

Design and Performance of Reclaimed Asphalt Mixtures

Cassie Castorena, Pl

Associate Professor

Department of Civil, Construction, and Environmental Engineering North Carolina State University

NCDOT Innovation Summit August 14, 2018

Acknowledgements

NCSU Graduate Students

- Sonja Pape, Douglas Mocelin, Mukesh Ravichandran, and Noor Saleh
- Funding
 - NCDOT RP 2019-21, NCHRP Project 09-54

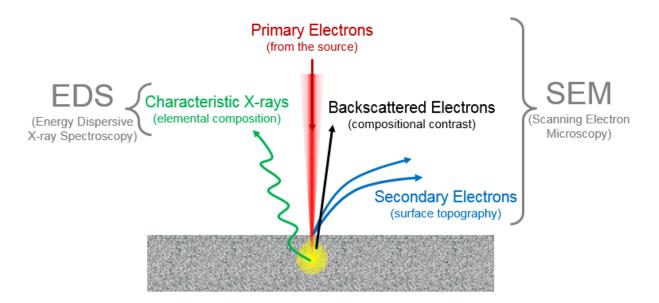
Outline

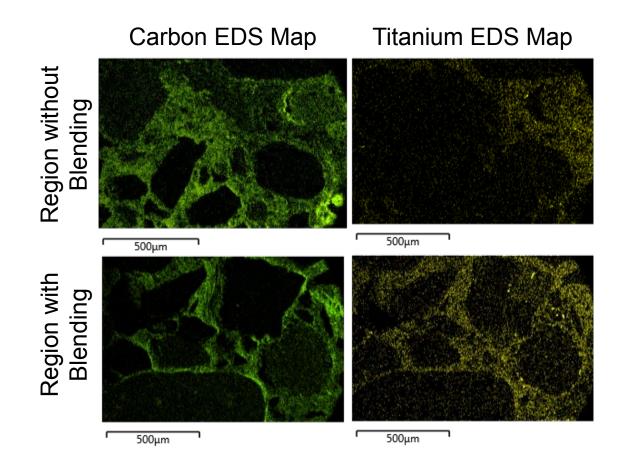
Background

- Experimental Method to Quantify Blending in Reclaimed Asphalt Mixtures
- Systematic Study of the Effect of RAP on Cracking Performance of North Carolina Mixtures
- Summary of Findings
- Future Research Direction

Background

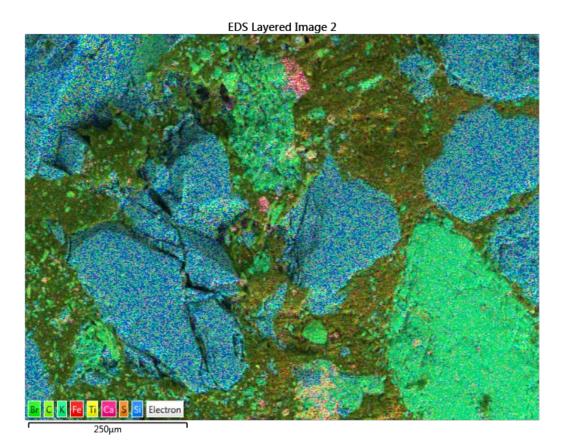
- The use of high reclaimed asphalt pavement (RAP) and reclaimed asphalt shingles (RAS) shingle content asphalt mixtures is on the rise
- Critical questions preclude reliable virgin binder grade selection and volumetric design of RAP and RAS mixtures
 - Does the recycled binder act as "black rock" or blend with the virgin asphalt?
 - How do reclaimed materials affect long-term performance?



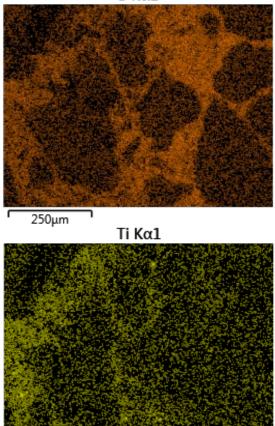

Experimental Method to Quantify Blending Levels in Reclaimed Asphalt Mixtures

Energy Dispersive X-ray Spectroscopy Scanning Electron Microscopy (EDS-SEM) applied to asphalt mixtures prepared with a titanium dioxide tracer added to the virgin binder

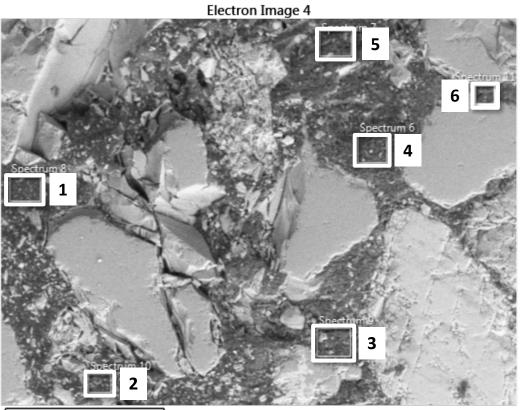
Visualization of Blending using EDS-SEM


NC Asphalt Mixture Analyzed

- RS9.5C with 25 percent RAP and 4 percent RAS
- Samples produced following AASHTO T 312 with 10 percent by mass of titanium dioxide (0.15 µm particles) added to the virgin binder using a high shear mixer
- Samples sawn into small prisms and polished prior to EDS-SEM analysis



Blending Analysis Results



S Kα1

250µm

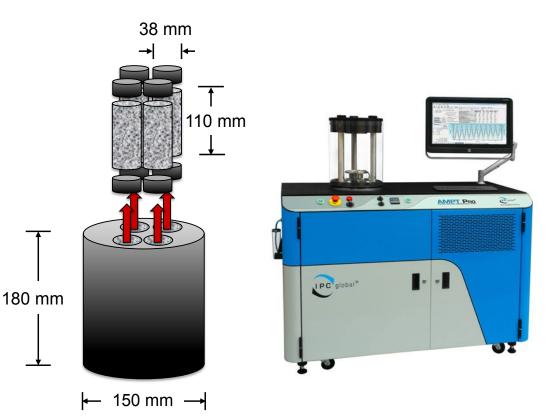
Blending Analysis Results

Area	Ti (%)
Entire	0.5
1	1.8
2	1.4
3	0.4
4	0.3
5	0.2
6	0.2

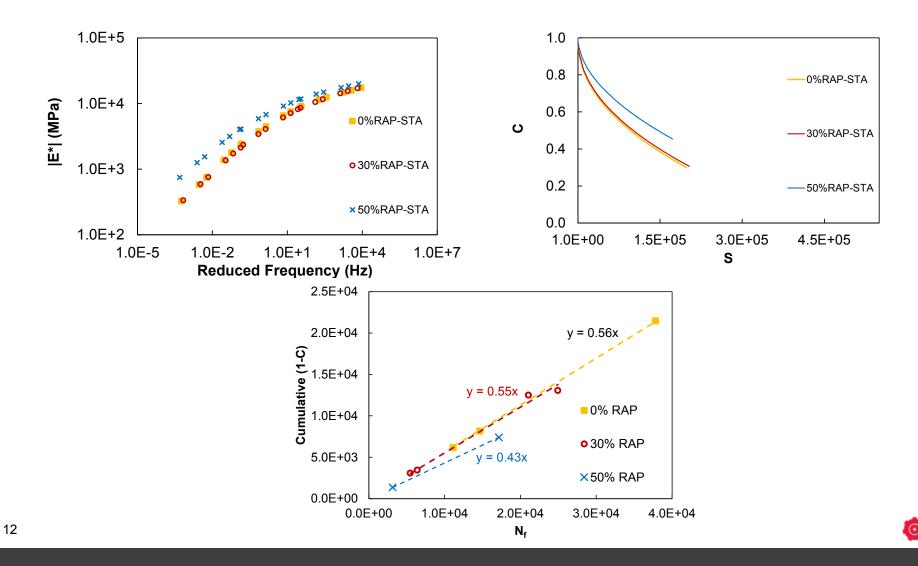
250µm

Systematic Study of the Effect of RAP on Asphalt Mixture Cracking Performance

🗆 RS 9.5B


- Three RAP contents
- Gradation kept consistent for different RAP contents
- Laboratory-mixed, laboratory-compacted samples

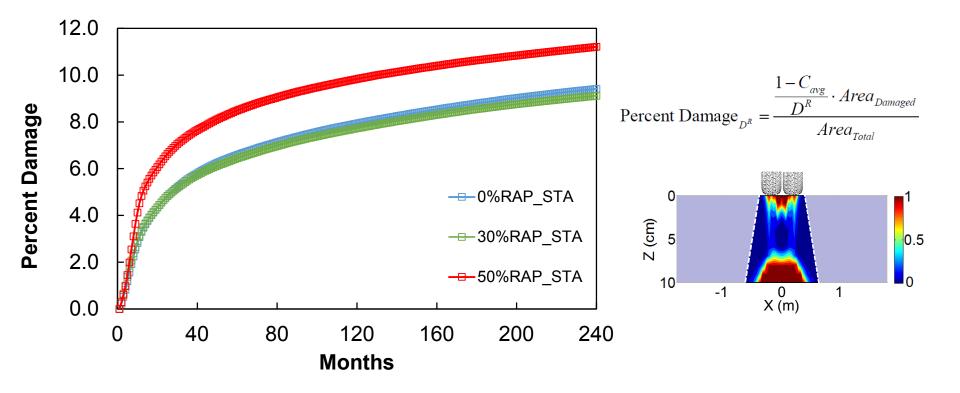
RAP Content (%)	Virgin Binder Grade
0	PG 64-22
30	PG 58-28
50	PG 58-28


Performance Testing

- Asphalt Mixture Performance Tester (AMPT) of small specimens
 - Preparations: AASHTO PP 99
 - Dynamic Modulus: AASHTO TP 132
 - Cyclic Fatigue: AASHTO TP 133

Material Level Results

Pavement Performance Simulations



- North Carolina climate
- 1,000 daily ESALs
- 60 mph

12 inch
Asphalt, H=4
Aggregate Base, H=10 inch, E=40,000 psi
Subgrade, E=10,000 psi

Pavement Performance Simulation Results

14

Summary of Findings

- EDS-SEM can be used to detect blending levels in reclaimed asphalt mixtures when a titanium dioxide tracer is added to the virgin binder
- A blending analysis of a NC mixture indicates poor blending between RAS and virgin binders but blending between RAP and virgin binders
- A study of the effect of RAP on the performance of NC mixtures indicates a negligible change in performance when the RAP content is increased from zero to 30 percent and increased cracking susceptibility when the RAP content is increased to 50 percent

Future Research Direction

- Elucidate recycled binder contribution in RAP and RAS mixtures as a function of material and laboratory fabrication variables
- Evaluate the effect of blending levels on asphalt mixture performance
- Develop improved procedures for the virgin binder grade selection and volumetric design of RAP and RAS mixtures

NC STATE

Think and Do ncsu.edu

Development of a Tack Coat Quality Control Program for Mitigating Delamination in Asphalt Pavement Layers NCDOT Research Project 2018-13

NCDOT Research Summit

May 7th, 2019

Background

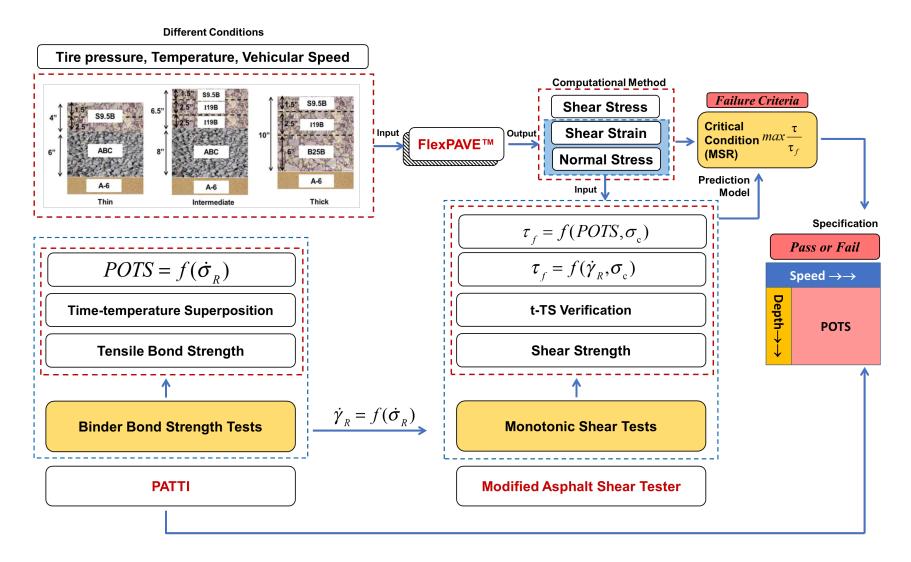
Distresses associated with poor bonding

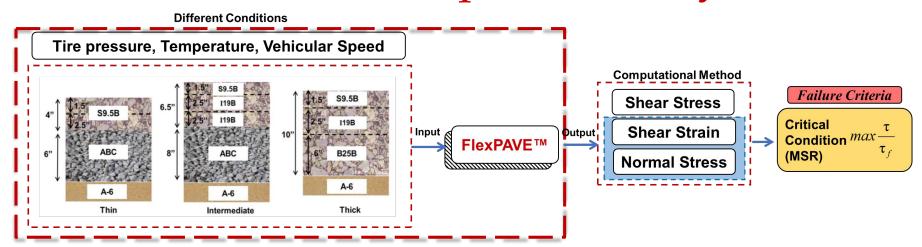
- Slippage and shoving
- Fatigue cracking
- Potholes

Costly Pavement Repairs

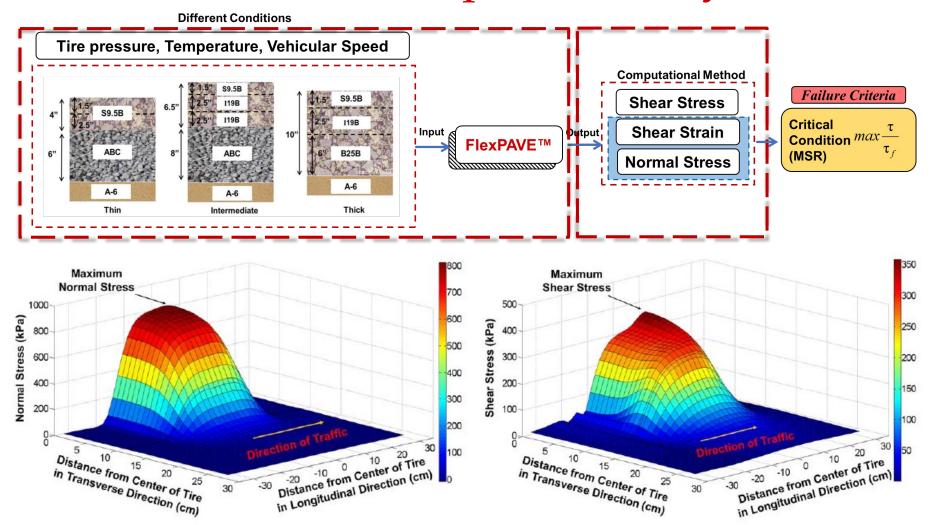
Tack coat promote the bond between pavement layers

Performance Factors

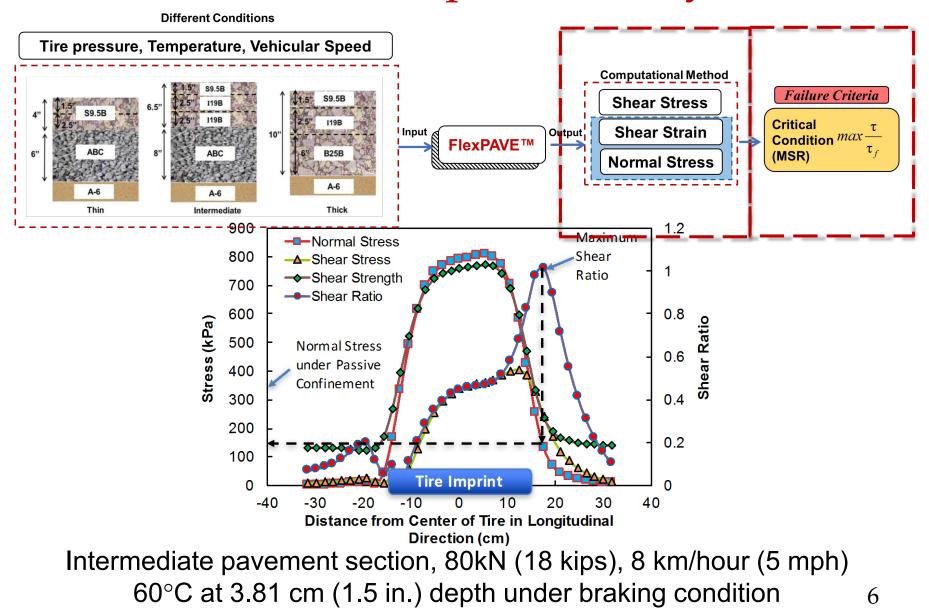

- Application Rate
- Tack Coat Material
- Temperature
- Curing Time
- Existing Surface Condition


Image: Pavement Interactive

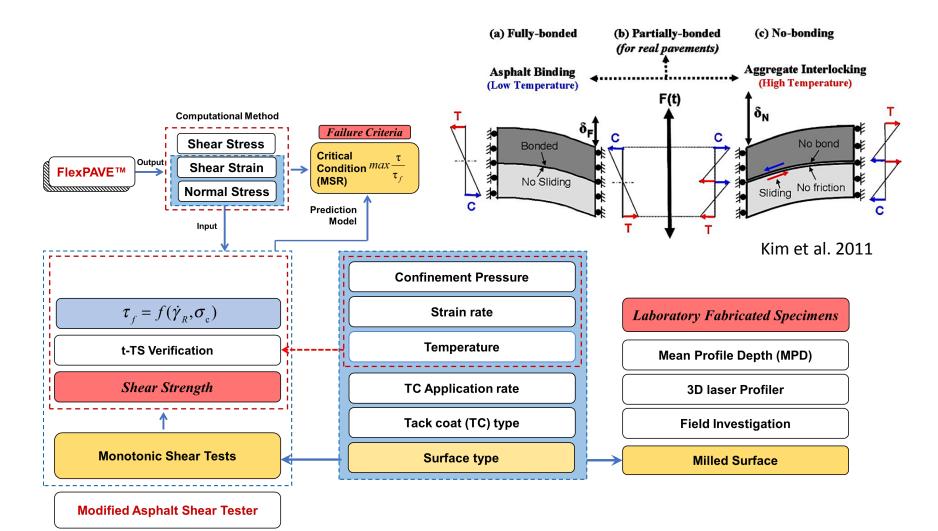
Research Plan


Pavement Response Analysis

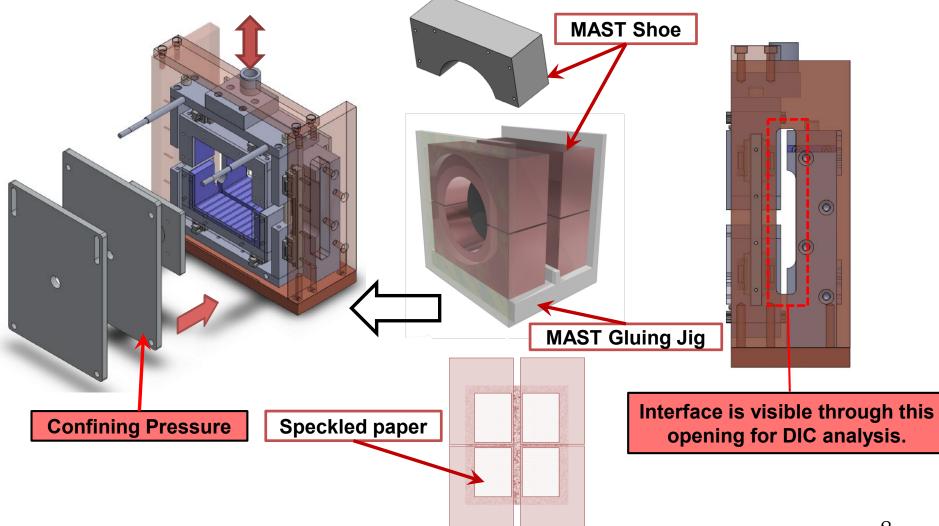
Three dimensional layered viscoelastic analysis for moving loads and thermal stresses under realistic loading and temperature conditions

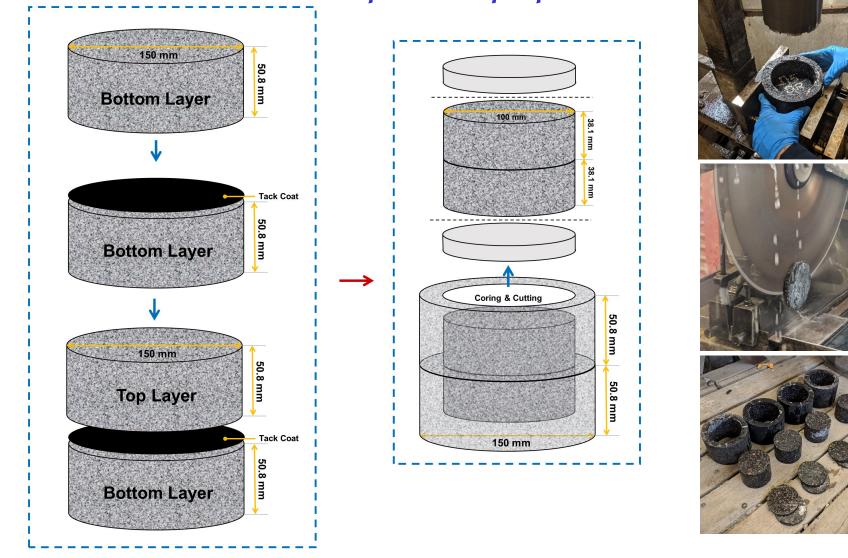

📣 LVE Program			🕖 LVE Program				
File Analysis Tools Help			File Analysis Tools Help				
🗋 🗃 🛃 🕨 📵 🔍 🔍			🗋 🗃 🖬 🕨 🚺 🔍 ର୍ 🐙				
	Pecult Information X Fatigue Cracking Recults X Rutting Recults X Structure General Information Structure Name Fielded 3-Layer Pavement Pavement/Lane Width (ft) 12 Add Layer Remove Layer More Layer Add Layer Act (Cick to Edit Layer) Subgrade (Cick to Edit Layer) Subgrade (Cick to Edit Layer)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Result Information × Results Type Spatial Distribution Time History	Choose Component Stress	Traffic Load-Stor @ T = 0.055 sec. July 15:00 AM to Noon	
		-					×

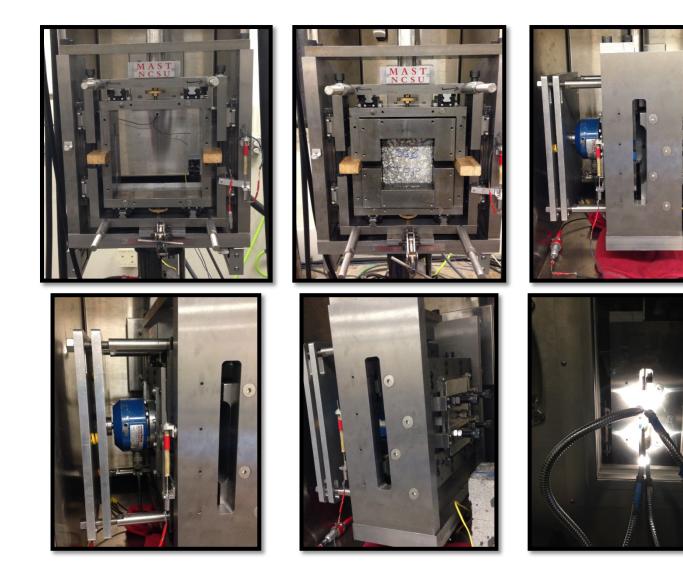
Pavement Response Analysis

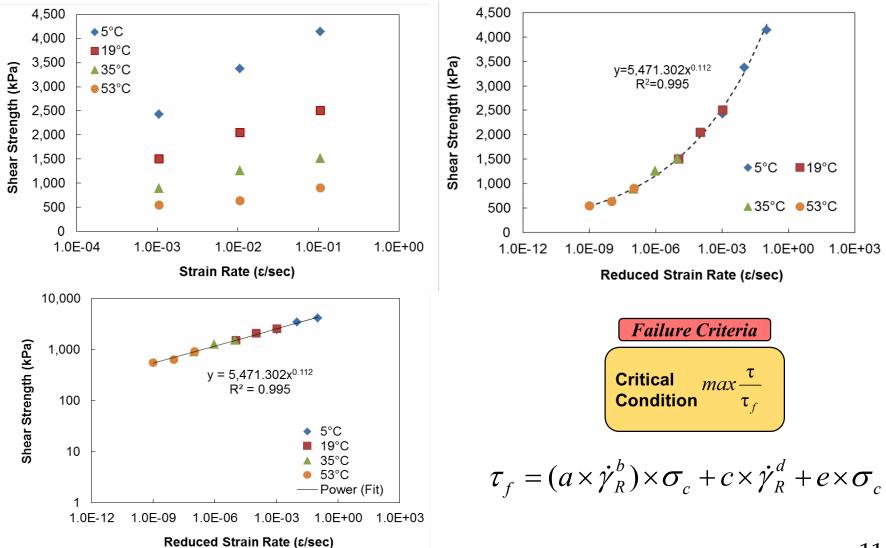


Intermediate pavement section, 80kN (18 kips), 8 km/hour (5 mph) 60°C at 3.81 cm (1.5 in.) depth under braking condition

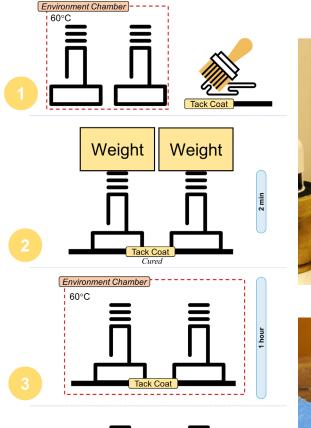

Pavement Response Analysis

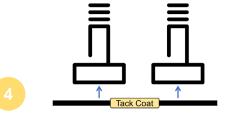

Interface Shear Strength

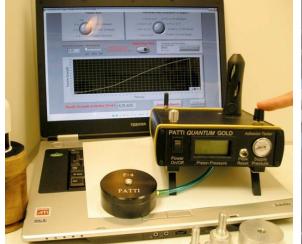

Interface Shear Strength Modified Asphalt Shear Tester (MAST)


Interface Shear Strength MAST specimen preparation


Interface Shear Strength MAST Test Setup

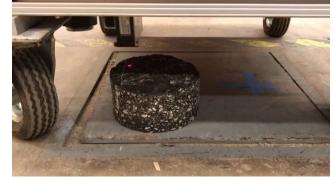

Interface Shear Strength Prediction Model

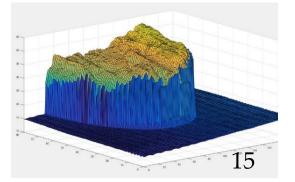


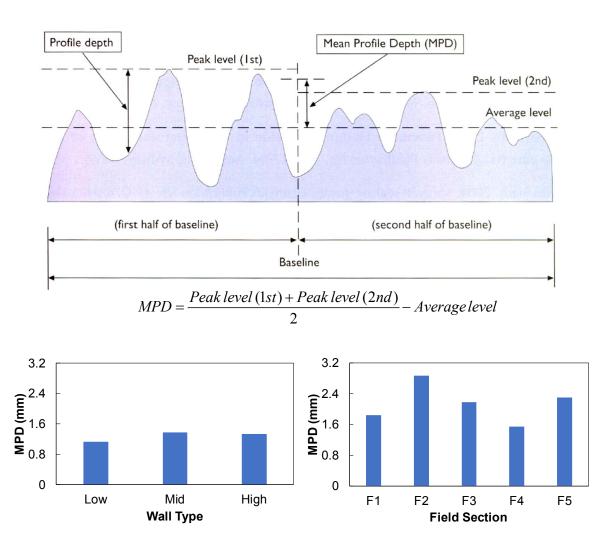

Binder Bond Strength

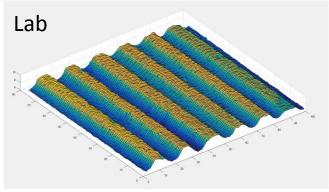
Binder Bond Strength Pneumatic Adhesion Tensile Testing Instrument (PATTI)

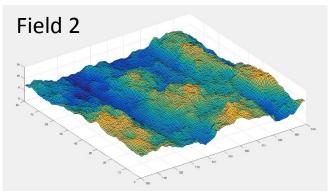
Interface Shear Strength RP 2018-13 Experimental Design

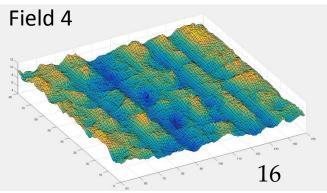

Factors	Conditions						
Tack coat type	CRS-2	CRS-1h	NTCRS	6-1hM	Ultrafuse	No tack	
Test temperature	5°C, 19°C, 35°C, 53°C						
Application rate	0.0452 L/m² (0.01 gal/yd²), 0.136 L/m² (0.03 gal/yd²), 0.226 L/m² (0.05 gal/yd²)						
Loading rate	50.8 mm/min (2 in./min), 5.08 mm/min (0.2 in./min), 0.508 mm/min (0.02 in./min)						
Confinement (normal stress)	69 kPa (10 psi), 276 kPa (40 psi), 483 kPa (70 psi)						
Surface	Ungrooved Surface (U) Grooved Surface ((G)			


Milled SurfacesField, Maynard Rd, Cary, NCField core samples

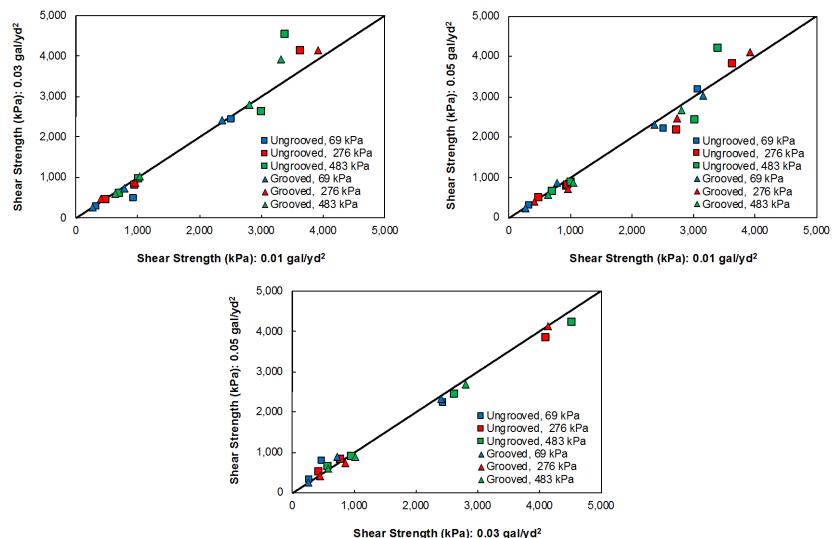

3D Laser Scanner

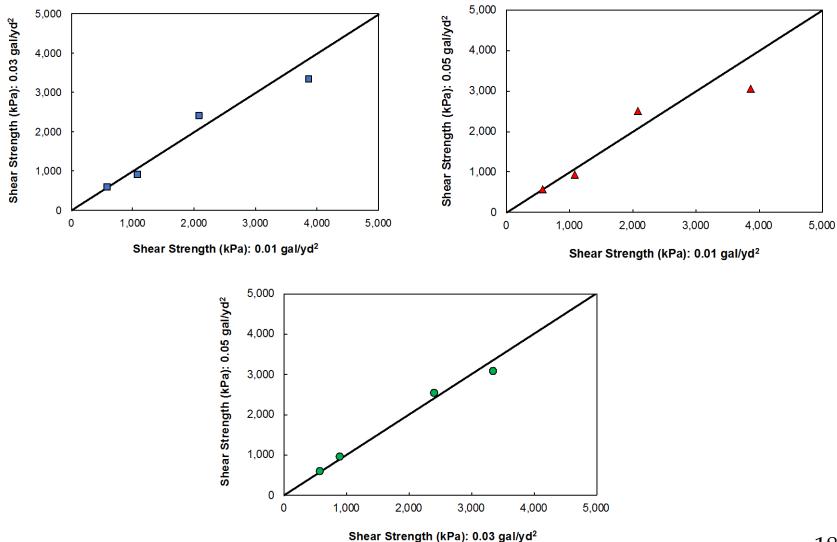


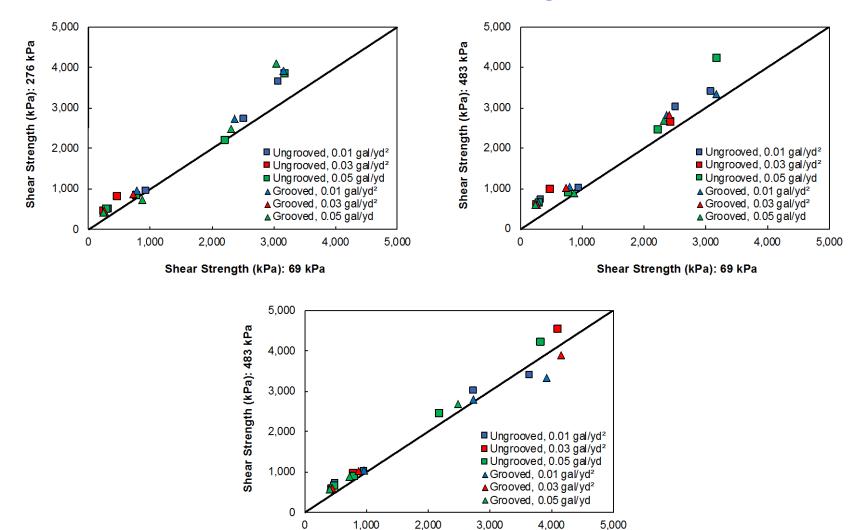




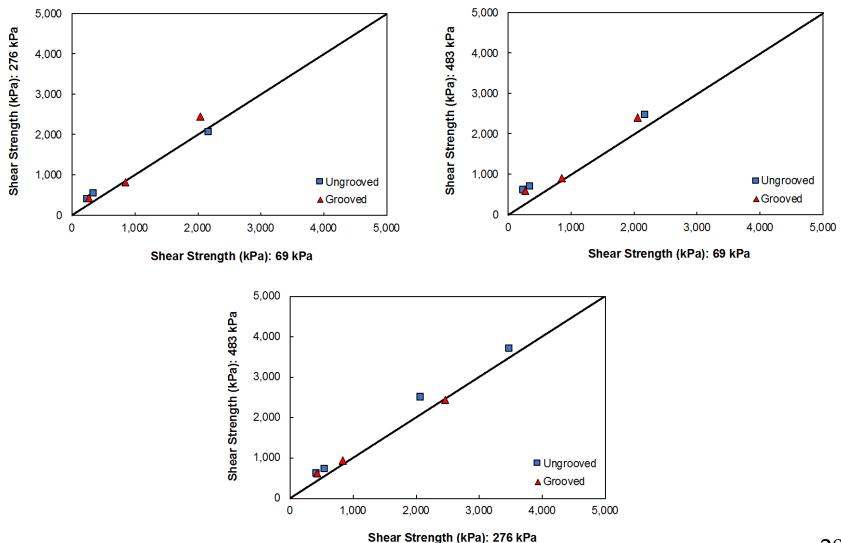
Milled Surface Mean Profile Depth (MPD)



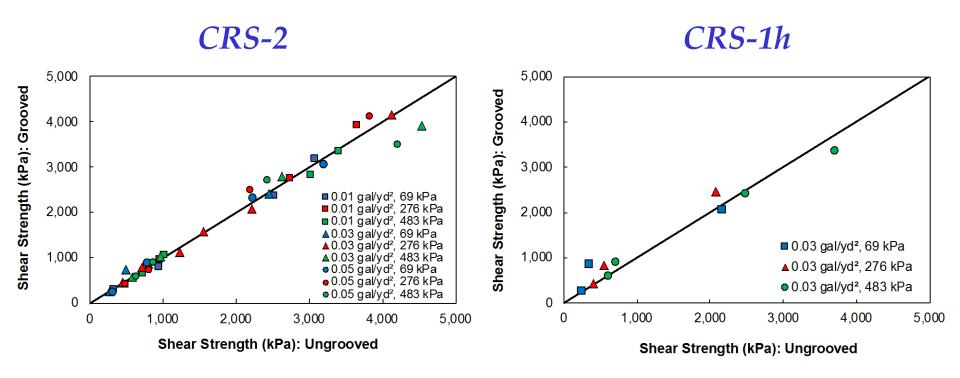



Effect of Application Rate CRS-2: Grooved and Ungrooved

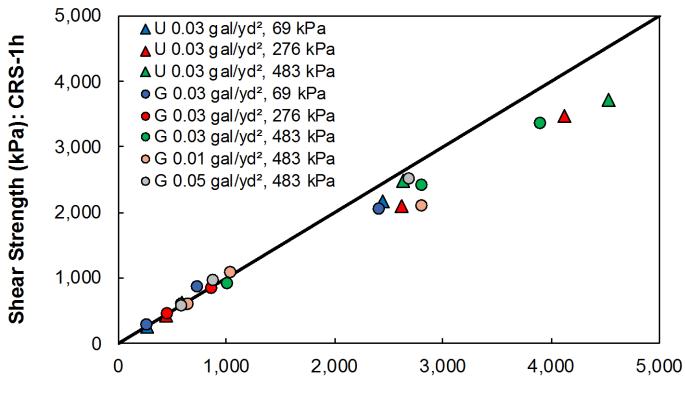
Effect of Application Rate CRS-1h, Grooved



Effect of Confining Pressure CRS-2: Grooved and Ungrooved

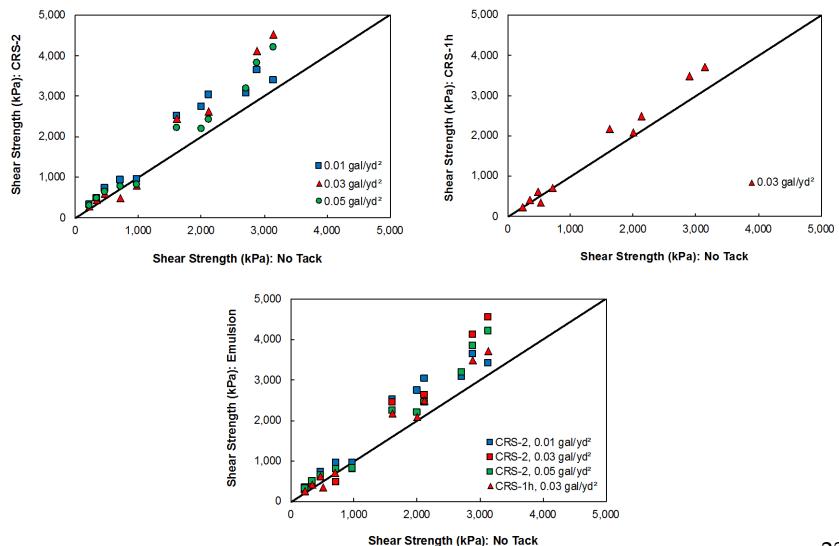

Shear Strength (kPa): 276 kPa

Effect of Confining Pressure CRS-1h: Grooved and Ungrooved



NC STATE UNIVERSITY

Effect of Surface Type Grooved vs. Ungrooved



Effect of Tack Coat Material CRS-2 vs. CRS-1h

Shear Strength (kPa): CRS-2

Effect of Tack Coat Material CRS-2 & CRS-1h vs. No Tack

NC STATE UNIVERSITY

Specimens after MAST test Confining Pr = 40 psi, Temp. = 19 °C, Strain rate= 50 mm/min

Conclusions

- A mechanistic framework for the evaluation of tack coat quality has been established using BBS of binder, ISS of mixture, and FlexPAVETM for pavement analysis.
- Time-temperature superposition of BBS and ISS has been verified.
- Effects of tack coat application rate in ISS are found insignificant.
- Effects of confining pressure on ISS are found to be significant.
- CRS-2 tack coat demonstrated higher ISS than CRS-1h tack coat.
- Milled surface condition did not change the ISS from the unmilled surface condition. However, this conclusion is based on laboratory-fabricated milled surface condition where the shear loading direction was aligned to the groove direction. The results from milled surface with random groove pattern in the field are expected to be different.

NC STATE UNIVERSITY

Thank you!

Questions?

Impact of Local M-EPDG Calibration Using Sustainable Materials

> Tara Cavalline, PhD, PE Brett Tempest, PhD, PE Edward Blanchard Clay Medlin Rohit Chimmula

NCDOT Research and Innovation Summit May 7, 2019

Background

- NCDOT has used Pavement ME Design software program for design of pavements (based on M-EPDG)
- Best results are obtained using locally calibrated input values
- Local inputs for concrete pavements needed
- Thermal inputs are of particular interest
- Portland Limestone Cements (PLC) have been shown to reduce the carbon footprint of concrete
- PLCs are commonly used in concrete produced in Europe and Canada
- Increasing number of states are allowing use of PLCs.
- North Carolina has recently made provisions to allow PLCs, but do not have experience with PLCs in concrete mixtures with local materials

Project Objectives

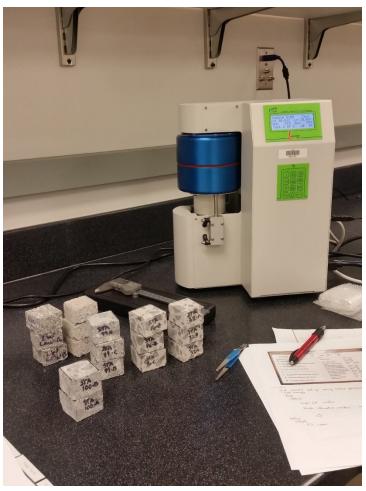
- 1. Develop and batch concrete mixtures for concrete pavements
 - Utilize aggregates from Mountain, Piedmont, and Coastal regions
 - Utilize manufactured sand (2MS) and natural sand
 - Utilize both Type I/II OPC as well as PLC
 - PLC produced from same clinker as Type I/II OPC
 - Two types of fly ash
- 2. Perform laboratory testing to determine:
 - Determine mechanical properties
 - Determine thermal characteristics
 - Evaluate durability performance
- 3. Prepare a catalog of concrete characteristics for use by NCDOT as inputs in Pavement ME Design

Analysis Focus Areas

- 1. Sensitivity analysis and implications of new inputs on concrete pavement design
- 2. Durability performance of mixtures used for concrete pavements
- 3. Quantifying sustainability benefits of PLC use
- Project report: NCDOT RP 2015-03, "Improved Data for Mechanistic-Empirical Pavement Design for Concrete Pavements."
- Cavalline, T.L, Tempest, B.Q., Blanchard, E.H., Medlin, C.D., Chimmula, R.R., and Morrison, C.S. (2018), "Impact of Local Calibration Using Sustainable Materials for Rigid Pavement Analysis and Design." ASCE Journal of Transportation Engineering, Part B: Pavements, 144(4).

Mixture		Ма	terial Types		cted ons, pcy	
ID*	Cement	Fly Ash	Coarse Aggregate	Fine Aggregate	Cement	Fly Ash
C.A.N.M		None	Coastal	Manuf. Sand	573	0
M.A.N.M		None	Mountain	Manuf. Sand	573	0
P.A.N.M	OPC	None		Manuf. Sand	573	0
P.A.N.N	Source A	None	Piedmont	Natural Sand	573	0
P.A.A.M		Source A	Pleumont	Manuf. Sand	460	137
P.A.B.M		Source B		Manuf. Sand	460	137
C.B.N.M		None	Coastal	Manuf. Sand	573	0
M.B.N.M		None	Mountain	Manuf. Sand	573	0
P.B.N.M	OPC	None		Manuf. Sand	573	0
P.B.N.N	Source B	None	Piedmont	Natural Sand	573	0
P.B.A.M		Source A	Pleamont	Manuf. Sand	460	137
P.B.B.M		Source B		Manuf. Sand	460	137
C.BL.N.M		None	Coastal	Manuf. Sand	573	0
M.BL.N.M	PLC	None	Mountain	Manuf. Sand	573	0
P.BL.N.M	(produced	None		Manuf. Sand	573	0
P.BL.N.N	from OPC	None	Diodmont	Natural Sand	573	0
P.BL.A.M	Source B)	Source A	Piedmont	Manuf. Sand	460	137
P.BL.B.M		Source B		Manuf. Sand	460	137

*Note: Explanation of Mixture ID coding: First letter, coarse aggregate type (C = Coastal, P = Piedmont, M = Mountain), Second letter, cement type (A = OPC source A, B = OPC source B, BL = PLC), Third letter, fly ash type (N = None, A = fly ash source A, B = fly ash source B), Fourth letter, fine aggregate type: M = manufactured sand, N = natural sand


Laboratory Testing Program

	Test	Protocol	Age(s) in	Replicates
			days	-
	Air content	ASTM C231 and Super	Fresh	1 each type of
ے		air meter		test, each batch
Fresh	Slump	ASTM C143	Fresh	1
Ē	Fresh density (unit weight)	ASTM C138	Fresh	1
	Temperature	AASHTO T309	Fresh	1
	Compressive strength	ASTM C39	3, 7, 28, 90	3 each age
	Resistivity	AASHTO TP95-11	3, 7, 28, 90	3 each age
	Modulus of rupture	ASTM C78	28	2
	Modulus of elasticity and Poisson's	ASTM C469	28	2
	ratio			
	Coefficient of thermal expansion	AASHTO T336	28	3
hed	Heat capacity	ASTM C2766	56	3
Hardened	Thermal conductivity	ASTM E1952	56	3
Hai	Shrinkage	ASTM C157	per standard	3
	Cracking potential	ASTM C1581	per standard	3
	Rapid chloride permeability	ASTM C1202	28	2
	Freezing and thawing resistance	ASTM C666,	per standard	3
		procedure A		
	Thaumasite attack **	CSA A3004-C8	per standard	6

Thermal Property Test Equipment

Summary of Findings - Mechanical Properties

- PLC performed similarly to OPC in mechanical property test results, providing incentive to use this sustainable alternative to OPC.
- Coarse aggregate type did not significantly influence laboratory tests used to determine MEPDG inputs.
- Including fly ash in in pavement mixtures improves durability and sustainability, but makes 28-day compressive strength an unsuitable M-EPDG input.
- <u>Modulus of elasticity</u> values (at 28-days) for all mixtures ranged from of 2,400,000 psi to 3,700,000 psi. This is lower than the suggested range of 3,000,000 psi to 4,000,000 psi suggested in the MEPDG literature.
- Many of the mixtures exhibited <u>Poisson's ratio</u> test results that were higher than the suggested range provided in the MEPDG literature (0.15 to 0.18).

Summary of Findings - Thermal Properties

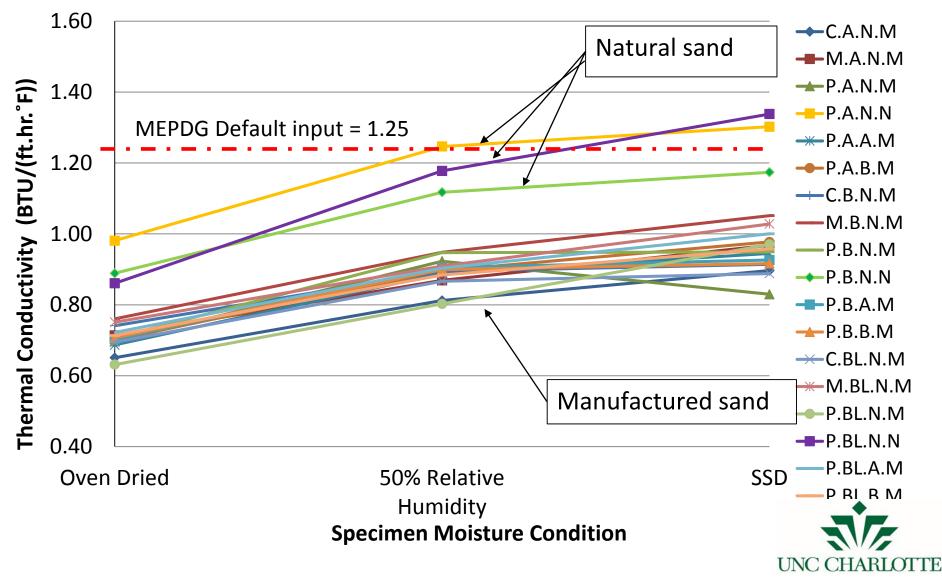
Coefficient of Thermal Expansion

- Measured CTE values are <u>consistently lower</u> than the CTE values currently used by NCDOT.
- Measured CTE values were significantly lower than the recommended values suggested in the MEPDG literature for granitic gneiss and limestone.
- Mixtures containing the <u>natural sand</u> had a notably <u>higher coefficient of</u> <u>thermal expansion</u> than those containing the manufactured sand.
 - Movement towards use of 2MS associated with lower CTE and potentially improved thermal performance
 - Implications on CTE for concrete mixtures that are blends of manufactured and natural sand?

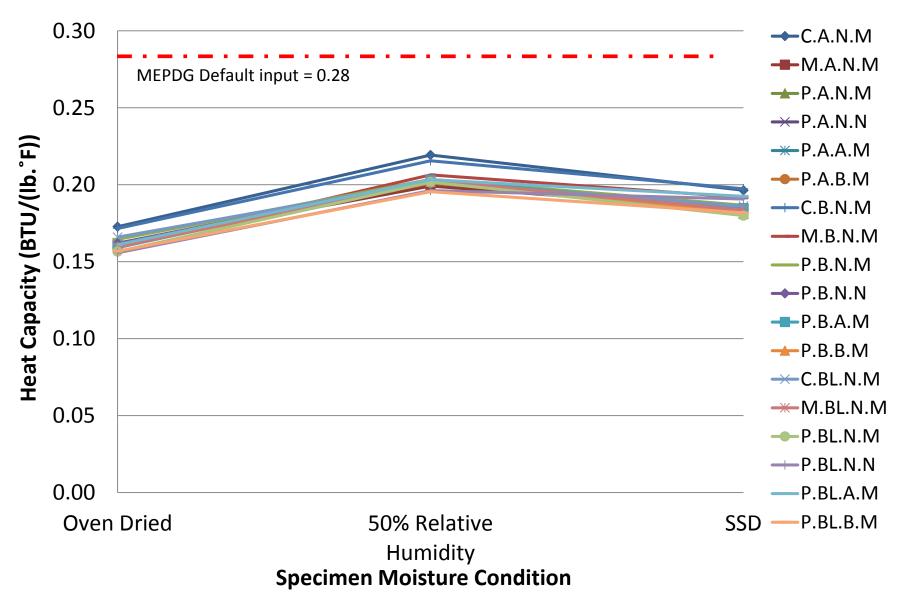
Summary of Findings - Thermal Properties

Thermal Conductivity

- For mixtures with the <u>manufactured sand</u> an MEPDG input for thermal conductivity of 0.80 to 0.90 BTU/(ft·hr·°F) appears to be reasonable.
 - Significantly lower than the default input value is 1.25 BTU/(ft·hr·°F).
- Mixtures with the <u>natural sand</u> had a higher thermal conductivity, closer to the default value of 1.25 BTU/(ft·hr·°F).


Heat Capacity

- All measured values for heat capacity were notably lower than the default values suggested in the MEPDG literature.
- Regardless of materials utilized, an MEPDG input for heat capacity of 0.20 BTU/lb·ft appears to be reasonable. The default value is 0.28 BTU/lb·ft.
- The effect of sand type on heat capacity is not readily evident.


***Role of moisture content of concrete specimen was investigated. ***

Influence of Specimen Moisture Condition on Thermal Conductivity

Impact of Specimen Moisture Condition Heat Capacity

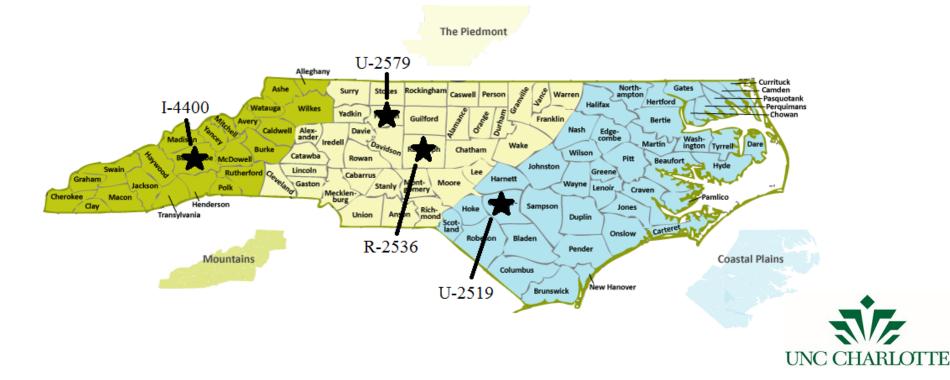
Proposed Catalog of Inputs

Ма	aterials			N	И-EPDG	Input							
Coarse Aggr.	Fine Aggr.	Fly Ash	Unit Wt (pcf)	MOE (psi)	Pois. Ratio	MOR (psi)	CTE, (in/in/°F)	Heat Cap. BTU/(Ib·°F)	Thermal Cond. (BTU/(ft·hr ·°F)				
Piedmont	Man. Sand	No	145	3,000,000	0.19	660	4.63×10 ⁻⁶		0.95				
Piedmont	Man. Sand	Yes	142	2,500,000	0.19	000	4.57×10 ⁻⁶	0.22	0.90				
Piedmont	Natural Sand	No	142	3,400,000	0.16	740	5.40×10 ⁻⁶		1.20				
Mountain	Man. Sand	No	146	2,700,000	0.19	0.10 ((660	4.56×10 ⁻⁶		0.95			
Coastal	Man. Sand	No	139	3,500,000		000	4.30×10 ⁻⁶		0.90				

NCDOT often utilized	150	4,200,000	0.17 0.20	650 690	6.0×10 ⁻⁶	0.28	1.25
MEPDG suggested	150	4,200,000	0.20	690	5.5×10 ⁻⁶	0.28	1.25

Sensitivity Analysis Results Effect of Increase of Each Input on Predicted Distress

Input	Terminal IRI (in/mile)	Mean Joint Faulting (in)	Transverse Cracking (% slabs cracked)
Unit weight 个	Decrease (VS)	Decrease (S)	Decrease (N)
Modulus of rupture ↑	Decrease (VS)	Neutral (N)	Decrease (VS)
Modulus of elasticity \uparrow	Increase (S)	Increase (S)	Increase (S)
Poisson's ratio 个	Increase (S)	Increase (S)	Increase (S)
CTE ↑	Increase (VS)	Increase (VS)	Increase (S)
Thermal conductivity 个	Increase, then decrease (N)	Increase (S)	Decrease (VS)
Heat Capacity 个	Decrease (N)	Neutral (N)	Decrease (S)


VS = Very Sensitive, S = Sensitive, N = Neutral

Implications of New Inputs on Concrete Pavement Design

NCDOT Selected Projects of Interest

- Project: I-4400 I-26 in Buncombe Co.
- Project: U-2579 W-S Northern Beltway, Forsyth Co.
- Project: R-2536 Asheboro Bypass, Randolph Co.
- Project: U-2519 Fayetteville Outer Loop, Cumberland Co.

Minimal Influence of Cement Type

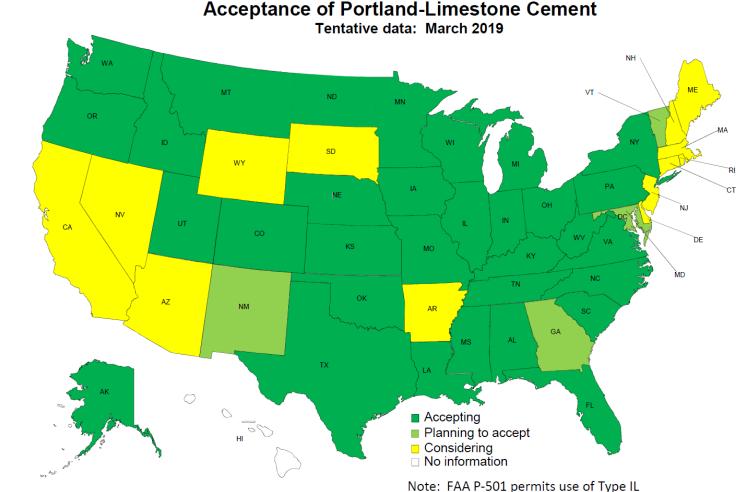
	Piedmont - Forsyth Co.						
	NCDOT Project	U-2579C Versus	Piedmont	Aggregate			
				NCDOT 2MS Manufactured Sand with B Cement	NCDOT 2MS Manufactured Sand with BL Cement	C-33 Natural Sand with B Cement	C-33 Natural Sand with BL Cement
-	Pavement Thickness (in)	/ 13	11	11	11	11	11
-	Cementitious Material Content (lb	/yd ⁵)	600	550	550	550	550
	Water to cement ratio Unit Weight (PCF)		0.42	0.48	0.48	0.48	0.48 141
	28 Day Compressive Strength (p	si)	150	4,850	5,020	4,390	5,190
Layer 1: PCC	28 Day Modulus of Rupture (ps	/	690	670	655	715	753
yer	28 Day Modulus of Elasticity (p	(3,510,000	
La	Poisson's Ratio			0.20	0.18	0.19	0.15
	Coefficient of Thermal Expansion (x 10	^{−6} in/in°F)	6.00	4.63	4.54	5.31	5.32
	Heat Capacity (Btu/lb-°F)		0.28	0.20	0.20	0.20	0.20
	Thermal Conductivity (Btu/(ft)(hr)	(°F))	1.25	0.95	0.80	1.12	1.18
	Layer 2:		4.25 inches of Flexible Pavement				
	Layer 3:		8 inches of Lime Stabilized				
	Layer 4:		~	12 inches of A-2-5 Subgrade			
	Layer 5:		Se	Semi-infinite layer of A-2-5 Subgrade			
	Climate Data	195 00 (T	121.00	Winston Salem, NC			121.01
cess	Terminal IRI (in/mile)	185.00 (Target)		117.80	112.06	126.66	121.81
Distress	Mean Joint Faulting (in) 0.12 (Target			0.06	0.05	0.07	0.07
	JTCT Transverse Clacking (percent stabs)			3.83	3.83	3.83	3.83
AniseTerminal IRI (in/mile)Mean Joint Faulting (in)JPCP Transverse Cracking (percent slabs)				99.99	100.00	99.93	99.97
Mean Joint Faulting (in)			99.34	99.98	100.00	99.76	99.92
Re	JPCP Transverse Cracking (percent	slabs)	99.83	99.96	99.96	99.96	99.96

Improved Performance with Local Inputs

	Piedmont - Forsyth Co.						
	NCDOT Project	U-2579C Versus	Piedmont Ag	gregate			
		NCDOT Project U-2579C Forsyth Co.	NCDOT 2MS Manufactured Sand 11 inch	NCDOT 2MS Manufactured Sand 10.5 inch	NCDOT 2MS Manufactured Sand 10 inch		
	Pavement Thickness (in)		11	11	10.5	10	
	Dowel Diameter (in)	2	1.5	1.5	1.25	1.25	
	Cementitious Material Content (I	600	550	550	550		
2	Water to cement ratio	0.42	0.48	0.48	0.48		
: P(Unit Weight (PCF)	•	150	145	145	145	
er 1	28 Day Modulus of Rupture (p	,	690	660	660	660	
Layer 1: PCC	28 Day Modulus of Elasticity (Poisson's Ratio	psi)	4,200,000	3,000,000 0.20	3,000,000	3,000,000 0.20	
		0-6 : /: 9E)	0.20	4.63	0.20	4.63	
	Coefficient of Thermal Expansion (x 1	$0^{-1n/1n}F)$	6.00				
	Heat Capacity (Btu/lb-°F) Thermal Conductivity (Btu/(ft)(hr	-)(°E))	0.28	0.20	0.20	0.20 0.95	
	Layer 2:)(Г))		.25 inches of Flexible Pavement			
	Layer 3:			8 inches of Lime Stabilized			
	Layer 4:			12 inches of A-2-5 Subgrade			
	Layer 5:				of A-2-5 Sub		
	Climate Data				Salem, NC	0	
SS	Terminal IRI (in/mile)	185.00 (Target)	131.90	115.58	144.70	143.94	
Distress	Mean Joint Faulting (in)	0.12 (Target)	0.08	0.05	0.10	0.10	
Di	JPCP Transverse Cracking (percent slabs)	10.00 (Target)	4.39	3.83	3.83	3.83	
lity	Terminal IRI (in/mile)	99.83	99.99	99.24	99.30		
Reliability	Mean Joint Faulting (in)	99.34	99.99	96.55	96.95		
Rel	JPCP Transverse Cracking (percen	t slabs)	99.83	99.96	99.96	99.96	

Implications on Concrete Pavement Design

- Recommended catalog of PCC inputs for M-EPDG is presented for use in local calibration efforts.
- Some recommended inputs differ significantly from MEPDG default/recommended values
- Coarse aggregate type not highly influential in MEPDG inputs
- Shift in use from natural to manufactured sands may have performance implications on PCC pavements
 - predicted to be mostly favorable if workability challenges are not an issue
- Fly ash mixtures encourage for durability benefits
 - use of 28-day compressive strength likely an unsuitable input for MEPDG


Implications on Concrete Pavement Design

- Improved pavement performance was predicted using new locally calibrated inputs
 - Offers insight into potentially longer service life of existing pavements
 - Use of new inputs may result in design of thinner pavements (up to 1")
 - Cost savings
 - Sustainability benefits
 - Decision to use thinner pavement section should be weighed against
 - Risks of under-prediction of traffic
 - Section loss associated with diamond grinding
- Reducing dowel size for thinner sections significantly impacts predicted performance

Industry Forecast for PLC

- PLC provided equivalent performance to OPC Type I/II
- Decision to allow PLC is supported by test data and MEPDG analysis
- Sustainability benefits!
 - Reduced carbon emissions, durability performance benefits

Seven cement plants in southeast produced PLC at least one time between 2012 and 2016

from Paul Tennis, PCA May 2019

Thank you!

- Clark Morrison, Brian Hunter, Chris Peoples, Nilesh Surti, NCDOT StIC
- We appreciate the opportunity to continue to be of assistance to NCDOT!

CHARLOTTE

STRONG

