

The primary objective of this study is to determine the technical feasibility of a zero-emission powertrain installed in the existing locomotives or CCUs or both. To evaluate possible options, the energy consumption and power requirements of various components must be established with the premise that the exiting performance of the diesel-electric locomotives can be matched or could be exceeded. The first phase of such an undertaking is modelling of configurations, which would be followed by the construction of a proof-of-concept or prototype vehicle; the latter is beyond the scope of this study. A further part of this study was to estimate the energy and emission impacts of a motive power change throughout the respective supply chain. Both employed modelling tools are described in more detail in this section.

4.1 Single Train Simulator

Single train simulation (STS) has been utilized in this study to establish tank-to-wheel energy consumption, journey time, and to size major components regarding power and energy. STS has been employed extensively in the past to estimate the impact of powertrain changes on railway vehicles (A. Hoffrichter, Hillmansen, & Roberts, 2016; S. Lu, Hillmansen, & Roberts, 2010; Meegahawatte et al., 2010; Winnett et al.; Zenith, Isaac, Hoffrichter, Thomassen, & Møller-Holst, 2019). It is a frequently utilized tool by railway vehicle manufactures in the development of new vehicles and to ensure that current vehicle options in their portfolio meet performance requirements over existing routes.

The STS utilized for this project was developed at CRRE in collaboration with the Birmingham Center for Railway Research and Education and the WMG at the University of Warwick. It was constructed of well-established tools at these institutions and modified to model the various diesel, hydrogen fuel cell, and battery hybrid options relevant to the Piedmont service. Results of the simulation represent an estimate to enable the evaluation of various options and offer a suitable tool in the development process but simulations remain an approximation and construction of a prototype or proof-of-concept vehicle with associated instrumentation to validate performance is still required, especially if new technology such as hydrogen fuel cells and batteries are combined for such an unprecedented rail application as the Piedmont service.

The simulator discretizes distance, where the route is divided into sections, e.g., one-meter segments, and the movement of the train along the route is modelled until it reaches the terminus to complete the simulation. The next step is a backward-facing quasi-static pump-to-wheels (PTW) model to determine the requirements of various powertrain components considering the duty cycle resulting from service provision over the Piedmont route.

Speed limits, gradient profile, and station locations and service specifications such as desired journey time and dwell times at stations are required for the simulation. Further, characteristics of the train and its major powertrain components are necessary for the PTW portion of the simulation. The researchers made every effort to obtain data and accurately utilize that information for the simulation but some assumptions and estimates where nevertheless necessary. An example is the assumption that the train would travel as fast as allowable along the route and that all drivers would

handle the operation of the train in the same manner. An illustration of the modelling process to obtain at-wheels values of energy consumption and braking energy as well as journey time is provided in Figure 4-1.

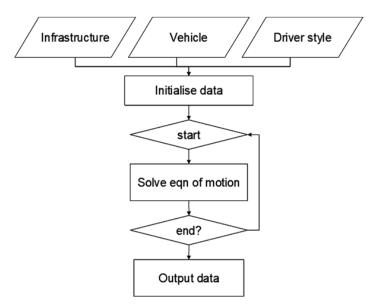


Figure 4-1: Flow Diagram of the Single Trains Simulator (Hoffrichter, 2012)

The characteristics of the major powertrain components for the PTW are also required. These were obtained from literature, provided by component suppliers, or estimated by the research team. Specifically, a traction motor efficiency was not available and developed at MSU, employing the process described in the indicated subsection below. Some manufactures provided confidential data and therefore only indicative values are presented in this report.

4.1.1 Traction Motor Map Development

The F59PH locomotives employed on the Piedmont service have DC traction motors. An efficiency map was not available for modelling, therefore the authors used the facilities at MSU to create an electric motor map. An induction motor was chosen as most modern locomotives have these installed and NCDOT might consider an upgrade. However, the work remains valid if DC motors would be retained.

Induction motors are a low cost, mechanically robust and mature technology. They have high overload capabilities and are more power dense than DC motors (Becker & Boggess, 1990). Induction motors are also capable of group drives; a single inverter can drive more than one motor. These motors have replaced DC motors in new locomotives over the past few decades and are projected to continue to dominate in this industry for another decade (Nategh et al., 2020) while permanent traction motors might be introduced in specific applications such as high speed trains. Figure 4-2 shows the torque speed curve of a typical induction machine. Field oriented control

provides full torque at zero speed, quick acceleration and deceleration as well as smooth operation over the wide speed range.

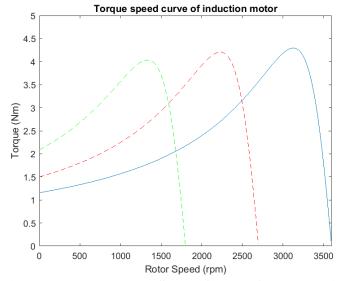


Figure 4-2: Example Torque Speed Curve of an Induction Motor (Foster, 2020)

Motor efficiency is merely the ratio of output to input power, as described in (1). Here, η , P_{out} , P_{in} and P_{loss} are efficiency, output power, input power and power loss, respectively. There are five common sources of power loss in motors: ohmic, core, friction, windage and stray losses. Ohmic losses are a result of current in conductive materials. Core losses have two components: hysteresis and eddy current losses. Core loss is dependent upon the motor operating point and quality of the electrical steel. Friction losses are due to the force required to overcome drag and are proportional to the operating speed. In an air-cooled motor, windage losses are caused by turbulence in the air acting against rotation. Stray losses include everything else. For this work, windage, friction and stray losses are neglected.

$$\eta = \frac{P_{out}}{P_{in}} = \frac{P_{out}}{P_{out} + P_{loss}} \tag{1}$$

An equivalent circuit shown in Figure 4-3 describes a single phase of a three-phase induction motor, including ohmic and core losses. Here, R_1 and R_2 are the stator and rotor resistances, respectively. X_1 and X_2 are the stator and rotor leakage reactances. X_m is the magnetizing reactance and R_c is the core loss resistance. Slip, *s*, is the difference between the actual motor speed and the synchronous speed, described in (2). Torque is described in (3) where Pg is the portion of the power converted to mechanical power, represented by losses across resistance $R_2 \frac{(1-s)}{s}$.

$$s = \frac{\omega_s - \frac{p}{2}\omega_m}{\omega_s} \tag{2}$$

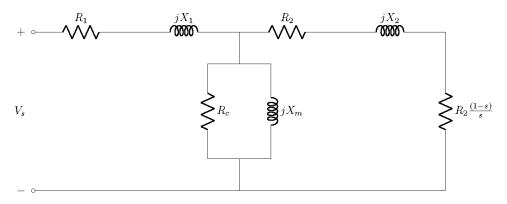
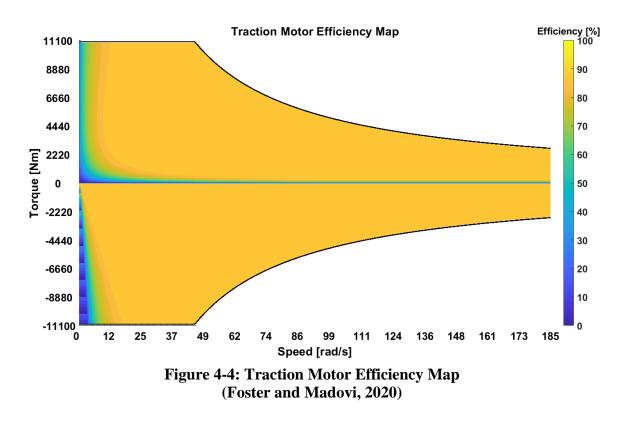
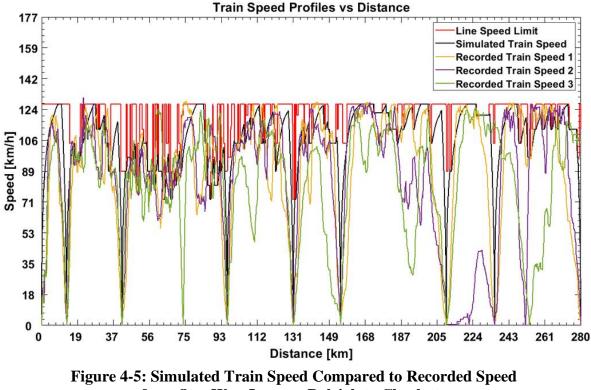



Figure 4-3: Induction Motor Equivalent Circuit of one Phase (Foster, 2020)


$$T = 3\frac{P_g}{\omega_s} \tag{3}$$

The maximum torque was determined from the tractive effort demand estimation of the locomotive. The maximum linear speed of the locomotive and the gear ratio were used to calculate the required speed range of the motor. Torque and speed requirements, together with the available DC voltage, were used to identify an AC induction motor. The parameters of this motor were used to populate an analytical model of the motor in MATLAB. The efficiency was calculated for operating points. The core loss was negligible. The resulting efficiency map, shown in Figure 4-4, was included as a look-up table in the simulator.

4.1.2 Simulator Validation

Some recorded data from NCDOT was available, such as the speed over the route and total diesel fuel consumption for a roundtrip. This data was used to validate the simulation results, which is illustrated with the speed profile along the route in Figure 4-5.

for a One-Way Journey Raleigh to Charlotte

Comparing the data in Figure 4-5, the simulated performance of a single-locomotive train and the recorded speed profiles are similar and the difference between the data is within the boundaries of variations in driving style. Further, the overall fuel consumption resulting from the simulation of approximately 640 gallons was similar to the NCDOT provided diesel fuel consumption of approximately 650 gallons. Therefore, the simulations provide a reasonable estimate of performance and energy consumption, and the impact resulting from a powertrain change can be equally estimated, enabling a comparison between the different technologies to allow feasibility assessment.

4.2 Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model

The GREET model is a tool to estimate energy consumption and emission of vehicle and fuel combinations considering the entire energy supply chain. Typically, a full fuel life cycle analysis is split into two parts: (a) pump-to-wheel and (b) well-to-pump (or tank-to-wheel and well-to-tank) and the combination is referred to as a well-to-wheels (WTW) analysis. The first part considers the powertrain technologies and duty cycles while the second part provides information about the

fuel production and delivery. The GREET model was developed by Argonne National Laboratories, operated the UChicago Argonne, and is updated and maintained by that organization of behalf of the U.S. Department of Energy (Argonne National Laboratory, 2019). Figure 4-6 shows a high-level illustration of the GREET model well-to-wheel cycle. Additional information about GREET is available of the Argonne website (Argonne National Laboratory, 2019). In this study, the energy consumption of the first, PTW, part was determined with STS as describe in the section above. The GREET model was then applied to estimate emissions resulting from fuel combustion on the vehicle in the diesel cases and was utilized for the supply chain impacts, pump-to-tank (WTP), for energy and emissions impacts for diesel, hydrogen, and electricity. Some modifications to the GREET model where necessary to account for the specific NCDOT case. WTP energy is consumed, and WTP emissions are generated, during the process of resource extraction, transportation of the resource to a processing facility/powerplant, fuel refinement/conversion/power generation, and delivery or transmission of the final fuel product to the point of use or vehicle fuel tank(s). A more detailed description about the methodology utilized for this study can be found in the PhD dissertation of Raphael Isaac (Isaac, 2019).

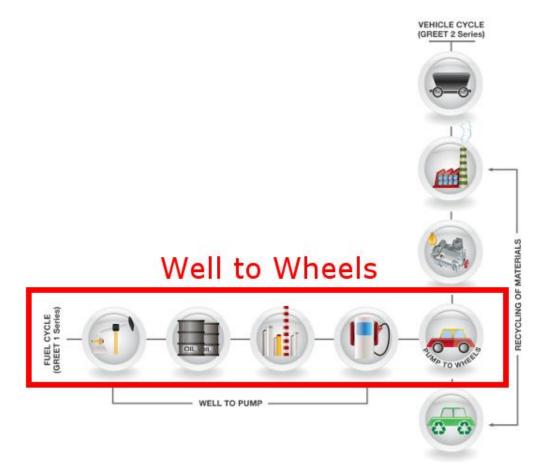


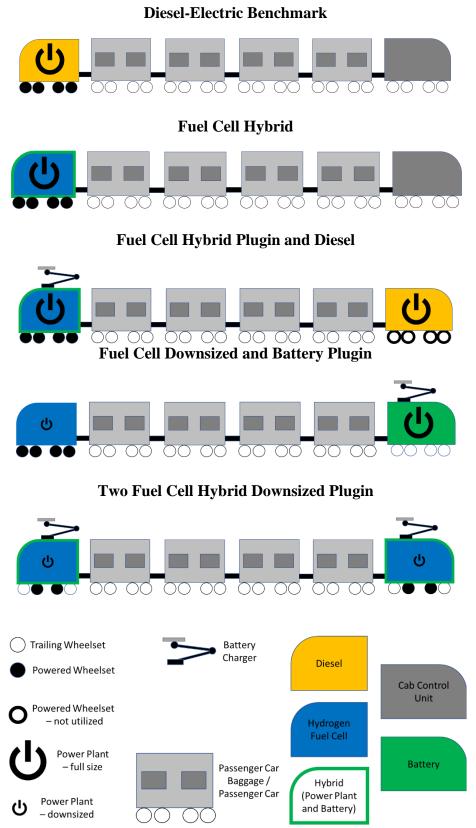
Figure 4-6: Illustration of Well-to-Wheel Cycle (Argonne National Laboratory, 2019)

5 POWERTRAIN TECHNOLOGIES AND HYDORGEN PRODUCTION

In this section, the authors describe the various train configurations including the different simulated powertrains as well as the assessed hydrogen production pathways while providing information about the assumed electricity grid.

5.1 Powertrain Options

All modelled configurations have at least one locomotive, a lounge car which has baggage storage and booth seating for passengers, and three passenger cars. The motive power provision options vary between a single locomotive and an un-powered CCU and two locomotives, one on each end of the train. For most options four axles are powered to compare the results with the benchmark single locomotive option. In the cases of single hydrogen locomotive, the impact of hauling a separate diesel locomotive that is not operating for redundancy purposes has been included in the modelling.


For both the diesel and hydrogen options, hybrid powertrains have been considered in the simulation with batteries installed either in the same motive power vehicle as the primary power plant or in a separate converted CCU. Batteries with an LTO chemistry have been modelled but others such as NMC would be a possibility for implementation. The hybrid options have two variants, one where all the power required to charge the batteries is provided by the power plant and the second is a plugin version, where the batteries are recharged after each roundtrip. The depth-of-discharge has been limited to ~50% as a proxy for safe operation and reaching a satisfactory lifetime of the batteries.

Power output reduction version for the fuel cell hybrid options were modelled, with the objective to reduce the number of required fuel cell systems to decrease capital cost and provide additional volume for hydrogen storage. The hydrogen options also include a version where the powertrain is split between two locomotives or between a locomotive and converted CCU providing additional volume to install equipment.

Fuel savings for any particular journey can be realized through efficient driving. Many railroads deployed driver advisory systems that provide engineers with information to balance fuel usage with schedule requirements. This has not been taken into account in this study as the emphasis was on the comparison between different powertrains.

In a later phase of the project, optimization of component sizes including energy efficient driving could be undertaken to find the most appropriate combination for NCDOT, however this was beyond the scope of this comparative study, which aimed to determine technical feasibility and provide a comparative assessment between many potential powertrain options.

Results for each modelled option are provided in the Appendix along with an illustration of the train configuration. Examples of train configurations are shown in Figure 5-1. A summary of the train characteristics is provided in Table 5-1.

Figure 5-1: Illustration of Train Configuration Examples

	Single Locomotive	Single Locomotive Hybrid	Two Locomotives	One Locomotive Hauling a Diesel
Weight in t	472	517	613	656
Resistance to Motion				
Parameters				
A in kN	5.787	6.042	7.103	7.346
B in $kN/(m/s)$	0.139	0.152	0.180	0.193
C in $kN/(m/s)^2$	0.03	0.03	0.03	0.03
Power at Wheels in kW			2000	
Maximum Speed in			79	
mph (km/h)			(127)	
Maximum Acceleration and braking in m/s ²			0.6	
Battery Capacity in kWh (if a hybrid)	-		2,700	

Resistance to motion parameters where not available and have been estimated with the Canadian National formula (AREMA, 2018) and PRIIA specifications. The aerodynamic component in the resistance to motion parameters is the same for all configurations as the authors assumed the same general aerodynamic shape as the current train. A hybrid locomotive configuration is heavier than a conventional with an impact on the resistance to motion parameters, which can also be observed for the other two configurations.

All two locomotive options are evaluated with the premise that four traction motors are installed or operated to provide comparative results to the diesel benchmark train. Additional motors could be installed, which would have an impact on acceleration, speed, journey time, and energy consumption. This impact has been evaluated for the option with two locomotives and a hydrogen downsized hybrid plugin powertrain to illustrate the effect on energy consumption.

5.2 Hydrogen Production Alternatives

Hydrogen production methods were described in the Introduction to Hydrogen Rail Technology section. A summary of the considered options in this study is provided in Table 5-2.

	Onsite Production	Central Production and Delivery as a Gas	Central Production and Delivery as a Liquid
SMR	Yes	Yes	Yes
Electrolysis using grid electricity	Yes	Yes	Yes
Electrolysis using 100% renewable electricity	Yes	Yes	Yes
Biomass	No	No	Yes

The U.S. electric grid is divided into several regions to ensure reliability and North Carolina is part of SERC, see Figure 5-2. In these regions, the share of the various fuel source for electricity generation vary, and the production mix used for the well-to-pump assessment is illustrated in Figure 5-3.

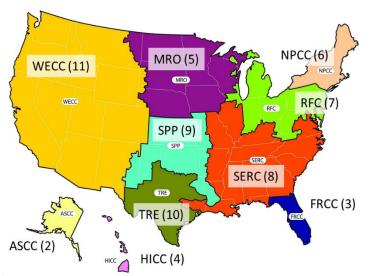
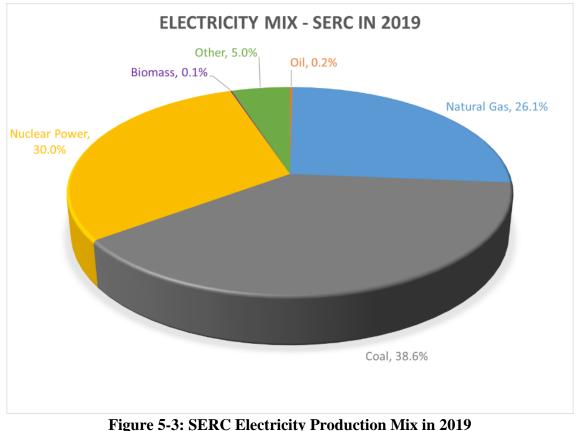



Figure 5-2: Regional Reliability Corporations for the Electric Grid in the U.S. (UChicago Argonne & Argonne National Laboratory, 2019)

(UChicago Argonne & Argonne National Laboratory, 2019)

Electricity production in the SERC region, see Figure 5-3, relies significantly on fossil fuels with coal and natural gas contributing almost a third. There is also a substantial contribution from nuclear power. North Carolina's five nuclear plants make this power source a viable GHG-free option. The high fossil fuel contribution, particularly coal, has an impact on WTW emissions, which becomes particularly clear for the hydrogen electrolysis options, regardless of onsite production or delivery. However, it is expected that a societal-level shift from coal to other sources, such as natural gas and renewables will occur, having a positive impact on emissions. This shift is driven by price differences between the power sources and societal expectations to reduce emissions.

There are several hydro power plants in North Carolina, in relatively close proximity to the Piedmont corridor. One to the operators, Ontario Power Generation, expressed and interest to produce renewable hydrogen at these facilities. A further hydrogen production method uses biomass as a feedstock and initial conversations of NCDOT with a potential provider have started. A 110-mile delivery distance was estimated for the biomass and renewable hydrogen options, based on the possible production locations.

Currently, there is no large-scale merchant hydrogen production in North Carolina, but significant production potential exists due to current industries in the state (see section 3.2 above). Currently, delivery would have to occur from out-of-state for the SMR options and the default distance for delivery as a liquid in GREET of 800 miles was used in the assessment (UChicago Argonne &

Argonne National Laboratory, 2019) and the same distance applied for transportation as a gas. This delivery distance would enable sourcing from neighboring states that have merchant hydrogen production.

6 SIMULATION RESULTS AND DISCUSSION

Comparative results from the assessment are provided in this section while more details about any single train configuration are provided in the appendix.

6.1 High-level Technical Feasibility

Technical feasibility was primarily dependent on the ability of the powertrain to provide the needed power and the space and weight constraints of the CCU. Detailed energy results are presented in the Appendix. Simulations were conducted as a trip from Raleigh to Charlotte and back.

The most challenging configuration is where the entire powertrain has to be installed in a single locomotive as all the weight of the components has to be carried by the four wheelsets and the components have to be installed in the volume available on one vehicle.

The options with "Two Locomotives" include configurations where (a) a diesel locomotive is hauled for backup, (b) the powertrain is distributed across two vehicles, one locomotive and one converted CCU or two converted CCUs. In both cases under option (b), the total of eight traction motors could be operated at a maximum of half their possible power, thereby being equivalent to the characteristics of four traction motors. The last modelled options (c) have two locomotives or converted CCUs where all eight traction motors operate at their full capacity.

Hauling an additional locomotive for backup has a limited impact on energy consumption as can be seen in Figure 6-6. A diesel hybrid in a single vehicle is not feasible due to the volume and weight constraints. A battery would require a substantial volume and add a significant amount of weight, neither of which can likely be accommodated. Therefore, a two locomotive solution would have to be implemented. Nevertheless, single locomotive diesel hybrid options are included in the energy and emission analysis for comparative purposes. High-level space and mass feasibility for the fuel cell options is shown in Table 6-1.

	Powertrain Volume in m ³			Powertrain Weight in t			
Configuration	Two	One		Same as	Higher		
	Walkways	Walkway	Feasible	Locomotive	Limit	Feasible	
Available in CCU	41	52.5	-	41	48	-	
Fuel Cell	34	4	Yes	15		Yes	
Fuel Cell Hybrid	49	9	Yes	47		Yes	
Fuel Cell Hybrid	4	5	Yes	46		Yes	
Plugin	4.	5	105	40		105	
Fuel Cell Hybrid	43	8	Yes	46		Yes	
Downsized	40	0	105	40		105	
Fuel Cell Hybrid	44	1	Yes	44		Yes	
Downsized Plugin	4	+	105	44		105	

Table 6-1: Feasibility of Single Locomotive Fuel Cell Options

As can be seen from Table 6-1, the fuel cell option is feasible while the hybrid options are possible if one of the walkways were eliminated, or the volume of the CCU otherwise expanded, such as raising the roof line. The impact of the battery weight can be seen in the hybrid options and all would be heavier than the current locomotive. The same weight as a current locomotive might be achievable if the mass of non-powertrain components of the converted CCU could be reduced. Sufficient energy (hydrogen or batteries or both) could be carried onboard the converted CCU for one roundtrip before refueling and recharging would be necessary. A two locomotive option would likely allow refueling after two roundtrips as more space and weight would be available on the train. Battery size could be reduced if charging were possible after a one-way journey, reducing implementation complexity subject to operating requirements.

The tractive effort, resistance to motion, and resulting force for acceleration is illustrated in Figure 6-1 and it can be seen that the maximum speed the train could reach is approximately 83mph (~133 km/h).

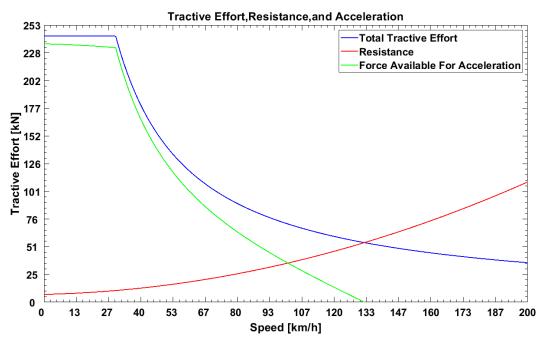


Figure 6-1: Tractive Effort, Resistance, and Acceleration Force for a Single Locomotive Configuration

Figure 6-2 illustrates the impact of adding four traction motors operating at full capability. It can be seen that the maximum tractive effort doubled and that the train could now reach approximately 108 mph (173 km/h). The additional tractive effort combined with the relatively small impact on resistance of the second locomotive (or converted CCU) leads to maximum values for both acceleration and braking to 0.9 m/s², which has a positive impact on journey time but with an energy penalty. Additionally, there is a positive impact on regenerative braking where the full-power eight-motor option enables more energy capture, as illustrated in the Appendix.

The speed profile compared to the line speed limit for a single locomotive train is depicted in Figure 6-3 with the corresponding running diagram illustrated in Figure 6-4. The train reaches the

line speed limit frequently and acceleration and braking phases are shown, but most are difficult to identify. Dwell time at station stops can be seen in the running diagram, Figure 6-4, by the flat section. The 50 min dwell in Charlotte is easily visible.

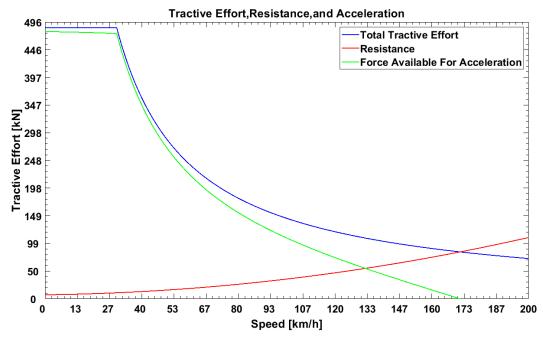
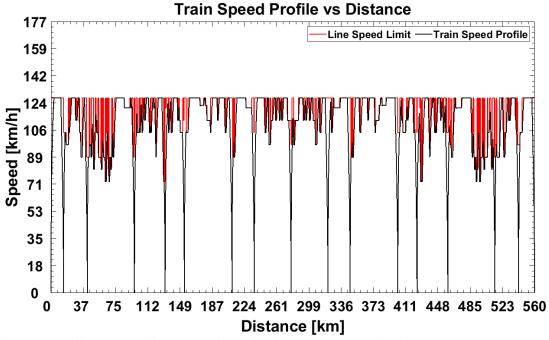



Figure 6-2: Tractive Effort, Resistance, and Acceleration Force for a Two Locomotive Configuration with Eight Traction Motors

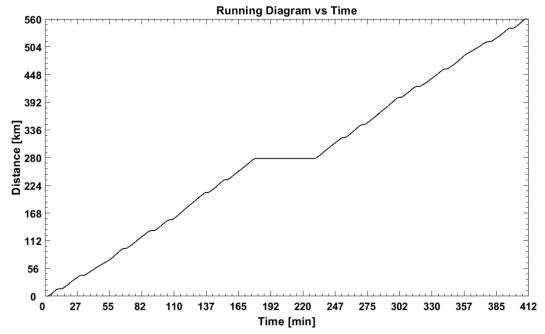


Figure 6-4: Simulated Running Diagram of a Single Locomotive Option over a Roundtrip

The simulated one-way journey time from Raleigh to Charlotte, for a configuration with a single locomotive and a CCU, is three hours and three minutes, while the addition of a locomotive (e.g. hauling a diesel locomotive) would extend the journey by five minutes. If both locomotives (or converted CCUs) were powered with eight traction motors operating at full capability, a journey time of two hours and fifty-three minutes would be achieved, giving a reduction of 10 minutes compared to the single locomotive options (or eight traction motors operating at half capability). To achieve that reduction, additional energy is required, illustrated in Figure 6-6.

6.2 Pump-to-Wheel

Energy consumption and emission resulting from operation are presented in this section as a comparison to the diesel-electric benchmark (single diesel locomotive with CCU). Detailed results for any individual option are presented in the Appendix.

The hydrogen fuel cell options would not have any harmful emissions as part of operations and, therefore, offer a 100% reduction. The impact on emissions from the diesel hybrid options is illustrated in Figure 6-5. Emissions from electricity production to charge the plugin options are considered as part of the WTP analysis. A discussion of the diesel options is provided in the "Well-to-Wheel Energy and Emission Impact" subsection.

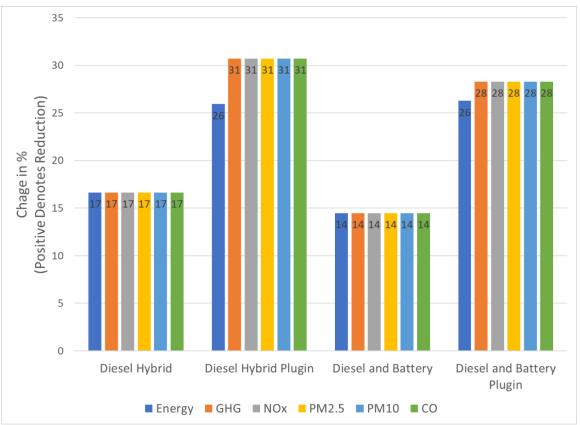


Figure 6-5: Impact of Diesel Hybrid Options on Energy and Emissions from Operation

In Figure 6-6, the energy reduction resulting from operations compared to the diesel-electric benchmark is illustrated. All options offer reduction potential. It should be noted that while the single locomotive options offer the highest reduction, these are the most difficult to implement due to weight and space limitations, and are not feasible for the diesel hybrid options and are shown for illustrative purposes only. Significant reductions are possible with several configurations, in the 50% range, which could have a positive impact on operating cost as long as hydrogen is available at a competitive price.

Splitting the powertrain between two different vehicles has no major impact on energy and subsequent emissions while hauling an additional locomotive, such as a diesel, has a minor impact compared to a CCU option. This is expected as addition of a comparatively small mass does not impact railway energy consumption significantly due to physical characteristics such as the firm interface between the wheels and the rail. Both primary fuel consumption reduction, i.e., diesel or hydrogen, and impact of energy required for battery charging are illustrated. The highest energy reduction potential was achieved with a fuel cell hybrid plugin option, as expected because the FCS can operate in its most energy efficient region while batteries can be charged from the grid. Reducing the number of FCS and resulting power output has minor impact on energy consumption but would enable capital cost reduction and easier powertrain implementation.

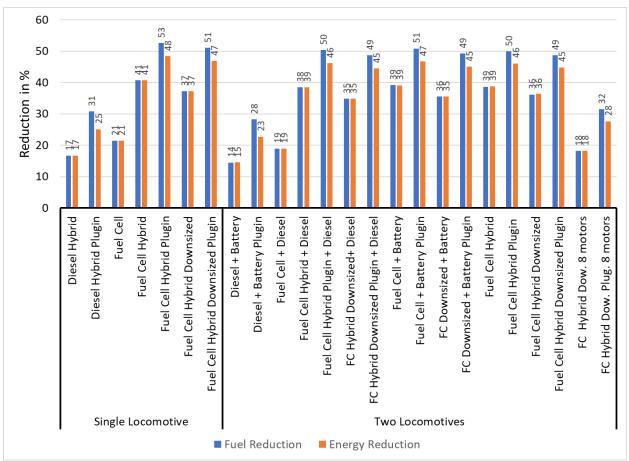


Figure 6-6: Energy Reduction Compared to the Diesel Benchmark

A further observation is the relatively significant impact on energy reduction potential if both locomotives would have powered wheelsets (or all eight traction motors would operate at full power if implemented). A trade-off would have to be made between a faster journey time and impact of energy consumption. Given the current line speeds, the additional capabilities of eight traction motors per train offer limited journey time improvements. Therefore, if a CCU would be converted to a locomotive, careful consideration should be given before all wheelsets are powered. A further possibility would be to limit the power during traction phases but utilize the capabilities of all motors for braking, which would likely lead to energy improvements and smaller journey time reduction.

The two-locomotive option with four powered wheelset (or eight operating at half-capability) and a fuel cell downsized hybrid plugin powertrain appears to be the most feasible option. Reasons for this assessment are the weight and volume constraints of a single locomotive and the high potential to refuel after two roundtrips compared to one; the high energy reduction potential; and the capital cost decrease opportunity in relation to a full-power FCS option. A motive power vehicle of this two-locomotive option would have approximately the following major components: 800 kW FCS, a 1350 kWh battery, 200 kg of hydrogen storage, and two traction motors (or four traction motors operating at half-power). Doubling of the hydrogen storage capacity would likely enable refueling after two roundtrips instead of one. Reduction of the battery size might additionally be possible if recharging could occur after a one-way journey, impacting ease of on-board equipment

implementation and capital cost. Addition of two traction motors to a total of four would be possible enabling more regenerative braking but traction power should be limited to not negate that impact; a trade-off with capital expenditure would be necessary.

6.3 Well-to-Wheel Energy and Emission Impact

In this section a comparison of the WTW impact respective to the benchmark diesel-electric is presented. Well-to-pump emissions are shown in the Appendix together with detailed results for each configuration. Figures have been produced for all diesel-powered options, the single locomotive fuel cell options, and for the two locomotive fuel cell hybrid downsized plugin version to illustrate the impact.

Diesel hybrid options offer noteworthy reductions in WTW energy and emissions, as illustrated in Figure 6-7. Only the two locomotive options are feasible, and the plugin version performs better than the diesel and battery locomotive option. A large proportion of the emissions occur during operation due to diesel combustion on the locomotive and zero-emissions cannot be achieved, nor is an emission-free energy supply chain possible with current technology for the diesel options. Conversion of a CCU to hold a battery thereby forming a diesel hybrid train consist would be a suitable option to reduce air pollutants and energy consumption.

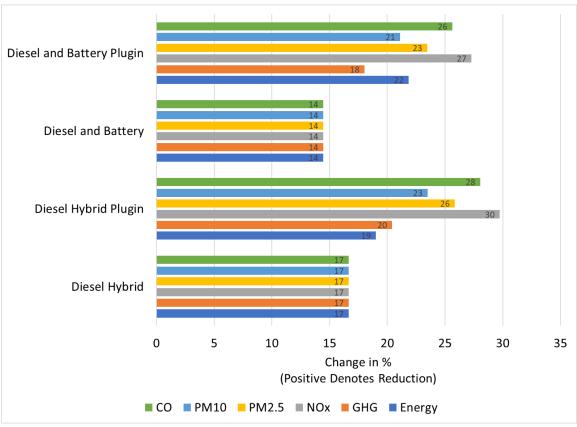


Figure 6-7: Diesel Hybrid Options WTW Energy and Emission Impact

The next graphs show the impact of single locomotive hydrogen fuel cell options on a WTW basis. Figure 6-8 illustrates the energy impact, followed by Figure 6-9 showing GHG emissions, impact

on criteria pollutants are presented in Figure 6-10 to Figure 6-13. All emissions would occur as part of the energy supply chain as hydrogen options are zero-emission during operation.

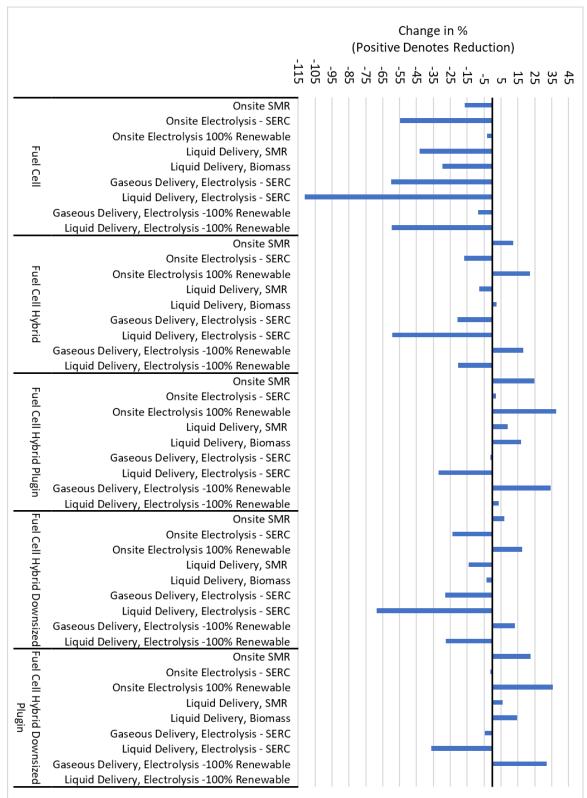


Figure 6-8: Single Locomotive Fuel Cell Options WTW Energy



Figure 6-9: Single Locomotive Fuel Cell Options WTW GHG

			(Pe	ositiv		nge i notes		luctio	on)		
	0	10	20	30	40	50	60	70	08	90	100
	Onsite SMR Onsite Electrolysis - SERC								_	+	
-	Onsite Electrolysis 100% Renewable	-				-	-		-	-	
Fuel Cell	Liquid Delivery, SMR Liquid Delivery, Biomass										
Cell	Gaseous Delivery, Electrolysis - SERC	-		_	-	-	_		-		
	Liquid Delivery, Electrolysis - SERC										
	Gaseous Delivery, Electrolysis -100% Renewable Liquid Delivery, Electrolysis -100% Renewable										Ξ.
	Onsite SMR	_				_				_	
-	Onsite Electrolysis - SERC					-			-		
ue	Onsite Electrolysis 100% Renewable										
Fuel Cell Hybrid	Liquid Delivery, SMR Liquid Delivery, Biomass										
Hyt	Gaseous Delivery, Electrolysis - SERC			_		-			-		
orid	Liquid Delivery, Electrolysis - SERC			-					-		
	Gaseous Delivery, Electrolysis -100% Renewable										
	Liquid Delivery, Electrolysis -100% Renewable Onsite SMR										
Fue	Onsite Electrolysis - SERC		_	_		-	_		-	- 1	
Ce	Onsite Electrolysis 100% Renewable										
ШН _У	Liquid Delivery, SMR Liquid Delivery, Biomass										
Fuel Cell Hybrid Plugin	Gaseous Delivery, Electrolysis - SERC									-	
Plu	Liquid Delivery, Electrolysis - SERC			-		-			-		
gin	Gaseous Delivery, Electrolysis -100% Renewable										
	Liquid Delivery, Electrolysis -100% Renewable Onsite SMR										
uel (Onsite Electrolysis - SERC										
Cell	Onsite Electrolysis 100% Renewable			-					-		
Hyb	Liquid Delivery, SMR										
rid [Liquid Delivery, Biomass Gaseous Delivery, Electrolysis - SERC										
Dow	Liquid Delivery, Electrolysis - SERC								-		
nsiz	Gaseous Delivery, Electrolysis -100% Renewable	-		-	-	-	-	-	-	-	
F	Liquid Delivery, Electrolysis -100% Renewable										
ue	Onsite SMR Onsite Electrolysis - SERC										'
Cell	Onsite Electrolysis 100% Renewable										
Hyb Plı	Liquid Delivery, SMR										
łybrid [Plugin	Liquid Delivery, Biomass										
Dow	Gaseous Delivery, Electrolysis - SERC Liquid Delivery, Electrolysis - SERC									-	
Fuel Cell Hybrid Downsized Fuel Cell Hybrid Downsized Plugin	Gaseous Delivery, Electrolysis - 100% Renewable										
zed	Liquid Delivery, Electrolysis -100% Renewable										

Figure 6-10:Single Locomotive Fuel Cell Options WTW NOx

			(Pc	Ch ositive De	ange in enotes F		on)	
		-20	0	20	40	60	80	100
	Onsite SMR	:	-				_	
	Onsite Electrolysis - SERC	:	_					
	Onsite Electrolysis 100% Renewable	9						-
E	Liquid Delivery, SMR					_		
Fuel Cell	Liquid Delivery, Biomass	5						
ell	Gaseous Delivery, Electrolysis - SERC	2	-					
	Liquid Delivery, Electrolysis - SERC	: 🗕	_					
	Gaseous Delivery, Electrolysis -100% Renewable	2						_
	Liquid Delivery, Electrolysis -100% Renewable							_
	Onsite SMR	1					_	
	Onsite Electrolysis - SERC	:		_				
Fuel Cell Hybrid	Onsite Electrolysis 100% Renewable	2						-
C C	Liquid Delivery, SMR					_	_	
ell	Liquid Delivery, Biomass	5					_	
Hyb	Gaseous Delivery, Electrolysis - SERC	2		_				
orid	Liquid Delivery, Electrolysis - SERC	:		•				
_	Gaseous Delivery, Electrolysis -100% Renewable	2		_	_	_	_	_
	Liquid Delivery, Electrolysis -100% Renewable					_	_	_
	Onsite SMR	:		_	_	_	_	
Fuel Cell Hybrid Plugin	Onsite Electrolysis - SERC	:		_	_			
ů C	Onsite Electrolysis 100% Renewable	2		_		_		_
	Liquid Delivery, SMR						_	
ЧуР	Liquid Delivery, Biomass	5					_	
rid	Gaseous Delivery, Electrolysis - SERC	:			_			
Plu	Liquid Delivery, Electrolysis - SERC	:		_				
Igin	Gaseous Delivery, Electrolysis -100% Renewable	9						_
_	Liquid Delivery, Electrolysis -100% Renewable	2		-		_	_	
Fu	Onsite SMR	1		_		_	_	
el C	Onsite Electrolysis - SERC	:						
ell	Onsite Electrolysis 100% Renewable	2		_	-	_	_	-
Hyt	Liquid Delivery, SMR			-			-	
oric	Liquid Delivery, Biomass	5				_	-	
D	Gaseous Delivery, Electrolysis - SERC	2		_				
Wr	Liquid Delivery, Electrolysis - SERC	:	_					
Isiz	Gaseous Delivery, Electrolysis -100% Renewable			-				_
ed	Liquid Delivery, Electrolysis -100% Renewable			-	-	_	_	_
Fu	Onsite SMR	1				_	_	
Fuel Cell Hybrid Downsized Fuel Cell Hybrid Downsized Plugin	Onsite Electrolysis - SERC							
ell	Onsite Electrolysis 100% Renewable	2						
₽₩	Liquid Delivery, SMR		 					
łybrid [Plugin	Liquid Delivery, Biomass	5					_	
n pč	Gaseous Delivery, Electrolysis - SERC	:			_			
IMG	Liquid Delivery, Electrolysis - SERC							
nsiz	Gaseous Delivery, Electrolysis -100% Renewable							
ed	Liquid Delivery, Electrolysis -100% Renewable		 					

Figure 6-11: Single Locomotive Fuel Cell Options WTW PM2.5

Figure 6-12: Single Locomotive Fuel Cell Options WTW PM10

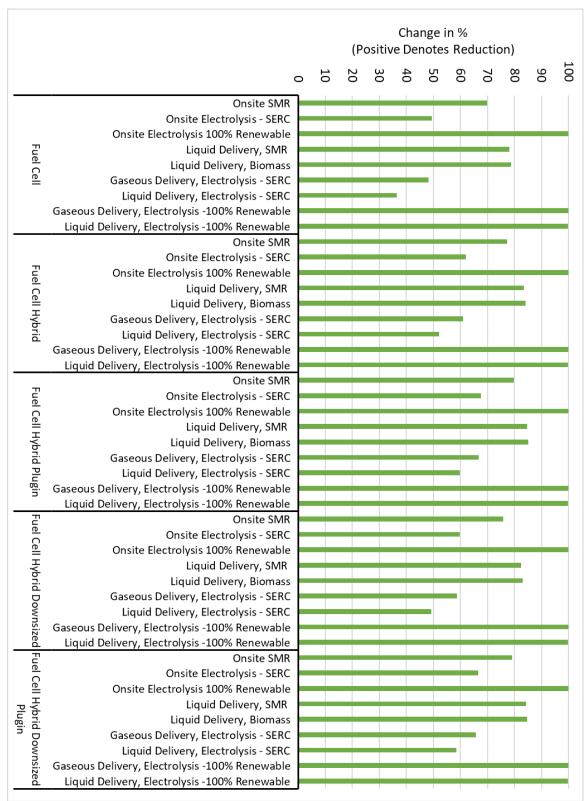


Figure 6-13: Single Locomotive Fuel Cell Options WTW CO

All options and supply chain pathways lead to a reduction in NOx and CO while the impact on energy, GHG, and PM are dependent on the pathway and increases are possible. PM reduction is important, especially at the point of use, as the EPA uses this pollutant to calculate large-scale health benefits (Harris, 2020). Thus, an option with a positive PM reduction is desirable. The fuel cell hybrid plugin offers the highest reductions as expected from the operational results, while the fuel cell option offers the lowest reductions of all considered hydrogen configurations.

The high contribution of fossil fuels in the electricity mix directly affects GHG and PM and has an impact on overall energy consumption. This production option should be avoided unless the electricity mix will become substantially less carbon intensive.

The best emission and energy reductions can be achieved with electrolysis and 100% renewable electricity mix as expected. There is a small difference between onsite production and delivery in the renewable electrolysis options but transportation of hydrogen has a minimal impact over the short distances considered; delivery as a gas offers higher reductions than as a liquid due to the high energy penalty for liquification. From a practical implementation perspective, the delivery by truck option might be especially attractive during the demonstration and early implementation phases when only a few hydrail vehicles are in use. NCDOT would not need to consider building an on-site hydrogen production plant until a later phase when comfortable with hydrail technology.

Hydrogen production from SMR offers substantial reductions in criteria pollutants and the onsite option offers the highest. The biomass option is also attractive, with reductions typically between SMR and electrolysis with 100% renewable electricity. Results for the two locomotive options follow a similar pattern as WTW emissions are dependent on energy consumption resulting from operations. The options of a single locomotive hauling a diesel have lower energy and emission performance while the two locomotive hydrogen options with four traction motors (or eight traction motors operating at half their capability) have similar but slightly less energy improvement, both illustrated in Figure 6-6, with the corresponding impact on the supply chain. An example of the WTW impact of a two locomotive option (either four traction motors, or eight traction motors operating at half their capability) is depicted in Figure 6-14.

The preferred train configuration and powertrain from the operational and implementation perspective as described in the High-level Technical Feasibility and Pump-to-Wheel section was the two locomotive fuel cell hybrid downsized plugin. In Figure 6-14, the results for that configuration are illustrated.

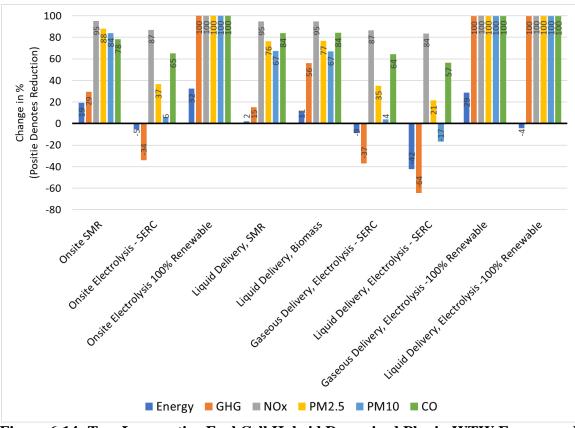


Figure 6-14: Two Locomotive Fuel Cell Hybrid Downsized Plugin WTW Energy and Emission Impact

The general pattern across the various hydrogen supply options is the same as for the other fuel cell configurations. The best emission and energy reductions are achieved with onsite electrolysis with a 100% renewable electricity mix, followed by the delivery options with that production method. Both SMR options offer reductions in all categories while the biomass option performs better than the SMR delivery pathway. Hydrogen production through electrolysis from SERC grid electricity is the option with the lowest reductions and increases in WTW energy and GHG emissions and, therefore, should be avoided unless the carbon intensity of electricity production can be substantially reduced. For the SECR electrolysis pathways: onsite electrolysis performs best, followed by delivery as a gas, while delivery as a liquid offers the lowest emission reduction in NOx, PM2.5, and CO combined with an increase in energy consumption, GHG, and PM10. The high carbon content in the electricity production mix combined with the energy demands for liquification are the primary causes for that result.

NCDOT may wish to consider a phased approach towards powertrain conversion to reduce implementation risk, become more comfortable with new technology, or due to budget constraints. A possibility would be to replace one of the diesel locomotives in the current consist with a converted CCU housing a battery, therefore creating a diesel hybrid train consist. In the next phase, the battery CCU could be upgraded with hydrogen fuel cell technology. Subsequently, the remaining diesel locomotive would be replaced with a hydrail vehicle.

Overall a hydrail option is feasible and offers zero-emissions resulting from operation with the potential to reduce WTW energy and emissions depending on the hydrogen production pathway. Given NCDOT's ambitions, a hydrail solution may be a cost-effective path forward to reduce emissions, ideally coupled with renewable hydrogen production, but a biomass or natural gas option would also result in emission and energy reduction in many train configurations, including the preferred option from an operational and implementation perspective.

7 CONCLUSION

The two incumbent powertrain technologies for railway motive power in the U.S. are electric where power is supplied through continuous wayside infrastructure and diesel-electric where power for the traction motors is produced onboard, the latter is the dominant in North America and the option used by NCDOT. Combustion of hydrocarbons, including diesel, leads to exhaust with air pollutants and GHGs. The Piedmont service route is located in counties that have previously been in air quality non-attainment and NCDOT has a desire to reduce, ideally eliminate, emissions from their rail operations if technically and economically feasible. Previous efforts of the Rail Division in that direction included testing of biodiesel and installation of aftertreament systems to the existing locomotives. New technologies such as diesel battery hybrids and hydrogen fuel cells offer the potential to reduce energy consumption and emissions, the latter avoiding harmful emissions throughout the energy supply chain. The conducted work compared technical feasibility of diesel battery hybrids and hydrail technology for the Piedmont service.

Diesel battery hybrids and hydrail vehicles have been successfully demonstrated in locomotive applications and are operating in service as multiple unit configurations. However, neither technology is currently in operation for a service with NCDOT's demands and, therefore, assessment of technical feasibility is necessary. Twenty-three train configurations have been modelled as part of the study, ranging from a diesel-electric benchmark through diesel hybrid options to various hydrail powertrains. Plugin variants were part of the investigation, i.e. the battery system can be charged from the grid after a roundtrip. As an energy carrier, hydrogen can be produced from many different feedstocks and nine production pathways have been considered in this analysis. Single train simulation and well-to-wheel assessment tools were employed to assess feasibility and indicate options suitable for the next phase(s), which could include construction of a demonstrator vehicle(s). Key findings and recommendations are provided in this section.

7.1 Key Findings

A diesel hybrid option offers reduction in energy consumption and emissions both in operations and throughout the supply chain. Installation of the required battery system in the same vehicle as the diesel-generator-set is not feasible due to the volume and mass implications but converting a CCU to house the battery system would be possible, offering reductions.

Hydrail technology has been in commercial operation in multiple unit trains in Germany for over two years. The assessment finds that hydrail technology is feasible for implementation on the Piedmont corridor. Sufficient power can be provided by either a fuel cell powertrain or a fuel cell hybrid powertrain to meet speed expectations and journey time. Fitting a CCU with a new powertrain to create a locomotive is probably a cost-effective option. The volume available in a CCU could likely accommodate all required equipment and hydrogen storage if refuelling after one roundtrip is possible; however, a more detailed design assessment would be required. Results from the assessment indicate that hydrogen storage at 350 bar is feasible but pressure could be increased to allow installation with a smaller volume requirement if necessary. Distributing the powertrain across two locomotives (or converted CCUs), one on each end of the train, would likely enable a refuelling frequency after two roundtrips. A journey time improvement of approximately 10 minutes could be achieved if all eight axles of these vehicles would be powered and operating at full capacity but energy reduction compared to the benchmark would be lower than with other options; a decrease of approximately 18% for the hydrogen hybrid option and 28% for the respective plugin version. From this initial assessment, the two locomotive (or converted CCUs) fuel cell downsized hybrid plugin with four traction motors (or eight traction motors operating at half capability) appears to be the most preferable for the Piedmont service, considering weight and volume requirements, refuelling frequency, number of FCS, and energy and emission reduction potential.

A phased technology implementation approach could be considered by NCDOT, where a CCU is converted to battery and operated with a diesel locomotive in a consist creating a diesel hybrid offering energy and emission reductions. Although this may be suitable approach from a budget and funding perspective, it is not the best option for long-term emissions reduction. However, the converted battery CCU could be further modified by installing a hydrogen fuel cell system with associated tanks. Alternatively, if budget and propensity to take risk is acceptable, a hydrogen fuel cell hybrid powertrain could be implemented in the CCU from the outset thereby eliminating harmful emissions at the point of use.

Energy reduction from operations compared to the diesel-electric benchmark range from 15% to 48%, the lowest decrease achieved with the diesel and battery option and the highest with the single locomotive (or converted CCU) fuel cell hybrid plugin. The two locomotive (or converted CCU) options offer an approximate two to three percentage point lower reduction compared to the single motive power vehicle variants but enable easier implementation and the possibility to refuel after two roundtrips instead of one. The likely preferred option of NCDOT based on this assessment would offer a 45% energy reduction in train operation.

Of the nine considered hydrogen production pathways, the highest energy and emission reductions are achieved with onsite electrolysis supplied by a 100% renewable (or carbon-free) electricity mix, followed closely by the same production method at a central location and hydrogen delivery as a gas while delivery as a liquid would result in energy increases but emission reduction. The lowest reductions and increases in WTW energy requirements and GHG as well as PM in some configurations are the result if hydrogen would be produced by electrolysis from SERC grid electricity. Onsite production performs better than central and delivery. SMR offers reductions in emissions and energy in most cases with the onsite option performing better than delivery. Production of hydrogen from biomass and delivery has similar results as SMR but offers higher GHG and energy reduction.

7.2 Recommendations

Hydrail is feasible for the Piedmont service based on the criteria assessed in this work. The likely best train configuration for NCDOT from an energy and emission reduction perspective is the option with two locomotives (or converted CCUs) employing a hydrogen fuel cell hybrid downsized plugin powertrain with four traction motors (or eight traction motors operating at half their capability). The rationale for that choice is a combination of space and weight considerations,

likely making implementation of a hydrail powertrain easier, the probable refuelling frequency after two roundtrips instead of one, the high energy and emission reduction potential, and the cost reduction possibilities through fewer FCS requirements. If charging after a one-way journey would be possible, additional component size reductions with associated cost savings are likely. To address possible technological concern and funding availability, batteries could be added to a CCU to provide a diesel battery hybrid train consist offering energy and emission reductions.

Following this technical feasibility study an economic and life-cycle cost assessment of a hydrail system for the Piedmont service should be conducted. , This would enable NCDOT to choose the most appropriate powertrain and hydrogen delivery pathway commensurate with their criteria. Trade-offs between emission reduction, energy savings from operations, capital investment, and operational expenditure will have to be made and could be identified in that project.

Construction of a proof-of-concept vehicle is recommended to validate simulation results and demonstrate feasibility on the actual route, as any modelling offers estimates only. The primary powertrain components of such a vehicle (converted CCU) could be an 800 kW FCS, a 1350 kWh battery with plugin capability, 200 kg of hydrogen storage, and two traction motors (or four traction motors, cost permitting); it would represent one motive power vehicle of a two locomotive (or converted CCU) consist train. Refueling after one roundtrip should be achievable with this design. Additional hydrogen storage might be required for redundancy purposes. A more detailed design would have to be part of the project, which would enable component size and hydrogen storage quantity optimization.

If a hydrail system were implemented and WTW emissions reduction were prioritized, then production via electrolysis from an electricity mix consisting of 100% renewable sources should be chosen. For this case, hydrogen production could either be onsite or elsewhere and delivered to the fueling station, over a relatively short distance. SMR, the most common current hydrogen production pathway, offers emission reductions on a WTW basis with hydrogen delivered to the refueling station, rendering this option likely for a demonstration project.

In summary a hydrail option is feasible on the Piedmont service and suitable to achieve emission reduction goals while also decreasing energy consumption in train operations. In a next phase a proof-of-concept or demonstrator should be constructed and tested.

8 REFERENCES

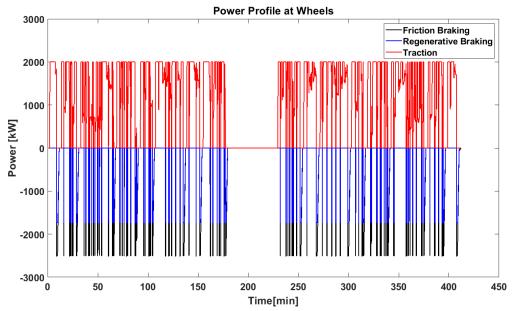
- Ahluwalia, R. K., Wang, X., & Kumar, R. (2012). *Fuel Cells for Buses, 2012*. Retrieved from Argonne: <u>http://www.ieafuelcell.com/documents/Fuel_Cells_for_Buses_Jan_2012.pdf</u>
- Air Products. (2013). SmartFuel Hydrogen Supply Options. Allentown, PA: Author.
- Akasol. (2018). High Performance Battery Systems for Rail Vehicles. Darmstadt: Author.
- Alstom. (2018). World premiere: Alstom's hydrogen trains enter passenger service in Lower Saxony [Press release]. Retrieved from <u>https://www.alstom.com/press-releases-news/2018/9/world-premiere-alstoms-hydrogen-trains-enter-passenger-service-lower</u>
- Altair Nano Technologies. (2016). 24V 70Ah Battery Module. Retrieved from https://altairnano.com/products/battery-module/
- AREMA. (2018). Manual for Railway Engineering: Chapter 16 Economics of Railway Engineering and Operations. Lanham, MD: Author.
- Argonne National Laboratory. (2019). GREET Model: The Greenhouse gases, Regulated Emissions, and Energy use in Transportation Model. Retrieved from <u>https://greet.es.anl.gov/</u>
- Barrett, S. (2017). TRC starts hybrid tram trial in China with Ballard fuel cell engine. *Fuel Cells Bulletin, 2017*(11), 3. doi:<u>https://doi.org/10.1016/S1464-2859(17)30373-5</u>
- Barrow, K. (2019). Toshiba unveils hybrid locomotive in Munich. Retrieved from https://www.railjournal.com/fleet/toshiba-unveils-hybrid-locomotive-in-munich/
- Becker, R. W., & Boggess, J. S. (1990, 17-19 April 1990). System considerations for heavy haul diesel-electric locomotives with three phase traction motors. Paper presented at the ASME/IEEE Joint Conference on Railroads.
- Brady, M. (2017). Assessment of Battery Technology for Rail Propulsion Application. Retrieved from Washington, DC: Federal Railroad Administration, https://rosap.ntl.bts.gov/view/dot/35526
- CH2M Hill, Ernst & Young, & Canadian Nuclear Laboratories. (2018). *Regional Express Rail Program Hydrail Feasibility Study Report*. Retrieved from Toronto, ON: <u>http://www.metrolinx.com/en/news/announcements/hydrail-resources/CPG-PGM-RPT-</u> 245_HydrailFeasibilityReport_R1.pdf
- Coombe, D., Fisher, P., Hoffrichter, A., Kent, S., Reed, D., Rowshandel, H., ... Zentani, A. (2016). Development and design of a narrow-gauge hydrogen-hybrid locomotive. *Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230*(1), 181-192. doi:10.1177/0954409714532921
- Cowie, I. (2015, 2015/01/21/). All About Batteries, Part 12: Lithium Titanate (LTO). *EE Times*. Retrieved from <u>https://www.eetimes.com/author.asp?section_id=36&doc_id=1325358#</u>
- DOE. (2011). Types of Fuel Cells. Retrieved from <u>http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_types.html</u>
- DOE. (2016). *Comparison of Fuel Cell Technologies*. Washington, DC: U.S. Department of Energy (DOE).
- EIA. (2013). Data: Weekly California No 2 Diesel Retail Prices. In *Petroleum & Other Liquids*. Washington, DC: U.S. Department of Energy.

Electro-Motive Diesel. (1994). Locomotive Service Manual Go Transit. London, ON: Author.

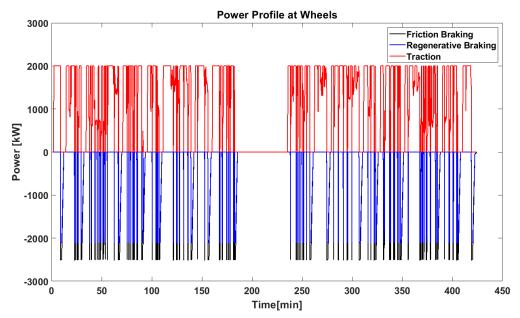
EPA. (2016). *Locomotives: Exhaust Emission Standards*. (EPA-420-B-16-024). Washington DC: Author Retrieved from <u>https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100OA09.pdf</u>

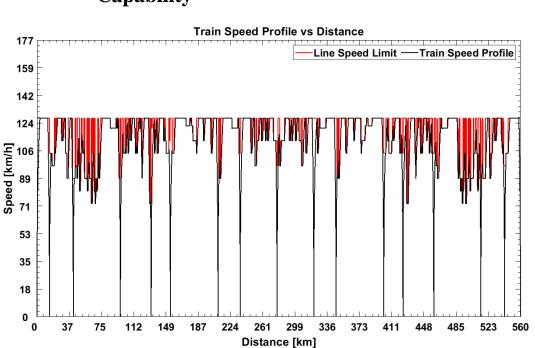
- EPA. (2019). Understanding Global Warming Potentials. Retrieved from <u>https://www.epa.gov/ghgemissions/understanding-global-warming-potentials</u>
- EPA. (2020). North Carolina Nonattainment/Maintenance Status for Each County by Year for All Criteria Pollutants *Green Book*. Retrieved from https://www3.epa.gov/airquality/greenbook/anayo_nc.html
- Eudy, L. (2019). *Technology Acceleration: Fuel Cell Bus Evaluations*. Paper presented at the DOE FCTO Annual Merit Review and Peer Evaluation Washington, DC. https://www.hydrogen.energy.gov/pdfs/review19/ta013_eudy_2019_o.pdf
- Frey, H. C., Graver, B. M., & Hu, J. (2016). Locomotive Biofuel Study Rail Yard and Over the Road Measurements Using Portable Emissions Measurement System. Washington, DC
- Gillette, J. L., & Kolpa, R. L. (2008). *Overview of interstate hydrogen pipeline systems* (ANL/EVS/TM/08-2; TRN: US200806%.%498). Retrieved from Argonne: http://www.osti.gov/bridge/servlets/purl/924391-x1JF44/
- Hansen, G. P., Sato, M., & Yan, Y. (2010). Pressure Vessels for Hydrogen Vehicles: An OEM perspective. Paper presented at the International Hydrogen Fuel and Pressure Vessel Forum, Beijing.
- Harris, L. (2019). Plans for Hydrail Implementation on NCDOT's Piedmont Passenger Trains. 2019 TRB Annual Meeting. Washington, DC.
- Hexagon. (2019). Compostie Type 4 High-Pressure Tanks for CNG Light-Duty Vehicles. Lincoln, NE: Author.
- Hexagon Lincoln. (2017). Hydrogen Storage and Transportation Systems. Lincoln, NE: Author.
- Hoffrichter, A. (2012). The Feasibility of Discontinuous Electrification: Case Study of the Great Western Main Line. ((Master's dissertation)). University of Birmingham, Birmingham.
- Hoffrichter, A. (2013). *Hydrogen as an Energy Carrier for Railway Traction*. (PhD). University of Birmingham, Birmingham. Retrieved from <u>http://etheses.bham.ac.uk/4345/</u>
- Hoffrichter, A., Fisher, P., Tutcher, J., Hillmansen, S., & Roberts, C. (2014). Performance evaluation of the hydrogen-powered prototype locomotive 'Hydrogen Pioneer'. *Journal* of Power Sources, 250(0), 120-127. doi:<u>http://dx.doi.org/10.1016/j.jpowsour.2013.10.134</u>
- Hoffrichter, A., Hillmansen, S., & Roberts, C. (2016). Conceptual propulsion system design for a hydrogen-powered regional train. *IET Electrical Systems in Transportation*, 6(2), 56-66. doi:10.1049/iet-est.2014.0049
- IEA. (2006). *Hydrogen Production and Storage: R&D Priorities and Gaps*. Retrieved from Paris: <u>http://ieahydrogen.org/pdfs/Special-Reports/Hydrogen_Gaps_and_Priorities.aspx</u>
- IEA. (2009). *Transport, Energy and CO2*. Retrieved from Paris: <u>http://www.iea.org/publications/freepublications/publication/transport2009.pdf</u>
- IEA, & UIC. (2017). Railway Handbook 2017: Energy Consumption and CO2 Emissions. Paris: Author.
- IPCC. (2020). About the IPCC.
- Isaac, R. (2019). Fuels and Fuel Technologies for Powering 21st Century Passenger and Freight Rail: Simulation-Based Case Studies in a U.S. Context. (PhD). University of California, Davis, CA.
- Johnson Matthey Battery Systems. (2017). *Our Guide to Batteries*. Retrieved from <u>http://www.jmbatterysystems.com/technology/our-guide-to-batteries</u>
- Kawasaki, J., Takeda, S., & Furuta, R. (2008). Development of the Fuel Cell Hybrid Railcar. *Japanese Railway Engineering*, 160, 6-8.

- Kurtz, J., Sprik, S., Ainscough, C., & Saur, G. (2017). Fuel Cell Electric Vehicle Evaluation. Retrieved from Washington, DC: <u>https://www.nrel.gov/hydrogen/fuel-cell-vehicle-evaluation.html</u>
- Lovegrove, G. (2018). Okanagan Valley Electric Regional Passenger Rail. Kelowna, BC: Kelowna Now.
- Lu, S., Hillmansen, S., & Roberts, C. (2010, 13-15 April 2010). *Power management strategy study for a multiple unit train.* Paper presented at the IET Conference on Railway Traction Systems (RTS 2010).
- Lu, S., Meegahawatte, D. H., Guo, S., Hillmansen, S., Roberts, C., & Goodman, C. J. (2008, 25-28 March 2008). Analysis of energy storage devices in hybrid railway vehicles. Paper presented at the International Conference on Railway Engineering - Challenges for Railway Transportation in Information Age, 2008. ICRE 2008.
- Meegahawatte, D., Hillmansen, S., Roberts, C., Falco, M., McGordon, A., & Jennings, P. (2010). Analysis of a fuel cell hybrid commuter railway vehicle. *Journal of Power Sources*, 195(23), 7829-7837. doi:10.1016/j.jpowsour.2010.02.025.
- Metro Report International. (2019). Foshan welcomes hydrogen fuel cell tram. Retrieved from <u>https://www.railwaygazette.com/modes/foshan-welcomes-hydrogen-fuel-cell-tram/55268.article</u>
- Miller, A. R., Erickson, T. L., Dippo, J. L., Eisele, R. I., Johnson, M. D., & Lambrecht, T. (2011). *Hydrogen Fuel-Cell Locomotive: Switching and Power-to-Grid Demonstrations*. Paper presented at the 9th World Congress on Railway Research (WCRR), Lille.
- Miller, A. R., Johnson, M. D., Hess, K. S., Erickson, T. L., Dippo, J. L., & Lambrecht, T. (2009). Operation Of A Fuelcell-Hybrid Switch Locomotive For The Los Angeles Basin: The Largest Fuel-Cell Land Vehicle. Paper presented at the The Fuel Cell Seminar, Palm Springs, CA. <u>http://www.fuelcellseminar.com/assets/2009/DEM24-</u> <u>3_0430PM_Miller.pdf</u>
- MM, MSU CRRE, & SBCTA. (2019). ZEMU Concept Feasibility Study. Retrieved from San Bernardino, CA: <u>https://www.gosbcta.com/wp-</u> <u>content/uploads/2019/09/20190710_RPT_ZEMU_Concept_Feasibility_Study_Report_wi</u> <u>th_appendices_FINAL.pdf</u>
- MSU CRRE, & BCRRE. (2019). Low- or Zero-Emission Multiple-Unit Feasibility Study. Retrieved from San Bernardino, CA: <u>https://www.gosbcta.com/wp-</u> <u>content/uploads/2019/09/20191231_RPT_SBCTA_2019_Low_or_Zero_Emission_Multiple_Unit_Feasibility_Study.pdf</u>
- Nategh, S., Boglietti, A., Liu, Y., Barber, D., Brammer, R., Lindberg, D., & Aglen, O. (2020). A Review on Different Aspects of Traction Motor Design for Railway Applications. *IEEE Transactions on Industry Applications*, 56(3), 2148-2157. doi:10.1109/TIA.2020.2968414
- NFPA. (2019). Hydrogen Technoligies Code. Retrieved from <u>https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=2</u>
- Nichols, M. D. (2017). Petition for Rulemaking Seeking the Amendment of the Locomotive Emission Standards for Newly Built Locomotive and Locomotive Engines and Lower Emission Standards for Remanufactured Locomotives and Locomotive Engines. Sacramento, CA: California Air Resources Board.
- ORNL. (2019). Transportation energy Data Book Edition 37. Washington, DC.


- Pacific Northwest National Laboratory. (2019). Hydrogen Tools Flame Detection. Retrieved from <u>https://h2tools.org/bestpractices/flame-detection</u>
- Perrin, J. (2007). Deliverable 2.1 and 2.1a: "European Hydrogen Infrastructure Atlas" and "Industrial Excess Hydrogen Analysis": Part III: Industrial distribution infrastructure. Retrieved from Aachen: <u>http://www.ika.rwth-</u> <u>aachen.de/r2h/index.php/Roads2HyCom_Reports_in_Detail#Infrastructure</u>
- Railway Gazette International. (2019). JR East to trial fuel cell multiple-unit. Retrieved from https://www.railwaygazette.com/asia/jr-east-to-trial-fuel-cell-multiple-unit/48671.article
- Raj, P. K. (1997). Use of Hydrogen to Power the Advanced Technology Transit Bus (ATTB): An Assessment. Retrieved from Washington, DC: <u>https://rosap.ntl.bts.gov/view/dot/8405</u>
- Read, B. (2019). *TIG/m Self-Powered Trams*. Paper presented at the Transportation Research Board (TRB) Annual Meeting, Washington, DC.
- Reidinger, E. (2018, 2018/09//). ÖBB and Siemens present battery-electric multiple unit. International Railway Journal. Retrieved from <u>https://www.railjournal.com/rolling-stock/obb-and-siemens-present-battery-electric-multiple-unit/</u>
- SAE International. (2011). Testing Performance of the Fuel Processor Subsystme of an Automotive Fuel Cell System. Warrendale, PA: Author.
- Sandia National Laboratories. (2019). Hydrogen Risk Assessment Model (HyRAM). Retrieved from <u>https://energy.sandia.gov/transportation-energy/hydrogen/quantitative-risk-assessment/hydrogen-risk-assessment-model-hyram/</u>
- Satyapal, S. (2019a). *H2@Scale and H2@Rail: Progress, Opportunities and Needs*. Paper presented at the H2@Rail, Lansing, MI.
- Satyapal, S. (2019b). *Hydrogen and Fuel Cell Program Overview*. Paper presented at the 2019 Annual Merit Review, Crystal City, VA.
 - https://www.hydrogen.energy.gov/annual_review19_report.html
- Schlapbach, L. (2009). Technology: Hydrogen-fuelled vehicles. *Nature*, 460(7257), 809-811. Retrieved from <u>http://dx.doi.org/10.1038/460809a</u>
- Tetzlaff, K.-H. (2008). Wasserstoff für alle: Wie wir der Öl-, Klima-, und Kostenfalle entkommen. Norderstedt: Books on Demand GmbH.
- TIG/m. (2020). Technology: Self-Powered Operation. Retrieved from <u>https://www.tig-m.com/technology.html</u>
- UChicago Argonne, & Argonne National Laboratory. (2019). GREET Software: GREET1 Model. In. Argonne, IL: Author.
- Williamson, I. (2011, June). *Air Products*. Paper presented at the Hydrogen and Fuel Cell Showcase Event, London.
- Winnett, J., Hoffrichter, A., Iraklis, A., McGordon, A., Hughes, D. J., Ridler, T., & Mallinson, N. Development of a very light rail vehicle. *Proceedings of the Institution of Civil Engineers - Transport, 170*(4), 231-242. doi:10.1680/jtran.16.00038
- Winter, C.-J. (2009). Hydrogen energy Abundant, efficient, clean: A debate over the energysystem-of-change. *International Journal of Hydrogen Energy*, 34(14, Supplement 1), S1-S52. doi:10.1016/j.ijhydene.2009.05.063
- Wipke, K., Sprik, S., Kurtz, J., Ramsden, T., Ainscough, C., & Saur, G. (2012). All Composite Data Products: National FCEV Learning Demonstration With Updates Through January 18, 2012 Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden, Chris Ainscough, and Genevieve Saur (NREL/TP-5600-54021). Retrieved from Golden, CO: <u>https://www.nrel.gov/docs/fy12osti/54021.pdf</u>

- Yamamoto, T., Hasegawa, H., Furuya, T., & Ogawa, K. (2010). Energy Efficiency Evaluation of Fuel Cells and Batteries Hybrid Railway Test Vehicles. *Quarterly Report of RTRI*, 51(3), 115-121. doi:10.2219/rtriqr.51.115
- Zasiadko, M. (2019). Stadler gets first order for Akku battery-powered trains. Retrieved from <u>https://www.railtech.com/rolling-stock/2019/06/20/stadler-gets-first-order-for-akku-battery-powered-trains/</u>
- Zenith, F., Isaac, R., Hoffrichter, A., Thomassen, M. S., & Møller-Holst, S. (2019). Technoeconomic analysis of freight railway electrification by overhead line, hydrogen and batteries: Case studies in Norway and USA. *Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 0*(0). doi:10.1177/0954409719867495


9 APPENDIX


9.1 Regenerative Braking Illustrations

Tractive and Braking Effort of a Single Locomotive or Two Locomotives with Eight Traction Motors at Half Capability

Traction and Braking Power for a Two Locomotive Option with Eight Traction Motors at Full Capability

9.2 Speed Profile for Train Configuration with Two Locomotives and Eight Traction Motors at Full Capability

9.3 Well-to-Wheel Results

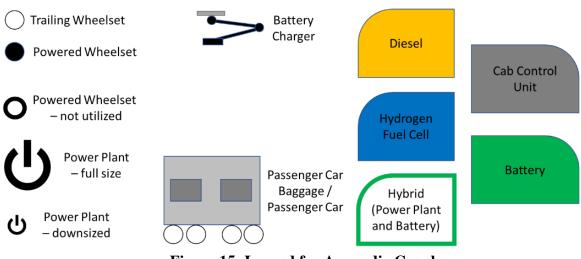
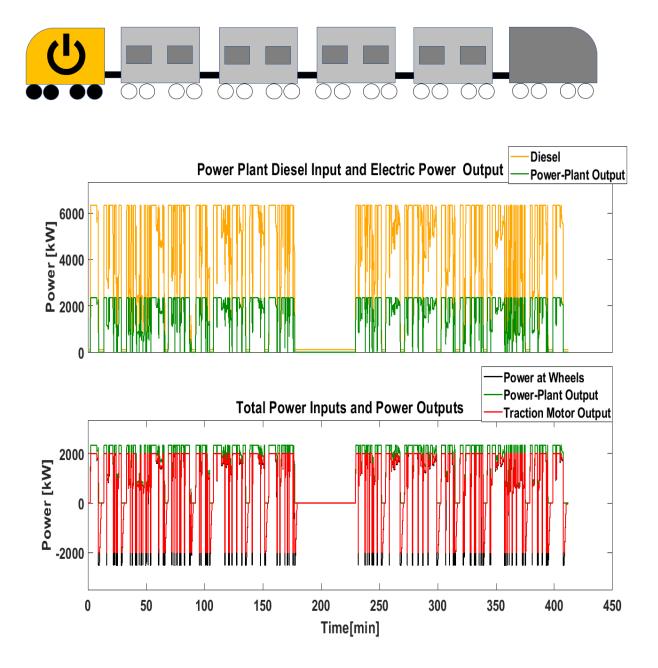
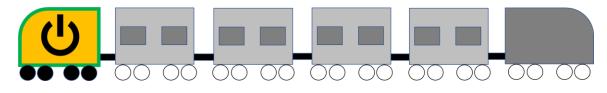
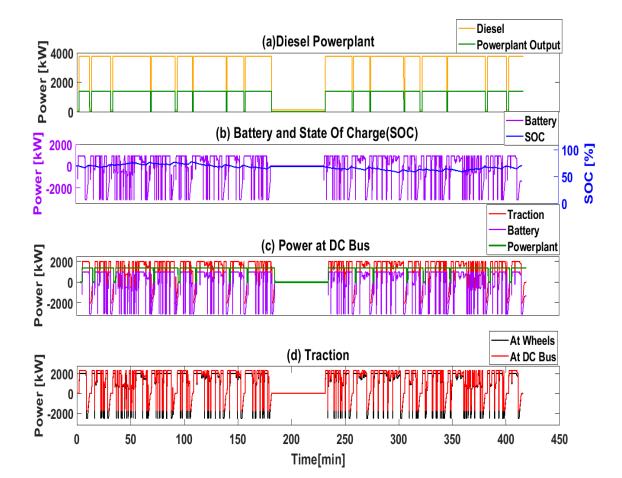



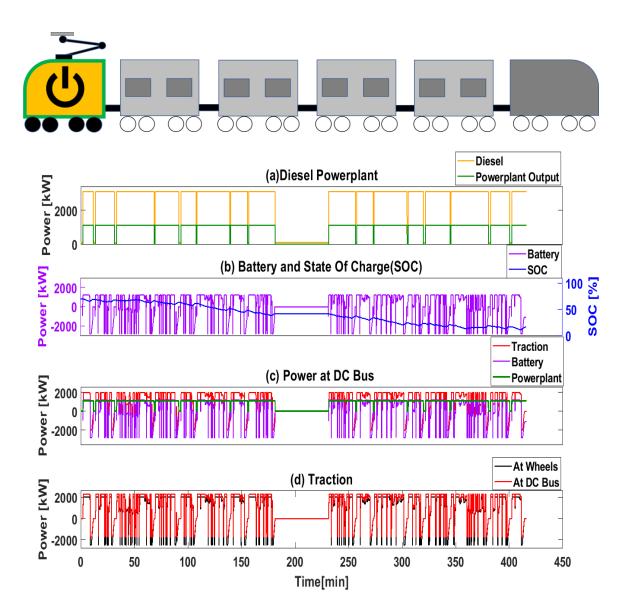
Figure 15: Legend for Appendix Graphs


All options with two locomotives (or converted CCUs), unless stated, illustrate four powered wheelsets, which would be equivalent to eight powered wheelsets operating at half capability.

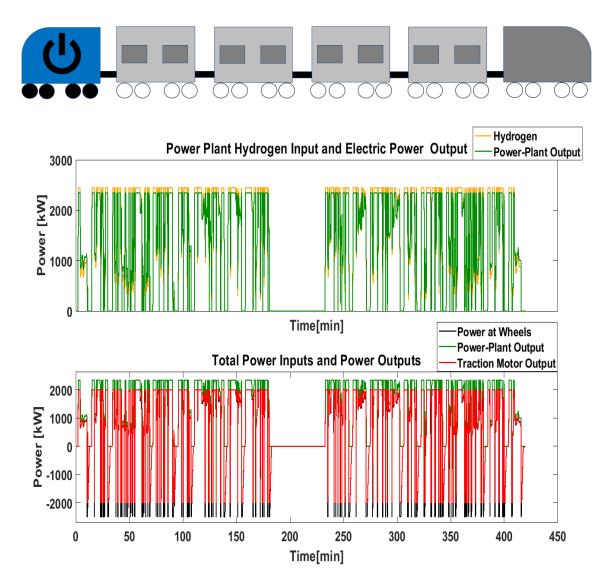

9.3.1 Diesel-Electric Benchmark

9.3.1 Diesel-Electric Benchmark (cont'd)

Round-trip, RG	H-CLT-RGH
DIESEL-ELECTRIC:	
ENERGY CONSUMPTION,	25981
POINT-OF-USE (kWh)	
POINT-OF-USE-EMISSIONS	Grams (Based on SERC)
GHGs	6998297
NOx: Total	87660
PM2.5: Total	2494
PM10: Total	2571
CO: Total	12211
VOC: Total	3639
SOx: Total	48
CH4	605
N2O	189
CO2 (w/ C in VOC & CO)	6899535
BC: Total	209
OC: Total	205
	2203
DIESEL-ELECTRIC:	
ENERGY CONSUMPTION,	5049
WELL-TO-PUMP (kWh)	
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)
GHGs	1527970
NOx: Total	2351
PM2.5: Total	133
PM10: Total	159
CO: Total	1132
VOC: Total	679
SOx: Total	885
CH4	9896
N2O	20
CO2 (w/ C in VOC & CO)	1202961
BC: Total	23
OC: Total	39
DIESEL-ELECTRIC:	
ENERGY CONSUMPTION,	31030
WELL-TO-WHEEL (kWh)	51050
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)
GHGs	8526268
NOx: Total	90011
PM2.5: Total	2627
PM10: Total	2729
CO: Total	13344
VOC: Total	4318
SOx: Total	933
CH4	10501
N2O	209
CO2 (w/ C in VOC & CO)	8102496
BC: Total	233
OC: Total	2249



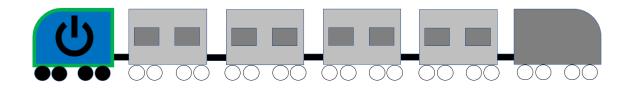
9.3.2 Diesel Hybrid

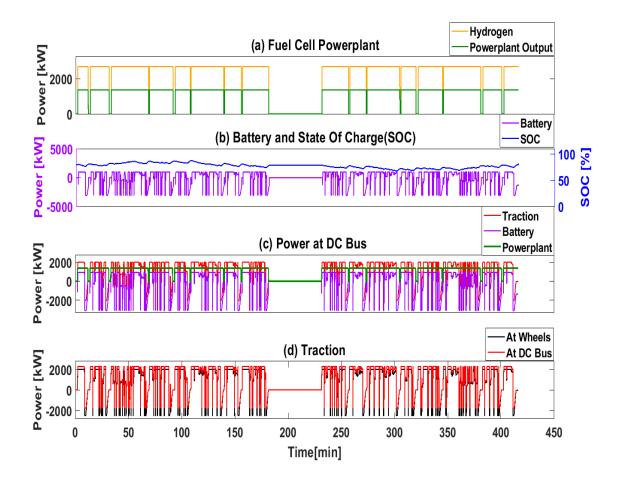

9.3.2 Diesel Hybrid (cont'd)

Round-tri	p, RGH-CLT-RGH	
		Reduction
DIESEL HYBRID:		
ENERGY CONSUMPTION,	21657	16.64%
POINT-OF-USE (KwH)	2105/	10.04/0
POINT-OF-USE-EMISSIONS	Grams (Based on SERC)	% Reduc.
GHGs	5833575	16.64
NOx: Total	73071	16.64
PM2.5: Total	2079	16.64
PM10: Total	2143	16.64
CO: Total	10179	16.64
VOC: Total	3033	16.64
SOx: Total	40	16.64
CH4	504	16.64
N2O	158	16.64
CO2 (w/ C in VOC & CO)	5751250	16.64
BC: Total	175	16.64
OC: Total	1842	16.64
		Reduction
DIESEL HYBRID:		
ENERGY CONSUMPTION,	4209	16.64%
WELL-TO-PUMP (KwH)		
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	In %
GHGs	1273671	16.64
NOx: Total	1960	
PM2.5: Total	111	16.64
PM10: Total	132	
CO: Total	944	16.64
VOC: Total	566	16.64
SOx: Total	738	
CH4	8249	16.64
N2O	17	16.64
CO2 (w/ C in VOC & CO)	1002753	16.64
BC: Total	19	16.64
OC: Total	33	16.64
DIESEL HYBRID:		Reduction
ENERGY CONSUMPTION,		
WELL-TO-WHEEL (KwH)	25866	16.64%
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	In %
GHGs	Grams (Based on SERC) 7107247	16.64
NOx: Total	75030	16.64
PM2.5: Total	2190	16.64
PM10: Total	2150	
CO: Total	11123	16.64
VOC: Total	3599	16.64
SOx: Total	778	
CH4	8754	16.64
N20	175	16.64
CO2 (w/ C in VOC & CO)	6754003	16.64
BC: Total	194	16.64
OC: Total	1874	16.64

9.3.3 Diesel Hybrid Plugin

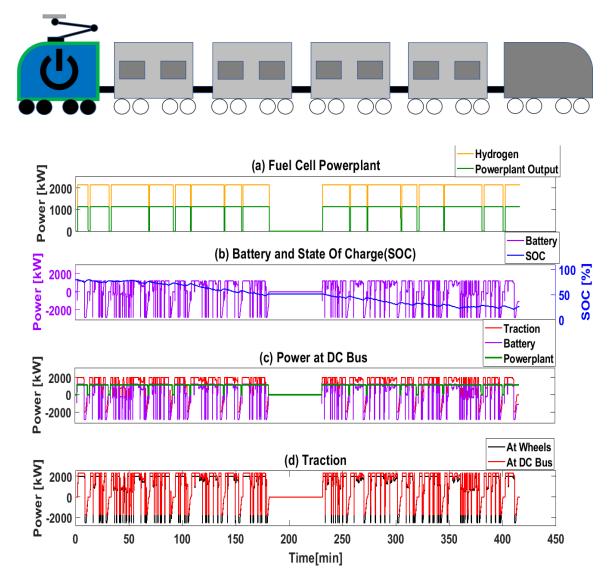
DIESEL HYBRID PLUG-IN: ENERGY CONSUMPTION, POINT-OF-USE (kWh) Reduction Reduction 17999 30.72%	
ENERGY CONSUMPTION, POINT-OF-USE (kWh) 17999 30.72% Image: Construct of the second	
POINT-OF-USE (kWh) 17999 30.72% POINT-OF-USE-EMISSIONS Grams (Based on SERC) In % GHGs 4848249 30.72 NOx: Total 60729 30.72 PM2.5: Total 1777 30.72 PM10: Total 1781 30.72 CO: Total 8460 30.72 VOC: Total 2521 30.72 VOC: Total 2521 30.72 SOx: Total 2521 30.72 VOC: Total 33 30.72 VOC: Total 30.72	
POINT-OF-USE-EMISSIONS Grams (Based on SERC) In % GHGS 4848249 30.72 NOX: Total 60729 30.72 PM2.5: Total 1727 30.72 PM10: Total 1781 30.72 CO: Total 8460 30.72 VOC: Total 2521 30.72 CO: Total 8460 30.72 VOC: Total 33 30.72 CH4 419 30.72 N20 1311 30.72 CO2 (w/ C in VOC & CO) 4779828 30.72 DIESEL HYBRID PLUG-IN: ENERGY CONSUMPTION, WELL-TO-PUMP (kWh) Reduction DIESEL HYBRID PLUG-IN: ENERGY REQUIREMENTS, WELL-TO-PUMP P. RUISSIONS Grams (Based on SERC) GHGs 105840 30.72 WELL-TO-PUMP EMISSIONS, (Based on SERC) GHGs 879837 NOx: Total 1629 30.72 PM2.5: Total 903 PM10: Total 110 30.72 PM10: Total 197 CO: Total 2072 PM10: Total 193 30.72 PM10: Total <	
POINT-OF-USE-EMISSIONS (Based on SERC) In % GHGs 4848249 30.72	
Based on SERC) Image: Construct on Serce on	
NOx: Total 60729 30.72	
PM2.5: Total 1727 30.72	
PM10: Total 1781 30.72	
CO: Total 8460 30.72 Image: constraint of the system o	
VOC: Total 2521 30.72	
SOx: Total 33 30.72	
CH4 419 30.72	
N20 131 30.72 Image: constraint of the system of the s	
CO2 (w/ C in VOC & CO) 4779828 30.72 Image: Constant of the system o	
BC: Total 145 30.72	
OC: Total 1531 30.72 Image: Construct of the system of	
DIESEL HYBRID PLUG-IN: ENERGY CONSUMPTION, WELL-TO-PUMP (kWh)ReductionDIESEL HYBRID PLUG-IN: ENERGY REQUIREMENTS, WELL-TO-PUMP, PLUG ELECTRICITY (kWh)2016WELL-TO-PUMP (kWh)349830.72%WELL-TO-PUMP, PLUG ELECTRICITY (kWh)2016WELL-TO-PUMP EMISSIONSGrams (Based on SERC)% Reduct.WELL-TO-PUMP EMISSIONS, PLUG ELECTRICITYGrams (Based on SERC)GHGs105854030.72GHGs879837NOX: Total9230.72NOX: Total903PM2.5: Total9230.72PM10: Total110OC: Total78430.72CO: Total358VOC: Total61330.72SOX: Total97SOX: Total61330.72SOX: Total1602CH4685630.72CH41667N2O1430.72N2O13CO2 (w/ C in VOC & CO)83338230.72CO2 (w/ C in VOC & CO)826404	
DIESEL HYBRID PLUG-IN: ENERGY CONSUMPTION, WELL-TO-PUMP (kWh) 3498 30.72% ENERGY REQUIREMENTS, WELL-TO-PUMP, PLUG 2016 WELL-TO-PUMP (kWh) Grams (Based on SERC) WELL-TO-PUMP PLUG 2016 GHGs 1058540 30.72 GHGs Grams (Based on SERC) GHGs 1058540 30.72 GHGs 879837 NOx: Total 1629 30.72 NOx: Total 903 PM10: Total 110 30.72 PM12.5: Total 903 PM10: Total 110 30.72 PM10: Total 1197 CO: Total 784 30.72 CO: Total 358 VOC: Total 470 30.72 VOC: Total 97 SOx: Total 6856 30.72 CH4 1667 N20 14 30.72 N20 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
ENERGY CONSUMPTION, WELL-TO-PUMP (kWh) 3498 30.72% WELL-TO-PUMP, PLUG ELECTRICITY (kWh) 2016 WELL-TO-PUMP EMISSIONS Grams (Based on SERC) % Reduct. WELL-TO-PUMP EMISSIONS, PLUG ELECTRICITY Grams (Based on SERC) GHGs 1058540 30.72 GHGs 879837 NOx: Total 1629 30.72 GHGs 879837 PM2.5: Total 92 30.72 PM2.5: Total 903 PM10: Total 110 30.72 PM10: Total 1128 CO: Total 784 30.72 CO: Total 358 VOC: Total 470 30.72 VOC: Total 97 SOx: Total 6330.72 CH4 1667 N20 14 30.72 N20 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
WELL-TO-PUMP (kWh) 3498 30.72% WELL-TO-PUMP, PLUG 2016 WELL-TO-PUMP EMISSIONS Grams (Based on SERC) % Reduct. ELECTRICITY (kWh) Grams WELL-TO-PUMP EMISSIONS Grams (Based on SERC) % Reduct. WELL-TO-PUMP EMISSIONS, PLUG ELECTRICITY Grams (Based on SERC) GHGs 1058540 30.72 GHGs 879837 NOx: Total 1629 30.72 NOx: Total 903 PM2.5: Total 92 30.72 PM2.5: Total 128 PM10: Total 110 30.72 PM10: Total 197 CO: Total 784 30.72 CO: Total 358 VOC: Total 470 30.72 Sox: Total 97 SOx: Total 633 30.72 CH4 1667 N20 14 30.72 N20 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
WELL-TO-PUMP EMISSIONS Grams (Based on SERC) % Reduct. WELL-TO-PUMP EMISSIONS, PLUG ELECTRICITY Grams (Based on SERC) GHGs 1058540 30.72 GHGs 879837 NOx: Total 1629 30.72 GHGs 879837 PM2.5: Total 92 30.72 PM2.5: Total 903 PM10: Total 110 30.72 PM10: Total 1128 CO: Total 784 30.72 CO: Total 358 VOC: Total 470 30.72 VOC: Total 97 SOx: Total 613 30.72 SOx: Total 1602 CH4 66856 30.72 CH4 1667 N20 14 30.72 N20 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
WELL-TO-PUMP EMISSIONS (Based on SERC) % Reduct. PLUG ELECTRICITY (Based on SERC) GHGs 1058540 30.72 GHGs 879837 NOx: Total 1629 30.72 NOx: Total 903 PM2.5: Total 92 30.72 PM2.5: Total 128 PM10: Total 110 30.72 PM10: Total 197 CO: Total 784 30.72 CO: Total 358 VOC: Total 613 30.72 VOC: Total 97 Sox: Total 613 30.72 Sox: Total 97 CO2 (w/ C in VOC & CO) 83382 30.72 CO2 (w/ C in VOC & CO) 826404	
(Based on SERC) PLUG ELECTRICITY (Based on SERC) GHGs 1058540 30.72 GHGs 879837 NOx: Total 1629 30.72 NOx: Total 903 PM2.5: Total 92 30.72 PM2.5: Total 128 PM10: Total 110 30.72 PM10: Total 1197 CO: Total 784 30.72 VOC: Total 358 VOC: Total 470 30.72 VOC: Total 97 SOx: Total 613 30.72 Sox: Total 1602 CH4 6856 30.72 CH4 1667 N2O 14 30.72 N2O 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
NOx: Total 1629 30.72 NOx: Total 903 PM2.5: Total 92 30.72 PM2.5: Total 128 PM10: Total 110 30.72 PM10: Total 128 PM10: Total 110 30.72 PM10: Total 197 CO: Total 784 30.72 CO: Total 358 VOC: Total 470 30.72 VOC: Total 97 SOx: Total 613 30.72 SOx: Total 1602 CH4 6856 30.72 CH4 1667 N2O 14 30.72 N2O 13 CO2 (w/ C in VOC & CO) 83382 30.72 CO2 (w/ C in VOC & CO) 826404	
PM2.5: Total 92 30.72 PM2.5: Total 128 PM10: Total 110 30.72 PM10: Total 197 CO: Total 784 30.72 CO: Total 358 VOC: Total 784 30.72 VOC: Total 97 SOx: Total 470 30.72 VOC: Total 97 SOx: Total 613 30.72 SOx: Total 1602 CH4 6856 30.72 CH4 1667 N2O 14 30.72 N2O 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
PM10: Total 110 30.72 PM10: Total 197 CO: Total 784 30.72 CO: Total 358 VOC: Total 470 30.72 VOC: Total 97 SOx: Total 613 30.72 SOx: Total 1602 CH4 6856 30.72 CH4 1667 N2O 114 30.72 N2O 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
CO: Total 784 30.72 CO: Total 358 VOC: Total 470 30.72 VOC: Total 97 SOx: Total 613 30.72 SOx: Total 1602 CH4 6856 30.72 CH4 1667 N2O 14 30.72 N2O 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
VOC: Total 470 30.72 VOC: Total 97 SOx: Total 613 30.72 SOx: Total 1602 CH4 6856 30.72 CH4 1667 N2O 14 30.72 N2O 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
SOx: Total 613 30.72 SOx: Total 1602 CH4 6856 30.72 CH4 1667 N2O 14 30.72 N2O 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
CH4 6856 30.72 CH4 1667 N2O 14 30.72 N2O 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
N2O 14 30.72 N2O 13 CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
CO2 (w/ C in VOC & CO) 833382 30.72 CO2 (w/ C in VOC & CO) 826404	
BC: Total 16 30.72 BC: Total 8	
OC: Total 27 30.72 DC: Total 19	
DIESEL HYBRID PLUG-IN:	Reduction
ENERGY CONSUMPTION.	
WELL-TO-WHEEL (kWh) 21497 30.72% WELL-TO-WHEEL, PLUG 25130	19.01%
ELECTRICITY (kWh)	
WELL-TO-WHEEL EMISSIONS (Parad on SERC) % Reduct. WELL-TO-WHEEL EMISSIONS (Parad on SERC) %	% Reduct.
(Based on SERC) CHIEFE EMISSIONS, INCL. PLUG (Based on SERC)	20.10
GHGs 5906789 30.72 GHGs 6786626 NOx: Total 62357 30.72 NOx: Total 63261	20.40
	29.72 25.85
	25.85 23.49
PM10: Total 1891 30.72 PM10: Total 2088 CO: Total 9244 30.72 CO: Total 9602	23.49
VOC: Total 9944 30.72 CO. Total 9602 VOC: Total 2991 30.72 VOC: Total 3088	
	28 10
CH4 7275 30.72 CH4 8942	28.49
N20 145 30.72 N20 158	-141.01
CO2 (w/ C in VOC & CO) 5613210 30.72 CO2 (w/ C in VOC & CO) 6439614	-141.01 14.85
BC: Total 161 30.72 BC: Total 170	-141.01 14.85 24.56
OC: Total 1558 30.72 OC: Total 1577	-141.01 14.85




9.3.4 Hydrogen Fuel Cell

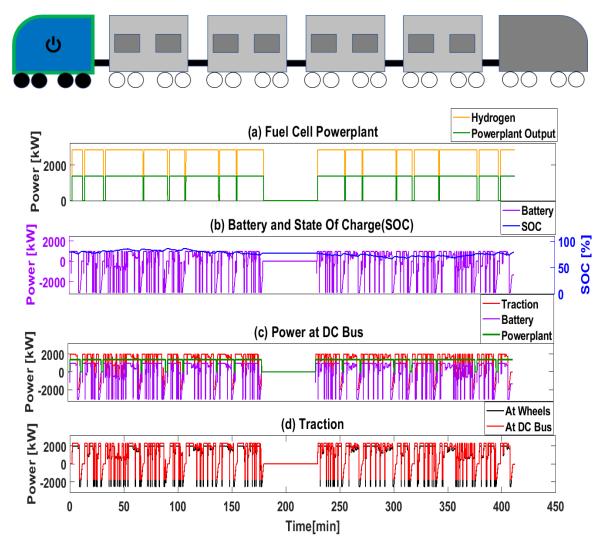
ENERGY CONSUMPTION, WELL-TO-PUMP (kWh) 15739 -211.75% 27566 -446.00% 11600 -129.76% 23947 -374.3 WELL-TO-PUMP (kWh) ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS ODSITE ELECTROLYSIS Grams (Bosed on SERC) % Reduct. Grams (Bosed on SERC) </th <th></th> <th></th> <th></th> <th>Round-trip, RGH</th> <th>-CLT-RGH</th> <th></th> <th></th> <th></th> <th></th> <th></th>				Round-trip, RGH	-CLT-RGH					
HYDROGEN FUEL CELL: INREGY CONSUMPTION, POINT-OF-USE (MVh) Z0A32 21.36% Image: Constraint of the second secon			Reduction							
POINT-OF-USE (W/h) Z032 Z1.36% Image: Constrained state st			neudetion						1	
ALL PRODUCTION METHODS Grams Bead on SERC/ Grams Bead on SERC/ Grams Bead on SERC/ Grams Bead on SERC/ MA		20432	21.36%							
POINT-OF-USE-EMISSIONS Grams (Based on SERC) * Reduct 0 100.00 Image: Company intermed and the sector of t	POINT-OF-USE (kWh)									
		ALL PRODUCTION	METHODS							
Genes (Brids 0 000.000 Image: Construct of the second	POINT-OF-USE-EMISSIONS	Grams								
NOX: Total 0 10000 129.76% 23.47 Reduction		(Based on SERC)	% Reduct.							
PAUE. Total 0 0.00.00 Image: state stat	GHGs	0	100.00							
PMI0: Total 0 100.00 Image: constraint of the second	NOx: Total	0	100.00							
CD: Total 0 100.00 Image: constraint of the second sec	PM2.5: Total	0	100.00							
VOC: Total 0 00.00 Image: constraint of the second se	PM10: Total	0	100.00							
SOX: Total 0 100.00	CO: Total	0	100.00							
CH4 0 100.00 123.76% 100.0% RENEW SMR SRC NMR SRC NMR SRC 100.00 100.	VOC: Total	0	100.00							
N20 0 100.00 Reduction 100.00	SOx: Total	0	100.00							
CO2 (W/C in VOC & CO) 0 100.00 0 100.00 0 0 100.00 0	CH4	0	100.00							
Sc. Total 0 100.00 NSITE <	N2O	0	100.00							
OC: Total 0 100.00 ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS, 100% RENEW LIQUID DELIVERY, SMR SERC HYDROGEN FUEL CELI: ENERGY CONSUMPTION, WELL-TO-PUMP [kWh] 15739 Reduction -211.75% Reduction -211.75% Reduction -211.75% Reduction -210.766 Reduction -129.76% Reduction -129.76% Reduction -239.76% Reduction -239.76% Reduction -239.76% Reduction -239.76% Reduction -239.76% Reduction -240.76% Reduction -240.77% Reduction -240.77% Reduction -240.77% Reduction -24	CO2 (w/CinVOC&CO)	0	100.00							
PRODUCTION METHOD ONSITE SIMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS LIQUID DELVERY, SMR SERC HYDROGEN FUEL CELL: BRERGY CONSUMPTION, WELL-TO-PUMP [kWh] 15739 -211.75% 27566 -446.00% 11600 -129.76% 23947 -374.3 WELL-TO-PUMP [kWh] 0NSITE SIMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS LIQUID DELVERY, 100% RENEW LIQUID DELVERY, 100% RENEW LIQUID DELVERY, 100% RENEW SMR SERC GH6s 82877.39 -442.37 10568899 -984.37 0 100.00 1014974 -564. GC: Total 3847 -147.43 17011 -623.57 0 100.00 6280 -167. PMID: Total 448.87 128.90 3719 -224.34 0 100.00 1233 -159. VOC: Total 1246 -88.60 1818 -167.80 0 100.00 1224 -24.44 0 100.00 1224 -24.43 0 100.00 1224 -24.44 -26.55 -76.43 -167.80 0 100.00 223.42 <	BC: Total	0	100.00							
PRODUCTION METHOD ONSITE SMR ONSITE ELECTROLYSIS 100% RENEW SMR SERC HYDROGEN FUEL CELL: ENERGY CONSUMPTION, WELL-TO-PUMP (kWh) 15739 -211.75% 27556 -446.00% 11600 -129.76% 23947 -374.3 WELL-TO-PUMP (kWh) 0NSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS LIQUID DELIVERY, 100% RENEW LIQUID DELIVERY, 30057 Grams % Reduct. % Reduct. % Reduct. % Reduct. % Reduct.	OC: Total	0	100.00							
PRODUCTION METHOD ONSITE SMR ONSITE ELECTROLYSIS 100% RENEW SMR SERC HYDROGEN FUEL CELL: ENERGY CONSUMPTION, WELL-TO-PUMP (kWh) 15739 -211.75% 27556 -446.00% 11600 -129.76% 23947 -374.3 WELL-TO-PUMP (kWh) 0NSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS LIQUID DELIVERY, 100% RENEW LIQUID DELIVERY, 30057 Grams % Reduct. % Reduct. % Reduct. % Reduct. % Reduct.						ONSITE	FLECTP	OLYSIS		VFRY
HYDROGEN FUEL CELI: ENERGY CONSUMPTION, WELL-TO-PUMP (kWh) 15739 Reduction -211.75% Reduction 27566 Reduction 446.00% Reduction 11600 Reduction -129.76% Reduction -374.3 WELL-TO-PUMP (kWh) ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS, 100% REVEW LIQUID DELIVERY, SMR SERC GHGs 8287239 -42.37 16568899 -98.437 0 100.00 10149754 -564. NOX: Total 5831 147.43 17011 -623.57 0 100.00 6328 -167. PM2.5: Total 344 -158.48 2412 -171.40 0 100.00 6328 -167. VOC: Total 4038 -286.67 6735 -494.80 0 100.00 1195 -76.4 SO:: Total 1246 -83.60 1818 -167.80 0 100.00 122.42 -124.14 1255 -159.23 31395 -217.23 0 100.00 22.42 -124.14 1265 -159.23 31395 -217.23 0 100.00	PRODUCTION METHOD	ONSITE SI	٧R	ONSITE ELECTI	ROLYSIS					•
ENERGY CONSUMPTION, WELL-TO-PUMP (kWh) 15739 -211.75% 27566 -446.00% 11600 -129.76% 23947 -374.3 WELL-TO-PUMP (kWh) ONSITE SIME ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS Grams % Reduct.			Reduction		Reduction	100				Reduction
WELL-TO-PUMP (kWh) -211.75% -446.00% -129.76% -374.3 WELL-TO-PUMP EMISSIONS ONSITE SIMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS UQUID DELIVERY, SMR SERC SMR SERC GHGS 8287239 -442.37 16568890 984.37 0 100.00 10149754 -564. MOX: Total 5317 -147.43 17011 -623.57 0 100.00 81287239 -424.37 PMD5: Total 344 158.48 2421 1711.40 0 100.00 6283 -155. OC: Total 4038 -256.67 6733 -494.80 0 100.00 1135 -627. OC: Total 1246 33.60 1818 -167.80 0 100.00 122442 -127.23 0 100.00 1224943 -628. -627. -628.43 -688.81 0 100.00 122.443.43 -628.51 -627.53 -627.72.3 0 100.00 102.403.5 -627.53 -627.23 -131.72.3 0 <td></td> <td>15739</td> <td>neudetion</td> <td>27566</td> <td>neudellon</td> <td>11600</td> <td>,</td> <td>neudellon</td> <td></td> <td>neudellon</td>		15739	neudetion	27566	neudellon	11600	,	neudellon		neudellon
WELL-TO-PUMP EMISSIONS ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS LIQUID DELIVERY, SMR SERC Grams (Based on SERC) % Reduct. (Based	· · · · · · ,	10/00	-211.75%	2,500	-446.00%	11000	•	-129.76%	20047	-374.32%
ONSITE SMR ONSITE ELECTROLYSIS 100% RENEW SMR SERC WELL-TO-PUMP EMISSIONS Grams (Bosed on SERC) % Reduct. Grams (Based on SERC) % Reduct. <						ONSITE	FLECTR	OLYSIS.		VFRY.
WEEL-TO-PUMP EMISSIONS Grams (Based on SERC) % Reduct. % Reduct. Grams (Based on SERC) % Reduct. Grams (Based on SER		ONSITE SI	٧R	ONSITE ELECTI	ROLYSIS				•	
(Based on SERC) % Reduct. (Based on SERC) % Reduct. Grams % Reduct. (Based on SERC) % Reduct. GHGs 8287239 -442.37 16556899 -994.37 0 100.00 10149754 -564. NOx: Total 5817 -147.43 17011 -623.57 0 100.00 6280 -167. PM2.5: Total 344 -158.48 2412 -171.40 0 100.00 11155 -627. CO: Total 4038 -256.67 6735 -494.80 0 100.00 11155 -627. VOC: Total 1246 -83.60 11818 -167.80 0 100.00 11155 -627. VOC: Total 1246 -83.60 11818 -167.80 0 100.00 1115 -627. VOC: Total 1256 -159.23 31395 -217.23 0 100.00 102.44 -403. V2Q (V / Cin VOC & CO) 7472633 -521.19 15562665 -1193.70 0 <t< td=""><td>WELL-TO-PUMP EMISSIONS</td><td>Grams</td><td></td><td>Grams</td><td></td><td></td><td>/••••</td><td></td><td></td><td></td></t<>	WELL-TO-PUMP EMISSIONS	Grams		Grams			/••••			
GHGs 8287239 -442.37 16568899 -984.37 0 100.00 10149754 -564. NOx: Total 5817 -147.43 17011 -623.57 0 100.00 6280 -167. PM2.5: Total 344 -158.48 2412 -1711.40 0 100.00 813 -510. PM0: Total 488 -188.90 3719 -2244.34 0 100.00 1155 -627. CO: Total 4038 -256.67 6735 -494.80 0 100.00 1155 -677. SOX: Total 13249 -301.12 30172 -330.69 0 100.00 8659 -764. SOX: Total 3549 -301.12 30172 -320.69 0 100.00 102.49.44. -403. CO2 (w/ C in VOC & CO) 7472653 -521.1 159 -566.81 0 100.00 147 -271. PRODUCTION METHOD ONSITE SMR ONSITE ELECTROLYSIS 000.00 147 -271.			% Reduct.		% Reduct.	Gram	S	% Reduct.		% Reduct.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GHGs	. ,	-442.37	, ,	-984.37		0	100.00	· · · · · ·	-564.26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-							
PM10: Total 458 -188.90 3719 -2244.34 0 100.00 1155 -627. CO: Total 4038 -256.67 6735 -494.80 0 100.00 2933 -159. VOC: Total 1246 -83.60 1818 -167.80 0 100.00 1195 -764. SOX: Total 3549 -301.12 30172 -3309.69 0 100.00 8659 -878. CH4 25655 -159.23 31395 -217.23 0 100.00 1022 403. CO2 (w/ C in VOC & CO) 7472653 -521.19 15562665 -1193.70 0 100.00 686. 686. BC: Total 30 -29.21 159 -586.81 0 100.00 147 -271. PRODUCTION METHOD ONSITE SMR ONSITE ELECTROLYSIS 0NSITE ELECTROLYSIS, 1100.00 1407 -271. VELL-TO-WHEEL (kWh) 36171 Reduction -64.69% 32032 -3.23% 44379 -3										
VOC: Total 1246 -83.60 1818 -167.80 0 100.00 1195 -76.0 SO:: Total 3549 -301.12 30172 -330.69 0 100.00 8659 -878. CH4 25655 -159.23 31395 -217.23 0 100.00 22242 -124. N2O 170 -732.67 2433 -1092.95 0 100.00 9455340 -686. C2 (w/ C in VOC & CO) 7472653 -521.19 15562665 -1193.70 0 100.00 9455340 -686. BC: Total 30 -29.21 159 -586.81 0 100.00 147 -271. OC: Total 55 -39.23 358 -806.88 0 100.00 147 -271. PRODUCTION METHOD ONSITE ELCTOLYSIS ONSITE ELECTROLYSIS ULQUID DEL/VERY, SMR SERC ENERGY CONSUMPTION, WELL-TO-WHEEL (Wwh) 36171 -16.57% 47998 -54.69% 32032 -3.23% Keductin -3.23							0			
SOX: Total 3549 -301.12 30172 -3309.69 0 100.00 8659 -878. CH4 25655 -159.23 31395 -217.23 0 100.00 22242 -124. N2O 170 -732.67 243 -109.25 0 100.00 945340 -686. CC2 (w/ Cin VOC & CO) 7472653 -521.19 15562665 -1193.70 0 100.00 945340 -686. BC: Total 30 -29.21 159 -586.81 0 100.00 147 -271. OC: Total ONSITE SMR ONSITE ELECTROLYSIS UQUID DEL/VERY, SIMR SERC SMR SERC HYDROGEN FUEL CELL: ENERGY CONSUMPTION, WELL-TO-WHEEL (MWh) 36171 Reduction -16.57% Reduction -16.57% Reduction Reduction -32.66% Reduction -3.23% Reduction -3.23% </td <td>CO: Total</td> <td>4038</td> <td>-256.67</td> <td>6735</td> <td>-494.80</td> <td></td> <td>0</td> <td>100.00</td> <td>2933</td> <td>-159.00</td>	CO: Total	4038	-256.67	6735	-494.80		0	100.00	2933	-159.00
CH4 25655 -159.23 31395 -217.23 0 100.00 22242 -124. N2O 170 -732.67 243 -1092.95 0 100.00 102 -403. CO2 (w/ C in VOC & CO) 7472653 -521.19 15562665 -1193.70 0 100.00 9455340 -686. BC: Total 30 -29.21 159 -586.81 0 100.00 147 -271. PRODUCTION METHOD ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS ILQUID DELIVERY, 100% RENEW SMR SERC HYDROGEN FUEL CELL: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) 36171 Reduction -16.57% Reduction (Based on SERC) Reduction (Based on SERC) Reduct. Reduction (Based on SERC) Reduct. Grams (Based on SERC) % Reduct. Grams (Based on SERC)	VOC: Total	1246	-83.60	1818	-167.80		0	100.00	1195	-76.03
N2O 170 -732.67 243 -1092.95 0 100.00 102 -403. CO2 (w/ C in VOC & CO) 7472653 -521.19 15562665 -1193.70 0 100.00 9455340 -686. BC: Total 30 -29.21 159 -586.81 0 100.00 67 -191. OC: Total 55 -39.23 358 -806.88 0 100.00 147 -271. PRODUCTION METHOD ONSITE SIMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS 100% RENEW SMR SERC HYDROGEN FUEL CELL: Reduction -16.57% 47998 Reduction -3.23% 44379 -43.0 WELL-TO-WHEEL (kWh) 36171 -16.57% 47998 Reduction -3.23% 44379 -43.0 WELL-TO-WHEEL EMISSIONS Grams (Based on SERC) % Reduct. Grams	SOx: Total	3549	-301.12	30172	-3309.69		0	100.00	8659	-878.57
CO2 (w/ C in VOC & CO) 7472653 -521.19 15562665 -1193.70 0 100.00 9455340 -686. BC: Total 30 -29.21 159 -586.81 0 100.00 67 -191. OC: Total 55 -39.23 358 -806.88 0 100.00 147 -271. PRODUCTION METHOD ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS, 100% RENEW LIQUID DELIVERY, SMR SERC HYDROGEN FUEL CELL: Reduction -16.57% 47998 -54.69% 32032 -3.23% 44379 -43.0 WELL-TO-WHEEL (kWh) ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS, 100% RENEW SMR SERC Grams (Based on SERC) % Reduct. Grams % Reduct. Grams (Based on SERC) % Reduct. Grams (Based on SERC) % Reduct. Grams % Reduct. Grams (Based on SERC) % Reduct.	CH4	25655	-159.23	31395	-217.23		0	100.00	22242	-124.75
BC: Total 30 -29.21 159 -586.81 0 100.00 67 -191. OC: Total 55 -39.23 358 -806.88 0 100.00 147 -271. PRODUCTION METHOD ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS, 100% RENEW LIQUID DELIVERY, SMR SERC HYDROGEN FUEL CELL: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) 36171 Reduction -16.57% Reduction -16.57% Reduction -54.69% Reduction -3.23% Reduction -3.23% Reduction -43.0 WELL-TO-WHEEL (kWh) ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS UIQUID DELIVERY, SMR SERC -43.0 WELL-TO-WHEEL EMISSIONS Grams (Based on SERC) % Reduct. Grams (Based on SERC) % Reduct. <td>N2O</td> <td>170</td> <td>-732.67</td> <td>243</td> <td>-1092.95</td> <td></td> <td>0</td> <td>100.00</td> <td>102</td> <td>-403.05</td>	N2O	170	-732.67	243	-1092.95		0	100.00	102	-403.05
OC: Total 55 -39.23 358 -806.88 0 100.00 147 -271. PRODUCTION METHOD ONSITE SMR ONSITE ELECTRUSSIS ONSITE ELECTRUSSIS, 100% RENEW LIQUID DELIVERY, SMR SERC HYDROGEN FUEL CELL: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) Reduction -16.57% Reduction 47998 Reduction -54.69% Reduction 32032 Reduction -3.23% Reduction 44379 Reduction -43.0 WELL-TO-WHEEL (kWh) ONSITE SMR ONSITE ELECTRUSSIS ONSITE ELECTRUSSIS UQUID DELIVERY, 500% RENEW SMR SERC Grams (Based on SERC) % Reduct. Grams (Based on SERC) % Re	CO2 (w/ C in VOC & CO)	7472653	-521.19	15562665	-1193.70		0	100.00	9455340	-686.01
PRODUCTION METHOD ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS, 100% RENEW LIQUID DELIVERY, SMR SERC HYDROGEN FUEL CELL: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) 36171 Reduction -16.57% Reduction -16.57% Reduction -54.69% Reduction -3.23% Reduction -3.23% Reduction -443.0 WELL-TO-WHEEL (kWh) ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS, 100% RENEW LIQUID DELIVERY, SMR SERC WELL-TO-WHEEL EMISSIONS Grams (Based on SERC) % Reduct. Grams (Based on SERC) % Red	BC: Total	30	-29.21	159	-586.81		0	100.00	67	-191.23
PRODUCTION METHOD ONSITE SMR ONSITE ELECTROLYSIS 100% RENEW SMR SERC HYDROGEN FUEL CELL: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) 36171 Reduction -16.57% Reduction 47998 Reduction -54.69% Reduction 32032 Reduction -3.23% Reduct 44379 Reduct -43.0 WELL-TO-WHEEL (kWh) ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS LIQUID DELIVERY, SMR SERC SMR SERC Grams (Based on SERC) % Reduct. Grams (Based on SERC	OC: Total	55	-39.23	358	-806.88		0	100.00	147	-271.17
PRODUCTION METHOD ONSITE SMR ONSITE ELECTROLYSIS 100% RENEW SMR SERC HYDROGEN FUEL CELL: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) 36171 Reduction -16.57% Reduction 47998 Reduction -54.69% Reduction 32032 Reduction -3.23% Reduct 44379 Reduct -43.0 WELL-TO-WHEEL (kWh) ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS LIQUID DELIVERY, SMR SERC SMR SERC Grams (Based on SERC) % Reduct. Grams (Based on SERC						ONSITE	FLECTP			VERV
HYDROGEN FUEL CELL: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) Reduction 36171 Reduction -16.57% Reduction 47998 Reduction -54.69% Reduction 32032 Reduction -3.23% Reduction 44379 Reduction -43.0 WELL-TO-WHEEL (kWh) ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS, 100% RENEW LIQUID DELIVERY, SMR SERC Grams (Based on SERC) % Reduct. % Reduct. % Reduct. % Red	PRODUCTION METHOD	ONSITE SI	٧R	ONSITE ELECT	ROLYSIS			•		•
ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) 36171 -16.57% 47998 -54.69% 32032 -3.23% 44379 -43.0 WELL-TO-WHEEL (kWh) ONSITE SIME ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS LIQUID DELIVERY, SMR SERC SMR SERC Grams (Based on SERC) % Reduct. Grams % Reduct. Grams (Based on SERC) Grams % Reduct.			Reduction		Reduction	100	/0 ALEINI			Reduction
WELL-TO-WHEEL (kWh) -16.57% -54.69% -3.23% -43.0 WELL-TO-WHEEL EMISSIONS ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS LIQUID DELIVERY, SMR SERC Grams (Based on SERC) % Reduct. % Reduct. Grams (Based on SERC) % Reduct. Grams (Based on SERC) % Reduct. % Reduct. Grams (Based on SERC) % Reduct. % Reduct. Grams (Based on SERC) % Reduct.		36171				32022	,			
ONSITE SMR ONSITE ELECTROLYSIS ONSITE ELECTROLYSIS, 100% RENEW LIQUID DELIVERY, SMR SERC Grams (Based on SERC) % Reduct. Grams (Based on SERC) % Reduct. <td< td=""><td></td><td>501/1</td><td>-16.57%</td><td>-, 550</td><td>-54.69%</td><td>52.032</td><td>-</td><td>-3.23%</td><td></td><td>-43.02%</td></td<>		501/1	-16.57%	-, 550	-54.69%	52.032	-	-3.23%		-43.02%
ONSITE SMR ONSITE ELECTROLYSIS 100% RENEW SMR SERC WELL-TO-WHEEL EMISSIONS Grams (Based on SERC) % Reduct. % Reduct. Grams (Based on SERC) % Reduct. % Reduct. % Reduct. % Reduct. % Reduct.						ONSITE	ELECTR	OLYSIS.		VERY.
Grams (Based on SERC) % Reduct. (Based on SERC) % Reduct. (Based on SERC) % Reduct. (B			٧R	ONSITE ELECTI	ROLYSIS				-	-
(Based on SERC) % Reduct. (Based on SERC) % Reduct. (Grams % Reduct. (Based on SERC) (Based on SERC) <td>WELL-TO-WHEEL EMISSIONS</td> <td>Grams</td> <td></td> <td>Grams</td> <td></td> <td></td> <td>/••••</td> <td></td> <td></td> <td></td>	WELL-TO-WHEEL EMISSIONS	Grams		Grams			/••••			
GHGs 8287239 2.80 16568899 -94.33 0 100.00 10149754 -11 NOx: Total 5817 93.54 17011 81.10 0 100.00 6280 9 PM2.5: Total 344 86.89 2412 8.16 0 100.00 813 6 PM10: Total 458 83.21 3719 -36.26 0 100.00 2933 7 CO: Total 4038 69.74 6735 49.53 0 100.00 2933 7 VOC: Total 1246 71.14 1818 57.90 0 100.00 1195 7 SOx: Total 3549 -280.45 30172 -3133.97 0 100.00 8659 -82 CH4 25655 -144.30 31395 -198.96 0 100.00 22242 -11 N2O 170 18.99 243 -16.07 0 100.00 102 5			% Reduct.		% Reduct.	Gram	S	% Reduct.		% Reduct.
NOx: Total 93.54 17011 81.10 0 100.00 6280 99 PM2.5: Total 344 86.89 2412 8.16 0 100.00 8113 6 PM10: Total 458 83.21 3719 -36.26 0 100.00 11155 5 CO: Total 4038 69.74 6735 49.53 0 100.00 2933 7 VOC: Total 1246 71.14 1818 57.90 0 100.00 11155 7 SOx: Total 3549 -280.45 30172 -3133.97 0 100.00 8659 -82 CH4 25655 -144.30 31395 -198.96 0 100.00 22242 -11 N2O 170 18.99 243 -16.07 0 100.00 102 5	GHGs	. ,	2.80		-94.33		0	100.00		-19.04
PM2.5: Total 344 86.89 2412 8.16 0 100.00 813 66 PM10: Total 458 83.21 3719 -36.26 0 100.00 11155 57 CO: Total 4038 69.74 6735 49.53 0 100.00 2933 77 VOC: Total 1246 71.14 1818 57.90 100.00 11155 77 SOx: Total 3549 -280.45 30172 -3133.97 0 100.00 8659 -82 CH4 25655 -144.30 31395 -198.96 100.00 22242 -11 N2O 1170 18.99 243 -16.07 0 100.00 102 5										
PM10: Total 458 83.21 3719 -36.26 0 100.00 1155 5 CO: Total 4038 69.74 6735 49.53 0 100.00 2933 7 VOC: Total 1246 71.14 1818 57.90 100.00 11155 7 SOx: Total 3549 -280.45 30172 -3133.97 0 100.00 8659 -82 CH4 25655 -144.30 31395 -198.96 0 100.00 22242 -11 N2O 1100 18.99 243 -16.07 0 100.00 102 5										
CO: Total 4038 69.74 6735 49.53 0 100.00 2933 7 VOC: Total 1246 71.14 1818 57.90 100.00 11195 7 SOx: Total 3549 -280.45 30172 -3133.97 0 100.00 8659 -82 CH4 25655 -144.30 31395 -198.96 0 100.00 22242 -11 N2O 1100 18.99 243 -16.07 0 100.00 102 5										
VOC: Total 1246 71.14 1818 57.90 100.00 11195 7 SOx: Total 3549 -280.45 30172 -3133.97 0 100.00 8659 -82 CH4 25655 -144.30 31395 -198.96 0 100.00 22242 -11 N2O 1100 18.99 243 -16.07 0 100.00 102 5										
SOx: Total 3549 -280.45 30172 -3133.97 100.00 8659 -82 CH4 25655 -144.30 31395 -198.96 0 100.00 22242 -11 N2O 170 18.99 243 -16.07 0 100.00 102 5							-			
CH4 25655 -144.30 31395 -198.96 0 100.00 22242 -11 N2O 170 18.99 243 -16.07 0 100.00 102 5							-			
N2O 170 18.99 243 -16.07 0 100.00 102 5							0			
CO2 (w/ C in VOC & CO) 7472653 7.77 15562665 -92.07 0 100.00 9455340 -1	CO2 (w/ C in VOC & CO)	7472653	7.77	15562665	-92.07		0		9455340	-16.70
							0			71.05

			Re	ound-trip, F	GH-CLT-RGH					
PRODUCTION METHOD	LIQUID DELI BIOMAS	,		GASEOUS DELIVERY, ELECTROLYSIS		VERY, (SIS	GASEOUS DEI ELECTROLYSI	,	LIQUID DELIVERY, ELECTROLYSIS 100%	
HYDROGEN FUEL CELL:		Reduction	Reduction			Reduction		Reduction		
ENERGY CONSUMPTION,	19799				45064		13293		29098	
WELL-TO-PUMP (kWh)		-292.15%		-479.53%		-792.58%		-163.29%		-476.34%
	LIQUID DELIV	VERY,	GASEOUS DEL	IVERY,	LIQUID DELI	VERY,	GASEOUS DEI	IVERY,	LIQUID DELIVERY,	
WELL-TO-PUMP EMISSIONS	BIOMAS	S	ELECTROL	/SIS	ELECTROL	/SIS	ELECTROLYSI	S 100%	ELECTROLYSI	S 100%
WELL-10-PUIVIP EIVIISSIUNS	Grams	0/ De du et	Grams	0/D	Grams	0/ Dealerst	6	0 Pauluat	0	0 De du et
	(Based on SERC)	% Reduct.	(Based on SERC)	ased on SERC) %Reduct.		% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	4802686	-214.32	16953528	-1009.55	20527189	-1243.43	51284	96.64	30809	97.98
NOx: Total	6219	-164.54	17432	-641.47	21497	-814.37	56	97.61	187	92.03
PM2.5: Total	798	-499.21	2472	-1756.22	3027	-2173.21	8	94.02	5	95.97
PM10: Total	1166	-634.99	3811	-2302.34	4665	-2840.68	12	92.27	6	96.11
CO: Total	2835	-150.41	6901	-509.52	8481	-649.04	22	98.04	45	96.07
VOC: Total	851	-25.41	1863	-174.43	2288	-237.15	6	99.12	11	98.33
SOx: Total	10931	-1135.30	30918	-3394.05	37799	-4171.68	100	88.75	2	99.73
CH4	9443	4.58	32171	-225.08	39368	-297.80	104	98.95	40	99.60
N2O	-504	2574.70	249	-1122.47	305	-1396.41	1	96.06	0	98.03
CO2 (w/ C in VOC & CO)	4645874	-286.20	15947294	-1225.67	19520955	-1522.74	51284	95.74	29516	97.55
BC: Total	115	-398.03	163	-603.81	200	-763.15	1	97.73	1	97.23
OC: Total	127	-221.63	367	-829.32	451	-1043.49	1	97.01	3	92.55
					LIQUID DELI		GASEOUS DEL			
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMAS	GASEOUS DELIVERY, ELECTROLYSIS		ELECTROL	,	ELECTROLYSI	,	ELECTROLYSI	'
HYDROGEN FUEL CELL:		Reduction	LEECINOL	Reduction	Reduction		Reduction		LEECTROETSI	Reduction
ENERGY CONSUMPTION,	40231	neuuction	49691	neuucion	65496	neuucuon	33725	Reduction	49530	Reduction
WELL-TO-WHEEL (kWh)	40231	-29.65%	45051	-60.14%	05450	-111.08%	33723	-8.69%	40000	-59.62%
			GASEOUS DELIVERY.		LIQUID DELIVERY,		GASEOUS DELIVERY.		LIQUID DELIVERY,	
	LIQUID DELIVERY,	, BIOMASS	ELECTROLYSIS		ELECTROLYSIS		ELECTROLYSI	s 100%	ELECTROLYSIS 100%	
WELL-TO-WHEEL EMISSIONS	Grams		Grams		Grams					
	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	4802686	43.67	16953528	-98.84	20527189	-140.75	51284	99.40	30809	99.64
NOx: Total	6219	93.09	17432	80.63	21497	76.12	56	99.94	187	99.79
PM2.5: Total	798	69.62	2472	5.88	3027	-15.26	8	99.70	5	99.80
PM10: Total	1166	57.28	3811	-39.63	4665	-70.93	12	99.55	6	99.77
CO: Total	2835	78.75	6901	48.28	8481	36.44	22	99.83	45	99.67
VOC: Total	851	80.29	1863	56.86	2288	47.00	6	99.86	11	99.74
SOx: Total	10931	-1071.64	30918	-3213.98	37799	-3951.53	100	89.33	2	99.75
CH4	9443	10.08	32171	-206.36	39368	-274.89	104	99.01	40	99.62
N2O	-504	340.77	249	-18.94	305	-45.59	1	99.62	0	99.81
CO2 (w/ C in VOC & CO)	4645874	42.66	15947294	-96.82	19520955	-140.93	51284	99.37	29516	99.64
BC: Total	115	50.49	163	30.03	200	14.19	1	99.77	1	99.72
OC: Total	127	94.35	367	83.68	451	79.92	1	99.95	3	99.87


9.3.5 Hydrogen Fuel Cell Hybrid

			Round-trip, RGH	I-CLT-RGH				
HYDROGEN FUEL CELL		Reduction						
HYBRID:						1	1	
ENERGY CONSUMPTION,	15410	40.69%						
POINT-OF-USE (kWh)								
	ALL PRODUCTION	METHODS						
POINT-OF-USE-EMISSIONS	Grams (Based	~ ~						
	on SERC)	% Reduct.						
GHGs	0	100.00						
NOx: Total	0	100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4	0	100.00						
N2O	0	100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00						
OC: Total	0	100.00						
PRODUCTION METHOD	ONSITE SI	AD	ONSITE ELECTI		ONSITE ELE	CTROLYSIS,	LIQUID DELIVERY	
PRODUCTION METHOD	ONSITE SI	VIN	ONSITE ELECT	NOLT313	100% I	RENEW	LIQUID DELIVERT,	SIVIN SENC
HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction
HYBRID:	11871		20791		8749		18061	
ENERGY CONSUMPTION,		-135.12%	_0/01	-311.80%	0,10	-73.29%	20002	-257.74%
WELL-TO-PUMP (kWh)								
	ONSITE S	MR	ONSITE ELECTI	ROLYSIS		CTROLYSIS,	LIQUID DELIVERY	SMR SERC
WELL-TO-PUMP EMISSIONS	-		-		100% F	RENEW		
	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
200	(Based on SECR)	200.00	(Based on SERC)			100.00	(Based on SERC)	
GHGs	6250311	-309.06	12496414	-717.84	0	100.00	7655037	-400.99
NOx: Total	4387	-86.61	12830		0	100.00	4737	-101.48
PM2.5: Total PM10: Total	260 346	-94.95 -117.89	1819 2805		0	100.00 100.00	613 871	-360.63 -449.06
CO: Total	3046		5079		0	100.00	2212	
VOC: Total	940	-38.47	1371	-101.98	0	100.00	901	-32.76
SOx: Total	2677	-202.53	22756		0	100.00	6531	
CH4	19349	-95.52	23678		0	100.00	16775	
N2O	128		183		0	100.00	77	-279.41
CO2 (w/ C in VOC & CO)	5635943	-368.51	11737503	-875.72	0	100.00	7131303	-492.81
BC: Total	23	2.55	120	-418.00	0	100.00	51	-119.65
OC: Total	41	-5.01	270	-583.98	0	100.00	111	-179.94
						CTROLYSIS,		
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECTI	ROLYSIS		RENEW	LIQUID DELIVERY,	SMR SERC
HYDROGEN FUEL CELL		Reduction		Reduction	200/01	Reduction		Reduction
HYBRID:								
ENERGY CONSUMPTION,	27281	12.08%	36201	-16.66%	24159	22.14%	33471	-7.87%
WELL-TO-WHEEL (kWh)								
	ONSITE SI	MD	ONSITE ELECTI		ONSITE ELE	CTROLYSIS,	LIQUID DELIVERY	
WELL-TO-WHEEL EMISSIONS		VIK	UNSITE ELECTI	KULTSIS	100% I	RENEW	LIQUID DELIVERT,	SIVIR SERC
WELL-10-WHEEL EIVII33IONS	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct	Grams	% Reduct.
	(Based on SERC)	78 Neuuci.	(Based on SERC)	78 Reduct.	Granis	78 Reduct	(Based on SERC)	76 Reduct.
GHGs	6250311	26.69	12496414		0	100.00	7655037	10.22
NOx: Total	4387	95.13	12830		0	100.00	4737	94.74
PM2.5: Total	260		1819		0	100.00	613	
PM10: Total	346		2805		0	100.00	871	68.09
CO: Total	3046		5079		0	100.00	2212	
VOC: Total	940		1371	68.25	0	100.00	901	79.13
SOx: Total	2677	-186.94	22756		0	100.00	6531	-600.01
CH4 N2O	19349 128		23678		0	100.00	16775	-59.74 63.09
N20 CO2 (w/ C in VOC & CO)	5635943	38.90	183		0	100.00	7131303	11.99
BC: Total	23	90.31	11/3/303		0	100.00	7131303	78.16
OC: Total	41	98.16	270		0	100.00	111	95.08
			_/0					

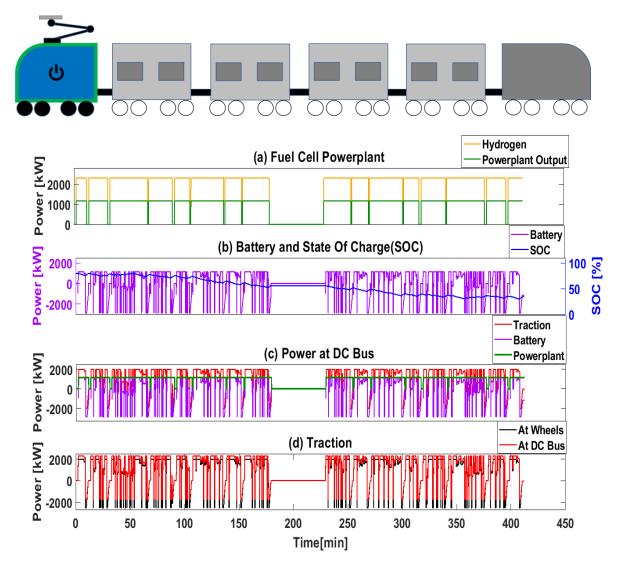
			R	ound-trip, F	RGH-CLT-RGH					
PRODUCTION METHOD	LIQUID DELIVERY,	, BIOMASS	GASEOUS DEI ELECTROLY		LIQUID DELI ELECTROLI		GASEOUS DEI ELECTROLYSI		LIQUID DELI ELECTROLYSI	
HYDROGEN FUEL CELL		Reduction		Reduction	1	Reduction		Reduction		Reduction
HYBRID: ENERGY CONSUMPTION, WELL-TO-PUMP (kWh)	14932	-195.76%	22068	22068 -337.09%		-573.19%	10025	-98.57%	21946	-334.68%
	LIQUID DELIVERY,	, BIOMASS	GASEOUS DELIVERY, ELECTROLYSIS		LIQUID DELI ELECTROL		GASEOUS DEI ELECTROLYSI		LIQUID DELIVERY, ELECTROLYSIS 100%	
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct	Grams (Based on SERC) % Reduct.		Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3622230	-137.06	12786505	-736.83	15481792	-913.23	38679	97.47	23236	98.48
NOx: Total	4691	-99.52	13148	-459.23	16213	-589.63	42	98.20	141	93.99
PM2.5: Total	602	-351.93	1865	-1299.98	2283	-1614.47	6	95.49	4	96.96
PM10: Total	879	-454.33	2874		3518		9	94.17	5	97.07
CO: Total	2138	-88.86	5205		6396		17	98.52	34	97.03
VOC: Total	642	5.41	1405		1726		5	99.33	9	98.74
SOx: Total	8244	-831.68	23319		28509	-3121.74	75	91.52	2	99.80
CH4	7122	28.03	24264	-145.18	29692	-200.03	78	99.21	30	99.70
N2O	-380	1966.44	188		230		1	97.03	0	98.51
CO2 (w/ C in VOC & CO)	3503961 87	-191.28	12027594		14722881	-1123.89	38679	96.78 98.29	22262	98.15
BC: Total OC: Total	87 96	-275.62 -142.58	123 277	-430.82 -600.90	151 341	-551.00 -762.43	0	98.29	0	97.91 94.38
	Total 50 -142.56		211	-000.30	541	-702.43	1	57.74	2	54.30
PRODUCTION METHOD	LIQUID DELIVERY,	, BIOMASS	GASEOUS DELIVERY, ELECTROLYSIS				GASEOUS DEI ELECTROLYSI		LIQUID DELI ELECTROLYSI	
HYDROGEN FUEL CELL	30342.2431	Reduction			Reduct			Reduction		Reduction
HYBRID:			37477.5		49398		25435		37356	
ENERGY CONSUMPTION,	2.215704236		3/4/7.5	-20.78%	45556	-59.20%	23433	18.03%	37330	-20.39%
WELL-TO-WHEEL (kWh)										
WELL-TO-WHEEL EMISSIONS	LIQUID DELIVERY,	, BIOMASS	GASEOUS DEI ELECTROLY		Liquid Delivery, Electrolysis		GASEOUS DEI ELECTROLYSI		LIQUID DELIVERY, ELECTROLYSIS 100%	
	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3622230	57.52	12786505	-49.97	15481792	-81.58	38679	99.55	23236	99.73
NOx: Total	4691	94.79	13148		16213	81.99	42	99.95	141	99.84
PM2.5: Total	602	77.09	1865	29.02	2283	13.07	6	99.77	4	99.85
PM10: Total	879	67.78	2874	-5.31	3518	-28.91	9	99.66	5	99.83
CO: Total	2138	83.97	5205	60.99	6396	52.06	17	99.87	34	99.75
VOC: Total	642	85.13	1405	67.46	1726	60.03	5	99.90	9	99.80
SOx: Total	8244	-783.66	23319		28509	-2955.70	75	91.95	2	99.81
CH4	7122	32.18	24264	-131.06	29692	-182.74	78	99.26	30	99.72
N2O	-380	281.59	188		230	-9.81	1	99.71	0	99.86
CO2 (w/ C in VOC & CO)	3503961	56.75	12027594	-48.44	14722881	-81.71	38679	99.52	22262	99.73
BC: Total	87	62.66	123	47.23	151	35.28	0	99.83	0	99.79
OC: Total	96	95.74	277	87.69	341	84.86	1	99.96	2	99.90


9.3.6 Hydrogen Fuel Cell Hybrid Plugin

			Round-trip, RGF	-CLT-RGH						
HYDROGEN FUEL CELL		Reduction						1		
HYBRID PLUG-IN:	42247									
ENERGY CONSUMPTION,	12317	52.59%								
POINT-OF-USE (kWh)										
	ALL PRODUCTION	METHODS								
POINT-OF-USE-EMISSIONS	Grams	0/ De duet								
	(Based on SERC)	% Reduct.								
GHGs	0	100.00								
NOx: Total	0	100.00								
PM2.5: Total	0	100.00								
PM10: Total	0	100.00								
CO: Total	0	100.00								
VOC: Total	0	100.00								
SOx: Total	0	100.00								
CH4	0	100.00								
N2O CO2 (w/ C in VOC & CO)	0	100.00								
BC: Total	0	100.00								
OC: Total	0	100.00								
	J	100.00								
PRODUCTION METHOD	ONSITE SI	VIR .	ONSITE ELECTI	ROLYSIS	ONSITE	ELECTR	OLYSIS,	LIQUID DELIVERY		
	0.10112.01				100	% REN			1	
HYDROGEN FUEL CELL		Reduction		Reduction			Reduction		Reduction	
HYBRID PLUG-IN:	9488		16618		6993			14436		
ENERGY CONSUMPTION,		-87.93%		-229.15%			-38.51%		-185.93%	
WELL-TO-PUMP (kWh)										
PRODUCTION METHOD	ONSITE SMR		ONSITE ELECTROLYSIS		ONSITE ELECTROLYSI 100% RENEW		-	LIQUID DELIVERY	, SMR SERC	
	Crome		Grams		100	100/0 11211		Grams		
WELL_TO_PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Gram	Grams % Reduct.		(Based on SERC)	% Reduct.	
GHGs	4995787	-226.96	9988211	-553.69	0 100.00		6118565	-300.44		
NOx: Total	3507	-49.16	10255		0		100.00	3786		
PM2.5: Total	208	-55.82	1454		0		100.00	490		
PM10: Total	276	-74.16	2242		0		100.00	696		
CO: Total	2434	-115.01	4060	-258.57	0		100.00	1768	-56.14	
VOC: Total	751	-10.68	1096	-61.44	0		100.00	720	-6.12	
SOx: Total	2140	-141.81	18188	-1955.46	0		100.00	5220	-489.91	
CH4	15465	-56.27	18926	-91.24	0		100.00	13408	-35.48	
N2O	102	-401.96	146	-619.15	0		100.00	62	-203.26	
CO2 (w/ C in VOC & CO)	4504731	-274.47	9381624	-679.88	0		100.00	5699952	-373.83	
BC: Total	18	22.11	96	-314.03	0		100.00	41	-75.56	
OC: Total	33	16.07	216	-446.69	0		100.00	88	-123.75	
					ONSITE	ELECTR	OLYSIS,			
PRODUCTION METHOD	ONSITE SI	٨R	ONSITE ELECTI	ROLYSIS		% REN	-	LIQUID DELIVERY,	, SMR SERC	
HYDROGEN FUEL CELL		Reduction		Reduction			Reduction		Reduction	
HYBRID PLUG-IN:	21805		28935		19310	'n		26753		
ENERGY CONSUMPTION,	21003	29.73%	20733	6.75%	1321(•	37.77%	20/33	13.78%	
WELL-TO-WHEEL (kWh)										
PRODUCTION METHOD	ONSITE SI	VIR .	ONSITE ELECTI	ROLYSIS	ONSITE		-	LIQUID DELIVERY		
					100	% REN	EW		, s sence	
WELL-TO-WHEEL EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	Gram	s	% Reduct.	Grams	% Reduct.	
	(Based on SERC)		(Based on SERC)			r		(Based on SERC)		
GHGs	4995787	41.41	9988211	-17.15	0		100.00	6118565		
NOx: Total	3507	96.10	10255		0		100.00	3786		
PM2.5: Total	208	92.10	1454	44.63	0		100.00	490		
PM10: Total CO: Total	276 2434	89.88 81.76	2242 4060		0		100.00 100.00	696 1768		
VOC: Total	2434 751	81.76	1096		0		100.00	720		
SOx: Total	2140	-129.35	1096		0		100.00	5220		
CH4	15465	-129.35	18926		0		100.00	13408		
N2O	10403	51.16	146		0		100.00	62	70.50	
CO2 (w/ C in VOC & CO)	4504731	44.40	9381624	-15.79	0		100.00	5699952	29.65	
BC: Total	18	92.26	96		0		100.00	41	82.55	
OC: Total	33	98.53	216		0		100.00	88		

			R	ound-trip, F	GH-CLT-RGH					
PRODUCTION METHOD		, BIOMASS	GASEOUS DEI ELECTROLY		LIQUID DELI ELECTROLY	'	GASEOUS DEI ELECTROLYSI	'	LIQUID DELI ELECTROLYSI	,
HYDROGEN FUEL CELL	11935.13551	Reduction		Reduction		Reduction		Reduction		Reduction
HYBRID PLUG-IN: ENERGY CONSUMPTION, WELL-TO-PUMP (kWh)		-136.40%	17638	-249.36%	27166	-438.07%	8013	-58.72%	17541	-247.43%
PRODUCTION METHOD		, BIOMASS	GASEOUS DEI ELECTROLY		LIQUID DELI ELECTROLI		GASEOUS DEI ELECTROLYSI		LIQUID DELI ELECTROLYSI	
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	2895198	-89.48	10220077	-568.87	12374383	-709.86	30915	97.977	18573	98.78
NOx: Total	3749	-59.47	10509	-346.98	12959	-451.21	34	98.561	113	95.19
PM2.5: Total	481	-261.22	1490	-1018.98	1825	-1270.35	5	96.398	3	97.57
PM10: Total	703	-343.07	2297	-1348.20	2812	-1672.73	7	95.338	4	97.66
CO: Total	1709	-50.95	4160	-267.44	5113	-351.55	13	98.817	27	97.63
VOC: Total	513	24.40	1123	-65.43	1379		4	99.467	7	98.99
SOx: Total	6590	-644.68	18638		22787	-2475.09	60	93.220	1	99.84
CH4	5692	42.48	19394	-95.97	23732		62	99.369	24	99.76
N2O	-304	1591.82	150		184	-802.08	0	97.628	0	98.81
CO2 (w/ C in VOC & CO)	2800667	-132.81	9613490		11767796	-878.24	30915	97.430	17793	98.52
BC: Total	69	-200.23	98	-	120		0	98.634	0	98.33
OC: Total	77	-93.89	221	-460.22	272	-589.33	1	98.197	2	95.51
PRODUCTION METHOD		, BIOMASS	GASEOUS DEI ELECTROL		LIQUID DELI ELECTROLI		GASEOUS DEI ELECTROLYSI		LIQUID DELI ELECTROLYSI	
HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction		Reduction
HYBRID PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh)	24252	21.84%	29955	3.46%	39483	-27.24%	20330	34.48%	29858	3.78%
PRODUCTION METHOD	LIQUID DELIVERY	. BIOMASS	GASEOUS DEI		LIQUID DELI		GASEOUS DEI		LIQUID DELI ELECTROLYSI	
			ELECTROL	/SIS	ELECTROLY	/SIS	ELECTROLYSI	\$ 100%	22201102101	
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	ELECTROLY Grams (Based on SERC)	/SIS % Reduct.	ELECTROLY Grams (Based on SERC)	/SIS % Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	(Based on SERC) 2895198	% Reduct. 66.04	Grams (<i>Based on SERC</i>) 10220077	% Reduct. -19.87	Grams (<i>Based on SERC</i>) 12374383	% Reduct. -45.13	Grams 30915	% Reduct. 99.64	Grams 18573	99.78
GHGs NOx: Total	(Based on SERC) 2895198 3749	% Reduct. 66.04 95.83	Grams (<i>Based on SERC</i>) 10220077 10509	% Reduct. -19.87 88.33	Grams (<i>Based on SERC</i>) 12374383 12959	% Reduct. -45.13 85.60	Grams 30915 34	% Reduct. 99.64 99.96	Grams	99.78 99.87
GHGs NOx: Total PM2.5: Total	(Based on SERC) 2895198 3749 481	% Reduct. 66.04 95.83 81.68	Grams (<i>Based on SERC</i>) 10220077 10509 1490	% Reduct. -19.87 88.33 43.26	Grams (Based on SERC) 12374383 12959 1825	% Reduct. -45.13 85.60 30.52	Grams 30915 34 5	% Reduct. 99.64 99.96 99.82	Grams 18573	99.78 99.87 99.88
GHGs NOx: Total PM2.5: Total PM10: Total	(Based on SERC) 2895198 3749 481 703	% Reduct. 66.04 95.83 81.68 74.25	Grams (Based on SERC) 10220077 10509 1490 2297	% Reduct. -19.87 88.33 43.26 15.82	Grams (Based on SERC) 12374383 12959 1825 2812	% Reduct. -45.13 85.60 30.52 -3.04	Grams 30915 34 5 7	% Reduct. 99.64 99.96 99.82 99.73	Grams 18573 113 3 4	99.78 99.87 99.88 99.86
GHGs NOx: Total PM2.5: Total PM10: Total CO: Total	(Based on SERC) 2895198 3749 481 703 1709	% Reduct. 66.04 95.83 81.68 74.25 87.19	Grams (Based on SERC) 10220077 10509 1490 2297 4160	% Reduct. -19.87 88.33 43.26 15.82 68.82	Grams (Based on SERC) 12374383 12959 1825 2812 5113	% Reduct. -45.13 85.60 30.52 -3.04 61.69	Grams 30915 34 5 7 13	% Reduct. 99.64 99.96 99.82 99.73 99.90	Grams 18573	99.78 99.87 99.88 99.86 99.80
GHGs NOX: Total PM2.5: Total PM10: Total CO: Total VOC: Total	(Based on SERC) 2895198 3749 481 703 1709 513	% Reduct. 66.04 95.83 81.68 74.25 87.19 88.12	Grams (Based on SERC) 10220077 10509 1490 2297 4160 1123	% Reduct. -19.87 88.33 43.26 15.82 68.82 73.99	Grams (Based on SERC) 12374383 12959 1825 2812 5113 1379	% Reduct. -45.13 85.60 30.52 -3.04 61.69 68.05	Grams 30915 34 5 7 13 4	% Reduct. 99.64 99.96 99.82 99.73 99.90 99.92	Grams 18573 113 3 4	99.78 99.87 99.88 99.86 99.80 99.80
GHGs NOX: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOX: Total	(Based on SERC) 2895198 3749 481 703 1709 513 6590	% Reduct. 66.04 95.83 81.68 74.25 87.19 88.12 -606.30	Grams (Based on SERC) 10220077 10509 1490 2297 4160 1123 18638	% Reduct. -19.87 88.33 43.26 15.82 68.82 73.99 -1897.76	Grams (Based on SERC) 12374383 12959 1825 2812 5113 1379 22787	% Reduct. -45.13 85.60 30.52 -3.04 61.69 68.05 -2342.38	Grams 30915 34 5 7 13 4 60	% Reduct. 99.64 99.96 99.82 99.73 99.90 99.92 93.57	Grams 18573 113 3 4 27 7 7 1	99.78 99.87 99.88 99.86 99.80 99.84 99.85
GHGs NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOx: Total CH4	(Based on SERC) 2895198 3749 481 703 1709 513 6590 5692	% Reduct. 66.04 95.83 81.68 74.25 87.19 88.12 -606.30 45.79	Grams (Based on SERC) 10220077 10509 1490 2297 4160 1123 18638 19394	% Reduct. -19.87 88.33 43.26 15.82 68.82 73.99 -1897.76 -84.68	Grams (Based on SERC) 12374383 12959 1825 2812 5113 1379 22787 23732	% Reduct. -45.13 85.60 30.52 -3.04 61.69 68.05 -2342.38 -125.99	Grams 30915 34 5 7 13 4 60 62	% Reduct. 99.64 99.96 99.82 99.73 99.90 99.92 93.57 99.41	Grams 18573 113 3 4	99.78 99.87 99.88 99.86 99.80 99.84 99.85 99.77
GHGs NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOx: Total CH4 N2O	(Based on SERC) 2895198 3749 481 703 1709 513 6590 5692 -304	% Reduct. 66.04 95.83 81.68 74.25 87.19 88.12 -606.30 45.79 245.14	Grams (Based on SERC) 10220077 10509 1490 2297 4160 1123 18638 19394 150	% Reduct. -19.87 88.33 43.26 15.82 68.82 73.99 -1897.76 -84.68 28.30	Grams (Based on SERC) 12374383 12959 1825 2812 5113 1379 22787 23732 184	% Reduct. -45.13 85.60 30.52 -3.04 61.69 68.05 -2342.38 -125.99 12.23	Grams 30915 34 5 7 7 13 4 60 60 62 0	% Reduct. 99.64 99.96 99.82 99.73 99.90 99.92 93.57 99.41 99.77	Grams 18573 113 3 4 27 7 7 1 1 24 0	99.78 99.87 99.88 99.86 99.80 99.84 99.85 99.77 99.88
GHGs NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOx: Total CH4	(Based on SERC) 2895198 3749 481 703 1709 513 6590 5692	% Reduct. 66.04 95.83 81.68 74.25 87.19 88.12 -606.30 45.79	Grams (Based on SERC) 10220077 10509 1490 2297 4160 1123 18638 19394	% Reduct. -19.87 88.33 43.26 15.82 68.82 73.99 -1897.76 -84.68	Grams (Based on SERC) 12374383 12959 1825 2812 5113 1379 22787 23732	% Reduct. -45.13 85.60 30.52 -3.04 61.69 68.05 -2342.38 -125.99	Grams 30915 34 5 7 13 4 60 62	% Reduct. 99.64 99.96 99.82 99.73 99.90 99.92 93.57 99.41	Grams 18573 113 3 4 27 7 7 1	99.78 99.87 99.88 99.86 99.80 99.84 99.85 99.77

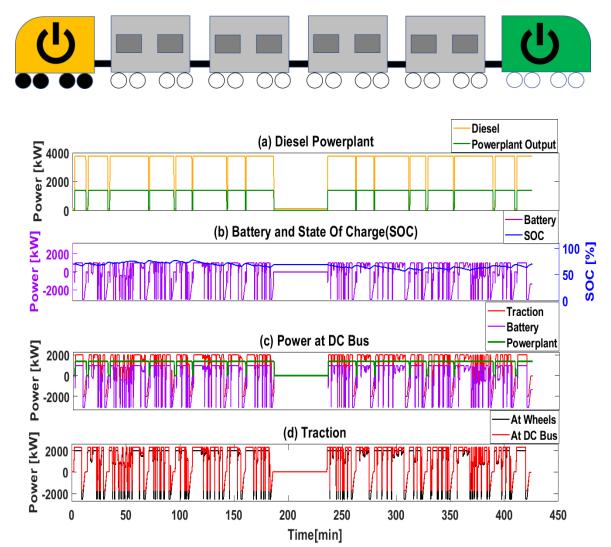
			Round-trip, RGH	I-CLT-RGH					-
HYDROGEN FUEL CELL	PLUG-IN ELECTRI	CITY 100%							
HYBRID PLUG-IN:	RENEWA								
ENERGY CONSUMPTION &		Reduction							
COMPARISON, WELL-TO-									
PUMP, INCL. PLUG	1513								
ELECTRICITY (kWh)		62.56%							
PLUG-IN ELECTRICIT	Y 100% RENEWAB	LE							
WELL-TO-PUMP EMISSIONS,									
PLUG ELECTRICITY	Grams								
GHGs	660482								
NOx: Total	678								
PM2.5: Total	96								
PM10: Total	148								
CO: Total	268								
VOC: Total	72								
SOx: Total	1203								
CH4	1251								
N2O	10								
CO2 (w/ C in VOC & CO)	620371								
BC: TOTAL	6								
OC: TOTAL	14								
HYDROGEN FUEL CELL					ONSITE E	FLECTR			
HYBRID PLUG-IN:	ONSITE SI	MD.	ONSITE ELECTI		01101111		011010,		CMAD CEDC
INT DRID PLUG-IN:		VIN	UNSITE ELECTI	ROLYSIS	100	% RENI	W	LIQUID DELIVERY,	SIVIR SERC
			UNSITE ELECTI		1009	% RENI		LIQUID DELIVERY,	
ENERGY CONSUMPTION &		Reduction		Reduction	1009	% RENI	W Reduction		
ENERGY CONSUMPTION & COMPARISON, WELL-TO-	23318	Reduction	30448	Reduction	1009 19310		Reduction	28266.40416	Reduction
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG									Reduction
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh)	23318	Reduction 24.85%	30448	Reduction	19310)	Reduction 37.77%	28266.40416	Reduction 8.91%
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG	23318	Reduction 24.85%		Reduction	19310 ONSITE E)	Reduction 37.77% OLYSIS,		Reduction 8.91%
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh)	23318 ONSITE SI Grams	Reduction 24.85%	30448	Reduction	19310 ONSITE E) ELECTR % RENI	Reduction 37.77% OLYSIS,	28266.40416	Reduction 8.91%
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh) PRODUCTION METHOD	23318 ONSITE SI Grams	Reduction 24.85% MR	30448 ONSITE ELECTI Grams	Reduction 1.87% ROLYSIS	19310 ONSITE E 1009) ELECTR % RENI ns	Reduction 37.77% OLYSIS, EW	28266.40416 LIQUID DELIVERY, Grams	Reduction 8.91% SMR SERC
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS	23318 ONSITE SI Grams (Based on SERC)	Reduction 24.85% VIR % Reduct.	30448 ONSITE ELECTI Grams (Based on SERC)	Reduction 1.87% ROLYSIS % Reduct.	19310 ONSITE I 1009) ELECTR <u>% RENI</u> ns	Reduction 37.77% OLYSIS, W % Reduct.	28266.40416 LIQUID DELIVERY, Grams (Based on SERC)	Reduction 8.91% SMR SERC % Reduct.
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS	23318 ONSITE SI Grams (Based on SERC) 5656269	Reduction 24.85% WR <i>% Reduct.</i> 33.66	30448 ONSITE ELECTI Grams (Based on SERC) 10648693	Reduction 1.87% ROLYSIS % Reduct. -24.89	19310 ONSITE I 100 In Gran) ELECTR % RENI ns	Reduction 37.77% OLYSIS, W % Reduct. 100.00	28266.40416 LIQUID DELIVERY, Grams (Based on SERC) 6779047	Reduction 8.91% SMR SERC % Reduct. 20.49
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOX: Total	23318 ONSITE SI Grams (Based on SERC) 5656269 4185	Reduction 24.85% WR % <i>Reduct.</i> 33.66 95.35	30448 ONSITE ELECTI Grams (Based on SERC) 10648693 10933	Reduction 1.87% ROLYSIS % Reduct. -24.89 87.85	19310 ONSITE F 1009 In Gran 0 0) ELECTR % RENI ns	Reduction 37.77% OLYSIS, W % Reduct. 100.00 100.00	28266.40416 LIQUID DELIVERY, Grams (Based on SERC) 6779047 4464	Reduction 8.91% SMR SERC % Reduct. 20.49 95.04
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOX: Total PM2.5: Total	23318 ONSITE SI Grams (Based on SERC) 5656269 4185 304	Reduction 24.85% MR % Reduct. 33.66 95.35 88.44	30448 ONSITE ELECTI Grams (Based on SERC) 10648693 10933 1550	Reduction 1.87% ROLYSIS % Reduct. -24.89 87.85 40.97	19310 ONSITE I 1009 In Gran 0 0 0) % RENI ns	Reduction 37.77% OLYSIS, W % Reduct. 100.00 100.00 100.00	28266.40416 LIQUID DELIVERY, Grams (Based on SERC) 6779047 4464 587	Reduction 8.91% SMR SERC % Reduct. 20.49 95.04 77.67
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOx: Total PM2.5: Total PM10: Total	23318 ONSITE SI Grams (Based on SERC) 5656269 4185 304 425	Reduction 24.85% WR % Reduct. 33.66 95.35 88.44 84.45	30448 ONSITE ELECTI Grams (Based on SERC) 10648693 10933 1550 2390	Reduction 1.87% ROLYSIS % Reduct. -24.89 87.85 40.97 12.42	19310 ONSITE I 1009 In Gran 0 0 0 0 0) % RENI ns	Reduction 37.77% OLYSIS, W % Reduct. 100.00 100.00 100.00 100.00	28266.40416 LIQUID DELIVERY, Grams (Based on SERC) 6779047 4464 587 844	Reduction 8.91% SMR SERC % Reduct. 20.49 95.04 77.67 69.06
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOx: Total PM2.5: Total PM10: Total CO: Total	23318 ONSITE SI Grams (Based on SERC) 5656269 4185 304 425 2703	Reduction 24.85% WR % Reduct. 33.66 95.35 88.44 84.45 79.74	30448 ONSITE ELECTI Grams (Based on SERC) 10648693 10933 1550 2390 4328	Reduction 1.87% ROLYSIS % Reduct. -24.89 87.85 40.97 12.42 67.56	19310 ONSITE I 1009 In Gran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) % RENI ns	Reduction 37.77% OLYSIS, W % Reduct. 100.00 100.00 100.00 100.00 100.00	28266.40416 LIQUID DELIVERY, Grams (Based on SERC) 6779047 4464 587 844 2036	Reduction 8.91% SMR SERC % Reduct. 20.49 95.04 77.67 69.06 84.74
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total	23318 ONSITE SI Grams (Based on SERC) 5656269 4185 304 425 2703 824	Reduction 24.85% WR % Reduct. 33.66 95.35 88.44 84.45 79.74 80.92	30448 ONSITE ELECTI Grams (Based on SERC) 10648693 10933 1550 2390 4328 1168	Reduction 1.87% ROLYSIS % Reduct. -24.89 87.85 40.97 12.42 67.56 72.94	19310 ONSITE I 1009 In Gran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) % RENI ns	Reduction 37.77% OLYSIS, W % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00	28266.40416 LIQUID DELIVERY, Grams (Based on SERC) 6779047 4464 587 844 2036 793	Reduction 8.91% SMR SERC % Reduct. 20.49 95.04 77.67 69.06 84.74 81.64
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOX: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOX: Total	23318 ONSITE SI Grams (Based on SERC) 5656269 4185 304 425 2703 824 3342	Reduction 24.85% WR % Reduct. 33.66 95.35 88.44 84.45 79.74 80.92 -258.26	30448 ONSITE ELECTI Grams (Based on SERC) 10648693 10933 1550 2390 4328 1168 19391	Reduction 1.87% ROLYSIS % Reduct. -24.89 87.85 40.97 12.42 67.56 72.94 -1978.44	19310 ONSITE I 1009 In Gran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) ELECTR % RENI ns	Reduction 37.77% OLYSIS, W % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00	28266.40416 LIQUID DELIVERY, Grams (Based on SERC) 6779047 4464 587 844 2036 793 6423	Reduction 8.91% SMR SERC % Reduct. 20.49 95.04 77.67 69.06 84.74 81.64 -588.42
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOx: Total PM2.5: Total PM2.5: Total CO: Total VOC: Total SOx: Total CO: Total	23318 ONSITE SI Grams (Based on SERC) 5656269 4185 304 425 2703 824 3342 16717	Reduction 24.85% VIR % Reduct. 33.66 95.35 88.44 84.45 79.74 80.92 -258.26 -59.19	30448 ONSITE ELECTI Grams (Based on SERC) 10648693 10933 1550 2390 4328 1168 19391 20177	Reduction 1.87% ROLYSIS % Reduct. -24.89 87.85 40.97 12.42 67.56 72.94 -1978.44 -92.14	19310 ONSITE E 1005 In Gran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) % RENI ns	Reduction 37.77% OLYSIS, W % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	28266.40416 LIQUID DELIVERY, Grams (Based on SERC) 6779047 4464 587 844 2036 793 6423 14660	Reduction 8.91% SMR SERC 20.49 95.04 77.67 69.06 84.74 81.64 -588.42 -39.60
ENERGY CONSUMPTION & COMPARISON, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOx: Total PM2.5: Total PM2.5: Total PM2.5: Total CO: Total VOC: Total SOx: Total CH4 N2O	23318 ONSITE SI Grams (Based on SERC) 5656269 4185 304 425 2703 824 3342 16717 112	Reduction 24.85% WR % Reduct. 33.66 95.35 88.44 84.45 79.74 80.92 -258.26 -59.19 46.54	30448 ONSITE ELECTI Grams (Based on SERC) 10648693 10933 1550 2390 4328 1168 19391 20177 156	Reduction 1.87% ROLYSIS % Reduct. -24.89 87.85 40.97 12.42 67.56 72.94 -1978.44 -92.14 25.41	19310 ONSITE E 1005 In Gran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) % RENI ns	Reduction 37.77% OLYSIS, W % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	28266.40416 LIQUID DELIVERY, Grams (Based on SERC) 6779047 4464 587 844 2036 793 6423 14660 71	Reduction 8.91% SMR SERC % Reduct. 20.49 95.04 77.67 69.06 84.74 81.64 -588.42 -39.60 65.87


HYDROGEN FUEL CELL HYBRID PLUG-IN:		, BIOMASS	GASEOUS DEI ELECTROLY		LIQUID DELI ELECTROLY	,	GASEOUS DEI ELECTROLYSI		LIQUID DELI ELECTROLYSI	
ENERGY CONSUMPTION & COMPARISON, WELL-TO-	25765	Reduction	31469	Reduction	40996	Reduction	20331	Reduction	29859	Reduction
WHEEL, INCL. PLUG ELECTRICITY (kWh)	25705	16.97%	51405	-1.41%	40550	-32.12%	20001	34.48%	23033	3.77%
PRODUCTION METHOD		, BIOMASS	GASEOUS DEI ELECTROLY		LIQUID DELI ELECTROLY		GASEOUS DEI ELECTROLYSI		LIQUID DELI ELECTROLYSI	
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3555680	58.30	10880559	-27.61	13034865	-52.88	30915	99.64	18573	99.78
NOx: Total	4427	95.08	11187	87.57	13637	84.85	34	99.96	113	99.87
PM2.5: Total	577	78.02	1586	39.60	1921	26.86	5	99.82	3	99.88
PM10: Total	851	68.81	2446	10.39	2960	-8.47	7	99.73	4	99.86
CO: Total	1978	85.18	4429	66.81	5381	59.67	13	99.90	27	99.80
VOC: Total	586	86.44	1195	72.32	1452	66.37	4	99.92	7	99.84
SOx: Total	7792	-735.21	19841	-2026.68	23989	-2471.30	60	93.57	1	99.85
CH4	6944	33.88	20645	-96.60	24984	-137.91	62	99.41	24	99.77
N2O	-294	240.52	160	23.67	193	7.61	0	99.77	0	99.88
CO2 (w/C in VOC & CO)	3421038	57.78	10233860	-26.31	12388166	-52.89	30915	99.62	17793	99.78
BC: Total	76	67.43	104	55.10	127	45.55	0	99.86	0	99.83
OC: Total	91	95.96	235	89.53	286	87.26	1	99.97	2	99.92

9.3.7 Hydrogen Fuel Cell Hybrid Downsized

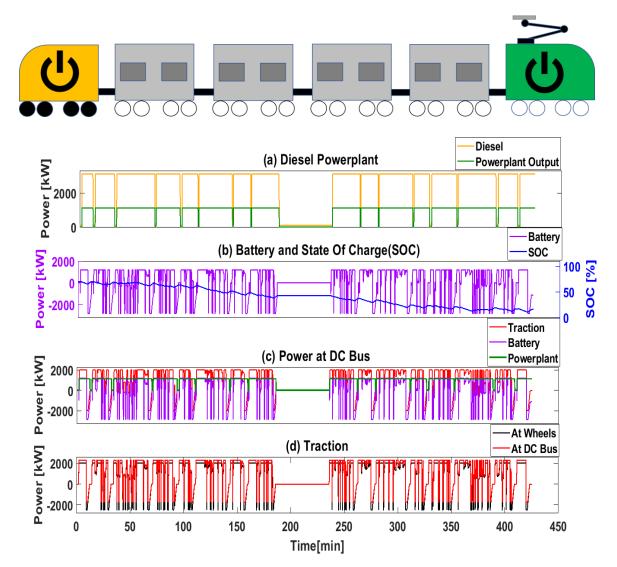
				Round-tri	, RGH-CLT						
				Kouna-un	J, KGH-CLI	1		i			
HYDROGEN FUEL CELL		Reduction									
HYBRID - DOWNSIZED:	16325										
ENERGY CONSUMPTION,		37.17%									
POINT-OF-USE (kWh)											
POINT-OF-USE-EMISSIONS	ALL PRODUCTION	METHODS									
	Grams	% Reduct.									
	(Based on SERC)										
GHGs	0	100									
NOx: Total PM2.5: Total	0	100 100									
PM10: Total	0	100									
CO: Total	ů O	100									
VOC: Total	0	100									
SOx: Total	0	100									
CH4	0	100									
N2O	0	100									
CO2 (w/ C in VOC & CO)	0	100									
BC: Total	0	100									
OC: Total	0	100									
					ONSITE E	IFCTRO	DI YSIS.				
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS		6 RENE		LIQUID DELIVERY	, SMR SERC	LIQUID DELIVERY	, BIOMASS
HYDROGEN FUEL CELL		Reduction		Reduction	200/	_	Reduction		Reduction		Reduction
HYBRID DOWNSIZED:	40576		22025 26505		0000			40424		45040	
ENERGY CONSUMPTION,	12576	-149.08%	22025.36585	-336.25%	9268		-83.58%	19134	-278.98%	15819	-213.32%
WELL-TO-PUMP (kWh)											
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE E		-		SMR SFRC	LIQUID DELIVERY	
	0.101.20		0.10.12.220		100% RENE		w		,		, 5.01
WELL-TO-PUMP EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	Grams		% Reduct.	Grams	% Reduct.	Grams	% Reduct.
	(Based on SERC)		(Based on SERC)					(Based on SERC)		(Based on SERC)	
GHGs	6621436	-333.35	13238414	-766.41	0		100.00	8109570	-430.74	3837307	-151.14
NOx: Total	4648	-97.69	13592	-478.13	0		100.00	5018	-113.44	4969	-111.37
PM2.5: Total PM10: Total	275 366	-106.52 -130.83	1928 2971	-1347.29 -1773.11	0		100.00 100.00	650 923	-387.99 -481.66	638 932	-378.77 -487.25
CO: Total	300	-184.97	5381	-375.24	0		100.00	2343	-106.94	2265	-100.07
VOC: Total	996	-46.69	1452	-113.97	0		100.00	955	-40.65	680	-0.20
SOx: Total	2836	-220.49	24107	-2624.31	0		100.00	6919	-681.87	8734	-887.00
CH4	20498	-107.12	25084	-153.47	0		100.00	17771	-79.57	7545	23.76
N2O	136	-565.29	194	-853.16	0		100.00	82	-301.94	-403	2077.26
CO2 (w/ C in VOC & CO)	5970588	-396.32	12434441	-933.65	0		100.00	7554739	-528.01	3712015	-208.57
BC: Total	24	-3.23	127	-448.76	0		100.00	54	-132.69	92	-297.92
OC: Total	44	-11.24	286	-624.59	0		100.00	117	-196.57	101	-156.98
					ONSITE E	LECTRO	DLYSIS,				
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECTI	ROLYSIS		6 RENE		LIQUID DELIVERY	, SMR SERC	LIQUID DELIVERY	, BIOMASS
HYDROGEN FUEL CELL		Reduction		Reduction		I	Reduction		Reduction		Reduction
HYBRID DOWNSIZED:	28901		38350		25593			35459		32144	
ENERGY CONSUMPTION,	28901	6.86%	38330	-23.59%	20095		17.52%	55455	-14.27%	52144	-3.59%
WELL-TO-WHEEL (kWh)											
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECTI	ROLYSIS	ONSITE E		-	LIQUID DELIVERY	. SMR SERC	LIQUID DELIVERY	. BIOMASS
				1	100%	6 RENE	W		,		,
WELL-TO-WHEEL EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	Grams		% Reduct.	Grams	% Reduct.	Grams	% Reduct.
	(Based on SERC)		(Based on SERC)					(Based on SERC)		(Based on SERC)	
GHGs	6621436	22.34	13238414	-55.27	0		100.00	8109570	4.89	3837307	54.99
NOx: Total	4648	94.84	13592	84.90	0		100.00	5018	94.43	4969	94.48 75.72
PM2.5: Total PM10: Total	275 366	89.53 86.58	1928 2971	26.62 -8.87	0		100.00 100.00	650 923	75.26 66.19	638 932	75.72 65.87
CO: Total	3227	75.82	5381	59.67	0		100.00	2343	82.44	2265	83.02
VOC: Total	996	76.94	1452	66.36	0		100.00	955	77.89	680	84.25
SOx: Total	2836	-203.97	24107	-2483.91	0		100.00	6919	-641.57	8734	-836.13
CH4	20498	-95.19	25084	-138.87	0		100.00	17771	-69.23	7545	28.15
N2O	136	35.27	194	7.26	0		100.00	82	60.89	-403	292.37
			12434441	-53.46			100.00	7554739	6.76	3712015	54.19
CO2 (w/ C in VOC & CO)	5970588	26.31	12454441	-33.40	0		100.00	/334/35			
CO2 (w/ C in VOC & CO) BC: Total	5970588	89.74	12454441	45.45	0		100.00	54	76.87	92	60.44

VERY, 5 100% Reduction -360.49% VERY, 5 100% % Reduct. 98.389 93.629 96.778 96.895 96.856 98.664 99.787 99.681 98.426 98.040
Reduction -360.49% /ERY, 5 100% % Reduct. 98.389 93.629 96.778 96.895 96.856 98.664 99.787 99.681 98.426 98.040
-360.49% /ERY, 5100% % Reduct. 98.389 93.629 96.778 96.895 96.856 98.664 99.787 99.681 98.426 98.040
VERY, 5 100% % Reduct. 98.389 93.629 96.778 96.895 96.856 98.664 99.787 99.681 98.426 98.040
VERY, 5 100% % Reduct. 98.389 93.629 96.778 96.895 96.856 98.664 99.787 99.681 98.426 98.040
 x Reduct. 98.389 93.629 96.778 96.895 96.856 98.664 99.787 99.681 98.426 98.040
 x Reduct. 98.389 93.629 96.778 96.895 96.856 98.664 99.787 99.681 98.426 98.040
% Reduct. 98.389 93.629 96.778 96.895 96.856 98.664 99.787 99.681 98.426 98.040
98.389 93.629 96.778 96.895 96.856 98.664 99.787 99.681 98.426 98.040
93.629 96.778 96.895 96.856 98.664 99.787 99.681 98.426 98.040
96.778 96.895 96.856 98.664 99.787 99.681 98.426 98.040
96.895 96.856 98.664 99.787 99.681 98.426 98.040
96.856 98.664 99.787 99.681 98.426 98.040
98.664 99.787 99.681 98.426 98.040
99.787 99.681 98.426 98.040
99.681 98.426 98.040
98.426 98.040
98.040
97.784
94.047
VERY,
5 100%
Reduction
-27.54%
VERY,
5 100%
% Reduct.
99.71
99.83
99.84
99.82
99.73
99.79
99.80
99.70
99.85 99.71
99.85

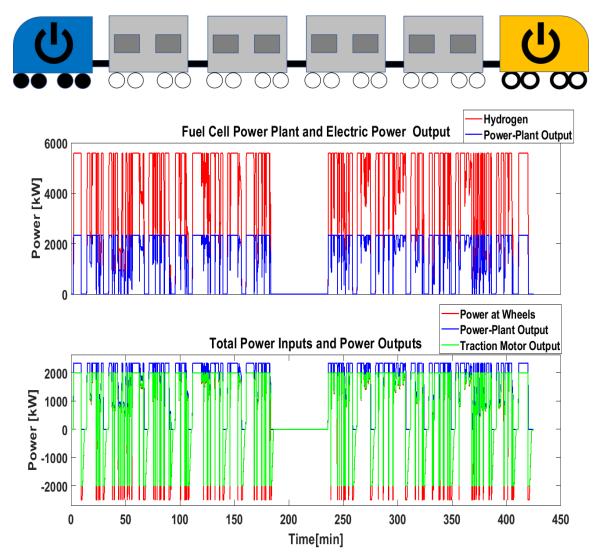

9.3.8 Hydrogen Fuel Cell Hybrid Downsized Plugin

			Round-trip, RGI	H-CLT-RGH				
		Reduction					Ì	
HYDROGEN FUEL CELL HYBRID DOWNSIZED - PLUG-		Reduction						
IN: ENERGY CONSUMPTION,	12721	51.04%						
POINT-OF-USE (kWh)		51.0470						
	ION METHODS							
POINT-OF-USE-EMISSIONS	Grams (Based on SERC)	% Reduct.						
GHGs	0	100.00						
NOx: Total	0	100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4	0	100.00						
N2O	0	100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00						
OC: Total	0	100.00						
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT		ONSITE ELECT	ROLYSIS,	LIQUID DELIVERY	
	UNSITE S		UNSITE ELECT	NUL1313	100% RE	NEW		, JIVIN SERL
HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction
HYBRID DOWNSIZED - PLUG-	9799		17163		7222		14910	
IN: ENERGY CONSUMPTION,	0.00	-94.10%	1,100	-239.94%		-43.05%	1.510	-195.31%
WELL-TO-PUMP (kWh)								
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE ELECT	,	LIQUID DELIVERY	, SMR SERC
			-		100% RE	NEW		
WELL-TO-PUMP EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
CUC-	(Based on SERC)	227.00	(Based on SERC)	575 10	0	100.00	(Based on SERC)	212 57
GHGs NOx: Total	5159650 3622	-237.68	10315827 10591	-575.13 -350.50	0	100.00	6319255 3910	-313.57 -66.32
PM2.5: Total	214	-54.05	10591	-350.50	0	100.00	506	-00.32
PMI2:5: Total PM10: Total	214	-60.93	2315	-1027.78	0	100.00	719	-280.26
CO: Total	265	-122.06	4193	-1359.39	0	100.00	1826	-61.26
VOC: Total	776	-14.31	1132	-66.73	0	100.00	744	-9.60
SOx: Total	2210	-149.74	18785	-2022.88	0	100.00	5391	-509.26
CH4	15973	-61.40	19546	-97.51	0	100.00	13848	-39.93
N2O	106	-418.42	151	-642.73	0	100.00	64	-213.20
CO2 (w/ C in VOC & CO)	4652487	-286.75	9689343	-705.46	0	100.00	5886912	-389.37
BC: Total	19	19.56	99	-327.61	0	100.00	42	-81.32
OC: Total	34	13.32	223	-464.63	0	100.00	91	-131.09
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE ELECT		LIQUID DELIVERY	. SMR SERC
					100% RE		-	
HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction
HYBRID DOWNSIZED - PLUG- IN: ENERGY CONSUMPTION,	22520	27 429/	29884	2 (00)	19943	25 7201	27631	10.050/
WELL-TO-WHEEL (kWh)		27.42%		3.69%		35.73%		10.95%
					ONSITE ELECT			
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	100% RE		LIQUID DELIVERY	, SMR SERC
	Grams	1	Grams	1	100/0112		Grams	
WELL-TO-WHEEL EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	(Based on SERC)	% Reduct.
GHGs	5159650	39.49	10315827	-20.99	0	100.00	6319255	25.88
NOx: Total	3622	95.98	10591	88.23	0	100.00	3910	95.66
PM2.5: Total	214	91.84	1502	42.82	0	100.00	506	80.72
PM10: Total	285	89.55	2315	15.16	0	100.00	719	73.66
CO: Total	2514	81.16	4193	68.58	0	100.00	1826	86.32
VOC: Total	776	82.03	1132	73.79	0	100.00	744	82.77
SOx: Total	2210	-136.87	18785	-1913.47	0	100.00	5391	-477.86
CH4	15973	-52.10	19546	-86.13	0	100.00	13848	-31.87
N2O	106	49.56	151	27.74	0	100.00	64	69.53
CO2 (w/ C in VOC & CO)	4652487	42.58	9689343	-19.58	0	100.00	5886912	27.34
BC: Total	19	92.00	99	57.49	0	100.00	42	81.97
OC: Total	34	98.48	223	90.09	0	100.00	91	95.94

			R	ound-trip R	GH-CLT-RGH			·		
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	GASEOUS DE		LIQUID DELI ELECTROL		GASEOUS DE ELECTROLYSI		LIQUID DELI ELECTROLYSI	
HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction		Reduction
HYBRID DOWNSIZED - PLUG- IN: ENERGY CONSUMPTION, WELL-TO-PUMP (kWh)	12327	-144.15%	18217	-260.82%	28057	-455.72%	8276	-63.92%	18116	-258.83%
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	GASEOUS DE	•	LIQUID DELI ELECTROL		GASEOUS DE ELECTROLYSI		LIQUID DELI ELECTROLYSI	
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	2990161	-95.69	10555297	-590.81	12780265	-736.42	31929	97.91	19182	98.74
NOx: Total	3872	-64.70	10853	-361.64	13384	-469.29	35	98.51	117	95.04
PM2.5: Total	497	-273.07	1539	-1055.68	1885	-1315.30	5	96.28	3	97.49
PM10: Total	726	-357.60	2373	-1395.70	2904	-1730.87	8	95.19	4	97.58
CO: Total	1765	-55.90	4297	-279.49	5280	-366.36	14	98.78	28	97.55
VOC: Total	530	21.92	1160	-70.86	1425	-109.91	4	99.45	7	98.96
SOx: Total	6806	-669.10	19250	-2075.40	23534	-2559.55	62	93.00	1	99.83
CH4	5879	40.59	20030	-102.40	24511	-147.67	64	99.35	25	99.75
N2O	-314	1640.75	155	-661.11	190	-831.67	0	97.55	0	98.77
CO2 (w/ C in VOC & CO)	2892530	-140.45	9928814	-725.36	12153782	-910.32	31929	97.35	18377	98.47
BC: Total	72	-210.07	101	-338.19	124	-437.40	0	98.59	0	98.27
OC: Total	79	-100.25	228	-478.60	281	-611.94	1	98.14	2	95.36
			GASEOUS DE	LIVERY,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYSI	S, 100%	ELECTROLYSI	S, 100%
HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction		Reduction
HYBRID DOWNSIZED - PLUG-	250.40		20020		40770		20007		20027	
IN: ENERGY CONSUMPTION,	25048	19.28%	30938	0.30%	40778	-31.42%	20997	32.33%	30837	0.62%
WELL-TO-WHEEL (kWh)										
			GASEOUS DE	LIVERY,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYSI	S, 100%	ELECTROLYSI	S, 100%
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	2990161	64.93	10555297	-23.80	12780265	-49.89	31929	99.63	19182	99.78
NOx: Total	3872	95.70	10853	87.94	13384	85.13	35	99.96	117	99.87
PM2.5: Total	497	81.08	1539	41.40	1885	28.24	5	99.81	3	99.87
PM10: Total	726	73.40	2373	13.06	2904	-6.42	8	99.72	4	99.86
CO: Total	1765	86.77	4297	67.80	5280	60.43	14	99.90	28	99.79
VOC: Total	530	87.73	1160	73.14	1425	67.00	4	99.91	7	99.84
SOx: Total	6806	-629.46	19250	-1963.29	23534	-2422.49	62	93.36	1	99.84
CH4	5879	44.01	20030	-90.74	24511	-133.41	64	99.39	25	99.77
N2O	-314	249.90	155	25.95	190	9.36	0	99.76	0	99.88
CO2 (w/ C in VOC & CO)	2892530	64.30	9928814	-22.54	12153782	-50.00	31929	99.61	18377	99.77
BC: Total	72	69.18	101	56.44	124	46.58	0	99.86	0	99.83
OC: Total	79	96.48	228	89.84	281	87.50	1	99.97	2	99.92

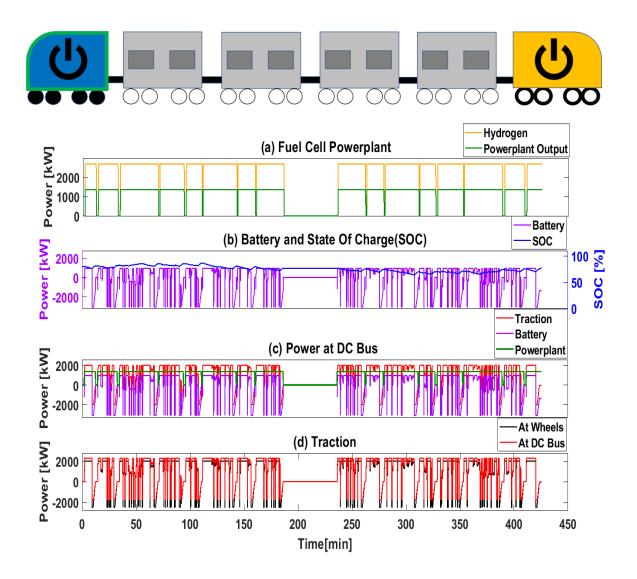

			Round-trip RGH	I-CLT-RGH				
ENERGY CONSUMPTION &	COMPARISON.							
WELL-TO-PUMP,								
HYDROGEN FUEL CELL		Reduction						
HYBRID DOWNSIZED - PLUG-								
IN: ENERGY CONSUMPTION.	1513	62.56%						
WELL-TO-PUMP (kWh)		01.0070						
WELL-TO-PUMP EMISSIONS,	Grams							
PLUG ELECTRICITY	(Based on SERC)							
GHGs	660482							
NOx: Total	678							
PM2.5: Total	96							
PM10: Total	148							
CO: Total	268							
VOC: Total	72							
SOx: Total	1203							
CH4	1251							
N2O	10							
CO2 (w/ C in VOC & CO)	620371							
BC: Total	6							
OC: Total	14							
					ONSITE ELECT	ROLYSIS.		
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	100% REI		LIQUID DELIVERY	, SMR SERC
HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction
HYBRID DOWNSIZED - PLUG-	24034		31397		19943		29144	
IN: ENERGY CONSUMPTION,	24034	22.55%	51597	-1.18%	19945	35.73%	29144	6.08%
WELL-TO-WHEEL (kWh)								
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE ELECT 100% REM	,	LIQUID DELIVERY	, SMR SERC
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams (Based on SERC)	% Reduct.
GHGs	5820132	31.74	10976308	-28.74	0	100.00	6979737	18.14
NOx: Total	4300	95.22	11269	87.48	0	100.00	4588	94.90
PM2.5: Total	310	88.18	1598	39.16	0	100.00	603	77.06
PM10: Total	434	84.11	2464	9.73	0	100.00	867	68.22
CO: Total	2783	79.15	4461	66.57	0	100.00	2094	84.31
VOC: Total	848	80.35	1204	72.11	0	100.00	816	81.09
SOx: Total	3413	-265.78	19988	-2042.39	0	100.00	6594	-606.77
CH4	17224	-64.02	20798	-98.05	0	100.00	15099	-43.79
N2O	115	44.93	161	23.11	0	100.00	73	64.90
CO2 (w/ C in VOC & CO)	5272858	34.92	10309714	-27.24	0	100.00	6507282	19.69
BC: Total	25	89.28	105	54.77	0	100.00	48	79.25
be. rotui				•				

			R	ound-trip R	GH-CLT-RGH					
PRODUCTION METHOD		, BIOMASS	GASEOUS DEI ELECTROLY	,	LIQUID DELIVERY, ELECTROLYSIS		GASEOUS DELIVERY, ELECTROLYSIS, 100%		LIQUID DELI ELECTROLYSI	
HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction		Reduction
HYBRID DOWNSIZED - PLUG- IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh)	26561	14.40%	32451	-4.58%	42291	-36.29%	20997	32.33%	30837	0.62%
PRODUCTION METHOD		, BIOMASS		GASEOUS DELIVERY, ELECTROLYSIS		VERY, YSIS	GASEOUS DE ELECTROLYSI	,	LIQUID DELI ELECTROLYSI	,
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3650643	57.18	11215779	-31.54	13440747	-57.64	31929	99.63	19182	99.78
NOx: Total	4550	94.94	11531	87.19	14062	84.38	35	99.96	117	99.87
PM2.5: Total	593	77.42	1635	37.74	1981	24.58	5	99.81	3	99.87
PM10: Total	874	67.97	2521	7.63	3053	-11.85	8	99.72	4	99.86
CO: Total	2034	84.76	4565	65.79	5549	58.42	14	99.90	28	99.79
VOC: Total	602	86.05	1232	71.46	1497	65.32	4	99.91	7	99.84
SOx: Total	8008	-758.38	20452	-2092.20	24737	-2551.41	62	93.36	1	99.84
CH4	7131	32.10	21281	-102.65	25762	-145.32	64	99.39	25	99.77
N2O	-304	245.28	165	21.32	199	4.73	0	99.76	0	99.88
CO2 (w/Cin VOC & CO)	3512900	56.64	10549185	-30.20	12774152	-57.66	31929	99.61	18377	99.77
BC: Total	78	66.45	108	53.72	131	43.85	0	99.86	0	99.83
OC: Total	93	95.85	243	89.21	295	86.86	1	99.97	2	99.92


9.3.9 Diesel and Battery

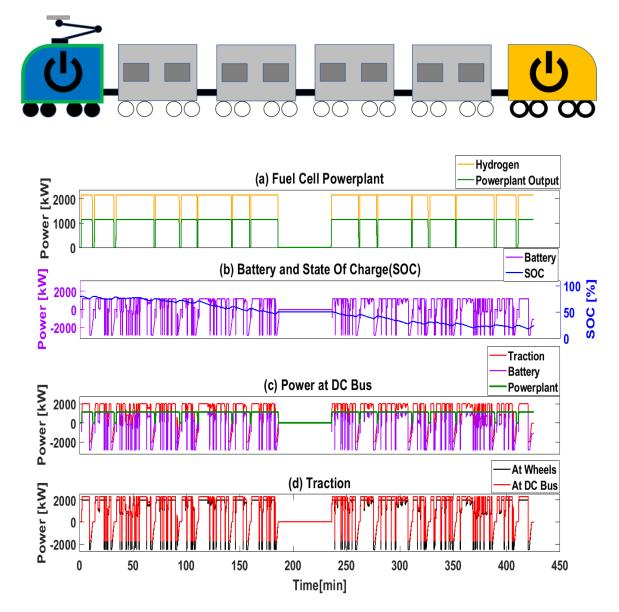
Round-trip, RGH-CL1	-RGH	·
DIESEL AND BATTERY (TWO LOCOMOTIVES):		Reduction
ENERGY CONSUMPTION & COMPARISON,	22224	14.46%
POINT-OF-USE (kWh)		
POINT-OF-USE-EMISSIONS	Grams (Based on SERC)	% Reduct.
GHGs	5986304	14.46
NOx: Total	74984	14.46
PM2.5: Total	2133	14.46
PM10: Total	2199	14.46
CO: Total	10445	14.46
VOC: Total	3113	14.46
SOx: Total	41	14.46
CH4	517	14.46
N2O	162	14.46
CO2 (w/ C in VOC & CO)	5901823	14.46
BC: Total	179	14.46
OC: Total	1890	14.46
		Poduction
DIESEL AND BATTERY (TWO LOCOMOTIVES):	4318.7	Reduction 14.46%
ENERGY CONSUMPTION & COMPARISON,	4318.7	14.40%
POINT-OF-USE (kWh)		
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.
GHGs	1307017	14.46
NOx: Total	2011	14.46
PM2.5: Total	114	14.46
PM10: Total	136	14.46
CO: Total	969	14.46
VOC: Total	581	14.46
SOx: Total	757	14.46
CH4	8465	14.46
	17	14.46
CO2 (w/ C in VOC & CO)	1029006	14.46
BC: Total	20	14.46
OC: Total	34	14.46
DIESEL AND BATTERY (TWO LOCOMOTIVES):		Reduction
ENERGY CONSUMPTION & COMPARISON,	26543	14.46%
POINT-OF-USE (kWh)		
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct
GHGs	7293321	14.46
NOx: Total	76995	14.46
PM2.5: Total	2247	14.46
PM10: Total	2335	14.46
CO: Total	11414	14.46
VOC: Total	3693	14.46
SOx: Total	798	14.46
CH4	8983	14.46
N2O	179	14.46
CO2 (w/ C in VOC & CO)	6930829	14.46
BC: Total	199	14.46
OC: Total	1924	14.46

9.3.10 Diesel and Battery Plugin


		Round-tri	p, RGH-CLT-RGH		
DIESEL AND BATTERY PLUG-IN (TWO LOCOS):		Reduction			
ENERGY CONSUMPTION & COMPARISON,	18631	28.29%			
POINT-OF-USE (kWh)	10031	20.23/0			
POINT-OF-USE-EMISSIONS	Grams (Based on SERC)	% Reduct.			
GHGs	5018486	28.29			
NOx: Total	62861	28.29			
PM2.5: Total	1788	28.29			
PM2.5. Total	1788	28.29			
	8757	28.29			
CO: Total VOC: Total	2609	28.29			
SOx: Total	34	28.29			
CH4	434	28.29			
	-				
N2O CO2 (w/ C in VOC & CO)	136 4947663	28.29 28.29			
BC: Total	4947663	28.29			
OC: Total	150	28.29			
	1584	20.29			
DIESEL AND BATTERY PLUG-IN (TWO LOCOS):	3620.478558	Reduction			
ENERGY CONSUMPTION & COMPARISON,			ENERGY REQUIREMENT (kWh), ELECTRICITY	2003	
WELL-TO-PUMP (kWh)	28.28990416				
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	In %	WELL-TO-PUMP EMISSIONS,	Grams (Based on SERC)	
			PLUG ELECTRICITY		
GHGs	1095708.99	28.289904	GHGs	874398.0965	
NOx: Total	1685.917196	28.289904	NOx: Total	897.7459797	
PM2.5: Total	95.5044533	28.289904	PM2.5: Total	127.3132372	
PM10: Total	113.7585194	28.289904	PM10: Total	196.2633263	
CO: Total	811.9207839	28.289904	CO: Total	355.4046506	
VOC: Total	486.7219087	28.289904	VOC: Total	95.92490097	
SOx: Total	634.5514945	28.289904	SOx: Total	1592.269817	
CH4	7096.699977	28.289904	CH4	1656.801675	
N2O	14.60734648	28.289904	N2O	12.82418601	
CO2 (w/ C in VOC & CO)	862644.4917	28.289904	CO2 (w/ C in VOC & CO)	821295.637	
BC: Total	16.57978906	28.289904	BC: Total	8.380184129	
OC: Total	28.31379905	28.289904	OC: Total	18.8966217	
DIESEL AND BATTERY PLUG-IN (TWO LOCOS):		Reduction	DIESEL AND BATTERY PLUG-IN (TWO LOCOS):		Reduction
ENERGY CONSUMPTION & COMPARISON,	22251	28.29%	ENERGY CONSUMPTION & COMPARISON,	24255	21.83%
WELL-TO-WHEEL (kWh)	22251	20.29%	WELL-TO-WHEEL (kWh) INCL. PLUG	24200	21.03%
WELL-TO-WHEEL (KWN) WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Poduct	WELL-TO-WHEEL (KWH) INCL. PLOG	Grams (Based on SERC)	% Doduct
		% Reduct. 28.29		· · · · · · · · · · · · · · · · · · ·	
GHGs NOx: Total	6114195 64547	28.29	GHGs NOx: Total	6988593 65445	18.03 27.29
PM2.5: Total	1884	28.29	PM2.5: Total	2011	27.29
PM2.5: Total PM10: Total	1884	28.29	PM2.5: Total PM10: Total	2011 2153	23.44
CO: Total	9569	28.29	CO: Total	9924	25.63
VOC: Total	3096	28.29	VOC: Total	3192	25.63
SOx: Total	669	28.29	SOx: Total	2261	-142.38
CH4	7531	28.29	CH4	9187	12.51
N2O CO2 (w/ C in VOC & CO)	150 5810307	28.29 28.29	N2O CO2 (w/ C in VOC & CO)	163 6631603	22.16 18.15
BC: Total		28.29	BC: Total	175	24.69
	167			-	
OC: Total	1613	28.29	OC: Total	1631	27.45

9.3.11 Fuel Cell and Diesel

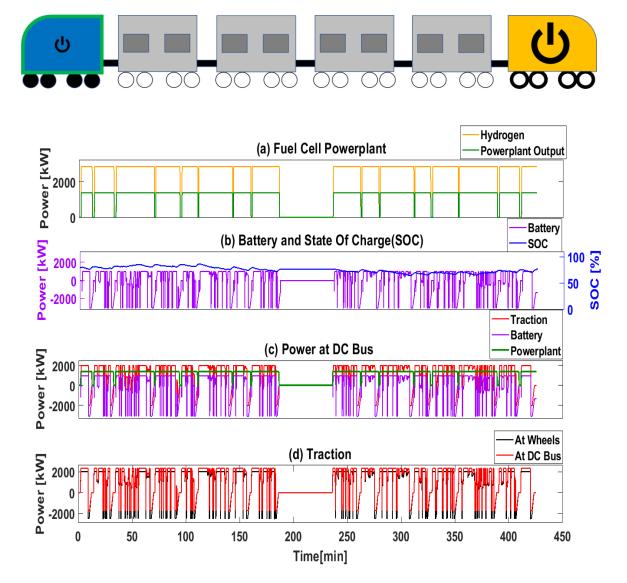
			Round-trip, RGF	I-CLT-RGH				·
		Deed and				Ì	1	
HYDROGEN FUEL CELL &		Reduction						
DIESEL (TWO LOCOS):	21064	10.020/						
ENERGY CONSUMPTION,		18.93%						
POINT-OF-USE (kWh)								
ALL PRODUCT								
POINT-OF-USE-EMISSIONS	Grams (Based on SERC)	% Reduct.						
GHGs	0	100.00						
NOx: Total	0	100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4	0	100.00						
N2O	0	100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00						
OC: Total	0	100.00						
HYDROGEN FUEL CELL &		Reduction		Reduction	l l	Reduction		Reduction
DIESEL (TWO LOCOS):					44070			
ENERGY CONSUMPTION,	16226	-221.39%	28419	-462.89%	11959	-136.87%	24688	-388.99%
WELL-TO-PUMP (kWh)								
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT		ONSITE ELECT	ROLYSIS,	LIQUID DELIVERY	SMR SERC
PRODUCTION METHOD	ONSITE 5			011313	100% REN	IEW	EIGOID DEEIVERI	, SIVIN SEILC
WELL-TO-PUMP EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	In Grams	% Reduct.	Grams	% Reduct.
	(Based on SERC)		(Based on SERC)				(Based on SERC)	
GHGs	8543579	-459.15	17081406	-1017.91	0	100.00	10463705	-584.81
NOx: Total	5997	-155.08	17538	-645.95	0	100.00	6475	-175.40
PM2.5: Total	355	-166.48	2487	-1767.43	0	100.00	839	-529.64
PM10: Total	472	-197.84	3834	-2316.85	0	100.00	1191	-650.51
CO: Total VOC: Total	4163 1285	-267.70 -89.28	6943 1874	-513.20 -176.09	0	100.00	3023 1232	-167.02 -81.48
SOx: Total	3659	-313.53	31105	-3415.16	0	100.00	8927	-908.84
CH4	26448	-167.25	32366	-227.05	0	100.00	22930	-131.70
N2O	175	-758.42	251	-1129.85	0	100.00	106	-418.62
CO2 (w/ C in VOC & CO)	7703796	-540.40	16044047	-1233.71	0	100.00	9747811	-710.32
BC: Total	31	-33.20	164	-608.06	0	100.00	69	-200.24
OC: Total	57	-43.54	369	-834.93	0	100.00	151	-282.66
		Do du atta		Dod		Doduct -		Do du at
HYDROGEN FUEL CELL & DIESEL (TWO LOCOS):		Reduction		Reduction		Reduction		Reduction
ENERGY CONSUMPTION,	37290	-20.18%	49483	-59.47%	33023	-6.42%	45752	-47.45%
WELL-TO-WHEEL (kWh)		-20.10/0		-33.4770		0.72/0		
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE ELECT 100% REN		LIQUID DELIVERY	, SMR SERC
	Grams		Grams		100% KEN		Grams	
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams (Based on SERC)	% Reduct.
GHGs	8543579	-0.20	17081406	-100.34	0	100.00	10463705	-22.72
NOx: Total	5997	93.34	17538	80.52	0	100.00	6475	92.81
PM2.5: Total	355	86.49	2487	5.32	0	100.00	839	68.08
PM10: Total	472	82.69	3834	-40.48	0	100.00	1191	56.38
CO: Total	4163	68.80	6943	47.97	0	100.00	3023	77.34
VOC: Total	1285	70.25	1874	56.60	0	100.00	1232	71.47
SOx: Total	3659	-292.22	31105	-3234.00	0	100.00	8927	-856.84
CH4	26448	-151.86	32366	-208.21	0	100.00	22930	-118.35
N2O $(w/Cin)/OC = (O)$	175	16.48	251	-19.66	0	100.00	106	49.54
CO2 (w/ C in VOC & CO)	7703796	4.92	16044047	-98.01	0	100.00	9747811	-20.31
BC: Total OC: Total	31 57	86.76 97.48	164 369	29.61 83.58	0	100.00	69 151	70.15 93.28
	5/	J7.40	505	03.30	U	100.00	151	33.20


			Re	ound-trip, F	GH-CLT-RGH					
HYDROGEN FUEL CELL & DIESEL (TWO LOCOS):	20411	Reduction	30164	Reduction	46458	Reduction	13704	Reduction	29998	Reduction
ENERGY CONSUMPTION, WELL-TO-PUMP (kWh)		-304.28%	00101	-497.46%	10.00	-820.19%		-171.43%	19990	-494.17%
PRODUCTION METHOD		BIOMASS	GASEOUS DEL	IVERY,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
TRODUCTION METHOD	EIGOID DEEIVEIN	, DIOIVIA33	ELECTROL	rsis	ELECTROL	YSIS	ELECTROLYSI	S 100%	ELECTROLYSI	S 100%
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	In Grams	% Reduct.	In Grams	in %
GHGs	4951242	-224.04	17477933	-1043.87	21162133	-1284.98	52870	96.54	31762	97.92
NOx: Total	6412	-172.72	17971	-664.41	22162	-842.66	58	97.54	193	91.78
PM2.5: Total	823	-517.75	2549	-1813.63	3121	-2243.52	8	93.84	6	95.84
PM10: Total	1202	-657.72	3929	-2376.65	4809	-2931.64	13	92.03	6	95.99
CO: Total	2923	-158.15	7115	-528.37	8743	-672.21	23	97.98	46	95.94
VOC: Total	878	-29.29	1920	-182.92	2359	-247.58	6	99.09	12	98.28
SOx: Total	11269	-1173.51	31875	-3502.12	38969	-4303.81	103	88.40	2	99.72
CH4	9735	1.63	33166	-235.14	40586	-310.11	107	98.92	41	99.59
N2O	-520	2651.24	257	-1160.28	314	-1442.69	1	95.94	0	97.97
CO2 (w/ C in VOC & CO)	4789580	-298.15	16440574	-1266.68	20124775	-1572.94	52870	95.60	30429	97.47
BC: Total	119	-413.43	168	-625.58	206	-789.85	1	97.66	1	97.14
OC: Total	131	-231.58	378	-858.06	465	-1078.86	1	96.92	3	92.32
HYDROGEN FUEL CELL &		Reduction		Reduction		Reduction		Reduction		Reduction
DIESEL (TWO LOCOS):								neuution		neaution
ENERGY CONSUMPTION.	41475	-33.66%	51228	-65.09%	67522	-117.61%	34768	-12.05%	51062	-64.56%
WELL-TO-WHEEL (kWh)		33.00/0		03.0370		117.01/0		12.03/0		04.5070
x <i>k</i>			GASSEOUS DE	LIVERY,	LIQUID DELI	VERY,	Gaseous De	livery,	LIQUID DELI	VERY,
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	ELECTROL	rsis	ELECTROL	YSIS	Electrolysis	100%	ELECTROLYSI	S 100%
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	4951242	41.93	17477933	-104.99	21162133	-148.20	52870	99.38	31762	99.63
NOx: Total	6412	92.88	17971	80.03	22162	75.38	58	99.94	193	99.79
PM2.5: Total	823	68.68	2549	2.97	3121	-18.82	8	99.69	6	99.79
PM10: Total	1202	55.96	3929	-43.95	4809	-76.21	13	99.54	6	99.77
CO: Total	2923	78.10	7115	46.68	8743	34.48	23	99.83	46	99.66
VOC: Total	878	79.68	1920	55.52	2359	45.36	6	99.86	12	99.73
SOx: Total	11269	-1107.88	31875	-3316.48	38969	-4076.85	103	89.00	2	99.74
CH4	9735	7.30	33166	-215.83	40586	-286.48	107	98.98	41	99.61
N2O	-520	348.22	257	-22.62	314	-50.09	1	99.61	0	99.80
CO2 (w/ C in VOC & CO)	4789580	40.89	16440574	-102.91	20124775	-148.38	52870	99.35	30429	99.62
BC: Total	119	48.96	168	27.87	206	11.54	1	99.77	1	99.72
OC: Total	131	94.18	378	83.18	465	79.30	1	99.95	3	99.87

9.3.12 Fuel Cell Hybrid and Diesel

			Round-trip, RGH	I-CLT-RGH					
HYDROGEN FUEL CELL		Reduction							
HYBRID & DIESEL (2 LOCOS):	45000								
ENERGY CONSUMPTION,	15992	38.45%							
POINT-OF-USE (kWh)									
ALL PRODUCTI	ON METHODS								
POINT-OF-USE-EMISSIONS	Grams (Based on SERC)	% Reduct.							
GHGs	0	100.00							
NOx: Total	0	100.00							
PM2.5: Total	0	100.00							
PM10: Total	0	100.00							
CO: Total	0	100.00							
VOC: Total	0	100.00							
SOx: Total	0	100.00							
CH4	0	100.00							
N2O	0	100.00							
CO2 (w/ C in VOC & CO)	0	100.00							
BC: Total	0	100.00							
OC: Total	0	100.00							
HYDROGEN FUEL CELL		Reduction		Reduction			Reduction		Reduction
HYBRID & DIESEL (2 LOCOS):			-						
ENERGY CONSUMPTION,	12319	-144.00%	21576	-327.35%	9079		-79.83%	18743	-271.25%
WELL-TO-PUMP (kWh)		11100/0		32713370			, 5105/0		27 1125/0
					ONSITE E	LECTR	OLYSIS.		
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	1009	100% RENEW		LIQUID DELIVERY,	, SMR SERC
	Grams		Grams			-		Grams	
WELL-TO-PUMP EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	,	% Reduct.	(Based on SERC)	% Reduct.
GHGs	6486371	-324.51	12968375	-748.73	0		100.00	7944150	-419.92
NOx: Total	4553	-93.66	13315	-466.34	0		100.00	4916	-109.09
PM2.5: Total	269	-102.31	1888	-1317.77	0		100.00	637	-378.03
PM10: Total	359	-126.12	2911	-1734.90	0		100.00	904	-469.80
CO: Total	3161	-179.16	5271	-365.55	0		100.00	2295	-102.72
VOC: Total	975	-43.70	1423	-109.61	0		100.00	935	-37.78
SOx: Total	2778	-213.95	23615	-2568.74	0		100.00	6777	-665.92
CH4	20080	-102.90	24572	-148.30	0		100.00	17409	-75.91
N2O	133	-551.72	190	-833.72	0		100.00	80	-293.74
CO2 (w/C in VOC & CO)	5848799	-386.20	12180802	-912.57	0		100.00	7400636	-515.20
BC: Total	23	-1.13	124	-437.57	0		100.00	53	-127.94
OC: Total	43	-8.97	280	-609.81	0		100.00	115	-190.52
HYDROGEN FUEL CELL		Reduction		Reduction			Reduction		Reduction
HYBRID & DIESEL (2 LOCOS):	28311		37568		25071			34735	
ENERGY CONSUMPTION,	20311	8.76%	57500	-21.07%	250/1		19.20%	54755	-11.94%
WELL-TO-PUMP (kWh)								ļ	
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE E	ELECTR % RENE		LIQUID DELIVERY,	, SMR SERC
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	5	% Reduct.	Grams (Based on SERC)	% Reduct.
GHGs	6486371	23.92	12968375	-52.10	0		100.00	7944150	6.83
NOx: Total	4553	94.94	13315	85.21	0		100.00	4916	94.54
PM2.5: Total	269	89.74	1888	28.11	0		100.00	637	75.76
PM10: Total	359	86.86	2911	-6.65	0		100.00	904	66.88
CO: Total	3161	76.31	5271	60.50	0		100.00	2295	82.80
VOC: Total	975	77.41	1423	67.05	0		100.00	935	78.34
SOx: Total	2778	-197.77	23615	-2431.20	0		100.00	6777	-626.45
CH4	20080	-91.21	24572	-133.99	0		100.00	17409	-65.78
N2O	133	36.59	190	9.16	0		100.00	80	61.69
CO2 (w/ C in VOC & CO)	5848799	27.81	12180802	-50.33	0		100.00	7400636	8.66
BC: Total	23	89.95	124	46.56	0		100.00	53	77.34

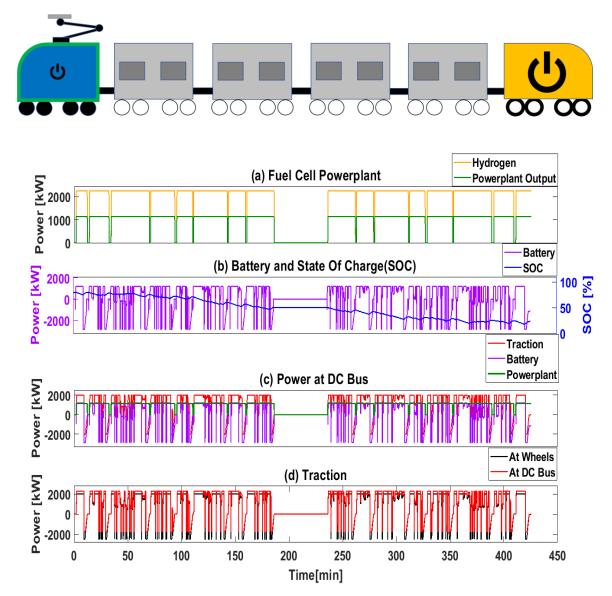
			R	ound-trip R	GH-CLT-RGH	·		·		
HYDROGEN FUEL CELL HYBRID & DIESEL (2 LOCOS):		Reduction		Reduction		Reduction		Reduction		Reduction
ENERGY CONSUMPTION, WELL-TO-PUMP (kWh)	15496	-206.93%	22901	-353.60%	35272	-598.62%	10404	-106.07%	22775	-351.10%
PRODUCTION METHOD		BIOMASS	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
The been on the the b		,	ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYS	S 100%	ELECTROLYSI	S 100%
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3759033	-146.01	13269422	-768.43	16066504	-951.49	40140	97.37	24114	98.42
NOx: Total	4868	-107.06	13644	-480.35	16826	-615.68	44	98.13	147	93.76
PM2.5: Total	625	-369.00	1935	-1352.85	2370	-1679.22	6	95.32	4	96.84
PM10: Total	913	-475.27	2983	-1780.29	3651	-2201.65	10	93.95	5	96.96
CO: Total	2219	-95.99	5401	-377.07	6638	-486.27	17	98.46	35	96.92
VOC: Total	666	1.84	1458	-114.79	1791	-163.88	5	99.31	9	98.69
SOx: Total	8556	-866.86	24200	-2634.77	29585	-3243.42	78	91.20	2	99.79
CH4	7391	25.32	25180	-154.44	30813	-211.36	81	99.18	31	99.69
N2O	-395	2036.93	195	-856.82	239	-1071.23	1	96.92	0	98.46
CO2 (w/ C in VOC & CO)	3636297	-202.28	12481848	-937.59	15278931	-1170.11	40140	96.66	23102	98.08
BC: Total	90	-289.80	127	-450.87	156	-575.58	0	98.23	1	97.83
OC: Total	99	-151.74	287	-627.37	353	-795.00	1	97.66	2	94.17
HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction		Reduction
HYBRID & DIESEL (2 LOCOS):		neudellon		neudellon		neduction		neudellon		neudetion
ENERGY CONSUMPTION,	31488	-1.48%	38893	-25.34%	51264	-65.21%	26396	14.93%	38767	-24.93%
WELL-TO-PUMP (kWh)		1.40/0		23.34/0		00.21/0		14.33/0		24.55/0
· · · ·			GASEOUS DE	LIVERY,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
PRODUCTION METHOD	LIQUID DELIVERY	, BIOWASS	ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYS	S 100%	ELECTROLYSI	S 100%
	Grams		Grams		Grams		-			
WELL-TO-WHEEL EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3759033	55.91	13269422	-55.63	16066504	-88.44	40140	99.53	24114	99.72
NOx: Total	4868	94.59	13644	84.84	16826	81.31	44	99.95	147	99.84
PM2.5: Total	625	76.22	1935	26.34	2370	9.79	6	99.76	4	99.84
PM10: Total	913	66.56	2983	-9.29	3651	-33.78	10	99.65	5	99.82
CO: Total	2219	83.37	5401	59.52	6638	50.25	17	99.87	35	99.74
VOC: Total	666	84.57	1458	66.23	1791	58.52	5	99.89	9	99.79
SOx: Total	8556	-817.03	24200	-2493.83	29585	-3071.11	78	91.65	2	99.80
CH4	7391	29.62	25180	-139.78	30813	-193.42	81	99.23	31	99.71
N2O	-395	288.45	195	6.91	239	-13.95	1	99.70	0	99.85
CO2 (w/ C in VOC & CO)	3636297	55.12	12481848	-54.05	15278931	-88.57	40140	99.50	23102	99.71
BC: Total	90	61.25	127	45.24	156	32.84	0	99.82	1	99.78
OC: Total	99	95.58	287	87.23	353	84.29	1	99.96	2	99.90


9.3.13 Fuel Cell Hybrid Plugin and Diesel

			Round-trip, RGH					
			Round-trip, Roi	I-CEI-NGII				
H2 FUEL CELL HYBRID PLUG-	12911	Reduction						
IN & DIESEL (2 LOCOS):								
ENERGY CONSUMPTION,	50.30599284							
POINT-OF-USE (kWh)								
ALL PRODUCTI	ON METHODS							
	In Grams (Based	1						
POINT-OF-USE-EMISSIONS	on SERC)	% Reduct.						
GHGs	0	100.00				_		
NOx: Total	0	100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4	0	100.00						
N2O	0	100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00						
OC: Total	0	100.00						
HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction
HYBRID & DIESEL (2 LOCOS):	9946		17419		7330		15132	
ENERGY CONSUMPTION,	5540	-96.99%	1/415	-245.02%	/350	-45.18%	15152	-199.72%
WELL-TO-PUMP (kWh)								
	ONSITE S	МП	ONSITE ELECT		ONSITE ELEC	TROLYSIS,		
PRODUCTION METHOD	UNSITE S	VIK	UNSITE ELECT	KULTSIS	100% RE	NEW	LIQUID DELIVERY	, SIVIR SERC
	Grams		Grams		_		Grams	
WELL-TO-PUMP EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	(Based on SERC)	% Reduct.
GHGs	5236714	-242.72	10469903	-585.22	0	100.00	6413639	-319.75
NOx: Total	3676	-56.35	10749	-357.23	0	100.00	3969	-68.80
PM2.5: Total	218	-63.33	1524	-1044.63	0	100.00	514	-285.93
PM10: Total	210	-82.56	2350		0			-360.02
				-1381.39	-	100.00	730	
CO: Total	2552	-125.38	4256	-275.86	0	100.00	1853	-63.67
VOC: Total	787	-16.02	1149	-69.22	0	100.00	755	-11.23
SOx: Total	2243	-153.47	19066	-2054.58	0	100.00	5472	-518.36
CH4	16211	-63.81	19838	-100.46	0	100.00	14055	-42.02
N2O	107	-426.16	154	-653.83	0	100.00	65	-217.88
CO2 (w/ C in VOC & CO)	4721976	-292.53	9834063	-717.49	0	100.00	5974838	-396.68
BC: Total	19	18.35	100	-334.00	0	100.00	43	-84.03
OC: Total	35	12.02	226	-473.06	0	100.00	93	-134.55
		De du 11	20222 2010	De du st		Deal of		De du l'
HYDROGEN FUEL CELL		Reduction	30330.26484	Reduction		Reduction		Reduction
HYBRID & DIESEL (2 LOCOS):	22057	26.2454	2 254225744	3.354	202.44	34 770/	20042	0.000
ENERGY CONSUMPTION,	22857	26.34%	2.254306711	2.25%	20241	34.77%	28043	9.62%
WELL-TO-WHEEL (kWh)								
. ,			ļ				l	
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE ELEC		LIQUID DELIVERY	. SMR SERC
					100% RE	NEW		
WELL-TO-WHEEL EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
	(Based on SERC)	/o neuuel.	(Based on SERC)	, mcuuct.	Granis	/o neuucl.	(Based on SERC)	, incuuct.
GHGs	5236714	38.58	10469903	-22.80	0	100.00	6413639	24.78
NOx: Total	3676	95.92	10749	88.06	0	100.00	3969	95.59
PM2.5: Total	218	91.72	1524	41.96	0	100.00	514	80.43
PM10: Total	290	89.39	2350	13.90	0	100.00	730	73.26
CO: Total	2552	80.88	4256	68.11	0	100.00	1853	86.11
VOC: Total	787	81.76	1149	73.40	0	100.00	755	82.51
SOx: Total	2243	-140.41	19066	-1943.55	0	100.00	5472	-486.49
JUA. IUIGI	. 2243	-140.41		-1943.55 -88.91	0	100.00	14055	-486.49
		E/ 37				1 100.00		
CH4	16211	-54.37	19838					
CH4 N2O	16211 107	48.81	154	26.66	0	100.00	65	69.07
CH4 N2O CO2 (w/ C in VOC & CO)	16211 107 4721976	48.81 41.72	154 9834063	26.66 -21.37	0	100.00 100.00	65 5974838	69.07 26.26
CH4 N2O	16211 107	48.81	154	26.66	0	100.00	65	69.07

			R	ound-trip, F	GH-CLT-RGH			·		
HYDROGEN FUEL CELL HYBRID & DIESEL (2 LOCOS):	12511	Reduction	18489	Reduction	28476	Reduction	8399.687897	Reduction	18387	Reduction
ENERGY CONSUMPTION, WELL-TO-PUMP (kWh)	12311	-147.80%	10409	-266.21%	20470	-464.02%	8555.087857	-66.37%	10507	-264.19%
PRODUCTION METHOD		BIOMASS	GASEOUS DE	IVERY,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
		,	ELECTROL	rsis	ELECTROL	YSIS	ELECTROLYS	S 100%	ELECTROLYSI	S 100%
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3034822	-98.62	10712950	-601.12	12971150	-748.91	32406	97.88	19468	98.73
NOx: Total	3930	-67.16	11015	-368.54	13584	-477.79	35	98.49	118	94.96
PM2.5: Total	504	-278.64	1562	-1072.95	1913	-1336.44	5	96.22	3	97.45
PM10: Total	737	-364.44	2408	-1418.04	2948	-1758.22	8	95.11	4	97.54
CO: Total	1792	-58.23	4361	-285.16	5359	-373.32	14	98.76	28	97.51
VOC: Total	538	20.75	1177	-73.41	1446	-113.04	4	99.44	7	98.94
SOx: Total	6907	-680.59	19537	-2107.89	23885	-2599.28	63	92.89	1	99.83
CH4	5967	39.70	20329	-105.42	24877	-151.37	65	99.34	25	99.75
N2O	-319	1663.76	157	-672.48	193	-845.58	1	97.51	0	98.76
CO2 (w/C in VOC & CO)	2935732	-144.04	10077110	-737.69	12335310	-925.41	32406	97.31	18651	98.45
BC: Total	73	-214.71	103	-344.74	126	-445.43	0	98.57	0	98.25
OC: Total	80	-103.24	232	-487.24	285	-622.57	1	98.11	2	95.29
HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction		Reduction
HYBRID & DIESEL (2 LOCOS):	25422	18.07%	31400	-1.19%	41387	-33.38%	21311	31.32%	31298	-0.86%
ENERGY CONSUMPTION,	23422	10.07%	51400	-1.19%	41567	-33.30%	21511	51.52%	51290	-0.00%
WELL-TO-WHEEL (kWh)										
PRODUCTION METHOD		BIOMASS	GASEOUS DE	IVERY,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
PRODUCTION METHOD	EIQOID DEEIVERI	, DIOIVIA33	ELECTROL	rsis	ELECTROL	YSIS	ELECTROLYS	S 100%	ELECTROLYSI	S 100%
WELL TO WHEEL ENANCEMENT	Current									
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs		% Reduct. 64.41		% Reduct. -25.65		% Reduct. -52.13	Grams 32406	% Reduct. 99.62	Grams 19468	% Reduct. 99.77
	(Based on SERC)		(Based on SERC)		(Based on SERC)					
GHGs	(Based on SERC) 3034822	64.41	(Based on SERC) 10712950	-25.65	(Based on SERC) 12971150	-52.13	32406	99.62	19468	99.77
GHGs NOx: Total	(Based on SERC) 3034822 3930	64.41 95.63	(Based on SERC) 10712950 11015	-25.65 87.76	(Based on SERC) 12971150 13584	-52.13 84.91	32406 35	99.62 99.96	19468 118	99.77 99.87
GHGs NOx: Total PM2.5: Total	(Based on SERC) 3034822 3930 504	64.41 95.63 80.80	(Based on SERC) 10712950 11015 1562	-25.65 87.76 40.53	(Based on SERC) 12971150 13584 1913	-52.13 84.91 27.17	32406 35 5	99.62 99.96 99.81	19468 118 3	99.77 99.87 99.87
GHGs NOX: Total PM2.5: Total PM10: Total	(Based on SERC) 3034822 3930 504 737	64.41 95.63 80.80 73.00	(Based on SERC) 10712950 11015 1562 2408	-25.65 87.76 40.53 11.76	(Based on SERC) 12971150 13584 1913 2948	-52.13 84.91 27.17 -8.01	32406 35 5 8	99.62 99.96 99.81 99.72	19468 118 3 4	99.77 99.87 99.87 99.86
GHGs NOX: Total PM2.5: Total PM10: Total CO: Total	(Based on SERC) 3034822 3930 504 737 1792	64.41 95.63 80.80 73.00 86.57	(Based on SERC) 10712950 11015 1562 2408 4361	-25.65 87.76 40.53 11.76 67.32	(Based on SERC) 12971150 13584 1913 2948 5359	-52.13 84.91 27.17 -8.01 59.84	32406 35 5 8 14	99.62 99.96 99.81 99.72 99.89	19468 118 3 4 28	99.77 99.87 99.87 99.86 99.79
GHGs NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total	(Based on SERC) 3034822 3930 504 737 1792 538	64.41 95.63 80.80 73.00 86.57 87.54	(Based on SERC) 10712950 11015 1562 2408 4361 1177	-25.65 87.76 40.53 11.76 67.32 72.74	(Based on SERC) 12971150 13584 1913 2948 5359 1446	-52.13 84.91 27.17 -8.01 59.84 66.51	32406 35 5 8 14 4	99.62 99.96 99.81 99.72 99.89 99.91	19468 118 3 4 28 7	99.77 99.87 99.87 99.86 99.79 99.83
GHGs NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOx: Total	(Based on SERC) 3034822 3930 504 737 1792 538 6907	64.41 95.63 80.80 73.00 86.57 87.54 -640.36	(Based on SERC) 10712950 11015 1562 2408 4361 1177 19537	-25.65 87.76 40.53 11.76 67.32 72.74 -1994.10	(Based on SERC) 12971150 13584 1913 2948 5359 1446 23885	-52.13 84.91 27.17 -8.01 59.84 66.51 -2460.17	32406 35 5 8 14 4 63	99.62 99.96 99.81 99.72 99.89 99.91 93.26	19468 118 3 4 28 7 1	99.77 99.87 99.87 99.86 99.79 99.83 99.83 99.84
GHGs NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOX: Total CH4	(Based on SERC) 3034822 3930 504 737 1792 538 6907 5967	64.41 95.63 80.80 73.00 86.57 87.54 -640.36 43.18	(Based on SERC) 10712950 11015 1562 2408 4361 1177 19537 20329	-25.65 87.76 40.53 11.76 67.32 72.74 -1994.10 -93.59	(Based on SERC) 12971150 13584 1913 2948 5359 1446 23885 24877	-52.13 84.91 27.17 -8.01 59.84 66.51 -2460.17 -136.89	32406 35 5 8 14 4 63 65	99.62 99.96 99.81 99.72 99.89 99.91 93.26 99.38	19468 118 3 4 28 7 1 25	99.77 99.87 99.87 99.86 99.79 99.83 99.84 99.76
GHGs NOx: Total PM2.5: Total PM10: Total CO: Total CO: Total SOx: Total CH4 N2O	(Based on SERC) 3034822 3930 504 737 1792 538 6907 5967 -319	64.41 95.63 80.80 73.00 86.57 87.54 -640.36 43.18 252.14	(Based on SERC) 10712950 11015 1562 2408 4361 1177 19537 20329 157	-25.65 87.76 40.53 11.76 67.32 72.74 -1994.10 -93.59 24.84	(Based on SERC) 12971150 13584 1913 2948 5359 1446 23885 24877 193	-52.13 84.91 27.17 -8.01 59.84 66.51 -2460.17 -136.89 8.00	32406 35 5 8 14 4 63 65 1	99.62 99.96 99.81 99.72 99.89 99.91 93.26 99.38 99.76	19468 118 3 4 28 7 1 25 0	99.77 99.87 99.87 99.86 99.79 99.83 99.84 99.76 99.88

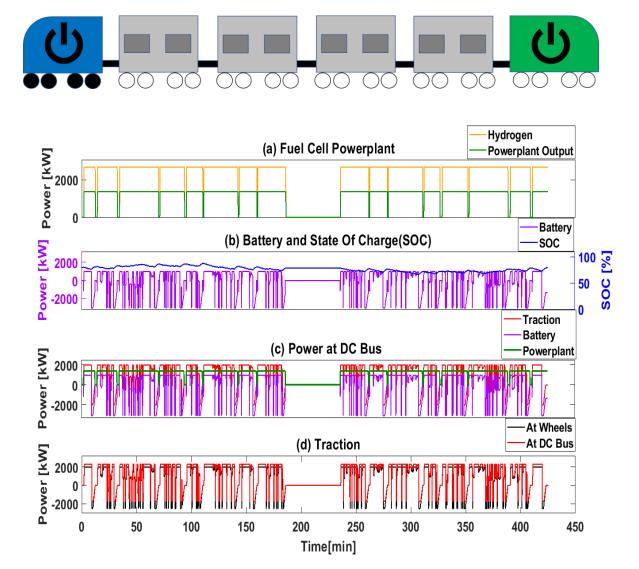
			Round-trip, RGI	I-CLT-RGH				,
ENERGY CONSUMPTION &	COMPARISON							
WELL-TO-PUMP, P	-							
Energy Requirements (in	1490							
kWh), Electricity								
Energy Requirements (in								
kWh), Electricity - 100%	61.58%							
WELL-TO-PUMP EMISSIONS,	Grams							
PLUG ELECTRICITY	(Based on SERC)							
GHGs	650209							
NOx: Total	668							
PM2.5: Total	95							
PM10: Total	146							
CO: Total	264							
VOC: Total	71							
SOx: Total	1184							
CH4	1232							
N2O	10							
CO2 (w/ C in VOC & CO)	610722							
BC: Total	6							
OC: Total	14							
H2 FUEL CELL HYBRID &		Reduction		Reduction		Reduction		Reduction
DIESEL (2 LOCOS): ENERGY								
CONSUMPTION, WELL-TO-	24347	21.54%	31820	-2.55%	20242	34.77%	29533	4.82%
WHEEL, INCL. PLUG								
ELECTRICITY (kWh)								
PRODUCTION METHOD								
- RODOCHON WEIHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE ELECT 100% REI		LIQUID DELIVERY	, SMR SERC
	Grams		ONSITE ELECT		100% REI	NEW	LIQUID DELIVERY	
WELL-TO-WHEEL EMISSIONS	Grams	MR % Reduct.		ROLYSIS % Reduct.				, SMR SERC % Reduct.
	Grams		Grams		100% REI	NEW	Grams	
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	100% REI Grams	NEW % Reduct.	Grams (Based on SERC)	% Reduct.
WELL-TO-WHEEL EMISSIONS GHGs	Grams (Based on SERC) 5886923	% Reduct. 30.96	Grams (Based on SERC) 11120112	% Reduct. -30.42	100% REI Grams 0	NEW % Reduct. 100.00	Grams (Based on SERC) 7063848	% Reduct. 17.15
WELL-TO-WHEEL EMISSIONS GHGs NOx: Total	Grams (<i>Based on SERC</i>) 5886923 4343	% Reduct. 30.96 95.17	Grams (Based on SERC) 11120112 11417	% Reduct. -30.42 87.32	100% REF Grams 0 0	NEW % Reduct. 100.00 100.00	Grams (<i>Based on SERC</i>) 7063848 4636	% Reduct. 17.15 94.85
WELL-TO-WHEEL EMISSIONS GHGs NOX: Total PM2.5: Total	Grams (Based on SERC) 5886923 4343 312	% Reduct. 30.96 95.17 88.11	Grams (Based on SERC) 11120112 11417 1619	% Reduct. -30.42 87.32 38.36	100% REI Grams 0 0 0 0	NEW % Reduct. 100.00 100.00 100.00	Grams (Based on SERC) 7063848 4636 609	% Reduct. 17.15 94.85 76.83
WELL-TO-WHEEL EMISSIONS GHGs NOX: Total PM2.5: Total PM10: Total	Grams (Based on SERC) 5886923 4343 312 436	% Reduct. 30.96 95.17 88.11 84.04	Grams (Based on SERC) 11120112 11417 1619 2496	% Reduct. -30.42 87.32 38.36 8.55	100% REF Grams 0 0 0 0 0 0	NEW % Reduct. 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7063848 4636 609 876	% Reduct. 17.15 94.85 76.83 67.91
WELL-TO-WHEEL EMISSIONS GHGs NOX: Total PM2.5: Total PM10: Total CO: Total	Grams (Based on SERC) 5886923 4343 312 436 2816	% Reduct. 30.96 95.17 88.11 84.04 78.90	Grams (Based on SERC) 11120112 11417 1619 2496 4520	% Reduct. -30.42 87.32 38.36 8.55 66.13	100% REI Grams 0 0 0 0 0 0	% Reduct. 100.00 100.00 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7063848 4636 609 876 2117	% Reduct. 17.15 94.85 76.83 67.91 84.13
WELL-TO-WHEEL EMISSIONS GHGs NOX: Total PM2.5: Total PM10: Total CO: Total VOC: Total	Grams (Based on SERC) 5886923 4343 312 436 2816 859	% Reduct. 30.96 95.17 88.11 84.04 78.90 80.11	Grams (Based on SERC) 11120112 11417 1619 2496 4520 1220	% Reduct. -30.42 87.32 38.36 8.55 66.13 71.75	100% REF Grams 0 0 0 0 0 0 0 0	NEW % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7063848 4636 609 876 2117 826	% Reduct. 17.15 94.85 76.83 67.91 84.13 80.86
WELL-TO-WHEEL EMISSIONS GHGs NOX: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOX: Total CH4 N2O	Grams (Based on SERC) 5886923 4343 312 436 2816 859 3427	% Reduct. 30.96 95.17 88.11 84.04 78.90 80.11 -267.32	Grams (Based on SERC) 11120112 11417 1619 2496 4520 1220 20250	% Reduct. -30.42 87.32 38.36 8.55 66.13 71.75 -2070.46	100% REF Grams 0 0 0 0 0 0 0 0 0	% Reduct. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7063848 4636 609 876 2117 826 6656	% Reduct. 17.15 94.85 76.83 67.91 84.13 80.86 -613.40
WELL-TO-WHEEL EMISSIONS GHGs NOX: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOX: Total CH4	Grams (Based on SERC) 5886923 4343 312 436 2816 859 3427 17443	% Reduct. 30.96 95.17 88.11 84.04 78.90 80.11 -267.32 -66.10	Grams (Based on SERC) 11120112 11417 1619 2496 4520 1220 20250 21070	% Reduct. -30.42 87.32 38.36 8.55 66.13 71.75 -2070.46 -100.64	100% REF Grams 0 0 0 0 0 0 0 0 0 0 0 0	NEW % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7063848 4636 609 876 2117 826 6656 15287	% Reduct. 17.15 94.85 76.83 67.91 84.13 80.86 -613.40 -45.57
WELL-TO-WHEEL EMISSIONS GHGs NOX: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOX: Total CH4 N2O	Grams (Based on SERC) 5886923 4343 312 436 2816 859 3427 17443 117	% Reduct. 30.96 95.17 88.11 84.04 78.90 80.11 -267.32 -66.10 44.25	Grams (Based on SERC) 11120112 11417 1619 2496 4520 1220 1220 20250 21070 163	% Reduct. -30.42 87.32 38.36 8.55 66.13 71.75 -2070.46 -100.64 22.10	100% REF Grams 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NEW % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7063848 4636 609 876 2117 826 6656 15287 74	% Reduct. 17.15 94.85 76.83 67.91 84.13 80.86 -613.40 -45.57 64.52


		Round-trip, RGH-CLT-RGH									
H2 FUEL CELL HYBRID & DIESEL (2 LOCOS): ENERGY CONSUMPTION, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh)	26911	Reduction 13.27%	32890	Reduction -5.99%	42877	Reduction -38.18%	21311	Reduction 31.32%	31299	Reduction	
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	GASEOUS DE	-	LIQUID DELI ELECTROL	-	GASEOUS DE ELECTROLYSI		LIQUID DELI ELECTROLYSI		
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.	
GHGs	3685031	56.78	11363159	-33.27	13621359	-59.76	32406	99.62	19468	99.77	
NOx: Total	4598	94.89	11683	87.02	14252	84.17	35	99.96	118	99.87	
PM2.5: Total	599	77.20	1657	36.92	2008	23.56	5	99.81	3	99.87	
PM10: Total	883	67.66	2554	6.42	3094	-13.36	8	99.72	4	99.86	
CO: Total	2056	84.59	4625	65.34	5623	57.86	14	99.89	28	99.79	
VOC: Total	609	85.89	1248	71.09	1517	64.86	4	99.91	7	99.83	
SOx: Total	8091	-767.27	20721	-2121.01	25070	-2587.08	63	93.26	1	99.84	
CH4	7199	31.45	21561	-105.32	26109	-148.62	65	99.38	25	99.76	
N2O	-309	247.59	167	20.29	202	3.45	1	99.76	0	99.88	
CO2 (w/ C in VOC & CO)	3546454	56.23	10687832	-31.91	12946031	-59.78	32406	99.60	18651	99.77	
BC: Total	79	66.04	109	53.11	132	43.10	0	99.86	0	99.83	
OC: Total	94	95.81	246	89.06	299	86.69	1	99.97	2	99.92	

9.3.14 Fuel Cell Hybrid Downsized and Diesel

		F	ound-trip, RGH-C	LT-RGH				
			,					
H2 FUEL CELL HYBRID DOWNSIZED		Reduction						
& DIESEL (2 LOCOS):	16942						1	
ENERGY CONSUMPTION,		34.79%						
POINT-OF-USE (kWh)	METHODS							
ALL PRODUCTION								
POINT-OF-USE-EMISSIONS	Grams	Reduct.						
	(Based on SERC) 0	100.00						
GHGs NOx: Total	0	100.00 100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4	0	100.00						
N2O	0	100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00						
OC: Total	0	100.00						
H2 FUEL CELL HYBRID DOWNSIZED		Reduction		Reduction		Reduction		Reduction
& DIESEL (2 LOCOS):					_	neuaction		
ENERGY CONSUMPTION,	13051	-158.50%	22858	-352.74%	9619	-90.51%	19857	-293.30%
WELL-TO-PUMP (kWh)								
	ONSITE S	МР			ONSITE ELEC	FROLYSIS,		
PRODUCTION METHOD	UNSITE S	IVIR	ONSITE ELECTI	KULYSIS	100% RE	NEW	LIQUID DELIVERY	, SIVIR SERC
WELL-TO-PUMP EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
WELL-10-POIVIP EIVII33IONS	(Based on SERC)	76 Reduct.	(Based on SERC)	76 Reduct.	Grains	70 Reduct.	(Based on SERC)	76 Reduct.
GHGs	6871692	-349.73	13738758	-799.15	0	100.00	8416070	-450.80
NOx: Total	4824	-105.17	14106	-499.98	0	100.00	5208	-121.51
PM2.5: Total	285	-114.33	2000	-1402.00	0	100.00	674	-406.43
PM10: Total	380	-139.56	3084	-1843.90	0	100.00	958	-503.64
CO: Total	3348	-195.74	5584	-393.21	0	100.00	2432	-114.76
VOC: Total	1033	-52.24	1507	-122.06	0	100.00	991	-45.96
SOx: Total CH4	2943 21273	-232.60 -114.95	25018 26032	-2727.28 -163.05	0	100.00	7180 18443	-711.42 -86.36
N2O	141	-114.95	26032	-163.05	0	100.00	18443	-86.36
CO2 (w/ C in VOC & CO)	6196245	-390.44	12904399	-869.18	0	100.00	7840269	-517.15
BC: Total	25	-413.08	12904399	-469.50	0	100.00	56	-141.49
OC: Total	46	-15.45	297	-651.98	0	100.00	122	-207.77
	~		_3,		-			
H2 FUEL CELL HYBRID DOWNSIZED		Reduction		Reduction		Reduction		Reduction
& DIESEL (2 LOCOS):	29993	2.240/	39800	20.200/	26561	14 400/	36799	10 50%
		3.34%		-28.26%		14.40%		-18.59%
WELL-TO-WHEEL (kWh)					ONSITE ELEC			
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECTI	ROLYSIS	100% RE		LIQUID DELIVERY	, SMR SERC
	Grams		Grams				Grams	
WELL-TO-PUMP EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	(Based on SERC)	% Reduct.
GHGs	6871691.9	19.405627	13738757.5	-61.13449	0	100	, ,	1.2924536
NOx: Total	4823.506428	94.641196	14105.60518	84.329	0	100		
PM2.5: Total	285.4474292	89.132782	2000.376831	23.844014	0	100	674.4692193	74.322404
PM10: Total	380.0228174	86.075964	3083.737553	-12.98814	0	100	957.6008215	64.913506
CO: Total	3348.494953	74.905442	5584.2051	58.150404	0	100	2431.612626	81.776814
VOC: Total	1033.287994	76.068002	1507.195588	65.091822	0	100	990.7001949	77.054379
SOx: Total	2943.167191	-215.4636	25018.13417	-2581.57	0	100	7180.101337	-669.5996
CH4	21272.54969	-102.5704	26032.07456		0	100		
N2O	140.6421937	32.825114	201.4967582	3.7591683	0	100	84.96892756	59.416319
CO2 (w/ C in VOC & CO)	6196245.228	23.526706	12904398.63		0	100		
BC: Total	24.77047645	89.349457	131.6715099		0	100		
OC: Total	45.58283902	97.972949	296.9083581	86,796601	0	100	121.5204439	94 596033

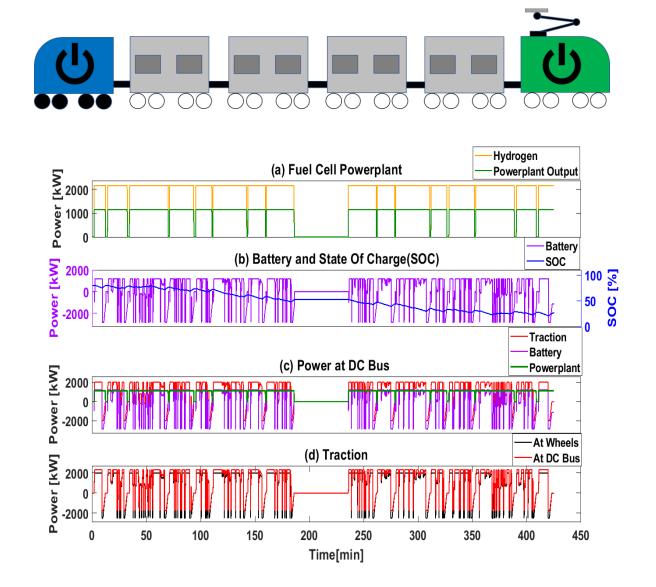
	· · · · · · · · · · · · · · · · · · ·	î	Rou	nd-trip RGH	-CLT-RGH	·				
H2 FUEL CELL HYBRID DOWNSIZED	16416.74643	Reduction		Reduction		Reduction		Reduction		Reduction
& DIESEL (2 LOCOS):			24264		27267		44000		24422	
ENERGY CONSUMPTION,	-225.1632184		24261	-380.54%	37367	-640.12%	11022	-118.31%	24128	-377.89%
WELL-TO-PUMP (kWh)										
PRODUCTION METHOD		BIOMASS	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,	GASEOUS DEL	IVERY,	LIQUID DELI	VERY,
PRODUCTION METHOD	EIGOID DEEIVEIN	, DIOINIA33	ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYSIS	S 100%	ELECTROLYSI	S 100%
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3982337	-160.63	14057688	-820.02	17020930	-1013.96	42524	97.21696	25547	98.33
NOx: Total	5157	-119.36	14455	-514.82	17825	-658.19	47	98.02082	155	93.39
PM2.5: Total	662	-396.86	2050	-1439.16	2510	-1784.92	7	95.04528	4	96.66
PM10: Total	967	-509.44	3160	-1891.99	3868	-2338.38	10	93.58755	5	96.78
CO: Total	2351	-107.64	5722	-405.41	7032	-521.10	18	98.37303	37	96.74
VOC: Total	706	-3.99	1544	-127.55	1897	-179.56	5	99.26748	9	98.61
SOx: Total	9064	-924.30	25637	-2797.23	31343	-3442.03	83	90.6735	2	99.78
CH4	7830	20.88	26676	-169.55	32644	-229.86	86	99.13227	33	99.67
N2O	-418	2151.99	206	-913.66	253	-1140.80	1	96.73692	0	98.37
CO2 (w/ C in VOC & CO)	3852310	-220.24	13223329	-999.23	16186571	-1245.56	42524	96.46505	24475	97.97
BC: Total	95	-312.96	135	-483.59	165	-615.72	0	98.12136	1	97.70
OC: Total	105	-166.69	304	-670.58	374	-848.17	1	97.51941	2	93.82
H2 FUEL CELL HYBRID DOWNSIZED		Reduction		Reduction		Reduction		Reduction		Reduction
& DIESEL (2 LOCOS):	33359		41203		54309		27964		41070	
ENERGY CONSUMPTION,	33335	-7.51%	41205	-32.79%	54505	-75.02%	27504	9.88%	41070	-32.36%
WELL-TO-WHEEL (kWh)										
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	GASEOUS DE		LIQUID DELI ELECTROL		GASEOUS DEL ELECTROLYSI		LIQUID DELI ELECTROLYSI	
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3982337.179	53.293312	14057687.78	-64.87505	17020929.8	-99.62932	42524.03729	99.50126	25546.5725	99.700378
NOx: Total	5157.084006		14454.58744		17825.17226	80.196647	46.53096911	99.94831	155.4372048	
PM2.5: Total	661.7274051		2049.867515	21.959863	2510.358977	4.4285754	6.598757824	99.74878	4.452989152	99.830471
PM10: Total	966.8007774	64.576419	3160.031318	-15.78355	3868.171592	-41.72981	10.172502	99.62728	5.112342786	99.812684
CO: Total	2350.903385	82.381672	5722.362133	57.115016	7032.254459	47.298317	18.42093776	99.86195	36.94154624	99.72315
VOC: Total	705.8099709	83.652725	1544.484632	64.228169	1897.4751	56.052552	4.971872561	99.88485	9.413987074	99.781963
SOx: Total	9063.857735	-871.5102	25637.09983	-2647.914	31342.87137	-3259.488	82.52875462	91.15415	1.957700375	99.790164
CH4	7830.011883	25.437789	26676.12579	-154.0266	32643.74882	-210.8539	85.87349795	99.18226	32.78839138	99.687769
N2O	-417.990763	299.64479	206.4819251	1.3781047	252.751822	-20.72177	0.664688917	99.68252	0.332720728	99.841083
CO2 (w/ C in VOC & CO)	3852310.324	52.455261	13223328.91	-63.20069	16186570.93	-99.77266	42524.03729	99.47517	24474.74976	99.697936
BC: Total	95.47885567	58.947028	134.9291526	41.984614	165.4777928	28.849638	0.434352364	99.81324	0.531783088	99.77135
OC: Total	105.3004285	95.317331	304.2540729	86.46994	374.372901	83.351783	0.979428636	99.95645	2.43928134	99.891526


9.3.15 Fuel Cell Hybrid Downsized Plugin and Diesel

		F	ound-trip, RGH-C	LT-RGH	. <u> </u>			·]
H2 FUEL CELL HYBRID DOWNSIZED		Reduction						
PLUG-IN & DIESEL (2 LOCOS): ENERGY CONSUMPTION,	13340	48.65%						
POINT-OF-USE (kWh)		40.05/0						
ALL PRODUCTION								
	Grams							
POINT-OF-USE-EMISSIONS	(Based on SERC)	Reduct.						
GHGs	0	100.00						
NOx: Total	0	100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4 N2O	0	100.00 100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00						
OC: Total	0	100.00						
		Reduction		Reduction		Reduction		Reduction
H2 FUEL CELL HYBRID DOWNSIZED PLUG-IN & DIESEL (2 LOCOS):								
ENERGY CONSUMPTION,	10276	-103.54%	17998	-256.48%	7574	-50.01%	15635	-209.68%
WELL-TO-PUMP (kWh)		-103.34%		-230.46%		-30.01%		-205.08/6
					ONSITE ELECT	ROLYSIS,		
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	100% REM	IEW	LIQUID DELIVERY	, SMR SERC
WELL-TO-PUMP EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
WELL-TO-POINT EIMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Granis	% Reduct.	(Based on SERC)	% Reduct.
GHGs	5410717	-254.11	10817792	-607.98	0	100.00	6626748	-333.70
NOx: Total	3798	-61.55	11107	-372.42	0	100.00	4101	-74.41
PM2.5: Total	225	-68.76	1575	-1082.66	0	100.00	531	-298.76
PM10: Total CO: Total	299 2637	-88.62 -132.87	2428 4397	-1430.61 -288.35	0	100.00 100.00	754 1915	-375.30 -69.10
VOC: Total	814	-132.87	4337	-74.85	0	100.00	780	-14.93
SOx: Total	2317	-161.89	19699	-2126.18	0	100.00	5654	-538.90
CH4	16750	-69.25	20497	-107.12	0	100.00	14522	-46.74
N2O	111	-443.65	159	-678.88	0	100.00	67	-228.44
CO2 (w/ C in VOC & CO)	4878876	-305.57	10160824	-744.65	0	100.00	6173367	-413.18
BC: Total	20	15.64	104	-348.42	0	100.00	44	-90.14
OC: Total	36	9.10	234	-492.10	0	100.00	96	-142.34
		Reduction		Reduction		Reduction		Reduction
H2 FUEL CELL HYBRID DOWNSIZED]	
PLUG-IN & DIESEL (2 LOCOS): ENERGY CONSUMPTION,	23616	23.89%	31338	-0.99%	20914	32.60%	28975	6.62%
WELL-TO-WHEEL (kWh)								
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE ELECT	-	LIQUID DELIVERY	, SMR SERC
	Grame		Grome		100% REM	IEW .	Grome	
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams (Based on SERC)	% Reduct.
GHGs	5410717	36.54	10817792	-26.88	0	100.00	6626748	22.28
NOx: Total	3798	95.78	10817792	87.66	0	100.00	4101	95.44
PM2.5: Total	225	91.44	1575	40.04	0	100.00	531	79.78
PM10: Total	299	89.04	2428	11.03	0	100.00	754	72.37
CO: Total	2637	80.24	4397	67.05	0	100.00	1915	85.65
VOC: Total	814	81.16	1187	72.51	0	100.00	780	81.93
SOx: Total	2317	-148.39	19699	-2011.45	0	100.00	5654	-505.98
CH4	16750	-59.50	20497	-95.19	0	100.00	14522	-38.28
N2O	111	47.11	159	24.22	0	100.00	67	68.04
CO2 (w/ C in VOC & CO)	4878876	39.79	10160824	-25.40	0	100.00	6173367	23.81
BC: Total	20	91.61	104	55.42	0	100.00	44	81.10
OC: Total	36	98.40	234	89.60	0	100.00	96	95.74

		·	Rou	nd-trip RGH	I-CLT-RGH	·		·		
H2 FUEL CELL HYBRID DOWNSIZED		Reduction		Reduction		Reduction		Reduction		Reduction
PLUG-IN & DIESEL (2 LOCOS): ENERGY CONSUMPTION, WELL-TO-PUMP (kWh)	12926	-156.03%	19103	-278.37%	29422	-482.76%	8679	-71.90%	18998	-276.29%
PRODUCTION METHOD		, BIOMASS	GASEOUS DE ELECTROL		LIQUID DELI ELECTROL		GASEOUS DEI ELECTROLYSI		LIQUID DELI	
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3135662	-105.22	11068915	-624.42	13402149	-777.12	33483	97.81	20115	98.68
NOx: Total	4061	-72.72	11381	-384.11	14035	-496.99	37	98.44	122	94.79
PM2.5: Total	521	-291.23	1614	-1111.92	1977	-1384.17	5	96.10	4	97.37
PM10: Total	761	-379.87	2488	-1468.48	3046	-1819.96	8	94.95	4	97.46
CO: Total	1851	-63.49	4506	-297.95	5537	-389.05	15	98.72	29	97.43
VOC: Total	556	18.12	1216	-79.17	1494	-120.12	4	99.42	7	98.91
SOx: Total	7137	-706.52	20186	-2181.25	24679	-2688.97	65	92.66	2	99.83
CH4	6165	37.70	21005	-112.25	25703	-159.73	68	99.32	26	99.74
N2O	-329	1715.72	163	-698.15	199	-877.00	1	97.43	0	98.71
CO2 (w/ C in VOC & CO)	3033279	-152.15	10411947	-765.53	12745181	-959.48	33483	97.22	19271	98.40
BC: Total	75	-225.16	106	-359.51	130	-463.55	0	98.52	0	98.19
OC: Total	83	-109.99	240	-506.75	295	-646.58	1	98.05	2	95.14
H2 FUEL CELL HYBRID DOWNSIZED		Reduction		Reduction		Reduction		Reduction		Reduction
PLUG-IN & DIESEL (2 LOCOS):	26266	15.35%	32443	-4.56%	42762	-37.81%	22019	29.04%	32338	-4.22%
ENERGY CONSUMPTION,	20200	15.55%	52415	-4.30%	42702	-57.01%	22015	29.04%	32330	-4.22%
WELL-TO-WHEEL (kWh)							I			
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	GASEOUS DE		LIQUID DELI ELECTROL		GASEOUS DEI ELECTROLYSI		LIQUID DELI	,
	Grams		Grams	1313	Grams	1313	ELECTROLISI	3 100%	ELECTROLISI	3 100 %
WELL-TO-WHEEL EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3135662	63.22	11068915	-29.82	13402149	-57.19	33483	99.61	20115	99.76
NOx: Total	4061	95.49	11381	87.36	14035	84.41	37	99.96	122	99.86
PM2.5: Total	521	80.16	1614	38.55	1977	24.75	5	99.80	4	99.87
PM10: Total	761	72.11	2488	8.83	3046	-11.60	8	99.71	4	99.85
CO: Total	1851	86.13	4506	66.23	5537	58.50	15	99.89	29	99.78
VOC: Total	556	87.13	1216	71.83	1494	65.40	4	99.91	7	99.83
SOx: Total	7137	-664.96	20186	-2063.69	24679	-2545.23	65	93.03	2	99.83
CH4	6165	41.29	21005	-100.02	25703	-144.76	68	99.36	26	99.75
N2O	-329	257.20	163	22.35	199	4.94	1	99.75	0	99.87
CO2 (w/ C in VOC & CO)	3033279	62.56	10411947	-28.50	12745181	-57.30	33483	99.59	19271	99.76
BC: Total	75	67.68	106	54.32	130	43.98	0	99.85	0	99.82
	83	96.31	240	89.35	295	86.89	1	99.97	2	99.91

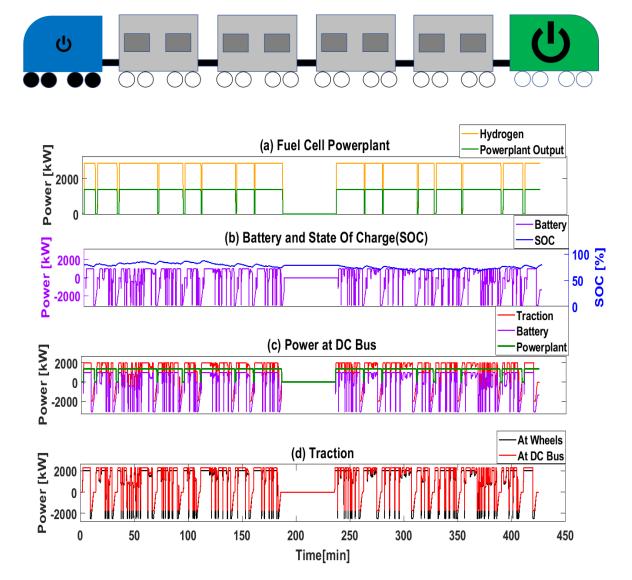
		R	ound trip, RGH-CL	T-RGH			•	·
FUEL CELL HYBRID DOWNSIZED PLUG-IN & DIESEL (2 LOCOS): ENERGY CONSUMPTION & COMPARISON, WELL-TO-PUMP, PLUG (kWh)	1490							
Energy Requirements (in kWh), Electricity - 100% Renewable		61.58%						
WELL-TO-PUMP EMISSIONS, PLUG ELECTRICITY	Grams (Based on SERC)							
GHGs	650209							
NOX: Total PM2.5: Total PM10: Total CO: Total	668 95 146 264							
VOC: Total SOx: Total	71 1184							
CH4 N2O	1232		·					
CO2 (w/ C in VOC & CO) BC: Total	610722							
OC: Total	14							
H2 FUEL CELL HYBRID DOWNSIZED PLUG-IN & DIESEL (2 LOCOS): ENERGY CONSUMPTION, WELL-TO- WHEEL, INCL. PLUG ELECTRICITY (kWh)	25106	Reduction 19.09%	32828	Reduction -5.79%	20914	Reduction 32.60%	30465	Reduction 1.82%
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE ELECTI 100% REN			, SMR SERC
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams (Based on SERC)	% Reduct.
GHGs	6060926	28.91	11468001	-34.50	0	100.00	7276957	14.65
NOx: Total PM2.5: Total	4466 319	95.04 87.84	11774 1670	86.92 36.43	0 0	100.00 100.00	4768 626	94.70 76.18
PM10: Total CO: Total	445 2901	83.69 78.26	2574 4661	5.69 65.07	0	100.00 100.00	900 2179	67.03 83.67
VOC: Total SOx: Total	885 3501	79.50 -275.30	1258 20883	70.86 -2138.36	0	100.00 100.00	851 6838	80.28 -632.89
CH4 N2O	17982 120	-71.23 42.55	21729 168	-106.92 19.67	0	100.00 100.00	15754 76	-50.02 63.49
CO2 (w/ C in VOC & CO) BC: Total	5489597 26	32.25 88.93	10771545 110	-32.94 52.74	0	100.00	6784089 50	16.27 78.42
OC: Total	50	97.78	248	32.74 88.98	0	100.00	30 110	95.12


			Roui	nd trip, RGH	-CLT-RGH					
H2 FUEL CELL HYBRID DOWNSIZED PLUG-IN & DIESEL (2 LOCOS):	Reduction		Reduction		Reductio		Reduction			Reduction
ENERGY CONSUMPTION, WELL- TO-WHEEL, INCL. PLUG ELECTRICITY (kWh)	27756	10.55%	33933	-9.36%	44252	-42.61%	22019	29.04%	32339	-4.22%
PRODUCTION METHOD	LIQUID DELIVERY, BIOMASS			GASEOUS DELIVERY, ELECTROLYSIS		LIQUID DELIVERY, ELECTROLYSIS		GASEOUS DELIVERY, ELECTROLYSIS 100%		VERY, S 100%
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3785871	55.60	11719124	-37.45	14052358	-64.81	33483	99.61	20115.17395	99.76
NOx: Total	4728	94.75	12049	86.61	14703	83.67	37	99.96	122	99.86
PM2.5: Total	616	76.56	1709	34.95	2071	21.14	5	99.80	4	99.87
PM10: Total	907	66.76	2634	3.49	3192	-16.94	8	99.71	4	99.85
CO: Total	2115	84.15	4770	64.25	5801	56.52	15	99.89	29	99.78
VOC: Total	627	85.48	1287	70.18	1565	63.74	4	99.91	7	99.83
SOx: Total	8321	-791.87	21370	-2190.60	25863	-2672.14	65	93.03	2	99.83
CH4	7397	29.56	22237	-111.75	26935	-156.50	68	99.36	26	99.75
N2O	-320	252.64	172	17.79	209	0.39	1	99.75	0	99.87
CO2 (w/ C in VOC & CO)	3644001	55.03	11022669	-36.04	13355903	-64.84	33483	99.59	19271	99.76
BC: Total	81	65.00	112	51.64	137	41.30	0	99.85	0	99.82
OC: Total	97	95.69	254	88.72	309	86.27	1	99.97	2	99.91

9.3.16 Fuel Cell and Battery

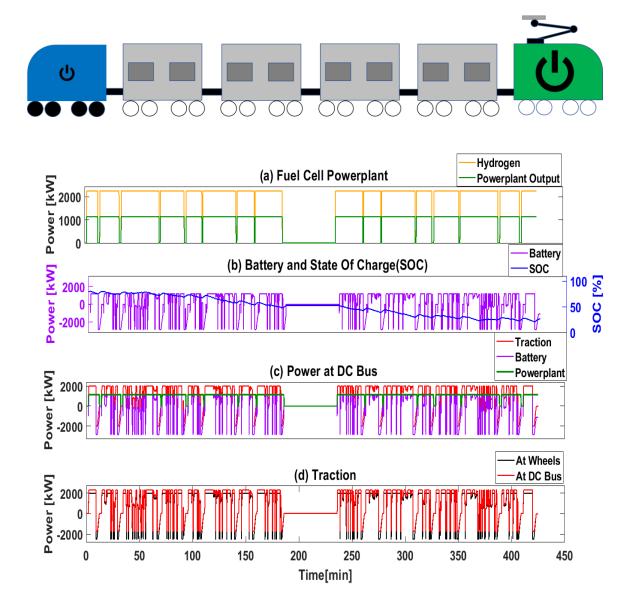
			Round-trip, RGI	I-CLT-RGH					
HYDROGEN FUEL CELL AND		Reduction							
BATTERY (2 LOCOMOTIVES):		neuaction							
ENERGY COONSUMPTION.	15816	39.12%							
POINT-OF-USE (kWh)		00111/0							
ALL PRODUCT	ON METHODS								
POINT-OF-USE-EMISSIONS	Grams % Reduct. (Based on SERC)								
GHGs	0	100.00							
NOx: Total	0	100.00							
PM2.5: Total	0	100.00							
PM10: Total	0	100.00							
CO: Total	0	100.00							
VOC: Total	0	100.00							
SOx: Total	0	100.00							
CH4	0	100.00							
N2O	0	100.00							
CO2 (w/ C in VOC & CO)	0	100.00							
BC: Total	0	100.00							
OC: Total	0	100.00							
HYDROGEN FUEL CELL AND		Reduction		Reduction		Reduction		Reduction	
BATTERY (2 LOCOMOTIVES):	12184		21339		8979		18537		
ENERGY CONSUMPTION,		-141.32%		-322.65%		-77.85%		-267.16%	
WELL-TO-PUMP (kWh)									
PRODUCTION METHOD	ONSITE SMR		ONSITE ELECT	ROLYSIS	ONSITE ELECT 100% REM	•	LIQUID DELIVERY, SMR SER		
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams (Based on SERC)	% Reduct.	
GHGs	6414985	-319.84	12825652	-739.39	0	100.00	7856720	-414.19	
NOx: Total	4503	-91.53	13168	-460.10	0	100.00	4862	-106.79	
PM2.5: Total	266	-100.09	1867	-1302.17	0	100.00	630	-372.77	
PM10: Total	355	-123.63	2879	-1714.70	0	100.00	894	-463.52	
CO: Total	3126	-176.09	5213	-360.43	0	100.00	2270	-100.49	
VOC: Total	965	-42.12	1407	-107.30	0	100.00	925	-36.26	
SOx: Total	2748	-210.50	23355	-2539.37	0	100.00	6703	-657.49	
CH4	19859	-100.67	24302	-145.56	0	100.00	17217	-73.97	
N20	131	-544.55	188	-823.44	0	100.00	79	-289.40	
CO2 (w/ C in VOC & CO) BC: Total	5784430 23	-380.85 -0.02	12046746 123	-901.42 -431.65	0	100.00	7319188 52	-508.43 -125.44	
OC: Total	43	-0.02	277	-602.00	0	100.00	113	-125.44	
		-7.17	2//	-002.00	5	100.00	115	107.32	
HYDROGEN FUEL CELL AND		Reduction		Reduction		Reduction		Reduction	
BATTERY (2 LOCOMOTIVES):	28000	0 === /	37155	40.754	24795		34353	40 744	
		9.77%		-19.74%		20.09%		-10.71%	
WELL-TO-WHEEL (kWh) PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE ELECT		LIQUID DELIVERY, SMR SERC		
WELL-TO-WHEEL EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	100% REM Grams	% Reduct.	Grams	% Reduct.	
	(Based on SERC)	24.70	(Based on SERC)	F0 42		100.00	(Based on SERC)	7.05	
GHGs	6414985	24.76	12825652	-50.43	0	100.00	7856720	7.85 94.60	
NOx: Total PM2.5: Total	4503 266	95.00 89.86	13168 1867	85.37 28.91	0	100.00 100.00	4862 630	94.60 76.03	
PMI2.5: Total PM10: Total	355	89.86	2879	-5.48	0	100.00	894	67.25	
CO: Total	3126	76.57	5213	60.93	0	100.00	2270	82.99	
VOC: Total	965	77.66	1407	67.41	0	100.00	925	78.58	
SOx: Total	2748	-194.50	23355	-2403.35	0	100.00	6703	-618.45	
CH4	19859	-89.11	24302	-131.42	0	100.00	17217	-63.95	
N2O	131	37.29	188	10.16	0	100.00	79	62.11	
CO2 (w/ C in VOC & CO)	5784430	28.61	12046746	-48.68	0	100.00	7319188	9.67	
BC: Total	23	90.06	123	47.15	0	100.00	52	77.59	
OC: Total	43	98.11	277	87.67	0	100.00	113	94.96	

			R	ound-trip, F	GH-CLT-RGH					
HYDROGEN FUEL CELL AND BATTERY (2 LOCOMOTIVES):		Reduction		Reduction		Reduction		Reduction		Reduction
ENERGY CONSUMPTION, WELL-TO-PUMP (kWh)	15326	-203.55%	22649	-348.60%	34883	-590.93%	10290	-103.80%	22524	-346.13%
PRODUCTION METHOD		BIOMASS	GASEOUS DEL	LIVERY,	LIQUID DELI	VERY,	GASEOUS DE	GASEOUS DELIVERY,		VERY,
		, 2.01	ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYSI	S 100%	ELECTROLYSI	S 100%
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3717663	-143.31	13123385	-758.88	15889684	-939.92	39698	97.40	23849	98.44
NOx: Total	4814	-104.78	13494	-473.96	16640	-607.80	43	98.15	145	93.83
PM2.5: Total	618	-363.84	1914	-1336.86	2344	-1659.64	6	95.37	4	96.88
PM10: Total	903	-468.94	2950	-1759.60	3611	-2176.32	9	94.01	5	96.99
CO: Total	2195	-93.84	5342	-371.82	6565	-479.82	17	98.48	34	96.95
VOC: Total	659	2.92	1442	-112.43	1771	-160.98	5	99.32	9	98.71
SOx: Total	8461	-856.22	23933	-2604.67	29260	-3206.62	77	91.29	2	99.79
CH4	7310	26.14	24903	-151.64	30474	-207.93	80	99.19	31	99.69
N2O	-390	2015.61	193	-846.29	236	-1058.34	1	96.95	0	98.48
CO2 (w/ C in VOC & CO)	3596278	-198.95	12344479	-926.17	15110778	-1156.13	39698	96.70	22848	98.10
BC: Total	89	-285.51	126	-444.80	154	-568.15	0	98.25	0	97.85
OC: Total	98	-148.97	284	-619.37	349	-785.15	1	97.68	2	94.23
HYDROGEN FUEL CELL AND		Reduction		Reduction		Reduction	uction			Reduction
BATTERY (2 LOCOMOTIVES):			38465	-23.96%		-63.39%		15.87%	38340	-23.56%
ENERGY CONSUMPTION,	31142	-0.36%			50699		26106			
WELL-TO-WHEEL (kWh)										
PRODUCTION METHOD		BIOMASS	GASEOUS DEI	LIVERY,	LIQUID DELIVERY,		GASEOUS DELIVERY,		LIQUID DELIVERY,	
PRODUCTION METHOD	EIQUID DEEIVEIN	, 510111435	ELECTROLYSIS		ELECTROLYSIS		ELECTROLYSIS 100%		ELECTROLYSIS 100%	
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3717663	56.40	13123385.08	-53.92	15889684	-86.36	39698	99.53	23849	99.72
NOx: Total	4814	94.65	13494	85.01	16640	81.51	43	99.95	145	99.84
PM2.5: Total	618	76.48	1914	27.15	2344	10.78	6	99.77	4	99.84
PM10: Total	903	66.93	2950	-8.09	3611	-32.31	9	99.65	5	99.83
CO: Total	2195	83.55	5342	59.97	6565	50.80	17	99.87	34	99.74
VOC: Total	659	84.74	1442	66.61	1771	58.97	5	99.89	9	99.80
SOx: Total	8461	-806.94	23933	-2465.28	29260	-3036.21	77	91.74	2	99.80
CH4	7310	30.39	24903	-137.14	30474	-190.19	80	99.24	31	99.71
N2O	-390	286.38	193	7.93	236	-12.70	1	99.70	0	99.85
CO2 (w/ C in VOC & CO)	3596278	55.62	12344479	-52.35	15110778	-86.50	39698	99.51	22848	99.72
BC: Total	89	61.68	126	45.84	154	33.58	0	99.83	0	99.79
OC: Total	98	95.63	284	87.37	349	84.46	1	99.96	2	99.90



9.3.17 Fuel Cell and Battery Plugin

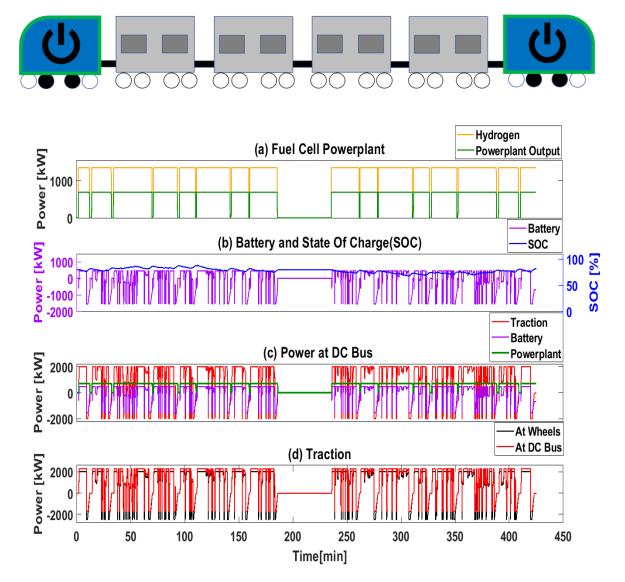
		F	Round-trip, RGH-C	LT-RGH						
			• *							
H2 FUEL CELL AND BATTERY PLUG-		Reduction								
IN (2 LOCOMOTIVES):	12769	50.05%								
ENERGY CONSUMPTION,		50.85%								
POINT-OF-USE (kWh) ALL PRODUCTION										
ALL PRODUCTION	Grams									
POINT-OF-USE-EMISSIONS	(Based on SERC)	% Reduct.								
GHGs	0	100.00								
NOx: Total	0	100.00								
PM2.5: Total	0	100.00								
PM10: Total	0	100.00								
CO: Total	0	100.00								
VOC: Total	0	100.00								
SOx: Total	0	100.00								
CH4	0	100.00								
N2O	0	100.00								
CO2 (w/ C in VOC & CO)	0	100.00								
BC: Total	0	100.00								
OC: Total	0	100.00								
H2 FUEL CELL AND BATTERY		Reduction		Reduction		F	Reduction		Reduction	
PLUG-IN (2 LOCOMOTIVES):	0926		17000		7240			14000		
ENERGY CONSUMPTION,	9836	-94.83%	17228	-241.23%	7249		-43.59%	14966	-196.43%	
WELL-TO-PUMP (kWh)										
PRODUCTION METHOD	ONSITE SMR		ONSITE ELECTROLYSIS			ONSITE ELECTROLYSIS, 100% RENEW		LIQUID DELIVERY, SMR SERC		
	Grams		Grams					Grams		
WELL-TO-PUMP EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	; [% Reduct.	(Based on SERC)	% Reduct.	
GHGs	5179119	-238.95	10354751	-577.68	0		100	6343100	-315.13	
NOx: Total	3635	-54.63	10631	-352.20	0		100	3925	-66.95	
PM2.5: Total	215	-61.54	1508	-1032.04	0		100	508	-281.69	
PM10: Total	286	-80.55	2324	-1365.10	0		100	722	-354.96	
CO: Total	2524	-122.90	4209	-271.72	0		100		-61.87	
VOC: Total	779	- <u>1</u> 4.74	1136	-67.36	0		100	747	-10.01	
SOx: Total	2218	-150.68	18856	-2030.89	0		100		-511.56	
CH4	16033	-62.01	19620	-98.26	0		100		-40.46	
N2O	106	-420.38	152	-645.54	0		100	64	-214.38	
CO2 (w/ C in VOC & CO)	4670042	-288.21	9725904	-708.50	0		100		-391.21	
BC: Total	19 34	19.25 12.99	99 224	-329.23	0		100		-82.01 -131.97	
OC: Total	54	12.99	224	-466.76	0		100	92	-151.97	
H2 FUEL CELL AND BATTERY		Reduction		Reduction		F	Reduction		Reduction	
PLUG-IN (2 LOCOMOTIVES):	22605		29997		20018			27735		
ENERGY CONSUMPTION,		27.15%		3.33%			35.49%		10.62%	
WELL-TO-WHEEL (kWh)		[ONCITE	LECTO				
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECTROLYSIS		ONSITE ELECTROLYSIS, 100% RENEW			LIQUID DELIVERY, SMR SERC		
WELL-TO-WHEEL EMISSIONS	Grams		Grams					Grams		
	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	:	% Reduct.	(Based on SERC)	% Reduct.	
GHGs	5179119	39.26	10354751	-21.45	0		100.00	6343100	25.61	
NOx: Total	3635	95.96	10631	88.19	0		100.00	3925	95.64	
PM2.5: Total	215	91.81	1508	42.60	0		100.00	508	80.65	
PM10: Total	286	89.51	2324	14.84	0		100.00	722	73.56	
CO: Total	2524	81.09	4209	68.46	0		100.00	1833	86.27	
VOC: Total	779	81.96	1136	73.69	0		100.00	747	82.71	
SOx: Total	2218	-137.76	18856	-1921.07	0		100.00	5412	-480.04	
CH4	16033	-52.68	19620	-86.83	0		100.00	13900	-32.37	
N2O	106	49.37	152	27.46	0		100.00	64	69.41	
CO2 (w/ C in VOC & CO)	4670042	42.36	9725904	-20.04	0		100.00	5909125	27.07	
BC: Total	19	91.97	99	57.33	0		100.00	42	81.91	
OC: Total	34	98.47	224	90.05	0		100.00	92	95.93	


			Roui	nd-trip, RGI	I-CLT-RGH					·
H2 FUEL CELL AND BATTERY	Reduction		n Reduction		Reduction			Reduction	Reduction	
PLUG-IN (2 LOCOMOTIVES):	40070						44.404		40405	
ENERGY CONSUMPTION,	12373	-145.07%	18286	-262.18%	28163	-457.82%	11481	-127.40%	18185	-260.18%
WELL-TO-PUMP (kWh)										
PRODUCTION METHOD			GASEOUS DELIVERY,		LIQUID DELIVERY,		GASEOUS DEL	LIVERY,	LIQUID DELI	VERY,
	EIQOID DEEIVEIN	, DIOINIA33	ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYSI	S 100%	ELECTROLYSI	S 100%
WELL-TO-PUMP EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
	(Based on SERC)		(Based on SERC)		(Based on SERC)					
GHGs	3001444	-96.43	10595125	-593.41	12828489	-739.58	32050	97.90	19254	98.74
NOx: Total	3887	-65.33	10894	-363.39	13435	-471.44	35	98.51	117	95.02
PM2.5: Total	499	-274.48	1545	-1060.04	1892	-1320.64	5	96.27	3	97.48
PM10: Total	729	-359.33	2382	-1401.34	2915	-1737.78	8	95.17	4	97.57
CO: Total	1772	-56.49	4313	-280.92	5300	-368.12	14	98.77	28	97.54
VOC: Total	532	21.62	1164	-71.50	1430	-110.70	4	99.45	7	98.95
SOx: Total	6831	-672.00	19322	-2083.61	23623	-2569.59	62	92.97	1	99.83
CH4	5901	40.37	20106	-103.16	24603	-148.61	65	99.35	25	99.75
N2O	-315	1646.56	156	-663.98	190	-835.18	1	97.54	0	98.77
CO2 (w/ C in VOC & CO)	2903444	-141.36	9966278	-728.48	12199641	-914.13	32050	97.34	18446	98.47
BC: Total	72	-211.24	102	-339.84	125	-439.43	0	98.58	0	98.27
OC: Total	79	-101.00	229	-480.78	282	-614.63	1	98.13	2	95.34
H2 FUEL CELL AND BATTERY		Reduction	Reducti			Reduction		Reduction		Reduction
PLUG-IN (2 LOCOMOTIVES):				-0.08%	40932	-31.91%	24250	21.85%	30954	0.24%
ENERGY CONSUMPTION,	25142	18.97%	31055							
WELL-TO-WHEEL (kWh)										
PRODUCTION METHOD			GASEOUS DELIVERY,		LIQUID DELIVERY,		GASEOUS DELIVERY,		LIQUID DELIVERY,	
PRODUCTION METHOD	EIQUID DEEIVEIN	, DIOIVIA33	ELECTROL	YSIS	ELECTROLYSIS		ELECTROLYSIS 100%		ELECTROLYSIS 100%	
	Grams	0/ De duet	Grams	% Reduct.	Grams	% Reduct.	Groups	0/ De du et	6	0/ Dealurat
WELL-TO-WHEEL EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3001444	64.80	10595125	-24.26	12828489	-50.46	32050	99.62	19254	99.77
NOx: Total	3887	95.68	10894	87.90	13435	85.07	35	99.96	117	99.87
PM2.5: Total	499	81.01	1545	41.18	1892	27.97	5	99.81	3	99.87
PM10: Total	729	73.30	2382	12.74	2915	-6.82	8	99.72	4	99.86
CO: Total	1772	86.72	4313	67.68	5300	60.28	14	99.90	28	99.79
VOC: Total	532	87.68	1164	73.04	1430	66.88	4	99.91	7	99.84
SOx: Total	6831	-632.22	19322	-1971.07	23623	-2432.01	62	93.33	1	99.84
CH4	5901	43.80	20106	-91.46	24603	-134.29	65	99.38	25	99.76
N2O	-315	250.47	156	25.67	190	9.01	1	99.76	0	99.88
CO2 (w/ C in VOC & CO)	2903444	64.17	9966278	-23.00	12199641	-50.57	32050	99.60	18446	99.77
BC: Total	72	69.06	102	56.27	125	46.37	0	99.86	0	99.83

	· · · · · · · · · · · · · · · · · · ·		Round-trip, R	GH-CLT-RG	iH						
			_								
H2 FUEL CELL AND BATTERY											
PLUG-IN (2 LOCOMOTIVES):	1504										
ENERGY CONSUMPTION , WELL-											
TO-PUMP, PLUG (kWh)		_									
WELL-TO-PUMP EMISSIONS	Grams										
GHGs	65625	2									
NOx: Total	67	4									
PM2.5: Total	9	6									
PM10: Total	14	7									
CO: Total	26	7									
VOC: Total	7	2									
SOx: Total	119	5									
CH4	124										
N2O	1										
CO2 (w/ C in VOC & CO)	61639										
BC: Total		6									
OC: Total	1	4									
H2 FUEL CELL AND BATTERY		Reduct	ion	Redu	uction		Reduction			Reduction	
PLUG-IN (2 LOCOMOTIVES):											
ENERGY CONSUMPTION,	24109	22.30	% 31500	-1.	20018 52%		35.49%	29	9238	5.77%	
WELL-TO-WHEEL (kWh)											
PRODUCTION METHO	D ONSITI	SMR	ONSITE E	LECTROLY	SIS	E ELECTRO	,	LIQUID	DELIVERY,	, SMR SERC	
WELL-TO-WHEEL EMISSIONS	Grams (Based on SER	% Red	Grams (Based on S	- % Re	educt. Gra	ms	% Reduct.		ams on SERC)	% Reduct.	
GHGs	583537	· •	-		9.14	0	100.00	•	99351.287	17.91	
NOx: Total	430				7.44	0	100.00		4599	94.89	
PM2.5: Total	31				3.96	0	100.00		604	77.01	
PM10: Total	43	-			.45	0	100.00		869	68.16	
CO: Total	279			475 66	5.46	0	100.00		2099	84.27	
VOC: Total	85	1 80.3	0 1	208 72	2.02	0	100.00		819	81.04	
SOx: Total	341	3 -265.	85 20	051 -204	49.16	0	100.00		6607	-608.13	
CH4	1727	6 -64.5	2 20	864 -98	8.68	0	100.00		15144	-44.21	
N2O	11	6 44.7	7	161 22	2.87	0	100.00		74	64.82	
CO2 (w/ C in VOC & CO)	528644	0 34.7	6 10342	301 -2	7.64	0	100.00		6525522	19.46	
BC: Total	2	5 89.2	7	106 54	1.63	0	100.00		48	79.20	
OC: Total	4	9 97.8	4	238 89	9.42	0	100.00		106	95.30	
			Roui	nd-trip, RG	H-CLT-RGH						
H2 FUEL CELL AND BATTERY		Reduction		Reduction		Reductio	on		Reductio	n	Re
PLUG-IN (2 LOCOMOTIVES):	26646		32558		42436		- 24	250		30954	
ENERGY CONSUMPTION,		14.13%		-492.54%		-36.76%	6		21.85%		
WELL-TO-WHEEL (kWh) PRODUCTION METHOD		BIOMASS	GASEOUS DE		LIQUID DEL			SEOUS DE		LIQUID DE	
	Grams		ELECTROL Grams		ELECTRO Grams			CTROLYS		ELECTROLY	
WELL-TO-WHEEL EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	(Based on SERC)	% Redu	t. Gr	ams	% Reduct	t. Grams	%
GHGs	3657696	57.10	11251377	-31.96	13484740	-58.16		32050	99.62	19254	4
NOx: Total	4561	94.93	11568	87.15	14108	84.33		35	99.96	11	7
PM2.5: Total	594	77.37	1641	37.54	1988	24.33		5	99.81		3
PM10: Total	876	67.90	2529	7.34	3063	-12.22		8	99.72		4
CO: Total	2039	84.72	4580	65.68	5567	58.28		14	99.90	2	_
	604	86.01	1236	71.37	1502	65.21		4	99.91		7
VOC: Total		-760.31	20517	-2099.16	24818	-2560.1		62	93.33		1
VOC: Total SOx: Total	8026	,			25847	-146.13	5	65	99.38	2	
VOC: Total SOx: Total CH4	7145	31.96	21349	-103.30				4	00 70		1
VOC: Total SOx: Total CH4 N2O	7145 -305	31.96 245.87	165	21.07	200	4.42		1 32050	99.76 99.60		0 6
VOC: Total SOx: Total CH4	7145	31.96		-				1 32050 0	99.76 99.60 99.86	1844	

9.3.18 Fuel Cell Downsized and Battery

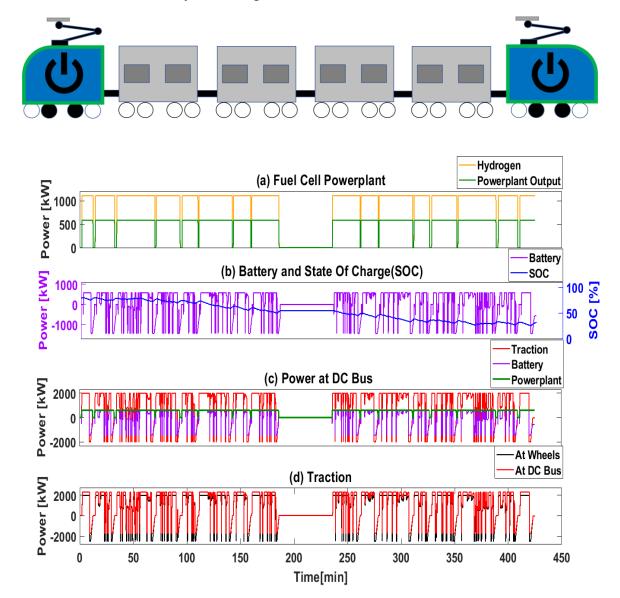
		F	Round-trip, RGH-C	LT-RGH				
H2 FUEL CELL (DOWNSIZED) &		Reduction						
BATTERY (2 LOCOMOTIVES):	16755	25 540/						
ENERGY CONSUMPTION,		35.51%						
POINT-OF-USE (kWh) ALL PRODUCTION								
ALL PRODUCTION	Grams							
POINT-OF-USE-EMISSIONS	(Based on SERC)	% Reduct.						
GHGs	0	100.00						
NOx: Total	0	100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4	0	100.00						
N2O	0	100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00						
OC: Total	0	100.00						
H2 FUEL CELL (DOWNSIZED) &		Reduction		Reduction	L	Reduction		Reduction
BATTERY (2 LOCOMOTIVES):	12007		22000		0542		10000	
ENERGY CONSUMPTION,	12907	-155.65%	22606	-347.74%	9512	-88.41%	19638	-288.96%
WELL-TO-PUMP (kWh)								
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS		LECTROLYSIS, RENEW	LIQUID DELIVERY	, SMR SERC
	Grams	0/ De du et	Grams	0/ De du et	6	0 De du et	Grams	0/ De du et
WELL-TO-PUMP EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	(Based on SERC)	% Reduct.
GHGs	6795845	-344.76	13587114	-789.23	0	100.00	8323176	-444.72
NOx: Total	4770	-102.90	13950	-493.36	0	100.00	5150	-119.06
PM2.5: Total	282	-111.96	1978	-1385.42	0	100.00	667	-400.84
PM10: Total	376	-136.91	3050	-1822.44	0	100.00	947	-496.98
CO: Total	3312	-192.48	5523	-387.76	0	100.00	2405	-112.39
VOC: Total	1022	-50.56	1491	-119.61	0	100.00	980	-44.35
SOx: Total	2911	-228.93	24742	-2696.07	0	100.00	7101	-702.46
CH4	21038	-112.58	25745	-160.14	0	100.00	18239	-84.30
N2O	139	-582.82	199	-878.27	0	100.00	84	-312.52
CO2 (w/ C in VOC & CO)	6127853	-409.40	12761964	-960.88	0	100.00	7753730	-544.55
BC: Total	24 45	-5.95	130 294	-463.21	0	100.00	55 120	-138.82 -204.38
OC: Total	45	-14.17	294	-643.68	U	100.00	120	-204.36
H2 FUEL CELL (DOWNSIZED) &		Reduction		Reduction		Reduction		Reduction
BATTERY (2 LOCOMOTIVES):	29662		39361		26267		36393	
ENERGY CONSUMPTION,		4.41%		-26.85%		15.35%		-17.28%
WELL-TO-WHEEL (kWh)					01/075	FOTDOLLYGIG		
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS		ECTROLYSIS,	LIQUID DELIVERY	, SMR SERC
	Grams		Grams				Grams	
WELL-TO-WHEEL EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	(Based on SERC)	% Reduct.
GHGs	6795845	20.30	13587114	-59.36	0	100.00	8323176	2.38
NOx: Total	4770	94.70	13950	84.50	0	100.00	5150	94.28
PM2.5: Total	282	89.25	1978	24.68	0	100.00	667	74.61
PM10: Total	376	86.23	3050	-11.74	0	100.00	947	65.30
CO: Total	3312	75.18	5523	58.61	0	100.00	2405	81.98
VOC: Total	1022	76.33	1491	65.48	0	100.00	980	77.31
SOx: Total	2911	-211.98	24742	-2551.97	0	100.00	7101	-661.11
CH4	21038	-100.33	25745	-145.16	0	100.00	18239	-73.69
N2O	139	33.57	199	4.82	0	100.00	84	59.86
CO2 (w/ C in VOC & CO)	6127853	24.37	12761964	-57.51	0	100.00	7753730	4.30
BC: Total	24	89.47	130	44.01	0	100.00	55	76.26
OC: Total	45	98.00	294	86.94	0	100.00	120	94.66


9.3.19 Fuel Cell Downsized + Battery Plugin

	<i>.</i>		ound-trip, RGH-C	T=RGH	,			
			ound-trip, Non-e					
H2 FUEL CELL (DOWNSIZED) PLUS		Reduction						
BATTERY PLUG-IN:	13193							
ENERGY COMPARISON,	15155	49.22%						
POINT-OF-USE (kWh)								
ALL PRODUCTION	N METHODS							
	Grams	~ .						
POINT-OF-USE-EMISSIONS	(Based on SERC)	% Reduct.						
GHGs	0	100.00						
NOx: Total	0	100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4	0	100.00						
N2O	0	100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00						
OC: Total	0	100.00						
	-					-		
H2 FUEL CELL (DOWNSIZED) PLUS		Reduction		Reduction		Reduction		Reduction
BATTERY PLUG-IN:	10163		17800		7490		15463	
ENERGY COMPARISON,		-101.30%		-252.56%		-48.36%		-206.27%
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS		LECTROLYSIS,	LIQUID DELIVERY	. SMR SERC
		,			100%	RENEW		,
WELL-TO-PUMP EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
	(Based on SERC)		(Based on SERC)				(Based on SERC)	
GHGs	5351094	-250.21	10698585	-600.18	0	100.00	6553725	-328.917
NOx: Total	3756	-59.77	10984	-367.21	0	100.00	4055	-72.49
PM2.5: Total	222	-66.90	1558	-1069.63	0	100.00	525	-294.36
PM10: Total	296	-86.55	2401	-1413.74	0	100.00	746	-370.07
CO: Total	2608	-130.30	4349	-284.07	0	100.00	1894	-67.24
VOC: Total	805	-18.55	1174	-72.92	0	100.00	771	-13.66
SOx: Total	2292	-159.00	19482	-2101.64	0	100.00	5591	-531.86
CH4	16565	-67.39	20272	-104.84	0	100.00	14362	-45.12
N2O	110	-437.65	157	-670.29	0	100.00	66	-224.82
CO2 (w/ C in VOC & CO)	4825113	-301.10	10048857	-735.34	0	100.00	6105340	-407.53
BC: Total	19	16.57	103	-343.48	0	100.00	43	-88.05
OC: Total	35	10.10	231	-485.58	0	100.00	95	-139.67
H2 FUEL CELL (DOWNSIZED) PLUS		Reduction		Reduction		Reduction		Reduction
BATTERY PLUG-IN:		neudulion		neuucion		Neuucuon		Reduction
ENERGY COMPARISON,	23356	24 720/	30993	0.13%	20683	22 249/	28656	60 FF%
		24.73%		0.12%		33.34%		69.55%
WELL-TO-WHEEL (kWh)								
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS		LECTROLYSIS,	LIQUID DELIVERY	, SMR SERC
	Grome	r –	Growe		100%	S RENEW	Grows	1
WELL-TO-WHEEL EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
	(Based on SERC)		(Based on SERC)	27.40		100.00	(Based on SERC)	22.42
GHGs	5351094	37.24	10698585	-25.48	0	100.00	6553725	23.13
NOx: Total	3756	95.83	10984	87.80	0	100.00	4055	95.49
PM2.5: Total	222	91.54	1558	40.70	0	100.00	525	80.00
PM10: Total	296	89.16	2401	12.01	0	100.00	746	72.68
CO: Total	2608	80.46	4349	67.41	0	100.00	1894	85.81
VOC: Total	805	81.36	1174	72.82	0	100.00	771	82.13
SOx: Total	2292	-145.66	19482	-1988.18	0	100.00	5591	-499.30
CH4	16565	-57.74	20272	-93.04	0	100.00	14362	-36.76
N2O	110	47.69	157	25.06	0	100.00	66	68.40
CO2 (w/ C in VOC & CO)	4825113	40.45	10048857	-24.02	0	100.00	6105340	24.65
BC: Total	19	91.71	103	55.91	0	100.00	43	81.31
OC: Total	35	98.42	231	89.72	0	100.00	95	95.79

	i .		Rour	nd-trip, RGF	-CLT=RGH	·		·		
H2 FUEL CELL (DOWNSIZED) PLUS BATTERY PLUG-IN:	12784	Reduction	18893	Reduction	29098	Reduction	8583	Reduction	18789	Reduction
ENERGY COMPARISON,		-153.21%		-274.20%		-476.34%		-70.00%		-272.14%
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	GASEOUS DE	,	LIQUID DELI	,	GASEOUS DE	,	LIQUID DELI	'
			ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYSI	S 100%	ELECTROLYSI	S 100%
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3101108	-102.96	10946941	-616.44	13254464	-767.46	33114	97.83	19894	98.70
NOx: Total	4016	-70.82	11256	-378.77	13881	-490.41	36	98.46	121	94.85
PM2.5: Total	515	-286.91	1596	-1098.56	1955	-1367.82	5	96.14	3	97.40
PM10: Total	753	-374.58	2461	-1451.20	3012	-1798.81	8	95.01	4	97.49
CO: Total	1831	-61.69	4456	-293.57	5476	-383.66	14	98.73	29	97.46
VOC: Total	550	19.02	1203	-77.20	1478	-117.70	4	99.43	7	98.92
SOx: Total	7058	-697.64	19964	-2156.11	24407	-2658.23	64	92.74	2	99.83
CH4	6097	38.39	20773	-109.91	25420	-156.86	67	99.32	26	99.74
N2O	-325	1697.92	161	-689.35	197	-866.23	1	97.46	0	98.73
CO2 (w/ C in VOC & CO)	2999854	-149.37	10297213	-755.99	12604736	-947.81	33114	97.25	19059	98.42
BC: Total	74	-221.58	105	-354.45	129	-457.34	0	98.54	0	98.21
OC: Total	82	-107.68	237	-500.06	292	-638.36	1	98.07	2	95.19
H2 FUEL CELL (DOWNSIZED) PLUS BATTERY PLUG-IN:	25977	Reduction		Reduction		Reduction		Reduction		Reduction
ENERGY COMPARISON.		16.28%	32086	-3.40%	42291	-36.29%	21776	29.82%	31982	-3.07%
ENERGY COMPARISON, WELL-TO-WHEEL (kWh)		16.28%	32086	-3.40%	42291	-36.29%	21776	29.82%	31982	-3.07%
· · · · ,			32086 GASEOUS DE ELECTROL	LIVERY,	42291 LIQUID DELI ELECTROL	VERY,	21776 GASEOUS DE ELECTROLYSI	LIVERY,	31982 LIQUID DELI ELECTROLYSI	VERY,
WELL-TO-WHEEL (kWh)			GASEOUS DE	LIVERY,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
WELL-TO-WHEEL (kWh) PRODUCTION METHOD	LIQUID DELIVERY Grams	, BIOMASS	GASEOUS DE ELECTROL Grams	LIVERY, YSIS	LIQUID DELI ELECTROL Grams	VERY, YSIS	GASEOUS DE ELECTROLYSI	LIVERY, S 100%	LIQUID DELI ELECTROLYSI	VERY, S 100%
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS	LIQUID DELIVERY Grams (Based on SERC)	7, BIOMASS % Reduct.	GASEOUS DE ELECTROL Grams (Based on SERC)	LIVERY, YSIS % Reduct.	LIQUID DELI ELECTROL Grams (Based on SERC)	VERY, YSIS % Reduct.	GASEOUS DE ELECTROLYSI Grams	LIVERY, S 100% % Reduct.	LIQUID DELI ELECTROLYSI Grams	VERY, S 100% % Reduct.
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs	LIQUID DELIVERY Grams (Based on SERC) 3101108	7, BIOMASS % Reduct. 63.63	GASEOUS DE ELECTROL Grams (Based on SERC) 10946941.03	LIVERY, YSIS % Reduct. -28.39	LIQUID DELI ELECTROL ¹ Grams (Based on SERC) 13254464	VERY, YSIS % Reduct. -55.45	GASEOUS DE ELECTROLYSI Grams 33114	LIVERY, S 100% % Reduct. 99.61	LIQUID DELI ELECTROLYSI Grams 19894	VERY, S 100% % Reduct. 99.77
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOx: Total	LIQUID DELIVERY Grams (Based on SERC) 3101108 4016	7, BIOMASS % Reduct. 63.63 95.54	GASEOUS DE ELECTROL Grams (Based on SERC) 10946941.03 11256	LIVERY, YSIS % Reduct. -28.39 87.49	LIQUID DELI ELECTROL Grams (Based on SERC) 13254464 13881	VERY, YSIS % Reduct. -55.45 84.58	GASEOUS DE ELECTROLYSI Grams 33114 36	LIVERY, S 100% % Reduct. 99.61 99.96	LIQUID DELI ELECTROLYSI Grams 19894 121	VERY, S 100% % Reduct. 99.77 99.87
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs NOx: Total PM2.5: Total	LIQUID DELIVERY Grams (Based on SERC) 3101108 4016 515	7, BIOMASS % Reduct. 63.63 95.54 80.38	GASEOUS DE ELECTROL Grams (Based on SERC) 10946941.03 11256 1596	LIVERY, YSIS % Reduct. -28.39 87.49 39.23	LIQUID DELI ELECTROL Grams (Based on SERC) 13254464 13881 1955	VERY, YSIS % Reduct. -55.45 84.58 25.58	GASEOUS DE ELECTROLYSI Grams 33114 36 5	LIVERY, S 100% % Reduct. 99.61 99.96 99.80	LIQUID DELI ELECTROLYSI Grams 19894 121 3	VERY, S 100% % Reduct. 99.77 99.87 99.87
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs NOx: Total PM2.5: Total PM10: Total	LIQUID DELIVERY Grams (Based on SERC) 3101108 4016 515 753	7, BIOMASS % Reduct. 63.63 95.54 80.38 72.42	GASEOUS DE ELECTROL Grams (<i>Based on SERC</i>) 10946941.03 11256 1596 2461	LIVERY, YSIS % Reduct. -28.39 87.49 39.23 9.84	LIQUID DELI ELECTROL Grams (Based on SERC) 13254464 13881 1955 3012	VERY, YSIS % Reduct. -55.45 84.58 25.58 -10.37	GASEOUS DE ELECTROLYSI Grams 33114 36 5 8	LIVERY, S 100% % Reduct. 99.61 99.96 99.80 99.71	LIQUID DELI ELECTROLYSI Grams 19894 121 3 4	VERY, S 100% % Reduct. 99.77 99.87 99.87 99.85
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs NOX: Total PM2.5: Total PM10: Total CO: Total	LIQUID DELIVERY Grams (Based on SERC) 3101108 4016 515 753 1831	% Reduct. 63.63 95.54 80.38 72.42 86.28	GASEOUS DE ELECTROL Grams (Based on SERC) 10946941.03 11256 1596 2461 4456	LIVERY, YSIS % Reduct. -28.39 87.49 39.23 9.84 66.60	LIQUID DELI ELECTROL Grams (Based on SERC) 13254464 13881 1955 3012 5476	VERY, YSIS % Reduct. -55.45 84.58 25.58 -10.37 58.96	GASEOUS DE ELECTROLYSI Grams 33114 36 5 8 14	LIVERY, S 100% % Reduct. 99.61 99.96 99.80 99.71 99.89	LIQUID DELI ELECTROLYSI Grams 19894 121 3 4 29	VERY, S 100% % Reduct. 99.77 99.87 99.87 99.85 99.78
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total	LIQUID DELIVERY Grams (Based on SERC) 3101108 4016 515 753 1831 550	, BIOMASS % Reduct. 63.63 95.54 80.38 72.42 86.28 87.27	GASEOUS DE ELECTROL Grams (Based on SERC) 10946941.03 11256 1596 2461 4456 1203	LIVERY, YSIS % Reduct. -28.39 87.49 39.23 9.84 66.60 72.14	LIQUID DELI ELECTROL' Grams (Based on SERC) 13254464 13881 1955 3012 5476 1478	VERY, YSIS % Reduct. -55.45 84.58 25.58 -10.37 58.96 65.78	GASEOUS DE ELECTROLYSI Grams 33114 36 5 8 14 14 4	IVERY, S 100% % Reduct. 99.61 99.96 99.80 99.71 99.89 99.91	LIQUID DELI ELECTROLYSI Grams 19894 121 3 4 29 7	VERY, S 100% % Reduct. 99.77 99.87 99.87 99.85 99.78 99.83
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOx: Total	LIQUID DELIVERY Grams (Based on SERC) 3101108 4016 515 753 1831 550 7058	 BIOMASS Reduct. 63.63 95.54 80.38 72.42 86.28 87.27 -656.53 	GASEOUS DE ELECTROL Grams (Based on SERC) 10946941.03 11256 1596 2461 4456 1203 19964	LIVERY, YSIS % Reduct. -28.39 87.49 39.23 9.84 66.60 72.14 -2039.84	LIQUID DELI ELECTROL Grams (Based on SERC) 13254464 13881 1955 3012 5476 1478 24407	VERV, YSIS % Reduct. -55.45 84.58 25.58 -10.37 58.96 65.78 -2516.09	GASEOUS DE ELECTROLYSI Grams 33114 36 5 8 14 4 4 64	UVERY, S 100% % Reduct. 99.61 99.96 99.80 99.71 99.89 99.91 93.11	LIQUID DELI ELECTROLYSI Grams 19894 121 3 4 29 7 2	VERY, S 100% % Reduct. 99.77 99.87 99.87 99.85 99.78 99.83 99.83
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOX: Total PM10: Total CO: Total CO: Total SOX: Total SOX: Total CH4	LIQUID DELIVERY Grams (Based on SERC) 3101108 4016 515 753 1831 550 7058 6097	 BIOMASS Reduct. 63.63 95.54 80.38 72.42 86.28 87.27 -656.53 41.94 	GASEOUS DE ELECTROL Grams (Based on SERC) 10946941.03 11256 1596 2461 4456 1203 19964 20773	LIVERY, YSIS % Reduct. -28.39 87.49 39.23 9.84 66.60 72.14 -2039.84 -97.81	LIQUID DELI ELECTROL Grams (Based on SERC) 13254464 13881 1955 3012 5476 1478 24407 25420	VERY, YSIS % Reduct. -55.45 84.58 25.58 -10.37 58.96 65.78 -2516.09 -142.07	GASEOUS DE ELECTROLYSI Grams 33114 36 5 8 14 4 4 64 64	LIVERY, S 100% % Reduct. 99.61 99.96 99.90 99.71 99.80 99.91 93.11 99.36	LIQUID DELI ELECTROLYSI Grams 19894 121 3 4 29 7 7 2 26	VERY, S 100% % Reduct. 99.77 99.87 99.87 99.85 99.78 99.83 99.84 99.84 99.76
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOx: Total PM2.5: Total PM10: Total CO: Total CO: Total SOx: Total SOx: Total CH4 N20	LIQUID DELIVERY Grams (Based on SERC) 3101108 4016 515 753 1831 550 7058 6097 -325	, BIOMASS % Reduct. 63.63 95.54 80.38 72.42 86.28 87.27 -656.53 41.94 255.47	GASEOUS DE ELECTROL Grams (Based on SERC) 10946941.03 11256 1596 2461 4456 1203 19964 20773 161	LIVERY, YSIS % Reduct. -28.39 87.49 39.23 9.84 66.60 72.14 -2039.84 -97.81 23.20	LIQUID DELI ELECTROL Grams (Based on SERC) 13254464 13881 1955 3012 5476 1478 24407 25420 197	VERY, YSIS % Reduct. -55.45 84.58 25.58 -10.37 58.96 65.78 -2516.09 -142.07 5.99	GASEOUS DE ELECTROLYSI Grams 33114 36 5 8 14 4 4 64 64 67 1	LIVERY, S 100% % Reduct. 99.61 99.96 99.80 99.71 99.89 99.91 93.11 99.36 99.75	LIQUID DELI ELECTROLYSI Grams 19894 121 3 4 29 7 7 2 2 6 0	VERY, S 100% % Reduct. 99.77 99.87 99.87 99.85 99.78 99.83 99.84 99.76 99.88

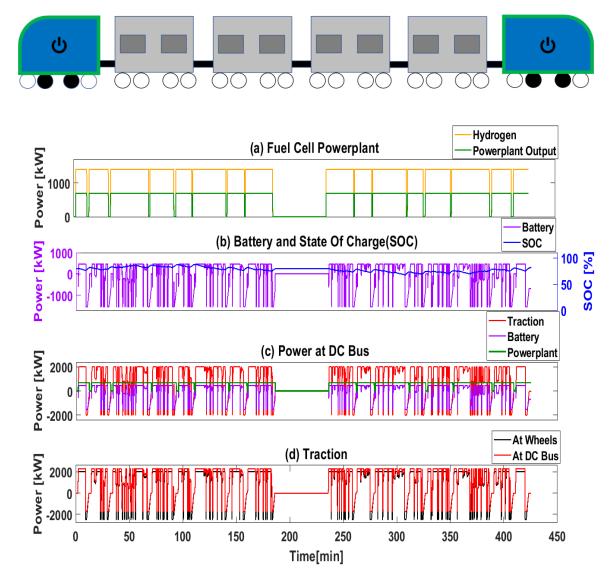
			Round-trip, RGH-C					
Energy Requirements (in kWh),		Reduction						
Electricity - 100% Renewable	1504							
Electricity - 100% Reliewable		62.16%						
WELL-TO-PUMP EMISSIONS,	Grams							
PLUG ELECTRICITY	(Based on SERC)							
GHGs	656252							
NOx: Total	674							
PM2.5: Total	96							
PM10: Total	147							
CO: Total	267							
VOC: Total	72							
SOx: Total	1195							
CH4	1243							
N2O	10							
CO2 (w/ C in VOC & CO)	616397							
BC: Total	6							
OC: Total	14							
H2 FUEL CELL (DOWNSIZED) PLUS		Reduction		Reduction		Reduction		Reductio
BATTERY PLUG-IN:	24050		22405		20002		20150	
ENERGY COMPARISON,	24860	40.000/	32496	-4.73%	20683	33.34%	30159	2.80%
LINENG I CONFARISON,		19.88%		-4./5%				
WELL-TO-WHEEL (kWh)		19.88%		-4.75%				
,	ONSITE S		ONSITE ELECT		ONSITE ELECT 100% REI		LIQUID DELIVERY	, SMR SER
WELL-TO-WHEEL (kWh)	ONSITE S Grams (Based on SERC)		ONSITE ELECT Grams (Based on SERC)				Grams	
WELL-TO-WHEEL (kWh) PRODUCTION METHOD	Grams	MR	Grams	ROLYSIS	100% REI	NEW	Grams	
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	MR % Reduct.	Grams (Based on SERC)	ROLYSIS % Reduct.	100% REF	NEW % Reduct.	Grams (Based on SERC)	% Reduc
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs	Grams (Based on SERC) 6007346	MR % Reduct. 29.54	Grams (Based on SERC) 11354837	ROLYSIS % Reduct. -33.17	100% REF Grams 0	NEW % Reduct. 100.00	Grams (Based on SERC) 7209977	% Reduc 15.44
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs NOx: Total	Grams (Based on SERC) 6007346 4430	MR % Reduct. 29.54 95.08	Grams (Based on SERC) 11354837 11658	ROLYSIS % Reduct. -33.17 87.05	100% REF Grams 0 0	NEW % Reduct. 100.00 100.00	Grams (Based on SERC) 7209977 4729	% Reduc 15.44 94.75
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs NOx: Total PM2.5: Total	Grams (Based on SERC) 6007346 4430 318	MR % Reduct. 29.54 95.08 87.90	Grams (Based on SERC) 11354837 11658 1653	ROLYSIS % Reduct. -33.17 87.05 37.06	100% REF Grams 0 0 0 0	NEW % Reduct. 100.00 100.00 100.00	Grams (Based on SERC) 7209977 4729 621	% Reduc 15.44 94.75 76.37
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs NOx: Total PM2.5: Total PM10: Total	Grams (Based on SERC) 6007346 4430 318 443	MR % Reduct. 29.54 95.08 87.90 83.76	Grams (Based on SERC) 11354837 11658 1653 2549	ROLYSIS % Reduct. -33.17 87.05 37.06 6.62	100% REF Grams 0 0 0 0 0	NEW % Reduct. 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7209977 4729 621 893	% Reduct 15.44 94.75 76.37 67.28
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOx: Total PM2.5: Total PM10: Total CO: Total	Grams (Based on SERC) 6007346 4430 318 443 2874	MR % Reduct. 29.54 95.08 87.90 83.76 78.46	Grams (Based on SERC) 11354837 11658 1653 2549 4615	ROLYSIS % Reduct. -33.17 87.05 37.06 6.62 65.41	100% REF Grams 0 0 0 0 0	% Reduct. 100.00 100.00 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7209977 4729 621 893 2160	% Reduct 15.44 94.75 76.37 67.28 83.81 80.46
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total	Grams (Based on SERC) 6007346 4430 318 443 2874 877	MR % Reduct. 29.54 95.08 87.90 83.76 78.46 79.70	Grams (Based on SERC) 11354837 11658 1653 2549 4615 1246	ROLYSIS % Reduct. -33.17 87.05 37.06 6.62 65.41 71.15	100% REF Grams 0 0 0 0 0 0 0	NEW % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7209977 4729 621 893 2160 843	% Reduct 15.44 94.75 76.37 67.28 83.81
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOx: Total	Grams (Based on SERC) 6007346 4430 318 443 2874 877 3487	MR % Reduct. 29.54 95.08 87.90 83.76 78.46 79.70 -273.75	Grams (Based on SERC) 11354837 11658 1653 2549 4615 1246 20677	ROLYSIS % Reduct. -33.17 87.05 37.06 6.62 65.41 71.15 -2116.27	100% REI Grams 0 0 0 0 0 0 0 0 0	NEW % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7209977 4729 621 893 2160 843 6786	% Reduct 15.44 94.75 76.37 67.28 83.81 80.46 -627.39
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs NOx: Total PM10: Total CO: Total VOC: Total VOC: Total SOx: Total CH4	Grams (Based on SERC) 6007346 4430 318 443 2874 877 3487 17809	MR % Reduct. 29.54 95.08 87.90 83.76 78.46 79.70 -273.75 -69.59	Grams (Based on SERC) 11354837 11658 1653 2549 4615 1246 20677 21515	ROLYSIS % Reduct. -33.17 87.05 37.06 6.62 65.41 71.15 -2116.27 -104.88	100% REI Grams 0 0 0 0 0 0 0 0 0 0 0	% Reduct. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7209977 4729 621 893 2160 843 6786 15605	% Reduct 15.44 94.75 76.37 67.28 83.81 80.46 -627.39 -48.60
WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOx: Total SOx: Total CH4 N20	Grams (Based on SERC) 6007346 4430 318 443 2874 877 3487 17809 119	MR % Reduct. 29.54 95.08 87.90 83.790 83.78.46 78.46 79.70 -273.75 -69.59 43.09	Grams (Based on SERC) 11354837 11658 1653 2549 4615 1246 20677 21515 167	ROLYSIS % Reduct. -33.17 87.05 37.06 6.62 6.5.41 71.15 -2116.27 -104.88 20.46	100% REI Grams 0 0 0 0 0 0 0 0 0 0 0 0 0	% Reduct. % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Grams (Based on SERC) 7209977 4729 621 893 2160 843 6786 15605 76	% Reduc 15.44 94.75 76.37 67.28 83.81 80.46 -627.39 -48.60 63.80


			Rour	nd-trip, RGH	I-CLT-RGH			1		
H2 FUEL CELL (DOWNSIZED) PLUS BATTERY PLUG-IN: ENERGY COMPARISON,	27481	Reduction	33589	Reduction	43795	Reduction	21776	Reduction	31982	Reduction
WELL-TO-WHEEL (kWh)		11.44%		-8.25%		-41.14%		29.82%		-5.07%
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	GASEOUS DEI ELECTROLY		LIQUID DELI ELECTROL		GASEOUS DE ELECTROLYSI		LIQUID DELI ELECTROLYSI	
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3757360	55.93	11603193	-36.09	13910716	-63.15	33114	99.61	19894	99.77
NOx: Total	4690	94.79	11930	86.75	14555	83.83	36	99.96	121	99.87
PM2.5: Total	611	76.74	1692	35.59	2050	21.94	5	99.80	3	99.87
PM10: Total	900	67.02	2608	4.44	3160	-15.76	8	99.71	4	99.85
CO: Total	2097	84.28	4723	64.61	5743	56.96	14	99.89	29	99.78
VOC: Total	622	85.60	1275	70.48	1550	64.11	4	99.91	7	99.83
SOx: Total	8253	-784.62	21159	-2167.93	25602	-2644.17	64	93.11	2	99.84
CH4	7341	30.10	22017	-109.66	26664	-153.91	67	99.36	26	99.76
N2O	-316	250.87	170	18.60	206	1.39	1	99.75	0	99.88
CO2 (w/ C in VOC & CO)	3616252	55.37	10913610	-34.69	13221133	-63.17	33114	99.59	19059	99.76
BC: Total	81	65.33	111	52.12	135	41.89	0	99.85	0	99.82
OC: Total	96	95.72	251	88.83	306	86.41	1	99.97	2	99.92

9.3.20 Two Fuel Cell Hybrid

			Round-trip, RGI	-CLT-RGH				
TWO HYDROGEN FUEL CELL		Reduction	-					
LOCOMOTIVES:		Neudelion						
ENERGY CONSUMPTION,	15930	38.69%						
POINT-OF-USE (kWh)								
ALL PRODUCT	ION METHODS							
POINT-OF-USE-EMISSIONS	Grams (Based on SERC)	Reduct.						
GHGs	0	100.00						
NOx: Total	0	100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4	0	100.00						
N2O	0	100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00 100.00						
OC: Total	U	100.00						
TWO HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction
LOCOMOTIVES:	12271		21492		9044		18671	
ENERGY CONSUMPTION,		-143.06%		-325.70%		-79.13%		-269.81%
WELL-TO-PUMP (kWh)								
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE ELEC 100% RE		LIQUID DELIVERY	, SMR SERC
WELL-TO-PUMP EMISSIONS	Grams	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	(Based on SERC) 6461224	-322.86	12918097	-745.44	0	100.00	(Based on SERC) 7913351	-417.90
NOx: Total	4535	-92.91	13263	-464.14	0	100.00	4897	-108.28
PM2.5: Total	268	-101.53	1881	-1312.28	0	100.00	634	-376.18
PM10: Total	357	-125.25	2900	-1727.78	0 0	100.00	900	-467.59
CO: Total	3148	-178.08	5251	-363.74	0	100.00	2286	-101.94
VOC: Total	972	-43.14	1417	-108.80	0	100.00	932	-37.24
SOx: Total	2767	-212.74	23524	-2558.39	0	100.00	6751	-662.95
CH4	20002	-102.11	24477	-147.33	0	100.00	17341	-75.23
N2O	132	-549.20	189	-830.10	0	100.00	80	-292.21
CO2 (w/ C in VOC & CO)	5826124	-384.32	12133578	-908.64	0	100.00	7371944	-512.82
BC: Total	23	-0.74	124	-435.48	0	100.00	52	-127.06
OC: Total	43	-8.55	279	-607.06	0	100.00	114	-189.39
TWO HYDROGEN FUEL CELL		Reduction		Reduction	ļ.	Reduction		Reduction
LOCOMOTIVES:	20204		27/22		3.074			
ENERGY CONSUMPTION,	28201	9.11%	37422	-20.60%	24974	19.52%	34601	-11.51%
WELL-TO-WHEEL (kWh)								
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS	ONSITE ELEC 100% RE	-	LIQUID DELIVERY	, SMR SERC
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams (Based on SERC)	% Reduct.
GHGs	6461224	24.22	12918097	-51.51	0	100.00	7913351	7.19
NOx: Total	4535	94.96	13263	85.27	0	100.00	4897	94.56
PM2.5: Total	268	89.78	1881	28.39	0	100.00	634	75.86
PM10: Total	357	86.91	2900	-6.24	0	100.00	900	67.01
CO: Total	3148	76.40	5251	60.65	0	100.00	2286	82.87
VOC: Total	972	77.50	1417	67.18	0	100.00	932	78.42
SOx: Total	2767	-196.62	23524	-2421.39	0	100.00	6751	-623.63
CH4	20002	-90.47	24477	-133.09	0	100.00	17341	-65.13
N2O	132	36.84	189	9.51	0	100.00	80	61.84
CO2 (w/ C in VOC & CO)	5826124	28.09	12133578	-49.75	0	100.00	7371944	9.02
BC: Total	23	89.99	124	46.77	0	100.00	52	77.43
OC: Total	43	98.09	279	87.59	0	100.00	114	94.92

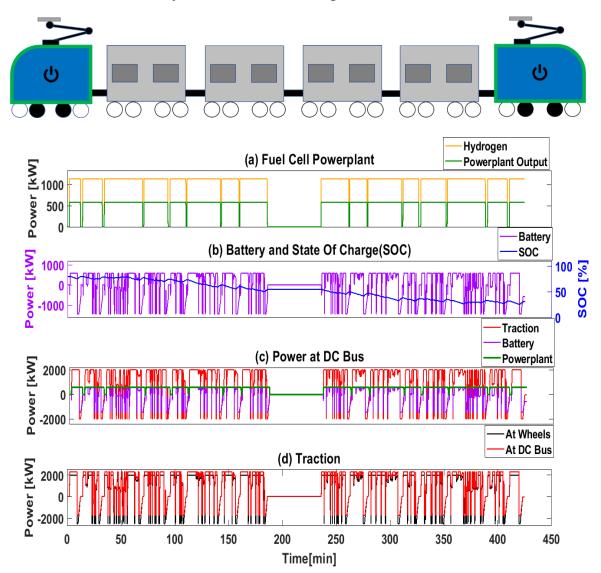
	·		Re	ound-trip, R	GH-CLT-RGH	··			-	
TWO HYDROGEN FUEL CELL LOCOMOTIVES:	15426	Reduction	22012	Reduction	25425	Reduction	10264	Reduction	22697	Reduction
ENERGY CONSUMPTION, WELL-TO-PUMP (kWh)	15436	-205.74%	22812	-351.84%	35135	-595.91%	10364	-105.27%	22687	-349.35%
PRODUCTION METHOD		BIOMASS	GASEOUS DEI	,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
		, 2.01	ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYSI	S 100%	ELECTROLYSI	S 100%
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3744459	-145.06	13217977	-765.07	16004215	-947.42	39984	97.38	24021	98.43
NOx: Total	4849	-106.25	13591	-478.10	16760	-612.90	44	98.14	146	93.78
PM2.5: Total	622	-367.18	1927	-1347.22	2360	-1672.33	6	95.34	4	96.86
PM10: Total	909	-473.04	2971	-1773.00	3637	-2192.73	10	93.97	5	96.97
CO: Total	2210	-95.23	5381	-375.22	6612	-484.00	17	98.47	35	96.93
VOC: Total	664	2.22	1452	-113.96	1784	-162.86	5	99.31	9	98.70
SOx: Total	8522	-863.11	24106	-2624.17	29471	-3230.45	78	91.23	2	99.79
CH4	7362	25.61	25083	-153.45	30694	-210.15	81	99.18	31	99.69
N2O	-393	2029.42	194	-853.11	238	-1066.69	1	96.93	0	98.46
CO2 (w/C in VOC & CO)	3622199	-201.11	12433457	-933.57	15219695	-1165.19	39984	96.68	23013	98.09
BC: Total	90	-288.29	127	-448.73	156	-572.96	0	98.23	1	97.84
OC: Total	99	-150.76	286	-624.55	352	-791.53	1	97.67	2	94.19
TWO HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction		Reduction
LOCOMOTIVES:										
ENERGY CONSUMPTION.	31366	-1.08%	38742	-24.85%	51065	-64.57%	26294	15.26%	38617	-24.45%
WELL-TO-WHEEL (kWh)		-1.00/0		-24.03/0		-04.3770		13.20/0		-24.43/0
			GASEOUS DEI	IVFRY.	LIQUID DELI	VFRY.	GASEOUS DE	IVFRY.	LIQUID DELI	VFRY.
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	ELECTROL		ELECTROL		ELECTROLYSI		ELECTROLYSI	
	Grams		Grams		Grams		LECTROLISI		LECTION	
WELL-TO-WHEEL EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3744459	56.08	13217977	-55.03	16004215	-87.70	39984	99.53	24021	99.72
NOx: Total	4849	94.61	13591	84.90	16760	81.38	44	99.95	146	99.84
PM2.5: Total	622	76.31	1927	26.62	2360	10.14	6	99.76	4	99.84
PM10: Total	909	66.69	2971	-8.87	3637	-33.26	10	99.65	5	99.82
CO: Total	2210	83.43	5381	59.68	6612	50.45	17	99.87	35	99.74
VOC: Total	664	84.63	1452	66.36	1784	58.68	5	99.89	9	99.79
SOx: Total	8522	-813.48	24106	-2483.77	29471	-3058.81	78	91.68	2	99.80
CH4	7362	29.89	25083	-138.85	30694	-192.29	81	99.23	31	99.71
N2O	-393	287.72	194	7.27	238	-13.51	1	99.70	0	99.85
CO2 (w/ C in VOC & CO)	3622199	55.30	12433457	-53.45	15219695	-87.84	39984	99.51	23013	99.72
BC: Total	90	61.40	127	45.45	156	33.10	0	99.82	1	99.79
OC: Total	99	95.60	286	87.28	352	84.35	1	99.96	2	99.90


9.3.21 Two Fuel Cell Hybrid Plugin

		R	ound-trip, RGH-C	LT-RGH				· · · · · · · · · · · · · · · · · · ·
			-					
TWO HYDROGEN FUEL CELL		Reduction						
HYBRID LOCOMOTIVES, PLUG-IN:	13012	40.039/						
		49.92%	ļ					
POINT-OF-USE (kWh) ALL PRODUCTION		l	ļ					
	Grams							
POINT-OF-USE-EMISSIONS	(Based on SERC)	Reduct.						
GHGs	0	100.00						
NOx: Total	0	100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4	0	100.00						
N2O	0	100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00						
OC: Total	0	100.00						
TWO HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction
HYBRID LOCOMOTIVES, PLUG-IN:	10034		47550		7207		45054	
ENERGY CONSUMPTION,	10024		17556		7387		15251	
WELL-TO-PUMP (kWh)		-98.54%		-247.72%		-46.32%		-202.07%
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS		ECTROLYSIS, RENEW	LIQUID DELIVERY	, SMR SERC
	Grams		Grams	% Deduct	Cuerra	% De du et	Grams	0/ Deduct
WELL-TO-PUMP EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	(Based on SERC)	% Reduct.
GHGs	5277680	-245.40	10551807	-590.58	0	100.00	6463812	-323.03
NOx: Total	3705	-57.57	10834	-360.80	0	100.00	4000	-70.13
PM2.5: Total	219	-64.61	1536	-1053.58	0	100.00	518	-288.95
PM10: Total	292	-83.99	2368	-1392.98	0	100.00	735	-363.62
CO: Total	2572	-127.14	4289	-278.80	0	100.00	1868	-64.95
VOC: Total	794	-16.92	1158	-70.55	0	100.00	761	-12.10
SOx: Total	2260	-155.45	19215	-2071.44	0	100.00	5515	-523.19
CH4	16338	-65.09	19993	-102.03	0	100.00	14165	-43.13
N2O	108	-430.28	155	-659.72	0	100.00	65	-220.37
CO2 (w/ C in VOC & CO)	4758915	-295.60	9910992	-723.88	0	100.00	6021578	-400.56
BC: Total	19	17.72	101	-337.39	0	100.00	43	-85.47
OC: Total	35	11.33	228	-477.54	0	100.00	93	-136.38
TWO HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction
HYBRID LOCOMOTIVES, PLUG-IN:	23036		30568		20399		28263	
ENERGY CONSUMPTION,					_			
WELL-TO-WHEEL (kWh)		25.76%		1.49%	ONCITE	34.26%		8.92%
PRODUCTION METHOD		MR	ONSITE ELECT	ROLYSIS		ECTROLYSIS, RENEW	LIQUID DELIVERY	, SMR SERC
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams (Based on SERC)	% Reduct.
GHGs	5277680	38.10	10551807	-23.76	0	100.00	6463812	24.19
NOx: Total	3705	95.88	10834	87.96	0	100.00	4000	95.56
PM2.5: Total	219	91.65	1536	41.51	0	100.00	518	80.28
PM10: Total	292	89.31	2368	13.22	0	100.00	735	73.05
CO: Total	2572	80.73	4289	67.86	0	100.00	1868	86.00
VOC: Total	794	81.62	1158	73.19	0	100.00	761	82.38
SOx: Total	2260	-142.29	19215	-1959.53	0	100.00	5515	-491.08
CH4	16338	-55.58	19993	-90.39	0	100.00	14165	-34.88
N2O	108	48.41	155	26.08	0	100.00	65	68.83
CO2 (w/ C in VOC & CO)	4758915	41.27	9910992	-22.32	0	100.00	6021578	25.68
BC: Total	19	91.82	101	56.52	0	100.00	43	81.56
OC: Total	35	98.44	228	89.86	0	100.00	93	95.85

	1		Rour	nd-trip, RGH	I-CLT-RGH					1
TWO HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction		Reduction
HYBRID LOCOMOTIVES, PLUG-IN:	12609		18634		28699		0465		18531	
ENERGY CONSUMPTION,	12609		18634		28699		8465		18531	
WELL-TO-PUMP (kWh)		-149.74%		-269.07%		-468.44%		-67.67%		-267.04%
			GASEOUS DE	LIVERY,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
PRODUCTION METHOD	LIQUID DELIVERY	, BIOIVIASS	ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYSI	S 100%	ELECTROLYSI	S 100%
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3058563	-100.17	10796756	-606.61	13072621	-755.55	32660	97.86	19621	98.72
NOx: Total	3961	-68.47	11102	-372.20	13690	-482.31	36	98.48	119	94.92
PM2.5: Total	508	-281.61	1574	-1082.12	1928	-1347.68	5	96.19	3	97.43
PM10: Total	743	-368.07	2427	-1429.91	2971	-1772.76	8	95.08	4	97.52
CO: Total	1806	-59.47	4395	-288.17	5401	-377.02	14	98.75	28	97.49
VOC: Total	542	20.13	1186	-74.77	1457	-114.71	4	99.44	7	98.93
SOx: Total	6961	-686.69	19690	-2125.16	24072	-2620.39	63	92.84	2	99.83
CH4	6014	39.23	20488	-107.03	25071	-153.34	66	99.33	25	99.75
N2O	-321	1676.00	159	-678.52	194	-852.98	1	97.49	0	98.75
CO2 (w/ C in VOC & CO)	2958698	-145.95	10155941	-744.25	12431806	-933.43	32660	97.29	18797	98.44
BC: Total	73	-217.17	104	-348.22	127	-449.69	0	98.56	0	98.23
OC: Total	81	-104.83	234	-491.83	288	-628.23	1	98.09	2	95.26
TWO HYDROGEN FUEL CELL		Reduction		Reduction		Reduction		Reduction		Reduction
HYBRID LOCOMOTIVES, PLUG-IN:	25624		24.545				24.477		24542	
ENERGY CONSUMPTION,	25621		31646		41711		21477		31543	
WELL-TO-WHEEL (kWh)		17.43%		-1.98%		-34.42%		30.78%		-1.65%
PRODUCTION METHOD		BIOMASS	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
PRODUCTION METHOD	LIQUID DELIVERI	, BIOIVIA33	ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYSI	S 100%	ELECTROLYSI	S 100%
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3058563	64.13	10796756	-26.63	13072621	-53.32	32660	99.62	19621	99.77
NOx: Total	3961	95.60	11102	87.67	13690	84.79	36	99.96	119	99.87
PM2.5: Total	508	80.65	1574	40.06	1928	26.60	5	99.81	3	99.87
PM10: Total	743	72.79	2427	11.07	2971	-8.85	8	99.71	4	99.86
CO: Total	1806	86.47	4395	67.06	5401	59.52	14	99.89	28	99.79
VOC: Total	542	87.44	1186	72.53	1457	66.25	4	99.91	7	99.83
SOx: Total	6961	-646.15	19690	-2010.49	24072	-2480.19	63	93.21	2	99.84
CH4	6014	42.73	20488	-95.10	25071	-138.75	66	99.37	25	99.76
N2O	-321	253.33	159	24.26	194	7.28	1	99.76	0	99.88
CO2 (w/ C in VOC & CO)	2958698	63.48	10155941	-25.34	12431806	-53.43	32660	99.60	18797	99.77
BC: Total	73	68.47	104	55.44	127	45.35	0	99.86	0	99.82
OC: Total	81	96.40	234	89.61	288	87.21	1	99.97	2	99.92

		F	Round-trip, RGH-C	LT-RGH				
ENERGY CONSUMPTION & COMPARISON, WELL-TO-PUMP,	1372.041209							
PLUG (kWh)		56.72%						
Energy Requirements (in kWh),								
Electricity - 100% Renewable		0.00%						
WELL-TO-PUMP EMISSIONS,	Grams							
PLUG ELECTRICITY	(Based on SERC)							
GHGs	598845							
NOx: Total	615							
PM2.5: Total	87							
PM10: Total	134							
CO: Total	243							
VOC: Total	66							
SOx: Total	1090							
CH4	1135							
N2O	9							
CO2 (w/ C in VOC & CO)	562477							
BC: Total	6							
OC: Total	13							
TWO HYDROGEN FUEL CELL	24407.64118	Reduction		Reduction		Reduction		Reduction
	24407.04110	Reduction		Reduction		Reduction		Reduction
HYBRID LOCOMOTIVES, PLUG-IN:	24407.04118	Reduction		Reduction	20400	Reduction		Reduction
	24407.04118	Reduction	31940	Reduction	20400	Reduction	29635	Reduction
HYBRID LOCOMOTIVES, PLUG-IN:	21.34121409			-2.93%	20400	34.26%		4.50%
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION,	21.34121409	21.34%		-2.93%	20400 ONSITE ELEC 100% RE	34.26% TROLYSIS,		4.50%
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh)	21.34121409	21.34%	31940	-2.93%	ONSITE ELEC	34.26% TROLYSIS,	29635	4.50%
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs	21.34121409 ONSITE S Grams	21.34% MR	31940 ONSITE ELECT	-2.93% ROLYSIS	ONSITE ELEC 100% RE	34.26% TROLYSIS, NEW	29635 LIQUID DELIVERY Grams	4.50% , SMR SERC
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS	21.34121409 ONSITE S Grams (Based on SERC)	21.34% MR % Reduct.	31940 ONSITE ELECTI Grams (Based on SERC)	-2.93% ROLYSIS % Reduct.	ONSITE ELEC 100% RE Grams	34.26% TROLYSIS, NEW % Reduct.	29635 LIQUID DELIVERY Grams (Based on SERC)	4.50% , SMR SERC % Reduct.
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs	21.34121409 ONSITE S Grams (<i>Based on SERC</i>) 5876525	21.34% MR % Reduct. 31.08	31940 ONSITE ELECT Grams (Based on SERC) 11150652	-2.93% ROLYSIS % Reduct. -30.78	ONSITE ELEC 100% RE Grams 0	34.26% TROLYSIS, NEW % Reduct. 100.00	29635 LIQUID DELIVERY Grams (<i>Based on SERC</i>) 7062656	4.50% , SMR SERC % Reduct. 17.17
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOX: Total	21.34121409 ONSITE S Grams (Based on SERC) 5876525 4319	21.34% MR % Reduct. 31.08 95.20	31940 ONSITE ELECT Grams (Based on SERC) 11150652 11448	-2.93% ROLYSIS % Reduct. -30.78 87.28	ONSITE ELEC 100% RE Grams 0 0	34.26% TROLYSIS, NEW % Reduct. 100.00 100.00	29635 LIQUID DELIVERY Grams (<i>Based on SERC</i>) 7062656 4615	4.50% , SMR SERC % Reduct. 17.17 94.87
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOX: Total PM2.5: Total	21.34121409 ONSITE S Grams (Based on SERC) 5876525 4319 306	21.34% MR % Reduct. 31.08 95.20 88.33	31940 ONSITE ELECT Grams (Based on SERC) 11150652 11448 1624	-2.93% ROLYSIS % Reduct. -30.78 87.28 38.19	ONSITE ELEC 100% RE Grams 0 0 0	34.26% TROLYSIS, NEW % Reduct. 100.00 100.00 100.00	29635 LIQUID DELIVERY Grams (<i>Based on SERC</i>) 7062656 4615 605	4.50% , SMR SERC % Reduct. 17.17 94.87 76.96
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOX: Total PM2.5: Total PM10: Total	21.34121409 ONSITE S Grams (<i>Based on SERC</i>) 5876525 4319 306 426	21.34% MR % Reduct. 31.08 95.20 88.33 84.38	31940 ONSITE ELECT Grams (<i>Based on SERC</i>) 11150652 11448 1624 2503	-2.93% ROLYSIS % Reduct. -30.78 87.28 38.19 8.30	ONSITE ELEC 100% RE Grams 0 0 0 0	34.26% TROLYSIS, NEW % Reduct. 100.00 100.00 100.00 100.00	29635 LIQUID DELIVERY Grams (<i>Based on SERC</i>) 7062656 4615 605 870	4.50% , SMR SERC % Reduct. 17.17 94.87 76.96 68.13
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOX: Total PM12.5: Total PM10: Total CO: Total	21.34121409 ONSITE S Grams (Based on SERC) 5876525 4319 306 426 2815	21.34% MR % Reduct. 31.08 95.20 88.33 84.38 78.90	31940 ONSITE ELECT Grams (<i>Based on SERC</i>) 11150652 11448 1624 2503 4532	-2.93% ROLYSIS % Reduct. -30.78 87.28 38.19 8.30 66.03	ONSITE ELEC 100% RE Grams 0 0 0 0 0 0	34.26% TROLYSIS, NEW % Reduct. 100.00 100.00 100.00 100.00 100.00	29635 LIQUID DELIVERY (Based on SERC) 7062656 4615 605 870 2111	4.50% , SMR SERC % Reduct. 17.17 94.87 76.96 68.13 84.18
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOX: Total PM2.5: Total PM10: Total CO: Total VOC: Total	21.34121409 ONSITE S Grams (Based on SERC) 5876525 4319 306 426 2815 859	21.34% MR % Reduct. 31.08 95.20 88.33 84.38 78.90 80.10	31940 ONSITE ELECT Grams (Based on SERC) 11150652 11448 1624 2503 4532 1223	-2.93% ROLYSIS % Reduct. -30.78 87.28 38.19 8.30 66.03 71.67	ONSITE ELEC 100% RE Grams 0 0 0 0 0 0 0 0 0 0 0	34.26% TROLYSIS, NEW % Reduct. 100.00 100.00 100.00 100.00 100.00	29635 LIQUID DELIVERY Grams (Based on SERC) 7062656 4615 605 870 2111 827	4.50% , SMR SERC % Reduct. 17.17 94.87 76.96 68.13 84.18 80.86
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGs NOx: Total PM2.5: Total PM10: Total CO: Total VOC: Total SOx: Total	21.34121409 ONSITE S Grams (<i>Based on SERC</i>) 5876525 4319 306 426 2815 859 3351	21.34% MR % Reduct. 31.08 95.20 88.33 84.38 78.90 80.10 -259.17	31940 ONSITE ELECT Grams (<i>Based on SERC</i>) 11150652 111448 1624 2503 4532 1223 20305	-2.93% ROLYSIS % Reduct. -30.78 87.28 38.19 8.30 66.03 71.67 -2076.42	ONSITE ELEC 100% RE Grams 0 0 0 0 0 0 0 0 0 0 0 0 0	34.26% TROLYSIS, NEW % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00	29635 LIQUID DELIVERY Grams (<i>Based on SERC</i>) 7062656 4615 605 870 2111 827 6605	4.50% SMR SERC % Reduct. 17.17 94.87 76.96 68.13 84.18 80.86 -607.96
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOX: Total PM2.5: Total PM10: Total CO: Total CO: Total VOC: Total SOX: Total CH4	21.34121409 ONSITE S Grams (Based on SERC) 5876525 4319 306 426 2815 859 3351 17473	21.34% MR % Reduct. 31.08 95.20 88.33 84.38 78.90 80.10 -259.17 -66.39	31940 ONSITE ELECT Grams (Based on SERC) 11150652 11148 1624 2503 4532 1223 20305 21128	-2.93% ROLYSIS % Reduct. -30.78 87.28 38.19 8.30 66.03 71.67 -2076.42 -101.20	ONSITE ELEC 100% RE Grams 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34.26% TROLYSIS, NEW % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00 100.00	29635 LIQUID DELIVERY Grams (Based on SERC) 7062656 4615 605 870 2111 827 6605 15299	4.50% SMR SERC % Reduct. 17.17 94.87 76.96 68.13 84.18 80.86 -607.96 -45.69
HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh) PRODUCTION METHOD WELL-TO-WHEEL EMISSIONS GHGS NOX: Total PM10: Total PM10: Total CO: Total VOC: Total VOC: Total SOX: Total CH4 N2O	21.34121409 ONSITE S Grams (Based on SERC) 5876525 4319 306 426 2815 859 3351 17473 117	21.34% MR % Reduct. 31.08 95.20 88.33 84.38 78.90 80.10 -259.17 -66.39 44.21	31940 ONSITE ELECT Grams (Based on SERC) 11150652 11448 1624 2503 4532 1223 20305 21128 164	-2.93% ROLYSIS % Reduct. -30.78 87.28 38.19 8.30 66.03 71.67 -2076.42 -101.20 21.89	ONSITE ELEC 100% RE Grams 0 0 0 0 0 0 0 0 0 0 0 0 0	34.26% TROLYSIS, NEW % Reduct. 100.00 100.00 100.00 100.00 100.00 100.00 100.00	29635 LIQUID DELIVERY Grams (<i>Based on SERC</i>) 7062656 4615 605 870 2111 827 6605 15299 74	4.50% SMR SERC % Reduct. 17.17 94.87 76.96 68.13 84.18 80.86 -607.96 -45.69 64.64

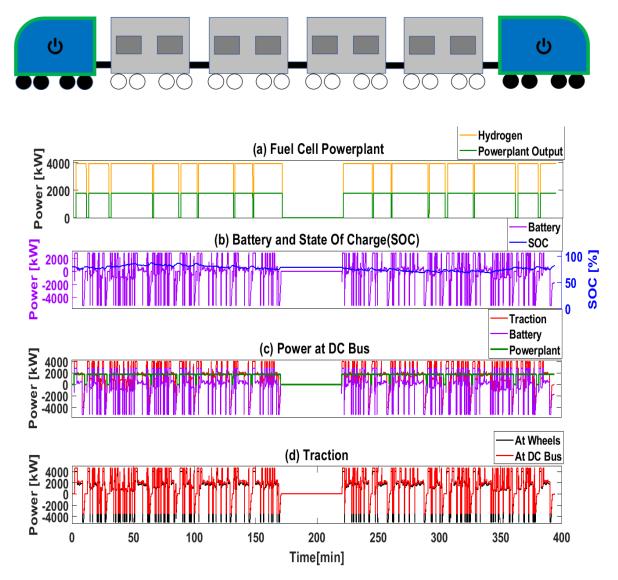

			Rour	nd-trip, RGH	I-CLT-RGH			-		
TWO HYDROGEN FUEL CELL HYBRID LOCOMOTIVES, PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (KWh)	26993	Reduction	33018	Reduction	43083	Reduction	21478	Reduction	31543	Reduction
PRODUCTION METHOD	LIQUID DELIVERY		GASEOUS DELIVERY, ELECTROLYSIS		LIQUID DELIVERY, ELECTROLYSIS		GASEOUS DE ELECTROLYSI	LIVERY,	LIQUID DELI ELECTROLYSI	VERY,
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3657408	57.10	11395600	-33.65	13671465	-60.35	32660	99.62	19621	99.77
NOx: Total	4576	94.92	11716	86.98	14305	84.11	36	99.96	119	99.87
PM2.5: Total	595	77.33	1662	36.74	2015	23.28	5	99.81	3	99.87
PM10: Total	877	67.87	2561	6.15	3105	-13.78	8	99.71	4	99.86
CO: Total	2049	84.64	4638	65.24	5644	57.70	14	99.89	28	99.79
VOC: Total	608	85.92	1252	71.00	1523	64.73	4	99.91	7	99.83
SOx: Total	8052	-763.04	20781	-2127.37	25163	-2597.08	63	93.21	2	99.84
CH4	7148	31.93	21623	-105.91	26206	-149.55	66	99.37	25	99.76
N2O	-312	249.14	167	20.06	203	3.09	1	99.76	0	99.88
CO2 (w/ C in VOC & CO)	3521175	56.54	10718418	-32.29	12994283	-60.37	32660	99.60	18797	99.77
BC: Total	79	66.00	109	52.97	133	42.89	0	99.86	0	99.82
OC: Total	94	95.83	247	89.03	300	86.64	1	99.97	2	99.92

9.3.22 Two Fuel Cell Hybrid Downsized

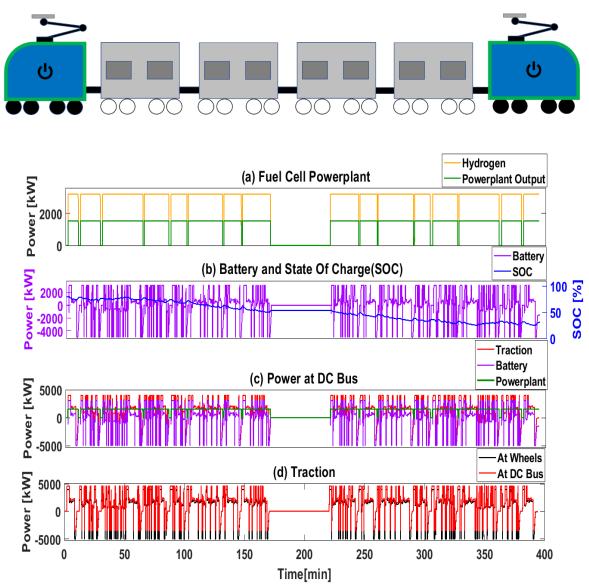
		F	Round-trip, RGH-C	LT-RGH		-		
	4080-		••					
TWO HYDROGEN FUEL CELL	16585							
HYBRID (DOWNSIZED) LOCOS:								
ENERGY CONSUMPTION,	26 46 4000 72							
POINT-OF-USE (KwH) ALL PRODUCTION	36.16488973							
ALLFRODUCTION	Grams							
POINT-OF-USE-EMISSIONS	(Based on SERC)	Reduct.						
GHGs	0	100.00						
NOx: Total	0	100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4	0	100.00						
N2O	0	100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00						
OC: Total	0	100.00						
TWO HYDROGEN FUEL CELL								
HYBRID (DOWNSIZED) LOCOS:	12776		22376		9416		19438	
ENERGY CONSUMPTION,	12/76	-153.05%	22376	-343.20%	9416	-86.50%	19438	-285.01%
WELL-TO-PUMP (KwH)								
PRODUCTION METHOD	ONSITE SMR		ONSITE ELECTROLYSIS		ONSITE ELECTROLYSIS, 100% RENEW		LIQUID DELIVERY, SMR SERC	
WELL-TO-PUMP EMISSIONS	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
	(Based on SERC)	70 Reduct.	(Based on SERC)	76 Reduct.	Grains	70 Reduct.	(Based on SERC)	% Reduct.
GHGs	6726892	-340.25	13449256	-780.20	0	100.00	8238727	-439.19
NOx: Total	4722	-100.84	13808	-487.34	0	100.00	5098	-116.84
PM2.5: Total	279	-109.81	1958	-1370.35	0	100.00	660	-395.76
PM10: Total	372	-134.51	3019	-1802.94	0	100.00	937	-490.92
CO: Total	3278	-189.51	5467	-382.81	0	100.00	2380	-110.24
VOC: Total	1012	-49.03	1475	-117.38	0	100.00	970	-42.89
SOx: Total	2881	-225.60	24491	-2667.70	0	100.00	7029	-694.32
CH4	20824	-110.42	25484	-157.50	0	100.00	18054	-82.43
N20	138	-575.89	197	-868.34	0	100.00	83	-308.34
CO2 (w/ C in VOC & CO)	6065679	-404.23	12632479	-950.12	0	100.00	7675059	-538.01
BC: Total	24 45	-4.88	129 291	-457.50	-	100.00	119	-136.40
OC: Total	45	-13.01	291	-636.13	0	100.00	119	-201.29
TWO HYDROGEN FUEL CELL								
HYBRID (DOWNSIZED) LOCOS:	29361		38961		26001		36023	
ENERGY CONSUMPTION,		5.38%		-25.56%		16.21%	20020	-16.09%
WELL-TO-WHEEL (KwH)								
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECTROLYSIS		ONSITE ELECTROLYSIS, 100% RENEW		LIQUID DELIVERY, SMR SER	
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams (Based on SERC)	% Reduct.
GHGs	6726892	21.10	13449256	-57.74	0	100.00	8238727	3.37
NOx: Total	4722	94.75	13808	84.66	0	100.00	5098	94.34
PM2.5: Total	279	89.36	1958	25.45	0	100.00	660	74.86
PM10: Total	372	86.37	3019	-10.61	0	100.00	937	65.65
CO: Total	3278	75.43	5467	59.03	0	100.00	2380	82.16
VOC: Total	1012	76.57	1475	65.83	0	100.00	970	77.54
SOx: Total	2881	-208.82	24491	-2525.06	0	100.00	7029	-653.38
CH4	20824	-98.30	25484	-142.67	0	100.00	18054	-71.92
N2O	138	34.24	197	5.79	0	100.00	83	60.27
CO2 (w/ C in VOC & CO)	6065679	25.14	12632479	-55.91	0	100.00	7675059	5.28
BC: Total	24	89.57	129	44.58	0	100.00	55	76.50
OC: Total	45	98.02	291	87.07	0	100.00	119	94.71

		-	Rou	nd-trip RGF	I-CLT-RGH			-		-
TWO HYDROGEN FUEL CELL HYBRID (DOWNSIZED) LOCOS: ENERGY CONSUMPTION, WELL-TO-PUMP (KwH)	16071	-218.31%	9872	-95.54%	13670	-170.76%	10790	-113.71%	23619	-367.82%
PRODUCTION METHOD	LIQUID DELIVERY	LIQUID DELIVERY, BIOMASS		GASEOUS DELIVERY,		LIQUID DELIVERY,		LIVERY,	LIQUID DELI	,
	-		ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYSI	S 100%	ELECTROLYSI	S 100%
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3898422	-155.14	13761466	-800.64	16662267	-990.48	41628	97.28	25008	98.36
NOx: Total	5048	-114.73	14150	-501.87	17450	-642.21	46	98.06	152	93.53
PM2.5: Total	648	-386.39	2007	-1406.72	2457	-1745.20	6	95.15	4	96.73
PM10: Total	946	-496.60	3093	-1850.02	3787	-2287.00	10	93.72	5	96.85
CO: Total	2301	-103.26	5602	-394.76	6884	-508.01	18	98.41	36	96.81
VOC: Total	691	-1.80	1512	-122.76	1857	-173.67	5	99.28	9	98.64
SOx: Total	8873	-902.71	25097	-2736.18	30682	-3367.39	81	90.87	2	99.78
CH4	7665	22.55	26114	-163.87	31956	-222.90	84	99.15	32	99.68
N2O	-409	2108.75	202	-892.30	247	-1114.66	1	96.81	0	98.40
CO2 (w/ C in VOC & CO)	3771135	-213.49	12944688	-976.07	15845489	-1217.21	41628	96.54	23959	98.01
BC: Total	93	-304.26	132	-471.29	162	-600.63	0	98.16	1	97.75
OC: Total	103	-161.07	298	-654.34	366	-828.19	1	97.57	2	93.95
TWO HYDROGEN FUEL CELL HYBRID (DOWNSIZED) LOCOS: ENERGY CONSUMPTION, WELL-TO-WHEEL (KwH)	32656	-5.24%	26457	14.74%	30255	2.50%	27375	11.78%	40204	-29.57%
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	GASEOUS DELIVERY, ELECTROLYSIS		LIQUID DELIVERY, ELECTROLYSIS		GASEOUS DELIVERY, ELECTROLYSIS 100%		LIQUID DELI ELECTROLYSI	,
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3898422	54.28	13761466	-61.40	16662267	-95.42	41628	99.51	25008	99.71
NOx: Total	5048	94.39	14150	84.28	17450	80.61	46	99.95	152	99.83
PM2.5: Total	648	75.34	2007	23.60	2457	6.44	6	99.75	4	99.83
PM10: Total	946	65.32	3093	-13.34	3787	-38.74	10	99.64	5	99.82
CO: Total	2301	82.75	5602	58.02	6884	48.41	18	99.86	36	99.73
VOC: Total	691	84.00	1512	64.98	1857	56.98	5	99.89	9	99.79
SOx: Total	8873	-851.04	25097	-2590.01	30682	-3188.70	81	91.34	2	99.79
CH4	7665	27.01	26114	-148.67	31956	-204.30	84	99.20	32	99.69
N2O	-409	295.44	202	3.46	247	-18.18	1	99.69	0	99.84
CO2 (w/ C in VOC & CO)	3771135	53.46	12944688	-59.76	15845489	-95.56	41628	99.49	23959	99.70
BC: Total	93	59.81	132	43.21	162	30.35	0	99.82	1	99.78

9.3.23 Two Fuel Cell Hybrid Downsized Plugin


		•	Round-trin PCU		. <u> </u>			·
	ĺ		Round-trip, RGH-					
TWO HYDROGEN FUEL CELL HYBRID	13346	Reduction						
	15540	Reduction						
(DOWNSIZED) LOCOMTIVES WITH PLUG-IN: ENERGY CONSUMPTION,								
POINT-OF-USE (kWh)	48.63169239							
ALL PRODUCTION								
ALL PRODUCTION								
POINT-OF-USE-EMISSIONS	Grams	Reduct.						
	(Based on SERC)							
GHGs	0	100.00						
NOx: Total	0	100.00						
PM2.5: Total	0	100.00						
PM10: Total	0	100.00						
CO: Total	0	100.00						
VOC: Total	0	100.00						
SOx: Total	0	100.00						
CH4	0	100.00						
N2O	0	100.00						
CO2 (w/ C in VOC & CO)	0	100.00						
BC: Total	0	100.00						
OC: Total	0	100.00						
TWO HYDROGEN FUEL CELL HYBRID		Reduction		Reduction		Reduction		Reduction
(DOWNSIZED) LOCOMTIVES WITH								
PLUG-IN: ENERGY CONSUMPTION,	10281		18006		7577		15642	
WELL-TO-PUMP (kWh)		-103.63%		-256.64%		-50.08%		-209.82%
					ONSITE EL	ECTROLYSIS,		
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECT	ROLYSIS		RENEW	LIQUID DELIVERY	, SMR SERC
	Grams		Grams				Grams	
WELL-TO-PUMP EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	(Based on SERC)	% Reduct.
GHGs	5413151	-254.27	10822657	-608.30	0	100.00	6629729	-333.89
NOx: Total	3800	-61.62	11112	-372.63	0	100.00	4102	-74.49
PM2.5: Total	225	-68.84	1576	-1083.19	0	100.00	531	-298.94
PM10: Total	299	-88.71	2429	-1431.30	0	100.00	754	-375.52
CO: Total	2638	-132.97	4399	-288.52	0	100.00	1915	-69.18
VOC: Total	814	-19.92	4395	-74.93	0	100.00	780	-14.98
SOx: Total	2318	-162.01	19708	-74.93	0	100.00	5656	-539.19
CH4	16757	-69.33	20507	-107.21	0	100.00	14528	-46.80
N2O	111	-443.89	159	-679.23	0	100.00	67	-40.80
	4881070	-305.75	10165394	-745.03	0	100.00	6176144	
CO2 (w/ C in VOC & CO) BC: Total		-305.75			0		6176144	-413.41 -90.23
	20	9.06	104 234	-348.62 -492.37	0	100.00		
OC: Total	30	9.06	234	-492.37	U	100.00	96	-142.45
TWO HYDROGEN FUEL CELL HYBRID		Reduction		Reduction		Reduction		Reduction
(DOWNSIZED) LOCOMTIVES WITH	23627		31352		20923		28988	
PLUG-IN: ENERGY CONSUMPTION,	23027		51552		20925		20900	
WELL-TO-WHEEL (kWh)		23.86%		-1.04%		32.57%		6.58%
	ONSITE S		ONSITE ELECTROLYSIS		ONSITE ELECTROLYSIS,		LIQUID DELIVERY, SMR SER	
PRODUCTION METHOD	UNSITE S	IVIR	UNSITE ELECT	KULT SIS	100%	RENEW	LIQUID DELIVERT	, SIVIR SERC
	Grams	0/ De duet	Grams	0/ De du et	Crome	% Reduct.	Grams	0/ De duat
WELL-TO-WHEEL EMISSIONS	(Based on SERC)	% Reduct.	(Based on SERC)	% Reduct.	Grams	% Reduct.	(Based on SERC)	% Reduct.
GHGs	5413151	36.51	10822657	-26.93	0	100.00	6629729	22.24
NOx: Total	3800	95.78	11112	87.66	0	100.00	4102	95.44
PM2.5: Total	225	91.44	1576	40.01	0	100.00	531	79.77
PM10: Total	299	89.03	2429	10.99	0	100.00	754	72.36
CO: Total	2638	80.23	4399	67.03	0	100.00	1915	85.64
VOC: Total	814	81.15	1187	72.50	0	100.00	780	81.92
SOx: Total	2318	-148.51	19708	-2012.40	0	100.00	5656	-506.25
CH4	16757	-59.57	20507	-95.28	0	100.00	14528	-38.35
N2O	111	47.08	159	24.19	0	100.00	67	68.03
CO2 (w/ C in VOC & CO)	4881070	39.76	10165394	-25.46	0	100.00	6176144	23.77
BC: Total	20	91.61	104	55.40	0	100.00	44	81.09
OC: Total	36	98.40	234	89.60	0	100.00	96	95.74

Appendix


			Round	d-trip, RGH-	CLT-RGH			·		
TWO HYDROGEN FUEL CELL HYBRID (DOWNSIZED) LOCOMTIVES WITH PLUG-IN: ENERGY CONSUMPTION,	12932	Reduction	19112	Reduction	29436	Reduction	8683	Reduction	19007	Reduction
WELL-TO-PUMP (kWh)		-156.15%		-278.54%		-483.03%		-71.98%		-276.46%
			GASEOUS DE	LIVERY,	LIQUID DELI	VERY,	GASEOUS DE	LIVERY,	LIQUID DELI	VERY,
PRODUCTION METHOD	LIQUID DELIVERY	, BIOIVIASS	ELECTROL	YSIS	ELECTROL	YSIS	ELECTROLYS	IS 100%	ELECTROLYSI	S 100%
WELL-TO-PUMP EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3137072	-105.31	11073893	-624.75	13408176.67	-777.52	33498	97.81	20124	98.68
NOx: Total	4062	-72.80	11387	-384.32	14042	-497.26	37	98.44	122	94.79
PM2.5: Total	521	-291.40	1615	-1112.46	1978	-1384.84	5	96.10	4	97.37
PM10: Total	762	-380.09	2489	-1469.19	3047	-1820.83	8	94.95	4	97.46
CO: Total	1852	-63.56	4508	-298.13	5540	-389.27	15	98.72	29	97.43
VOC: Total	556	18.08	1217	-79.25	1495	-120.22	4	99.42	7	98.91
SOx: Total	7140	-706.89	20196	-2182.28	24690	-2690.22	65	92.65	2	99.83
CH4	6168	37.67	21014	-112.34	25715	-159.84	68	99.32	26	99.74
N2O	-329	1716.45	163	-698.50	199	-877.44	1	97.43	0	98.71
CO2 (w/ C in VOC & CO)	3034644	-152.26	10416630	-765.92	12750913	-959.96	33498	97.22	19280	98.40
BC: Total	75	-225.31	106	-359.72	130	-463.80	0	98.52	0	98.19
OC: Total	83	-110.09	240	-507.02	295	-646.92	1	98.05	2	95.13
TWO HYDROGEN FUEL CELL HYBRID		Reduction	Reduction		Reduction		Reduction			Reduction
(DOWNSIZED) LOCOMTIVES WITH		Reduction		Reduction		Reduction		Reduction		Reduction
PLUG-IN: ENERGY CONSUMPTION.	26278		32458		42782		22029		32353	
,		15.31%		-4.60%		-37.87%		263.71%		-4.26%
WELL-TO-WHEEL (kWh)		15.51%			LIQUID DELI					
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	GASEOUS DELIVERY, ELECTROLYSIS		ELECTROLYSIS		GASEOUS DELIVERY, ELECTROLYSIS 100%		LIQUID DELIVERY, ELECTROLYSIS 100%	
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3137072	63.21	11073893	-29.88	13408177	-57.26	33498	99.61	20124	99.76
NOx: Total	4062	95.49	11073893	87.35	13408177	84.40	33498	99.61	20124	99.76
PM2.5: Total	4002 521	80.15	11587	38.52	14042	24.71	5	99.80	4	99.80
PM10: Total	762	72.10	2489	8.79	3047	-11.65	5	99.71	4	99.85
CO: Total	1852	86.12	4508	66.22	5540	58.48	° 15	99.89	4 29	99.85
VOC: Total	556	87.12	4308	71.82	1495	65.38	4	99.89	23	99.83
SOx: Total	7140	-665.30	20196	-2064.66	24690	-2546.42	4 65	93.03	2	99.83
CH4	6168	41.26	20196	-2064.66	24690	-2546.42	68	93.03	26	99.83 99.75
N2O	-329	257.27	163	22.31	199	4.90	1	99.36	26	99.75 99.87
CO2 (w/ C in VOC & CO)	3034644	62.55	10416630	-28.56	12750913	4.90	33498	99.75	19280	99.87
BC: Total	5054644	67.66	10418830	54.30	12/30913	43.95	55498	99.85	19280	99.78
	83	96.31	240	54.30 89.34	295	43.95 86.89	1	99.85	2	99.82 99.91
OC: Total	83	90.31	240	89.34	295	80.89	1	99.97	2	33.31

	·	R	ound-trip RGH-CL	T-RGH			·	
ENERGY CONSUMPTION & COMPARISON, WELL-TO-PUMP, PLUG (kWh)	1372							
Energy Requirements (in kWh),		0.00%						
Electricity - 100% Renewable								
	Grams							
	(Based on SERC)							
GHGs	598845							
NOx: Total	615							
PM2.5: Total	87							
PM10: Total CO: Total	134 243							
VOC: Total	243							
SOx: Total	1090							
CH4	1090							
N2O	9							
CO2 (w/ C in VOC & CO)	562477							
BC: Total	562477							
OC: Total	13							
	13							
TWO HYDROGEN FUEL CELL HYBRID		Reduction		Reduction		Reduction		Reduction
(DOWNSIZED) LOCOMTIVES WITH	24999		32724		20923		30360	
PLUG-IN: ENERGY CONSUMPTION,								
WELL-TO-WHEEL (kWh)		19.44%		-5.46%		32.57%		2.16%
PRODUCTION METHOD	ONSITE S	MR	ONSITE ELECTROLYSIS		ONSITE ELEO 100% R	,	LIQUID DELIVERY	, SMR SERC
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams (Based on SERC)	% Reduct
GHGs	6011996	29.49	11421502	-33.96	0	100.00	7228574	15.22
NOx: Total	4415	95.10	11726	86.97	0	100.00	4717	94.76
D140 5 T 1 1			1663	36.69	0	100.00	619	76.45
PM2.5: Total	312	88.12	1000				000	67.44
PM2.5: Total PM10: Total	312 434	88.12 84.11	2564	6.07	0	100.00	889	
	-			6.07 65.21	0	100.00 100.00	2159	83.82
PM10: Total CO: Total VOC: Total	434	84.11 78.41 79.63	2564 4642 1253	65.21 70.98	-	100.00 100.00		80.40
PM10: Total CO: Total	434 2881	84.11 78.41	2564 4642	65.21	0	100.00	2159	
PM10: Total CO: Total VOC: Total	434 2881 880	84.11 78.41 79.63	2564 4642 1253	65.21 70.98	0	100.00 100.00	2159 846	80.40
PM10: Total CO: Total VOC: Total SOx: Total	434 2881 880 3409	84.11 78.41 79.63 -265.39	2564 4642 1253 20798	65.21 70.98 -2129.28	0 0 0	100.00 100.00 100.00	2159 846 6747	80.40 -623.13
PM10: Total CO: Total VOC: Total SOx: Total CH4	434 2881 880 3409 17892	84.11 78.41 79.63 -265.39 -70.38	2564 4642 1253 20798 21641	65.21 70.98 -2129.28 -106.08	0 0 0	100.00 100.00 100.00 100.00	2159 846 6747 15663	80.40 -623.13 -49.15
PM10: Total CO: Total VOC: Total SOx: Total CH4 N2O	434 2881 880 3409 17892 120	84.11 78.41 79.63 -265.39 -70.38 42.89	2564 4642 1253 20798 21641 168	65.21 70.98 -2129.28 -106.08 19.99	0 0 0 0	100.00 100.00 100.00 100.00 100.00	2159 846 6747 15663 76	80.40 -623.13 -49.15 63.84

			Round	d-trip, RGH-	CLT-RGH					
TWO HYDROGEN FUEL CELL HYBRID (DOWNSIZED) LOCOMTIVES WITH PLUG-IN: ENERGY CONSUMPTION, WELL-TO-WHEEL (kWh)	27650	Reduction	33830	Reduction	44154	Reduction	22029	Reduction	32353	Reduction
PRODUCTION METHOD	LIQUID DELIVERY	, BIOMASS	BIOMASS GASEOUS DE		LIQUID DELIVERY, ELECTROLYSIS		GASEOUS DELIVERY, ELECTROLYSIS 100%		LIQUID DELIVERY, ELECTROLYSIS 100%	
WELL-TO-WHEEL EMISSIONS	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams (Based on SERC)	% Reduct.	Grams	% Reduct.	Grams	% Reduct.
GHGs	3735917	56.18	11672738	-36.90	14007022	-64.28	33498	99.61	20124	99.76
NOx: Total	4677	94.80	12001	86.67	14657	83.72	37	99.96	122	99.86
PM2.5: Total	608	76.84	1702	35.20	2065	21.39	5	99.80	4	99.87
PM10: Total	896	67.17	2624	3.87	3182	-16.57	8	99.71	4	99.85
CO: Total	2095	84.30	4751	64.39	5783	56.66	15	99.89	29	99.78
VOC: Total	622	85.60	1282	70.30	1560	63.86	4	99.91	7	99.83
SOx: Total	8231	-782.19	21286	-2181.54	25781	-2663.31	65	93.03	2	99.83
CH4	7303	30.46	22149	-110.91	26850	-155.68	68	99.36	26	99.75
N2O	-320	253.07	171	18.12	208	0.71	1	99.75	0	99.87
CO2 (w/ C in VOC & CO)	3597121	55.60	10979107	-35.50	13313390	-64.31	33498	99.59	19280	99.76
BC: Total	81	65.19	112	51.83	136	41.48	0	99.85	0	99.82
OC: Total	96	95.74	253	88.77	308	86.31	1	99.97	2	99.91

9.3.24 Two Fuel Cell Hybrid Downsized with Eight Traction Motors

9.3.25 Two Fuel Cell Hybrid Downsized Plugin with Eight Traction Motors