

Trends in N.C. Mobility and Health Data During the COVID-19 Pandemic

Wes Kumfer, PhD, RSP1 UNC Highway Safety Research Center Kumfer@hsrc.unc.edu

December 9, 2020

www.C19MobilityAndHealth.unc.edu

Project Team

- PI Randa Radwan, PhD
- Co-PI Raghavan Srinivasan, PhD
- Task Lead Wes Kumfer, PhD, RSP1
- Analyst Katie Harmon, PhD
- Subject Matter Expert Tabitha Combs, PhD
- Analyst Duncan Richey
- Analyst Cheng Ma

Project Overview

- The goal of the C-19 Mobility and Health Project is to investigate COVID-19 data trends in North Carolina.
- Two research questions:
 - Have shelter-in-place policies, emergency declarations, and general news and events reduced movement within North Carolina? Is this slowing the spread of COVID-19?
 - What are the differences in mobility between urban and rural counties and how do these trends vary through time?

Methodology – Joinpoint Regression

- Simplified time series analysis.
- Developed for health surveillance applications.
- Compared to linear regression, can identify statistically significant (p<0.05) trend changes.
- Can finetune model to transform the data or account for variance over time (heteroskedasticity).
- Can compare cohorts over time.

Poll Question

- Since March, have you...
 - Traveled more?
 - Traveled less?
 - Traveled about the same?

Cumulative Confirmed COVID-19 Deaths to September 30, 2020

In North Carolina, Confirmed NC COVID-19 Cases and Deaths are More **Common in Rural Counties**

46

Rural

NC average

7-Day Rolling Average of New COVID-19 Cases to September 30, 2020

*Results of COVID-19 antigen testing released (spike reflects historical cases).

ATR Station Vehicle Counts

*Data source: NC DOT

---- Observed Daily Counts (2019) - Observed Daily Counts (2020)

Vehicle Miles of Travel (7-Day Rolling Average)

NC Statewide Vehicle Miles Traveled (VMT) Trends for Urban, Suburban, and Rural Areas, **Data** Source: <u>Streetlight</u>

Mobility Index (7-Day Rolling Average)

NC Statewide Mobility Index Trends (7-day Rolling Average): January 1, 2020-October 2, 2020, Data Source: Cuebia

-2020 Statewide Median CMI 2019 Statewide Median CMI

Mobility Index (7-Day Rolling Average)

NC Statewide Mobility Index Trends (7-day Rolling Average) for Urban, Suburban, and Rural Areas: January 1, 2020-October 2, 2020, Data Source: Cuebia

Contact Index (7-Day Rolling Average)

NC Statewide Contact Index Trends (7-day Rolling Average): January 1, 2020-October 2, 2020, Data Source: Cuebia

—2020 Statewide Average CCI 2019 Statewide Average CCI

Contact Index (7-Day Rolling Average)

NC Statewide Contact Index Trends (7-day Rolling Average) for Urban, Suburban, and Rural Areas: January 1, 2020-October 2, 2020, Data Source: Cuebia

Key Results

- All area types (urban, suburban, and rural) showed statistically significant decreases in every mobility metric after the State of Emergency Declaration on March 10th.
- Urban work trips had a more pronounced response to the pandemic than rural or suburban work trips.
- Travel stabilized in early June.
- Despite travel changes, contact index shows social distancing has taken effect.

Conclusions

- All measures of mobility consistently show the same trends, with travel decreasing after March 10th State of Emergency and returning to normal early June.
- Urban responses tended to be more sensitive to policy changes than rural and suburban responses, perhaps due to discretionary trips.
- While travel statewide returned to "normal," contact between travelers has declined below 2019 trends.
- The differences between CCI and mobility metrics may indicate an increase in single-person trips.

Further Discussion

- **Research implications for NCDOT:**
 - On average, travelers are responsive to policy measures, but the impact is greater in places where travelers have more mobility options.
 - The relationship between mobility and transmission of disease will become more complicated.
 - Large-scale disruptions to travel patterns will affect budgeting and resource allocations.
 - There is a need for resilience modeling.
- Next steps:
 - Model flows between counties to predict spread of future pandemics.
 - Assess how changes in traffic patterns affect safety.

ÎU

NC STATE UNIVERSITY

UNC THE CECIL G. SHEPS CENTER FOR HEALTH SERVICES RESEARCH

NC ODUM INSTITUTE FOR RESEARCH IN SOCIAL SCIENCE

This project is supported by the NC Policy Collaboratory at the UNC-CH with funding from the North Carolina Coronavirus Relief Fund established and appropriated by the NC General Assembly.

https://collaboratory.unc.edu/

GILLINGS SCHOOL OF GLOBAL PUBLIC HEALTH

Data Snapshot

Mobility Data

Name	Importance	Туре	Scope	Time Range	Time Scale	Unit
Cuebiq	Primary	Mobility Index and Contact Index Data visualizations through the Clara platform	All of N.C. by county	Dec 21, 2019 – Aug 7, 2020	Daily	CMI, CCI
Teralytics	Primary	Origin - Destination	All of N.C. by zip code	All of 2019, Jan-Apr 21 2020	Daily	Trips
NCDOT ATR	Primary	Traffic Counts	All State-owned highways (~58 counties)	Jan-Jun 15 2018, Jan- Jun 15 2019, Jan-Jun 15 2020	Hourly and daily	Vehicles
Streetlight	Primary	VMT	All counties in U.S.	Jan 1, 2019 – Sep 15, 2020	Daily	Vehicle miles of travel
GoTriangle	Tertiary	Transit Activity	All routes in Research Triangle operated by GoTriangle	Jan 1, 2019 – Sep 17, 2020	Daily	Boardings, passenger miles per trip, and trips
Apple	Tertiary	Driving/ Walking/Transit Routing	Select counties and cities in N.C.	Jan 13 – Sep 19, 2020	Daily	Directions requests

Data Snapshot

• Health Data

Name	Importance	Туре	Scope	Time Range	Time Scale	Unit
New York Times Covid-19 Case Counts	Primary	COVID-19 case and death counts	All counties in U.S.	March 1 – Sept 30, 2020	Daily	Number of confirmed COVID-19 cases & deaths
United States Census Population Data	Primary	Population estimates	All counties in U.S.	Base: U.S. Census 2010 Annual population projections available through July 1, 2019	Yearly	Population estimates

Data Snapshot

 To compare travel trends between different types of land contexts in the State, we aggregated our data into urban, suburban, and rural using designations from the NC Rural Center.

NORTH CAROLINA COUNTIES

Work Trips (7-Day Rolling Average)

NC Statewide Work Trip Trends for Urban, Suburban, and Rural Areas: January 1, 2020-April 21, 2020, Data Source: <u>Teralytics</u>

Efficient and Robust Pedestrian Detection using Deep Learning for Autonomous Cars

Abdullah Al Redwan Newaz, Muhammad Islam, and Ali Karimoddini

Autonomous Cooperative Control of Emergent Systems of Systems (ACCESS) Laboratory

NC Transportation Center of Excellence on Connected and Autonomous Vehicle Technology (NC-CAV)

North Carolina Agricultural and Technical State University

Self-driving cars closer to becoming reality

- 10 million autonomous vehicles will hit the roads by 2021
- In 10 years fully autonomous vehicles will dominate the roads
- Widespread adoption of AVs could lead to a 90% reduction in vehicle crashes

How do we judge the quality and the real autonomous nature of a car?

There are two main streams:

Machine Learning Pipeline: generates steering commands using a set of components

End-to-End Learning: maps raw pixels from a single front-facing camera directly to steering commands

How would you do pedestrian detection/segmentation?

ACCESS Laboratory

* Images are taken from D. Tosato's presentation

- Different clothes color
- Changing size
- Aspect ratio
- Dynamic shape

Camera sensitivity

* Images are taken from D. Tosato's presentation

Should detect partially occluded pedestrians

Challenge in Detecting Occluded Pedestrian

Pedestrian blocked by Staller

Partially visible body parts

Low confidence score

- Occlusion happen very often in real world
- Performance of conventional methods for detecting partially occluded pedestrian are not satisfactory
- Conventional object detection method detect occluded pedestrian with low confidence score

Challenge in Detecting Pedestrian with Low Confidence

- Low confidence causes false detection.
- Model detect Tree as a person with a confidence score of 62%
- Setting of a high threshold can avoid such problems.

To develop a reliable yet efficient techniques (high accuracy with reasonable computation cost) that can handle:

- Pedestrian detection under partial occlusion
- Pedestrian detection with low rate of false detection

Robust and efficient pedestrian detection even on the sidewalk and crosswalk in cluttered urban environments to improve the safety for autonomous driving

Proposed Methodologies

We expect our new method should detect some of the body parts for partially occluded pedestrian

Our proposed method utilizes body parts information to detect partially occluded pedestrian

The state-of-the-art method detect occluded pedestrian with low confidence

Our proposed method should detect not only the full body pedestrian, but also the visible body parts with high confidence score **Our Approach...**

- Single Shot Detector
- Multi-class classification
- Depth and pointwise separable.

SSD-Mobilenet

- Trained two deep neural networks (Faster R-CNN and SSD-Mobilenet) with body parts data
- Developed a fusion method for detecting pedestrian efficiently

Fusion with a set of thresholds

Fusion with a maximum confidence

Experimental Results

- We have created a body part-based data set, along with full body data label
- Created a rich dataset of four different body parts with 3397 annotations
- We merged our dataset with a public (Penn-Fudan) dataset

Faster R-CNN has better detection performance

Faster R-CNN

65

65

SSD-Mobilenet

Faster R-CNN

- Faster R-CNN has better accuracy, recall and F1-score.
- SSD-Mobilenet has better precision.
- Faster R-CNN performs at a speed around 7 FPS on a GPU
- SSD-Mobilenet performs at a speed of around 45 FPS on a GPU

ACCESS Laboratory

"Enhancing Autonomous Vehicle Traffic Safety through Pedestrian Detection, Classification and Communication," \$199,396, Thomas Chase (NCSU/ITRE), A. Karimoddini (NCAT), S. Hollar (NCSU), J. Feng (NCSU), A. Homaifar (NCAT), NCDOT, 2019-2021.

https://youtu.be/56_ii67qBzs

https://youtu.be/pGLh0FrF cA

- My teammates at ACCESS Laboratory
- Support from NC Department of Transportation (NCDOT) under the award numbers RP2019-28 and TCE2020-03
- National Science Foundation under award numbers 1832110 and 2018879.

۲

Conclusion:

- We have created a dataset with body parts
- We proposed fusion methodologies for detecting occluded pedestrians
- We train two deep neural networks with body parts data to detect occluded pedestrians

Future work:

- In future, we will be improving dataset for pedestrians and occluded pedestrians
- We will propose a Deep Neural Network Model that balances detection performances and runtime efficiency
- Sensor Fusion with Lidar and get the depth information

Efficient and Robust Pedestrian Detection using Deep Learning for Autonomous Cars

Abdullah Al Redwan Newaz, Muhammad M Islam, and Ali Karimoddini aredwannewaz@ncat.edu, mmislam@aggies.ncat.edu, akarimod@ncat.edu

https://www.nccav.com/

Autonomous Cooperative Control of Emergent Systems of Systems (ACCESS) Laboratory NC Transportation Center of Excellence on Connected and Autonomous Vehicle Technology (NC-CAV)

NORTH CAROLINA Department of Transportation

Research & Innovation Summit - 2020

Quantitative Analysis of Pedestrian & Bicycle Facilities at Intersections

Shannon Warchol, PE, Kittelson and Associates

Intersection and Interchange Projects

- SPOT continues to churn up lots of intersections and interchanges
 - Capacity and safety problems
- Pedestrians and bicyclists are important at those intersections and interchanges
 - Too many crashes
 - Insufficient past attention
 - Complete Street policy
 - Popular, livable, healthy, good for business,...

Which is Better for Peds and Bikes?

Conventional intersection

Reduced conflict intersection (RCI)

Which is Better for Peds and Bikes?

Conventional intersection

Continuous flow intersection (CFI)

Ways to Measure Pedestrian and Bicyclist Quality of Service

- Opinions
- Highway Capacity Manual Level of Service
 Delay, corner crowding
- Travel distances
- Conflict points
 - Free-flow vehicle streams
 - Speeds, volumes, turns
- Microsimulation

There are no good design-level crash models

A New Assessment Method

- Focus groups
 - 70 participants in four cities around US reacted to many different intersection scenes
- On-line surveys
 - 356 completed surveys, 35 states and 6 countries, mostly transportation professionals, 91% ped and bike advocates, over 8,000 comments
- Field observations of NC RCI and DDI
- Panel and expert input

NCHRP 7-25

- Research overseen by panel of state DOTs
 - Including NCDOT's Dr. Joe Hummer
- "Guide for Safety at (Alternative) Intersections and Interchanges" approved for circulation now, publication later 2020
 - Look for NCHRP Report
 948

Assess a Design Using 20 Flags

A New Assessment Method

- Pedestrians: Check each of the four crosswalks
 - 13 Possible Flags
- Bicycles: Check each of the 12 movements
- 16 possible flags

Yellow vs. Red Flags Yellow Flags, for design elements negatively affecting <u>user comfort</u> (in other words, increasing user stress) or the quality of the walking or cycling experience.

Red Flags, for design elements that are directly related to a <u>safety</u> <u>concern</u> for pedestrians or bicyclists.

Performance-Based Design Process

- Identify intended outcomes
- Establish geometric design decisions
- Evaluate performance
 outcomes
- Refine decisions based on performance
- Assess financial feasibility
- Select project or alternatives

NCHRP Report 785 – 10 Performance-Based Design Process

Example: Flag 1

Flag Criteria

No.	Flag	Applicable Mode	Measure of Effectiveness	Yellow Flag Threshold	Red Flag Threshold
1	Motor Vehicle Right Turns	Pedestrian	Vehicle Turning Speed & Vehicle Volume	<=20 mph & <= 50 vph	>20 mph OR >50 vph
2	Uncomfortable/Tight Walking Environment	Pedestrian	Walkway width	< 5' if traffic present on one side; <10' if traffic present on two sides	N/A
3	Nonintuitive Motor Vehicle Movements	Pedestrian	Vehicle acceleration profile	Vehicle decelerating	Vehicle accelerating or free-flowing
4	Crossing Yield-Controlled or Uncontrolled Vehicle Paths	Pedestrian & Bicycle	Vehicle Speed & Vehicle Volume	<=20 mph & <= 50 vph	>20 mph OR >50 vph

Application to U-5768, Division 10

Widen NC-49 (University City Drive) from John Kirk Drive to I-485

- Realign Back Creek Church Road
- Close existing
 Back Creek
 Church Road atgrade rail
 crossing

Summary

- NCHRP 7-25 provides a consistent and quantitative way to evaluate the quality of pedestrian and bicyclist service at any intersection or interchange.
- Published soon, available to use now
- Could help at any stage of project development
- Not difficult or expensive
- More training from NCHRP soon

Questions & Discussion

前水吃不

Shannon Warchol swarchol@kitteslon.com