

NORTH CAROLINA Department of Transportation

Research & Innovation Summit - 2020

Characterizing changing extreme rainfall for a more resilient transportation system within North Carolina Jared H. Bowden, PhD, North Carolina State Univ.

October 13, 2020

Characterizing changing extreme rainfall for a more resilient transportation system within North Carolina

Historical Trends in Extreme Precipitation

Observed Change in Heavy Precipitation

Figure source: adapted from Figures 7.3 & 7.4 in Climate Science Special Report, Fourth National Climate Assessment Volume 1, USGCRP 2017.

Kunkel and Champion 2019, An assessment of rainfall from Hurricanes Harvey and Florence relative to other extremely wet storms in the United States, *Geophysical Research Letters*, **46** (22).

Characterizing changing extreme rainfall for a more resilient transportation system within North Carolina

Global Warming->Saturation Water Vapor Increases

Extreme Precipitation Amounts vs Water Vapor

For ~3000 U.S. stations Examined the Annual Maximum Series with local precipitable water (total column water vapor) on the day of each station extreme event

The amount of precipitation in historical extreme precipitation events increases (on average) monotonically with the amount of atmospheric water vapor

How can we characterize plausible changes in changes in rainfall extremes as the climate warms at regional to local scales needed for design?

Downscaling

Global Climate Models (GCMS)

- Comprehensive science
- Emissions scenarios
- Multi-century data
- Coarse resolution

Large, well-established coordinated programs (30+ GCMs)

Known Problem with GCMs: Simulating Rainfall Extremes

Multiple sources available that improve the representation of extreme rainfall

Problems: not well-coordinated multiple methods limited comparisons between methods

Improve Confidence When Multiple Methods Give Similar Outcomes

Statistical Downscaling

Recommended method from Federal Highways for investigating future precipitation extremes

Establish relationship between what GCMs can simulate over the historical period (large-scale weather patterns) with observed local response (precipitation).

Use the established relationship to derive local precipitation in the future.

Some Pros:

Computationally efficient - downscale many different GCMs & future scenarios Bias correction

Some Issues: Different Statistical Methods Used Different Historical Obs. Datasets Used Assumes stationarity Simulated Daily Precipitation from two statistical methods same GCM realization

LOCA Federal Highway Recommendation

20 25 30 35 40 45 50 55 60 65 70 75

MACA

2.5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Improve Confidence When Multiple Methods Give Similar Outcomes

Dynamical Downscaling (Regional Climate Modeling)

Use the GCM as input to a numerical weather model to simulate regional climate for a. scenario and period of interest

Some Pros:

Model physics developed and tested for higher resolution Resolve important land surface features (topography/land cover)

Some Issues:

Computationally Expensive – only downscale certain GCMs and scenarios for select time slices Inherit GCM Bias Single model configuration Simulated Daily Precipitation from statistical and dynamical downscaling same GCM realization

2.5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

2.5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Improve Confidence When Multiple Methods Give Similar Outcomes

Can we determine how a specific weather event would differ in an altered climate?

- 1.) Simulate the event using a numerical weather model, replicate its main features
- 2.) Apply projections of large-scale environmental change to the model input, and re-run the simulation: "Pseudo Global Warming" method

Advantages:

- Compare "same" event in different environments
- Run at high resolution to capture extreme conditions

Disadvantages:

- Assume that a similar pattern would repeat in future unlikely
- Difficult to study changes in the likelihood of event

Pseudo Global Warming (PGW) Method

- Simulate weather event with observational input
- Apply climate model projected changes to input, re-run "future" or "past" version of event
- Can run for events or seasons, with "future or past environments"

Dynamical Downscaling (Physical Model) Develop Future Precipitation IDF Curves PGW Method (Physical Model) NC Hurricanes Develop Future Design Storms: Floyd, Matthew, Florence

> Statistical Downscaling (Empirical Model) Develop Future Precipitation IDF Curves

Ensemble / Scenario Size

Low information value

Project Goals:

- 1) Work with NC DOT and stakeholders to help inform analysis (durations, basins, return periods), experimental design (storms to be modeled w/ PGW), and products (downstream data needs such as format and visualization tools)
- 2) Use Federal Highway Guidance to derive future IDF Curves using multiple sources of downscaled climate data
- 3) PGW Experiments (focus right now is on recent Hurricanes)
- 4) Compare different methods/data to help build a more resilient transportation system

THANK YOU

Like to know more about this project: Contact jhbowden@ncsu.edu

The automation and acceleration of deep learningbased detection of 3D hydraulic structures from point cloud data: A cyberinfrastructure-enabled approach

Wenwu Tang^{1,2} Shen-En Chen³ John Diemer² Craig Allan^{1,2}

Matthew S. Lauffer⁴

 ¹ Center for Applied Geographic Information Science
 ² Department of Geography and Earth Sciences
 ³ Department of Civil and Environmental Engineering The University of North Carolina at Charlotte

 ⁴ Hydraulics Unit
 NC Department of Transportation
 October 13th, 2020

 TE NCDOT Research & Innovation Virtual Summit

Acknowledgement

- North Carolina Department of Transportation (NCDOT)
- Steering and Implementation Committee from NCDOT:
 - Matthew Lauffer, John W. Kirby, Tom Langan, Gary Thompson, Paul Jordan, Mark Swartz, Mark Ward, Derek Bradner, Brian Radakovic, Kevin Fischer
- This study is supported by the NCDOT project entitled <u>"DeepHyd: A Deep Learning-based Artificial Intelligence Approach for the Automated Classification of Hydraulic Structures from LiDAR and Sonar Data"</u>
 - PIs: Drs. Wenwu Tang, Shenen Chen, John Diemer, Craig Allan from the University of North Carolina at Charlotte
 - Graduate Assistants: Tianyang Chen, Tarini Shukla, Zachery Slocum, Navanit Sri Shanmugam, Vidya Subhash Chavan
- Matthew Macon, Rodney Hough, Donald Early, Photogrammetry Unit, NCDOT

Introduction

- Point cloud data, collected through Geiger and terrestrial LiDAR and bathymetric sonar technologies, provide rich information in terms of hydraulic structures and associated site conditions (Chen 2012; Prendergast and Gavin 2014).
- However, the efficient processing and classification of point cloud data to generate 3D hydraulic features of interest represent a grand big data-driven computational challenge.

Framework

 We have been developing DeepHyd, a novel spatially explicit 3D modeling framework and software package that are based on deep learning as a cutting-edge artificial intelligence approach for <u>automated and reliable</u> classification of hydraulic structures from point cloud data.

Background

Artificial Intelligence

- Combine unsupervised and supervised learning for a hierarchical representation of features of interest (Erhan et al. 2010; LeCun et al. 2015)
 - Outperform conventional machine learning algorithms (see Zheng, Tang, and Zhao, 2019)
 - Ideal for feature detection and classification (Yu et al. 2015)

Image source: https://upload.wikimedia.org/wikipedia/commons/8/81/Deep_learning.png https://en.wikipedia.org/wiki/File:Typical_cnn.png

Cyberinfrastructure

http://www.tacc.utexas.edu/fileadmin/templates/SubtacctemplateStaticDropdown/images/ranger.jpg http://www.nasa.gov/multimedia/imagegallery/image_feature_1545.html

Ranger at TACC (62,976 cores)

Supercomputing Resources

www.teragrid.org www.xsede.org

Ranger @ TACC (#CPUs: 62,976; Disk: 1.7 PB)

XSEDE: Extreme Science and Engineering Digital Environment

Graphics Processing Units (GPU)

Many-core computing architecture

• Data parallelism

Nvidia Tesla K40 Processor

2,880 processing cores

12G memory

1.43 Tflops (peak performance)

Several order of magnitude of acceleration

Image source: http://www.nvidia.com/object/tesla-servers.html

Data Collection

Field Data Collection

- Terrestrial LiDAR data and intensity images of hydraulic structures for sites (including bridges, culverts, and pipes)
 - FARO Focus S 350
- Bathymetric sonar data for at least one of those sites using an unmanned NC DOT bathymetric surveying boat
- Use UAS (drone) technologies to collect geotagged pictures and videos of the hydraulic structures
 - DJI Phantom 4 Pro V2.0
- Collect topographic info via **GPS and total station** to field truth the LiDAR and sonar results
 - GPS (rented): Trimble R10 GNSS receiver
 - Performance of Network RTK
 - Horizontal: 8mm+0.5ppm
 - Vertical: 15mm+0.5ppm
 - Virtual Reference Station(VRS) network:
 - North Carolina VRS network by NC Geodetic Survey
- Sonar system:
 - Lowrance HDS Live 7 (version 8.3)

Image and information source: https://www.dji.com/phantom-4-pro https://www.kwipped.com/rentals/product/topcon-gts220-total-station/1535 https://www.faro.com/en-gb/products/construction-bim-cim/faro-focus/ https://www.lowrance.com/globalassets/inriver/resources/000-14416-001_09.jpg?w=1000&h=500&scale=both&mode=max&quality=70 http://trl.trimble.com/docushare/dsweb/Get/Document-889531/TrimbleR10_Model-2_GNSSReceiver_UserGuide.pdf

Survey Sites in NC

	# LiDAR	# Sonar	# total station	# Drone	# camera
Site #	Scanning	Points	points	images	images
Site 2	1		86		308
Site 3	2		98		157
Site 5	1		241		220
Site 6	2		101		363
Site 7	1		95		251
Site 8	3		168		398
Site 11	5	824			
Site 14	1		205		420
Site 15	1			181	213
Site 16	4	1095	127	109	
Site 17	4	3,180			

Point Cloud Data

Bathymetric Data

Site#14

• Data collected using Virtual Reference System and total station outside the bridge and under the bridge, respectively.

Sonar data collection

Site #16

- Data were collected using VRS, total station and sonar (single beam echosounder)
- Accuracy of sonar data estimated by calculating residual (elevation from VRS – elevation of stream bottom)

Deep Learning Framework: DeepHyd

Deep Learning for 3D Point Cloud Classification

• Combine, and compare with, expert knowledge from fieldwork for training and testing of deep learning classifiers

Convpoint: Continuous Convolutions For Point Cloud Processing

Boulch (2020) proposed a new deep learning-based framework for 3D semantic segmentation, named ConvPoint, which hits the rank #1 performance on the largescale 3D benchmark

(http://www.semantic3d.net/).

Demonstration of the 3D benchmark

Segmentation networks proposed by Boulch (2020)

Transfer Learning

 Transfer learning is the improvement of deep learning in a new task through <u>the transfer of knowledge from a related task that has already</u> <u>been learned</u> (Olivas, 2009). Transfer learning can provide better initial weights than random ones, which can help prevent the model overfitting on the training data and accelerate the training process to better convergence. It is especially helpful <u>when the training data is not</u> <u>sufficient</u> as it is in our case.

Model Automation-Integration-Acceleration

- Use the GIS-based scientific workflows (Tang et al.
 2017) to automate 1) the classification task, and 2) the management, pre/post-processing, and 3D visual analytics of point clouds and related data
 - Geospatial analysis and modeling steps often need to be repeated (for training and testing of the deep learning classifiers) and reused by different users
 - A number of analysis/modeling steps are often involved and need to be **coupled** in this project

Framework of Scientific Workflow for Automation

Acceleration of Deep Learning

- Cyberinfrastructure-enabled high-performance computing (HPC) capabilities to resolve the big data-driven computational challenge of geospatial analysis and modeling in this project
 - Parallel geocomputational algorithms
 that deploy the processing, analysis, or
 modeling steps to HPC resources at
 Center for Applied GIScience (CAGIS)
 and URC (University Research
 Computing) at UNC Charlotte.
 - **Sapphire**: 288-CPU Windows cluster for advanced geocomputation!
 - Graphics Processing Units (GPUs) cluster at URC (24 advanced GPUs)

Image source: https://i0.wp.com/hanusoftware.com/wp-content/uploads/event_218867862.png?w=360&ssl=1

GPUs for Supercomputing-level Acceleration

• 5 new GPU nodes with 24 latest GPUs (urc.uncc.edu)

1 GPU Compute Node:

- Dual Intel Xeon Silver 4215R CPU @ 3.20GHz (16 cores total)
- 192GB RAM (~ 12GB/core)
- 8 x Titan V GPUs (12GB HBM2 RAM per GPU; #CUDA cores: 5,120)

2 GPU Compute Nodes, each having:

- Dual Intel Xeon Silver 4215R CPU @ 3.20GHz (16 cores total)
- 192GB RAM (~ 12GB/core)
- 4 x Titan RTX GPUs (24GB GDDR6 RAM per GPU; #CUDA cores: 4,608)

2 GPU Compute Nodes, each having:

- Dual Intel Xeon Silver 4215R CPU @ 3.20GHz (16 cores total)
- 192GB RAM (~ 12GB/core)
- 4 x Tesla V100s GPUs (32GB HBM2 RAM per GPU; #CUDA cores: 5,120)

previous computing resource-----

- 2 GPU Compute Node, each having
- 192GB RAM (~ 12GB/core)
- 8 x GTX 1080 Ti GPUs (11GB RAM per GPU; #cores: 3,584)
- 4 GPU Compute Nodes, each having
- 192GB RAM (~ 12GB/core)
- 2 x Tesla K80 GPUs (24GB RAM per GPU; #cores: 4,992)

This slide is adapted from a powerpoint from urc.uncc.edu

Results

Annotation of Samples

- Size of annotated sample pool:
 - Total # annotated scans: 41 (11 from study sites and 30 from previous scanning)
 - #classes: 16
- Two sample sets were generated from the annotated sample pool:
 - I. Bridge-vegetation-ground dataset with 3-categories: bridge, vegetation, and ground
 - 2. Bridge component dataset with 4-categories: wall, pier, beam, railing

Labels in sample pool Beam Pier **Retaining Wall** Railing Ground **High Vegetation** Cap sill Clutter Footpath Roof Embankment Fencing **Ground Parapet Railing Parapet Wall** Man-made road Low-vegetation Pipe

Labels in bridgevegetation-ground dataset Bridge Vegetation Ground Labels in bridge component dataset **Retaining wall** Pier Beam Railing

Demonstration of Annotated Samples

Data in annotated sample pool

The annotated sample pool is aggregated to generate the two pools of datasets for training the two models.

*Colors represent different labels.

Data in bridge-vegetation-ground dataset

Data in bridge component dataset

Statistics of the Two Pools of Labeled Datasets

Bridge-vegetation-ground

Statistics/Labels	Bridge	Vegetation	Ground	Total
Total	109,354,102	35,122,404	62,993,247	207,469,753
Percentage	52.71%	16.93 %	30.36%	100.00%

Bridge-component dataset

Statistics/Labels	Wall	Pier	Beam	Railing	Total
Total	6,949,996	17,673,431	76,778,145	4,818,671	106,220,243
Percentage	6.54%	16.64%	72.28%	4 · 54%	100.00%
1995年1月1日日本主要的目的主义的	STRUCTURE COLOR	(10) - 33 (515) M P. C	SALAR MERSING	STATE AND	

Annotated Training Samples

Parameter Tuning

Total Sequential Computing Time for Parameter Tuning on The Two Models: 2,746 hours (114 days)

Model to detect bridge from the LiDAR scan

Model to detect bridge components from a bridge

Parameter tuning on model hyper-parameters (total 1,362 hours)

*treatment with learning rate scheduler

Treatment #	Learning Rate	# iteration	GPU	#GPU	Computing Time (hours)		Treatment #	Learning Rate	# iteration	GPU	#GPU	Computing Time (hours)
Treatment 1	1.00E-02	500	1080Ti	1	42	공동하	Treatment 1	1.00E-02	500	1080Ti	1	31
Treatment 2	1.00E-02	1,000	1080Ti	1	52	2.22.55 (Treatment 2	1.00E-02	1.000	1080Ti	1	41
Treatment 3	1.00E-02	1,500	K80	1	70	0.89.03	Treatment 3	1.00E-02	1.500	1080Ti	1	47
Treatment 4	1.00E-03	500	1080Ti	1	42	2000	Treatment 4	1.00E-03	500	1080Ti	1	29
Treatment 5	1.00E-03	1,000	K80	1	53	659433	Treatment 5	1.00E-03	1.000	1080Ti	1	41
Treatment 6	1.00E-03	1,500	K80	1	70	33.50	Treatment 6	1.00E-03	1.500	1080Ti	1	47
Treatment 7	1.00E-04	500	1080Ti	1	42		Treatment 7	1.00E-04	500	1080Ti	1	31
Treatment 8	1.00E-04	1,000	1080Ti	1	51		Treatment 8	1.00E-04	1.000	1080Ti	1	41
Treatment 9	1.00E-04	1,500	K80	1	69	0.8526	Treatment o	1.00E-04	1.500	K80	1	43
Treatment 10	1.00E-05	1,000	1080Ti	1	51	20023	Treatment 10	1.00E-05	1.000	K80	1	32
Treatment 11	1.00E-05	1,500	1080Ti	1	68	200033	Treatment 11	1.00E-05	1.500	K80	1	43
Treatment 12*	1.00E-02	1,500	Titan RTX	1	67	0.150.5	Treatment 12*	1.00E-04	1.500	Titan V	1	41
Treatment 13*	1.00E-03	1,500	Titan V	1	68	2334	Treatment 13*	1.00E-05	1,500	Titan V	1	41
Treatment 14*	1.00E-04	1,500	Titan V	1	68	39265	Treatment 14*	1.00E-06	1,500	Titan V	1	41
				Total	813		in catine int int	1.001 00	1, 900		Total	T ²

Parameter tuning on data generation parameters (total 1,384 hours)

Treatment #	block size # n	oint per block GPU	#GPU	Computing T	ime (hours)		Treatment #	block size #	point per block	GPU	#GPU	Computing	Time (hours)
Treatment 1	5	16,384 Tesla	V100	1 8	0	19.255	Treatment 1	1	4,096	Titan V	1	puting	35
Treatment 2	5	12,288 Tesla	1 V100	1 8	0	1.229/07	Treatment 2	1	8,192	Titan V	1		45
Treatment 3	5	2,048 Titar	n RTX	1 8	0	0.85.6	Treatment 3	5	4,096	Titan RTX	1		36
Treatment 4	5	4,096 Titar	n RTX	1 8	0	26223	Treatment 4	5	8,192	Titan V	1		46
Treatment 5	5	8,192 Titar	n V	1 8	0	20063	Treatment 5	10	4,096	Titan V	1		35
Treatment 6	10	2,048 Titar	n V	1 8	0	0.151.5	Treatment 6	10	8,192	Titan RTX	1		46
Treatment 7	10	4,096 Titar	n V	1 8	0	오란화	Treatment 7	10	16,384	Titan RTX	1		71
Treatment 8	10	8,192 Titar	n V	1 8	0	892ES	Treatment 8	20	4,096	Titan V	1		41
Treatment 9	1	2,048 Titar	n V	1 8	0	0303104	Treatment 9	20	8,192	Titan V	1		49
Treatment 10	1	4,096 Titar	n V	1 8	0	22.0	Treatment 10	50	4,096	Titan V	1		47
Treatment 11	1	8,192 Titar	n V	1 8	0	750633	Treatment 11	50	8,192	Titan V	1		54
			Total	88	Bo						Total		505

Parameter Tuning Acceleration

- Total Sequential Computing Time for Parameter Tuning on The Two Models:
 - 2,746 hours (114 days)
- Total Parallel Computing time using GPU cluster:
 - 268 hours (11 days)
- Acceleration Factor (sequential time/parallel time):
 - 10.25

Prediction Results on Validation Datasets

Bridge-vegetation-ground Model

St.	1.1000.000	201111511526
	Label	Color
3	Bridge	Blue
Č.	Vegetation	Green
	Ground	Red

Confusion matrix in percentage

Origin/Pred	Bridge	Vegetation	Ground	Total
Bridge	58.51%	0.32%	0.24%	59.07%
Vegetation	0.02%	9.91 %	0.29%	10.23%
Ground	0.30%	0.58%	29.82%	30.71%
Total	58.83%	10.82%	30.36%	100.00%

Performance metrics

Value
98.38%
97.65%
94.67%
98.62%
89.41%
96.00%

Prediction Results on Validation Dataset

Detection of bridge components

	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
Label	Color
Retaining wall	Blue
Pier	Green
Beam	Yellow
Railing	Red
NEW YORK DOCTORY DOCTORY DOCTORY	NUMBER OF STREET, STRE

Confusion matrix in percentage

Origin/Pred	Retaining wall	Pier	Beam	Railing	Total
Retaining wall	6.36%	0.16%	0.07%	0.00%	6.58%
Pier	0.09%	14.80%	0.21%	1.57%	16.67%
Beam	0.08%	0.38%	75.79%	0.02%	76.27%
Railing	0.00%	0.13%	0.17%	0.19%	0.48%
Total	6.52%	15.46%	76.23%	1.78%	100.00%

Performance metrics

Measure	Value
Overall Accuracy	97.13%
Average Accuracy	80.90%
Intersection Over Union (IOU)	71.85%
IOU_wall	94.18%
IOU_pier	85.37%
IOU_beam	98.81%
IOU_railing	1.89%
THE REPORT OF ANY AND A REPORT OF ANY	OWNERS AND DESIGN AND DESIGNATION.

Conclusions

- The cyberinfrastructure-enabled approach **enables and empowers** the automation and acceleration of 3D point cloud classification using deep learning techniques that are **computationally demanding**.
- The DeepHyd framework and associated software package, driven by cutting-edge deep learning technologies, are well tailored to the classification of 3D hydraulic structures from point cloud data.
- This DeepHyd framework will provide substantial support for the mission of the NCDOT Hydraulics Unit, e.g.,
 - Development of guidelines for data collection for roadway drainage studies
 - Waterway hydraulic calculations and design based on NCDOT standards
- The established procedures and systems can further enhance data sharing between NCDOT and other stakeholders such as Department of Public Safety for the asset management and evaluation of hydraulic structures (e.g. bridges, or road surfaces).

References

- Boulch, A. (2020). ConvPoint: Continuous convolutions for point cloud processing. Computers & Graphics.
- Chen, S.E. (2012). Laser Scanning Technology for Bridge Monitoring, *Laser Scanner Technology*, InTech Pub., ISBN 979-953-307-265-3.
- Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P. and Bengio, S., 2010. Why does unsupervised pre-training help deep learning?. *Journal of Machine Learning Research*, 11(Feb), 625-660.
- LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. *Nature*, 521(7553), 436-444.
- Prendergast, L.J. and Gavin, K., 2014. A review of bridge scour monitoring techniques. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 138-149.
- Olivas, E. S., Guerrero, J. D. M., Martinez-Sober, M., Magdalena-Benedito, J. R., & Serrano, L. (Eds.). (2009). Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques: Algorithms, Methods, and Techniques. IGI Global.
- **Tang, W.**, Feng, W., Jia, M., Shi, J., Zuo, H., Stringer, C.E. and Trettin, C.C., 2017. A cyber-enabled spatial decision support system to inventory Mangroves in Mozambique: coupling scientific workflows and cloud computing. *International Journal of Geographical Information Science*, 31(5), pp.907-938.
- Yu, Y., Li, J., Guan, H., Jia, F. and Wang, C., 2015. Learning hierarchical features for automated extraction of road markings from 3-D mobile LiDAR point clouds. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 8(2), 709-726.
- Zheng, M., **Tang, W.**, and Zhao, X., 2019, Hyperparameter optimization of neural net work-driven spatial models accelerated using cyber-enabled high-performance computing, *International Journal of Geographical Information Science*. 33(2): 314-345

Thank you! Questions?

https://gis.uncc.edu

NORTH CAROLINA Department of Transportation

Research & Innovation Summit - 2020

Tillage and Compost Effects on Roadside Runoff

Josh Heitman, NCSU Crop & Soil Sciences

October 13, 2020

Necessary actions at construction sites lead to soil conditions that are challenging for grass establishment and stormwater management.

Can tillage (possibly with soil amendment) improve conditions for grass establishment and ultimately stormwater infiltration?

Simulated post-construction site conditions:

	Site	Texture	Tillage (cm)	Amendments	Sub-treatment
A	Sandhills	Sand	0, 15, 30	compost (5 cm), lime (0, 1.5, 3 ¹ Mg ha ⁻¹)	
	Mountain	Sandy clay loam	0, 15, 30	compost (5 cm), xPAM ² (0.32 Mg ha ⁻¹)	traffic (90 kPa)
	Piedmont 1	Sandy clay	0, 15, 30	lime (0, 1.25, 2.5 ¹ Mg ha ⁻¹)	traffic (177 kPa)
	Piedmont 2	Sandy clay	0, 30	compost (5 cm)	traffic (177 kPa)
	Piedmont 3	Clay loam (fill)	0, 30	compost (5 cm), xPAM ² (0.672 Mg ha ⁻¹), gypsum (11.2 Mg ha ⁻¹)	

Measured infiltration and bulk density at 6 month intervals for up to 30 months.

Key takeaways from *simulated post-construction sites*:

- Soil bulk density increased over time, but remained below pre-tillage levels >24 months.
- Amendments (compost, gypsum, xPAM) generally had little impact on infiltration compared to tillage alone, except where trafficked.
- Tillage increased infiltration (≥3X) at all sites (compared to compacted controls), and improvements were maintained for >24 months.

Is tillage (possibly with soil amendment) an effective 'retrofit' stormwater management practice?

Objective: Test effects of tillage and tillage with compost amendment compared to existing roadside conditions on active roadways.

- Compost added as 2 inch depth.
- Tilled to 8 inch depth.
- Control was existing grass stand.
- Measurements collected for • approximately 12 months for runoff volume and periodic water quality sampling.
- Infiltration rates measured after 12 • months.

Conveyance piping

Side View

area

EOP

Infiltration rate improvements differed by site:

		Infiltration Rate	Bulk Density (g cm ⁻³)	Particle Size Distribution
		$(\mathrm{cm} \mathrm{hr}^{-1})$	0-7.5 cm 7.5-15 cm	0-15 cm 15-30 cm
Site	Treatment	0 15 30 45 60	0 0.5 1 1.5	
I-40	Control	H b	b + + a	Clay 13% Clay 21%
	Tilled	⊢ – – – – – a	b н н а	$\begin{array}{c} \text{Silt} \\ \text{Sandy} \\ \text{loam} \end{array} \right)_{\alpha} = \begin{array}{c} \text{Silt} \\ \text{Silt} \\ \text{Silt} \\ \text{Sandy} \\ \text{clay} \\ \text{loam} \end{array} \right)_{\alpha} = 1$
	Tillage + Compost	⊢⊢ ab	b HHH ab	73% Idam Sand 65%
I-85	Control	⊢⊢ b	bc + a	Clay 12% Clay 22%
	Tilled	ab	вн на	Silt (Sandy loam) Silt Loam
	Tillage + Compost	a	c + a	27% Sand 29% Sand 49%

I-40

I-85

Total Rainfall/Peak Intensity ■ Control ● Tilled ▲ Tilled + Compost

Treatment: Tilled

NCDOT Research & Innovation Summit 2020

NCDOT Research & Innovation Summit 2020

I-85

17

Conclusions

- Tillage with compost amendment reduced runoff losses along roadside sites; tillage alone was insufficient compared to existing roadside conditions.
- Compost directly improved infiltration rates for the finer-textured soils at I-85.
- Compost did not directly improve infiltrate rates at the sandier site (I-40) but did improve the vigor of the grass stand, which ultimately appeared to reduce runoff.
- Water quality was maintained or improved following tillage.