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Historical Trends in Extreme Precipitation

Figure source: adapted from Figures 7.3 & 7.4 in Climate Science Special Report, Fourth National Climate Assessment Volume 1, USGCRP 2017.
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Top 100 Events with 4-5 day rainfall totals 
averaged over 20,000 km2

(1949-2018)

Kunkel and Champion 2019, An assessment of rainfall from Hurricanes Harvey and Florence relative to 
other extremely wet storms in the United States, Geophysical Research Letters, 46 (22).
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Global Warming->Saturation Water Vapor Increases

Increases in
Rainfall 

Rate
(Capacity)

Changes in Meteorological Systems (Opportunity)

+7%/℃

RCP 8.5

Observed

Observed

Figure Courtesy: Kenneth Kunkel (NCICS)
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Extreme Precipitation Amounts vs Water Vapor

The amount of 
precipitation in historical 
extreme precipitation 
events increases (on 
average) monotonically  
with the amount of 
atmospheric water vapor

For ~3000 U.S. stations
Examined the Annual Maximum Series 
with local precipitable water (total column water vapor) 
on the day of each station extreme event

Figure Courtesy: Kenneth Kunkel (NCICS)
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How can we characterize plausible changes in 
changes in rainfall extremes as the climate 

warms at regional to local scales needed for 
design? 
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Global Climate Models 
(GCMS)

- Comprehensive science
- Emissions scenarios
- Multi-century data
- Coarse resolution

Regional / Local
Impacts of
Climate Change

- This study: frequency and 
intensity of extreme rainfallDownscaling

Large, well-established 
coordinated programs

(30+ GCMs)

Known Problem w ith GCMs: 
Simulating Rainfall Extremes

Multiple sources available that
improve the representation of extreme rainfall

Problems:
not well-coordinated

multiple methods
limited comparisons between methods

Downscaling
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Improve Confidence When Multiple Methods Give 
Similar Outcomes

Statistical Downscaling
Recommended method from Federal Highways for investigating 
future precipitation extremes 

Establish relationship between what GCMs can simulate over the 
historical period (large-scale weather patterns) with observed 
local response (precipitation).

Use the established relationship to derive local precipitation in 
the future.

Some Pros:
Computationally efficient - downscale many different GCMs &
future scenarios
Bias correction

Some Issues:
Different Statistical Methods Used
Different Historical  Obs. Datasets Used
Assumes stationarity 

LOCA
Federal Highway 
Recommendation

MACA

Simulated Daily Precipitation 
from two statistical methods

same GCM realization
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Improve Confidence When Multiple Methods Give 
Similar Outcomes

Dynamical Downscaling 
(Regional Climate Modeling)

Use the GCM as input to a numerical weather model to 
simulate regional climate for a. scenario and period of 
interest

Some Pros:
Model physics developed and tested for higher 
resolution
Resolve important land surface features 
(topography/land cover)

Some Issues:
Computationally Expensive – only downscale certain 
GCMs and scenarios for select time slices 
Inherit GCM Bias 
Single model configuration

LOCA
Federal Highway 
Recommendation

Simulated Daily Precipitation 
from statistical and dynamical downscaling

same GCM realization

Dynamical 
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Can we determine how a specific weather event would differ in an altered climate?

1.) Simulate the event using a numerical weather model, replicate its main features

2.) Apply projections of large-scale environmental change to the model input, and re-run 
the simulation:  “Pseudo Global Warming” method

Advantages:  
- Compare “same” event in different environments
- Run at high resolution to capture extreme conditions

Disadvantages:
- Assume that a similar pattern would repeat in future – unlikely
- Difficult to study changes in the likelihood of event

Improve Confidence When Multiple Methods Give 
Similar Outcomes
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• Simulate weather event with observational input
• Apply climate model projected changes to input, re-run “future” or “past” version of event
• Can run for events or seasons, with “future or past environments”

∆Tair Tsoil
Tsea, etc. 

Simulate weather event using 
observational analyses for input

Climate model projections

Set of hi-res 
model simulations

Replicate set of hi-res  
simulations

Pseudo Global Warming (PGW) Method

Figure Courtesy: Gary Lackmann (NCSU MEAS)



Dynamical Downscaling
(Physical Model)

Develop Future Precipitation
IDF Curves

Statistical Downscaling
(Empirical Model)

Develop Future Precipitation
IDF Curves

Low information
value

PGW Method 
(Physical Model)
NC Hurricanes  

Develop Future 
Design Storms: 
Floyd, Matthew, 

Florence

M
od
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 C
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pl
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Ensemble / Scenario Size 
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Project Goals:

1) Work with NC DOT and stakeholders to help inform 
analysis (durations, basins, return periods), experimental 
design (storms to be modeled w/ PGW), and products 
(downstream data needs such as format and visualization tools)

2) Use Federal Highway Guidance to derive future IDF 
Curves using multiple sources of downscaled climate data

3) PGW Experiments (focus right now is on recent Hurricanes)
4) Compare different methods/data to help build a more 

resilient transportation system
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THANK YOU

Like to know more about this project:
Contact

jhbowden@ncsu.edu
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Introduction
 Point cloud data, collected through Geiger 

and terrestrial LiDAR and bathymetric sonar 
technologies, provide rich information in 
terms of hydraulic structures and associated 
site conditions (Chen 2012; Prendergast and 
Gavin 2014). 

 However, the efficient processing and 
classification of point cloud data to 
generate 3D hydraulic features of interest 
represent a grand big data-driven 
computational challenge.



Framework
 We have been developing DeepHyd, a novel spatially explicit 3D modeling 

framework and software package that are based on deep learning as a 
cutting-edge artificial intelligence approach for automated and reliable 
classification of hydraulic structures from point cloud data.



Background



Artificial Intelligence
 Deep learning for 3D object detection

 Combine unsupervised and supervised learning for a 
hierarchical representation of features of interest (Erhan et 
al. 2010; LeCun et al. 2015)
 Outperform conventional machine learning algorithms (see 

Zheng, Tang, and Zhao, 2019)
 Ideal for feature detection and classification (Yu et al. 2015)

Image source: https://upload.wikimedia.org/wikipedia/commons/8/81/Deep_learning.png
https://en.wikipedia.org/wiki/File:Typical_cnn.png



Cyberinfrastructure

High-performance 
computing

Massive 
data 

handling

Virtual 
organization

http://www.tacc.utexas.edu/fileadmin/templates/SubtacctemplateStaticDropdown/images/ranger.jpg
http://www.nasa.gov/multimedia/imagegallery/image_feature_1545.html Ranger at TACC (62,976 cores)



Supercomputing Resources

www.teragrid.org
www.xsede.org

XSEDE: Extreme Science and Engineering Digital Environment

Ranger @ TACC
(#CPUs:  62,976; Disk: 1.7 PB)



Graphics Processing Units (GPU)
 Many-core computing architecture
 Data parallelism

Nvidia Tesla K40 Processor
2,880 processing cores

12G memory

1.43 Tflops (peak performance)

Image source: http://www.nvidia.com/object/tesla-servers.html

Several order of magnitude of acceleration



Data Collection



Field Data Collection
 Terrestrial LiDAR data and intensity 

images of hydraulic structures for sites 
(including bridges, culverts, and pipes)
 FARO Focus S 350

 Bathymetric sonar data for at least one of 
those sites using an unmanned NC DOT 
bathymetric surveying boat

 Use UAS (drone) technologies to collect 
geotagged pictures and videos of the hydraulic 
structures
 DJI Phantom 4 Pro V2.0

 Collect topographic info via GPS and total 
station to field truth the LiDAR and sonar 
results
 GPS (rented): Trimble R10 GNSS receiver
 Performance of Network RTK

 Horizontal: 8mm+0.5ppm
 Vertical: 15mm+0.5ppm

 Virtual Reference Station(VRS) network: 
 North Carolina VRS network by NC 

Geodetic Survey
 Sonar system:

 Lowrance HDS Live 7 (version 8.3)

Image and information source: https://www.dji.com/phantom-4-pro
https://www.kwipped.com/rentals/product/topcon-gts220-total-station/1535
https://www.faro.com/en-gb/products/construction-bim-cim/faro-focus/
https://www.lowrance.com/globalassets/inriver/resources/000-14416-
001_09.jpg?w=1000&h=500&scale=both&mode=max&quality=70
http://trl.trimble.com/docushare/dsweb/Get/Document-889531/TrimbleR10_Model-
2_GNSSReceiver_UserGuide.pdf



Site #16

Site #11Site #2

Site #3

Site #5

Site #6

Site #7

Site #8

Site #14

Site #
# LiDAR 
Scanning

# Sonar 
Points

# total 
station 
points

# Drone 
images

# camera 
images

Site 2 1 86 308
Site 3 2 98 157
Site 5 1 241 220
Site 6 2 101 363
Site 7 1 95 251
Site 8 3 168 398
Site 11 5 824
Site 14 1 205 420
Site 15 1 181 213
Site 16 4 1095 127 109
Site 17 4 3,180

Survey Sites in NC



Point Cloud Data



Bathymetric Data

Site #14Site #2

 Data collected using Virtual Reference System and total 
station outside the bridge and under the bridge, respectively.

Site#2 Site#14



Sonar data collection

Bathymetric map based on sonar and Virtual Reference System

 Data were collected 
using VRS, total station 
and sonar (single beam 
echosounder) 

 Accuracy of sonar data 
estimated by calculating 
residual (elevation from 
VRS – elevation of 
stream bottom)

Site #16 



Deep Learning Framework: 
DeepHyd



 Combine, and compare with, expert knowledge from fieldwork for 
training and testing of deep learning classifiers

Deep Learning for 3D Point Cloud Classification



Convpoint: Continuous Convolutions For 
Point Cloud Processing 
 Boulch (2020) proposed a new deep 

learning-based framework for 3D semantic 
segmentation, named ConvPoint, which 
hits the rank #1 performance on the large-
scale 3D benchmark 
(http://www.semantic3d.net/).

Demonstration of the 3D benchmark

Segmentation networks proposed by 
Boulch (2020)

http://www.semantic3d.net/


Transfer Learning
 Transfer learning is the improvement of deep learning in a new task 

through the transfer of knowledge from a related task that has already 
been learned (Olivas, 2009). Transfer learning can provide better initial 
weights than random ones, which can help prevent the model overfitting 
on the training data and accelerate the training process to better 
convergence. It is especially helpful when the training data is not 
sufficient as it is in our case. 

3D 
benchmark

Our 
datasets

Model to detect 
building

Model to 
detect bridge

Predict building 
from scan

Predict bridge 
from scans

Knowledge Transfer

Pre-trained 
weights



Model Automation-Integration-Acceleration
 Use the GIS-based scientific workflows (Tang et al. 

2017) to automate 1) the classification task, and 2) the 
management, pre/post-processing, and 3D visual analytics 
of point clouds and related data

 Geospatial analysis and modeling steps often need to be repeated
(for training and testing of the deep learning classifiers) and 
reused by different users

 A number of analysis/modeling steps are often involved and need 
to be coupled in this project



Framework of Scientific Workflow for Automation

Structure from Motion (SfM) to 
construct 3D point cloud from  
imagery 

Use the two trained models to 
predict the labels of each point:
1. Detect bridge from the 

point c loud
2. Detect different bridge 

components from point 
cloud of the detected 
bridge

1. Outlier removal tool by Open3D, an open-
source python lib, to remove noise
2. Spatial sampling to 1cm 

Adopt Iterative Closest Point from 
CloudCompare, an open source software, to 
register the point clouds

*Demo of fusion of point clouds
Blue and yellow are two point clouds. They 
are registered after this process

*Prediction results of bridge components

*Prediction results of detected bridge 
from the scene

*Demo of Spatial sampling
From origin (top) to 1cm (bot)

*Demo of outlier removal
Red are removed automatically

*Demo of SfM process
Imagery (left) to point 
cloud (right)

Adopt surface 
reconstruction methods 
to convert point cloud to 
polygon mesh or other 
types of 3D model (based 
on NCDOT requirement). *Demo of the result of the surface reconstruction

From point cloud (left) to polygon mesh (right)



Acceleration of Deep Learning
 Cyberinfrastructure-enabled high-performance computing 

(HPC) capabilities to resolve the big data-driven computational 
challenge of geospatial analysis and modeling in this project

Image source: https://i0.wp.com/hanusoftware.com/wp-content/uploads/event_218867862.png?w=360&ssl=1

• Parallel geocomputational algorithms 
that deploy the processing, analysis, or 
modeling steps to HPC resources at 
Center for Applied GIScience (CAGIS) 
and URC (University Research 
Computing) at UNC Charlotte. 
• Sapphire: 288-CPU Windows 

cluster for advanced 
geocomputation!

• Graphics Processing Units (GPUs) 
cluster at URC (24 advanced GPUs)

H P C



1 GPU Compute Node:
• Dual Intel Xeon Silver 4215R CPU @ 3.20GHz  (16 cores total)
• 192GB RAM (~ 12GB/core)
• 8 x Titan V GPUs (12GB HBM2 RAM per GPU; #CUDA cores: 5,120)

2 GPU Compute Nodes, each having:
• Dual Intel Xeon Silver 4215R CPU @ 3.20GHz  (16 cores total)
• 192GB RAM (~ 12GB/core)
• 4 x Titan RTX GPUs (24GB GDDR6 RAM per GPU; #CUDA cores: 4,608)

2 GPU Compute Nodes, each having:
• Dual Intel Xeon Silver 4215R CPU @ 3.20GHz  (16 cores total)
• 192GB RAM (~ 12GB/core)
• 4 x Tesla V100s GPUs (32GB HBM2 RAM per GPU; #CUDA cores: 5,120)

GPUs for Supercomputing-level Acceleration

---------------previous computing resource------------------
2 GPU Compute Node, each having GHz Xeon e5-2667 v3 (8 cores total)
• 192GB RAM (~ 12GB/core)
• 8 x GTX 1080 Ti GPUs (11GB RAM per GPU; #cores: 3,584)

4 GPU Compute Nodes, each havingl Intel 2.6 GHz Xeon Silver 
• 192GB RAM (~ 12GB/core)
• 2 x Tesla K80 GPUs (24GB RAM per GPU; #cores: 4,992)

 5 new GPU nodes with 24 latest GPUs (urc.uncc.edu)

This slide is adapted from a powerpoint from urc.uncc.edu



Results



Labels in sample pool

Beam

Pier

Retaining Wall

Railing

Ground

High Vegetation

Cap sill

Clutter

Footpath Roof

Embankment

Fencing

Ground Parapet Railing

Parapet Wall

Man-made road

Low-vegetation

Pipe

Labels in bridge-
vegetation-ground 
dataset
Bridge
Vegetation
Ground

Labels in bridge 
component dataset 
Retaining wall
Pier
Beam
Railing

 Size of annotated sample pool:
 Total # annotated scans: 41 

(11 from study sites and 30 
from previous scanning)

 #classes: 16
 Two sample sets were generated 

from the annotated sample 
pool:
 1. Bridge-vegetation-ground 

dataset with 3-categories: 
bridge, vegetation, and 
ground

 2. Bridge component 
dataset with 4-categories: 
wall, pier, beam, railing

Annotation of Samples



Data in annotated sample pool

Demonstration of Annotated Samples

Data in bridge-vegetation-ground dataset

Data in bridge component dataset

The annotated sample pool is 
aggregated to generate the two 
pools of datasets for training the 
two models.

*Colors represent different labels.



Bridge-vegetation-ground 
dataset

Bridge-component dataset

Statistics/Labels Bridge Vegetation Ground Total

Total 109,354,102 35,122,404 62,993,247 207,469,753 

Percentage 52.71% 16.93% 30.36% 100.00%

Statistics/Labels Wall Pier Beam Railing Total

Total 6,949,996 17,673,431 76,778,145 4,818,671 106,220,243 

Percentage 6.54% 16.64% 72.28% 4.54% 100.00%

Statistics of the Two Pools of Labeled Datasets



Annotated Training Samples



Treatment # block size # point per block GPU #GPU Computing Time (hours)
Treatment 1 5 16,384 Tesla V100 1 80
Treatment 2 5 12,288 Tesla V100 1 80
Treatment 3 5 2,048 Titan RTX 1 80
Treatment 4 5 4,096 Titan RTX 1 80
Treatment 5 5 8,192 Titan V 1 80
Treatment 6 10 2,048 Titan V 1 80
Treatment 7 10 4,096 Titan V 1 80
Treatment 8 10 8,192 Titan V 1 80
Treatment 9 1 2,048 Titan V 1 80
Treatment 10 1 4,096 Titan V 1 80
Treatment 11 1 8,192 Titan V 1 80

Total 880

Treatment # block size # point per block GPU #GPU Computing Time (hours)
Treatment 1 1 4,096 Titan V 1 35 
Treatment 2 1 8,192 Titan V 1 45 
Treatment 3 5 4,096 Titan RTX 1 36 
Treatment 4 5 8,192 Titan V 1 46 
Treatment 5 10 4,096 Titan V 1 35 
Treatment 6 10 8,192 Titan RTX 1 46 
Treatment 7 10 16,384 Titan RTX 1 71 
Treatment 8 20 4,096 Titan V 1 41 
Treatment 9 20 8,192 Titan V 1 49 
Treatment 10 50 4,096 Titan V 1 47 
Treatment 11 50 8,192 Titan V 1 54 

Total 505 

Model to detect bridge from the LiDAR scan Model to detect bridge components from a bridge
Parameter tuning on model hyper-parameters (total 1,362 hours)

Treatment # Learning Rate # iteration GPU #GPU Computing Time 
(hours)

Treatment 1 1.00E-02 500 1080Ti 1 31 
Treatment 2 1.00E-02 1,000 1080Ti 1 41 
Treatment 3 1.00E-02 1,500 1080Ti 1 47 
Treatment 4 1.00E-03 500 1080Ti 1 29 
Treatment 5 1.00E-03 1,000 1080Ti 1 41 
Treatment 6 1.00E-03 1,500 1080Ti 1 47 
Treatment 7 1.00E-04 500 1080Ti 1 31 
Treatment 8 1.00E-04 1,000 1080Ti 1 41 
Treatment 9 1.00E-04 1,500 K80 1 43 
Treatment 10 1.00E-05 1,000 K80 1 32 
Treatment 11 1.00E-05 1,500 K80 1 43 
Treatment 12* 1.00E-04 1,500 Titan V 1 41 
Treatment 13* 1.00E-05 1,500 Titan V 1 41 
Treatment 14* 1.00E-06 1,500 Titan V 1 41 

Total 549 

Treatment # Learning 
Rate # iteration GPU #GPU Computing Time 

(hours)
Treatment 1 1.00E-02 500 1080Ti 1 42 
Treatment 2 1.00E-02 1,000 1080Ti 1 52 
Treatment 3 1.00E-02 1,500 K80 1 70 
Treatment 4 1.00E-03 500 1080Ti 1 42 
Treatment 5 1.00E-03 1,000 K80 1 53 
Treatment 6 1.00E-03 1,500 K80 1 70 
Treatment 7 1.00E-04 500 1080Ti 1 42 
Treatment 8 1.00E-04 1,000 1080Ti 1 51 
Treatment 9 1.00E-04 1,500 K80 1 69 
Treatment 10 1.00E-05 1,000 1080Ti 1 51 
Treatment 11 1.00E-05 1,500 1080Ti 1 68 
Treatment 12* 1.00E-02 1,500 Titan RTX 1 67 
Treatment 13* 1.00E-03 1,500 Titan V 1 68 
Treatment 14* 1.00E-04 1,500 Titan V 1 68 

Total 813 

*treatment with learning rate scheduler

Total Sequential Computing Time for Parameter Tuning on The Two Models: 2,746 hours (114 days)

Parameter Tuning

Parameter tuning on data generation parameters ( total 1,384 hours)



Parameter Tuning Acceleration
 Total Sequential Computing Time for Parameter Tuning on The Two Models: 

 2,746 hours (114 days)

 Total Parallel Computing time using GPU cluster:
 268 hours (11 days)

 Acceleration Factor (sequential time/parallel time): 
 10.25



Prediction Results on Validation Datasets

Measure Value
Overall Accuracy 98.38%
Average Accuracy 97.65%
Intersection Over Union (IOU) 94.67%
IOU_bridge 98.62%
IOU_vegetation 89.41%
IOU_ground 96.00%

Origin/Pred Bridge Vegetation Ground Total

Bridge 58.51% 0.32% 0.24% 59.07%
Vegetation 0.02% 9.91% 0.29% 10.23%
Ground 0.30% 0.58% 29.82% 30.71%
Total 58.83% 10.82% 30.36% 100.00%

Confusion matrix in percentage

Label Color

Bridge Blue

Vegetation Green

Ground Red

Performance metrics

Bridge-vegetation-ground Model



Prediction Results on Validation Dataset

Measure Value
Overall Accuracy 97.13%
Average Accuracy 80.90%
Intersection Over Union (IOU) 71.85%
IOU_wall 94.18%
IOU_pier 85.37%
IOU_beam 98.81%
IOU_railing 1.89%

Confusion matrix in percentage

Performance metrics

Label Color

Retaining wall Blue

Pier Green

Beam Yellow

Railing Red

Origin/Pred Retaining 
wall Pier Beam Railing Total

Retaining 
wall 6.36% 0.16% 0.07% 0.00% 6.58%

Pier 0.09% 14.80% 0.21% 1.57% 16.67%
Beam 0.08% 0.38% 75.79% 0.02% 76.27%
Railing 0.00% 0.13% 0.17% 0.19% 0.48%
Total 6.52% 15.46% 76.23% 1.78% 100.00%

Detection of bridge components



Conclusions
 The cyberinfrastructure-enabled approach enables and empowers the 

automation and acceleration of 3D point cloud classification using deep 
learning techniques that are computationally demanding. 

 The DeepHyd framework and associated software package, driven by 
cutting-edge deep learning technologies, are well tailored to the 
classification of 3D hydraulic structures from point cloud data.

 This DeepHyd framework will provide substantial support for the mission of 
the NCDOT Hydraulics Unit, e.g., 
 Development of guidelines for data collection for roadway drainage studies 
 Waterway hydraulic calculations and design based on NCDOT standards 

 The established procedures and systems can further enhance data 
sharing between NCDOT and other stakeholders such as Department 
of Public Safety for the asset management and evaluation of hydraulic 
structures (e.g. bridges, or road surfaces).



References
 Boulch, A. (2020). ConvPoint: Continuous convolutions for point cloud processing. Computers & 

Graphics.
 Chen, S.E. (2012). Laser Scanning Technology for Bridge Monitoring, Laser Scanner Technology, 

InTech Pub., ISBN 979-953-307-265-3.
 Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P. and Bengio, S., 2010. Why does 

unsupervised pre-training help deep learning?. Journal of Machine Learning Research, 11(Feb), 625-
660.

 LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553), 436-444.
 Prendergast, L.J. and Gavin, K., 2014. A review of bridge scour monitoring techniques. Journal of Rock 

Mechanics and Geotechnical Engineering, 6(2), 138-149.
 Olivas, E. S., Guerrero, J. D. M., Martinez-Sober, M., Magdalena-Benedito, J. R., & Serrano, L. (Eds.). 

(2009). Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, 
and Techniques: Algorithms, Methods, and Techniques. IGI Global.

 Tang, W., Feng, W., Jia, M., Shi, J., Zuo, H., Stringer, C.E. and Trettin, C.C., 2017. A cyber-enabled 
spatial decision support system to inventory Mangroves in Mozambique: coupling scientific 
workflows and cloud computing. International Journal of Geographical Information Science, 31(5), 
pp.907-938.

 Yu, Y., Li, J., Guan, H., Jia, F. and Wang, C., 2015. Learning hierarchical features for automated 
extraction of road markings from 3-D mobile LiDAR point clouds. IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing, 8(2), 709-726.

 Zheng, M., Tang, W., and Zhao, X., 2019, Hyperparameter optimization of neural net work-driven 
spatial models accelerated using cyber-enabled high-performance computing, International Journal 
of Geographical Information Science. 33(2): 314-345



Thank you! 
Questions?

https://gis.uncc.edu
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Necessary actions at construction sites lead to soil conditions that are challenging 
for grass establishment and stormwater management.
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Can tillage (possibly with soil amendment) improve conditions for grass 
establishment and ultimately stormwater infiltration?
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Site Texture Tillage (cm) Amendments Sub-treatment

Sandhills Sand 0, 15, 30 compost (5 cm), 
lime (0, 1.5, 31 Mg ha-1) 

--

Mountain Sandy clay loam 0, 15, 30 compost (5 cm), 
xPAM2 (0.32 Mg ha-1)

traffic (90 kPa)

Piedmont 1 Sandy clay 0, 15, 30 lime (0, 1.25, 2.51 Mg ha-1) traffic (177 kPa)

Piedmont 2 Sandy clay 0, 30 compost (5 cm) traffic (177 kPa)

Piedmont 3 Clay loam (fill) 0, 30 compost (5 cm), 
xPAM2 (0.672 Mg ha-1), 
gypsum (11.2 Mg ha-1)

--

Simulated post-construction site conditions:

Measured infiltration and bulk density at 6 month intervals for up to 30 months.



NCDOT Research & Innovation Summit 2020

5

Key takeaways from simulated post-construction sites:

• Soil bulk density increased over time, but remained below pre-tillage levels >24 
months.

• Amendments (compost, gypsum, xPAM) generally had little impact on 
infiltration compared to tillage alone, except where trafficked.

• Tillage increased infiltration (≥3X) at all sites (compared to compacted controls), 
and improvements were maintained for >24 months.
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Is tillage (possibly with soil amendment) an effective ‘retrofit’ stormwater
management practice?
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Objective: Test effects of tillage and 
tillage with compost amendment
compared to existing roadside 
conditions on active roadways.

• Compost added as 2 inch depth.
• Tilled to 8 inch depth.
• Control was existing grass stand.
• Measurements collected for 

approximately 12 months for runoff 
volume and periodic water quality 
sampling.

• Infiltration rates measured after 12 
months.
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Infiltration rate improvements differed by site:
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I-40

I-85
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I-40

Tillage only
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I-40

Tillage + Compost

Tillage only
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I-40
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I-40 I-85

Tillage only
Tillage only

Tillage + Compost
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I-40 I-85

Tillage only
Tillage only

Tillage + CompostTillage + Compost



NCDOT Research & Innovation Summit 2020

16

I-40
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Conclusions

• Tillage with compost amendment reduced runoff losses along roadside sites; 
tillage alone was insufficient compared to existing roadside conditions.

• Compost directly improved infiltration rates for the finer-textured soils at I-85.

• Compost did not directly improve infiltrate rates at the sandier site (I-40) but did 
improve the vigor of the grass stand, which ultimately appeared to reduce 
runoff.

• Water quality was maintained or improved following tillage.
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