Durability of Pipe Materials in Soils

October 13th 2020

Hyunjun Choi, PhD student Faria Ahmed, PhD student W. Cabell Garbee, P.E. Mohammad Pour-Ghaz, PhD Gregory Lucier, PhD Mo Gabr, P.E., PhD

Research Motivation

- A large number of culverts are installed every year in NC
- Different materials are being used
- Culvert type is selected based on structural requirements
- Less consideration and guidance on durability issues
- Overdesign vs. Underdesign \rightarrow increased cost!

₽

- Account for the durability of different materials
- Provide an estimate of service life and related cost indices

Research Objectives

- Catalog the relevant culvert exposure conditions and identify the pipe types appropriate for a given exposure condition
- Develop a robust and systematic pipe selection guide with a simple and intuitive user interface
- Perform quantitative corrosion rate measurements on galvanized and aluminized steel pipe materials with different thickness coatings to relate coating thickness to service life and to provide a "Discount Rate" – reduce payment for less thickness
- Perform a comparative cost analysis for pipe types subjected to a variety of exposure conditions

Research Objectives

- Catalog the relevant culvert exposure conditions and identify the pipe types appropriate for a given exposure condition
- Develop a robust and systematic pipe selection guide with a simple and intuitive user interface
- Perform quantitative corrosion rate measurements on galvanized and aluminized steel pipe materials with different thickness coatings to relate coating thickness to service life and to provide a "Discount Rate" – reduce payment for less thickness
- Perform a comparative cost analysis for pipe types subjected to a variety of exposure conditions

Exposure Conditions and Materials

Soil pH Soil resistivity Salt exposure Soil type Presence of organic compounds Soil saturation

Factors affecting on the durability of culverts

RCP (AASHTO M170) Galvanized CSP (AASHTO M218) Aluminized CSP (AASHTO M274) **Corrugated Aluminum** (AASHTO M196) Steel, Cast iron **HDPE** (AASHTO M294) **PP** (AASHTO M330) **PVC** (AASHTO M304)

Culvert materials

Exposure Conditions and Materials

RCP (AASHTO M170) Soil pH Galvanized CSP (AASHTO M218) **Soil resistivity** Salt exposure Soil type **Presence of organic** compounds Soil saturation

Factors affecting on the durability of culverts

Schematic plan view

Aluminized CSP (AASHTO M274) **Corrugated Aluminum** (AASHTO M196) Steel, Cast iron **HDPE** (AASHTO M294) **PP** (AASHTO M330) **PVC** (AASHTO M304)

Culvert materials

US DOTs with Durability Guidelines

Considering factors in selecting pipe material

Arc GIS – Exposure Condition (pH)

Arc GIS – Exposure Condition (pH)

		NCDOT PI	PE MATERIAL SELECT	ION GUIDE						
			USER INPUT ¹				GPS COOL	RDINATES ²	pH and resi	stivity
рН	Re	esistivity (ohm-cm)	Abrasion level ³	Chloride ⁴	Nominal Diameter (in) of Cast Iron ⁵		LONGITUDE	LATITUDE		,
6.2		10000	1	Low	16		-78.638	35.779		
							*Note that the value of longitud	e should be negative	Chlorid	e
				SEI	RVICE LIFE ESTIMATION (Yea	rs)				
RCP ⁶ (REINFORCED CONCRETE PIPE)	CSP ⁷ (CORRUGATED STEEL) AASHTO M36				Steel ^{7,10}	Cost Iron ¹¹		Plastic Pipe ¹²		
(REINFORCED CONCRETE PIPE) AASHTO M170	Galvanized CSP ⁸ AASHTO M218		Aluminized Type 2 CSP ⁹ AASHTO M274	Aluminized Type 2 CSP ⁹ AASHTO M274 AASHTO M274	Steel		HDPE AASHTO M294	PP ASTM F2764 OR AASHTO M330	PVC ASTM F949 OR AASHTO M304	
	18	49.6	-	-	23.8					
	16	62.0	86.4	224.2	31.0					
33.4 14 11 10	14	80.5	112.3	291.5	38.1	140.1		75 +		
	12 111.5 10 142.5		155.5	403.6	52.4					
			198.8	515.7	66.7					
	8	173.5	242.0	627.8	81.0					
1: Each section can also be t	illed by	engineer: recomme	ndation is to input measured	field data						
2: Values of pH, resistivity, o	hloride	and sulfate will be a	ppeared according to input	coordinates.						
3: The range of abrasion lev	el is fro	m 1 to 4 based on th	e reference tab: See the refe	erence tab.						
4: If the coordinate system	is to be	used, the level of ch	loride will be shown from lo	w to extremely high; measure	d field data can also be filled	by engineers with the unit	of weight percent.			
5: Nominal diameter needs	to be ir	put to calculate the	service life of cast iron pipe.	, , ,						
6: Service life of RCP is calcu	lated u	sing Life-365; Life-36	5 considers time to corrosion	n initiation plus 6 years for a p	ropagation and onset of dan	nage.				
7: Service life of Galvanized	CSP, Ali	uminized Type 2 CSP	, CAAP, and Steel pipe consid	lers pH and resistivity.						
8: Service life of Galvanized	CSP is c	alculated using Ame	rican Iron and Steel Institite	(AISI) method.						
9: Service life of Aluminized	Type 2	CSP and CAAP are ca	alculated using FDOT method	l.						
10: Service life of CSP is calc	ulated	using CALTRANS met	hod.							10
11: Service life of Cast Iron	oipe is o	alculated based on F	Rajani model (2000).							10
12: Service life of Plastic pip	es is a c	constant as 75+ years								

GPS COOF	RDINATES ²	pH and resis	stivity
LONGITUDE	LATITUDE		
-78.638	35.779		
*Note that the value of longitude	e should be negative	Chlorid	e

рН	Resistivity (ohm-cm)	Abrasion level ³	Chloride ⁴	Nominal Diameter (in) of Cast Iron ⁵					

GPS COOF	RDINATES ²	pH and resis	stivity	
LONGITUDE	LATITUDE			
-78.638	35.779			
*Note that the value of longitude	e should be negative	Chlorid	e	

рН	Resistivity (ohm-cm)	Abrasion level ³	Chloride ⁴	Nominal Diameter (in) of Cast Iron ⁵				
6.2	10000		Low					

GPS COOF	RDINATES ²	pH and resis	stivity	
LONGITUDE	LATITUDE			
-78.638	35.779			
*Note that the value of longitude	e should be negative	Chlorid	e	

рН	Resistivity (ohm-cm)	Abrasion level ³	Chloride⁴	Nominal Diameter (in) of Cast Iron ⁵				
6.2	10000	1	Low	16				

рН	Resistivity (ohm-cm)	Abrasion level ³	Chloride ⁴	Nominal Diameter (in) of Cast Iron⁵					
6.2	10000	1	Low	16					

SERVICE LIFE ESTIMATION (Years)											
RCP ⁶ (REINFORCED CONCRETE PIPE) AASHTO M170		CS CORRUGA AASHT	SP ⁷ NTED STEEL) TO M36	CAAP ^{7,9}	ci 1 ^{7,10}	Cost Iron ¹¹	Plastic Pipe ¹²				
		Galvanized CSP ⁸ AASHTO M218	Aluminized Type 2 CSP ⁹ AASHTO M274	AASHTO M196	Steel	Cast Iron**	HDPE AASHTO M294	PP ASTM F2764 OR AASHTO M330	PVC ASTM F949 OR AASHTO M304		
	18	49.6	-	-	23.8						
	16	62.0	86.4	224.2	31.0						
33.4	14	80.5	112.3	291.5	38.1	140.1	75.				
55.4	12	111.5	155.5	403.6	52.4	140.1		75+			
	10	142.5	198.8	515.7	66.7						
	8	173.5	242.0	627.8	81.0						

				SE	RVICE LIFE ESTIMATION (Y	ears)					
		C CORRUG AASH	ISP ⁷ ATED STEEL) TO M36		Stool ^{7,10}	Cost loss ¹¹		Plastic Pipe ¹²			
AASHTO M170		Galvanized CSP ⁸ AASHTO M218	Aluminized Type 2 CSP ⁹ AASHTO M274	AASHTO M196	Steel	Cast Iron	HDPE AASHTO M294	PP ASTM F2764 OR AASHTO M330	PVC ASTM F949 OR AASHTO M304		
	18	49.6	-	-	23.8						
	16	62.0	86.4	224.2	31.0	140.1					
33.4	14	80.5	112.3	291.5	38.1			75 +			
	12 10	111.5	155.5	403.6	52.4			,5.			
		142.5	198.8	515.7	66.7						
	8	173.5	242.0	627.8	81.0						
Life-365 (chlorid	e)	AISI, F	DOT, CALTRAN	IS model (pH, re	esistivity) I	Rajani model (20	000) Plas	stic Pipe Institute	e (PPI)		

Gage number

Asheville (Mountain)

		NCDOT PI	PE MATERIAL SELECT	ION GUIDE							
			USER INPUT ¹				GPS COO	RDINATES ²	pH and res	istivity	
pН	Re	esistivity (ohm-cm)	Abrasion level ³	Chloride ⁴	Nominal Diameter (in) of Cast Iron ⁵		LONGITUDE	LATITUDE		,	
5.4		10000	1	Low	16		-82.551	35.595			
							*Note that the value of longitud	de should be negative	Chlori	de	
				SEF	VICE LIFE ESTIMATION (Year	s)					
RCP ⁶	CSP ⁷ (CORRUGATED STEEL) AASHTO M36			CAAP ^{7,9}	7.10			Plastic Pipe ¹²			
(REINFORCED CONCRETE PIPE) AASHTO M170		Galvanized CSP ⁸ AASHTO M218	Aluminized Type 2 CSP ⁹ AASHTO M274	AASHTO M196	Steel	Cast Iron**	HDPE AASHTO M294	PP ASTM F2764 OR AASHTO M330	PVC ASTM F949 OR AASHTO M304		
	18	42.3	-	-	20.3				1		
	16	52.8	73.7	89.7	26.4						
33.4 14 12	14	68.7	95.8	116.5	32.5	140.1		75 +			
	12	95.1	132.6	161.4	44.7	140.1	75.				
	10	121.5	169.4	206.2	56.9						
	8	147.9	206.3	251.0	69.1						
1: Each section can also be t	lilea by	engineer; recommend	ndation is to input measured	a field data.							
2: Values of pH, resistivity, c	nioriae al is fro	m 1 to 4 based on th	a reference tab: See the refe	coordinates.							
4: If the coordinate system i	s to be	used the level of ch	loride will be shown from lo	w to extremely high: measure	d field data can also he filled	by angineers with the up	it of weight percept				
5: Nominal diameter needs	to be in	used, the level of the	service life of cast iron nine	w to extremely high, measure	u field data call also be filled	by engineers with the di	it of weight percent.				
6: Service life of BCP is calcu	lated u	sing Life-365: Life-36	5 considers time to corrosion	n initiation plus 6 years for a p	ronagation and onset of dam	age					
7: Service life of Galvanized		uminized Type 2 CSP	CAAP and Steel nine consid	lers nH and resistivity	ropagation and onset of dam	age.					
8: Service life of Galvanized	CSP is c	alculated using Ame	rican Iron and Steel Institute	(AISI) method.							
9: Service life of Aluminized	Type 2	CSP and CAAP are ca	Iculated using FDOT method								
10: Service life of CSP is calc	ulated	using CALTRANS met	hod.								
11: Service life of Cast Iron r	ipe is c	alculated based on R	Rajani model (2000).							16	
12: Service life of Plastic pip	es is a c	constant as 75+ years									

Raleigh (Piedmont)

		NCDOT P	PE MATERIAL SELECT	ION GUIDE						
			USER INPUT ¹				GPS COO	ORDINATES ²	pH and resi	stivity
рН	Re	sistivity (ohm-cm)	Abrasion level ³	Chloride ⁴	Nominal Diameter (in) of Cast Iron⁵		LONGITUDE	LATITUDE		
6.2		10000	1	Low	16		-78.638	35.779		
							*Note that the value of longitud	de should be negative	Chlorid	e
				SEI	RVICE LIFE ESTIMATION (Year	rs)				
RCP ⁶		(CORRUG AASE	CSP ⁷ ATED STEEL) ITO M36	CAAP ^{7,9}	7 10			Plastic Pipe ¹²		
(REINFORCED CONCRETE PIPE) AASHTO M170	Galvanized CSP ⁸ AASHTO M218		Aluminized Type 2 CSP ⁹ AASHTO M274	- (CORRUGATED ALUMINUM) AASHTO M196	Steel	Cast Iron**	HDPE AASHTO M294	PP ASTM F2764 OR AASHTO M330	PVC ASTM F949 OR AASHTO M304	
	18	49.6	-	-	23.8					
	16	62.0	86.4	224.2	31.0					
33.4 1	14 80.5 12 111.5		112.3	291.5	38.1	140.1		75 +		
			155.5	403.6	52.4	140.1		75+		
	10	142.5	198.8	515.7	66.7					
	8	173.5	242.0	627.8	81.0					
1: Each section can also be t	filled by	engineer: recomme	endation is to input measured	field data.						
2: Values of pH, resistivity, o	hloride	and sulfate will be	appeared according to input o	coordinates.						
3: The range of abrasion lev	el is fro	m 1 to 4 based on t	ne reference tab; See the refe	rence tab.						
4: If the coordinate system	is to be	used, the level of cl	nloride will be shown from low	w to extremely high; measure	d field data can also be filled	by engineers with the unit	t of weight percent.			
5: Nominal diameter needs	to be in	put to calculate the	service life of cast iron pipe.							
6: Service life of RCP is calcu	lated us	sing Life-365; Life-36	55 considers time to corrosior	n initiation plus 6 years for a p	propagation and onset of dam	nage.				
7: Service life of Galvanized	CSP, Alu	iminized Type 2 CSF	P, CAAP, and Steel pipe consid	ers pH and resistivity.						
8: Service life of Galvanized	CSP is c	alculated using Ame	erican Iron and Steel Institite	(AISI) method.						
9: Service life of Aluminized	Type 2	CSP and CAAP are c	alculated using FDOT method							
10: Service life of CSP is cald	ulated u	using CALTRANS me	thod.							17
11: Service life of Cast Iron	oipe is c	alculated based on	Rajani model (2000).							1/
12: Service life of Plastic pipes is a constant as 75+ years.										

Wilmington (Coastal plains)

		NCDOT PI	PE MATERIAL SELECT	ION GUIDE							
			USER INPUT ¹				GPS COO	RDINATES ²	pH and resi	istivity	
pН	Resistivity (ohm-cm)		Abrasion level ³	Chloride ⁴ Nominal Diameter (in) of Cast Iron ⁵			LONGITUDE	LATITUDE		,	
4.6		10000	1	Very high	16		-77.886	34.21			
							*Note that the value of longitud	le should be negative	Chloric	de	
				SEI	RVICE LIFE ESTIMATION (Yea	rs)					
RCP ⁶ (REINFORCED CONCRETE PIPE) AASHTO M170	CSP ⁷ (CORRUGATED STEEL) AASHTO M36			CAAP ^{7,9} (CORRUGATED ALUMINUM) AASHTO M196	Steel ^{7,10}	Cast Iron ¹¹	Plastic Pipe ¹²				
	Galvanized CSP ⁸ Aluminized Type 2 CSP ⁹ AASHTO M218 AASHTO M274		HDPE AASHTO M294				PP ASTM F2764 OR AASHTO M330	PVC ASTM F949 OR AASHTO M304			
	18	37.1	-	-	17.8						
	16	46.3	64.6	49.6	23.2						
7.2	14 60.2		84.0	64.5	28.5	140.1	75 .				
7.2	12	83.4	116.3	89.3	39.2	140.1		75+			
18 37.1 - 17.8 16 46.3 64.6 49.6 23.2 14 60.2 84.0 64.5 28.5 12 83.4 116.3 89.3 39.2 10 106.6 148.7 114.1 49.9 8 129.8 181.0 138.9 60.6											
	8	129.8	181.0	138.9	60.6				ASTM F949 OR AASHTO M304		
1. Each contian can also be f	المطالعين			l field date							
1: Each section can also be i	hlorido	and sulfate will be a	ndation is to input measured	a neid data.							
2: The range of abrasion lev	el is fro	m 1 to 4 based on th	e reference tab: See the refe	vrence tab							
A: If the coordinate system i	er is iro	used the level of ch	oride will be shown from lov	w to extremely high: measure	d field data can also be filled	by engineers with the unit	of weight percept				
5: Nominal diameter needs	to he in	used, the level of chi	service life of cast iron nine	w to extremely high, measure	u field data call also be filled	by engineers with the unit	or weight percent.				
6: Service life of RCP is calcu	lated u	sing Life-365: Life-36	5 considers time to corrosion	n initiation plus 6 years for a p	ropagation and onset of dam	nage.					
7: Service life of Galvanized	CSP. Al	uminized Type 2 CSP.	CAAP, and Steel pipe consid	ers pH and resistivity.							
8: Service life of Galvanized	CSP is c	alculated using Amer	rican Iron and Steel Institite ((AISI) method.							
9: Service life of Aluminized	Type 2	CSP and CAAP are ca	lculated using FDOT method								
10: Service life of CSP is calc	ulated	using CALTRANS met	hod.							10	
11: Service life of Cast Iron	oipe is c	alculated based on R	ajani model (2000).							18	
12: Service life of Plastic pip	es is a c	onstant as 75+ years									

Concluding Remarks

- The first version of the pipe selection guide was developed; it has been once presented to NCDOT engineers
- Since then, the program have been updated and we are planning to have another meeting to show the detail of the program and collet their inputs to make sure that the program we delivered is useful and suitable for their application
- We are working on developing the program to calculate discount rate for galvanized and aluminized steel pipes that do not meet the minimum coating thickness requirements

Acknowledgements

- Project funding provided by the NCDOT
- Many thanks to the NCDOT steering committee and engineers for valuable comments

NC STATE UNIVERSITY

Department of Civil, Construction, & Environmental ENGINEERING

Email: hchoi24@ncsu.edu

Q&A

NC STATE UNIVERSITY

Observations of Recycled and Virgin Material Blending in RAP and RAS Mixtures

Cassie Castorena Associate Professor North Carolina State University <u>cahintz@ncsu.edu</u>

NCDOT Research and Innovation Summit October 13, 2020

Acknowledgements

Sonja Pape

- Graduate Research Assistant
- □ Financial support from the NCDOT under RP 2019-21

Introduction

- Recycled materials are included in the majority of asphalt mixtures produced in North Carolina, which can include:
 - Reclaimed asphalt pavement (RAP); and
 - Recycled asphalt shingles (RAS).
- Critical question for reliable mixture design:
 - Do recycled binders act as "black rocks" or blend with the virgin asphalt?

Methodology

Use of a Tracer to Track the Virgin Binder

Titanium dioxide (0.2 µm) particles added to virgin binder prior to fabricating asphalt mixture in the lab.

Submerged Photos

Energy Dispersive X-Ray Spectroscopy Scanning Electron Microscopy (EDS-SEM)

Methodology **Quantitative Inferences of Recycled Binder Contribution**

Sulfur

250um

Mar	sum Sner	trum
	Wt%	σ
С	63.3	0.1
0	25.4	0.1
Si	8.6	0.0
Al	0.8	0.0
Ca	0.5	0.0
Ti	0.4	0.0
Na	0.3	0.0
S	0.3	0.0
K	0.2	0.0
Fe	0.2	0.0
CI	0.1	0.0

Titanium

$$RBC = \frac{\left(\frac{Virgin_{Ti:S}}{Blend_{Ti:S}} - 1\right) \times (AC - RC) \times \frac{S_{V}}{S_{R}}}{RC} \times 100\%$$

where RBC = percentage of the total recycled binder within the virgin binder matrix; $Virgin_{Ti:S}$ = Ti:S ratio in the virgin binder; $Blend_{Ti:S}$ = Ti:S ratio in the location of interest; AC = total asphalt content; RC = recycled binder content; S_V = sulfur content of the virgin binder; and

 S_R = sulfur content of the recycled binder.

Jiang et al. (2018)

Materials

□ 9.5-mm Nominal Maximum Aggregate Size (NMAS) mixture

- 25 percent RAP
- 4 percent post-consumer RAS
- 6.3 percent total asphalt binder
- 29 percent Recycled Binder Ratio (RBR%)
 - 15 percent from RAP
 - 14 percent from PRAS
- PG 58-28 virgin binder

Sample Fabrication

□ Lab-mixed, lab-compacted gyratory sample prepared.

 38-mm diameter by 110-mm tall specimens extracted from the gyratory and subjected to cyclic fatigue loading.

Observations Visual

Fracture Surface

Sawn Surface

Observations Elemental Composition of Fracture Surface

Summary

Clusters of recycled materials prohibited complete blending of virgin and recycled binders in the asphalt mixture investigated.

- The fracture surface of the asphalt mixture contained no clusters, indicated the fracture propagated through the surrounding binder matrix.
- The binder matrix along the fracture surface of the mixture indicated an average recycled binder contribution of 40 percent, indicating that approximately 60 percent of the total recycled binder did not blend with the virgin asphalt.

Implications to Volumetric Asphalt Mixture Design

Credited recycled binder

 Results suggest that giving credit to all of the recycled binder can be erroneous and may result in insufficient virgin asphalt contents.

Virgin binder grade selection

- Results suggest that using a softer virgin binder grade in all high recycled material content mixtures may lead to a softer binder film than intended.
- Gradation
 - Clustering of the recycled material alters the effective gradation of the recycled aggregate.

NC STATE UNIVERSITY

Thank you!

Cassie Castorena

cahintz@ncsu.edu

NC STATE UNIVERSITY

Interface Shear Strength of Different Geosynthetic Interlayers

Lei Gabriel Xue Nithin Sudarsanan Y. Richard Kim

2020 NCDOT Research and Innovation Summit

October 13, 2020

Acknowledgment

- □ Financial support from NCDOT through RP-2019-19 project
- Geosynthetic manufacturers and GMA for providing materials and information

Presentation Outline

- Research Background and Objective
- Research Approach
- Materials and Test Method
- □ Pavement Response Analysis Using FlexPAVETM
- Proposed Interface Shear Strength Test and Acceptance Criterion
- Conclusions

NC STATE UNIVERSITY

Research Background

- Reflective cracking Major distress in asphalt overlay
 - Due to temperature change and repeated traffic load
- Geosynthetic interlayer acts as the reinforcing, stress absorbing system and prevents water infiltration into the old pavements, thereby, reduces reflective cracking.
- No standard performance tests available for geosynthetic interlayer products

NCDOT RP-2019-19 Project

- □ Title: Development of Geosynthetic Pavement Interlayer Improvements
- Objective: Develop performance testing methodologies and performance criteria for geosynthetics used in pavement interlayer applications that can be used in performance specifications and product selection guidelines by the NCDOT
- Scope: Geosynthetic interlayer products that are placed between asphalt layers

Distresses in Asphalt Overlays

No interlayer with good bonding

> Interlayer with poor bonding

Research Approach to Debonding Evaluation

Geosynthetic-Reinforced Specimen

Study Geosynthetic Interlayers

PG 64-22 binder as a tack coat

□ Manufacturer recommended tack coat application rates were used.

Modified Asphalt Shear Tester (MAST)

ISS Test Experimental Design

Factors	Conditions						
Geosynthetic Types	PC#1	PC#2	PM	PF	PaG		
Test Temperature	23°C, 35°C, 54°C						
Application Rate	Dry, Optimal, Wet						
Loading Rate	5.08 mm/min (0.2 in./min)						
Confinement (Normal Stress)	172 kPa (25 psi), 276 kPa (40 psi), 483 kPa (70 psi)						

Time-Temperature Superposition of ISS

ISS Observations

- Presence of any type of geosynthetic interlayer at any testing condition reduces the ISS.
- ISS decreases with an increase of temperature and decrease of loading rate.
- ISS increases with an increase of confining pressure.
- Paving composite #1 and paving grid display higher ISS than paving composite #2, paving mat, and paving fabric.
- Effect of tack coat application rate on the ISS is not clear.

ISS Prediction Model

$$\tau_f = (a \times \dot{\gamma}_R^{\ b}) \times \sigma_c + c \times \dot{\gamma}_R^{\ d} + e \times \sigma_c = (a \times \dot{\gamma}_R^{\ b} + e) \times \sigma_c + c \times \dot{\gamma}_R^{\ d}$$

Geosynthetic Type	а	b	С	d	е	R ²
PC#1	227.80	2.48	893.70	0.13	0.55	0.991
РМ	44.92	14.17	1130.00	0.22	0.77	0.821

NC STATE UNIVERSITY

Pavement Structure for FlexPAVETM Analysis

NC STATE UNIVERSITY

Traffic Direction

9.04 cm (3.56 in)

21.44 cm (8.44 in)

15.24 cm (6 in)

Pavement Response Analysis

MSR of PC#1 and PM

MSR occurs in front of the tire along the center-line of the tire.
PM shows a higher MSR than PC#1 reinforced pavements.

NC STATE UNIVERSITY

□ The interlayer shear resistance is poorer when the vehicle speed is lower.

Acceptance Criterion

Conclusions

- The presence of any geosynthetic product at any testing condition reduced the ISS in comparison to the control specimen.
- Paving composite #1 (PC#1) and paving grid (PaG) display the higher shear strength among the geosynthetic-reinforced specimens, while paving mat (PM), paving fabric (PF), and paving composite #2 (PC#2) show lower shear strength.
- Higher temperature, lower speed, and thinner overlay condition yield higher MSR values. This phenomenon indicates that the interlayer shear resistant ability is the weakest while the vehicle is about to stop during hot days.
- The MAST test condition for the acceptance of geosynthetic interlayer materials includes 50°C (122°F), 5.08 mm/min (0.2 in./min) displacement rate, and 275.8 kPa (40 psi) confining pressure. The minimum required shear strength for geosynthetic-reinforced specimens at this condition is 305 kPa (44 psi). This threshold value may need to be adjusted for different machines due to different machine compliance.

NC STATE

Thank You!

