
 

 

 

 

 

  

 

 

 

 
 

 

 

 

  

Improving Replacement Cost Data for 
NCDOT Highway Bridges 
 

NCDOT Project 2017-09 

FHWA/NC/2017-09 

August 2019 

 

Matthew Whelan, PhD 
Tara Cavalline, PhD, PE 
Patrick Phillips 
Corey Rice 
Department of Civil and Environmental Engineering 
University of North Carolina at Charlotte 



ii 

1. Report No.
FHWA/NC/2017-09

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

Improving Replacement Cost Data for NCDOT Highway Bridges

5. Report Date

August 23, 2019

6. Performing Organization Code

7. Author(s)

Matthew J. Whelan, Tara L. Cavalline, Patrick Phillips, Corey Rice

8. Performing Organization Report No.

9. Performing Organization Name and Address

University of North Carolina at Charlotte

9201 University Blvd

Charlotte, NC 28223-0001

10. Work Unit No.

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

North Carolina Department of Transportation

Research and Development Unit

104 Fayetteville Street

Raleigh, North Carolina 27601

13. Type of Report and Period Covered

Final Report

August 1, 2016 – July 31, 2018

14. Sponsoring Agency Code

15. Supplementary Notes

Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

One of the primary functions of a bridge management system (BMS) is to inform data-driven, risk-based decision making by
forecasting future network level needs and anticipating the costs and benefits of bridge replacement, rehabilitation, and preservation
actions.  Of these actions, bridge replacement projects account for the majority of the current funding needs and annual allocations.
Consequently, shortcomings in conceptual cost estimating models used within bridge management systems can impose serious and
potentially costly errors affecting financial needs projections and project selection and prioritization.  Conceptual cost estimating
strategies currently used in the NCDOT BMS are simplified, do not consider factors affecting construction, preliminary engineering,
and right of way costs, and have not been recently updated to reflect changes in construction cost trends and inflation.  In this study,
cost data for recent bridge replacement projects completed in North Carolina were sourced and assembled into a database with
information on the characteristics of the replaced and replacement structures.  This database was then used to evaluate current
conceptual cost estimating strategies used by NCDOT, identify factors influencing construction, preliminary engineering, and right
of way costs, and formulate new conceptual cost estimation models for bridge replacements.  Generalized linear regression models
and decision trees were developed to estimate unit costs for each component of the replacement cost and cross-validation was used
to arrive at appropriately sized models.  The developed cost estimation models were evaluated by comparing goodness of fit to the
underlying project data as well as assessing the projected unit replacement costs obtained when applying the developed models to
all bridges in the state.  The recommended conceptual cost estimation strategy uses generalized linear models to forecast unit
construction and unit preliminary engineering costs and a decision tree to forecast unit right of way costs.  The recommended
conceptual cost estimation strategy can be readily implemented within the existing BMS with few required changes and empirical
evidence suggests that these revised models will significantly improve the accuracy of the conceptual replacement cost estimates.

17. Key Words

Bridge replacement cost estimation; construction costs estimation;
preliminary engineering cost estimation; right of way cost
estimation; bridge management systems

18. Distribution Statement
No restrictions. This document is available through the
National Technical Information Service, Springfield, VA
22161.

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

124

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

RP 2017-09



iii 

  



iv 

Disclaimer 
 

The contents of this report reflect the views of the authors who are responsible for the facts and 
the accuracy of the data presented herein.  The contents of the report do not reflect the official 
views or policies of the North Carolina Department of Transportation or the Federal Highway 
Administration.  This report does not constitute a standard, specification, or regulation. 

  



v 

Acknowledgements 
 

The research team would like to express gratitude to the North Carolina Department of 
Transportation for funding and providing technical support to this project.  The Steering and 
Implementation Committee is acknowledged for providing invaluable technical oversight and 
direction throughout the research effort.  In particular, Mr. Brian Hanks is recognized for agreeing 
to lead the Steering and Implementation Committee and for accelerating the process of sourcing 
data from NCDOT maintained databases, Mr. Bill Goodwin is recognized for assisting with 
sourcing of component cost data from the HiCAMS and SAP databases, Mr. Rick Nelson is 
recognized for providing the cost estimation spreadsheet used to for high value bridges, and Mr. 
Daniel Muller is recognized for sourcing data on interstate system replacements and bridge 
replacement projects occurring on bridges with higher average daily traffic counts.  The research 
team also wants to acknowledge the timely support provided numerous times throughout the 
project by Mr. Foster Vestal to provide remote access to data within the NCDOT Bridge 
Management System. 

  



vi 

Executive Summary 
 

As with most state transportation agencies, the North Carolina Department of Transportation 
(NCDOT) uses data in a risk-based approach to prioritize future bridge projects and to make cost-
effective maintenance, repair, rehabilitation (MR&R), and replacement decisions.  Many decisions 
made by NCDOT with regards to bridge project selection and prioritization are influenced by cost.  
To make appropriate and optimal comparisons amongst potential options, the Bridge Management 
System (BMS) needs to associate a dollar value with each remediation alternative.  Using an 
inaccurate cost estimation model that does not consider important factors will produce highly 
variable results, affecting the ability of a state highway agency to effectively evaluate MR&R 
alternatives for bridges, to identify when replacement is the desired option, to prioritize projects, 
and to forecast agency needs.  When replacement of a bridge is a possible option (or identified as 
the necessary option), an accurate estimate of the replacement cost is needed.  Estimates generated 
with a wide confidence interval make it difficult for state highway agencies (SHAs) to correctly 
anticipate funding needs when requesting state resources for bridge replacement.  Significantly 
overestimated bridge replacement costs may delay the letting of additional bridge projects.  
Conversely, if a replacement cost is significantly underestimated, the agency is at risk of having 
to delay work on projects that have already been let or otherwise address this shortcoming.  Use 
of accurate bridge replacement cost models, based on recent bridge characteristics and replacement 
cost data, will aid in both project prioritization and budget forecasting.   

Current bridge replacement cost prediction models in the NCDOT Bridge Management 
System (BMS) utilize only roadway system classification and deck area of the existing bridge as 
predictor variables.  The inclusion of additional project factors within improved bridge 
replacement cost models could potentially improve the accuracy of the bridge replacement cost 
predictions.  When utilized in bridge management for thousands of potential highway bridge 
projects, the needs forecasting analysis would be much improved at the network level.  Currently, 
NCDOT desires a single dynamic model that considers additional project parameters, provides 
more accurate total bridge replacement project cost estimates, and can be readily updated when 
necessary.    

The primary objective of this work was to provide NCDOT with an improved estimating 
algorithm to incorporate in the AgileAssets BMS for tabulating bridge replacement costs.  This 
feature of the BMS is critical for accurately predicting future funding required to achieve stated 
level-of-service goals and perform what-if analysis, which are two of the most important outputs 
produced by the optimization tools within the BMS.  To achieve this primary research objective, 
a literature review was first conducted to identify the bridge characteristics and project-level 
variables that have been previously found to be influential to construction, preliminary 
engineering, and right of way costs for bridge replacements.  In particular, studies leveraging 
statistical regression to produce cost estimation models from bridge replacement data were 
examined to summarize the methodologies and recommendations produced by prior research for 
the formulation of conceptual cost estimation strategies informed by historical data.  Information 
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on construction cost trends, production rates, and material, labor, and equipment costs was also 
reviewed and prioritized for use in the updated models.  

Replacement cost data was sourced from the NCDOT HiCAMS and SAP databases for 
bridge replacement projects occurring between 2012 and 2016.  The contract data was linked to 
bridge records from the BMS for both the replaced structure and replacement structure to produce 
a database containing information on the design, functional, usage, and geographic features of the 
bridge prior to and after replacement as well as the construction, preliminary engineering, and right 
of way costs.   Manual verification of individual records was performed to ensure that each bridge 
replacement contract was linked to the correct structure and that the scope of work for the 
replacement project was predominantly comprised of bridge replacement and did not involve work 
on multiple bridges.  Following manual verification and filtering, the assembled database consisted 
of a total of 305 bridge replacement projects, where 224 were NCDOT Transportation 
Improvement Program (TIP) projects with all component costs itemized and the remainder were 
projects let under the 17BP program, with only construction costs identified.  Summary statistics 
compiled for the bridge projects indicate that the projects in the database are representative of 
approximately 90% of the statewide bridge inventory, but notably did not include high value bridge 
replacements or a significant number of replacement projects occurring on interstate routes.  The 
relative contribution of the component costs to the total replacement costs varied significantly 
across the projects in the database, but on average construction, preliminary engineering (PE), and 
right of way (ROW) costs accounted for 84.4%, 13.6%, and 2.0% of the total replacement costs, 
respectively.  In addition to the database containing recent bridge replacement costs, a 
supplemental database was also assembled from historical data in the BMS to examine the changes 
in bridge characteristics, such as span length, deck width, and length of maximum span, occurring 
during bridge replacements.  Accurately forecasting these changes is particularly critical for 
conceptual cost estimation strategies that rely on the projected deck area or other characteristics of 
the replacement structure to predict the replacement costs.  The supplemental database consisted 
of 1,506 bridge replacement projects occurring over the ten year period from 2007 to 2016. 

 Using the assembled database of historical bridge replacement costs, an assessment of the 
accuracy of the current cost estimation strategy implemented in the BMS was performed.  The 
assessment found that, while the current unit replacement costs were similar to the average unit 
replacement costs observed in the database, there was significant variation in unit replacement 
costs that is not explained by the current cost estimation model.  In fact, the coefficient of 
determination associated with the current cost estimation model was found to be negative, which 
indicates that the current model fits the data worse than if a single unit cost, set as the average of 
the unit costs for all projects, was used to estimate unit replacement costs.  The standard deviation 
of the residual was also very high and nearly the same as the average total replacement cost of the 
bridges in the database, which indicates that the prediction errors generated by the current cost 
estimation strategy are very significant relative to the magnitude of the total replacement costs.  
Special conceptual cost estimating models used by NCDOT for high value bridges were also 
reviewed.  Since the historical replacement cost data available for this research effort did not 
include high value bridge projects, the accuracy of the models could not be evaluated directly, but 
the plausibility of the factors used within the models were assessed by extrapolating the trends 
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observed for typical bridge replacement projects.  Discontinuities in the piecewise linear functions 
currently being used to forecast PE and ROW/Utility costs for high value bridges were identified 
and should be corrected prior to future use of this forecasting tool. 

 Statistical regression with cross validation was used to produce potential models for 
conceptual cost estimation of unit construction, unit PE, and unit ROW costs occurring during 
bridge replacements.  Both an approach where the replacement costs are forecast directly from the 
characteristics of the replaced bridge without explicitly projecting changes in the geometry and an 
approach where the replacement costs are forecast using project characteristics of the replacement 
bridge were explored.  For each approach, generalized linear regression and binary decision tree 
models were developed through statistical regression of the historical cost database that 
incorporated k-fold cross validation to balance the model complexity with the goodness of fit.  
Potential predictor variables were sourced from an extensive set of design, functional, usage, and 
geographic characteristics for the replaced and replacement structure that were selected for 
inclusion in each model through automated selection criteria.  Generalized linear regression 
models were also developed to predict changes in geometric characteristics occurring during 
bridge replacement, including the structure length, deck width, and length of maximum span.   

 The performance of the developed regression models was assessed by analyzing the 
residual error for unit and total replacement costs when each model was applied to the 224 TIP 
bridge projects contained in the historical database.  Additionally, each model was applied to all 
of the bridges currently in the statewide inventory to evaluate potential challenges encountered 
when implementing the developed models at the network level.  Through the assessments, a 
conceptual cost estimation strategy was recommended using generalized linear models to forecast 
unit construction and unit preliminary engineering costs and a decision tree to forecast unit right 
of way costs.  The recommended model uses the approach where replacement costs are forecast 
directly from the characteristics of the replaced bridge without explicitly projecting changes in the 
geometry, which is easier to implement and minimize the effects of compounded prediction errors 
arising from projected geometric characteristics of the replacement structure.  Application of the 
recommended conceptual cost estimation strategy across all bridges in the state revealed a 
reasonable distribution of unit replacement costs for approximately 90% of the bridges in the 
inventory.  Pending the availability of replacement cost data specific to high value bridges and 
bridges with atypical geometric characteristics to facilitate expansion of the statistical models, 
lower and upper bound constraints are proposed to ensure that the conceptual cost estimates remain 
within reasonable bounds.  The developed algorithms can be readily implemented as an automated 
tabulation within the BMS given available sources of bridge-specific data and supplemental 
construction cost and rate information.  Further recommendations are provided to facilitate 
improvement in the conceptual cost estimation strategy in the future by improving the quality and 
granularity of the historical replacement cost data.  Overall, this research directly supports data-
driven and performance-based asset management initiatives and complements recent and 
concurrent research providing updates and improvements to the NCDOT BMS.   
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1. Introduction 
 

1.1 Background 
Following recent state and federal legislation related to the use of performance and risk-based asset 
management strategies to inform transportation investments, there is an increased need to update 
methods and models utilized within existing North Carolina Department of Transportation 
(NCDOT) asset management practices to ensure reliable and optimal use of these tools.  
Specifically, the National Bridge and Tunnel Inventory and Inspection Standards (U.S.C. Section 
144) were revised by the MAP-21 legislation to mandate the use of “a data-driven, risk-based 
approach and cost-effective strategy for systematic preventative maintenance, replacement, and 
rehabilitation of highway bridges and tunnels to ensure safety and extended service life.”  A vital 
component of such a data-driven, risk-based approach to asset management to ensure that cost-
effective strategies are identified are the prediction models for accurately anticipating the costs of 
bridge replacement, rehabilitation, and preservation actions.   

In the 1980’s and early 1990’s, North Carolina was a pioneer in the development of Bridge 
Management Systems (BMS) and sponsored a number of research projects that formed the basis 
for the comprehensive asset management framework that is currently a major focal point for data-
driven transportation planning nationwide.  These studies were transformational, but also in many 
respects far ahead of their time, as the available data to support the development of the underlying 
models was often severely limited.  Furthermore, the performance and cost data leveraged to 
develop forecasting and analysis capabilities for the BMS have significantly changed with 
national, state, and regional structures management practices over the past several decades.  
NCDOT has recently reinvested research funding into several studies aimed at revisiting the 
underlying models for predicting user costs, forecasting deterioration rates, and prioritizing bridge 
projects.  This project continues to support this reinvestment in the BMS to facilitate improved 
data-driven decision-making by extending this research to agency costs associated with bridge 
replacement. 

The NCDOT is responsible for maintaining approximately 18,000 bridges, culverts, and 
other structures across the state (NCDOT 2019).  In order to effectively manage these structures, 
the NCDOT stores inspection data and other pertinent information in several databases, including 
the BMS.  As of May 2019, approximately 13,500 of these structures are bridges, while 
approximately 4,500 are culverts and pipes 20 feet in length or longer, which meet the federal 
definition of a bridge.  Approximately 1,500 of the state’s bridges (roughly 11.1%) were 
considered structurally deficient as of February 2019.   The current funding need to repair or 
rehabilitate these bridges would be over $3.8 billion.  The 2019 state and federal funds for bridge 
improvement are allocated as shown in Table 1.1.   
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Table 1.1:  2019 Federal and State Funds for North Carolina Bridge Improvement (adapted 
from NCDOT 2019) 

 
 Maintenance Replacement Preservation 
State Funds $36 million $280 million $85 million 
Federal Funds --- $75 million $9 million 
Total 2019 Funds $36 million $355 million $94 million 

 
Accurate cost estimation models are critically important for informing best decisions 

related to bridge replacement, rehabilitation, and preservation options within a sound asset 
management program.  Cost estimation is used at two stages of the bridge management program.  
When the BMS is used to forecast expected funding needs to achieve level-of-service goals and 
evaluate what-if scenarios, bridge replacement costs must be tabulated using algorithms based on 
statistical models supported by supplemental databases.  Following project selection and prior to 
letting, a refined cost estimation is performed.  Currently, NCDOT employs cost-estimation 
models during this refined analysis that use production rate and material cost databases to estimate 
the expected project-specific costs associated with replacement of specific bridges using cost-
based estimating rather than unit cost line item price estimating.  Cost-based estimations 
incorporate project-specific adjustments for labor, material, and equipment costs that consider 
geographic location, production rates, equipment rates, and other factors influencing total project 
costs rather than relying solely on historical averages, such as done in the conventional unit cost 
line item approach and within the algorithms used in the current BMS.  

  A benefit of cost-based estimation over the unit cost line item approach is that more 
accurate cost forecasting is achieved, particularly during market fluctuations, since the current 
market conditions are considered rather than smoothed by historical averages.  Furthermore, cost-
based estimation has been perceived as a means of keeping contractor bids honest by ensuring that 
market rates are not artificially inflated by contractors expecting transportation agencies to simply 
project historical averages rather than accurately account for rates of inflation and deflation of 
construction costs.  However, cost-based estimation has the disadvantage of requiring more time 
to formulate a project-specific estimate as each project must be estimated individually and, more 
significantly, relies on accurate and timely knowledge of construction practices, cost trends, and 
project timelines to develop an accurate cost-based estimate.  These time-consuming estimation 
techniques do not lend themselves to direct implementation in the BMS for bridge replacement 
cost estimating.  However, the databases used to develop these refined cost estimates as well as 
statistical information on projected construction trends, economies of scale, and other factors 
influencing bridge replacement costs can be better leveraged in the current BMS to more efficiently 
plan bridge replacement actions. 

Cost estimates used by state highway agencies to anticipate bridge replacement cost are 
most commonly sourced from historical bid data that has been adjusted to the specifics of the 
project site, scope, market conditions, and other factors.  However, historical bid-based estimates 
can be unreliable since they fail to capture significant construction cost trends that affect prices 
over the time frame between the estimating phase and actual construction.  Furthermore, typical 
strategies employed to develop either historical bid-based or cost-based estimates often fall short 
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of adequately accounting for the unique local factors, such as project size, extent of competition, 
site conditions, location, and external cost trends.  Further complicating such analysis are the 
potentially confounding relationships between such factors.  Significant inaccuracies between 
current cost estimating approaches and actual replacement costs can significantly impact the 
prioritization of bridge projects.   

NCDOT has already established databases for production rates and material, labor, and 
equipment costs that are updated either semi-annually or annually to provide a fairly robust means 
of estimating project costs using cost-based estimating.  In fact, while a 2008 state audit of highway 
project schedules and costs revealed significant preconstruction schedule overages and costs, 
estimated construction costs were on average only 2% less than the actual costs for the 223 bridge 
projects analyzed (Merritt, 2008).  While this provides evidence of the reliability of the final cost-
based estimation strategies employed prior to project letting, it is important to emphasize that the 
algorithms used in the BMS for tabulating expected bridge replacement costs do not utilize the 
same approach.   

Currently, NCDOT does not incorporate project-specific information, current construction 
cost trends, preconstruction cost estimates, and other databased information into the algorithms 
used to tabulate expected bridge replacement costs in the BMS.  Within the AgileAssets BMS 
software utilized by NCDOT, estimates for bridge replacements are made at a conceptual level, 
meaning that the estimates only consider a few known project parameters since a detailed design 
has not yet been prepared.  Although only a conceptual estimate, an accurate estimated bridge 
replacement cost allows state highway agencies (SHAs) to prioritize upcoming projects and to 
determine which projects can likely be funded within a budget.  Current cost prediction models 
employed within the BMS are quite simple and are based upon roadway system classification 
(primary, secondary, or interstate), with a unit cost (dollars per square foot) multiplied by the deck 
area of the existing bridge (Table 1.1).  Consequently, cost estimates produced by the BMS have 
been found to be unreliable, particularly for projects on either the high or low end of the cost scale 
where many of the factors incorporated into the refined cost-based estimates are most significant.   

 
Table 1.1: Bridge replacement unit costs in NCDOT BMS (June 2019) 

 
Roadway System Classification Unit Cost ($/SF deck area) 

Interstate $704.00 
Primary $664.00 

Secondary $529.00 
 

1.2  Research Needs  
 

Changes in design loads and required capacity of bridges, waterway and floodplain requirements, 
and other factors often require replacement bridges to be longer and wider than the original bridge, 
causing the simplified replacement cost method programmed into the BMS to be inaccurate. Since 
bridge replacement costs are influenced by the design of the structure, the ability to make reliable 
predictions for the characteristics of the replacement structure could be useful in strengthening the 



4 

accuracy of the final cost estimates.  Another way to improve the accuracy of these models would 
be to consider additional variables that can be statistically shown to be linked to bridge replacement 
cost.  These could potentially include factors such as location, design type, bridge materials, 
average daily traffic (ADT), and type of route carried. Additional factors that may affect bridge 
replacement cost are already stored in the BMS and other auxiliary databases available to 
NCDOT’s Structures Management Unit (SMU).  Since much of this data is collected regularly, 
these factors would be relatively easy to integrate into the forecasting models, if deemed to be 
significantly related to bridge replacement costs. 

Due to the changing nature of infrastructure design and construction, cost prediction 
models should also be dynamic and easily updated. Changes in design loads, traffic demands, and 
highway regulations can render a static prediction model obsolete. These requirements also dictate 
bridge design, which ultimately has a driving influence over cost. Providing a clear methodology 
for developing prediction models based on a number of years of recent data would allow for models 
to be adjusted and refined as necessary. The result of updating bridge replacement cost models 
over time could have effects as minor as changed coefficients, or as extensive as adding or 
removing variables from the equation. 

With a more accurate cost prediction model (or models), the NCDOT could make more 
informed decisions when selecting and prioritizing their projects. On a single-project basis, a more 
accurate replacement cost estimate should lead to a lower likelihood of the actual project cost 
exceeding the projected cost during the forecasting stage.  From a network standpoint, improved 
bridge replacement cost models could help improve the overall condition of the bridges owned 
and maintained by NCDOT by improving budget forecasting and funding allocation. Successful 
development and implementation of bridge replacement cost models could also provide guidance 
to other state transportation agencies interested in adopting improved cost estimating models for 
their asset management programs. 

 
The needs addressed by this project are as follows: 
 

 Discrepancies between replacement costs tabulated by the BMS, cost-based estimates of 
bridge replacement costs performed prior to letting, and actual bridge replacement costs 
need to be analyzed to inform best practices for improving algorithms employed in the 
BMS to automatically calculate bridge replacement costs.  This analysis will not only 
identify the source of errors in the current algorithms used by the BMS, but will also 
prioritize the types of project-specific and construction cost trend information that should 
be incorporated into the cost-estimation algorithm to improve the estimates.  This activity 
will also assist in identifying the potential existing strategies and databases used in cost-
based estimation that could be leveraged in the BMS. 
 

 Cost estimation algorithms suitable for implementation in the BMS for automated, yet 
reliable cost forecasting of bridge replacement costs need to be revisited and reformulated 
to address the identified sources of inaccuracies.  The specific challenge associated with 
this research need is that the refined cost-based estimation strategies employed by 
estimators prior to letting rely on practitioner knowledge and inputs that are not always 
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well suited to automation.  However, the BMS can better leverage NCDOT databases on 
production rates and material, labor, and equipment costs used by estimators as well as 
recent research on preconstruction costs to improve the predictive accuracy of bridge 
replacement costs tabulated in the BMS. The results of a recently completed NCDOT 
research project (RP 2010-10) that produced statistical models for preconstruction costs 
associated with highway projects in the state, including bridge replacement can also be 
used to inform this effort. 



6 

2. Result of Literature Review 
 

Note:  A summary of key literature findings is presented in this section.  The full literature review 
supporting this work, along with a complete list of references, is provided in Appendix A of this 
report. 
 

2.1  Bridge Replacement Cost Models 
Statistical analyses to support prediction of bridge replacement costs in North Carolina was 
originally performed in the early 1990’s by Abed-Al-Rahim and Johnston (1995).  This study 
utilized structure, roadway improvement, and engineering cost data for 32 bridge replacement 
projects sourced from the North Carolina Bridge Maintenance Inventory files to develop a 
statistical model to predict bridge replacement costs using deck area and predicted structure length.  
A detailed description of this model, as well as supporting models used to predict new structure 
characteristics, is presented in Appendix A, Section A.4.1.1.  Although this cost estimation 
algorithm may have been incorporated into the OPBRIDGE program previously used by NCDOT 
for bridge management, this model has not been implemented in the AgileAssets BMS.  An 
additional NCDOT research effort (RP 2010-10) used statistical regression to develop a model 
suitable for estimating the contribution of preliminary engineering expenses to bridge replacement 
costs.  The model developed in this study was based on ratio of total costs rather than absolute 
preliminary engineering costs and could potentially be used to address this variable component of 
the total bridge replacement costs within the proposed research effort (Hollar et al. 2013). 

 Aggregated bridge replacement cost models normalized to deck area were also developed 
in the early 1990’s for the state of Indiana (Saito et al. 1991, described in detail in Appendix A, 
Section A.4.2.1), but have since been updated to reflect changes in construction costs and trends 
(Rodriguez et al. 2006).  In research performed for Texas DOT in the early 2000s, Chou et al. 
(2005) developed a probabilistic cost estimation tool that focused on 22 major work items that 
accounted for roughly 80% of total cost.  Unlike other traditional models that are affected by 
untreated historical data, the probabilistic model developed by Chou et al. (2005) provided 
confidence bounds for an estimate, which helps control error, accounts for probability, and 
considers the independent or correlated relationships between the major work items.  As with any 
other estimating method, the effectiveness of probabilistic models hinges on the quality of the data 
available to estimators.  Oregon has also recently devised advanced statistical models for 
predicting bridge replacement costs using descriptor data available in the bridge records 
(Behmardi, et al. 2013).  However, these statistical approaches focused solely on prediction of 
aggregate costs using historical data and have neglected prediction methods directly incorporating 
construction trends, economies of scale, and many site-specific factors, such as expected 
production rates and labor and material costs.   

 The review of published literature (more extensively detailed in Appendix A) revealed that 
the most significant development of bridge replacement cost estimation models suitable for 
automated implementation in a BMS were performed over a decade ago and focused extensively 
on historical cost estimation rather than incorporating project-specific cost-based estimating 
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strategies and market-based fluctuations in construction costs within the algorithms.  On the other 
hand, the recent research on bridge replacement cost estimation in the literature has been directed 
toward improved strategies and tools for cost-based estimation, which requires practitioner input 
and knowledge to be reliably implemented and is therefore not directly suitable for automated 
algorithms required by a BMS.  This research project specifically aims to bridge the knowledge 
gap by seeking to produce a statistically robust cost estimation algorithm based on historical cost 
data that will also further leverage databases, indices, and other sources of information that have 
yielded reliable cost-based estimation practices performed on case-specific projects prior to letting. 

 

2.2  Construction Cost Indices 
Analysis of historical cost data requires adjustment of costs to account for inflation and changes 
in productivity between years. Cost indices that account for these factors are used to convert the 
value of a dollar from one year to another year, using indices created using the costs of a certain 
set (or “market basket”) of goods and/or services over time.  In addition to the Consumer Price 
Index (CPI) which is created using a market basket of consumer goods and services, there are 
several construction cost indices, including the Engineering News Record (ENR) Index, the RS 
Means Historical Cost Index, and the National Highway Construction Cost Index (ENR 2019, RS 
Means 2019, FHWA 2019).   Although offering insight into construction-specific market trends, 
ENR indices do not offer insight into local market conditions, and should be considered to “merely 
offer a snapshot of general cost trends (ENR 2019).”  RS Means indices are construction-specific 
and City Cost Indices (CCI) offer the ability to adjust for local construction conditions, but are 
ideally utilized for building construction. 

The National Highway Construction Cost Index (NHCCI), published by the FHWA, is a 
quarterly price index allowing conversion and prediction of construction costs for highway 
projects.  Utilizing web-posted data for pay items (unit of work, construction materials, labor, and 
services) from awarded bids for a wide variety of highway construction projects, an average cost 
index is computed for all highway construction (FHWA 2019).  This index was originally 
published in 2009, and revisited in 2015 after a research study identified deficiencies in calculation 
of the index, including issues with units of measure, non-standard pay items, and changes in data 
reporting and statistical exclusion procedures.  The NHCCI 2.0 methodology published in 2017 
addressed these problems, and revised quarterly NHCCI values have been prepared and published 
dating back to 2003.  The NHCCI 2.0 Index more closely tracks trends in the Producer Price Index 
(prepared by the Bureau of Labor Statistics), and is published on a quarterly basis with a lag time 
of three months (FHWA 2019).  One key advantage of the NHCCI is that it utilizes the Fisher 
Ideal index.  The Fisher Ideal index accounts for the weights of both the base period and the current 
period, allowing the index to accommodate the effects of substitutions.    
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2.3  Statistical Analysis Approaches 
 

2.3.1  Regression Analysis 
Regression can be described as a statistical method that can be used to investigate the relationship 
between variables (Dodge and Marriott 2003).  If a relationship exists between the dependent 
variable (y) and the one or more independent variables (x1, x2…xn), the value of the dependent 
variable can be predicted using a mathematical model (Dowdy and Wearden 1991).  In simple 
linear regression, the relationship between one dependent variable and one independent variable 
can be modeled with a straight line, as reflected in Equation 2.1.  Ideally, this straight line should 
“fit” the actual data on a scatter plot and minimize the sum of the squares of the vertical differences 
between the line and the data points. The coefficient of determination (R2) measures how well the 
regression model fits the data. The value of R2 ranges from 0 to 1, with higher values indicating a 
better fit (Dodge and Marriott 2003, Dowdy and Wearden 1991). 

 
 ܻᇱ ൌ ܣ ൅  (2.1) ܺܤ

Where:  Y’ = Predicted score 
  A = Value of Y when X is equal to zero 
  B = Slope of best-fit line 
  X = Value from which Y’ will be predicted 
 

To solve for the predicted score of Y’, values for both A and B must be found. First, the 
bivariate regression coefficient (B) is calculated by using Equation 2.2. The coefficient is a ratio 
of the covariance of the two variables (X and Y) and the variance of X and is also the slope of the 
best-fit line (Tabachnik and Fidell 2006). After B has been found, the x-intercept (A) can be 
calculated from Equation 2.2. 

 

ܤ  ൌ ே∑௑௒ିሺ∑௑ሻሺ∑௒ሻ

ே∑௑మିሺ∑௑ሻమ
 (2.2) 

Where:  B = Bivariate regression coefficient 
  X = Independent variable 
  Y = Dependent variable 
 

 
ܣ  ൌ തܻ െ ܤ തܺ (2.3) 

 
Where:  A = X-Intercept 
  തܺ = Sum of values used for the prediction 
  തܻ = Sum of values to be predicted 

 
Multiple regression is an extension of bivariate regression in which more than one 

independent variable is used to predict values of a dependent variable (Tabachnik and Fidell 2006). 
For example, in the case of this project, it is useful to predict the construction cost of a bridge 
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replacement project (dependent variable) based on the several independent variables available in 
the data set, such as structure length, number of spans, material, or design type. The multiple linear 
regression equation (2.4) is an extension of the bivariate regression equation (2.1) that is designed 
to be used with more than just one independent variable.  Each independent variable has its own 
regression coefficient, which is used to bring the predicted values of Y as close as possible to the 
values from the data set and maximize the correlation between the predicted and obtained values 
for Y.   

 
 ܻᇱ ൌ ܣ ൅ ଵܤ ଵܺ ൅ ଶܺଶܤ ൅ ⋯൅  ௞ܺ௞ (2.4)ܤ

Where:  ܻᇱ = Predicted score for dependent variable 
  A = Value of Y when all X values equal zero 
  Bn = Regression coefficient for n-th variable 
  Xn = n-th independent variable 
  k = Number of independent variables 
 

Collinearity is a consideration for regression equations that involve multiple independent 
variables.  This condition exists when there is a high amount of correlation between two or more 
predictor variables.  In a multiple regression analysis, collinearity that is not addressed will cause 
variables that truly affect the dependent variable to not appear in the regression equation while the 
other predictor variable may have a large impact on the equation.  There are several ways to deal 
with collinearity between variables.  After the collinear variables have been identified, the two 
variables can be combined into one single variable by converting each of the variables into a z 
score and them using the sum of the z scores as the total for the new variable.  Another approach 
is to use a factor analysis that will identify the set of factors within the collinear variables and use 
the factors in the regression analysis (Cramer and Howitt 2004).  Collinearity can also be addressed 
by removing one of the collinear variables from the regression model.  

 
2.3.2 Regression Tree Analysis 
Decision trees are a tool used to describe data and to develop models to support decision analysis 
(Pratt et al. 1995).  Models resulting from decision tree analysis predict the value of a root or target 
variable using input variables.  The source dataset is split into nodes from the root node based upon 
classification features using recursive partitioning, where the subgroups are split in a manner that 
classifies them into groups (Denison et al. 2002).  In binary recursive partitioning, the tree is split 
into two nodes: a group that has the same features as the target value, and a group that does not, 
based upon a decision criteria (which can be viewed as a yes/no question) at each node.  The 
recursive partitioning is halted when splitting a subset no longer improves the quality of the model 
or some pre-determined stopping criteria are met.  An example of a two-dimensional input space 
partitioned into five regions using recursive binary partitioning is shown in Figure 2.1a, with the 
corresponding tree structure shown in Figure 2.1b. 
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Figure 2.1a: Example of two-
dimensional input space partitioned into 
five regions (from Bishop 2006)   

Figure 2.1b:  Corresponding binary tree (from Bishop 
2006) 

 
Regression tree analysis (also called classification and regression tree, or C&RT, analysis) is one 
form of decision tree analysis (Brieman et al.1984).  In regression tree analysis, the regression 
builds a model in the form of a tree structure to result in a predicted outcome that is a real number.  
The regression model is constructed to reduce the residual sum of squares (Takezawa 2006).  
Through this process, the factors most significantly influencing the dependent variable are 
identified, and the data is incrementally broken down into smaller subsets based upon the 
optimized decision criteria.  The resulting decision tree has a single root node, and two or more 
decision nodes and leaf nodes, as shown in Figure 2.1b.  The root node corresponds to the 
independent variable identified as the best predictor.  Decision nodes represent values for other 
independent variables tested, and have two or more branches.  “Greedy optimization” is utilized, 
starting at a single root node, then adding nodes one at a time.  Following the addition of each 
node, the candidate regions are split using joint optimization using an exhaustive search algorithm, 
local averaging of data, and identification of the splitting choice with the smallest residual sum-
of-squares error (Bishop 2006). 

The C&RT method is nonparametric and nonlinear, and therefore a frequency distribution 
of variables is not assumed, and the relationships between the dependent and independent variables 
are not assumed to be linear.  Advantages of C&RT methods include the simplicity of the final 
model, its easy interpretation, and its usefulness for identifying interactions between variables.  
Stopping criteria can be established as a limit on tree depth, an identical distribution of predictors, 
or a single observation present in a terminal leaf node.  Overfitting of the model is controlled by 
removing nodes from the tree if the model accuracy is not improved (Bishop 2006).   

If a decision node, T, is subdivided at T0, T ⸦ T0 is defined as a subtree if T0 can be obtained 
by collapsing internal nodes by combining corresponding subregions.  Leaf nodes are defined as τ 
= 1, … |T|, with corresponding regions designated as Rτ, with an input space of Nτ datapoints and 
|T| denoting the total number of leaf nodes.  The optimal prediction region Rτ can be given as 
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Equation 2.5 along with the corresponding contribution to the residual sum of squares (Equation 
2.6) and the pruning criterion (Equation 2.7) (Bishop 2006): 

 

ఛݕ ൌ
1

ఛܰ
෍ ௡ݐ
௫೙∈ୖத

 

  (2.5) 

 
 

ܳఛሺܶሻ ൌ ෍ ሼݐ௡ െ ఛሽଶݕ

௫೙∈ୖத

 

  (2.6) 

 

ሺܶሻܥ ൌ ෍ ܳఛሺܶሻ ൅ |ܶ|ߣ

|்|

௫೙∈ୖத

 

  (2.7) 

 
Where λ = a regularization parameter determining the trade-off between the overall residual sum-
of squares area and the complexity of the model, which is measured by |ܶ|.  The value of λ is 
selected through cross-validation, described in the following section.   

 
2.3.3  Cross-validation 
Cross-validation is performed when an available dataset (or the dataset to be used for validation) 
is small, and may not provide an adequate estimate of predictive performance.  In cross-validation 
techniques, a proportion of the available data is used for training the model, while all of the data 
is utilized to assess the model performance.  Multiple cross-fold validation is illustrated in Figure 
2.2, where k equals the number of groups or ‘folds’ (in this case, 4).  In this example, the available 
data is partitioned into ݇ ൌ 4 groups.  A subset of the data developed by ݇ െ 1 of the groups are 
utilized to train a set of models, which are subsequently evaluated using the remaining group 
(indicated in figure 2.2 in gray).  The process is repeated until all ݇ combinations of subsets are 
utilized as the remaining group.  The value of ݇ is often selected so that the size of each group is 
large enough to be statistically representative of the broader dataset.  Other approaches for 
selecting ݇ include selection of a fixed number, often 5 or 10, although there is no formal rule 
(Kuhn and Johnson 2013).  After each iteration, the evaluation score is retained, and the model 
discarded. The accuracy of the model is taken as the mean accuracy computed from each fold. 
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Figure 2.2:  k-fold cross validation (from Bishop 2006) 
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3. Improving Replacement Cost Data for NCDOT Highway Bridges 
 

Two approaches were utilized in this study to arrive at models for predicting the costs associated 
with bridge replacement.  Both approaches stem from the challenge of predicting the replacement 
costs for a bridge within the BMS during the conceptual stage where the details for the design of 
the replacement structure are unknown.  The first approach does not explicitly predict increases in 
the span length, deck width, or other changes in the bridge characteristics, but rather forecasts the 
replacement costs directly from the characteristics of the bridge being replaced.  The second 
approach utilizes intermediate prediction models to forecast the expected characteristics of the new 
structure from the characteristics of the bridge being replaced.  The expected characteristics for 
the new structure are then used to forecast the costs for the replacement.  Throughout this report, 
models developed through the first approach, where replacement costs are forecast using the 
characteristics and deck area of the bridge being replaced, are referred to as “Type A” models.  
Models developed through the second approach, where the characteristics of the replacement 
bridge are forecast and applied to cost estimation tools designed to operate on the characteristics 
of the replacement structure, are referred to as “Type B” models.  Figure 3.1 provides a graphical 
depiction of the differences between these two approaches used to forecast replacement costs using 
the data available in the BMS at the time of a conceptual cost estimate.  Within this figure, the 
nodes in blue are items extracted from the BMS, nodes in green are the different estimation models 
developed through statistical regression, and the nodes in yellow are forecasted quantities 
predicted by the estimation models using the data sourced from the BMS. 

 

Figure 3.1. Graphical representation of Type A and Type B approaches to forecasting 
replacement costs 

3.1 Data Sourcing and Preconditioning 
Aggregated statistical modeling leverages a database of relevant historical project data to create 
regression models to project costs using a subset of available bridge characteristics (Behmardi et 
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al., 2015).  The quality and completeness of the historical project dataset used to develop the 
aggregate statistical model significantly influences the robustness of future predictions (Gransberg 
et al., 2013).  If data is missing or improperly recorded, these omissions and inaccuracies will bias 
the regression equations toward an inaccurate cost estimate.  Likewise, the inclusion of atypical 
projects in the historical data may improperly bias the prediction model toward the costs associated 
with atypical conditions.  A significant percentage of the total effort involved in this research effort 
was the sourcing, verification, assembly, and preconditioning of databases to facilitate the 
development of the statistical models.   

Two primary databases were developed over the course of this research effort to facilitate 
the evaluation of current conceptual costs estimating strategies utilized by NCDOT as well as 
allow for statistical regression to be performed to arrive at improved techniques through either the 
Type A or Type B estimating approaches.  The first database assembled historical cost data for 
bridge replacement projects linked to the characteristics of both the replaced and replacement 
structures.  This database was central to the research effort, since it provided both a means for 
evaluating current cost estimation models and performing the statistical regressions to explore 
correlations between bridge characteristics and component costs.  However, sourcing of historical 
cost data presented challenges and was limited to only several hundred recent bridge replacement 
projects.  To produce a supplemental means for analyzing and predicting changes in bridge 
characteristics that typically occur during bridge replacements, a secondary database was also 
developed that contains the characteristics of replaced and replacement bridges for additional 
replacement projects for which replacement cost data was not available.  The following 
subsections detail the development of each database as well as measures taken to verify and filter 
the information contained in each database.   

3.1.1. Development of Database for Predicting Replacement Costs 

Cost data for 1,182 bridge projects was initially provided to the research team for work performed 
between 2012 and 2016.  The original cost dataset was sourced from NCDOT’s Highway 
Construction and Materials System (HiCAMS) and included only the total contract cost without 
any of the component costs.  The projects in the dataset included bridge replacements, but also 
rehabilitation, preservation, grading, drainage, widening, resurfacing, paving, and culvert projects.  
The first stage of filtering applied this dataset was the removal of all instances where the contract 
description could not be associated with a bridge replacement.  This filtering was performed using 
the “Contract Description” field for each record.  One of the challenges associated with the use of 
the contract data is that the records did not include the structure number to facilitate an easy link 
between the contract costs and the bridge information from the BMS.  However, the contract data 
included the WBS Number for 17BP projects and TIP Number and Federal Aid Number for TIP 
projects as well as the county number, route type, and route number for the bridge location.  In 
order to link contract costs with bridge records from the BMS, the work breakdown structure 
(WBS) number or TIP number were cross-referenced to the “TIP Bridge No.” field from the 2017 
Network Master database, which includes the WBS number for 17BP projects and the TIP number 
for TIP projects.  All cross-referencing was verified by then comparing the county, route type, and 
route number from the contract cost record to the BMS fields.  Typographical errors, misspellings, 
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spelling and abbreviation inconsistencies, and empty cells presented issues with the automated 
cross-referencing of these records, so manual verification and linking needed to be performed to 
ensure correct and complete matching of the contract costs to the structure numbers.  For some 
contract cost records where matching was unsuccessful using this approach, bridge numbers from 
the “Comments” field of the record were appended to the county code to produce the structure 
number.  Lastly, if both methods failed, then all instances of bridges with the same county, route 
type, and route number were examined.  In some cases, only one bridge matched these 
characteristics, so a match could be made and in other instances a match could be deduced from 
the “Year Built” field of the Network Master.  Lastly, it is noted that some contracts were 
successfully matched to bridges in the BMS using one of the three methods above, but the bridge 
records had not yet been updated in the BMS to reflect the characteristics of the replacement 
structure.  Since these bridge projects could not be used to develop Type B cost estimation models, 
they were removed from the dataset. 

 After the contract cost data was filtered to eliminate clear instances of projects not 
involving a bridge replacement, instances where the contracts could not be linked to a specific 
structure in the BMS, and instances where information on the replacement structure was not yet 
available in the BMS, a total of 336 bridge replacement projects remained in the dataset.  This list 
of bridges was sent to NCDOT so that component costs could be sourced from the SAP database 
for each bridge replacement project.  A new contract cost database was assembled and returned to 
the research team with the total estimated and actual contract costs sourced from HiCAMS as well 
as the PE, ROW, and Construction costs sourced from SAP.  For 17BP projects, the component 
costs are not recorded in SAP, so they could not be sourced for this research.  Inspection of the 
component costs provided for the TIP projects confirmed that the actual contract costs reported in 
the HiCAMS system include only the construction costs.  Consequently, only the construction 
costs were available for the 17BP projects, where the PE, ROW, and construction costs were 
available for the TIP projects.  For TIP projects, the sum of the three component costs was taken 
as the total replacement cost.  

In addition to the 336 bridge replacement projects, NCDOT also provided contract 
information for 12 bridge replacement projects that were performed on structures with high traffic 
volumes, as it was found that the original dataset lacked bridge replacement projects on interstates 
and other high ADT routes.  Each of these additional bridge replacement projects had ADT counts 
ranging from 15,000 to 40,000 vehicles per day.  These bridge replacements were all TIP projects, 
so PE, ROW, and construction costs could be sourced from SAP for each contract.  Within this 
supplemental dataset, there was one bridge were no construction cost was reported, but it was 
noted that the project was combined with another one from the same list of high ADT bridges.  
The PE and ROW costs for these structures were used in statistical regressions for these two 
component costs, but this bridge was not included in any statistical regressions performed to fit 
construction costs or total replacement costs.   

A central database for statistical regression of component and total replacement costs, 
referred to herein as the Cost Database, was developed by merging all acquired contract cost 
information from HiCAMS and SAP to the records for each bridge prior to the replacement as well 
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as subsequent to the replacement.  All component costs were normalized to a consistent dollar 
basis (year 2015) using the FHWA NHCCI construction cost trends table.  To source the 
characteristics for the prior bridge that was replaced, Network Master and Performance Master 
databases from the NCDOT BMS were used.  The Network Master contains records of the 
location, structural design, usage, functionality, and other performance measures for every 
NCDOT maintained bridge, culvert, and overhead sign.  This database is dynamically updated 
with the most recent inspection results to serve as the most to-date current snapshot of the structure 
inventory.  The Network Master data used in this research effort was sourced in May 2017 and 
contained a total of 21,698 records.  The Performance Master of the NCDOT BMS contains similar 
records of condition, usage, functionality, and other performance measures for every NCDOT 
maintained bridge, culvert, and overhead sign.  However, the Performance Master is an annually 
generated database that serves as a historical record of bridge condition and status over time.  The 
Performance Master was used to obtain the historical bridge record for the structure being replaced. 
The Network Master was used to source the characteristics for the replacement structure.  The 
National Bridge Inventory (NBI) files for North Carolina bridges were also used as a supplemental 
source of information for potential predictor variables that are not recorded in the BMS databases.  
Specifically, prior research has revealed a correlation between unit structure costs and length of 
the maximum span in the replacement structure (Abed-Al-Rahim and Johnston, 1995).  Since this 
information cannot currently be sourced from either the Performance Master or Network Master, 
it was obtained for both the replaced and replacement structures from the NBI files. 

Prior to the use of the Cost Database, an extensive verification process was performed to: 
1) ensure that the contracts were correctly linked to structures in the BMS; and 2) ensure that the 
contracts were representative of a typical bridge replacement project and only one bridge 
replacement.  The second motivation is particularly relevant because some contracts for 
replacement of short span bridges involve the replacement of multiple bridges in close proximity 
to each other.  These contracts for multiple bridge replacements do not itemize the costs associated 
with each individual bridge, so it is not possible to determine individual bridge replacement costs 
or component costs from these contracts.  If these instances were not identified and removed, then 
the statistical regression would operate on incorrect cost data since the statistical models are 
intended to develop cost predictions for single bridge replacements.  The presence of this issue 
was identified when total replacement costs were computed per unit deck area and several projects 
were found to have unit costs exceeding $1000 per square foot with one project exceeding $3000 
per square foot.  Since these unit costs seemed implausible, the design build project details 
accessible on the connect.ncdot.gov website were reviewed for these project and it was discovered 
that these projects included not only a bridge replacement, but also significant additional work 
outside of the scope of the bridge replacement, such as construction of a new interchange or 
improved intersection, additional lanes, or widening of additional bridges.  This discovery 
prompted the research team to individually review all of the bridge replacement projects in the 
Cost Database.  This review was manually conducted using publicly available information 
accessible from the connect.ncdot.gov website with the intent to filter the database to exclude any 
contracts where the scope of work significantly exceeded the replacement of a single bridge.  From 
review of the actual contract documents, several bridge projects were identified as encompassing 
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either more than one bridge or a substantially larger scope of work exceeding the typical bridge 
replacement project.  These bridge projects were removed from the assembled Cost Database.   

Following manual removal of projects involving multiple bridges or atypical scopes of 
work, the database was filtered one final time to remove statistical outliers.  The technique used 
by Abed-al-Rahim and Johnston (1995) was implemented for this filter, which involves removing 
projects with unit costs outside of the 5% and 95% percentiles calculated across the database.  
Following all manual verification and filtering of statistical outliers, the final Cost Database 
consisted of 305 bridge replacement projects. Of these projects in the final dataset, 224 were TIP 
projects, while the remaining 81 were 17BP projects.  With respect to the route carried by the 
structures, 34 of the bridges were on primary routes, 268 bridges were on secondary routes, and 3 
were on interstate routes.  The functional classification for the route was local for 224 bridges, 
minor collector for 47 bridges, major collector for 29 bridges, principal arterial for 4 bridges, and 
minor arterial for 1 bridge.  Summary statistics for this database for the TIP and 17BP projects are 
presented in Table 3.1 and Table 3.2, respectively.  All of the unit costs presented in these summary 
tables are computed using the deck area of the replacement structure.  In general, the TIP projects 
were very similar to the 17BP projects with respect to bridge length, width, length expansion, 
width expansion, maximum span length, and unit construction costs computed relative to the deck 
area of the replacement bridge. 

Table 3.1. Summary statistics for TIP projects in Cost Database 

Characteristic Minimum Maximum Average 
ADT 10 40,000 1,376 

Original Bridge Length 18 ft 312 ft 61.2 ft 
New Bridge Length 45 ft 331 ft 96.6 ft 

Length Expansion Factor 0.869 3.857 1.772 
Original Bridge Width 11.6 ft 87.1 ft 23.8 ft 

New Bridge Width 26.8 ft 92.1 ft 32.2 ft 
Width Expansion Factor 0.984 2.75 1.394 

Original Maximum Span Length 9.5 ft 74.2 ft 28.8 ft 
New Maximum Span Length 26.9 ft 120 ft 61.0 ft 

Preliminary Engineering Cost (2015 $) $  11,400 $    899,447 $   110,657 
Construction Cost (2015 $) $297,298 $13,596,153 $   724,227 

Right-of-Way Cost (2015 $) $          0 $    561,752 $     18,153 
Total Cost (2015 $) $388,367 $15,009,167 $853,037 

Unit Construction Cost (2015 $/ sq.ft.) $115 /ft2 $446 /ft2 $215 /ft2 
Unit Total Cost (2015 $/ sq.ft.) $158 /ft2 $492 /ft2 $256 /ft2 

 

For the TIP replacement projects, the relative contribution of the component costs to the 
total replacement costs could be assessed since construction, PE, and ROW costs were available 
for these 224 projects.  Figure 3.2a presents the average breakdown of the total replacement costs 
into the component costs, as computed across the TIP bridge projects in the Cost Database.  For 
all projects, the construction costs represented the majority of the total project costs, with 
construction costs accounting for 80 to 90% of the total replacement cost for most projects.  Figure 
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3.2b provides histograms for the relative contributions of construction, PE, and ROW costs to the 
total replacement cost for all 224 TIP projects.  As indicated by the histograms, PE costs typically 
range from 5 to 20% of the total replacement cost for most projects, while ROW costs are normally 
less than 5% of the total replacement cost. 

Table 3.2. Summary statistics for 17BP projects in Cost Database 

Characteristic Minimum Maximum Average 
ADT 50 4,800 927 

Original Bridge Length 17 ft 160 ft 56.3 ft 
New Bridge Length 37 ft 188 ft 88.5 ft 

Length Expansion Factor 0.913 3.444 1.803 
Original Bridge Width 18.0 ft 33.3 ft 24.8 ft 

New Bridge Width 27.0 ft 39.0 ft 31.7 ft 
Width Expansion Factor 0.980 1.95 1.300 

Original Maximum Span Length 11.2 ft 45.9 ft 25.5 ft 
New Maximum Span Length 37 ft 105 ft 62.1 ft 
Construction Cost (2015 $) $374,233 $1,372,191 $ 762,186 

Unit Construction Cost (2015 $) $173 /ft2 $431 /ft2 $283 /ft2 
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a)     

b)  

Figure 3.2. Relative contributions of component costs to total costs for 224 TIP bridge projects in 
Cost Database: a) average; b) histograms for component costs 

Figure 3.3 provides histograms for the component costs normalized by the deck area of the 
replaced and replacement structures to express such component costs as unit costs.  The 
distributions of unit costs are not normally distributed and are typically skewed toward the lower 
end of the range for each unit component cost.  The unit costs computed relative to the deck area 
of the replaced bridge vary significantly more than the unit costs computed relative to the deck 
area of the replacement bridge.  This reflects the significant variation the change in deck area 
resulting from lengthening and widening of bridges during replacement.  Summary statistics for 
the unit construction cost by project and route type, computed using the deck area of the 
replacement structure, are presented in Table 3.3.  As reflected in this table, the unit construction 
cost for bridges on primary and interstate routes are typically higher than for bridges on secondary 
routes.  Also, the average unit construction costs for the 17BP projects contained in the Cost 
Database are typically higher than the average unit construction costs for TIP projects on similar 
route types.  Table 3.4 presents summary statistics for the unit total replacement costs, which are 
computed only for the TIP projects for which all component costs were provided.  As with unit 
construction costs, the unit total replacement costs for bridges on primary routes were observed to 
be typically higher than the unit total replacement costs for bridges on secondary routes.     
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a)  

b)  

Figure 3.3. Unit component costs for bridge projects in Cost Database: a) calculated using deck 
area of replaced structure; b) calculated using deck area of replacement structure (PE and ROW 

costs available only for TIP projects) 

 

Table 3.3. Summary statistics for unit construction cost ($/ft2) by route classification using deck 
area of replacement bridge 

 # Minimum Maximum Mean Median Standard  
Deviation 

TIP Projects 
Primary 22 $158 $446 $255 $247 $59 
Secondary 201 $115 $369 $211 $202 $45 

17BP Projects 
Primary 12 $246 $393 $302 $281 $53 
Secondary 67 $173 $431 $279 $272 $58 

All Projects 
Primary 34 $158 $446 $272 $254 $61 
Secondary 268 $115 $430 $228 $215 $57 
Interstate 3 $195 $364 $276 $268  
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Table 3.4. Summary statistics for unit total cost ($/ft2) by route classification for TIP projects 
using deck area of replacement bridge 

 # Minimum Maximum Mean Median Standard  
Deviation 

Primary 22 $182 $492 $302 $295 $67 
Secondary 201 $158 $436 $251 $243 $55 
Interstate 1   $246   

 

 

3.1.2. Development of Database for Predicting Changes in Bridge Characteristics 

To facilitate the development of predictive models to forecast changes in bridge characteristics 
during replacements, a secondary database was developed using data from the Performance Master 
to obtain information on bridge replacements.  The reason for developing this secondary database 
was to expand the information on changes in bridge characteristics occurring during bridge 
replacements beyond the limited number of projects contained in the Cost Database.  Performance 
Master data from 2006 was used to extract records for bridges replaced during the ten year period 
between 2007 and 2016.  Records from the 2006 Performance Master were linked to the 2017 
Network Master using the structure number, which is unique to each bridge and common to both 
databases.  The Year Built item in the Network Master was used to identify all potential 
replacement projects from this time frame, while location and structure type information in the 
Performance Master was used to confirm that each project was a bridge-to-bridge replacement 
project.  Since the objective of the statistical models developed from this dataset is to forecast 
changes in bridge characteristics during replacement projects for representative structures 
undergoing typical replacement, instances of bridge replacements that were deemed to be atypical 
were filtered from the dataset.  Examples of atypical replacement projects are bridges with more 
than nine spans, moveable bridges, and replacement projects that involve very large changes in 
length or width relative to the original structure.  As with the generation of the Cost Database, the 
NBI files submitted by NCDOT to the FHWA were used to source the maximum span length for 
both the replaced and replacement bridges since this item is not recorded in the Performance 
Master.  The maximum span length was extracted from Item 48 – Length of Maximum Span in 
the record for each structure using the NBI data corresponding to the same year of the Performance 
Master data that this item was linked to. 

The assembled database is herein referred to as the Characteristics Database, since it is 
used to develop statistical models for forecasting the changes in bridge characteristics occurring 
during bridge replacement, such as the changes in structure length, width, and length of maximum 
span.  The Characteristics Database includes a total of 1,506 bridge replacement projects occurring 
between 2007 and 2016.  This set consists of 1,201 bridges on secondary routes, 286 bridges on 
primary routes, and 19 bridges on interstate routes.  Table 3.5 provides a further breakdown of the 
project count by functional classification and system classification of the route carried by the 
bridge.  Table 3.6 provides summary statistics for the geometric characteristics for the bridges 
contained in the Characteristics Database.  As expected, the range of the geometric characteristics 
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for the projects contained in the Characteristics Database encompass those for the projects 
contained within the Cost Database.  This ensures that the application of statistical models 
generated from the Characteristic Database to bridges contained in the Cost Database does not 
involve extrapolation of the models outside of the range of the underlying data used to develop the 
models. 

Table 3.5. Breakdown of replacement projects in Characteristics Database by functional 
classification and system classification of route carried 

 Primary Secondary Interstate All Routes 
Local 65 897 5 967 
Minor Collector 26 179 3 208 
Major Collector 102 83 0 185 
Minor Arterial 54 34 1 89 
Principal Arterial 39 8 10 57 
Total 286 1,201 19 1,506 

 

Table 3.6. Summary statistics for bridge replacement projects in Characteristics Database 

Characteristic Minimum Maximum Average 
ADT 10 90,000 2,477 
Original Bridge Length 15 ft 873 ft 78.7 ft 
New Bridge Length 16 ft 873 ft 112.1 ft 
Length Expansion Factor 0.459 10.912 1.648 
Original Bridge Width 11.6 ft 99.9 ft 24.4 ft 
New Bridge Width 12 214.9 ft 35.2 ft 
Width Expansion Factor 0.466 5.970 1.462 
Original Maximum Span 7.9 ft 180.1 ft 31.0 ft 
New Maximum Span 14.1 ft 252.0 ft 64.1 ft 

 

3.2 Review and Evaluation of Current Cost Estimation Strategies 
Currently, NCDOT computes conceptual replacement cost estimates for all bridges in the state 
inventory using a simple unit cost model implemented in the BMS.  These unit costs are multiplied 
by the deck area of the current (replaced) bridge to arrive at an estimate of the total replacement 
cost.  In the simple unit cost model currently used by NCDOT, the unit cost is determined only by 
the classification of the route carried by the structure.  Unit costs of $704/ft2 are used for bridges 
on interstate routes, $664/ft2 are used for bridges on primary routes, and $529/ft2 are used for 
bridges on secondary routes. 

 Since the unit costs currently used in the BMS are associated with the current deck area of 
each bridge in the inventory, summary statistics for unit construction costs and unit total 
replacement costs were generated for the bridges in the Cost Database using the deck area of the 
replaced structures.  These summary statistics are presented in Table 3.7 and 3.8, respectively.  In 
contrast to the unit costs computed with the deck area of the replacement structures, the range for 
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the unit costs computed with the deck area of the replaced structures is very wide.  While the 
average unit construction and average unit total replacement costs do exhibit typically larger values 
for bridges carrying primary routes compared to secondary routes, the large standard deviations 
observed across the datasets suggest that system classification of the route alone does not correlate 
strongly with the unit construction cost or the unit total replacement cost.  The mean unit total 
replacement cost for the 22 TIP bridges on primary routes in the Cost Database does fall within 
$1/ft2 of the unit cost currently being used in the NCDOT BMS, but this alone does not support 
the use of the current cost estimation strategy given the large spread and standard deviation of the 
unit total replacement costs observed in the Cost Database. 

 

Table 3.7. Summary statistics for unit construction cost ($/ft2) by route classification using deck 
area of replaced bridge 

 # Minimum Maximum Mean Median Standard  
Deviation 

TIP Projects 
Primary 22 $292 $1,297 $561 $514 $241 
Secondary 201 $163 $1,965 $530 $496 $244 

17BP Projects 
Primary 12 $371 $2,057 $865 $614 $522 
Secondary 67 $266 $1,586 $651 $600 $291 

All Projects 
Primary 34 $292 $2,057 $669 $535 $387 
Secondary 268 $163 $1,965 $561 $520 $261 
Interstate 3 $325 $739 $518 $491  

 

Table 3.8. Summary statistics for unit total cost ($/ft2) by route classification for TIP projects 
using deck area of replaced bridge 

 # Minimum Maximum Mean Median Standard  
Deviation 

Primary 22 $319 $1,432 $663 $600 $266 
Secondary 201 $228 $2,111 $635 $583 $298 
Interstate 1   $618   

 

 The current cost estimating strategy was used to forecast the total replacement costs for the 
224 TIP projects for which total replacement costs were available in the Cost Database.  Figure 
3.4 compares the actual replacement cost to the replacement cost forecast in the BMS for these 
projects.  In Figure 3.4a, a 1:1 reference line is provided to aid in the comparison.  Since the 
majority of replacement projects in the database have a total replacement cost of less than $2.5M, 
most of the points are concentrated near the origin of the axis.  While the forecasted replacement 
costs generally correlate with the actual replacement costs, there is a fair amount of scatter in the 
region where most projects are concentrated and very significant differences between the forecast 
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and actual replacement costs for the three projects exceeding $2.5M.  Figure 3.4b presents the 
same data computed as the ratio of actual replacement costs to forecast replacement costs.  On 
average, the actual replacement costs were 18% greater than the forecast replacement costs for 
these projects, which implies that the current cost estimating strategy tends to underestimate the 
actual replacement costs.  More problematic is the significant spread of error in the forecasted 
replacement cost.  The distribution of the ratio of actual to forecast replacement cost reveals that 
the actual replacement costs were in some cases 300% greater than the costs forecast by current 
cost estimating strategy, while in other cases the actual replacement costs were less than half of 
the forecasted replacement costs.  Histograms of the residual for the unit replacement costs and 
total replacement costs are presented in Figures 3.4c and 3.4d, respectively.  Statistical measures 
for the fit of the current model to the actual unit and total replacement costs in the assembled Cost 
Database are presented in Table 3.9.  The negative coefficient of determination, ܴଶ, for the unit 
replacement cost indicates that the current model fits the data worse than if a single unit cost, set 
as the average of the unit costs for all projects, was used to estimate unit replacement costs.  When 
the forecasted unit replacement costs are projected to total replacement costs using the deck area 
of the replaced bridge, the coefficient of determination remains very low.  In addition, the standard 
deviation of the residual on the total replacement cost is very close to the $853,037 average total 
replacement cost of the TIP bridges in the Cost Database, which indicates that the prediction errors 
generated by the current cost estimating strategy are very significant relative to the magnitude of 
the total replacement costs. 

 

Table 3.9. Summary of statistical measures for fit of current cost estimation model to the TIP 
projects in the Cost Database 

 Unit Costs Total Costs 
ܴଶ  -0.117 0.556 

Standard Deviation, $295.6 ߪ/ft2 $783,480 
Mean Error 34.2% 34.2% 
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a) b)  

c) d)  

Figure 3.4. Comparison between actual replacement cost and replacement cost forecasted by the 
BMS for TIP projects using deck area of replaced structure: a) cost comparison, b) histogram of 

actual costs relative to estimated costs, c) histogram of residuals for unit replacement cost, d) 
histogram of residuals for total replacement cost 

 

3.2.2 Conceptual Cost Estimates for High Value Bridges 

As an alternative to the unit costs used in the BMS, NCDOT forecasts conceptual costs for high 
value bridges using a dedicated spreadsheet.  As of the time that this spreadsheet was shared with 
the research team, this spreadsheet contained conceptual cost estimates for 205 bridges.  This 
spreadsheet generally does not track historical costs, but rather is based on engineering judgment 
and is used for planning purposes.  In several instances, the costs have been updated to reflect costs 
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sourced from bid tabs or HiCAMS to update the estimates in the spreadsheet to the actual values 
to provide feedback to the future development of this high value bridge replacement cost 
estimating tool.  Figure 3.5 provides a schematic of the general approach used by NCDOT to 
generate conceptual cost estimates for high value bridges.  The construction cost is developed as 
the sum of estimated bridge, roadway, and demolition costs.  Estimated bridge and demolition 
costs are based on unit cost estimates, with the deck area of the replacement structure being used 
to forecast the bridge cost and the deck area of the replaced structure being used to forecast the 
demolition costs.  The use of the deck area of the replacement structure is in contrast to the strategy 
currently used in the BMS that uses only the deck area of the existing structure.  The spreadsheet 
does not contain a formula for estimating the span length and deck width of the replacement bridge, 
but these values appear to be entered manually at the discretion of the engineer.  PE, ROW and 
utility costs, and construction engineering and inspection (CEI) costs are then forecast as a function 
of the estimated construction cost. 

 

Figure 3.5. Conceptual cost estimation approach used in high value bridges spreadsheet 

 The formulas currently used for estimating the total replacement cost of high value bridges 
were identified by reviewing the formulas coded into the spreadsheet provided to the research 
team.  From this review, it was determined that the components of the SMU Replacement Cost 
Estimate are calculated as follows: 

ݐݏ݋ܥ	݁݃݀݅ݎܤ ൌ ሺܷ݊݅ݐ	݁݃݀݅ݎܤ	ݐݏ݋ܥሻ ∗ ሺ݁ݎݑݐݑܨ	݇ܿ݁ܦ	ܽ݁ݎܣሻ 

(3.1)  
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ݐݏ݋ܥ	ݕܽݓ݀ܽ݋ܴ ൌ

ە
ۖۖ

۔

ۖۖ

ۓ
$66.7݇ ∗ ሺ݁ݎݑݐݑܨ	݄ݐܹ݀݅ሻ
$88.9݇ ∗ ሺ݁ݎݑݐݑܨ	݄ݐܹ݀݅ሻ
$100݇ ∗ ሺ݁ݎݑݐݑܨ	݄ݐܹ݀݅ሻ
$111.1݇ ∗ ሺ݁ݎݑݐݑܨ	݄ݐܹ݀݅ሻ
$133.3݇ ∗ ሺ݁ݎݑݐݑܨ	݄ݐܹ݀݅ሻ
$267݇ ∗ ሺ݁ݎݑݐݑܨ	݄ݐܹ݀݅ሻ
$555.6݇ ∗ ሺ݁ݎݑݐݑܨ	݄ݐܹ݀݅ሻ

 

ሺܸܽݏ݁݅ݎ	݀݁ݏܾܽ	݊݋	݃݊݅ݎ݁݁݊݅݃݊݁	ݐ݊݁݉݁݃݀ݑ݆ሻ 

(3.2)  

ݐݏ݋ܥ	݈ܽݒ݋ܴ݉݁ ൌ $20 ∗ ሺ݃݊݅ݐݏ݅ݔܧ	݇ܿ݁ܦ	ܽ݁ݎܣሻ 

(3.3)  

ݐݏ݋ܥ	݊݋݅ݐܿݑݎݐݏ݊݋ܥ ൌ ݐݏ݋ܥ	݁݃݀݅ݎܤ ൅ ݐݏ݋ܥ	ݕܽݓ݀ܽ݋ܴ ൅  ݐݏ݋ܥ	݈ܽݒ݋ܴ݉݁

(3.4)  

ݐݏ݋ܥ	ܧܲ

ൌ 	ቐ
0.15 ∗ ሺ݊݋݅ݐܿݑݎݐݏ݊݋ܥ	ݐݏ݋ܥሻ 																																											 ∶ ݐݏ݋ܥ	݊݋݅ݐܿݑݎݐݏ݊݋ܥ	݂݅ ൏ ܯ$4
ܯ$0.4 ൅ 0.1 ∗ ሺ݊݋݅ݐܿݑݎݐݏ݊݋ܥ	ݐݏ݋ܥሻ 																															 ∶ ݐݏ݋ܥ	݊݋݅ݐܿݑݎݐݏ݊݋ܥ	݂݅ ൏ ܯ$20
minሺ$0.1ܯ ൅ 0.08 ∗ ሺ݊݋݅ݐܿݑݎݐݏ݊݋ܥ	ݐݏ݋ܥሻ, ሻܯ$20 					 ∶ ݐݏ݋ܥ	݊݋݅ݐܿݑݎݐݏ݊݋ܥ	݂݅ ൒ ܯ$20

 

(3.5)  

ݏݐݏ݋ܥ	ݕݐ݈݅݅ݐܷ	݀݊ܽ	ܹܱܴ ൌ 	 ൜
																																																ܯ$3 ∶ ݐݏ݋ܥ	݊݋݅ݐܿݑݎݐݏ݊݋ܥ	݂݅ ൐ ܯ$30
0.05 ∗ ሺ݊݋݅ݐܿݑݎݐݏ݊݋ܥ	ݐݏ݋ܥሻ 			 ∶ ݐݏ݋ܥ	݊݋݅ݐܿݑݎݐݏ݊݋ܥ	݂݅ ൑ ܯ$30

 

(3.6)  

ݏݐݏ݋ܥ	ܫܧܥ ൌ 0.1 ∗ ሺ݊݋݅ݐܿݑݎݐݏ݊݋ܥ	ݐݏ݋ܥሻ 

(3.7)  

ݐݏ݋ܥ	ݐ݈݊݁݉݁ܿܽ݌ܴ݁	݈ܽݐ݋ܶ
ൌ ݐݏ݋ܥ	݊݋݅ݐܿݑݎݐݏ݊݋ܥ ൅ ݐݏ݋ܥ	ܧܲ ൅ ݏݐݏ݋ܥ	ݕݐ݈݅݅ݐܷ	݀݊ܽ	ܹܱܴ ൅  ݏݐݏ݋ܥ	ܫܧܥ

(3.8)  

 As indicated by the formulas, the construction cost is directly calculated using a unit bridge 
cost, future deck width, and existing deck area.  The unit bridge cost utilized in the spreadsheet 
varies from $110/ft2 to $1435/ft2.   However, only 7 of the bridges in the list use a unit bridge cost 
greater than $350/ft2 and all of these instances are moveable bridges (bascule, lift truss, or swing).  
For the non-moveable bridges, the average unit bridge costs used is $193/ft2 with a standard 
deviation of $38/ft2.  Approximately 55% of the non-moveable bridges in the spreadsheet have 
bridge costs estimated using a $175/ft2. unit bridge cost.  The roadway cost most commonly used 
in the spreadsheet is $66.7k/ft of future width, although this unit cost varies significantly across 
the set of high-value bridges.  The research team was unable to identify a correlation between 
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bridge characteristics and the unit roadway cost used in the spreadsheet, and it was assumed that 
the unit roadway cost was identified for each bridge based on experience and engineering judgment 
provided by NCDOT personnel. 

 For high value bridges, the NCDOT conceptual cost estimates for PE cost and ROW and 
Utility Costs are computed as a function of the construction costs.  In both cases, these costs are 
assumed to scale with the magnitude of the construction costs up to a fixed maximum cost ($20M 
for PE cost and $3M for ROW and Utility Costs).  Interestingly, when the piecewise linear 
functions currently being used to estimate PE costs are plotted (Figure 3.6), a discontinuity is 
revealed in the cost prediction model.  Likewise, a discontinuity was discovered in the piecewise 
linear model for ROW and Utility Costs (Figure 3.7).  The reason for these discontinuities is not 
known, although the research team suspects that they reflect an error in the formulation of the 
piecewise linear functions.  Significant discontinuities within cost prediction models should be 
avoided unless strongly justified since they lead to large differences in estimated total project costs 
between bridges that otherwise have very small differences in construction costs.  For example, 
due to the discontinuity in the PE cost model, the current estimating spreadsheet would predict that 
a bridge with a construction cost one dollar under $20M would have a PE cost of $2.4M, while a 
bridge with a construction cost one dollar over $20M would have a PE cost of only $1.7M.  
Likewise, the current estimating spreadsheet predicts that a bridge with a construction cost one 
dollar under $30M would have a ROW and Utility Cost of $1.5M, while a bridge with a 
construction cost one dollar over $30M would have a ROW and Utility Cost of $3M. 

 

Figure 3.6. Discontinuity in piecewise linear function currently being used to forecast PE costs 
for high value bridges 
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Figure 3.7. Discontinuity in piecewise linear function currently being used to forecast ROW and 
Utility Costs for high value bridges 

The construction costs for the high value bridges in this spreadsheet range from $10.4M to 
$367M.  These construction costs are orders of magnitude greater than most of the bridges in the 
Cost Database assembled for this research effort.  Only one bridge within the Cost Database had a 
construction cost greater than the lowest cost bridge in the high value bridges list.  Consequently, 
the available cost data from the assembled Cost Database cannot be used to assess or validate the 
forecasting equations currently being used by NCDOT for high value bridges.  However, 
comparisons for simple statistics of component costs were developed to provide some insight into 
the plausibility of the models used. 

Within the Cost Database of 224 non-high value TIP bridge replacements, PE costs were 
on average 16.8% of the construction cost, but tended to decrease as a percentage with increases 
in construction cost.  The high value bridge cost estimation model projects PE costs to be 15% of 
construction costs for bridges with construction costs less than $4M, which seems reasonable given 
the cost data for the projects in the Cost Database.  The moderate decrease in relative PE costs to 
only 10% of construction costs over $20M cannot be assessed based on the available data, but is 
generally supported by the observed trend of reduced relative PE costs with increased construction 
cost.  ROW costs were on average 2.5% of the construction costs, which is half of the relative 
fraction of construction costs predicted by the high value bridge cost estimation model.  This 
suggests that the high value bridge conceptual cost estimates may be overly-conservative in their 
forecasts of ROW and utility costs.  However, the lack of sufficient data for bridges with 
construction costs in the same range as the bridges in the high value bridge spreadsheet precludes 
any basis for assessing the validity of the current high value bridge cost estimation models. 
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3.3 Development of Improved Cost Estimation Strategies for the BMS 
 

3.3.1. Predictor Variables 

Potential predictor variables for the statistical regressions available in the assembled databases 
included geometric characteristics of the replaced and replacement structures, functional and 
geographic characteristics, usage statistics and system classifications, appraisals, and design 
details.  Table 3.10 presents a summary overview of all of the predictor variables explored for use 
in the development of the improve cost estimation strategies for the BMS.  This table lists the 
predictor variable by a shorthand descriptor, a brief description of the predictor variable, the type 
of predictor variable, and the type of cost forecasting model where the predictor variable was made 
available for regression.  Many of the shorthand descriptors used for each predictor variable were 
adopted from the Abed-al-Rahim and Johnston (1995) study to maintain consistency and facilitate 
ease of model comparison between this prior NCDOT sponsored research effort and the current 
one.  For the Type A forecasting models, only information about the replaced bridge is used to 
construct regression models capable of forecasting replacement costs directly from the 
characteristics of the replaced bridge.  For the Type B forecasting models, the costs are computed 
using characteristics of the replacement bridge, which must be predicted from the characteristics 
of the replaced bridge through intermediate prediction models.  Most of the variables used are 
defined in the Recording and Coding Guide for the Structure Inventory and Appraisal of the 
Nation’s Bridges (FHWA 1995), although some variables are not found in the NBI.  Additionally, 
grouping was applied to some of the categorical variables due to limited diversity in the available 
data.  Deviations from the standard NBI descriptions are detailed in the following paragraphs.  
Further details on the assembly of the bridge replacement databases and predictor variables can be 
found in a Master of Science thesis stemming from this research (Phillips, 2017). 
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Table 3.10. Summary of predictor variables used in statistical regressions 

Predictor Variable Description Type Models 
OBLEN Span length of replaced bridge Continuous A 
OBWID Deck width of replaced bridge Continuous A 
MAXSPAN1 Maximum span in replaced bridge Continuous A 
NBLEN Span length of replacement bridge Continuous B 
NBWID Deck width of replacement bridge Continuous B 
MAXSPAN2 Maximum span in replacement bridge Continuous B 
WATERDEPTH Depth of water under bridge Continuous A,B 
BRIDGEAGE Age of replaced bridge Continuous A,B 
CTB Crown-to-bed height of replaced bridge Continuous A,B 
APPWID Approach roadway width of replaced 

bridge 
Continuous A,B 

LEF Length Expansion Factor Continuous B 
WEF Width Expansion Factor Continuous B 
ADT ADT for replaced bridge Continuous A,B 
REGION Geographic region Categorical A,B 
DIVISION Highway division Categorical A,B 
FUNCTCLASS Functional classification of route Categorical A,B 
SUPERSTRMAT Superstructure Material Type Categorical A,B 
SUPERSTRTYPE Superstructure Design Type Categorical A,B 
SUBSTRMAT Substructure Material Type Categorical A,B 
DECKMAT Deck Material Type Categorical A,B 
MULTISPAN Number of Spans Categorical A,B 
DECKGEOMAPP Deck Geometry Appraisal Adequacy Binary A,B 
ROADWAYALIGNAPP Roadway Alignment Appraisal 

Adequacy 
Binary A,B 

UNDERAPP Waterway or Underclearance Adequacy Binary A,B 
SECONDARYBRIDGESYS Route type (Secondary or Not 

Secondary) 
Binary A,B 

PROJECTTYPE Project type (17BP or TIP) Binary A,B 
 

Continuous variables included in the statistical regressions included the structure length, 
deck width, maximum span length, depth of water under the bridge, bridge age, crown-to-bed 
height, approach roadway width, length expansion factor, width expansion factor, and ADT.  In 
contrast to the NBI records, all continuous variables related to length use units of feet to maintain 
consistency with the units used within the BMS.   

 WATERDEPTH: All 305 bridges in the Cost Database cross over water, which could range 
from a shallow creek to a deep river or bay inlet.  The depth of the water under the bridge 
was considered as having a possible influence on costs due to the role that flood plains and 
scour have on bridge designs.  An existing bridge that crosses a river may require height 
and length increase, including additional ROW purchases, during replacement to comply 
with modern design standards.  Additionally, bridges with piers in deep water may require 
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greater demolition and construction costs as a result of special equipment and methods that 
may need to be employed.    

 BRIDGE AGE: The bridge age was calculated as the difference between the recorded year 
that the replacement bridge was built and the original year that the replaced bridge was 
built.  This variable was considered as a potential predictor variable because an older bridge 
may require additional length expansion to accommodate modern scour design 
requirements, additional width expansion to accommodate increased traffic, and more 
extensive environmental protection measures during demolition or site improvements 
during replacement than associated with bridge replacements performed on bridges built 
more recently.   

 CTB: The “crown” of a bridge is defined as the apex of its arch (Kassler, 1949).  The 
crown-to-bed height is not recorded in the NBI, but is an item recorded in the BMS.  For 
the purposes of this work, it was inferred that the measurement from the bed of the feature 
that the bridge is crossing to the top of the bridge crown represents the maximum height of 
the bridge structure.  Bridges with larger crown-to-bed heights are expected to have 
increased replacement costs. 

 APPWID: The approach roadway width includes the roadway width plus any usable 
shoulder areas on either side.  The approach roadway width used in the statistical regression 
is the recorded value sourced from the Performance Master database for the replaced 
bridge. 

 LEF: The length expansion factor is the ratio of the span length for the replacement bridge 
to the span length of the replaced bridge. 

 WEF: The width expansion factor is the ratio of the deck width for the replacement bridge 
to the deck width of the replaced bridge. 

 ADT: This continuous predictor variable is the average daily traffic estimate for the route 
carried by the bridge at the time of replacement. 

Categorical variables included in the statistical regressions included geographic region and 
highway division, functional classification of the route carried by the structure, the superstructure 
material and design type, the substructure and deck material types, and the number of spans in the 
bridge.  Abed-al-Rahim and Johnston (1995) did not use such categorical variables, but explored 
the possibility of creating separate models for different bridge types.  However, their final 
prediction models utilized only continuous variables.   

 REGION: The region is a classification of the geographic region where the bridge is 
located, which is recorded in the BMS.  There are three geographic regions used in the 
state: Coastal (1), Piedmont (2), and Mountain (3).  The Cost Database included 31 coastal, 
152 Piedmont, and 122 mountain projects.  Figure 3.8 presents a map of the location of 
each individual bridge replacement project in the Cost Database. 

 DIVISION: This categorical variable indicates the highway division for the location of the 
bridge replacement project.  Bridge replacement projects from all 14 highway divisions 
were included in the Cost Database. 
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 FUNCTCLASS: The Cost Database contained bridges across six functional classifications: 
local (224 bridges), minor collector (47 bridges), major collector (29 bridges), minor 
arterial (1 bridge), principal arterial – interstate (1 bridge), and principal arterial – other (3 
bridges).  Due to the limited number of bridge replacements on principal and minor arterials 
in the Cost Database, the two principal arterial, the minor arterial, and the major collector 
functional classifications were combined to form one category. 

 SUPERSTRMAT: This categorical variable designates the predominant material of the 
superstructure for the bridge being replaced.  The Cost Database included 49 concrete 
superstructures, 188 steel superstructures, and 68 timber superstructures. 

 SUPERSTRTYPE: This categorical variable designates the superstructure design type for 
the bridge being replaced.  The Cost Database included 23 channel beam, 21 girder and 
floorbeam system, 236 stringer/multi-beam or girder, and 25 other superstructure types. 

 SUBSTRMAT: This categorical variable designates the predominant material of the 
substructure for the bridge being replaced.  The Cost Database included 42 concrete 
substructures, 152 timber substructures, and 111 substructures of other material. 

 DECKMAT: This categorical variable designates the predominant material of the deck for 
the bridge being replaced.  The Cost Database included 122 concrete decks, 25 steel decks, 
and 158 timber decks. 

 MULTISPAN: This categorical variable designated the number of spans in the bridge 
being replaced.  The Cost Database included 99 single span bridges, 72 two span bridges, 
78 three span bridges, 30 four span bridges, 23 five span bridges, 2 eight span bridges, and 
1 nine span bridge.  A few instances of bridges with more than nine spans were considered 
atypical and were removed from the Cost Database to avoid potential skew in the 
regression models caused by their inclusion.  Due to the limited number of bridges with 
more than five spans, all bridges with more than five spans were condensed into the same 
category as bridges with five spans. 

 DECKGEOMAPP: Adequacy of the deck geometry is evaluated through the clear deck 
width and minimum vertical clearance over the bridge, with the lower of the two conditions 
dictating the deck geometry appraisal (FHWA 1995).  The deck geometry appraisals were 
binned into a binary classification in order to create larger groups for regression and to 
reduce the complexity of the prediction models.  The binary classification was developed 
by classifying all bridges with a deck geometry rating of 4 or greater as “acceptable” and 
with a deck geometry rating of 3 or less as “unacceptable.” This threshold was established 
by the definitions for this appraisal, as corrective action is indicated for bridges receiving 
an appraisal of 3 or less.  The Cost Database included 163 bridges with deck geometries 
classified as acceptable and 142 bridges with deck geometries classified as unacceptable. 

 ROADWAYALIGNAPP: The roadway alignment for a bridge is appraised by the change 
in speed required due to the alignment of the approach roadway relative to the bridge deck.  
The Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s 
Bridges specifies a rating of 6 for structures requiring only a minor reduction in speed and 
a rating of 8 for structures requiring no reduction in speed.  Binary classification was 
developed for this variable by classifying all bridges with an appraisal of 6 or greater as 
“acceptable” and all bridges with an appraisal of less than 6 as “unacceptable.”  The 
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rationale for including this appraisal as a potential predictor variable was that poor 
approach roadway alignment may necessitate ROW purchases, wider bridge decks, or 
expensive modifications to the approach roadway or structure alignment to correct the 
roadway alignment issue.  The Cost Database included 294 bridges with roadway 
alignment classified as acceptable and 11 bridges with roadway alignment classified as 
unacceptable. 

 UNDERAPP: This binary variable indicates the adequacy of the waterway if the bridge is 
over a waterway or underclearance below the bridge if it is over another route.  As with 
the other appraisals, this variable was developed as a binary variable.  The Cost Database 
included 298 bridges with acceptable underclearance and 7 bridges with an unacceptable 
underclearance. 

 SECONDARYBRIDGESYS: This binary variable indicates the classification of the 
highway system for the route carried by the replaced structure.  Since there were only 3 
interstate bridges in the Cost Database, the interstate bridges were combined with bridges 
on primary routes to develop a binary classification system.  The Cost Database included 
268 bridges on secondary routes and 37 bridges that are not on secondary routes. 

 PROJECTTYPE: This last predictor variable is a binary classification of whether the 
bridge replacement project was funded under the 17BP or TIP program. 

 

Figure 3.8. Locations of TIP and 17BP bridge replacement projects in Cost Database 

3.3.2. Summary of Cross Validation and Statistical Regression Techniques 

All regression models developed from this research used 5-fold cross validation to minimize over-
fitting of the models to the underlying data.  As detailed in the literature review, k-fold cross 
validation is an approach where the dataset is randomly divided into training sets on which the 
statistical models are constructed and test sets where the prediction errors developed by the 
statistical models are assessed.  A 5-fold cross validation involves developing five regression 
models on training sets each comprising 80% of the database, where the test sets each comprise 
the remaining 20% of the database.  The mean square error calculated when applying regression 
models developed from training sets to the test sets was used as the measure for the cross validation 
loss.  This cross validation loss measure provides a means for optimizing the complexity of the 
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regression model in a way that maximizes the fit to the data while maintaining the strongest 
predictive capabilities of the model when applied to future data.  This is illustrated in Figure 3.9. 
As the complexity of the model increases by either adding more branches to a decision tree or 
more predictor variable to a generalized linear regression model, the predictive capabilities of the 
model will improve as the fit to the underlying data improves.  However, with further increasing 
complexity, the regression model will begin to over-fit to the underlying data in the training set 
and result in increased prediction errors when applied to data in test or future sets, which are not 
used to develop the regression model.  The optimal model complexity is the point at which the 
cross validation loss is minimized.  The complexity of the model is quantified through 
hyperparameters specific to the type of regression model.  For example, for linear regression 
models, the number of terms in the model might be a hyperparameter to be optimized to arrive at 
the optimal complexity. 

 

 

Figure 3.9. Illustration of tradeoff between complexity of regression model and cross validation 
loss 

Generalized linear regression was used to produce regression models for cost components and all 
changes in bridge characteristics needed for computing cost components using the regression 
models.  Generalized linear regression is an extension of ordinary linear regression that allows for 
additional relations between the model and the response variable than the identity function.  These 
relations are call link functions and include log transformation, logit and probit functions, 
reciprocal, power laws, and other mathematical relationships.  In this research, the identity link 
function and log link function were explored as options for each regression model.  In addition, 
generalized linear regression is not limited to response variables with normal distributions 
(Agresti, 2015).  Inverse Gaussian distributions were specified for all of the generalized linear 
regressions performed in this study.  Stepwise forward selection of predictor variables was 
performed to construct each regression model, with the Akaike Information Criterion (AIC) used 
to identify the selection of the predictor variable to add to each model during the stepwise 
construction.  The AIC minimizes with the likelihood function of the model and is penalized by 
the number of parameters included in the model to balance the tradeoff between goodness of fit 
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and model complexity (Pardoe, 2012).  The stepwise forward process begins with the constant or 
intercept term and then progressively adds predictor variables to model until the specific maximum 
number of steps is reached.  Linear terms (ex. NBLEN) as well as quadratic terms (ex. NBLEN2) 
and interaction terms (ex. NBLEN*NBWID or NBLEN*CTB2) were permitted to be selected by 
the stepwise regression process.  To arrive at the optimal model complexity, Bayesian optimization 
was used to minimize the cross validation loss using the number of steps in the stepwise regression 
and form of the link function (either identity or log) as hyperparameters.  Through this approach, 
the Bayesian optimization provides an estimate for the ideal number of terms in the generalized 
linear regression model and the link function that results in the model with the best cross validated 
predictive capabilities. 

In addition to generalized linear regression models, binary decision trees were also 
developed through regression for each of the cost components.  Bayesian optimization was used 
to arrive at the optimal tree structure for each model that minimizes the 5-fold cross validation 
loss.  The minimum leaf size was used as the optimized hyperparameter for construction of each 
of the decision trees.  This minimum leaf size is the smallest number of observations contained 
within any leaf, or node, of the decision tree.  As the leaf size decreases with model complexity, 
the data is able to improve the fit to the underlying data, but leaf sizes too small result in overfitting 
of the model to the data.  Use of the minimum leaf size as a hyperparameter in the Bayesian 
optimization results in a model that appropriately balances the model complexity with the expected 
predictive capabilities when applied to future data.  To ensure averaging of a sufficient number of 
projects within each leaf, the minimum permissible leaf size for any of the developed models was 
constrained to 12.  This minimum permissible leaf size ensures that each estimated unit cost in the 
decision trees results from the averaging of no less than 5% of the bridge replacement projects 
contained in the Cost Database.  Lastly, in order to arrive at compact models, pruning of the 
developed binary decision trees was performed to remove any leaves that did not appreciably affect 
the goodness of fit, as measured by the coefficient of determination. 

3.3.3. Construction Cost 

For the development of the improved cost estimation models, regressions were performed on the 
total construction costs for each structure as well as the unit construction costs.  By producing 
regression models for both the total and unit normalized costs, model goodness of fit statistics 
could be used to evaluate whether projecting total construction costs results in improved predictive 
performance compared to projecting the unit construction costs and then multiplying those 
projected unit costs by the deck area to arrive at the total construction costs.  Since construction 
costs were available for both the 17BP and TIP projects, all 305 bridge replacement projects in the 
Cost Database were included in the regressions. 

Improved cross validated goodness of fit was observed for construction costs when the 
regression models were used to forecast the unit construction costs rather than the total 
construction costs.  Similarly, the goodness of fit for models developed on unit PE and unit ROW 
costs were improved relative to those developed on total PE and total ROW costs.  Consequently, 
the statistical regressions presented in this study forecast the unit component costs rather than the 
total component costs.  To arrive at estimates of the total component costs for the Type A models, 
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the unit component costs are multiplied by the deck area of the replaced structure (the old bridge). 
To arrive at estimates of the total component costs for the Type B models, the unit component 
costs are multiplied by the deck area of the replacement structure (the new bridge).   Histograms 
of the unit construction costs calculated using the deck area of the replaced bridge and the deck 
area of the replacement bridge were previously presented in Figure 3.3.  The minimum, maximum, 
and average unit construction costs computed using the deck area of the replaced bridge were 
$163/ft2, $2057/ft2, and $572/ft2, respectively.  The minimum, maximum, and average unit 
construction costs computed using the deck area of the replacement bridge were $115/ft2, $446/ft2, 
and 233/ft2, respectively. 

The optimal cross validated Type A model developed for unit construction costs using 
generalized linear regression uses the log link function and takes the formula: 
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(3.9)  

Interpretation of the significance of the predictor variable and regression coefficients within Type 
A models cannot be directly performed in many cases, since these models are internally forecasting 
both the unit construction costs and the projected change in deck area.  For example, in this model, 
multiple span bridges are forecast to have reduced unit construction costs compared to single span 
bridges with increased reductions in unit construction costs for each additional span.  This effect 
of number of spans on the unit construction cost may be a reflection of the changes in structure 
length rather than a correlation between number of spans and actual unit construction cost.  Single 
span bridges are typically shorter than multiple span bridges and shorter span bridges generally 
experience greater relative length expansion during replacement than longer span bridges, so this 
effect of number of spans contained within the model may simply be compensating for the 
expected length expansion.  Other predictor variables, such as project type and bridge age at the 
time of replacement, are static variables and can be directly interpreted.  This model projects a 
28% increase in unit construction cost for 17BP projects relative to TIP projects and increased unit 
construction cost with an increase in the age of the bridge being replaced.  
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The Type A binary decision tree developed for unit construction cost is presented in Figure 
3.10.  The minimum leaf size for this model is 12, which means that each of the unit cost values 
presented in the tree were arrived at by averaging no less than 12 replacement projects.  The most 
significant predictor variable within this model is the original bridge length, with unit construction 
costs consistently reduced with increased length of the original bridge being replaced.  The second 
most significant predictor variable within this model is the original bridge width, with unit 
construction costs reduced for bridges with larger original deck widths. 

 

 

Figure 3.10. Decision tree for unit construction costs applied to replaced bridge deck area 
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The optimal cross validated Type B model developed for unit construction costs using generalized 
linear regression takes the formula: 
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As with the Type A model developed for unit construction costs, the log link function was found 
to produce the lowest cross validated mean squared error.  The Type B model predicts that 17BP 
projects will have a 28% increase in unit construction costs compared to TIP projects and that 
bridge replacements on primary or interstate routes are 12.6% more costly on a unit construction 
basis than bridge replacements on secondary routes.  In contrast to the Type A model, the number 
of spans only has a nominal effect on the unit construction costs in this Type B model, which 
suggests that the effect observed in the Type A model is a mechanism for indirectly accounting for 
the change in deck area in the Type A model.  The most significant predictor variable in the Type 
B regression model is the length of the replacement structure.  Figure 3.11 presents an illustration 
of the effect of the span length on the forecast unit construction cost if the replacement project 
occurs on a secondary route with low ADT through TIP funding.  As illustrated in the figure, the 
predicted unit construction cost sharply decreases with an increase in structure length until 
approximately 200ft, where the unit construction cost is predicted to increase.  This figure also 
raises an important practical consideration related to the implementation of these models, as this 
nonlinear function is fit to cost data from a database consisting of predominantly short span 
bridges.  The largest structure length of the replacement bridges used in the regression analysis is 
331ft, which corresponds to the axis limit of Figure 3.11.  If the Type B unit construction cost 
model is applied to predict unit construction costs for replacement bridges with longer structure 
lengths, then this would be an extrapolation beyond the region of the model and could potentially 
result in extremely large estimates of unit construction costs.  This is particularly an issue due to 
the nonlinear nature of the regression equation and the presence of the log transformation. 
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Figure 3.11. Predicted effect of structure length on unit construction cost in Type B model for a 
TIP bridge replacement on a secondary route with low ADT 

 The Type B decision tree developed for unit construction costs is presented in Figure 3.12.  
The minimum leaf size for this model is 17.  Consistent with the generalized linear regression 
model, 17BP project are identified as having moderately higher unit construction costs than TIP 
projects and the most significant predictor variable identified by the decision tree is the length of 
the replacement structure.  However, since the decision tree is limited to a small number of binary 
splits, this model only predicts a consistent decrease in unit construction costs with an increase in 
the length of the replacement structure.  This allows the decision tree to be extrapolated to 
replacement projects for bridges with structure lengths exceeding the 331ft maximum length 
observed in the Cost Database without the potential for extremely large unit construction costs 
being incorrectly forecast.  However, it should be cautioned that this would still be an extrapolation 
of the model, which will likely fail to capture potential further decreases in unit construction costs 
for long span bridges resulting from economy of scale.   An important consideration for the future 
improvement of the developed cost estimation models is the cataloging of bridge replacement costs 
for high value bridges and other structures with atypical characteristics outside of the bounds 
captured by the bridges in the Cost Database used in this study. 
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Figure 3.12. Decision tree for unit construction costs applied to replacement bridge deck area 

 

 Summary statistics for the all of the cross validated regression models developed for unit 
construction costs are presented in Table 3.11.  The coefficient of determination, ܴଶ, and standard 
deviation of the prediction errors, ߪ, are provided for application of each model to the underlying 
unit construction cost data as well as projected to the total construction costs for each of the 305 
bridge replacement projects.  Appendix B provides cost comparison plots and histograms for all 
of the unit construction cost models.  Note that the unit costs for the Type A models are calculated 
using the deck area of the replaced bridge, while the unit costs for the Type B models are calculated 
using the deck area of the replacement bridge, so the statistical measures for the unit costs should 
not be compared across these two types of models.  However, the statistical measures for the total 
costs can be directly compared.  For both the Type A and Type B models, the generalized linear 
regression resulted in a better fit and smaller prediction errors than the binary decision trees.  The 
performance of the two generalized linear regression models was similar, with the Type B model 
achieving a slightly better fit and lower standard deviation than the Type A model.  However, these 
summary statistics were computed using the actual characteristics of the replacement bridges 
rather than predicted characteristics of the replacement bridges.  In Section 4 of this report, the 
effects of using statistical regression models to predict the characteristics of the replacement 
bridges on the replacement costs forecast by the Type B model is evaluated. 
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Table 3.11. Summary statistics for unit construction cost models 

  Unit Costs Total Costs 
Predictor Variable Set Regression Model ܴଶ ߪ ܴଶ ߪ 
A: Replaced Bridge Decision Tree 0.677 $158.4/ft2 0.660 $531,610 
A: Replaced Bridge GLM 0.754 $138.2/ft2 0.976 $140,700 
B: Replacement Bridge Decision Tree 0.574 $38.5/ft2 0.825 $381,460 
B: Replacement Bridge GLM 0.592 $37.7/ft2 0.983 $120,500 

 

3.3.4. Preliminary Engineering Cost 

As summarized in the literature review, an extensive study on PE costs for bridge and roadway 
projects was recently conducted for NCDOT (Liu, et al. 2011).  This work was reviewed in order 
to explore the potential to leverage this past research within the current effort.  However, it was 
ultimately determined that the model developed in RP2010-10 to predict PE costs for bridge 
projects would likely not be suitable for implementation as part of the updated bridge replacement 
conceptual cost estimation models.  One reason why the models were found to be unsuitable was 
that they would require a number of predictor variables that are not readily sourced from the BMS.  
Specifically, these prior models used the project construction scope, planning document 
responsible party, and roadway percentage of construction cost, which are not currently defined or 
forecast in the BMS.  Additionally, the models require the ROW cost and construction cost, so 
they would be dependent of the accuracy of the other component cost estimation models developed 
for forecasting bridge replacement costs.  Another reason why the PE cost estimation models from 
RP2010-10 were not utilized was that there were significant differences in the PE cost ratios 
observed in the assembled Cost Database compared to those presented in the prior work.  Figure 
3.13 presents the histogram for PE cost ratios for bridge projects presented in Hollar et al. (2013) 
alongside a histogram for PE cost ratios for the TIP bridge replacement projects analyzed in this 
current study.  While both distributions are left-skewed and non-normally distributed, it is apparent 
that the PE cost ratios for the bridge replacement projects performed between 2012 and 2016 are 
generally significantly lower than the PE cost ratios for the bridge projects performed between 
2001 and 2009 that were analyzed in the prior NCDOT research.  The average PE cost ratio 
observed in the dataset used within the RP2010-10 study was 27.8%, the average PE cost ratio for 
the 224 TIP projects contained in the developed Cost Database was only 16.8%.  The reason for 
the significant decrease in PE cost ratios between these two time periods is unknown.  The 
RP2010-10 study did not specify the exact nature of the bridge projects, so it is likely that the costs 
analyzed in the prior research included rehabilitation projects and new bridge construction in 
addition to bridge replacement projects, so the differences in PE cost ratios may simply be a result 
of differences in the scope of projects encompassed by each database. 
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a) b)  

Figure 3.13. PE cost ratio histograms for bridge projects: a) bridge projects in RP2010-10 (from 
Hollar, et al. 2013); b) TIP bridge replacement projects in Cost Database 

One of the recommendations from the prior research was to analyze preliminary 
engineering costs in monetary units rather than forecasting the PE costs as a ratio of the 
construction costs (Hollar, 2013).  In the current study, statistical regressions were performed on 
both the PE cost ratio as well as the unit PE costs and it was determined that improved goodness 
of fit was achieved when the unit PE cost was the dependent variable.  Cross validated generalized 
linear regression models and binary decision trees were developed for unit preliminary engineering 
costs using the same approach utilized for the unit construction cost models.  However, since 
preliminary engineering costs were only available for the TIP projects, only a subset of the Cost 
Database consisting of 224 TIP projects were used to develop the unit preliminary engineering 
cost models.  For these projects, the minimum, maximum, and average unit PE costs computed 
using the deck area of the replaced bridge were $10.1/ft2, $434/ft2, and $89.5/ft2, respectively.  The 
minimum, maximum, and average unit PE costs computed using the deck area of the replacement 
bridge were $4.1/ft2, $128.9/ft2, and 35.6/ft2, respectively. 

The optimal cross validated Type A model developed for unit PE costs using generalized 
linear regression uses the identity link function and takes the formula: 
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(3.11)  

This model uses on the deck geometry rating prior to replacement and the number of spans in the 
replaced bridge to estimate the replacement cost.  Bridges having deck geometry ratings less than 
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4 are forecast to have higher PE costs than bridges with deck geometry ratings not requiring 
corrective action.  This is a plausible correlation, as more preliminary engineering may be required 
to address width expansion or address issues with vertical clearance over the roadway.  With 
respect to the effect of the number of spans on the unit PE cost, it is not possible to directly 
associate this predictor variable with PE costs, since it may change during the bridge replacement.  
As previously noted, the Type A regression models indirectly account for projected changes in 
deck area since they are based on the unit area of the replaced bridge.  Consequently, the reduction 
in unit PE cost with number of spans reflected in the model may be a reflection of economy of 
scale, but it is also likely to be the result of the need for the model to indirectly forecast the length 
and width expansions, which are expected to be greater for shorter, single span bridges, than longer 
multiple span bridges. 

 The Type A binary decision tree developed for unit PE cost is presented in Figure 3.14.  
This decision tree features a minimum leaf size of 38 and uses only the length, width, and deck 
geometry rating of the replaced bridge to estimate the unit PE cost.  In this model, shorter and 
narrower bridges are associated with higher unit PE costs.  For bridges with original span lengths 
exceeding 41.5ft, the unit PE cost is forecast to be higher if the deck geometry rating is less than 
4, requiring corrective action.  This correlation between deck geometry rating and unit PE cost was 
also observed in the Type A generalized linear regression model. 

 

Figure 3.14. Decision tree for unit preliminary engineering costs applied to replaced bridge deck 
area 
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The optimal cross validated Type B model developed for unit PE costs using generalized 
linear regression takes the formula: 
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(3.12)  

As with the Type A generalized linear regression model for PE costs, the identity link function 
was found to produce the lowest cross validated mean squared error.  This model implies a 
reduction in unit PE costs as the number of spans is increased and an increase in unit PE costs if 
the bridge replacement occurs on a primary or interstate route instead of a secondary route.  Unit 
PE costs are forecast by the model to be slightly higher for bridges in the Coastal region, with 
similar unit PE costs for bridges in the Piedmont and Mountain regions.  Lastly, the model predicts 
a decrease in unit PE costs with increased length expansion factor.  In contrast to the Type A 
model, the Type B model does not utilize the deck geometry rating as a predictor variable. 

 The Type B binary decision tree developed for unit PE costs is presented in Figure 3.15.  
The minimum leaf size for the developed decision tree is 18.  This tree structure is more complex 
than the Type A decision tree.  For replacement bridges with structure lengths less than 82.5 ft, the 
unit PE cost is a function of the region and the length of the maximum span.  Consistent with the 
Type B generalized linear regression model, this decision tree forecasts higher unit PE costs for 
bridges in the Coastal region than for those in the Piedmont or Mountains regions.  For replacement 
bridges with structure lengths of 82.5 ft or greater, the unit PE cost is a function of the depth of the 
waterway under the bridge, the deck geometry rating, and the structure length.  Within this branch 
of the tree, bridges with a deck geometry rating less than 4 are forecast to incur higher unit PE 
costs than bridges with deck geometry ratings that do not require corrective action.  This is 
consistent with the correlations observed in both of the Type A models for unit PE cost.  
Interestingly, the unit PE costs are forecast to decrease with increases in the depth of the waterway 
under the structure. 
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 Summary statistics for the all of the cross validated regression models developed for unit 
PE costs are presented in Table 3.12.  The coefficient of determination, ܴଶ, and standard deviation 
of the prediction errors, ߪ, are provided for application of each model to the underlying unit PE 
cost data as well as projected to the total PE costs for each of the 244 TIP bridge replacement 
projects.  Appendix B provides cost comparison plots and histograms for all of the unit PE cost 
models.  The coefficient of determination for unit PE costs associated with these models are 
significantly worse than for the models developed for unit construction costs.  However, since the 
PE costs are a significantly smaller fraction of the total replacement cost, the larger prediction 
errors are not expected to have significant detrimental effect on the estimated total replacement 
costs.  The binary decision tree models achieved a better fit to the unit costs for both the Type A 
and Type B models.  With respect to the total PE costs, the generalized linear regression model 
achieved a higher coefficient of determination and lower standard deviation of residuals than the 
decision tree for the Type A models, while the decision tree achieved a higher coefficient of 
determination and lower standard deviation of residuals than the generalized linear regression 
model for the Type B models. 

 

Figure 3.15. Decision tree for unit preliminary engineering costs applied to replacement bridge 
deck area  
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Table 3.12. Summary statistics for unit preliminary engineering cost models 

  Unit Costs Total Costs 
Predictor Variable Set Regression Model ܴଶ ߪ ܴଶ ߪ 
A: Replaced Bridge Decision Tree 0.363 $49.7 /ft2 0.587 $68,285 
A: Replaced Bridge GLM 0.313 $51.6 /ft2 0.710 $57,492 
B: Replacement Bridge Decision Tree 0.289 $15.4 /ft2 0.775 $50,718 
B: Replacement Bridge GLM 0.200 $16.4 /ft2 0.624 $65,498 

 

3.3.5. Right of Way Cost 

Cross validated generalized linear regression models and binary decision trees were developed for 
unit ROW costs using the same approach utilized for the unit PE cost models.  As with PE costs, 
the ROW costs were not available for the 17BP bridge replacement projects, so the statistical 
regressions for unit ROW costs were limited to the 224 TIP projects in the Cost Database.  For 
these projects, the minimum, maximum, and average unit ROW costs computed using the deck 
area of the replaced bridge were $0/ft2, $155/ft2, and $14.8/ft2, respectively.  The minimum, 
maximum, and average unit ROW costs computed using the deck area of the replacement bridge 
were $0/ft2, $57.5/ft2, and 5.4/ft2, respectively. 

 A Type A cross-validated generalized linear regression model was developed for unit 
ROW costs, but the goodness of fit for this model was very poor.  Due to the exceptionally poor 
fit of the model, no equation is presented in this report in order to eliminate the possibility that it 
is used in any form of implementation.  The Type A binary decision tree developed for unit ROW 
costs is presented in Figure 3.16.  The minimum leaf size used to develop this decision tree was 
45.  This model also achieved a relatively low goodness of fit, but since a model is needed to arrive 
at ROW costs within the Type A framework, this model was retained since it outperformed the 
generalized linear regression model.  Despite the relatively poor goodness of fit, this model is not 
expected to detrimentally impact the estimation of total replacement costs through the Type A 
approach, since ROW costs are such a small percentage of the overall replacement cost.  The 
developed decision tree forecasts higher unit ROW costs for shorter span bridges, with the largest 
unit ROW costs being assigned to bridges with span lengths less than 51.5 ft and ADT counts 
greater than 590.  For bridges with structure lengths greater than 51.5ft, the estimated unit ROW 
cost is dependent on the deck geometry appraisal.  The unit ROW cost is forecast to be higher for 
bridges with deck geometry ratings less than 4 than for bridges not requiring corrective action to 
address deck geometry functional deficiencies. 
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Figure 3.16. Decision tree for unit ROW costs applied to replaced bridge deck area 

 The cross-validated generalized linear regression model developed for the Type B 
approach to estimating unit ROW costs utilizes an identity link function and is formulated as: 

	ݐݏ݋ܥ	ܹܱܴ	ݐܷ݅݊ ቆ
$
ଶݐ݂

ቇ ൌ െ1.56 ൅ ܣ ൅ 0.009753 ∗ ܰܧܮܤܰ ൅ 5.433 ∗
ܦܫܹܤܰ
ܦܫܹܤܱ

 

ܣ ൌ ቐ
0 ܱܰܫܩܧܴ	݂݅ ൌ ݈ܽݐݏܽ݋ܥ

െ2.53 ܱܰܫܩܧܴ	݂݅ ൌ ݐ݊݋݉݀݁݅ܲ
െ2.26 ܱܰܫܩܧܴ	݂݅ ൌ ݏ݊݅ܽݐ݊ݑ݋ܯ

 

(3.13)  

The predictor variable with the most influence in this equation is the width expansion factor, 
ே஻ௐூ஽

ை஻ௐூ஽
.  The correlation between higher width expansion and increased unit ROW costs is 

expected, since significant width expansion would most likely be associated with increase ROW 
acquisitions and utility relocations.  The generalized linear regression model also forecasts a mild 
increase in unit ROW costs with length of the replacement structure, which is also a plausible 
correlation.  Lastly, unit ROW costs are forecast to be slightly higher within the Coastal region 
than within the Piedmont or Mountain regions.  However, as with the Type A generalized linear 
regression model, the goodness of fit for this Type B generalized linear regression model was poor, 
so the correlations expressed within this model should be viewed with skepticism. 

 The binary decision tree developed for prediction of unit ROW costs through the Type B 
cost estimating approach is presented in Figure 3.17.  The minimum leaf size used to develop this 
decision tree was 18. This decision tree is the only developed model to utilize the division as a 
predictor variable, with bridges in Divisions 1, 9, 10, 11, 13, and 14 being forecast to generally 
incur higher unit ROW costs than bridges in other divisions.  For bridges in these divisions, the 
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unit ROW costs is predicted to be highest for bridge with ADT counts greater than 1575 and lowest 
for longer span bridges with low ADT counts.  For bridges in all other divisions, the unit ROW 
cost is forecast to be dependent on the substructure material for the replaced bridge and the width 
expansion factor, with bridges experiencing greater width expansion incurring higher unit ROW 
costs. 

 

Figure 3.17. Decision tree for unit ROW costs applied to replacement bridge deck area 

 Summary statistics for the unit ROW cost estimating models are presented in Table 3.13.  
As previously noted, the goodness of fit for the unit ROW cost models was significantly worse 
than that achieved for the unit construction costs and unit PE costs.  However, since ROW costs 
are on average only 2% of the total replacement cost, inaccuracies in the unit ROW cost estimates 
are not expected to be severely detrimental to the replacement cost estimation.  Appendix B 
provides cost comparison plots and histograms for all of the unit ROW cost models. 

Table 3.13. Summary statistics for unit right of way cost models 

  Unit Costs Total Costs 
Predictor Variable Set Regression Model ܴଶ ߪ ܴଶ ߪ 
Replaced Bridge Decision Tree 0.119 $22.1/ft2 0.092 $41,210 
Replaced Bridge GLM 0.077 $22.5/ft2 -0.799 $57,788 
Replacement Bridge Decision Tree 0.251 $6.7/ft2 0.441 $32,335 
Replacement Bridge GLM 0.030 $7.5/ft2 0.653 $25,490 
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3.3.6. Characteristics of Replacement Structure 

The Type B cost estimating models require additional intermediate models to predict changes in 
deck area and any other bridge characteristics that are incorporated as predictor variables in the 
cost estimating models.  For the models generated, the Type B cost estimating models require 
additional prediction model to estimate the length of the replacement structure (NBLEN), the 
width of the replacement structure (NBWID), and the length of the maximum span in the 
replacement structure (MAXSPAN2).  Since estimates for the length and width of the replacement 
structure would need to be determined by these supplemental models, the estimated deck area of 
the replacement structure can be determined as the product of the estimated length and width of 
the replacement structure.  In developing models for these bridge characteristics, generalized linear 
regression was used following the same procedure as used for the development of the unit cost 
models, except that the regression was performed on the data from the 1506 bridge replacement 
projects contained in the Characteristics Database.  Both identity and log link functions were 
evaluated and 5-fold cross validation was used to determine the optimal link function and number 
of steps to use in assembling the models through stepwise forward selection.  Binary decision trees 
were not developed for the bridge characteristics, since these model produce only a finite set of 
responses that would not be well suited for the wide range of values that the bridge length, width, 
and maximum span length exhibit. 

 The cross-validated generalized linear regression model developed to forecast the length 
of the replacement structure uses the identity link function and is expressed as: 

ܰܧܮܤܰ ൌ	െ11.66 ൅ ܣ ൅ 0.36548 ∗ ܧܩܣܧܩܦܫܴܤ ൅ 1.2231 ∗ ܤܶܥ െ 10ିହݔ2.099 ∗ ܰܧܮܤܱ
∗ ܶܦܣ ൅ 1.0093 ∗ ܰܧܮܤܱ ൅ 0.0037263 ∗  ܶܦܣ

where ܣ ൌ ቐ
0 ܱܰܫܩܧܴ	݂݅ ൌ ݈ܽݐݏܽ݋ܥ

13.90 ܱܰܫܩܧܴ	݂݅ ൌ ݐ݊݋݉݀݁݅ܲ
10.23 ܱܰܫܩܧܴ	݂݅ ൌ ݏ݊݅ܽݐ݊ݑ݋ܯ

 

(3.14)  

This regression model predicts an increase in bridge length with original length, age, ADT, and 
crown-to-bed height, with a moderate decrease in length with the product of the original bridge 
length and ADT.  Also, longer span bridges are forecast for the Piedmont region, followed by the 
Mountain region, and then the Coastal region. 

 The cross-validated generalized linear regression model developed to forecast the width of 
the replacement structure uses the identity link function and is expressed as: 

ܦܫܹܤܰ ൌ 19.54 ൅ 0.029937 ∗ ܰܧܮܤܱ ൅ 0.22417 ∗ ܦܫܹܤܱ ൅ 0.043384 ∗ 1ܰܣܲܵܺܣܯ
െ ଶܰܧܮܤ10ିହܱݔ5.1504 ൅ 0.0029781 ∗ ܶܦܣ ൅ ܣ ∗ ܶܦܣ ൅  ܤ

where ܣ ൌ ቐ
0 ܱܰܫܩܧܴ	݂݅ ൌ ݈ܽݐݏܽ݋ܥ

െ0.0010088 ܱܰܫܩܧܴ	݂݅ ൌ ݐ݊݋݉݀݁݅ܲ
െ0.0012408 ܱܰܫܩܧܴ	݂݅ ൌ ݏ݊݅ܽݐ݊ݑ݋ܯ
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ܤ ൌ ቐ
0 ܱܰܫܩܧܴ	݂݅ ൌ ݈ܽݐݏܽ݋ܥ

2.66 ܱܰܫܩܧܴ	݂݅ ൌ ݐ݊݋݉݀݁݅ܲ
3.05 ܱܰܫܩܧܴ	݂݅ ൌ ݏ݊݅ܽݐ݊ݑ݋ܯ

 

(3.15)  

The estimated width of the replacement bridge is influenced most significantly by the width of the 
replaced bridge, but also is forecast to increase with increased span length of the replaced bridge.  
The estimated width of the replacement bridge is nonlinear with respect to the length of the 
replaced bridge. 

 Lastly, the cross-validated generalized linear regression model developed for the maximum 
span length of the replacement bridge is formulated as: 

2ܰܣܲܵܺܣܯ ൌ 4.23 ൅ ܣ ൅ ܤ ൅ 0.91249 ∗ 1ܰܣܲܵܺܣܯ ൅ 0.3112 ∗  ܧܩܣܧܩܦܫܴܤ

where ܣ ൌ ቐ
0 ܱܰܫܩܧܴ	݂݅ ൌ ݈ܽݐݏܽ݋ܥ

9.80 ܱܰܫܩܧܴ	݂݅ ൌ ݐ݊݋݉݀݁݅ܲ
0.3 ܱܰܫܩܧܴ	݂݅ ൌ ݏ݊݅ܽݐ݊ݑ݋ܯ
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۔

ۖ
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0 ݊ܽ݌ݏ	݈݁݃݊݅ݏ	݂݅
12.66 ݏ݊ܽ݌ݏ	2	݂݅
15.74 ݏ݊ܽ݌ݏ	3	݂݅
14.94 ݏ݊ܽ݌ݏ	4	݂݅
14.96 ݏ݊ܽ݌ݏ	݁ݎ݋݉	ݎ݋	5	݂݅

 

(3.16)  

Within this model, the length of the maximum span for the replacement structure is driven 
primarily by the length of the maximum span of the replaced bridge, with additional increases in 
maximum span length estimated with increases in bridge age and number of spans in the replaced 
structure.  This correlation suggests that older, multi-span bridges have been typically replaced 
with bridges having longer maximum spans than the original bridge being replaced.  In addition, 
the model expresses a correlation between the Piedmont region and a larger increase in the 
maximum span length than in the Coastal or Mountain regions.   

 Summary statistics for the generalized linear regression models developed for the bridge 
characteristics of replacement structures are provided in Table 3.14.  Appendix C provides 
comparison plots and histograms for the prediction errors developed by each of the bridge 
characteristics models when applied to the set of 1506 bridges in the Characteristics Database.   

Table 3.14. Summary statistics for bridge characteristics models 

Bridge Characteristics ܴଶ ߪ 
NBLEN 0.756 34.3 ft 
NBWID 0.574 9.7 ft 

MAXSPAN2 0.407 20.4 ft 
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4. Findings and Conclusions 
 

The statistical regression models developed in the previous chapter provide numerous means for 
estimating the total cost of bridge replacement projects.  As detailed in the prior chapter, the Type 
A models estimate unit component costs on the basis of the deck area of the bridge being replaced, 
while the Type B models estimate the unit component costs on the basis of the deck area of the 
replacement bridge and other predicted characteristics of the replacement structure.  Furthermore, 
within each approach, generalized linear regression models and decision trees were developed as 
alternative means for forecasting the unit component costs.  Consequently, in order to arrive at a 
recommended approach for estimating bridge replacement costs in the BMS, the predictive 
capabilities of both the type of forecasting approach and the types of regression model used to 
arrive at each component cost needed to be assessed.  This assessment was performed by analyzing 
the residual prediction error for unit and total replacement costs when the models were applied to 
the 224 TIP bridge projects for which all component costs were available.  For each of the Type 
A approaches, the unit construction, unit PE, and unit ROW costs were predicted by each 
component cost model to arrive at the unit replacement cost estimate, which was then multiplied 
by the deck area of the bridge being replaced to produce an estimate of the total replacement cost.  
For each of the Type B approaches, the characteristics of the replacement bridge were first forecast 
using the prediction models developed for structure length, structure width, and length of 
maximum span, and then the unit construction, unit PE, and unit ROW costs were predicted by 
each component cost model to arrive at the unit replacement cost estimate.  This Type B unit 
replacement cost estimate was then multiplied by the product of the forecasted length and width 
of the replacement structure to produce an estimate of the total replacement cost. 

 The coefficient of determination, mean residual, and standard deviation of the residual for 
both the unit and total replacement cost was assessed for each type of approach and regression 
model.  For the Type A approach, the use of mixed regression models was also assessed, since the 
generalized linear regression model produced a better fit to the underlying data for unit 
construction cost and unit PE cost, while the decision tree produced a better fit to the underlying 
data for unit ROW cost.  This mixed regression model uses the cross-validated linear regression 
model to forecast the unit construction cost and unit PE cost, but uses the binary decision tree to 
forecast the unit ROW cost.  Table 4.1 summarizes the statistical measures for each of the cost 
estimating approaches and types of regression models.  Clearly, the current cost estimating 
approach used in the BMS is a generally poor estimator of unit construction costs, as evidenced 
by the negative coefficient of determination and the large mean and standard deviation of the 
residual.  When projected to the total replacement costs using the deck area of the replaced bridge, 
the statistical measures for the current cost estimation strategy used in the BMS improves, but still 
results in large mean and standard deviation of the residual.  Figure 4.1 provides graphical 
comparisons of actual vs. forecast unit and total replacement costs as well as histograms of the 
residual for both unit and total replacement costs.  There is a large variation in the actual unit 
replacement costs normalized to the deck area of the replaced bridge that is not well captured by 
the current use of one of only three unit costs according by the system of the route carried by the 
bridge. These large prediction errors in unit costs propagate to the estimation of total replacement 
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costs, with significant deviation between the actual and forecast replacement costs for both small 
and medium scale replacement projects. With the use of the current cost estimating strategy used 
in the BMS, the largest absolute residual unit replacement cost is $1,582/ft2 and the largest absolute 
residual replacement cost is $8.0M.  

Table 4.1. Summary statistics for cost estimation models applied to 224 TIP projects in Cost 
Database (Note: unit costs computed relative to predictor variable set) 

  Unit Costs ($/ ft2) Total Costs ($) 
Predictor Variable 
Set 

Regression 
Model 

ܴଶ ̅ߪ ݔ ܴଶ ̅ߪ ݔ 

Current Approach used in BMS -0.117 -94.6 295.6 0.613 -26,879 783,480 
Replaced Bridge Decision Tree 0.668 15.9 168.6 0.483 -11,666 669,310 
Replaced Bridge GLM 0.719 1.2 155.8 0.980 -18,497 175,470 
Replaced Bridge Mixed 0.721 1.2 155.0 0.983 -12,650 158,700 
Replacement Bridge Decision Tree 0.306 -1.2 48.0 0.923 -20,753 302,830 
Replacement Bridge GLM 0.312 -0.9 47.7 0.933 -53,393 364,060 

 

Across the statistical models developed through this research effort, the Type A approach 
using generalized linear regression models to forecast the unit construction and unit PE costs and 
a binary decision tree to forecast the unit ROW costs performed the best in estimating the total 
replacement costs for the TIP bridges in the Cost Database.  Figure 4.2 presents graphical 
comparisons for the actual vs. forecast unit and total replacement costs as well as histograms of 
the residual unit and total replacement costs.  In contrast to the current cost estimating strategy, 
this regression model produces a clearly better fit to the unit and total replacement costs for the 
bridge projects in the database with normally distributed residuals for both unit and total 
replacement costs.  Furthermore, this approach accurately predicts replacement costs for both 
small scale bridge replacement projects as well as for all three of the bridge replacements with 
total costs exceeding $2.5M.  While this does not ensure that the model would extend to high value 
bridge projects or, due to the sparsity of data available for replacements costing over $2.5M, even 
perform equally as well when applied to other bridge projects within the upper end of this range 
of projects in this database, the ability of the model to accurately forecast the total replacement 
costs for all three of the bridges with the highest costs in the database without sacrificing the 
prediction accuracy at the low end of the cost scale is promising.  With the use of the Type A 
approach with mixed regression models, the largest absolute residual unit replacement cost is 
$903/ft2 and the largest absolute residual replacement cost is $0.68M. 

Although the Type B approach was consistently able to achieve better fit to the individual 
component costs when the deck area of the replacement structure was treated as a known quantity, 
the requirement of forecasting the changes in bridge characteristics and deck area with the 
replacement introduces errors that propagate into the component and total replacement cost 
estimates.  The Type B decision tree and generalized linear regression models performed similarly 
when applied to forecast the unit and total replacement costs for the 224 TIP bridge projects.  For 
illustration, graphical comparisons of the actual vs. forecast unit and total replacement costs and 
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histograms of the residual unit and total replacement costs developed with this model are presented 
in Figure 4.3. This approach also yielded normally distributed residuals for both unit and total 
replacement costs with generally similar distributions to those obtained from the Type A approach 
with the mixed regression models.  However, the Type B approach did not achieve the same 
improvements in accurately forecasting the replacement costs for the three bridge projects 
exceeding $2.5M in total replacement costs.  With the use of the Type B approach with generalized 
regression models, the largest absolute residual unit replacement cost is $175/ft2 and the largest 
absolute residual replacement cost is $4.2M.  Graphical comparison of the actual vs. forecast unit 
and total replacement costs and histograms of the residual unit and total replacement costs for the 
three approaches not specifically discussed in this chapter are provided in Appendix D.  

While the goodness of fit to the cost data available for the bridge replacements in the Cost 
Database can serve as one means of evaluating the performance of the different models developed 
in this study, these assessments do not guarantee that the cost estimation models will generate 
accurate or even reasonable estimates for unit costs when applied to all of the bridges in the state 
inventory.  While the cross-validation performed when developing the models assists in reducing 
the potential for overfitting of the models to the data, the developed models need to be used with 
caution, especially when applied to bridges with characteristics outside of the bounds captured by 
the projects in the Cost Database (Tables 3.1 and 3.2).  In those instances, the models will be 
extrapolating outside of the region of available data, rather than interpolating between the available 
data points.  This is particularly problematic for the GLM models when log transformations and 
other nonlinearities are present in the regression equation, as the output of the cost estimation 
model may be unrealistic if extended beyond the bounds used to develop the model.  While 
extremely unrealistic results cannot be produced by decision trees due to the nature of the limited 
leaves in the tree, the extrapolation of these models is still problematic because they will fail to 
capture any significant factors affecting the costs of bridge replacement projects not well 
represented by the underlying data used in this project. 

To evaluate potential issues likely to be encountered when applying the developed 
regression models to the entire state bridge inventory, a new database was created using data for 
all bridges present in the BMS Network Master.  The 2018 NBI file was used to import the length 
of the maximum span for each bridge and the same categorical groupings used when preprocessing 
the Cost Database were applied to this new database.  After assembling the database for all bridges 
currently in the North Carolina BMS, an additional filtering process was performed to identify and 
remove anomalies and omissions from the dataset.  For instance, any cases where the maximum 
span length could neither be linked from the NBI file nor, in the case of single span bridges, 
determined from the span length were removed from the database.  In addition, a few instances of 
bridge records where the deck width was recorded as zero were identified and removed from the 
database. 

Analysis of the assembled entire statewide database of bridges revealed that approximately 
90% of all current bridges are contained within the bounds of the available data used to develop 
the statistical regression models for replacement cost estimating.  Consequently, the developed 
models are expected to be generally appropriate for application to all but 10% of the state inventory 
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of bridges, where extrapolation of the models outside of the bounds of the available data would be 
required.  Each of the cost estimation models previously evaluated in Table 4.1 were applied to 
estimate unit total replacement costs for 13,291 bridges.  The ranges and distributions of forecasted 
unit total replacement costs were compared to the range and distribution of known unit total 
replacement costs for the 224 TIP projects in the Cost Database.  While the forecasted ranges and 
distributions are not expected to be identical to those for the bridges in the Cost Database, there 
should be similarities since the Cost Database is a subset of the total bridge inventory.  However, 
since the Cost Database lacked high value bridge projects, the forecasted unit replacement costs 
for the entire inventory are expected to be more skewed toward lower unit costs due to the presence 
of high value bridges in the state inventory.  Figure 4.4 compares the distributions of unit total 
replacement costs forecast by the Type A models to the distribution of known unit total 
replacement costs for the TIP projects in the Cost Database calculated using the deck area of the 
replaced structure.  As expected, the results reflect that the Type A decision tree model does not 
produce estimated unit replacement costs outside of the range of the original underlying data used 
to develop the models.  However, the forecast distribution of unit replacement costs is dissimilar 
to the distribution of the original underlying data with the majority of bridges receiving a forecast 
unit replacement cost between $300/ft2 and $400/ft2 based on the deck area of the replaced bridge.  
In contrast, the Type A GLM and mixed models produce distributions that are more similar to the 
distribution of unit total replacement costs of the underlying data.  However, unrealistic unit cost 
estimates were produced by the extrapolation of these models to bridges with characteristics not 
reflected in the underlying data used to develop the models.  Acknowledging that the known unit 
cost for the 224 TIP projects do not reflect an absolute bound on expected unit total replacement 
costs, the range considered as reasonable was established by expanding the lowest and highest unit 
total replacement costs in the Cost Database ($228/ft2 and 2,111/ft2, respectively) by 5% of the 
total range.  By this approach, any unit total replacement costs calculated above $2205/ft2 or below 
$134/ft2 were considered unrealistic.  These thresholds were based on judgement and not on any 
particular guidance or supporting data, however they are used only to identify likely cases where 
the models were at risk of potentially significant extrapolation errors.  For both the Type A GLM 
and mixed models, a small number of bridges (less than 40 total) developed unit total replacement 
cost forecasts greater than $2,205/ft2.  These bridges typically had large deck widths that exceeded 
the maximum deck width observed in the Cost Database and/or large ADT values that exceeded 
those observed in the Cost Database.  A larger number of bridges (approximately 1000 to 1200) 
developed unit total replacement cost forecasts less than $134/ft2.  These bridges typically had 
large structure lengths, many spans, and large maximum span lengths that exceeded those observed 
in the Cost Database. 

Similar results were observed when the Type B cost estimation models were applied to the 
13,291 bridges and compared to the known unit total replacement costs for the 224 TIP projects in 
the Cost Database using the deck area of the replacement structure (Figure 4.5).  The Type B 
decision tree model did not produce any unrealistically large or small estimates, but produced a 
narrow spread of forecasted unit total replacement costs that did not reflect the same range as the 
known unit total replacement costs of the 224 TIP projects in the Cost Database.  The Type B 
GLM model developed a distribution of forecast unit total replacement costs that more closely 
resembled the distribution of the subset of known unit total replacement costs, however a 
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significant number of unrealistic unit total replacement cost estimates were also developed.  For 
the Type B model, all of the unrealistic estimates occurred as instances where the forecast unit 
total replacement cost was greater than an expected reasonable upper bound of $510/ft2.  The 
number of instances that exceeded $510/ft2 with the Type B GLM model was 662.  These bridges 
typically had structure lengths and/or length of maximum spans that exceeded those observed in 
the Cost Database.  Beyond exceeding the expected range of unit costs, it is problematic that longer 
span bridges are assigned higher unit costs as they are expected to incur lower unit costs due to 
economies of scale.  Additionally, a closer examination of the characteristics of the bridges 
developing unrealistic estimates revealed that 72 bridges in the inventory developed forecasted 
structure lengths or deck widths for the replacement structure that were negative.    This is very 
problematic because these erroneous estimates for the projected characteristics of the replacement 
structure not only produce unrealistic unit total replacement cost estimates, but would produce 
worthless total replacement cost estimates since the projected deck areas of the replacement 
structure would be nonsensical.  The inadequate predictive capabilities of the developed bridge 
characteristics models used to forecast changes in structure length and deck width for the 
replacement structure and the compounding of the errors with the projections for the unit and total 
replacement costs is the primary reason why the Type B forecasting approach and associated 
models developed in this study are not recommended for implementation. 

For both the Type A and Type B models that leverage estimates based on GLM regressions, 
one remedy to the issue of unrealistic unit cost estimates produced by extrapolation of the models 
is to enforce lower and upper bound constraints on the forecast unit total replacement costs.  In 
other words, in the limited instances where the forecasted unit total replacement costs follow 
outside of the range deemed reasonable, the forecasted value could be replaced with either an 
established lower or upper bound on the unit total replacement cost.  As additional bridge 
replacement cost data is recorded in HiCAMS and SAP, particularly for high value bridges, 
interstate bridges, and bridges with characteristics not represented by the underlying data used in 
this study to developed the regression models, the statistical regressions could be revisited to 
expand the applicable range of the developed models to a more comprehensive coverage of the 
statewide bridge inventory. 
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a) b)  

c) d)  

Figure 4.1. Cost estimation method currently used in the BMS applied to TIP bridges in Cost 
Database: a) unit total replacement costs; b) histogram of residual unit total costs; c) total 

replacement costs; d) histogram of residual total replacement costs 
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a) b)  

c) d)  

Figure 4.2. Type A Mixed model applied to TIP bridges in Cost Database: a) unit total 
replacement costs; b) histogram of residual unit total costs; c) total replacement costs; d) 

histogram of residual total replacement costs 
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Figure 4.3. Type B GLR model applied to TIP bridges in Cost Database: a) unit total replacement 
costs; b) histogram of residual unit total costs; c) total replacement costs; d) histogram of residual 
total replacement costs 
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a) b)  

c) d)  

Figure 4.4. Unit total replacement costs relative to deck area of replaced bridge: a) actual unit total 
replacement costs for TIP bridge projects in Cost Database; b) forecast unit total replacement costs 
for all NC bridges using Type A decision trees; c) forecast unit total replacement costs for all NC 
bridges using Type A GLM model; d) forecast unit total replacement costs for all NC bridges using 
Type A Mixed model 
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a) b)  

c)  

Figure 4.5. Unit total replacement costs relative to deck area of replacement bridge: a) actual unit 
total replacement costs for TIP bridge projects in Cost Database; b) forecast unit total replacement 
costs for all NC bridges using Type B decision trees; c) forecast unit total replacement costs for 
all NC bridges using Type B GLM model 
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5. Recommendations 
 

Based on the assessments of the various cost estimating model developed through statistical 
regression, it is recommended that NCDOT implement a new methodology for estimating the cost 
of bridge replacements within the BMS.  Consistent with the current practice used by NCDOT, it 
is recommended that conceptual cost estimates developed within the BMS be computed using the 
deck area of the current bridge that would be subject to replacement, rather than attempting to 
forecast the change in deck area along with other bridge characteristics that change during 
replacement.  All of the conceptual cost estimation models forecast unit costs that should be 
multiplied by the product of the structure length and the deck width, which are both recorded in 
the BMS Network Master.  It is recommended that the unit construction cost be calculated using 
the equation developed from generalized linear regression: 
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ܤ ൌ ൜
1.0 ݐ݆ܿ݁݋ݎ݌	ܲܫܶ	݂݅

1.2767  ݐ݆ܿ݁݋ݎ݌	ܲܤ17	݂݅

ଵߚ ൌ െ0.0183	;		ߚଶ ൌ 0.006	; ଷߚ ൌ  ;10ିସݔ1.1992

ସߚ ൌ െ0.0865	; ହߚ ൌ െ1.510710ିݔ଺	; ଺ߚ ൌ  10ିସݔ8.8821

(5.1)  

It is recommended that the unit PE cost be calculated using the equation developed from 
generalized linear regression: 

	ݐݏ݋ܥ	ܧܲ	ݐܷ݅݊ ቆ
$
ଶݐ݂

ቇ ൌ 130.2 ൅ ܣ ൅  ܤ

ܣ	݁ݎ݄݁ݓ ൌ

ە
ۖ
۔

ۖ
ۓ

0 ݊ܽ݌ݏ	݈݁݃݊݅ݏ	݂݅
െ7.78 ݏ݊ܽ݌ݏ	2	݂݅
െ56.33 ݏ݊ܽ݌ݏ	3	݂݅
െ55.11 ݏ݊ܽ݌ݏ	4	݂݅
െ71.37 ݏ݊ܽ݌ݏ	݁ݎ݋݉	ݎ݋	5	݂݅

 

ܤ ൌ ൜
0 ݈ܽݏ݅ܽݎ݌݌ܣ	ݕݎݐ݁݉݋݁ܩ	݇ܿ݁ܦ	݂݅ ൏ 4

െ27.57 ݈ܽݏ݅ܽݎ݌݌ܣ	ݕݎݐ݁݉݋݁ܩ	݇ܿ݁ܦ	݂݅ ൒ 4 
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(5.2)  

It is recommended that unit ROW cost be calculated using the decision tree presented in Figure 
5.2. 

 

Figure 5.2. Recommended decision tree for the estimation of unit ROW costs 

Prior to multiplying the sum of the unit construction, unit PE, and unit ROW costs by the deck 
area of the bridge being replaced (i.e. the original deck area), two adjustments should be made to 
the unit replacement costs: 

1) As detailed in the prior chapter of this report, the underlying data used to develop the cost 
estimation models is only a limited subset of the statewide database and does not 
completely capture the full range of bridge characteristics observed across the state.  In 
particular, high value bridges and bridges with large deck widths, structure lengths, or 
lengths of maximum span may receive unrealistic unit replacement cost estimates when 
the recommended cost estimation models are applied.  For near term implementation, lower 
and upper bound constraints can be enforced on the estimated unit total replacement costs.  
It is recommended that these lower and upper bound constraints be established by NCDOT 
based on experience or further analysis of historical costs, but it is expected that the lower 
bound will be around $150/ft2 to $200/ft2 and the upper bound will be around $2100/ft2 to 
2200/ft2.  It is noted that these unit costs apply to the deck area of the replaced bridge, so 
they indirectly account for the effects of changes in the deck area on the total replacement 
costs.  Alternatively, the conceptual cost estimation models implemented for high value 
bridges could be used to supersede model predictions that result in unreasonable unit 
replacement costs.  In the long term, it is recommended that component costs for future 
bridge replacement projects be carefully documented in a central database containing the 
characteristics of the replaced and replacement structures.  With the expansion of the Cost 
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Database to include high value bridges and bridges having characteristics extending 
beyond the bounds of the underlying data used the develop the current models, the 
statistical models could be revisited to improve on the fraction of the statewide bridge 
inventory that can be forecast without requiring extrapolation of the models. 
 

2) The recommended conceptual replacement cost estimation models are referenced to a 2015 
dollar cost basis, since all of the costs in the underlying data was adjusted to this basis using 
the NHCCI.  It is recommended that the NHCCI be used to adjust the cost estimates to 
either the current year or year of the replacement.  As detailed in the literature review, the 
NHCCI is a cost index calculated specific to highway projects that accounts for highway-
specific cost trends and competitive labor and material rates using the advantages of the 
Fisher Ideal index.  The NHCCI construction cost trends table as well as supporting 
information on its development and implementation can be accessed from the FHWA 
website (https://www.fhwa.dot.gov/policy/otps/nhcci/) 

Additional recommendations to facilitate further improvement of the conceptual cost estimation 
models are itemized below: 

 The construction costs sourced from SAP aggregate the total contract cost, which could 
include roadway and demolition costs that will be variable across different replacement 
projects.  It may be possible to further improve the cost estimation models if the structure, 
roadway, and demolition costs were recorded separately for each bridge replacement. 

 As detailed in the overview of the data sourcing and preprocessing (Section 3.1), the 
HiCAMS and SAP database records do not list the structure number(s) associated with the 
contract.  This makes assembly of a replacement cost database that incorporates bridge 
characteristics from the BMS Network Master and Performance Masters time-consuming.  
Furthermore, the necessity to link the contracts to specific structures introduces potential 
errors from misassignment or incorrectly addressing contracts that involve multiple bridge 
replacements. 

 Assessment and subsequent improvement to the strategies currently used by NCDOT to 
forecast replacement costs for high value bridges was largely precluded due to the lack of 
available itemized cost data for high value bridge replacement projects.  NCDOT should 
develop a simple spreadsheet to record the actual structure, roadway, demolition, 
preliminary engineering, right of way, utility, and construction engineering and inspection 
costs.  This could be an extension of the current high value bridges spreadsheet, but with 
actual costs updated for all of the fields in each bridge record as replacements occur. 
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6. Implementation and Technology Transfer Plan 
 

The recommended conceptual replacement cost estimation methodology can be implemented 
within the BMS with relative ease since nearly all of the predictor variables included in the final 
unit cost models are items that already exist in the BMS Network Master.  However, there are two 
exceptions that would require expansion of the Network Master records.  The first is the length of 
the maximum span in each structure, which is used as a predictor variable for the unit construction 
cost.  This predictor variable was utilized in the research effort because it was previously found to 
be correlated with the unit structure cost of North Carolina bridge replacements in the Abed-Al-
Rahim and Johnston (1995) study.  The length of the maximum span is a standard item in the 
National Bridge Inventory record (item 48), so this information is already databased by NCDOT 
but cannot currently be sourced from either the Network Master or Performance Master databases 
in the BMS.  Implementation of the unit construction cost equation will require this item to be 
migrated from the NBI, or another database, to the BMS Network Master and converted to units 
of feet.  In addition to the length of the maximum span item, the unit construction cost model 
incorporates a 27.7% increase in unit construction costs for 17BP bridge replacement projects, 
since statistical analysis of the unit construction costs revealed a significant difference in unit 
construction costs for 17BP projects relative to TIP projects.  To utilize the unit construction cost 
model, NCDOT will either need to provide a new item within the Network Master to indicate if 
the replacement is expected to be funded through the 17BP or TIP mechanism or assume a constant 
value for all bridges in the state if such a determination is not feasible at the state of conceptual 
cost estimation.  For example, since the TIP bridge replacements occurred at approximately three 
times the frequency of 17BP bridge replacements during the time period analyzed by this research 
effort, NCDOT could either simple assume TIP bridge replacement for all projects when 
computing the conceptual cost estimate or use a weighted average of B=1.074 in the unit 
construction cost equation. 

The research team is committed to assisting with the implementation of the conceptual 
replacement cost estimating models and will provide any technical support necessary to implement 
or verify the implementation of the developed models.  The research team has retained all 
databases and developed routines used to create and assess the statistical regression models 
presented in this report.  In the event that NCDOT has a need or desire to utilize the developed 
databases or automated tools for performing cross-validated statistical regression on these 
databases, these files can be transferred to the department for their use. 
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Appendix A:  Literature Review 
 

A.1  Cost Estimation for Construction Projects 
 

Cost estimation for construction projects has been described as a combination of art and science 
(Gould 2005). An estimator should be able to use experience and judgement regarding anticipated 
conditions and make assumptions for uncertainties.  To mitigate risk and incorporate opportunity 
and cost savings into project, an estimator must also be able to creatively think through potential 
design and construction processes.  Estimators should also be methodical, organized, and able to 
manage complex calculations. The estimator’s strengths come in part from experience with similar 
projects and from an ability to visualize how conditions may change in the future, whether it be 
within the term of the project or years down the road.  Collier (1984) describes this kind of 
knowledge as “experiential” information. In the absence of detailed design information, the 
estimator injects his or her experiential judgements that are made based on any general project 
information that is available.  In the early stages of a project there is little design information 
available, so the estimator must rely heavily on their own personal experiences and rules-of-thumb 
to determine the general cost for the project (Collier 1984). 

Reliable cost estimates are an asset for owners.  Even the most basic preliminary estimates 
can give the owner an idea of whether the project is economically feasible.  As the design is 
developed, more detailed estimates can help an owner find a reasonable tradeoff between scope 
and quality.  For projects procured with a bidding stage, a final estimate based on the completed 
design gives owners an idea of the project’s value to benchmark the contractor’s bid estimates 
(Gould 2005). 

 
A.1.1  Types of Cost Estimates 

 
When discussing cost estimates for construction, it is important to differentiate between the terms 
cost and price. For the owner, the price paid for a completed project is usually greater than the cost 
to construct the project.  That is because the cost to the contractor includes more than just the 
materials and manpower needed to complete the project.  The contractor also pays for mobilization, 
demobilization, idle time, small tools, insurance, and permitting. These “direct costs” are 
accounted for by the contractor and charged to the owner as “reimbursable” costs.  Additionally, 
the contractor also charges the owner for indirect costs that are “non-reimbursable,” since they 
cannot be attributed to specific items of work at the site.  Common indirect costs for the contractor 
include operational costs, contingency, and the contractor’s profit.  Since these costs are less 
tangible than direct costs, the contractor estimates these as either a fixed percentage or as part of a 
lump-sum amount, depending on the type of contract with the owner.  For the owner, the price that 
they pay for a project is the sum of the direct and indirect project costs charged to them by the 
contractor (Collier 1984). 

It is important to remember that even for a single project, two estimates made at different 
points during that project’s lifespan will differ because the quality and quantity of the project 
information improves along the pre-construction timeline. Even the least accurate type of estimate 
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serves a purpose to the owner. The following sections introduce and describe the different types 
of estimates used by owners during each phase of the pre-construction and construction stages of 
a project.  

  
A.1.1.1  Cost Estimate By Project Phase 
  
The type of cost estimate that can be generated for a project is dependent on the amount of 
information available to estimators.  As the design for the project matures, more information 
becomes available to estimators, which allows for more detailed estimates. Figure A.1 shows the 
type of estimate used for each phase of the project (Schexnayder et al. 2003). 

 

 
Figure A.1: Estimate development in relation to project development (Schexnayder et al. 2003) 

 
During the conceptual stage of a project, only limited information is available in 

preliminary plans or design documents to support creation of a cost estimate.  Conceptual estimates 
are typically developed based on the estimator’s knowledge and experience, and are calculated 
based upon cost per square foot, previous projects, or order of magnitude (i.e. cost per room, cost 
per parking space) (Levy 2006).  Typically, the only known attributes for a bridge replacement 
project at this stage of the project are forecasted structure dimensions based on location and 
anticipated traffic demand (Abed-al-Rahim & Johnston 1995).  To provide a basis of 
understanding for how much the replacement project will cost, a mathematical model can be used 
to compute the estimated cost based on available known variables. 

Conceptual estimates can be created from gross historical bidding data.  However, without 
a complete design, there are many unknown factors still present that may affect cost.  Estimates 
generated after design and before bid are sometimes referred to as an agency’s or engineer’s 
estimate and are detailed enough to finalize project funding prior to bid solicitation (Schexnayder 
et al. 2003).  When estimators create these estimates, several key assumptions are made.  Some of 
these key assumptions may be that the project scope will not change, inflation has been accounted 
for, unanticipated regulatory changes will not occur, no strikes, favorable weather conditions, and 
that the project will not be mismanaged (Schexnayder et al. 2003). 

During the design development phase, the owner’s design team makes decisions on certain 
aspects of the design.  For a bridge project, this may be the substructure design (e.g., piles versus 
post and sill), deck material, or number of spans. Each component of the design can be priced 
based on historic data and calculated as a percentage of the total project cost.  The owner can make 
decisions on whether one of the components or associated work activities would incur excessive 
cost and if there is a more economically feasible alternative for that part of the design.  In some 
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cases, the owner may elect to reduce the scope or size of the project to preserve quality (Gould 
2005). 

Before advertising a project for bidding, the owner or the owner’s construction manager 
will create a more detailed estimate for the project’s cost.  Since the design is almost complete by 
this point, the estimator can use more accurate unit prices for each component of the project.  Not 
only does this allow the owner to determine the “fair” price for the project, but it also helps 
familiarize the owner with the contents of the contract documents and allows the owner to project 
day-to-day cash flow needs with a cash flow analysis (Gould 2005). 

 Bidders for a construction contract prepare detailed pre-bid estimates based on the contract 
documents provided with the bid advertisement.  The contractor’s estimators create material 
takeoffs from design information found in the specifications and plans, such as cubic yards of 
concrete or linear feet of guardrail.  Breaking down the project into smaller operations also allows 
estimators to estimate the manpower and equipment required for that operation.  A well-organized 
and comprehensive list of operations with item codes reduces the likelihood of an estimator 
omitting part of the project in their estimate.  Additional amounts are added to each subtotal to 
cover overhead costs and profit, which are included in the final price that the owner pays for a 
work item.  Typically, the contractor’s operational overhead costs and profit are calculated as a 
fixed percentage of the direct costs while job overhead items can be represented as a unit cost or 
lump-sum amount (Peurifoy 1975, Collier 1984).  

 As with the preliminary estimates prepared by the owner, the contractor or the contractor’s 
estimator must also consider project-specific factors that affect the material and labor rates for a 
project.  A site visit allows for the estimator to identify site problems, such as accessibility, 
location, and required site preparation, which would lead to higher mobilization costs.  Knowledge 
of local material prices, wages, and availability of skilled workers helps estimators make more 
informed decisions when they assume a unit price for an operation (Foster 1972). 

Change orders are a way for contractors to seek equitable adjustment for lost time or money 
during the construction phase.  Schedule and cost deviations occur due to circumstances that delay 
the final completion date of the project.  The cause of the delay will dictate whether the contractor 
is owed additional time or money from the owner.  These causes can range from severe weather, 
worker illnesses, and labor shortages to inadequate drawings and delays in permitting (Levy 2006). 

For instances where the delay was out of the control of the contractor but caused by the 
owner or members of the design team, the contractor can recover costs associated with that delay.  
This includes direct cost items, such as equipment rentals, labor, materials, stocking, 
subcontractors, and transportation.  Contractors can also be reimbursed for indirect costs incurred 
from the delay, which includes the additional operations costs for both their field office staff and 
any home office staff involved with the project.  A third compensable cost category, known as 
impact costs, includes losses in productivity, shortages of skilled workers, and extended warranties 
that resulted from the delay in construction.  When summed, the apparent and “hidden” costs of a 
compensable delay can have an extensive impact on the project’s budget (Levy 2006). 
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A.1.1.2  Top-Down versus Bottom-Up Estimating 
 
Top-down estimates are produced by reviewing the project at a macro level. These estimates can 
be made when most of the design has not yet been developed, which makes top-down estimating 
ideal for creating conceptual estimates. While top-down estimates can be helpful for understanding 
the “big picture” of the project, the reliability of the estimation is more difficult to control.  In the 
absence of specific design information, the estimator must make educated assumptions about the 
project based on any general project parameters that are available.  The quality of these 
assumptions can depend on the experience of the estimator (Gransberg et al. 2013). 

 As the project’s design becomes more developed, bottom-up estimating can be used to 
create more accurate predictions for both the total project cost and individual work items.  Bottom-
up estimating works in a similar fashion as top-down but on a much smaller scale.  After the project 
has reached a point where the work items can be organized into a work breakdown structure 
(WBS), a top-down estimate is performed on each WBS item.  The total predicted cost of the 
project can be found by adding up the individual estimates for all the items in the WBS (Gransberg 
et al. 2013).  

 Figure A.2 shows how top-down and bottom-up estimates are performed for pre-
construction services (PCS), which includes engineering and right-of-way acquisition costs 
(Gransberg et al. 2013).  The process shown in Figure A.2 could be applied to other individual 
aspects of a project.  Both estimating methods produce an overall cost estimate, however the 
individual sources used to produce each estimate have different levels of detail.  The three-point 
estimates in the bottom-up method are essentially smaller scale top-down estimates for specific 
tasks (Gransberg et al. 2013). 

During a construction project, the effectiveness of top-down and bottom-up estimates will 
vary depending on the current phase of the project.  In Figure A.3, the change in effectiveness for 
both methods as the design matures is illustrated.  Since top-down estimates rely solely on generic 
project parameters, they are most effective at the very beginning of the planning stage where there 
is not enough detail to use the bottom-up approach.  As the design is developed, the usefulness of 
the top-down method decreases since bottom-up estimates tend to be more accurate and useful for 
allocating and managing resources.  Gransberg et al. (2013) found that bottom-up estimates for 
PCS were most useful right before the final design phase.  At this point in the preconstruction 
phase, there is enough design information available to create a reliable estimate.  Beyond that 
point, in-house departments or third-party consultants will manage the preconstruction services, 
so the risk of any further cost escalation is relatively low. 
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Figure A.2: Top-down and bottom-up estimating methods for PCS costs (from Gransberg et al. 

2013) 
 

   

 
Figure A.3: Relative effectiveness of top-down and bottom-up estimating methods (from 

Gransberg et al. 2013) 
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Gransberg et al. (2016) provides a six-step framework for state agencies to follow when 
creating a top-down or bottom-up cost estimating model for PCS costs.  This general approach can 
be applied to other types of construction costs that would use their own prediction models, such as 
construction or right-of-way costs.  The framework functions as a cycle, which allows for agencies 
to make continuous improvements to their models. Figure A.4 shows the six steps in the PCS cost 
estimating model creation framework.  

 
Figure A.4: PCS cost estimating model framework (from Gransberg et al. 2016) 

 
 The first step of the model, Requirements Analysis, is where the state agency decides on 
whether a top-down or bottom-up estimating approach will be utilized.  Depending on the method 
chosen, the agency will also have to determine the historical data required for the estimate and 
databases from which the information can be sourced.  In the second step, the state agencies collect 
historical project data from a variety of separate databases and compile it into a central database.  
During this stage, the estimators need to ensure that the data meets their standards of quality, 
quantity, and level of detail.  The database should also be tailored to the end user of the data, 
whether it be an estimator that needs project-level historical data or a geotechnical engineer that 
needs specific information on soil conditions or regional geography (Gransburg et al. 2016). 

 After the central database has been created, the next step of the process is to identify 
significant factors that affect PCS costs.  This can be informed by engineering judgement and 
expertise or by using a structured statistical process.   Following the identification of these factors, 
the agency can develop or update their PCS database with respect to the significant variables.   
Availability of historical data can potentially limit the effectiveness of the database if the data does 
not meet a certain level of granularity (Gransburg et al. 2016). 
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 The fifth step inclu created using the historical data.  The model consists of both qualitative 
and quantitative aspects. The qualitative portion of the model relies upon the experience and 
judgement of the model’s creators and users to assess the quality of the data and interpret the 
results.  Gransberg et al. (2016) discuss four different quantitative methods used in PCS cost 
estimating models: decision tree, multiple regression, artificial neural networks (top-down 
method), and three-point estimating (bottom-up method).  The sixth and final step involves the 
validation and implementation of the new model.  After the model has been validated and deemed 
satisfactory, it is recommended that the creators of the model develop a system to validate the 
model, or assess how well the model’s estimate performs and compares to actual costs.  If there 
are discrepancies between estimated and actual costs, the creators and end users should be able to 
identify the causes for the deviations and create a list of “lessons learned” that can be adapted into 
the next development cycle of the model (Gransburg et al. 2016). 

 
A.1.2  Sources of Data in Cost Estimates 

 
The source of data for a cost estimate will depend on the type of information available at the time 
of the estimate. For conceptual estimates, historical data is used to obtain typical unit costs per 
lane mile, interchange, or square foot of deck area.  After the design has been developed to the 
point where specific units of work can be quantified, estimators can use the Historical Bid-Based 
estimating method to generate an estimate based on historic cost data.  This data is often obtained 
from previously submitted bids for similar projects or work (WSDOT 2008).  Cost estimates with 
the highest level of detail are created from assumed or obtained unit prices and quantity takeoffs 
(Foster 1972, Peurifoy 1975). 

 
A.1.3  Sources of Error in Cost Estimates 

 
The high-profile nature and public impact of most bridge projects requires that schedule and 
budget performance be closely monitored. It is in the best interest of state transportation agencies 
to provide accurate estimates, or else explain publicly why the project was overbudget (Wilmot 
and Cheng 2003).  Underestimating the cost of a project leads to delays as agencies search for 
additional funding, while overestimating can cause missed opportunities for projects that could 
have been partially or fully funded from that excess amount (Kyte et al. 2004). 

“Qn estimate is accurate if it is close to the actual final cost of the project. (Schexnayder et 
al. 2003).”  In describing “close to the actual final cost,” Schexnayder et al. (2003) state that a 
good estimator will generate estimates that are fairly close to actual costs with a reasonably small 
standard deviation.  Acceptable confidence bounds will depend on the type of estimate and which 
stage of the project in which the estimate was compiled.  As the project becomes more defined and 
more information becomes available, the confidence range becomes narrower.  This is because 
there is less uncertainty once the design has been completed.  However, because uncertainty always 
exists it is still incorporated into the engineering estimates to some extent. 
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  Since cost estimates are predictions, they can be inaccurate.  Early optimism can lead to 
false precision, which poses problems to the schedule and scope of work (Schexnayder et al. 2003).  
When a cost goes up, the budget must be increased or the scope reduced to keep the project cost 
within budget limits.  As a result, the project becomes more expensive and its overall value is 
reduced.  If the final project cost exceeds the original low bid cost, the overrun may have been 
caused by bidding errors, poor design, constructability issues, project complexity, poor 
construction management, site conditions, and labor and material availabilities (Wright and 
Williams 2001). Since it is difficult to anticipate the presence of these factors at the very beginning 
of a project, it is even more difficult to predict the magnitude to which these factors will increase 
the project cost. 

 The estimated project cost may also fall short of the actual project cost when estimators 
fail to apply a cost inflation factor for future year estimates.  Many state agencies estimate future 
costs by using a construction cost index or extrapolating trends from prior years.  Both methods 
fail to consider characteristics that have an impact on contract cost, such as contract size, duration, 
location, bid variance, and changes in construction practices.  Wilmot and Cheng (2003) proposed 
a model that accounts for additional variables that have a statistically significant impact on contract 
costs.  The new model, developed for the Louisiana Department of Transportation and 
Development, tends to estimate greater cost escalation, which leads to more conservative cost 
estimates.  Even in optimal economic conditions, the model anticipates that increases in the costs 
of petroleum products and construction machinery will outpace the standard inflation rate.  While 
this increase is inevitable, it can be managed and controlled by increasing contract size, reducing 
contract duration, minimizing plan changes, and letting fewer projects during the fourth financial 
quarter; all of which were shown to be significant factors in the construction cost prediction model 
(Wilmot and Cheng 2003). 

 
A.2  Overview of Cost Estimation for Bridge Replacement Projects 

 
In general, the alternatives to improve a bridge are maintenance, rehabilitation, or replacement, as 
shown in Figure A.5.  Maintenance, which is often called preservation, preventative maintenance 
or repairs, can be periodic or based on observed condition.  Bridge rehabilitation activities are 
major work efforts to restore the structural integrity of a bridge, often requiring complete or nearly 
complete restoration of bridge elements or components (FHWA 2018).  Bridge replacement 
projects are defined by the FHWA as “total replacement of an existing bridge with a new facility 
constructed in the same general traffic corridor (2018).”  Bridge replacement projects include 
design and construction of a replacement structure meeting the required standards and projected 
traffic over the design life, along with a sufficient amount of approach work to ensure connectivity 
between the new structure and the existing roadway.  As such, bridge replacement projects require 
the greatest proportion of funding (Abed-al-Rahim and Johnston 1995). Cost predictions for 
replacement projects are used to estimate each bridge’s present and future funding needs and create 
a reliable highway construction program (Behmardi et al. 2015, Wilmot and Cheng 2003).  
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Figure A.5:  Bridge action categories (FHWA 2018) 
 
NCHRP Report 574 provides a synthesis of recent research related to cost-estimation for 

highway projects in the planning, programming, and preconstruction phases.  This guide 
summarizes the state of practice related to cost estimation for transportation projects, including 
specific information on strategies employed by various states for planning estimates.  Much of the 
guidance relates to detailed cost-based or unit-based accounting methods used for project specific 
replacement cost estimation, which requires interaction with a trained estimator and input of 
projected estimates for construction costs and production rates.  However, there are references to 
several software packages that have been developed to expedite cost estimation for bridge 
replacement, including AASHTO Trnsꞏport (now integrated into the AASHTOWare Project suite), 
that may serve to inform the development of a robust cost estimation algorithm suitable for the 
BMS that incorporates construction cost trends and project-specific factors without the level of 
rigor and time required for full cost-based estimation typically performed prior to letting. 

 
A.2.1  Components of Total Project Cost 
 
The cost of a bridge replacement project reflects more than just the cost of building the new 
structure.  Costs for demolition, detour routes, surveying, design, inspections, and approach 
roadway improvements should also be considered when estimating the total cost of a project.  
Parameters such as bridge functional classification and bridge size will likely also affect the final 
estimated cost (Abed-al-Rahim and Johnston 1995).  Additional discussion regarding each of these 
components of total project cost is presented in the subsequent sections. 

 
A.2.1.1  Construction Cost 
 
The overall construction cost of a bridge involves several distinct work items. Before the new 
bridge can be constructed, the site must be cleared. This may involve demolition of an existing 
bridge structure, acquisition of right-of-way property, and relocation or removal of underground 
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utilities (Behmardi et al. 2015, Heiner and Kockelman 2005). Earthwork, erosion control, and 
construction of the bridge abutments and approach slabs are also part of the bridge construction 
process (Wahls 1990). Transportation and installation of substructure and superstructure 
components also contribute to the overall construction cost (Saito et al. 1991).  

 In addition to the quantity of each material used in the bridge design, the location of the 
project can place additional constraints on the methods available to the contractor, which may 
drive up the cost of construction.  For example, a bridge that crosses a waterway may have 
underwater substructure components that require dewatering and the installation of coffer dams to 
allow workers to work in dry conditions (Purvis 1994).  A shortage of fill material for the 
abutments may necessitate import of fill material from other areas, inflating the cost of 
construction (Wahls 1990).  

 As discussed previously, the contractor charges the owner for equipment, overhead, 
contingency, and profit. A more complex project may prompt the contractor to charge additional 
amounts for labor, specialized equipment, or greater contingency to cover the increased risk. As a 
result, owners will pay a greater price for construction of bridge replacement projects that are large, 
complex, or with less-than-optimal environmental constraints.  

  
A.2.1.2  Roadway Cost 
 
 The need for additional capacity and mobility during a bridge replacement project often requires 
state agencies to purchase private or public land for the improvements.  The Right-of-Way (ROW) 
acquisition process involves the highway agency acquiring additional land from the legal property 
owner while providing the property owner a reasonable compensation based on fair market value 
of the parcel (Chang-Albitres et al. 2014).  ROW acquisition can be time consuming and costly for 
transportation projects (Aleithawe 2017).  Under ideal circumstances, the ROW property can be 
acquired quickly and at fair market value.  However, any delays in acquiring the property in a 
timely manner minimizes any potential savings for the highway agency and introduces additional 
risk of the project deviating from the budget and schedule (Chang-Albitres et al. 2014). 

The costs for acquiring parcels includes the value of the parcel (or portion of the parcel) 
and any damages that must be paid to the owner for having to relocate (Heiner and Kockelman 
2005).  Rising acquisition prices have prompted SHAs to focus on minimizing ROW costs by 
prioritizing which parcels to purchase first (Chang-Albitres et al. 2014).  These decisions are time-
sensitive in nature, as land values can increase over the time that a decision is being delayed. 

When performing any sort of site work, interference with existing utilities can have lasting 
effects on a project’s schedule and budget. Utility Conflict Cost (UCC) is the combined direct and 
indirect estimated costs for the conflict resolution for each utility conflict (Aljadhai and Abraham 
2016).  If the utilities are relocated, potential costs include the relocation cost, risk to the project 
schedule, and impact on nearby facilities.  If the utilities are allowed to remain in place, cost items 
may include impacts on traffic, nearby facilities, and pavement service life.  Aljadhai and Abraham 
(2016) developed models that can be utilized to estimate UCC based upon conflict conditions. 
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A.2.1.3  Design Cost 

 
The preliminary engineering (PE) phase of a highway project aims to accomplish two goals. The 
first goal is to minimize the physical, social, and human environmental impacts posed by the 
project. The second goal is delivery of the best solution by way of engineering design. Accurate 
PE estimates promote proactive allocation of funds and fiscal responsibility.  Recently, Hollar et 
al. (2013) developed predictive models for PE costs for bridge projects based upon NCDOT project 
data.  

 
A.2.2  Adjustment of Costs for Inflation and Productivity 
 
Analysis of historical cost data requires adjustment of costs to account for inflation and changes 
in productivity between years. Cost indices that account for these factors are used to covert the 
value of a dollar from one year to another year, using indices created using the costs of a certain 
set (or “market basket”) of goods and/or services over time.  The Consumer Price Index (CPI) 
utilizes a market basket of consumer goods and services, creating indices for the US as well as for 
certain geographic areas.  The market basket for the CPI includes typical household expenditures 
for urban consumers such as food/beverages, housing, apparel, transportation, medical care, 
recreation, education/communication, and other goods and services (USDOL 2019).  Although 
utilized for a range of applications, including as an economic indicator and as a means for adjusting 
income payments, it can be seen that the market basket used to establish the CPI is not directly 
related to construction costs.  There are several construction cost indices, including the 
Engineering News Record (ENR) Index, the RS Means Historical Cost Index, and the National 
Highway Construction Cost Index (ENR 2019, RS Means 2019, FHWA 2019).  

ENR publishes two cost indices:  the Construction Cost Index (CCI) and a Building Cost 
Index (BCI).  Both of these indices consider construction material and labor costs, and are 
suggested for use with general construction costs (ENR 2019).  Materials considered in the market 
basket for both indices include established quantities of standard structural steel, bulk portland 
cement, and lumber.  The CCI labor component utilizes 200 hours of common labor, while the 
BCI utilizes 68.38 hours of skilled labor, multiplied by a 20-city average of wages for three trades 
(bricklayers, carpenters, and ironworkers).  The difference in treatment of the labor component of 
the market basket results in ENR suggesting the CCI for use where labor costs are a large fraction 
of total costs, while the BCI is more applicable for structures.  In the interest of continuity, prices 
are obtained from the same suppliers and stakeholders each month by ENR reporters.  The ENR 
indices are computed as 20-city average indices, with no weighting adjustments for labor or 
materials between cities.  Although offering insight into construction-specific market trends, ENR 
states that these indices “…do not capture all the factors influencing project costs.  They merely 
offer a snapshot of general cost trends (ENR 2019).”   

Use of the ENR CCI (and many other cost indices) to adjust costs is fairly straightforward.  
For example, a study conducted by Wright and Williams (2001) used data from 298 highway 
projects let by the New Jersey Department of Transportation (NJDOT) from 1989 to 1996. To 
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make comparisons between projects let in different years, Wright and Williams applied the ENR 
Construction Cost Index to equation A.1 to convert dollar values from all the projects to their 
1999-equivalent values. 

 

ଶܥ  ൌ ଵܥ	 ൈ ቀூమ
ூభ
ቁ (A.1) 

Where:  C1 = Cost in Year 1 dollars 
C2 = Cost in Year 2 dollars 
I1 = ENR Construction Index value for Year 1 
I2 = ENR Construction Index value for Year 2 

 
Values for the RS Means Historical Cost Index also construction-specific, and are based 

upon national average costs.  To reflect the various types of construction project pursued in the US 
and Canada, nine different types of buildings (including a 1-story factory, a 2-4 story office 
building, a 2-3 story high school, a parking garage, a 1-3 story apartment, and a hospital, among 
other types of building construction) were combined to create a composite index.  The market 
basket of goods to construct this composite index includes specific materials (roughly 66 
commonly utilized construction materials), labor (21 building construction trades), and equipment 
(specific days of equipment rental for 6 types of construction equipment) utilized to construct the 
composite construction model.  A date of January 1, 1993 is established as the baseline, and is 
equal to 100.  Material and equipment prices for the basket goods are gathered from 731 cities in 
the US and Canada on a quarterly basis, and are used to compute City Cost Indices (CCI).  The 
CCI can be applied to adjust the Historical Cost Index at a particular time at a given location.  RS 
Means indicates that the indices reflect weighted averages for typical construction and usage in a 
city, but do not account for productivity variations between locations.  Furthermore, the CCI does 
not account for managerial efficiency, competitive conditions, automation, union 
practices/requirements, or regional variations due to building codes (RS Means 2019).   

The National Highway Construction Cost Index (NHCCI), published by the FHWA, is a 
quarterly price index allows for conversion and prediction of construction costs for highway 
projects.  Utilizing web-posted data for pay items (unit of work, construction materials, labor, and 
services) from awarded bids for a wide variety of highway construction projects, an average cost 
index is computed for all highway construction (FHWA 2019).  This index was originally 
published in 2009, and revisited in 2015 after a research study identified deficiencies in calculation 
of the index, including issues with units of measure, non-standard pay items, and changes in data 
reporting and statistical exclusion procedures.  The NHCCI 2.0 methodology published in 2017 
addressed these problems, and revised quarterly NHCCI values have been prepared and published 
dating back to 2003.  The NHCCI 2.0 Index more closely tracks trends in the Producer Price Index 
(prepared by the Bureau of Labor Statistics), and is published on a quarterly basis with a lag time 
of three months (FHWA 2019).  For evaluation of bridge project costs, use of a highway project-
specific cost index (the NHCCI 2.0 index) to normalize costs will provide improvements in 
algorithm accuracy, since the information sourced to compute the index accounts for highway-
specific cost trends, economies of scale, and competitive labor rates among other considerations.  
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In addition to the source data, an aggregate index is highly dependent on the method used to 
compute the value from each component index.   

Three types of index formulas are commonly utilized in economics:  The Laspeyres price 
index (Equation A.2), the Paasche price index (Equation A.3) and the Fisher Ideal index (Equation 
A.4).  The weights assigned to each component index will help drive selection of the appropriate 
formula.  The Laspeyres price index formula uses quantities of the base period (0) as weights, 
while the Paasche index utilizes quantities of the current period (t) as weights (FHWA 2019). 
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One key advantage of the NHCCI is that it utilizes the Fisher Ideal index.  The Fisher Ideal 

index accounts for the weights of both the base period and the current period, allowing the index 
to accommodate the effects of substitutions.   Additionally, since the Fisher Ideal index is the 
geometric mean of the Laspeyeres price index and the Paasche price index, it to exhibit a “dual” 
property, with the product of a Fisher Ideal price index and a Fisher Ideal quantity index between 
the same two periods to equal the total change in value between the two periods (expressed in 
current dollars) (FHWA 2019).  Limitations of the Laspeyres Index is that it can overstate the 
impact of price increases, and also understates the impact of price decreases as the distance from 
the base year increases, making it biased upward over time.  The Paasche price index formula tends 
to exhibit the opposite bias, trending downward due to a substitution effect (FHWA 2019).  

Other SHAs have prepared their own state-specific construction cost indices.  The market 
basket utilized in each state can be tailored to suit agency preferences, as can the type of index.  
The form of the index formula utilized in these states can be one previously discussed, or another 
mathematical approach.  A summary of selected state construction cost indices prepared as part of 
research sponsored by Minnesota DOT is presented in Table A.1.  This study indicated that 
Minnesota DOT’s cost index was reflective of the NHCCI over a 15-year period (HDR 2018). 
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Table A.1:  Summary comparison of state highway construction cost indices (from HDR 
2018). 

 
State Washington1 Montana2 Minnesota3 Iowa4 Ohio Utah5 
Index  Young Laspyres Laspyres Chained Fisher Modified 

Laspeyres 
Frequency Quarterly Annually Quarterly, 

Annually 
Quarterly, 
Annually 

Quarterly Quarterly 

Base Year 1990 1987 1987 1987 2012 Q1 2003 
Categories 7 9 6 6 19 6 
Item 
Category 

 Roadway 
 Excavation 
 Crushed 

base 
 Surfacing 
 Hot mix 

asphalt 
 Concrete 

pavement 
 Structural 

concrete 
 Steel 

reinforcing 
bar 

 Structural 
steel 

 Excavation 
 Aggregate 

base 
 Surfacing  
 Drainage 
 Concrete 
 Reinforcing 

steel 
 Bridge  
 Traffic  
 Miscellaneous 

items 

 Excavation 
 Reinforcing 

steel 
 Structural 

steel 
 Structural 

concrete 
 Concrete 

pavement 
 Plant-mix 

bituminous 
pavement 

 Class 10 
roadway and 
borrow, and 
embankment-
in-place 

 Hot mix 
asphalt 

 pavement and 
shoulder 
mixes 

 Class ‘A’, 
class ‘B’, 
class ‘C’ 
pavements 

 Reinforcing 
steel 

 Structural 
steel 

 Structural 
concrete 

 Asphalt 
 Aggregate 

base 
 Barrier 
 Bridge 

painting 
 Curbing 
 Drainage 
 Earthwork 
 Erosion 

control 
 Guardrail 
 Landscaping 
 Lighting 
 Maintenance 

of traffic 
 Pavement 

marking 
 Pavement 

repair 
 PCC 

pavement 
 Removal 
 Signalization 
 Structures 
 Traffic 

control 
 Unclassified 

construction 
items 

 Roadway 
excavation 

 Hot mix 
asphalt 

 Concrete 
pavement 
(9-11” 
thick) 

 Reinforcing 
steel 
(coated) 

 Structural 
steel 

 Structural 
concrete 

 

1 From WSDOT Highway Construction Costs, Washington DOT  
2 From Jeong, D.H. et al. (2017).  “Advanced Methodology to Determine Highway Construction Cost Index 
(HCCI).” Montana DOT. 
3 From Minnesota DOT 
4 From “Price Trend Index for Iowa Highway Construction.”  Iowa DOT, Office of Contracts 
5 From “UDOT Construction Cost Indices.”  Utah DOT 

 
Since cost indices are based on data from construction projects, there are no values 

available for future years.  To estimate the adjusted cost of a project for a future year, the index 
data can be extrapolated using regression techniques.  For early work using the NCDOT BMS, 
Abed-al-Rahim and Johnston (1995) used the FHWA Structures Index to convert bridge cost data 
to a common year.  The first step of the conversion was used to bring the bridge project costs to a 
common base year, using an equation similar to Equation A.1. The limitation to this method is that 
the base year must fall within the range of years from which the construction index data is sourced. 
To bring these common base year costs to present or future values, Abed-al-Rahim and Johnston 
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(1995) developed a linear regression equation from the construction index data that extrapolated 
future year index values with a relatively good fit (R2 = 0.84). The future year index value found 
in Equation A.5 can be plugged back into Equation A.1 to solve for the cost in Year 2 dollars. 

 
ሺ௒ி,௒஻ሻܦܰܫ  ൌ 	102.21 െ 3.9ሺܻܤ െ  ሻ (A.5)ܨܻ

Where:  IND(YF,YB) = Cost index for future year YF and base year YB 
YB = Base year 
YF = Future year 

 
A.3  Cost Prediction Modeling Approaches 
  
Demand for accurate cost forecasting methods for highway projects has prompted several state 
transportation agencies to fund research projects on cost prediction modeling.  In this section, an 
overview of several different approaches is presented, along with background information required 
to develop these models. This section also discusses how predictions from the models can be 
implemented into a bridge management system. 

  
A.3.1  Types of Variables 
  
Variables can be classified by the way their data is recorded.  Continuous or quantitative variables 
are numerical values that can be measured at any point along a range of possible values.  The 
granularity of the data is only limited by the precision of the instrument which provided the original 
measurement.  Many variables included in a BMS, such as daily traffic, length, and width, can be 
considered continuous or quantitative variables.  Discrete variables can also be expressed as 
numerical values, however there is no smooth transition between values.  One example of this 
would be the number of spans for a bridge. This field can only be expressed in whole numbers, 
since half-span bridges do not exist. The distinction between continuous and discrete numerical 
variables can become blurred whenever the precision of the continuous variable is limited or the 
steps between the discrete values become very small (Tabachnick and Fidell 2006). 

 Discrete variables can also describe non-numerical qualitative data. In a BMS database, 
this could be deck material, functional classification of the route, or whether the bridge crosses 
over water or a grade change. Dichotomous variables have only two possible values (Tabachnick 
and Fidell 2006). Categorical variables can be used to designate discrete variables into grouped 
categories.  

 
A.3.2  Types of Models 
 
The cost for bridge replacement projects can be estimated through traditional cost estimation or 
through aggregated statistical modeling. Traditional cost estimates are calculated by listing all of 
the work items and multiplies their quantities by a unit price.  The sum of all the costs for the work 
items is the estimated value for the complete project.  Aggregated statistical modeling uses 
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historical data on bridge costs and attributes to predict the project cost based on models developed 
through linear regression analysis (Behmardi et al. 2015).     

 
A.3.3  Regression Analysis 
 
Regression can be described as a statistical method that can be used to investigate the relationship 
between variables (Dodge and Marriott 2003).  If a relationship exists between the dependent 
variable (y) and the one or more independent variables (x1, x2…xn), the value of the dependent 
variable can be predicted using a mathematical model (Dowdy and Wearden 1991).  In simple 
linear regression, the relationship between one dependent variable and one independent variable 
can be modeled with a straight line, as seen in Equation A.6. Ideally, this straight line should “fit” 
the actual data on a scatter plot and minimize the sum of the squares of the vertical differences 
between the line and the data points. The coefficient of determination (R2) measures how well the 
regression model fits the data. The value of R2 ranges from 0 to 1, with higher values indicating a 
better fit (Dodge and Marriott 2003, Dowdy and Wearden 1991). 

 
 ܻᇱ ൌ ܣ ൅  (A.6) ܺܤ

Where:  Y’ = Predicted score 
  A = Value of Y when X is equal to zero 
  B = Slope of best-fit line 
  X = Value from which Y’ will be predicted 
 

To solve for the predicted score of Y’, values for both A and B must be found. First, the 
bivariate regression coefficient (B) is calculated by using Equation A.7. The coefficient is a ratio 
of the covariance of the two variables (X and Y) and the variance of X and is also the slope of the 
best-fit line (Tabachnik and Fidell 2006). After B has been found, the x-intercept (A) can be 
calculated from Equation A.8. 

 

ܤ  ൌ ே∑௑௒ିሺ∑௑ሻሺ∑௒ሻ

ே∑௑మିሺ∑௑ሻమ
 (A.7) 

Where:  B = Bivariate regression coefficient 
  X = Independent variable 
  Y = Dependent variable 
 

 
ܣ  ൌ തܻ െ ܤ തܺ (A.8) 

 
Where:  A = X-Intercept 
  തܺ = Sum of values used for the prediction 
  തܻ = Sum of values to be predicted 
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Multiple regression is an extension of bivariate regression in which more than one 
independent variable is used to predict values of a dependent variable (Tabachnik and Fidell 2006). 
For example, in the case of this project, it is useful to predict the construction cost of a bridge 
replacement project (dependent variable) based on the several independent variables available in 
the data set, such as structure length, number of spans, material, or design type. The multiple linear 
regression equation (A.9) is an extension of the bivariate regression equation (A.6) that is designed 
to be used with more than just one independent variable.  Each independent variable has its own 
regression coefficient, which is used to bring the predicted values of Y as close as possible to the 
values from the data set and maximize the correlation between the predicted and obtained values 
for Y.   

 
 ܻᇱ ൌ ܣ ൅ ଵܤ ଵܺ ൅ ଶܺଶܤ ൅ ⋯൅  ௞ܺ௞ (A.9)ܤ

Where:  ܻᇱ = Predicted score for dependent variable 
  A = Value of Y when all X values equal zero 
  Bn = Regression coefficient for n-th variable 
  Xn = n-th independent variable 
  k = Number of independent variables 
 

Collinearity is a consideration for regression equations that involve multiple independent 
variables.  This condition exists when there is a high amount of correlation between two or more 
predictor variables.  In layman’s terms, the two variables are measuring the same thing (or highly 
interrelated things).  In a multiple regression analysis, collinearity that is not addressed will cause 
variables that truly affect the dependent variable to not appear in the regression equation while the 
other predictor variable may have a large impact on the equation.  There are several ways to deal 
with collinearity between variables.  After the collinear variables have been identified, the two 
variables can be combined into one single variable by converting each of the variables into a z 
score and them using the sum of the z scores as the total for the new variable.  Another approach 
is to use a factor analysis that will identify the set of factors within the collinear variables and use 
the factors in the regression analysis (Cramer and Howitt 2004). Collinearity can also be addressed 
by removing one of the collinear variables from the regression model.  

 
A.3.4 Regression Tree Analysis 
 
Decision trees are a useful tool to describe data and to develop models to support decision analysis 
(Pratt et al. 1995).  Models resulting from decision tree analysis predict the value of a root or target 
variable using input variables.  The source dataset is split into nodes from the root node based upon 
classification features using recursive partitioning, where the subgroups are split in a manner that 
classifies them into groups (Denison et al. 2002).  In binary recursive partitioning, the tree is split 
into two notes: a group that has the same features as the target value, and a group that does not, 
based upon a decision criteria (which can be viewed as a yes/no question) at each node.  The 
recursive partitioning is halted when splitting a subset no longer improves the quality of the model 
or some pre-determined stopping criteria are met.  An example of a two-dimensional input space 
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partitioned into five regions using recursive binary partitioning is shown in Figure A.6a, with the 
corresponding tree structure shown in Figure A.6b. 
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Figure A.6a: Example of two-dimensional 
input space partitioned into five regions 
(from Bishop 2006)   

Figure A.6b:  Corresponding binary tree (from 
Bishop 2006) 

 
Regression tree analysis (also called classification and regression tree, or C&RT, analysis) 

is one form of decision tree analysis (Brieman et al.1984).  In regression tree analysis, the 
regression builds a model in the form of a tree structure to result in a predicted outcome that is a 
real number.  The regression model is constructed to reduce the residual sum of squares (Takezawa 
2006).  Through this process, the factors most significantly influencing the dependent variable are 
identified, and the data is incrementally broken down into smaller subsets based upon the 
optimized decision criteria.  The resulting decision tree has a single root node, and two or more 
decision nodes and leaf notes, as shown in Figure A.6b. The root node corresponds to the 
independent variable identified as the best predictor.  Decision nodes represent values for other 
independent variables tested, and have two or more branches.  “Greedy optimization” is utilized, 
starting at a single root node, then adding nodes one at a time.  Following the addition of each 
node, the candidate regions are split using joint optimization using an exhaustive search algorithm, 
local averaging of data, and identification of the splitting choice with the smallest residual sum-
of-squares error (Bishop 2006). 

The C&RT method is nonparametric and nonlinear, and therefore a frequency distribution 
of variables is not assumed, and the relationships between the dependent and independent variables 
are not assumed to be linear.   Advantages of C&RT methods include the simplicity of the final 
model (and its easy interpretation), and its usefulness for identifying interactions between 
variables.  Stopping criteria can be established as a limit on tree depth, an identical distribution of 
predictors, or a single observation present in a terminal leaf node.  Overfitting of the model is 
controlled by removing nodes from the tree if the model accuracy is not improved (Bishop 2006).   
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If a decision node, T, is subdivided at T0, T ⸦ T0 is defined as a subtree if T0 can be obtained 
by collapsing internal nodes by combining corresponding subregions.  Leaf nodes are defined as τ 
= 1, … |T|, with corresponding regions designated as Rτ, with an input space of Nτ datapoints and 
|T| denoting the total number of leaf nodes.  The optimal prediction region Rτ can be given as 
Equation A.10, along with the corresponding contribution to the residual sum of squares (Equation 
A.11) and the pruning criterion (Equation A.12) (Bishop 2006): 
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Where λ = a regularization parameter determining the trade-off between the overall residual sum-
of-squares area and the complexity of the model, which is measured by |ܶ|.  The value of λ is 
selected through cross-validation, described in the following section.   

 
A.3.5  Cross-validation 
 
Cross-validation is performed when an available dataset (or the dataset to be used for validation) 
is small, and may not provide an adequate estimate of predictive performance.  In cross-validation 
techniques, a proportion of the available data is used for training the model, while the remaining 
data not used to train the model is utilized to assess the model performance.  Multiple cross-fold 
validation is illustrated in Figure A.7, where ݇ equals the number of groups or ‘folds’ (in this case, 
4).  In this example, the available data is partitioned into ݇ ൌ 4 groups.  A subset of the data 
developed by ݇ െ 1 of the groups are utilized to train a set of models, which are subsequently 
evaluated using the remaining group (indicated in figure A.7 in gray).  The process is repeated 
until all ݇ combinations of subsets are utilized as the remaining group.  The value of ݇ is often 
selected so that the size of each group is large enough to be statistically representative of the 
broader dataset.  Other approaches for selecting ݇ include selection of a fixed number, often 5 or 
10, although there is no formal rule (Kuhn and Johnson 2013).  After each iteration, the evaluation 
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score is retained, and the model discarded. The accuracy of the model is taken as the mean accuracy 
computed from each fold.   

 

Run 1

Run 2

Run 3

Run 4
 

 
Figure A.7:  k-fold cross validation (from Bishop 2006) 

 
A.3.6  Use of Cost Prediction Models in Bridge Management Systems 
 
All SHAs are required to comply with the Intermodal Surface Transportation Efficiency Act of 
1991 by implementing a BMS that logs bridge data and considers the costs of repairing, 
rehabilitating, or replacing deficient bridges (Abed-al-Rahim and Johnston 1995). The three 
alternatives are typically evaluated based on a variety of considerations, including ownership and 
user costs, as well as budget constraints and the preferences of state/local personnel. The decision 
to replace a functionally obsolete or deteriorated bridge will bring the user cost back to zero at the 
beginning of the new bridge’s service life (Chen and Johnston 1987). 

 Currently, the NCDOT BMS computes the bridge replacement cost using the bridge deck 
area and a unit cost based on functional classification.  The deck width and length for a new bridge 
is calculated based on the desired level of service. Design and planning of the new structure is 
estimated as a fixed percentage of the base construction cost. Costs associated with roadway 
improvements can be added onto the subtotal as a fixed amount (Chen and Johnston 1987). 

 
A.4  Existing Cost Prediction Models 
 
The term “conceptual estimate” was first recognized in 1975 by a federal government publication 
that urged construction managers to familiarize themselves with the technique (Collier 1984).  
Around this time, computerized bridge management systems were being developed to catalog 
bridge inspection data and prioritize bridge maintenance needs (Chen and Johnston 1987).  The 
ability of a BMS to estimate the cost to replace a bridge helps the system users to evaluate whether 
it is more feasible to repair, rehabilitate, or replace the bridge (Abed-al-Rahim and Johnston 1995). 
By 1992, these systems had been implemented by several states, providing these agencies with the 
ability to consider user costs, owner costs, level-of-service goals, or life-cycle activity profiles to 
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estimate replacement costs (OECD 1992). The following sections identify and discuss some of the 
cost modeling approaches developed for North Carolina bridges and for bridge systems in other 
states. 

 
A.4.1  Use of Cost Prediction Models in North Carolina 
 
At the time of the research conducted by Chen and Johnston (1987), NCDOT estimated bridge 
replacement costs with a fixed unit cost of $43 per square foot of deck area. This same unit cost 
would be applied to all bridge replacement projects without regard to project size, location, design, 
or traffic volume.  Further research was conducted by Abed-al-Rahim and Johnston in the early 
1990s to develop models that will produce a unit cost based on different project characteristics.  
As mentioned previously, additional research by NCDOT focused on evaluation of PE costs and 
development of models (Hollar et al. 2013).  

 
A.4.1.1  Abed-al-Rahim and Johnston (1995) 

 
In 1995, North Carolina State University (NCSU) researchers developed a framework for the 
NCDOT to estimate unit costs for bridge replacement projects based on bridge-specific factors 
cataloged in a BMS database. Abed-al-Rahim and Johnston (1995) also developed models that 
would predict new bridge characteristics. The North Carolina Bridge Index (NCBI) contained the 
total bridge project cost for each bridge record, as well as the costs for preliminary engineering, 
construction, and roadway improvement. Miscellaneous items, such as right-of-way purchases, 
field operations, and legal fees were estimated by subtracting the three cost categories from the 
total project cost, as seen in Equation A.13. 

 
ܱܶܵܥܱܶܶ  ൌ ܱܶܵܥܥܵܫܯ ൅ ܱܶܵܥܴܶܵ ൅ ܱܶܵܥܦܣܱܴ ൅  (A.13) ܱܶܵܥܩܰܧ

 
Where:  TOTCOST = Total project cost 

MISCCOST = Miscellaneous costs  
STRCOST = Bridge structure cost 
ROADCOST = Roadway improvement cost 
ENGCOST = Engineering cost 

 
Abed-al-Rahim and Johnston used the FHWA Structures Index for North Carolina to 

convert costs to a present value. Equation A.1 was used to convert dollar values from the year of 
construction (YC) to the latest available year (YL), using 1987 as a base year (YB). It was also 
possible to extrapolate data from the FHWA Index for future years, as shown in Equation A.2, 
which was developed based upon linear regression conducted by Abed-al-Rahim and Johnston 
(1995). The linear model yielded an R2 value of 0.84. After using Equation 2.2 to determine the 
future year (FY) cost index, Equation 2.1 was used to calculate the future year cost. 

Before a detailed bridge design is created, specific bridge characteristics such as structure 
length, deck width, and maximum span length are typically not known with certainty.  These 
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variables will have an impact in the overall replacement cost of a bridge, especially in cases where 
there is a large change in one of these characteristics for the new bridge relative to the old bridge 
(Abed-al-Rahim and Johnston, 1995).  A set of models that can predict these new bridge 
characteristics based on those of the existing bridge can help estimators identify structures that 
would undergo a relatively large increase in size and therefore have a potentially higher cost to 
replace.  Using the Generalized Linear Method (GLM), Abed-al-Rahim and Johnston (1995) 
performed regression analysis to develop an equation that could be used to predict new bridge 
length based on several existing bridge parameters.  With new bridge length as the sole dependent 
variable, Abed-al-Rahim and Johnston considered several independent variables, such as existing 
bridge length, waterway adequacy, and under-clearance ratings.  Ultimately, old bridge length was 
the independent variable that provided the best fit (R2=0.9854), so the following regression 
equation (A.14) was developed: 

 
ܧܮܤܰ  ேܰ஼ ൌ 8.45 ൅ ሺ1.013 ൈ  1ሻ (A.14)ܮ

Where: 
 NBLENNC = New bridge length based on NC data (in meters) 
 L1= Old bridge length (in meters) 

 
Abed-al-Rahim and Johnston also utilized the FHWA Expansion Factor to predict new 

bridge length. These factors are based on nationwide averages of new bridge length as a function 
of existing bridge length.  To use the expansion factor, Abed-al-Rahim and Johnston (1995) took 
various original lengths from the curve (Fig. A.8) and identified corresponding expansion factors.  
Multiplying the original bridge lengths by the respective expansion factors yielded a list of new 
bridge lengths. A linear regression was performed with the original lengths (independent variable) 
and new lengths (dependent variable) to generate a regression equation (A.15). 

 
Figure A.8: FHWA length expansion factor graph (from Abed-Al-Rahim and Johnston 1995) 
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ܧܮܤܰ  ௎ܰௌ ൌ 7.32 ൅ ሺ1.032 ൈ  1ሻ (A.15)ܮ

Where:  NBLENUS = New bridge length based on US data (in meters) 
  L1 = Old bridge length (in meters) 

 
Abed-al-Rahim and Johnston (1995) used Equation A.16 to estimate the new bridge out-

to-out deck width, with the predicted clear deck width for the new bridge (NBCDWi) determined 
in OPBRIDGE by considering future level-of-service and ADT needs. OPBRIDGE was a 
computer program developed by Al-Subhi et al. (1989) to forecast and prioritize future bridge 
replacement projects. The equation computes the difference between current out-to-out width and 
current deck width, adding it to the predicted clear deck width to provide the predicted out-to-out 
width for the new bridge. This assumes that the difference in width between out-to-out and clear 
deck widths will remain the same for the new bridge.  

 
௜ܦܫܹܤܰ  ൌ ܦܥܤܰ ௜ܹ ൅ ሺܹܪܶܦܫ௜ െ ܦܥ ௜ܹሻ (A.16) 

Where:  NBWIDi = Predicted out-to-out width for new bridge i 
NBCDWi = Predicted clear deck width for new bridge i 
WIDTHi = Out-to-out width for bridge i that is to be replaced 
CDWi = Clear deck width of bridge i that is to be replaced 
 

As one of the significant factors in predicting replacement cost, a bridge’s maximum span 
length can also be predicted by its original maximum span length, waterway adequacy rating, 
structure length, and number of spans (Abed-al-Rahim and Johnston 1995). This research team 
found that it was best to create two separate models for bridges over waterways and bridges over 
grade separations. Both models used old total length and maximum span of the bridge being 
replaced as independent variables and applied a logarithmic transformation to allow the models to 
meet the two assumptions for regression analysis:  1) Normal distribution of residuals, and 2) 
Variance is consistent along the regression line. 

After developing the two models, the research team was unable to prove that the 
coefficients in both equations were statistically different. The dataset of bridges used by Abed-al-
Rahim and Johnston included 442 waterway crossings but only 39 grade separation crossings. 
Using a single, logarithmic-transformed model instead of two separate models yielded an R2 value 
of 0.53, resulting in Equation A.17. Both Equation A.17 and Figure A.9 show that new maximum 
span length are predicted to be shorter if the original span length is greater than 75 feet. Conversely, 
bridges with an original maximum span length less than 75 feet are predicted to have an increase 
in maximum span length for the new bridge (Abed-Al-Rahim and Johnston 1995). 

 
2ܰܣܲܵܺܣܯ  ൌ 4.31 ൈ 1଴.ଵଽ଺ܰܣܲܵܺܣܯ ൈ  1଴.ଶଵ଺ (A.17)ܮ

Where:  MAXSPAN2 = Predicted maximum span length 
  MAXSPAN1 = Original maximum span length 
  L1 = Original bridge length 
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Figure A.9: FHWA maximum span length expansion factor graph (from Abed-Al-Rahim  

and Johnston, 1995) 
 
Abed-al-Rahim and Johnston (1995) developed a total cost prediction model under the 

assumption that the total cost would be a function of bridge length and width (unit cost) while 
other additional costs (engineering, roadway construction, etc.) could be added as a fixed 
percentage of that total cost. The resulting equation is shown in Equation A.18. 

 
ܱܵܥܶ  ௜ܶ ൌ ܧܮܤሺܰܤܲܧܴܷ ௜ܰ ൈ ௜ሻܦܫܹܤܰ ൈ ሺ1 ൅ ሻܥܲܧ ൅  (A.18) ܥܦܧܺܫܨ

Where:  TCOSTi =  Total cost for replacing bridge i in present year value 
  UREPB = Unit cost for bridge construction per square meter of deck area 
  NBLENi = Predicted length of bridge i in meters 
  EPC = Engineering cost as a ratio of structural costs 
  FIXEDC = Fixed cost for roadway and other incidental costs 
 
 The NCSU research team took historical cost data from 32 NCDOT bridges (CONSCOST) 
to find a unit structure cost based on new bridge deck area (UCONST) (Equation A.19). All costs 
were converted to 1990 dollar-values to adjust for inflation and productivity changes. After 
determining which independent variables were significant (Table A.2), the research team 
developed Equation A.20 to estimate the unit structure cost (UNITSTR) for future bridges. Abed-
al Rahim and Johnston suggest that Equation A.19 be rewritten in the form of Equation A.21 to 
predict structure cost (STRCOST) using an estimated unit structure cost. 
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Table A.2: Significant variable parameters in bridge structure cost (from Abed-Al-Rahim and 
Johnston 1995) 

 
 Parameter Level of Significance 

Grouping 
Parameters 

Highway Functional Classification P > 5.0% 
Rural vs. Urban P > 5.0% 

Water vs. Grade Separation P > 5.0% 

Independent 
Variable 

Parameters 

Width P > 5.0% 
Length P > 5.0% 
ADT P > 5.0% 

Maximum Span Length P = 2.6% 
Number of Spans P > 5.0% 

 

ܱܵܰܥܷ  ሺܶ௒௉,௜ሻ ൌ
஼ைேௌ஼ைௌ்ሺೊು,೔ሻ
ே஻௅ாே೔ൈே஻ௐூ஽೔

 (A.19) 

Where:  UCONST(YP,i) = Unit cost of structure construction for bridge i in present year dollar 
value 

CONSCOST(YP,i) = Structure construction cost for bridge i in present year dollar 
value 

  NBLENi = Predicted length of bridge i in meters 
  NBWIDi = Predicted width of bridge i in meters 
  
ܴܶܵܶܫܷܰ  ൌ 919 െ 40.6ሺܰܣܲܵܺܣܯሻ ൅ 0.927ሺܰܣܲܵܺܣܯሻଶ (A.20) 

Where:  UNITSTR = Total cost for replacing bridge i in present year value 
  MAXSPAN = Unit cost for bridge construction per square meter of deck area 
 
ܱܵܥܴܶܵ  ௜ܶ ൌ 	ܴܶܵܶܫܷܰ ൈ ܧܮܤܰ	 ௜ܰ 	ൈ  ௜ (A.21)ܦܫܹܤܰ	
 
 Roadway improvement costs and miscellaneous costs are more difficult to predict due to 
the number of influencing factors.  The amount of roadwork is not always necessarily linked to 
bridge deck area.  Changing the elevation of a bridge can result in significant amounts of roadwork 
on one or both sides of the structure.  On the other hand, miscellaneous costs (pavement markers, 
field office, etc.) can be calculated as the difference between the total project cost and the sum of 
the structure, roadway, and engineering costs (Equation A.13).  

 Abed-al-Rahim and Johnston (1995) developed the following regression equations to 
estimate roadway improvement cost, miscellaneous cost, and engineering costs. The research team 
found that Equation A.22 and Equation A.203 tended to underestimate costs for smaller bridges 
and overestimate costs for larger bridges. The equation for engineering costs (Equation A.24) had 
a relatively low R2 value (0.60) but was judged by the NCSU researchers to perform rather well 
considering all the factors that usually affect engineering cost. The R2 values for Equation A.22 
and A.23 were not reported. For the regression analysis, structure cost was the only significant 
parameter identified for prediction of engineering cost (Equation A.24). 
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ܱܶܵܥܦܣܱܴ   ൌ ሺ177,900 ൈ ሻܦܫܹܤܰ െ 1,198,500 (A.22) 

Where:  ROADCOST = Roadway improvement cost 
  NBWID = Predicted bridge width in meters 
 
ܱܶܵܥܥܵܫܯ   ൌ 0.56ሺܴܱܵܶܶܵܥሻ ൅ 42,500ሺܰܦܫܹܤሻ െ 364,000 (A.23) 

Where:  MISCCOST = Miscellaneous costs 
  STRCOST = Bridge structure cost 
  NBWID = Predicted bridge width in meters 
 
ܱܶܵܥܩܰܧ   ൌ 65,384 ൅ 0.136ሺܴܱܵܶܶܵܥሻ (A.24) 
 
Where:  STRCOST = Bridge structure cost 
  ENGCOST = Engineering cost 
 
A.4.1.2 Hollar et al. (2013) 
  
Preliminary engineering costs for a bridge replacement project are typically estimated as being a 
fixed percentage of the total project cost.  This technique does not address project-specific 
parameters that would cause PE costs to increase.  According to the 2008 auditor’s report for 
schedule and budget performance of NCDOT highway projects, PE costs for a set of 292 highway 
projects completed between April 1, 2004 and March 31, 2007 typically increased by 59% over 
the original estimated amount.  This specific area had not received much attention from researchers 
due to the lack of reliable information available for PE costs (Hollar et al., 2013). 

  Hollar et al. (2013) compiled a database of 461 NCDOT bridge projects from several 
sources, such as online bid tabulations and construction plans, National Bridge Inventory System 
(NBIS) data, 12-month letting lists, meeting minutes, and funding authorizations. The bridges in 
the compiled database were usually three-span, two-lane concrete structures that crossed water 
features in rural areas. The dependent variable for this analysis was the ratio of actual PE cost to 
the estimated Statewide Transportation Improvement Program (STIP) construction cost. The 
research team used estimated costs instead of actual costs because estimators would not know the 
actual cost of a project during the conceptual planning stage. Using the correct PE cost ratio for a 
project would reduce the likelihood of cost escalation. The distribution of the PE cost ratio for the 
461 NCDOT bridge projects ranged from 0.8% to 152% of estimated construction cost. The shape 
of the distribution was skewed to the left and needed to be transformed to improve normality to 
satisfy linear regression assumptions (Hollar et al. 2013). 

The 461 database projects were divided into a modeling set of 391 projects and a validation 
set of 70 projects. The validation projects were used to test and quantify the model’s performance 
in predicting the ratio of PE to STIP. Each candidate model was tested over the validation set by 
comparing the predicted PE cost values to the actual historical values for those projects. The 
models with lowest Mean Absolute Percentage Error (MAPE) and Average Absolute Error (AAE) 
were preferred over models with higher error values (Hollar et al. 2013). 
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The response variable (PE cost ratio) was transformed by applying an exponential power 
and using the Box-Cox procedure to identify the optimal transformation to get normality. In this 
case, the cubed root of the response variable was used to attain normality, which was then verified 
using a goodness-of-fit test. Since the dependent variables were normalized using the power 
transformation, results had to be transformed back using Equations A.25, A.26, and A.27. The 
equations were solved using a variance value of 0.0229 for the data set (Hollar et al. 2013). 

 
.ܯ.ܧ  ܴ.ൌ ሺ݀݁ݐܿ݅݀݁ݎ݌	ܾ݀݁ݑܿ	ݐ݋݋ݎ	݂݋	݁ݏ݊݋݌ݏ݁ݎሻଷ (A.25) 

Where:  E.M.R. = Estimated Median Response 
 

ܶ. .ܥ ܨ ൌ 1 ൅ ൛ൣሺݎܽݒሻ ൈ ൫1 െ 1
3ൗ ൯൧/ሾ2ሺ݀݁ݐܿ݅݀݁ݎ݌	ܾ݀݁ݑܿ	ݐ݋݋ݎ	݂݋	݁ݏ݊݋݌ݏ݁ݎሻଶሿൟ (A.26) 

Where:  T.C.F. = Transformation Correction Factor 
  var = Variance 
 

݁ݏ݊݋݌ݏ݁ݎ	݊ܽ݁݉	݀݁ݐܽ݉݅ݐݏܧ  ൌ .ܯ.ܧ ܴ	 ൈ 	ܶ. .ܥ  (A.27) ܨ

Where:  E.M.R. = Estimated Median Response 
  T.C.F. = Transformation Correction Factor 
 
 The one-way ANOVA technique was applied to the 16 categorical variables in the 
compiled database to identify those which were statistically significant. The seven significant 
categorical variables are listed in Table A.3. The two categorical variables with the highest level 
of influence on the cubed root of the PE cost ratio were year-related. The researchers assumed that 
any fluctuations in STIP estimated costs over time would be mirrored by the actual PE costs, so 
these two variables were not used as predictor variables in the analysis (Hollar et al. 2013). 

 
Table A.3: Statistically significant categorical variables (Hollar et al. 2013) 

 
Categorical Variable R2 F-value p-value 
Year of letting 0.3037 20.83 <0.0001 
Year of environmental doc. approval 0.1220 3.47 <0.0001 
Road system 0.0443 8.80 0.0002 
Project construction scope 0.0322 6.45 0.0017 
Geographical area of state 0.0361 4.84 0.0026 
Division 0.0728 2.28 0.0068 
Design live load 0.0302 3.00 0.0185 

 
To determine which of the numerical variables should be used in the regression model, 

Hollar et al. (2013) used the Pearson correlation coefficients and p-values to identify which 
variables were statistically significant. The correlation coefficient, which ranges between -1 to +1, 
indicates the strength of the correlation with the cubed root of PE cost ratio. The sign of the 
coefficient reflects whether the independent and response variables are positively correlated 
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(positive slope) or are negatively correlated (negative slope). Table A.4 contains the eight 
numerical independent variables that were determined to be statistically significant.  

 
Table A.4: Pearson correlation coefficients for numerical variables (Hollar et al. 2013) 

 
Numerical Independent Variable Pearson Coefficient p-value 
Project length -0.3263 <0.0001 
STIP-estimated construction cost -0.3130 <0.0001 
ROW cost to STIP-estimated 
Construction cost 

+0.3089 <0.0001 

Structure length -0.1944 <0.0001 
Roadway percentage of construction 
cost 

-0.1849 <0.0001 

Spans in primary unit -0.1766 <0.0001 
Horizontal clearance for loads -0.1592 0.0006 
PE duration after environmental 
document approval 

-0.1053 0.0237 

 
After selecting the statistically-significant categorical and numerical variables for the linear 

regression, the research team used the GLMSELECT procedure within SAS to create a multiple 
linear regression (MLR) model. Excluding all date-related variables, the completed MLR model 
achieved an adjusted R2 value of 0.2745 using the following variables: 

1. ROW cost to STIP-estimated construction cost (Numerical) 
2. Roadway percentage of construction cost (Numerical) 
3. STIP-estimated construction cost (Numerical) 
4. Bypass detour length (Numerical) 
5. Project construction scope (Categorical) 
6. NCDOT division (Categorical) 
7. Geographical area of state (Categorical) 
8. Responsible party for the planning document (Categorical) 
 
When applied to the data set of 70 projects, the MLR provided a MAPE of 0.1889. This 

was compared to the MAPE of 0.9137 that was achieved by a single-point estimate using the mean 
PE cost ratio of the remaining 391 projects. This single-parameter estimating method is commonly 
used by the NCDOT to estimate PE costs and also served as a baseline target to measure the MLR 
model’s prediction capability. After obtaining the regression coefficients (Table A.5), Equation 
A.28 can be used to find the predicted cube root of the PE cost ratio to STIP construction cost 
(Hollar et al. 2013).  
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Table A.5: Regression coefficients for MLR model (Hollar et al. 2013) 
 

Parameter Coefficient 
 Intercept β0 0.6471 
x1 NCDOT division = D12 and project construction scope = new 

location; 1 if true, 0 if false 
β1 -0.1657 

x2 NCDOT division = D06 and responsible party for the planning 
document = DOT; 1 if true, 0 if false 

β2 -0.1087 

x3 Geographical area of state = very mountainous and responsible party 
for the planning document = DOT; 1 if true, 0 if false 

β3 0.0701 

x4 ROW cost to STIP-estimated construction cost  β4 0.2909 
x5 STIP-estimated construction cost if NCDOT division = D12 β5 4.45 × 10-8 

x6 Roadway percentage of construction cost multiplied by STIP-
estimated construction cost 

β6 -1.88 × 10-7 

x7 Bypass detour length if NCDOT division = D07 β7 -0.0159 
 

ݐ݋݋ݎ	ܾ݀݁ݑܿ	݀݁ݐܿ݅݀݁ݎܲ ൌ ଴ߚ	 ൅ ଵሻݔଵሺߚ ൅ ଶሻݔଶሺߚ ൅ ଷሻݔଷሺߚ ൅ 

ସሻݔସሺߚ  ൅ ହሻݔହሺߚ ൅ ଺ሻݔ଺ሺߚ ൅  ଻ሻ (A.28)ݔ଻ሺߚ
 
Ideally, the MLR model would follow a 45-degree positive slope, which would mean that 

the predicted values would be close to the actual values. The slope of the MLR model is positive 
but smaller than the ideal slope. Compared to the mean-value of the PE cost ratio for the set of 391 
projects, the MLR model overestimated PE cost ratios at the lesser percentages (<20%) and 
underestimated ratios at higher percentages (>35%). The MLR model had a MAPE value of 42.7%. 
Compared to the mean value’s MAPE of 48.7%, the MLR had slightly better performance over 
the single-point estimator (Hollar et al. 2013).   

Despite the relatively high prediction error percentage for the MLR model (42.7%), the 
results of the modeling confirmed the research team’s assertions that PE costs for bridge projects 
were often underestimated. The historical mean reported by Hollar et al. (2013) for NCDOT bridge 
projects was 27.8%, which was greater than the WSDOT estimate of 10.3%, VDOT estimate range 
of 8-20%, and Georgia DOT estimate range of 6-12%. The data used to create the model should 
be readily available for most state agencies. Hollar et al. found that state agency procedures and 
processes could compromise the quality of PE cost data. In the case of this study, the research team 
found that PE costs were often charged as an overhead burden and not accurately assigned to the 
individual bridge projects. For this reason, it is important that databases should be expanded and 
updated often to create a solid data set for creating regression models (Hollar et al. 2013). 

In addition to suggesting means to improve the quality of PE cost data recording 
procedures, Hollar et al. (2013) also recommended that future researchers analyze PE costs in 
terms of monetary units instead of ratios. To do this, it is necessary to convert all costs to a common 
year. The research team expressed a need for future research into reasons why PE costs were driven 
up for projects, such as the instances where the project PE cost ratio was 152% of the construction 
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cost. An analysis of case studies may provide qualitative data on how certain factors increase PE 
costs (Hollar et al. 2013). 

 
A.4.2  Use of Cost Prediction Models in Other State Agencies 

 
Since bridge maintenance and replacement programs are managed by SHAs, many of these 
agencies have funded research projects that determine the most effective way to forecast bridge 
replacement costs that work best for the state bridge inventories. Publications exist on the many 
different approaches researchers have employed to create state-specific prediction models. The 
techniques used by researchers to develop cost prediction models for Indiana DOT and Texas DOT 
are covered in more detail in the following sections. 

 
A.4.2.1  Indiana Department of Transportation 
 
Saito et al. (1991) developed a series of regression models for predicting costs for bridge 
replacement projects in Indiana.  A dataset of 279 Indiana Department of Transportation (INDOT) 
bridges replaced between 1980 and 1985 was compiled by the researchers.  Bridge attributes used 
for the model, such as structure length, deck width, vertical clearance, approach length, and 
earthwork needed, could be easily identified by inspectors and included in the database. Cost data 
were the dependent variables for the study, and all prices were converted to 1985 values using the 
FHWA construction price index. Cases where multiple bridges were included on one contract or 
where replacement costs were extremely high or low were removed from the data set to avoid 
influence from outliers. 

To develop the replacement cost model, the ANOVA (analysis of variance) technique was 
used to determine the effect that the independent variables, such as structure length, deck width, 
and number of spans, had on the actual contract costs.  SPSS and SAS statistical software packages 
were then used to take the results of the ANOVA and develop a regression model.  The ANOVA 
was done based on three primary classification factors that were currently being used by INDOT 
to estimate bridge replacement cost: superstructure type, substructure type, and highway type.  At 
the time of the study, the FHWA required state agencies to provide separate unit costs for each of 
the different highway types and superstructure types (Saito et al. 1991). 

The ANOVA test confirmed that both superstructure and substructure types were 
statistically significant (5% level) in predicting unit substructure cost and that both factors should 
be used to generate estimates. A separate ANOVA test was performed for approach construction 
costs, but with total contract costs instead of unit costs. This test was based on two factors: amount 
of earthwork (small, medium, or large) and approach length (short, medium, or long). Results from 
this ANOVA test showed that amount of earthwork and approach length can and should be used 
as factors in predicting approach construction costs (Saito et al. 1991). 

The results from both ANOVA tests were then used by the research team to develop bridge 
replacement cost models that required as few independent variables as possible. The models 
developed by Saito et al. (1991) were nonlinear and log-linear in nature, and used predictor 
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variables that could be easily determined by engineers on the site, such as designed structure 
length, width, and vertical clearance. Results from ANOVA and the scatter plots showed that 
regressions could be done for the four cost categories (superstructure, substructure, approach, and 
other costs) using a multiplicative regression model, shown in Equation A.29. Usage of the 
multiplicative model works under the same logic as unit costs, where structure length and width 
are multiplied by that unit price to determine the total cost.  Since the regression coefficients are 
fixed values, Saito et al. (1991) cautioned users of this model (INDOT) against using it for bridges 
that were outside the data range used in the creation of the prediction models. 

 

 ܻ ൌ ቀ ଵܺ
ఉభܺଶ

ఉమ …ܺ௡
ఉ೙ቁ ߳ (A.29) 

Where:  Y = Dependent Variable (Replacement Cost) 
  Xn = Independent Variable 
  Βn = Regression coefficient 
  ϵ = Error coefficient 

 With a non-linear regression, it is possible to transform the raw data to see if it is possible 
to perform a linear regression analysis. Equation A.30 was transformed into Equation A.31 using 
log10 transformation (Saito et al. 1991). The new equation could be used provided that it met the 
key assumptions of linear regressions (Nau 2009): 

1. Linearity and additivity of relationship between independent and dependent variables 
2. Statistical independence of errors 
3. Heteroscedasticity (constant variance) 
4. Normality of error distribution  

If the transformed model met all of the four key assumptions, it was returned to the non-linear 
form shown in Equation A.30. Once this was performed, the non-linear cost model and 
transformed log-linear model were compared to see if one model is preferable for use in estimating 
replacement costs. In making the comparison, the research team assumed that error terms were 
independent, variance was constant along the regression line, linearity of the model, and the 
residuals were distributed normally. When comparing the two models, residual plots were used to 
test the constancy of variance. Normal probability plots of the residuals were used to test normality 
of the error term distribution (Saito et al. 1991). 

 ܻᇱ ൌ ଴ߚ
ᇱ ൅ ଵߚ ଵܺ

ᇱ ൅ ଶܺଶߚ
ᇱ ൅ ⋯൅ ௡ܺ௡ᇱߚ ൅ ߳ᇱ (A.30) 

Where:  Y’ = log10(Y) 
  β'

0 = log10(β0) 
  X’i = log10(Xi) 
  ϵ’ = log10(ϵ) 
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 Log-linear models were developed to predict bridge replacement, superstructure, 
substructure, approach, and “other” costs.  Separate equations were developed for significant 
categorical variables alongside an overall equation for all bridge types.  The log-linear equations 
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for bridge replacement total cost (BRTC) (Table A.6), superstructure cost (Table A.7), 
substructure cost (Table A.8), and approach cost (Table A.9) were validated with a set of bridge 
data for projects between January and June 1986.  Of the 37 bridges in the validation set, only 26 
of the bridges had complete cost data for the other cost components while the remaining 11 bridges 
only had information on total project cost.  After adjusting the predicted values to 1986-dollar 
equivalents, Saito et al. (1991) found that the models were reasonably precise. Cost values for 
these equations were rounded to the nearest $1,000 while bridge length (BL), deck width (DW), 
and vertical clearance (VC) were reported in feet. 

Table A.6: BRTC regression equations (in 1985 dollars) 
 

Component Type Model R2 F Value n 
Other All types OTHC = 0.0721(BL)0.696(DW)0.932 0.524 100.60 186 

 

Bridge Total 

All types BRTC = 0.155(BL)0.903(DW)0.964 0.951 1861.28 196 
RC Slab & Box 
Beam 

BRTC = 0.0781(BL)0.748(DW)1.319 
0.874 380.74 113 

Concrete I-Beam BRTC = 1.255(BL)0.809(DW)0.534 0.913 205.34 42 
Steel Beam BRTC = 0.128(BL)0.785(DW)1.210 0.971 317.50 22 
Steel Girder BRTC = 0.353(BL)1.015(DW)0.603 0.950 150.91 19 

 
Table A.7: Superstructure cost regression equations (in 1985 dollars) 

 
Type Model R2 F Value n 

All types SUPC = 0.0107(BL)1.122(DW)1.084 0.524 1861.28 196 
 

RC Slab & Box Beam SUPC = 0.0137(BL)1.001(DW)1.161 0.874 380.74 113 
Concrete I-Beam SUPC = 0.0330(BL)0.907(DW)1.043 0.913 205.34 42 
Steel Beam SUPC = 0.0102(BL)1.120(DW)1.117 0.971 317.50 22 
Steel Girder SUPC = 0.8550(BL)0.906(DW)0.747 0.950 150.91 19 

 
Table A.8: Substructure cost regression equations (in 1985 dollars) 

 
Type Model R2 F Value n 

All types SUBC = 0.00168(BL)0.906(DW)1.255(VC)0.487 0.725 168.35 196 
 

Steel Girder SUBC = 0.00354(BL)0.744(DW)1.205(VC)0.515(T)0.156 0.751 143.62 196 
  Note: T = 1 for solid stem piers, T = 0 for pile-type piers 
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Table A.9: Approach cost regression equations (in 1985 dollars) 
 

Models R2 F Value n 
APC = 0.769(APL)0.823 0.566 248.08 192 
APC = 39.876(EW)0.378 0.633 328.20 192 
APC = 4.715(APL)0.403(EW)0.250 0.696 215.93 192 

Note: APL = Approach cost and EW = Earthwork (in 100CY) 

A.4.2.2  Texas Department of Transportation  
 
 Chou et al. (2005) developed a probabilistic cost estimation tool for the Texas Department 
of Transportation (TxDOT). An analysis of TxDOT bridge data from 2001 to 2003 showed that 
there were 22 major work items in a bridge project that accounted for roughly 80.2% of the total 
cost (Table A.10). The estimation tool was created under the assumption that estimators would be 
able to control at least 80.2% of the total project cost.  

The unit cost for each work item was expressed as a cost per lane-kilometer. Equation A.32 
was used to calculate the total project cost by adding up the unit costs for all 22 major work items. 
The sum of the major work item unit costs was divided by 80.2% to account for the 19.8% of the 
project cost covered by the minor work items. A contingency amount was also added to the 
quotient to account for engineering costs (Chou et al. 2005). 

 

ݐݏ݋ܥ	ݐ݆ܿ݁݋ݎܲ	݈ܽݐ݋ܶ  ൌ 	
∑ ூ௧௘௠஼௢௦௧௉௘௥௅௔௡௘௄௠೔
మమ
೔సభ

଼଴.ଶ%
ሺ1 ൅  ሻ (A.32)%ݐ݊݋ܥ݃݊ܧ

 

Where:  ItemCostPerLaneKmi = Cost per lane-km for each of the 22 major work items 
  EngCont% = Engineering contingency expressed as a percentage 
 
 Chou et al. (2005) performed Monte Carlo simulations for five scenarios to create charts 
that can be used by estimators to determine the unit cost for a bridge project with knowledge of 
market conditions, need for work, location, scope changes, geological conditions, and 
constructability challenges.  Figure A.10 is a graph of the probability density functions (PDFs) for 
all five scenarios tested in the Monte Carlo simulation.  Since the variables used in the Monte 
Carlo simulation were random and continuous, the area under each PDF curve from 0 to x is equal 
to the probability of getting a value that is less than or equal to x. The total area under each PDF 
curve is equal to one (Andrews and Phillips 2003).  

The cumulative distribution functions (CDFs) shown in Figure A.11 can also be used to 
calculate the probability of the random variable being less than or equal to x in real-world 
conditions (Chou et al. 2005). This probability is found by selecting the y-axis value for the chosen 
CDF curve at x (Andrews and Phillips 2003). The total project costs are calculated from the CDFs 
and PDFs by multiplying the x-axis value ($/lane-km) by the length of the bridge (Chou et al. 
2005). 
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Unlike other traditional models that are affected by untreated historical data, the 
probabilistic model developed by Chou et al. (2005) provides confidence bounds for an estimate, 
which helps control error, accounts for probability, and considers the independent or correlated 
relationships between the major work items. As with any other estimating method, the 
effectiveness of probabilistic models hinges on the quality of the data available to estimators. 

 

Table A.10: High Cost Major Work Items for TxDOT Bridge Projects (FY 2001-FY 2003) 
(Chou et al. 2005) 

 
WORK ITEM COST % ITEM DESCRIPTION 
100 ITEMS: EARTHWORK AND LANDSCAPE 
100 1.51% PREPARING RIGHT-OF-WAY 
110 1.67% EXCAVATION 
132 3.09% EMBANKMENT 
200 ITEMS: SUBGRADE TREATMENTS AND BASE 
247 2.62% FLEXIBLE BASE 
300 ITEMS: SURFACE COURSES AND PAVEMENT 
340 0.76% HOT MIX ASPHALTIC CONCRETE PAVEMENT 
360 1.55% CONCRETE PAVEMENT 
400 ITEMS: STRUCTURES 
409 1.21% PRESTRESSSED CONCRETE PILING 
416 11.67% DRILLED SHAFT FOUNDATIONS 
420 12.69% CONCRETE STRUCTURES 
422 7.13% REINFORCED CONCRETE SLAB 
432 0.86% RETAINING WALL 
435 9.28% PRESTRESSED CONCRETE STRUCTURAL MEMBERS 
430 2.79% EXTENDING CONCRETE STRUCTURES 
432 1.29% RIPRAP 
442 2.55% METAL FOR STRUCTURES 
450 1.65% RAILING 
462 2.65% CONCRETE BOX CULVERTS AND SEWERS 
500 ITEMS: MISCELLANEOUS CONSTRUCTION 
500 8.28% MOBILIZATION 
502 1.79% BARRICADES, SIGNS, AND TRAFFIC HANDLING 
508 1.54% CONSTRUCTING DETOURS 
534 0.73% STRUCTURE APPROACH SLABS 
SPECIAL SPECIFICATION WORK ITEM 
3146 2.91% QA/QC OF HOT MIX ASPHALT 
              Total = 80.22% 
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Figure A.10: Comparison of PDF’s (Chou et al. 2005) 

 
  
 

 
Figure A.11: Comparison of CDFs (Chou et al. 2005) 
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Appendix B: Assessment of Component Cost Models 
 

 

 
Figure B.1. Unit Construction Costs Forecast by Decision Tree with Replaced Bridge 
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Figure B.2. Unit Construction Costs Forecast by GLM with Replaced Bridge 
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Figure B.3. Unit Construction Costs Forecast by Decision Tree with Replacement Bridge 
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Figure B.4. Unit Construction Costs Forecast by GLM with Replacement Bridge 
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Figure B.5. Unit PE Costs Forecast by Decision Tree with Replaced Bridge 



112 

 

Figure B.6. Unit PE Costs Forecast by GLM with Replaced Bridge 
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Figure B.7. Unit PE Costs Forecast by Decision Tree with Replacement Bridge 
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Figure B.8. Unit PE Costs Forecast by GLM with Replacement Bridge 
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Figure B.9. Unit ROW Costs Forecast by Decision Tree with Replaced Bridge 
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Figure B.10. Unit ROW Costs Forecast by GLM with Replaced Bridge 
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Figure B.11. Unit ROW Costs Forecast by Decision Tree with Replacement Bridge 
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Figure B.12. Unit ROW Costs Forecast by GLM with Replacement Bridge 
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Appendix C: Assessment of Replacement Characteristics Models 
 

 

\ 

Figure C.1. Length of Replacement Bridge Forecast by GLM 
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Figure C.2. Width of Replacement Bridge Forecast by GLM 
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Figure C.3. Maximum Span Length of Replacement Bridge Forecast by GLM 
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Appendix D: Assessment of Alternative Total Replacement Cost Models 
 

a) b)  

c) d)  

Figure D.1. Type A GLR Model applied to TIP bridges in Cost Database: a) unit total replacement 
costs; b) histogram of residual unit total costs; c) total replacement costs; d) histogram of residual 
total replacement costs 
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a) b)  

c) d)  

Figure D.2. Type A Decision Tree Model applied to TIP bridges in Cost Database: a) unit total 
replacement costs; b) histogram of residual unit total costs; c) total replacement costs; d) histogram 
of residual total replacement costs 
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a) b)  

c) d)  

Figure D.3. Type B Decision Tree Model applied to TIP bridges in Cost Database: a) unit total 
replacement costs; b) histogram of residual unit total costs; c) total replacement costs; d) histogram 
of residual total replacement costs 

 

 


