New Conflict Point Crash Prediction Method

NCDOT Webinar

Presenters: Thomas Chase

Chris Cunningham

Taehun Lee

NCDOT Moderators: Joseph Hummer, Daniel Carter

NCDOT Research Engineer: Lisa Penny

09/23/2020

Overview

- Introduction
- Existing Methodologies
- Concept and Framework
- Model Development
- Results
- Hands-on Exercise

Existing

Summary and Conclusions

Intro

Concept

Development

Results

NCDOT Research Project

2018-20: Reasonable Alternatives for Grade Separated Intersections

Objective: Identify alternatives to interchange designs for separation at arterial intersections and

Research Goal: To develop the operational and safety performance evaluation methods for grade-separated intersection designs

♦ITRE

Intro

Motivation

Safety Analysis

- Design Alternatives
- Countermeasure Effectiveness
- Hotspot Identification
- System Performance
- Benefit Cost Analysis

Existing

Intro

Concept

Planning Level Safety

<u>Simplified Methods:</u> Detailed analysis and data collection are not needed at this scale of safety analysis

Combine Judgement and Data: Selection of alternatives to compare can be done manually- consider both published results and learned experience

<u>Project Specific:</u> If a particular component of safety is the purpose of the project be sure to address that component

♦ITRE

Intro

Hands-on

http://www.itre.ncsu.edu

Conclusions

Before and After Safety Study

Rigorous: Data collection and analysis methods are strictly established and replicable

Quantifiable: Outcomes are measured with well-defined Measures of Effectiveness

<u>Targeted:</u> Methods and MOEs are selected to best capture the countermeasure or improvement

♦ITRE

Intro

Existing Planning-Level Safety Methods for Intersections

Safety Analysis – Conflict Points

Traditional Planning Level Method: Comparison of Conflict Points

• A simple conflict point (CP) comparison method assumes that the number of total CPs is directly correlated to safety performance.

Conflict Type	Count
Crossing	16
Merging	8
Diverging	8
Total	32

Safety Analysis – Conflict Points

Traditional Planning Level Method: Comparison of Conflict Points

 This method does not account for the individual conflict point types or perform any crash prediction.

Conflict Type	Count
Crossing	12
Merging	8
Diverging	8
Total	28

Intro

Existing

Concept

Development

Results

Hands-on

Conclusions

Safety Analysis – Conflict Points

Traditional Planning Level Method: Comparison of Conflict Points

 While the method is very simplified, the comparison can be performed for any intersection type including proposed designs which have not been built.

Conflict Type	Count
Crossing	2
Merging	6
Diverging	6
Total	14

Intro Existing Concept Development Results Hands-on Conclusions

10

Safety Analysis – Weighted Conflicts

Weighted Conflict Points - VJuST (Virginia DOT)

 Research shows that crash severities are higher at crossing conflict points compared to diverging and merging conflicts.

Crashes	Nu	mber of Cras	shes	FI Rate (%)	l (crasnes/vear·million ent				
	Total	FI	PDO	(70)	Total	FI	PDO		
Total	1,838	566	1,272	30.8	0.651	0.225	0.426		
NCP	1,275	321	954	25.2	0.434	0.125	0.309		
CP Crashes	563	245	318	43.5	0.217	0.100	0.117		
- Crossing	410	205	205	<mark>50.0</mark>	0.183	0.097	0.085		
- Diverging	101	28	73	27.7	0.019	0.005	0.014		
- Merging	52	12	40	23.1	0.047	0.012	0.035		
* Note: the statistics in the table are based on the crash data collected for later model development									

Safety Analysis – Weighted Conflicts

Weighted Conflict Points - VJuST (Virginia DOT)

- The VDOT accounted for the different crash severity for CP types by weighting system.
- This method still cannot account for different crash rates for CP types and the impact of traffic volume on crash frequency.

[VJuST Safety Evaluation Process, Virginia DOT]

CMFs – Crash Modification Factors

- The Highway Safety Manual defines Safety Performance Functions (SPFs) which estimate crashes given geometry and AADT
- For intersections, these functions differ based on number of approaches and control types
- SPFs estimate base crash rates for the conditions and must be adjusted for any countermeasures

Intro

Existing

Concept

Development

Results

CMFs – Crash Modification Factors

- Crash Modification Factors are multipliers to the base estimated crashes
- CMFs can only be developed once a crash history exists
- Not all CMFs are created equal!
 - Sample Size
 - Comparison Sites or Control
 - Potential Bias
 - Diverse Geography

Existing

Projects with multiple countermeasures – be wary of directly applying all CMFs!

Intro

Conclusions

Safety Analysis – Crash Modification Factors NC STATE UNIVERSITY

CMFs – Crash Modification Factors

The Crash Modification Factors Clearinghouse provides a searchable database of CMFs along with guidance and resources on using CMFs in road safety practice.

Existing Development **Conclusions** Concept Results Hands-on Intro

Movement-based Safety Performance Functions - Concepts

Movement-Based Safety Performance Functions (MB-SPFs)

Conflict Point Analysis (VJuST)

- Can compare the safety between Alls
- Cannot account for the impact of traffic volume

Safety Performance Functions (SPFs)

- · Can account for the impact of traffic volume
- · Not applicable to the safety evaluation of Alls

Movement-Based SPFs (MB-SPFs)

- Classifies crashes into CP and NCP crashes and estimates to models: CP-SPF & NCP-SPF
- Predicts the CP and NCP crashes separately, and then sums them to predict the intersection total crashes.
- · Can account for the impact of traffic volume and the different crash risk for CP types
- · Applicable to any intersection geometry for safety performance evaluation
- · Can be used to analyze safety impacts of intersections not currently in service.

Intro Existing Concept Development Results

Conflict Point (CP) vs Non-Conflict Point (NCP) Crashes

Assigning CP Crashes

Estimating Total Crashes

MB-SPF Model Development

MB-SPF Model Development

MB-SPF Data Needs

- Conventional and Alternative Intersections
- Specific Movement Types
 - Crossover
 - Channelized Lane
 - Ramp Merge
 - U-Turn
- Distribution of Congestion Level

Concept

Existing

Intro

Development

Results

MB-SPF Model Development

Data Collection

The crash and traffic volume data are collected from 35 sites¹⁾ in NC

15 Conventional Intersections (4SG)

Existing

- 6 Conventional with Channelized Lane (4SG)
- 11 Partial Restricted Crossing U-Turn (RCUT)

Concept

3 Diverging Diamond Interchange (DDI)

Crash data

- Crash Type & Location
- Vehicle Maneuver
- Crash Severity

Traffic Volume

- Turning Movement Counts²⁾
- AADT
- 1) Each intersection may include multiple signalized zones in an alternative intersection. In this study, we considered each zone as a site.
- 2) TM counts are observed for $11 \sim 16$ hours a day (avg = 13.7 hours). (6AM-7PM: 14 sites, 6AM-10PM: 14 sites, 7AM-6PM: 4 sites, 7AM-7PM: 7 sites)

♦ITRE

Intro

MB-SPF Model Results

Safety Analysis – Analysis Results

Model Estimation Results

- The models are estimated for crash severities, TOT (Total), FI (Fatal & Injury), and PDO (Property Damage Only) crashes, using the Negative Binomial (NB) regression model
- The results for CP-SPF show the impact of crossing CP on the crash frequency is significantly higher than the other two (diverging and merging) in all three severity models.

MB-SPFs	TOT Model		FI Model		PDO Model		
CP-SPF	Coefficient	Sig.	Coefficient	Sig.	Coefficient	Sig.	
$lpha_{\mathit{Crossing}}$	-8.501	***	-8.267	***	-10.160	***	
$lpha_{Diverging}$	-9.873	***	-10.464	***	-11.073	***	
$lpha_{Merging}$	-9.316	***	-9.706	***	-10.571	***	
$oldsymbol{eta}_{CMV_{Major}}$	0.689	***	0.663	***	0.749	***	
$oldsymbol{eta}_{CMV_{Minor}}$	0.109	*	0.015		0.166	**	
NCP-SPF	Coefficient	Sig.	Coefficient	Sig.	Coefficient	Sig	
α	-10.874	***	-6.885	***	-13.618	***	
$oldsymbol{eta}_{AADT_{Major}}$	0.792	***	0.531	**	0.828	***	
$oldsymbol{eta_{AADT_{Minor}}}$	0.521	***	0.229	***	0.742	***	

Statistical Significance Codes: '***' < 0.001, '**' < 0.01, '*' < 0.05, '.' < 0.1

Safety Analysis – Analysis Results

Model Estimation Results

 One major concern with fitting safety data is over-fitting or biasing the model to a set of predictor variables.

CP-SPF Model Estimation Results Cumulative Residuals

Intro	Existing	Concept	Development	Results	Hands-on	Conclusions
					OF NORTH CA	

Safety Analysis – Analysis Results

Safety Performance Comparison

• Overall, the contra-RCUT and RCUT (R-U) showed good performance, and the DL-Downstream and Quadrant Left (SE) showed poor performance than others.

Confl	lict Points	36	10	10	10	8	8	8	9
Scenario Approach Volume	Base	Direct Left	Direct Left	Left Single Point	t RCUT	Contra-	RCUT (Right then U-	Quadrant	
	Approach volume	Conventional	Downstream	Upstream	July 1 Out		RCUT	turn)	(SE)
EBN-WBN	EB: 50%	7.815	2.19	2.06	2.02	1.51	1.45	1.50	2.13
EBT-WBL	WB: 50%	7.936	2.28	2.08	2.05	1.54	1.47	1.50	2.33
EBN-WBN	EB: 60% WB: 40%	7.683	2.17	2.03	2.00	1.48	1.42	1.48	2.29
EBT-WBL		7.876	2.23	2.06	2.04	1.52	1.46	1.50	2.45

Low CP Crashes High

Hands-On Examples

Existing

capxnc.itredatalab.org

Intro

Hands-on

Results

Development

Concept

Conclusions

Safety Analysis - Recommendations

Recommendations

- For new intersection designs, CMFs are not yet available
- Current practice is to measure number of conflict points, VJuST uses weighting factors
- Proposed Movement-Based Safety Performance Functions enable safety screening with planning-level data
- MB-SPF need daily turning movement data
- Definition of conflict point order based on geometry
- MB-SPF has preliminary validation underway but many planned improvements
- MB-SPF method can be applied to existing designs as well for planning-level comparison

Intro	Existing	Concept	Development	Results	Hands-on
♦ ITRE		http:/	/www.itre.ncsu.e	du	See of NORTH CAROLES

Conclusions

- Control Type for CP
- Extra Travel Distance for All
- Larger Crash Database
- Pedestrian/Bicycle Crash Prediction
- Time of Day

Existing

Clearly Defining CP vs NCP Crash Types

Concept

Interchange, One-way streets, Roundabouts

Intro

Development

Results

Acknowledgements

Research Team

- Thomas Chase
- Christopher
 Cunningham
- Shannon Warchol

Existing

- Chris Vaughan
- Taehun Lee

NCDOT Steering Committee

- Joseph Hummer (chair)
- Lisa Penny
- Stephen Bolyard
- Kevin Lacy
- Katie Hite

- Jim Dunlop
- Brian Mayhew
- Mike Reese
- Daniel Carter
- Brian Murphy

Intro

Concept Development Results Hands-on

Conclusions

NCDOT Research Project 2018-20

NCDOT Safety and Mobility Initiatives

VJuST Tool and Innovative Intersection Website – Good Graphics

ITRE DataLab- Research Tools and Datasets

Q&A

Intro Designs Operations Safety Patents Other Conclusions

