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Executive Summary 

Monitoring the conditions of hydraulic structures such as bridges and culverts is essential in 
warranting the safety and sustainability of transportation infrastructure. This is particularly 
important for North Carolina as more than 8 percent of NC bridges have been found in poor 
conditions and need immediate maintenance. LiDAR and sonar technologies have been 
increasingly applied to support this monitoring need. However, the processing and classification 
of point cloud data generated from LiDAR and sonar techniques represents a challenge as 
hydraulic structures are often complicated in their geometric characteristics and considerable 
labor and time are needed for the processing and classification of large point cloud datasets.  

To address this challenge, in this project, we developed DeepHyd, a deep learning-based 3D 
modeling framework and software tools for the automated classification of point cloud data of 
hydraulic structures. We collected field data from 11 sites in the Greater Charlotte Metropolitan 
region for the training and validation of the deep learning algorithms. The field data collection 
combines the use of a variety of survey instruments, including terrestrial LiDAR, sonar, total 
station, survey-grade GPS, and drone-based photogrammetry. The deep learning algorithm that 
we utilized for the point cloud classification is a state-of-the-art 3D artificial intelligence 
technique based on convolutional neural networks. We used a two-tiered modeling approach to 
train deep learning algorithms using annotated point cloud data: classification of bridges from 
vegetation and ground, and classification of specific bridge components including beam, pier, 
railing, and retaining walls. We implemented scientific workflows to automate the processing and 
classification of point cloud data of hydraulic structures using deep learning.  

Considering the unique geographical divisions in North Carolina from the mountain ridges in the 
Appalachian to the Atlantic coastal plain, a great diverse of highway bridge types interconnected 
the state and the automated bridge component classification tool represents a paradigm shift in 
transportation management.  Our major findings are summarized below: 

1) Our 3D deep learning algorithms in DeepHyd achieve high classification performance on 
point cloud data of hydraulic structures. The two-tiered geospatial modeling design can 
effectively support 1) the classification of hydraulic structures, vegetation, and ground 
surfaces, and 2) the classification of specific bridge components.  

2) Transfer learning using pre-trained models and hyperparameter analysis as two approaches 
at the deep learning algorithm level can significantly enhance the point cloud 
classification using state-of-the-art artificial intelligence techniques.  

3) 3D deep learning can effectively handle the classification of large volumes of point cloud 
data, but the training of deep learning algorithms requires large amounts of annotated data. 

4) Annotated point cloud data serve as a foundation database for the automated classification 
of hydraulic structures scanned by LiDAR using artificial intelligence techniques. More 
annotated point cloud data, which cover a wider range of hydraulic structures, are needed 
for further improving classification performance.  
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1. INTRODUCTION      

1.1. Background 

The study of hydraulic structures such as bridges and culverts has received considerable attention 
in particular as the upgrade of physical infrastructure has become a national priority for the 
United States (ASCE 2021). Monitoring the condition of hydraulic structures such as bridges 
plays a pivotal role in warranting the safety of transportation infrastructure and their 
sustainability. The monitoring of hydraulic structures in NC has become an urgent need, in 
particular for the systematic management of NCDOT’s assets, the development of guidelines for 
roadway drainage and highway stormwater management, and documentation of compliance with 
NCDOT and federal standards from, e.g., FEMA and FHWA. In NC, each of the State’s 
approximately 13,500 bridges needs to be inspected by NCDOT every two years or less to ensure 
their structural stability and health for public safety (NCDOT 2022). Approximately 8.2% of the 
NC bridges are evaluated as in poor condition (by March 2021) and in need of immediate 
maintenance. 

A suite of techniques such as LiDAR and sonar (Watson et al. 2013, Burguera and Oliver 2016) 
have been extensively used for the detection and measurement of hydraulic structures. For 
example, LiDAR techniques (typically including airborne, terrestrial, and mobile) have been 
recognized as a powerful and high-resolution approach for the documentation of 3D shapes of 
hydraulic structures and their surrounding environments (Feroz and Abu Dabous 2021). At the 
same time, sonar techniques can delineate 3D characteristics of underwater topography. The 
combination of these two techniques provides support for the monitoring of hydraulic structures 
for both above- and under-water conditions. Their capabilities in the quantification of 3D 
characteristics of hydraulic structures have been well recognized, especially when compared to 
traditional visual inspection methods that are often subjective and labor intensive (Prendergast 
and Gavin 2014). 

The use of LiDAR and sonar techniques leads to the generation of large 3D point cloud datasets. 
These point cloud data are of great help for representing 3D characteristics of hydraulic 
structures, which are often fed into hydraulics models for the in-depth investigation of hydraulic 
structures. However, these point cloud data are unstructured and typically in large volumes. The 
processing of these large point cloud data tends to be both labor- and computation-intensive, 
which poses a significant challenge in the classification of these data. Further, different types of 
hydraulic structures exist and their geometric characteristics may be sophisticated and change 
over time. This further complicates the classification of these point cloud data for the monitoring 
of hydraulic structures. In other words, the classification of point cloud data collected from 
LiDAR and sonar techniques represents a big data-driven challenge (Tang and Feng 2017). 

Artificial intelligence holds great potential in resolving the challenges associated with the 
classification of point cloud data from LiDAR and sonar. Over the past few years, artificial 
intelligence techniques, represented by deep learning, have been increasingly developed and 
applied to real-world problem solving (Goodfellow et al. 2016, LeCun et al. 2015).  This trend 
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will continue as artificial intelligence has become a nation-wide priority. Deep learning 
techniques have been applied to various studies (e.g., unmanned driving, natural language 
processing, remote sensing, and medical studies) to support the needs of classification, pattern 
recognition, and computer vision (Guo et al. 2016, Goodfellow et al. 2016). Deep learning 
techniques have been highly touted because of their superior performance over conventional 
modeling approaches. The use of deep learning techniques often leads to significant savings in 
labor and costs.      

1.2. Research Need Definition 

According to NCDOT Research Need Statement (RNS#: 9102), the NCDOT Hydraulic Unit is 
interested in utilizing high-resolution LiDAR and bathymetric sonar data for the detection and 
classification of hydraulic structures and their as-built conditions. This requires the use of 
artificial intelligence methods to support the automated classification of point cloud data for the 
detection and evaluation of hydraulic structures. An AI-based point cloud classification solution 
will bring significant benefits for NCDOT when LiDAR and sonar techniques are blended and 
used to facilitate the development of guidelines for highway stormwater management, roadway 
drainage, and hydraulic design and evaluation.   

1.3. Research Objectives 

The overall objective of this project is to develop a spatially explicit 3D modeling framework and 
software package that are based on deep learning as a cutting-edge artificial intelligence approach 
for automated and reliable classification of hydraulic structures from point cloud data (DeepHyd; 
see Figure 1.1). The deep learning-based artificial intelligence solution (DeepHyd, including 
framework and software tools) can help resolve the challenges associated with the extraction and 
classification of hydraulic features from LiDAR and sonar data while also having the flexibility 
and potential to incorporate additional manual survey data and information from digital 
photography.   

To address the NCDOT research needs, this project has four goals established for the DeepHyd 
modeling framework:  

● Goal 1: to collect a combination of LiDAR, sonar, GPS, aerial photometric and plane 
survey data from 11 NCDOT hydraulic structures in Cabarrus, Gaston, Iredell and 
Mecklenburg counties, NC  

● Goal 2: to pre-process the data collected from Goal 1.  
● Goal 3: develop a deep learning-based artificial intelligence approach for the 

classification of the point cloud data into hydraulic structures of interest.  
● Goal 4: automate this entire classification effort (training, validation, and prediction) 

using scientific workflows.  
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Figure 1.1. Design of DeepHyd: A deep learning-based 3D modeling framework for the 
automated classification of hydraulic structures from LiDAR and sonar data.  

1.4. Report Organization 

The rest of this report is organized in the following structure. Section 2 presents a literature 
review examining the role of deep learning methodologies in the classification of large volumes 
of point cloud data generated from LiDAR and sonar scans. Section 3 focuses on discussing the 
research methodology employed in this study, including field data collection, deep learning-based 
point cloud classification (training and validation of deep learning algorithms, model inferencing 
or prediction for point cloud classification), scientific workflows for the automation of point 
cloud classification, and software implementation. Section 4 discusses findings and conclusions 
from the DeepHyd research project. Section 5 presents recommendations for utilizing the 
DeepHyd system and suggestions for future research efforts in this area.  
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2. LITERATURE REVIEW  

2.1. Point Cloud Data from LiDAR and Sonar 

LiDAR (Light Detection and Ranging), also known as laser radar system, is an optical remote 
sensing technology developed for range detection (Chen 2012). By determining the heterodyne 
laser beam phase shifts, scanning LiDAR can detect the distance information from a plane of data 
points, called point cloud.  The point cloud information, which basically consists of the physical 
positions of any surface that the laser “sees”, can then be used to detect useful critical information 
about a structure including the elevation (underclearance), surface defects (damage quantification) 
and deformation under loading (deflection measurements), etc.  Contrast to conventional analysis 
of photographic images, relatively simple algorithms can be used to manipulate the geometric 
point cloud data to retrieve the afore-mentioned information.   
In early 2000, the Federal Highway Administration (Fuchs et al. 2004) first introduced terrestrial 
LiDAR for bridge testing, specifically for the static load displacement measurements. At the same 
time, Pieraccini et al. (2006) used laser scanning to quantify urban site creep induced by a 
landslide. In recent years, the utilization of LiDAR scanning has rapidly gained popularity in 
applications within the civil construction industry—The digital survey and graphic representation 
capabilities of scanning LiDAR make it an attractive and logical technology for quantifying 
physical features of large, massive structures such as buildings and bridges (Bisio 2017).  In the 
late 2000s, the USDOT extended LiDAR applications to the quantification of damage on existing 
bridges (Watson et al. 2013) and bathymetric applications such as the mapping of stream channels 
and drainages (Prendergast and Gavin 2014).  
Most terrestrial LiDARs are eye-safe (typical wavelength range 1040-1060 nm) and do not 
penetrate through water, hence, are limited to above water scans.  For underwater scans, side scan 
sonar can be used to supplement the LiDAR data for a complete basin mapping.  Character et al. 
(2021) demonstrated a underwater shipwreck detection application such system. More recently, 
bathymetric LiDAR, utilizing a green or blue-green wavelength (500 nm – 600 nm) laser, has 
been used for the detection of underwater bathymetry or submerged objects. The green laser can 
penetrate through the water column and be reflected from the bottom of the water body. As a 
result, a point cloud of 3D bathymetry can be obtained through this LiDAR technology. 
Depending on the murkiness of water, bathymetric LiDARs can penetrate a couple meters of 
water depth.  Over the past few years, airborne bathymetric LiDAR has been increasingly applied 
to characterize 3D bathymetry (Mandlburger et al. 2015). For example, Kinzel and Legleiter 
(2019) conducted bathymetric surveys of a river in Colorado by using ASTRALite Edge 
bathymetric Lidar on a DJI Matrice 600 Pro drone in combination with wading and sonar 
techniques. They stressed that the utility of bathymetric LiDAR is affected by environmental 
conditions and LiDAR post-processing algorithms. Airborne topo-bathymetric LiDAR 
technologies have been applied to monitor the fluvial topography of Pielach River in Austria and 
the approach is found highly feasible for delineating riverbed topography at high resolutions (over 
20 points per m2) with low measurement error (Mandlburger et al. 2016).  Table 2.1 lists 
bathymetric LiDARs currently available for UAS-borne surveys.  Based on what has been 
reported to date, the UAS-borne bathymetric LiDAR laser can detect bottom features up to 3x 
secchi disk depth visibility (SD) (Table 2.1).  
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Table 2.1. List of UAS-compatible bathymetric LiDARs (SD: secchi disk depth).  

Bathymetric 
Lidar 

Vendor Weight Pulse Repetition 
Rate (PRR) 

Depth penetration 

Edge ASTRALite 5kg 20 kHz >1.5 SD 
RAMMS Fugro 14kg 27 kHz 3SD 
GREEN TDOT 2.6kg 60 kHz Up to 13.5 meter (flying altitude) 
VQ-840-G Lidar RIEGL 12kg 50-200 kHz 2SD 

 
High density sonar (sound navigation and ranging) techniques supplement the LiDAR above-
water scans and provide similar geometric data for underwater structures.  Recently, sonar has 
been used extensively in bridge scour mapping (Prendergast and Gavin 2014). Both LiDAR and 
sonar measure 3D geospatial environments and measurement errors can be introduced due to 
scanning angle, range, edge effects, and surface reflectivity. For deployment at sites with limited 
access, these uncertainty factors may be easily introduced into the collected point cloud data. 

2.2. Deep Learning  

The past decade has witnessed a rapid advance in Artificial Intelligence, stimulated by deep 
learning. Deep learning is inherently based on deep neural networks that rely on a collection of 
network layers for problem-solving instead of multiple layers (3 or 4) as in traditional neural 
networks for machine learning (Goodfellow et al. 2016). A typical neural network architecture 
consists of three types of layers: input, hidden, and output. Deep neural networks, with support 
from deep learning techniques, allow for the use of many hidden layers for computation. These 
hidden layers are connected to learn a hierarchical representation of the problem of interest. There 
exist different types of deep neural networks (Goodfellow et al. 2016, Guo et al. 2016, Shrestha 
and Mahmood 2019): stacked autoencoder, deep belief networks, convolutional networks, and 
recurrent neural networks. Among them, convolutional neural networks (CNN) are representative 
of deep neural networks that have been widely developed and used for computer vision, pattern 
and image recognition, and classification (Goodfellow et al. 2016, Guo et al. 2016). CNN for 
computation is inspired by the study of visual cortex (vision). CNN uses a combination of 
convolution (filters) and pooling operations (e.g., max pooling) to learn features hidden in data. 
Via a series of combined convolution and pooling operations, low-level features are extracted and 
organized into higher-level features that correspond to the objects to be detected. Deep learning 
algorithms have been increasingly proposed and used for a variety of applications (Goodfellow et 
al. 2016, Guo et al. 2016). A suite of deep learning software platforms or libraries are now 
available (Shrestha and Mahmood 2019), represented by Caffe (https://caffe.berkeleyvision.org/), 
Tensorflow (https://www.tensorflow.org/), Keras (https://keras.io/), and PyTorch 
(https://pytorch.org/). Most of these deep learning software platforms are implemented in C/C++ 
and Python. To increase the efficiency of deep learning algorithms, Graphics Processing Units 
(GPUs) have been used for acceleration by leveraging their multiple-core computing power (Shi 
et al. 2016).  

When we use deep learning (or any machine learning algorithms) for problem-solving, three steps 
are involved: training, testing (also known as validation), and inference (also known as 
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prediction). For classification-type problems (with categorical data), annotated data are needed for 
training and testing of the deep learning algorithm. Once a deep learning algorithm is trained and 
tested, we could use the trained deep learning algorithm for prediction—i.e., model inferencing. 
To evaluate the model performance during training and testing, a suite of performance metrics are 
available. Performance metrics for classification problems are typically based on the use of 
confusion matrix and include, but are not limited by averaged accuracy, Intersection over Union 
(IoU), precision, and recall (Hossin and Sulaiman 2015, Rahman and Wang 2016).  

2.3. Deep Learning for Point Cloud Classification 

A series of methods have been developed to use deep learning techniques for point cloud 
classification. These methods mainly include three types: 1) multi-view based, 2) volumetric-
based, and 3) point-based (Guo et al. 2020, Qi et al. 2017). Multi-view methods basically convert 
3D point clouds into 2D images that leverage 2D CNN for classification (Ibrahim et al. 2021). 
Once 2D images are classified, they are projected back to point clouds in the 3D space. The 
voxel-based method relies on the use of a volumetric grid: point clouds are aggregated into a 
volumetric grid (similar to the rasterization of vector-based GIS data into a 2D grid), then 3D 
CNN are applied for classification. However, the use of 3D CNN is computationally demanding, 
which limits the resolution of a volumetric grid (coarse resolution is often used) (Guo et al. 2020). 
As a result, fine-scale geometric information from points may be lost due to the use of this coarse 
resolution. The third method is directly based on 3D points instead of converting point clouds into 
different representations (2D images or 3D voxels). The direct use of 3D points for deep learning-
based classification is nontrivial because points in point clouds are unstructured and unordered, 
compared to regular and ordered representations in 2D images and 3D voxels. Point-based 
methods for 3D deep learning for point cloud classification mainly include pointwise multi-
layered perception (MLP), convolution-based, graph-based, and recurrent neural network-based 
(see Guo et al. 2020). We focus our discussion here on two methods, pointwise MLP and 
convolution-based, through the use of two state-of-the-art 3D deep learning frameworks: PointNet 
and ConvPoint. Please refer to Guo et al. (2020) for other 3D deep learning methods.  

PointNet (Qi et al. 2017) is a pioneering 3D deep learning architecture that directly uses points for 
deep learning-based classification, and is representative of pointwise MLP methods. The 
fundamental approach of PointNet is that 3D points are transformed into canonical space via a 
symmetric function.  By this means, the trained networks are permutation-invariant to the input 
point clouds (the re-ordering of points that are unordered will not influence the predicted results 
of deep learning algorithms). Multi-layered perception (MLP) combined with max-pooling are 
used to approximate this permutation-invariant transformation. This network design provides an 
elegant way of coping with the unstructured and unordered characteristics of points in a point 
cloud and can effectively learn features directly from a point cloud. PointNet and its improved 
version PointNet were implemented in Tensorflow (deep learning platform from Google). A 
number of 3D deep learning approaches for point cloud classification stem from the PointNet 
framework (Guo et al. 2016).  
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ConvPoint (Boulch 2020) is representative of using a convolution-based approach for 3D deep 
learning. ConvPoint is based on the architecture of CNN for 3D deep learning directly on point 
clouds. ConvPoint relies on the use of continuous convolutions (as a generalized version of 
discrete convolutions). A geometric weighting function learned by a MLP is used to transform 
characteristics of discrete points to kernels that are distributed within a unit sphere. Each of these 
kernels for convolutions covers a subset of points (neighbors) within a radius of the location of 
the kernel—i.e., a neighborhood search is needed (implemented using a k-d tree). In ConvPoint, a 
kernel takes into account the information from both a feature domain and spatial domain. The 
ConvPoint architecture is invariant to the permutation of points as it uses the summation 
operation (symmetric) in the geometric weighting function. Further, ConvPoint uses relative 
coordinates between points in point clouds and locations of kernels, which makes it invariant to 
geometric transformations such as rotations. Based on the building block of continuous 
convolution, ConvPoint supports the point cloud classification by combining five layers of 
convolutional layers and one fully connected layer. These convolutional layers extract features 
from points and then assemble them into higher-level features. The segmentation of a point cloud 
is implemented by using an encoder-decoder design in which convolutional layers in the 
classification architecture (feature extraction) are connected with another set of five convolution 
layers for decoding operations (segmentation). ConvPoint was implemented using PyTorch, a 
deep learning library. Based on testing on a series of point cloud benchmark datasets, ConvPoint, 
in general, achieved model performances (for classification and segmentation) that are higher than 
those of other 3D deep learning algorithms (including PointNet).  
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3. RESEARCH METHODOLOGY  

In this section, we present research methods that have been used for field data collection and for 
DeepHyd system development for deep learning-based point cloud classification of hydraulic 
structures.  These methods include 1) field data collection, 2) deep learning-based point cloud 
classification, and 3) scientific workflows for model automation.  The products from each method 
is then integrated into the DeepHyd system. 

3.1. Field Data  

3.1.1. Field Sites 

We identified a collection of potential sites for field surveys in this project. With consultation 
with NCDOT, eleven sites were selected to conduct field surveys (see Table 3.1). These sites are 
located in several counties in the Greater Charlotte Metropolitan region, including Gaston 
County, Cabarrus County, Iredell County, and Mecklenburg County. For each of these selected 
sites, we conducted terrestrial LiDAR scans. We also conducted sonar-based bathymetric surveys 
at three sites. To ensure the scans can be geo-referenced, total stations and high-resolution GPS 
surveys were conducted at eight of the eleven sites. We also collected RGB (red-green-blue) 
imagery using drones at two of the sites, and digital camera images at the eight sites. In addition, 
we opted to use a bridge (Philips Road Bridge) and a lake (Hechenbleikner Lake) on the campus 
of UNC Charlotte as experimental sites. Terrestrial LiDAR and sonar scanning data (lake only) 
were collected from Phillips Road Bridge and Hechenbleikner Lake.  

In response to a request from NCDOT, we set up a Web GIS portal (based on Esri ArcGIS 
Online; see Figure 3.1) to guide our field work and facilitate the sharing of information. The Web 
GIS portal is hosted on a web server at the Center for Applied GIScience at UNC Charlotte, and 
the URL of the portal is: https://cybergis.uncc.edu/deephyd/index.php/study-sites/   

Table 3.2 summarizes the field trips that we conducted for this project. These field trips were used 
for: 1) calibration of survey instruments (including total station, LiDAR, sonar, and UAS), and 2) 
LiDAR and sonar surveys for the collection of point cloud data from the various study sites.  

 

 

 

 

 

 

 

 

https://cybergis.uncc.edu/deephyd/index.php/study-sites/
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Table 3.1. List of survey sites and data collected for the project.  

Site # Snapshot Coordinate 
(WGS84) 

Type  Description  

Site 2 

 

35.280754 -
81.016666 

Bridge Tuckaseege Road over Fites Creek, 
Mt Holly, NC 

Site 3 

 

35.262183 
-81.063021 

Culvert Eastwood Drive over an unnamed 
branch of the South Fork Catawba 
River, Belmont, NC 

Site 5 

 

35.289614 
-81.192872 

Bridge Tulip Drive over Kaglor Branch, 
Gastonia, NC 

Site 6 

 

35.279093 
-81.187093 

Bridge Caldwell Street over an unnamed 
rivulet of Long Creek, Gastonia, NC 

Site 7 

 

35.251552 
-81.217522 

Bridge West 5th Avenue over Blackwood 
Creek, Gastonia, NC 

Site 8 

 

35.333853 
-80.668114 

Bridge Morehead Road over Mallard Creek, 
Harrisburg, NC. 

Site 11 

 

35.427483 
-80.956422 

Bridge Highway 73 over Catawba River 
immediately downstream of Cowan’s 
Ford Dam 

Site 14 

 

35.318134 
-80.737441 

Bridge North Tryon Street over Mallard 
Creek, Charlotte, NC 

Site 15 

 

35.306664 
-80.738421 

Bridge Philips Road, over Toby Creek, UNC 
Charlotte Campus, Charlotte, NC 

Site 16 

 

35.329582 
-80.617986 

Bridge Pharr Mill Road over Rocky River, 
Harrisburg, NC 

Site 17 

 

35.304216 
-80.731512 

Lake Hechenbleikner Lake, UNC Charlotte 
Campus, Charlotte, NC 
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Figure 3.1. Web GIS portal for the field surveys in the project (number labels are IDs of sites). 

 

Table 3.2. Summary of field work conducted for the project.  

Survey Dates Survey Purposes (calibration, LiDAR, sonar) 
November 16th, 2018 
December 1st, 2018 

Sonar Survey and Lidar survey 

January 16th, 2019 Calibration of total station at NCGS Statesville EDM 
Calibration Base Line (Statesville Regional Airport) 

May 16th, 2019 
January 7th, 2020 

UAS calibration at NCGS/NCDOT UAS Test Site at 
Butner, NC 

May 30th, 2019 Sonar and Lidar test at the Hechenbleikner Lake at UNC 
Charlotte 

January 26th, 2020 
February 1st, 2020 
February 2nd, 2020 

Lidar and Sonar Survey at study sites 
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3.1.2. Field Data Collection Methods 

In this project, we collected point cloud data using terrestrial LiDAR and sonar techniques. We 
also used a Topcon total station, a survey-grade GPS, and a Phantom drone to collect additional 
field site data together with LiDAR and sonar instruments. Table 3.3 lists the specific information 
for the instruments used in this project. The survey-grade GPS we employed was a Trimble R10 
GNSS receiver (rented) with support of network RTK (horizontal resolution: 8mm+0.5ppm; 
vertical resolution: 15mm+0.5ppm). The survey-grade GPS requires the use of a Virtual 
Reference Station (VRS) network, which is the North Carolina VRS network supported by NC 
Geodetic Survey. The GPS and total station were used to collect information for ground control 
points (GCPs) for georeferencing purposes. A Lowrance sonar system (single beam) mounted on 
a canoe was used for the bathymetric survey, supplemented by the total station and survey-grade 
GPS to collect information about underwater topography.  

To ensure the survey quality of our work, we conducted calibration trials of the various 
instruments used in this project. For terrestrial LiDAR, it was calibrated by the vendor (certified 
by FARO). We calibrated the Topcon total station on the Statesville EDM Calibration Base Line 
(established by NCGS in 2016).  Our Topcon DS-226 total station has the following accuracies: 
angle accuracy: 6”; distance accuracy: ±(2mm+2ppm*distance). Our drone was calibrated at the 
Butner, NC, NCGS/NCDOT UAS Test Site. 

Table 3.3. Summary of data collection instruments.  

Data Collection Method Instrument Information 
Terrestrial LiDAR FARO Focus S350 
Bathymetric sonar  Lowrance HDS-12 Gen3 with StructureScanTM 
UAS (drone) DJI Phantom 4 Pro V2.0 
Total Station Topcon DS-226 
GPS Trimble R10 GNSS receiver 
GPS Camera Sony DSC-HX400V (Image resolution: 5,184 * 3,888) 

3.1.2.1. Terrestrial Lidar Survey 

The terrestrial LiDAR surveys relied on the combined use of terrestrial LiDAR, a total station, 
and a survey-grade GPS. Multiple LiDAR scans were conducted for each site, and the collected 
point cloud data were stitched together.  Once the data were collected, we applied a series of post 
processing steps to these data. The processing of the collected data included the following four 
steps: 1) stitch data collected by the total station and LiDAR for each site, 2) evaluate the 
accuracy of the stitching operation (if there are more than three points observed), 3) identify more 
than three feature points in the stitched point clouds to be surveyed by the identified instruments 
and then use those feature points for georeferencing, and 4) evaluate the accuracy of the 
georeferencing operations. As an example, Figure 3.2 shows the map of stitched LiDAR point 
cloud for Site 16 Pharr Mill Road over Rocky River, Harrisburg, NC.  
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Figure 3.2. Illustration of collected LiDAR point cloud (Site# 16, stitched from two scans with a 
total of 147,166,173 points; see Table 3.1 for 2D image of the site). 

3.1.2.2. Bathymetric Survey: Sonar and Total Station Data Collection  

We used a single beam sonar (Lowrance HDS-12 Gen3 with StructureScanTM) to collect 
bathymetric data mainly at one site (Site 16). We tested our sonar system at the Hechenbleikner 
Lake experimental site on UNC Charlotte campus. Then, with recommendation from NCDOT, we 
focused on Site 16 to collect bathymetric data using the sonar system.  

Site 16 is the Pharr Mill Road site (see Table 3.1 as needed), where Highway 1158 crosses the 
Rocky River (see Figure 3.3). The channel at that site has sufficient water depth (>1.0 ft) to 
permit the use of sonar for most of its width. The sonar transects were designed to provide 
coverage of the channel bathymetry for a reach extending about 270 feet (90 m) at the bridge. 
Multiple, flow-parallel sonar runs were made which provided bank-to-bank coverage of the 
channel reach. The sonar system collected bathymetric data and stored it in slg (sonar data only), 
sl2 (sonar and structure scan), sl3 (sonar and 3D structure scan), and .gpx (X, Y coordinates of 
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waypoints and tracks) formats. The single beam echo sounder depth data collection was 
synchronized with positioning information. We used a frequency of 200 kHz for the data 
collection and open source C# API, SonarLogAPI (https://github.com/risty/SonarLogApi), for the 
conversion of data (from binary to .csv format) and extraction of depth data.  

 

 

Figure 3.3. Bathymetry at Site 16, Pharr Mill Bridge, Cabarrus County, NC. Data were collected 
using sonar and a survey-grade GPS using Virtual Reference Station. The seven transects were 
transverse to the river and spaced about 5 meters (15 feet) apart. Three transects were upstream of 
the bridge, one transect was beneath the bridge, and three transects were downstream of the 
bridge. The sonar data were collected during multiple flow-parallel runs along the 90 meter (270 
foot) reach illustrated in the map.  

In addition to sonar data, we collected bathymetric data using the survey-grade GPS leveraging 
VRS to validate the accuracy of the data. The average water edge elevation measured with the 
VRS served as a reference to calculate the elevation of the sample points (depth data) collected 
from the sonar as shown in Table 3.4. For the validation of the sonar data at Site 16, we selected 
82 points collected by GPS, which were also measured by the sonar. The depth values measured 
from sonar were subtracted from the reference elevation (528.6 ft) to estimate the stream bottom 
elevation of each point.  
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Table 3.4. Estimation of average water edge elevation at Site #16 (7 transects were used). The 
transects were flow-transverse and spaced about 5 meters (15 feet) apart. There were 3 transects 
upstream of the bridge, one underneath the bridge, and 3 located downstream of the bridge, all 
within the area mapped using the sonar system. See Table 3.1 for site information.  

Transect number Water Edge elevation (ft) 
(Home bank, far bank) 

Average water edge elevation (ft) 

1 528.62, 528.68 528.65 
2 528.70, 528.66 528.68 
3 528.52, 528.52 528.52 
4 528.58, 528.46 528.52 
5 528.74, 528.68 528.71 
6 528.52, 528.40 528.46 
7 528.64, 528.46 528.69 

Average water edge elevation (ft):       528.60 
Standard deviation (ft): 0.101 

 

3.1.2.3. 3D image reconstruction using drone and RGB camera 

The UAS operations in this project fall under the public operation category and the drone used in 
this project was a DJI Phantom 4 Pro v 2.0. We adhered to all FAA and NCDOT mandatory 
operational requirements along with UNCC UAS policy. The UAS was registered under FAA and 
a certificate of authorization was obtained before carrying out the operations along with NCDOT 
UAS knowledge test certification.  The UAS in this project was covered by a liability insurance 
and all flight missions were carried out below 400 feet AGL (Above Ground Level) and the 
obstacle sensors were tested by maneuvering the UAS in the vicinity of different obstacles. All 
UAS missions were conducted via automated flight plan under the responsibility of remote pilot 
and presence of visual observers. 

The digital photo image acquisition from small UAS (sUAS) and subsequent data processing 
involved four components: 1) planning, 2) flight/data collection, 3) data processing, and 4) data 
analysis. The ground control points (GCP) are established before carrying out sUAS operations. 
These GCPs assist in georeferencing the images during subsequent analysis. The point cloud 
generated from sUAS photogrammetry is used to generate a high-resolution digital elevation 
model (DEM) or digital surface model (DSM).  

In this project, we established 4 to 5 ground control points (GCPs) all around the hydraulic 
structures at a site before carrying out the flight mission for the site. The GCPs were measured 
using a Trimble R-10 VRS system. As UAS are prone to wind gusts and turbulence, we made 
sure that the UAS ground speed was lower than 5 m/s, which may lead to low quality images due 
to motion blur. The blurriness results from either the object moving or excessive speed of the 
platform to which the sensor/camera is attached, or both. For sUAS platforms, the blurriness can 
be effectively reduced by increasing flight altitude and/or decreasing sUAS ground speed. In 
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addition, before each mission we calibrated the camera and gimbal to minimize the motion blur. 
Below we presented the UAS operations that we conducted at two sites (Site #5, and Site #16).  

UAS operation at Site #5 

This UAS operation was conducted on February 1st, 2020 and a total of 226 images were 
collected and 5 ground control points (GCPs) were established. The GCPs were measured using 
the Trimble R10 integrated GNSS system. As the flight altitude was kept at 200 ft, the ground 
speed of UAS was set lower at 3m/s to reduce motion blur. For the weather conditions for this 
flight, please see Table A1 in Appendix A. The flight operated along the stream at an altitude of 
200ft and the planning parameters are shown in Table A2 in Appendix A, with the flight plan 
shown in Figure 3.4. The compass, camera and gimbal were all calibrated before the operation. A 
photogrammetry software Pix4DMapper (https://www.pix4d.com/product/pix4dmapper-
photogrammetry-software) was used for the post processing using the Structure from Motion 
(SfM) technique. 

 

Figure 3.4. Flight plan for unmanned aerial system operation at Site #5 (see Table 3.1 for site 
information). 

The five control points measured using Trimble R-10 GPS with VRS are shown in Table 3.5. The 
GCPs are marked manually in the selected images. The localization error per GCP and mean error 
along X, Y and Z coordinate directions are shown in Table 3.6. Table 3.7 shows the mean and 

https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
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standard deviation of errors between the initial and computed image positions. The key points 
details in alignment are reported in Table 3.8.  The orthomosaic with 3D information generated 
for Site #5 is shown in Figure 3.5. The camera calibration information is shown in Table 3.9. 

The internal orientation (IO) parameters define the origin of the image space coordinate system. 
These parameters are focal length, principal point, radial and tangential lens distortions. The 
length from the principal point to the perspective center is called the focal length. While the 
principal point is the image position where the optical axis intersects the image plane. The camera 
calibration information (Table 3.9) provides the detail on IO parameters. R1, R2, R3 are the radial 
distortions along X, Y and Z axes while T1 and T2 are tangential distortions in the vertical plane. 

Table 3.5. List of ground control points for Site #5. 

Location Point 
ID 

Easting 
NAD83(2011)  
US Survey Feet 

Northing 
NAD 83(2011)  
US Survey Feet 

Orthometric Height 
NAVD88  
US Survey Feet 

Site #5 G83 1345671.988 567497.151 686.318 
Site #5 G84 1345729.220 567591.108 687.625 
Site #5 G85 1345722.823 567474.747 691.910 
Site #5 G86 1345685.136 567608.737 687.687 
Site #5 G87 1345590.718 567656.860 696.856 

 

Table 3.6. Localization accuracy per ground control point (unit: US Survey feet). 

GCP Name Error X Error Y Error Z Images Marked 
G83 -0.022 -0.023 0.098 20 
G84 0.027 0.011 0.017 20 
G85 -0.007 -0.002 -0.070 20 
G86 -0.013 0.018 0.022 20 
G87 0.008 -0.020 -0.025 13 
Mean -0.001583 -0.003005 0.008294   
RMSE 0.017269 0.016621 0.056500   

 

Table 3.7. Statistics of errors between initial and computed image positions (std: standard 
deviation; unit for X, Y and Z: foot; unit for Omega, Phi, and Kappa: degree). 

  X Y  Z Omega Phi Kappa 
Mean 0.017 0.016 0.028 0.015 0.008 0.002 
Std 0.004 0.003 0.015 0.008 0.004 0.001 

 

Table 3.8. Summary of key points and matched key points per image. 

  #2D key points per image #Matched 2D key points per image 
Median 64,822 7,190 
Min 29,897 310 
Max 79,640 20,280 
Mean 62,148 7,575 
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Table 3.9. Information on camera calibration. 

  Focal 
Length 
(mm) 

Principal 
Point X 
(mm) 

Princip
al Point 
Y (mm) 

R1 R2 R3 T1 T2 

Initial Values 8.600 5.704 4.278 0.004 -0.017 0.019 0.000 0.000 
Optimized 
Values 

9.283 5.702 4.266 0.004 -0.023 0.027 -0.001 0.000 

Uncertainties 0.011 0.000 0.000 0.000 0.001 0.001 0.000 0.000 
Note:  Focal length: distance from the front nodal point of the lens to the plane of the 
photograph/image. Principal point: the point where the perpendicular dropped from the center of 
lens meets/strikes the plane of the photograph/image. R1, R2, and R3 are the radial distortions 
along X, Y and Z axes while T1 and T2 are tangential distortions in the vertical plane. 

 

 

Figure 3.5. Orthomosaic (with 3D information) generated using Structure from Motion technique 
for Site #5 (see Table 3.1 for site information). 
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UAS operation for Site #16 

This flight operation was conducted on January 26th, 2020 and a total of 105 images were 
collected. A total of four GCPs were established using the Trimble R10 GPS with VRS support. 
Two flight operations were conducted at a mission altitude of 200ft with a UAS ground speed of 
5m/s. The flight plans are shown in Figure 3.6 and 3.7. Please see Table A3 and A4 in Appendix 
A for the weather details for the flight and the planning parameters for flight operation.  

The four control points measured using the Trimble R10 GPS are shown in Table 3.10. The GCPs 
are marked manually in the selected images. The localization error per GCP and mean error along 
the X, Y and Z coordinate directions are shown in Table 3.11. 

Table 3.12 shows the mean and standard deviation of errors between the initial and computed 
image positions, where Mean and Sigma are the mean value of and the standard deviation of 
errors in X/Y/Z direction in feet and Omega/Phi/Kappa the angle in degrees. The alignment 
details are displayed in Table 3.13. The camera calibration information is shown in Table 3.14. 
The orthomosaic (with 3D information) generated for Site #16 is as shown in Figure 3.8. 

 

Figure 3.6. Flight plan I for UAS operation at site 16 (see Table 3.1 for site information). 
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Figure 3.7. Flight plan II for UAS operation at site16 (see Table 3.1 for site information). 

 

Table 3.10. List of ground control points for Site #16. 

Location Point ID Easting      
NAD 83(2011)  
US Survey Feet  

Northing            
NAD 83(2011)  
US Survey Feet 

Orthometric  
Height NAVD88   
US Survey Feet 

Site #16 Drone6 1,517,394.289 578,719.393 537.632 
Site #16 Drone8 1,517,550.486 578,807.289 537.54 
Site #16 Drone14 1,517,503.65 578,941.251 539.71 
Site #16 Drone15 1,517,385.129 578,860.992 540.987 
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Table 3.11. Localization accuracy per ground control point (std: standard deviation; unit: US survey 
feet). 

GCP Name Error X Error Y Error Z Images Marked 
Drone6 0.012 -0.006 0.020 22 
Drone8 -0.008 -0.013 -0.012 24 
Drone14 -0.024 -0.031 0.126 11 
Drone15 0.006 0.018 -0.021 25 
Mean -0.003600 -0.007988 0.028123   
Sigma (std) 0.013957 0.017594 0.058376   
RMSE 0.014414 0.019323 0.064797   

 

Table 3.12. Statistics of initial and computed image positions (std: standard deviation). 

  X 
(foot) 

Y 
(foot) 

Z 
(foot) 

Omega 
(degree) 

Phi 
(degree) 

Kappa 
(degree) 

Mean 0.022 0.023 0.297 0.006 0.006 0.001 
Sigma (std.) 0.005 0.004 0.002 0.001 0.001 0.000 

 

Table 3.13. Summary of 2D key points and matched 2D key points per image. 

  # 2D key points per image # matched 2D key points per image 
Median 56,041 7,760 
Min 51,293 4,837 
Max 62,020 12,020 
Mean 56,214 7,731 

  

Table 3.14. Information on camera calibration. 

  Focal 
Length 
(mm) 

Principal 
Point  
X (mm) 

Principal 
Point  
Y (mm) 

R1 R2 R3 T1 T2 

Initial 
Values 

8.600 5.704 4.278 0.004 -0.017 0.019 0.000 0.000 

Optimized 
Values 

9.128 5.694 4.293 -0.004 -0.015 0.019 -0.001 0.000 

Uncertainties 0.013 0.000 0.000 0.000 0.001 0.001 0.000 0.000 
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Figure 3.8. Orthomosaic (with 3D information) generated using SfM technique for Site #16 (see 
Table 3.1 for site information). 

 3.1.3. Summary of Field Data Collected  

Table 3.15 summarizes the data collected in this project, including LiDAR, sonar, total station, 
drone images, and camera images. Table 3.16 shows the file formats of these data. As an 
example, Figure 3.9 shows a map of 3D point cloud with LiDAR and sonar data merged. These 
data provide empirical support for the development of the deep learning algorithm for point cloud 
classification. The horizontal and vertical coordinate systems that we used are NAD 1983 (2011) 
StatePlane North Carolina FIPS 3200 (US feet) and GEOID12B as suggested by NCDOT. 
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Table 3.15. List of survey sites and data collected for the project (see Table 3.1 for site information).  

Site # # LiDAR 
Scanning 

# Sonar 
Points 

# Total station 
points 

# Drone 
images 

# Camera 
images 

Site 2 1  86  308 
Site 3 2  98  157 
Site 5 1  241  220 
Site 6 2  101  363 
Site 7 1  95  251 
Site 8 3  168  398 
Site 11 5 824    
Site 14 1  205  420 
Site 15 1   181 213 
Site 16 4 1095 127 109  
Site 17 4 3,180    

 

Table 3.16. Summary of field data types collected.  

Data Type Data Format File Format 
LiDAR Point Cloud XYZ, RGB .fls (Faro format) 
Sonar Data XY, depth .sl2, .sl3 and .slg  
Total station Data Latitude, longitude, elevation CSV 
Drone images RGB image JPEG 
Camera images RGB image JPEG 

  

 

Figure 3.9. Illustration of map of fused Lidar and sonar data (Lidar data are in gray; sonar data are 
in blue; site#: 16; Pharr Mill Road site; see Table 3.1 for site information). 
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3.2.  Deep Learning-based Point Cloud Classification 

3.2.1. Model Design 

The DeepHyd system is designed in a two-tiered spatial modeling framework for the point cloud 
classification of hydraulic structures (see Figure 3.10). The first tiered model, referred to as 
Model 1, is designed for the classification of bridges, vegetation, and ground. The second tiered 
model, denoted as Model 2, is used to classify bridge components from a point cloud of a bridge. 
Specific bridge components include beam, pier, railing, and retaining wall. The combination of 
the two tiers of the model allows for the classification of hydraulic structures from point cloud 
data.  

The use of a deep learning algorithm for the classification of point cloud data requires the 
following steps: 1) annotation of point cloud data as training data; 2) training and testing of the 
deep learning algorithm using annotated data, and 3) inferences (prediction) of point cloud data 
for classification using the trained deep learning algorithm. In this section, we discuss these 
specific steps based on the two-tiered spatial modeling framework.  

 

Figure 3.10. Tiered spatial modeling framework for deep learning-based point cloud classification 
of hydraulic structures. 

3.2.2. Annotation of Point Cloud Data 

We collected 11 point cloud datasets of hydraulic structures from our study sites via field work. 
We also have 30 point cloud datasets of bridges from previous projects (provided by Dr. Shen-En 
Chen). In total, there are 41 point cloud datasets that we used for annotation.  

Because the original point clouds collected from field work are very dense, we randomly 
resampled them with 1-cm cut-off distance between points (the minimum between-point distance 
of the output will be not less than 1cm). In this way, it will reduce the size of point clouds and 
preserve the shape of structures, which makes it more tangible for annotation which is an 
exceedingly labor-intensive task. Furthermore, we omitted the RGB color information of the point 
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cloud collected for our study sites to make the data consistent with the bridge point cloud datasets 
collected from previous projects (without RGB information). 

We annotated these point cloud data using a typology with 16 labels (see Figure 3.11). Figure 
3.12 and 3.13 show snapshots of annotated point clouds scanned from this project and previous 
projects (by Dr. Shenen Chen). Then, we aggregated these labels into higher levels to support the 
two-tiered modeling framework for point cloud classification of hydraulic structures (see Figure 
3.14). In other words, two types of point cloud datasets were generated for the two-tiered models: 
bridge-vegetation-ground datasets and bridge component datasets. In the bridge-vegetation-
ground datasets, each point in a point cloud is labelled with bridge, vegetation, or ground classes. 
For the bridge component datasets, a point in a point cloud is labelled with any of these following 
classes: retaining wall, pier, beam, and railing.  

 

Figure 3.11. Typology of annotation of point cloud data of hydraulic structures.  
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Figure 3.12. Illustration of annotated point clouds collected from the field work in this project (A: 
Site # 5. B: Site# 2. C: Site # 6. D: Site # 11; See Table 3.1 for more information about these sites). 

 

Figure 3.13. Illustration of annotated point clouds scanned from previous projects collected prior 
to this study (Chen, unpublished data).  
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Figure 3.14. Aggregation of annotated point cloud data for deep learning-based classification (One 
annotated scan from Site # 5; see Table 3.1 for site information as needed). 
 

Table 3.17 and 3.18 summarize the information of the annotated point cloud datasets. In total, 
there are about 207 million points labelled in the 41 datasets. 52.71% of points belong to the 
bridge class, followed by the ground class (30.36%). Only 16.93% of points are in the class of 
vegetation. Within the bridge component dataset, beam class ranked first, followed by pier class. 
Wall and railing classes comprise only 6.54% and 4.54%, respectively.  

Table 3.17. Bridge-vegetation-ground dataset. 

Statistics/Labels Bridge Vegetation Ground Total 
Total 109,354,102 35,122,404 62,993,247 207,469,753 
Percentage 52.71% 16.93% 30.36% 100.00% 

 

Table 3.18. Bridge-component dataset. 

Statistics/Labels Wall Pier Beam Railing Total 
Total 6,949,996 17,673,431 76,778,145 4,818,671 106,220,243 
Percentage 6.54% 16.64% 72.28% 4.54% 100.00% 
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3.2.3. Selection of 3D Deep Learning Algorithms for Point Cloud Classification 

As discussed in the literature review section, there are a suite of 3D deep learning methods 
available for point cloud classification. In this project, we implemented our DeepHyd system 
using ConvPoint, a state-of-the-art 3D deep learning platform based on continuous convolutions 
(Boulch 2020). This selection is based on the consideration of the reported classification 
performance of various 3D deep learning algorithms on a point cloud benchmark dataset, 
Semantic 3D (http://www.semantic3d.net/view_results.php?chl=1). Table 3.19 compares the 
classification performance of these 3D deep learning algorithms (top 5 deep neural networks were 
selected). As shown in this Table, ConvPoint has the best classification performance on the 
Semantic 3D benchmark. This guided us to use ConvPoint for the deep learning engine of our 
DeepHyd system for point cloud classification of hydraulic structures. For more detail, please 
refer to Guo et al. (2020) for 3D deep learning algorithms and Boulch (2020) for the ConvPoint 
deep learning platform. 

Table 3.19. Accuracy performance of the top 5 deep neural networks on the Semantic 3D 
benchmark (source: http://www.semantic3d.net/view_results.php?chl=1; Table is adapted from 
the table of semantic-8 results on the website of Large Scale Classification Benchmark; IoU: 
Intersection over Union; IoU and overall accuracy are model performance metrics defined in 
Section 3.2.5). 

Deep neural networks Average IoU Overall Accuracy Reference 
ConvPoints  0.777 0.950 Boulch (2020) 
WreathProdNet 0.771 0.946 Wang et al. (2020) 
SPGraphs 0.762 0.929 Landrieu and Simonovsky (2018) 
FKAConv 0.746 0.941 Boulch et al. (2020) 
PointCE 0.710 0.923 Liu et al. (2020) 
Pointnet  0.521 0.825 Qi et al. (2017) 

 

3.2.4. Transfer learning for improved 3D Deep Learning for Point Cloud Classification 

While ConvPoint claims top rank for the benchmark dataset, the use of ConvPoint for the 
classification of point clouds from LiDAR is nontrivial. This is because the use of deep learning 
often requires a large number of labelled data for training and testing. However, we only have 41 
labelled point clouds. Therefore, we opted to use the transfer learning technique to cope with this 
issue. Transfer learning is one of the methods that have been developed to improve deep learning 
when the amount of available training data is limited. It is suggested in the literature that learned 
weights in a neural network (pre-trained on similar data) can be used as prior information to train 
(and thus improve the performance of) deep neural networks (Goodfellow et al. 2016). The use of 
transfer learning relies on the identification of similar labelled data. For our case, outdoor 3D 
point cloud benchmark datasets are similar to our point cloud datasets of hydraulic structures as 
both datasets contain the information of vegetation, ground, and man-made structures.  

http://www.semantic3d.net/view_results.php?chl=1
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We studied a set of currently available outdoor 3D point cloud benchmarks (see Table 3.20). 
Unlike the 2D image benchmarks, there are only a few benchmark datasets for 3D point cloud 
classification. Moreover, not all the datasets are suitable for our case. For example, there are less 
than 2 million labeled points in the Oakland data set. Both Sydney Urban Objects and the 
IQmulus & TerraMobilita Contest use a LiDAR mounted on a car that has much lower point 
density than a static scanner (see Table 3.24 for links to various 3D point cloud datasets). The 
same applies to the airborne Vaihingen 3D benchmark. We identified the Semantic 3D dataset 
(also known as the large-scale point cloud classification benchmark, see Hackel et al. (2017)) as 
more suitable for use in our case, as it provides a labeled 3D point cloud dataset of the outdoor 
scene with over 4 billion points collected by static terrestrial LiDAR. It covers a range of eight 
classes: man-made terrain, natural terrain, high vegetation, low vegetation, building, hard scape, 
scanning artifacts, cars, and clutter (unclassified). The labels within this benchmark are similar to 
our data. Transfer learning can thus be used to transfer the knowledge (features) learned by the 
deep neural network on this benchmark dataset (e.g. natural terrain, vegetation, and buildings) to 
benefit the deep learning on our task (separating bridge components from the natural materials 
including vegetation and the ground surface). 

The pre-trained deep neural network is retrieved from the repository that the author of Convpoint1 
published, which has eight classes as the output (e.g., man-made terrain, natural terrain, 
vegetation, car, etc.). However, the model that we utilized for transfer learning embraces only 
three classes (bridge, vegetation, and ground). Therefore, we omitted the output layer of the pre-
trained deep neural network and established an output layer with random initial weights that fits 
our situation. Furthermore, we gave a relatively low initial learning rate (10-4) to those loaded 
weights from the pre-trained network to keep the weight change slow so that the pre-trained 
weights can be better utilized. We then tuned the learning rate of the output layer (see the training 
of Model 1 in Section 3.2.5.1).  

Table 3.20. Labeled 3D point cloud benchmark. 

Benchmark name Data collector Links 
Semantic3D Static LiDAR http://semantic3d.net/ 
Oakland data set Static LiDAR http://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr

09/doc/ 
Sydney Urban Objects 
data set 

Mobile 
LiDAR 

http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjec
tsDataset.shtml 

Virtual KITTI 3D 
Dataset 

Mobile 
LiDAR 

https://github.com/VisualComputingInstitute/vkitti3D-
dataset 

IQmulus & 
TerraMobilita Contest 

Mobile 
LiDAR 

http://data.ign.fr/benchmarks/UrbanAnalysis/ 

Vaihingen3D airborne 
benchmark 

Airbone 
LiDAR 

http://www2.isprs.org/commissions/comm3/wg4/3d-
semantic-labeling.html 

 
1 Source: https://github.com/aboulch/ConvPoint/tree/master/examples/semantic3d 

http://semantic3d.net/
http://www.cs.cmu.edu/%7Evmr/datasets/oakland_3d/cvpr09/doc/
http://www.cs.cmu.edu/%7Evmr/datasets/oakland_3d/cvpr09/doc/
http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
https://github.com/VisualComputingInstitute/vkitti3D-dataset
https://github.com/VisualComputingInstitute/vkitti3D-dataset
http://data.ign.fr/benchmarks/UrbanAnalysis/
http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html
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3.2.5. Training and Validation of 3D Deep Learning for Point Cloud Classification  

We have a total of 41 labeled samples in our annotated point cloud data pool, where there are 
approximately 200 million points in the bridge-vegetation-ground dataset (for Model 1) and 100 
million points in the bridge component dataset (for Model 2). However, not all of these point 
cloud datasets are independent in terms of the hydraulic structures since some of them are 
different scans of the same hydraulic structure. We thus selected 17 independent point cloud 
samples, in which we randomly selected six of them as validation samples. We used the rest of 
the 35 point cloud samples for the training dataset. We applied this split strategy on training and 
validation samples through all experiments in the following analysis so that their results are 
comparable. Figure 3.15 shows the network architecture of ConvPoint that we used for 3D point 
cloud classification.  

 

Figure 3.15. Architecture of ConvPoint segmentation networks for 3D deep learning-based point 
cloud classification (adapted from Boulch, 2020, Figure 5). The structure consists of an encoder 
reducing the size of the point cloud and a decoder getting back to the initial size of the point 
cloud. Skip connections represented by black arrows transfer the information from encoder to 
decoder. (Conv.: Convolutional layer. BN: Batch normalization. ReLU: An activation function). 

Tuning of deep learning algorithms is required when we use deep learning for point cloud 
classification. For deep neural networks, parameters are referred to those weights assigned to 
connections between neurons. While the learning process is applied to train deep neural networks, 
a set of other parameters, so-called hyperparameters, are used to guide the learning process to 
optimize these weights. There are a series of hyperparameters for deep learning algorithms such 
as learning rate and momentum. These hyperparameters need to be optimized for the training of 
deep learning algorithms. For our DeepHyd system, we focus on tuning four hyperparameters: 
learning rate, number of iterations, block size, and number of points per block (see Table 3.21). 
The first two hyperparameters (learning rate and number iterations) are related to the deep 
learning algorithm per se. The last two hyperparameters are specific to ConvPoint for 3D point 
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cloud classification. In this section, we first discuss performance metrics and computing resources 
used for hyperparameter tuning for DeepHyd. Then, we present the tuning of the two types of 
hyperparameters for Model 1 and Model 2.  

Table 3.21. List of hyperparameters for the DeepHyd system. 

Hyperparameter Explanation 
Learning rate A hyperparameter to control the rate of learning of the deep 

neural network in the training process. 

Learning rate schedules A schedule to adjust learning rate in the training process. 

# iterations The number of batches in one epoch, working with # epoch to 
identify the training steps 

# epochs Number of epochs in the training process, working with # 
iterations to identify the training steps. 

Block size Data related hyperparameter: The edge length of the square 
moving window in x-y plane, generating a subset of the point 
cloud falling into this window, used to feed data to the deep 
neural network. 

# points per block Data related hyperparameter: Number of points to be sampled 
from one block. 

Hold out Data related hyperparameter: Number of independent scans 
used for validation in the training process. 

Inference step The step length of the moving window generating point in the 
inference process. 

 

Performance Metrics for Model Evaluation: To evaluate the classification performance of our 
DeepHyd system, performance metrics are needed. We used three performance metrics for the 
evaluation of deep learning-based models in this project, including Intersection over Union (IoU; 
see Eq. 1), overall accuracy (OA; see Eq. 2), and average accuracy (AA; see Eq. 3). For more 
information about these metrics, please refer to Hossin and Sulaiman (2015) and Rahman and 
Wang (2016). 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑇𝑇𝑃𝑃𝑖𝑖
𝑇𝑇𝑃𝑃𝑖𝑖+𝐹𝐹𝑁𝑁𝑖𝑖+𝐹𝐹𝑃𝑃𝑖𝑖

          (1) 

𝑂𝑂𝑂𝑂 = 𝑇𝑇𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎
𝑇𝑇𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎+𝐹𝐹𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎+𝐹𝐹𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

         (2) 

𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎( 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

)                (3) 

where TP, FN, and FP are true positive (hit), false negative (missing; type II error), and false 
positive (false alarm; type I error); subscript all indicates all points and i indicates the class 
number of or one of the labels. Below explains hit, missing, false positive:  
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• Hit: The label is correctly predicted (also true positive) by the model. For example, points 
belonging to the bridge were predicted as a bridge by the model.  

• Missing: The point belongs to a target class but is predicted as another class (also false 
negative). For example, points should belong to the bridge but were predicted as ground.  

• False Alarm: From the view of model performance for a specific class, the points 
belonging to other classes were predicted as this specific class (false positive).   

For the hyperparameter tuning, we used IoU as the performance metric to evaluate the 
classification performance of the DeepHyd system.  

High Performance Computing Resources for Model Acceleration: The use of 3D deep 
learning for point cloud classification is highly computationally demanding. To address this 
computational challenge, we used a high-performance computing cluster with GPUs at University 
Research Computing at the University of North Carolina at Charlotte to accelerate the parameter 
tuning of our DeepHyd system. A series of GPUs are available on this high-performance 
computing cluster, including Nvidia GTX 1080 Ti (#cores: 3,584), Nvidia Tesla K80 (#cores: 
4,992), Nvidia Titan RTX (#cores: 4,608), and Nvidia Titan V (#cores: 5,120). We wrapped 
computing tasks (training of 3D deep learning algorithm) in treatments of the experiments 
conducted in this project to the GPU cluster and these computing tasks are executed in parallel 
while each of them leverages GPU devices for further acceleration.  

3.2.5.1. Hyperparameter Tuning: Learning Rate and Number of Iterations 

Learning rate and number of iterations are two hyperparameters of the deep learning algorithms. 
The learning rate is a hyperparameter that is essential in developing deep learning-based models. 
A range of learning rates as suggested in the literature (Goodfellow et al. 2016) is from 10-7 to 10-

2. The number of iterations is a deep learning parameter that represents the number of batches 
(subsets of training samples) to be processed within one learning epoch.  

We applied the Learning Rate Range Test (LRRT) per Smith et al. (2017) to identify an 
appropriate range of learning rates to train the 3D deep learning model on our data. A learning 
rate scheduler was adopted to amplify the learning rate ten times after every 100 iterations with an 
initial learning rate as 1e-7, which is the lower bound of the suggested learning rate range by 
Goodfellow et al. (2016). LRRTs were tested separately to Model 1 and 2. As a result, the ranges 
of Model 1 and Model 2 are [10-4, 10-6] and [10-2, 10-4]. Further parameter tuning was conducted 
to identify the best learning rates in these ranges. 

Training of Model 1: Classification of Bridges, Vegetation, and Ground 

We conducted an experiment (experiment 1) with 11 treatments (Table 3.26) to evaluate how 
learning rate and number of iterations impact model performance. Figure 3.16 shows the impact 
of the iteration number on the model performance indicating about 10% increase in the averaged 
IOU as the number of iterations increases from 500 to 1,500. Correspondingly, computing time 
will increase significantly when the number of iterations increases. Since we have sufficient 
computing resources, we chose to use 1,500 as the number of iterations in the latter experiments. 
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Figure 3.16. Illustration of learning curves for training and validation of deep learning algorithm 
for Model 1 in response to number of iterations (A: training; B: validation; performance metric: 
Intersection over Union; Three treatments were used: learning rate =10-2 and # iteration = 500 
(blue), 1,000 (orange), and 1,500 (red). 

As shown in Figure 3.16, the model appeared hard to converge where the divergence of the 
validation curve was still dramatic (around 10%) even at the end of the training. In this situation, 
it was hard to capture the best model since the indicated best model was always the last one. 
Therefore, in experiment 2 we further applied a cosine learning rate scheduler to reduce the 
learning process from an initial learning rate to 0 following a cosine curve. Experiment 2 has 
three treatments (treatment 12 to 14 in Table 3.22) within each of which a learning rate scheduler 
was used for training. Figure 3.17 shows the learning curve of averaged IOU. After utilizing the 
learning rate scheduler, the divergence became relatively small (around 1%). The learning curves 
were visually similar, so we chose the one with the highest averaged IoU, whose learning rate is 
10-5. Therefore, the learning rate and number of iterations for Model 1 on our current dataset was 
identified as 10-5 and 1,500. 

 

Figure 3.17. Illustration of learning curves for training and validation of deep learning algorithm 
for Model 1 in response to learning rate (A: training; B: validation; performance metric: 
Intersection over Union; Three treatments were used: learning rate =10-4 (blue), 10-5 (orange), and 
10-6 (red)). 
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Table 3.22. Summary of experimental design of Model 1 as well as GPU computing performance. 

  Treatment # Learning Rate # iteration GPU Computing Time (hours) 
Experiment 1 Treatment 1 10-2 500 1080Ti 42 
  Treatment 2 10-2 1,000 1080Ti 52 
  Treatment 3 10-2 1,500 K80 70 
  Treatment 4 10-3 500 1080Ti 42 
  Treatment 5 10-3 1,000 K80 53 
  Treatment 6 10-3 1,500 K80 70 
  Treatment 7 10-4 500 1080Ti 42 
  Treatment 8 10-4 1,000 1080Ti 51 
  Treatment 9 10-4 1,500 K80 69 
  Treatment 10 10-5 1,000 1080Ti 51 
  Treatment 11 10-5 1,500 1080Ti 68 
Experiment 2 Treatment 12 10-4 1,500 Titan RTX 67 
  Treatment 13 10-5 1,500 Titan V 68 
  Treatment 14 10-6 1,500 Titan V 68 

        Total 813 

 

Training of Model 2: Classification of Bridge Components 

The experimental design for training of Model 2 is similar to that of Model 1, includes two 
experiments. The first experiment (Experiment 1) includes 11 treatments (Treatments 1 to 11 in 
Table 3.23) that examine how learning rate and number of iterations influence the Model 2 
performance. Results observed in the parameter tuning for Model 2 are similar to those for Model 
1: an increase in number of iterations would increase the model performance but would slow 
down the training process. This finding was also confirmed by the author of ConvPoint 
(https://github.com/aboulch/ConvPoint/issues/32). Thus, we used experiment 2 that has three 
treatments (Treatments 12 to 14) each using a learning rate scheduler for further parameter tuning. 
Figure 3.18 illustrates the learning curves of this experiment. It appeared that the best learning 
rate for Model 2 was 10-4 (red), which outperformed other treatments. Therefore, for Model 2, we 
used 10-4 as the learning rate and the number of iterations was also set to 1,500.  

https://github.com/aboulch/ConvPoint/issues/32
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Figure 3.18. Illustration of learning curves for training and validation of deep learning algorithm 
for Model 2 in response to learning rate (A: training; B: validation; performance metric: 
Intersection over Union; Three treatments were used: learning rate =10-2(blue), 10-3 (orange), and 
10-4(red)). 

Table 3.23. Summary of experimental design of Model 2 as well as computing time.  

  Treatment # Learning 
Rate 

# iteration GPU Computing Time 
(hours) 

Experiment 1 Treatment 1 10-2 500 1080Ti 31 
  Treatment 2 10-2 1,000 1080Ti 41 
  Treatment 3 10-2 1,500 1080Ti 47 
  Treatment 4 10-3 500 1080Ti 29 
  Treatment 5 10-3 1,000 1080Ti 41 
  Treatment 6 10-3 1,500 1080Ti 47 
  Treatment 7 10-4 500 1080Ti 31 
  Treatment 8 10-4 1,000 1080Ti 41 
  Treatment 9 10-4 1,500 K80 43 
  Treatment 10 10-5 1,000 K80 32 
  Treatment 11 10-5 1,500 K80 43 

Experiment 2 Treatment 12 10-2 1,500 Titan V 41 
  Treatment 13 10-3 1,500 Titan V 41 
  Treatment 14 10-4 1,500 Titan V 41 

        Total 549 
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3.2.5.2. Hyperparameter Tuning: Block Size and Number of Points per Block 

Once we tune the hyperparameters associated with the deep learning algorithm (learning rates and 
number of iterations here), we need to tune hyperparameters associated with ConvPoint, which is 
the deep learning core of our DeepHyd system. We focus on tuning two hyperparameters of 
ConvPoint: block size and number of points per block. To cope with potentially large volumes of 
points in a point cloud, blocks are used in ConvPoint to extract a subset of points for deep 
learning. Block size refers to the size of a block that defines the subset of point clouds. Within 
each block, a specific number of points are randomly sampled that are fed to ConvPoint for inputs 
of deep learning algorithms—the number of points per block. The range of block size is set to 1 
meter to 256 meter, and the number of points per block is in the range of 512-16,384. Such a 
setting is based on our practical knowledge and the computing capacity of our hardware 
environment. Note that the value 16,384 as the number of points per block does not work for 
training Model 1 due to the capacity of our GPUs. We used a grid-based approach to 
systematically search the hyperparameter space defined by these two hyperparameters. Table 3.24 
and 3.25 report hyperparameters used for Model 1 and Model 2. For Model 1, we varied block 
size within the range of 1 meter to 256 meters while the number of points per block was changed 
from 512 to 8,192. The combination of varying the two parameters leads to 45 treatments (9 by 5) 
for the experiment of tuning Model 1. Likewise, for Model 2, there are in total 54 treatments (9 by 
6).  

Table 3.24. Hyperparameters of 3D deep learning algorithm for Model 1.  

Parameter Value 
Block size (meter) 1; 2; 4; 8; 16; 32; 64; 128; 256 
#points per block 512; 1,024; 2,048; 4,096; 8,192 
#epochs 100 
#classes 3 
#iterations 1500 (1500 blocks are generated in each epoch) 
Holdout number 6 (6 independent samples as validation data) 
Scheduler a cosine learning rate scheduler is applied 
Learning rate 10-5 

 

Table 3.25. Hyperparameter configurations of 3D deep learning algorithm for Model 2. 

Parameter Value 
Block size (meter) 1; 2; 4; 8; 16; 32; 64; 128; 256 
#points per block 512; 1,024; 2,048; 4,096; 8,192; 16,384 
#epochs 100 
#classes 4 
#iterations 1,500 (1,500 blocks are generated in each epoch) 
Holdout number 6 (6 independent samples as validation data) 
Scheduler a cosine learning rate scheduler is applied 
Learning rate 10-4 
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Computing Performance 

By leveraging the GPU cluster, we completed this hyperparameter tuning exercise in around one 
month (30 days) of computing time in total. The sequential computing time is around 5,400 hours 
(~ 225 days). An approximated speedup (a computing performance metric calculated as 
sequential computing time divided by parallel computing time) is 7.5, which is close to the 
number of GPUs (8 GPUs) we can request from the GPU cluster. The GPUs used in this 
experiment are based on availability when computing tasks are realized on the cluster; therefore, 
different GPUs might be used for different treatments in this experiment.  

Classification Performance Evaluation  

Once the training of 3D deep learning algorithms in each of the treatments for Model 1 and Model 
2 is completed, we used a response surface approach (Box and Draper 2007) to find the optimal 
hyperparameter set. Figure 3.19 and 3.20 are results of response surfaces of validation model 
performance for Model 1 and Model 2 in terms of IoU. Inverse Distance Weighting (Burrough et 
al. 2015) is used for interpolation of model performance into continuous response surface and 
Root Mean Square Error (RMSE) was used for cross validation of the interpolation. Figure 3.21 
and 3.22 show maps of annotated and classified point clouds for Model 1 and Model 2. Table 
3.26 and 3.27 depict the corresponding confusion matrices in terms of classification.  

 

Figure 3.19. Response surface of Intersection over Union for Model 1 between block size and 
number of points per block (Inverse Distance Weighting is used for estimating the surface with 
RMSE=0.017). 
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Figure 3.20. Response surface of Intersection over Union for Model 2 between block size and 
number of points per block (Inverse Distance Weighting is used for estimating the surface with 
RMSE=0. 058) 

 

Figure 3.21. Comparison between annotated point cloud and predicted point cloud from Model 1 
(One scan from Site # 16 was used. A: map of annotated point clouds. B: map of predicted point 
cloud showing misclassified points. see Table 3.1. for site information) 

Regarding Model 1, we can observe from Figure 3.19 that the highest value of IOU (94.76%) 
converged to the parameter set in which block size and number of points per block as 8 m and 
8,192. Therefore, it suggests that a block size of 8 m is an appropriate value for the deep learning-
based classification of vegetation, ground, and bridge for hydraulic structures in our project. 
There is a rising trend of IOU in response to the increase in the number of points per block. 
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However, 8,192 is the largest value of the number of points per block that we can set due to the 
current computing capacity of our hardware environment.  

Table 3.26. Confusion matrix of point cloud classification using a point cloud scan from a field site 
(Site #16: Pharr Mill site was used). 

 Predicted 
bridge 

Predicted 
vegetation 

Predicted 
ground 

Total 

Actual bridge 33.47% 0.01% 0.09% 33.56% 
Actual vegetation 0.38% 25.01% 2.18% 27.57% 
Actual ground 0.02% 0.76% 38.09% 38.87% 
Total 33.86% 25.78% 40.36% 100.00% 

 

As for Model 2, it appears that there is an improvement in IoU from 16m to 32 m in block size, as 
shown in Table 3.27. The high values of IOU converged when the block size is 64m and the 
number of points per block is 8,192. The root-mean-square error is approximately three times that 
for Model 1. We attribute these results to lack of data, where not all the validation samples have 
all of the categories (some bridges do not have piers, and some of their railings may not be 
scanned due to the under-bridge operation). We need to notice that both IOU from Models 1 and 
2 are estimated based on our current validation dataset, including six bridges. It may be biased 
due to the lack of validation data, but it is a trade-off between the number of training samples and 
the number of validation samples. If we obtain more LiDAR data in the future, the classification 
performance of our deep learning algorithm can be further improved. 

 

Figure 3.22. Comparison between annotated point cloud and classified point cloud by Model 2 
(one scan from site #16 was used. A: map of annotated point clouds. B: map of classified point 
cloud showing misclassified points; see Table 3.1 for site information). 
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Table 3.27. Confusion matrix of classification results by Model 2 (a scan from Site #16: Pharr Mill 
site was used). 

 Predicted 
wall 

Predicted 
pier 

Predicted 
beam 

Predicted 
railing 

Total 

Actual wall 0.00% 0.00% 3.20% 0.00% 3.20% 
Actual pier 0.00% 12.10% 0.00% 0.00% 12.10% 
Actual beam 0.00% 0.25% 84.46% 0.00% 84.71% 
Actual 
railing 

0.00% 0.00% 0.00% 0.00% 0.00% 

Total 0.00% 12.34% 87.66% 0.00% 100.00% 

3.2.6. Model Inferencing for the Prediction of Point Cloud Classification 

In this section, we present the model inferencing (or prediction) results for the point cloud 
classification using the DeepHyd system. We conducted model inferencing using six validation 
datasets.  

3.2.6.1. Inferencing Results of Model 1 for the Classification of Bridges, Vegetation, and 
Ground 

Table 3.28 depicts the results of classification performance of Model 1. Table 3.29 reports the 
confusion matrix of the classification performance for Model 1 (based on six validation datasets). 
The IoU for the bridge is 98.63%, which is a relatively high compared with training results 
reported from the benchmark dataset (see ConvPoint performance on the Large-Scale Point Cloud 
Classification benchmark; see http://www.semantic3d.net/view_results.php?chl=1). Figure 3.23 
illustrates the snapshots of the predicted point clouds. The prediction results look reasonable, 
where most points were well labeled. However, the estimation may also be somewhat biased due 
to the small size of the validation dataset. We found the model may confuse vegetation and pier 
when the pier was not in a cylindrical shape, but rather a rack as shown in the mid-left bridge.  

Table 3.28. Results of point cloud classification performance of Model 1. 

Measure Value 
Overall Accuracy 98.55% 
Average Accuracy 97.63% 
Averaged IoU 94.76% 
IoU for bridge 98.63% 
IoU for vegetation 89.40% 
IoU for ground 96.36% 

 

 

 

http://www.semantic3d.net/view_results.php?chl=1
http://www.semantic3d.net/view_results.php?chl=1
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Table 3.29. Confusion matrix of point cloud classification for Model 1 in terms of percentage. 

  Predicted 
Bridge 

Predicted 
Vegetation 

Predicted 
Ground 

Total 

Actual Bridge 61.24% 0.30% 0.32% 61.86% 
Actual Vegetation 0.02% 7.75% 0.35% 8.12% 
Actual Ground 0.21% 0.24% 29.57% 30.02% 
Total 61.47% 8.29% 30.24% 100.00% 

 

 

Figure 3.23. Demonstration of prediction results of Model 1 trained on bridge-vegetation-ground 
dataset. A: Site# 2. D: Site # 5. B, C, E, and F are from previous projects (Chen, unpublished 
data) (see Table 3.1. for the information of sites from this project). 
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3.2.6.2. Inferencing Results of Model 2 for the Classification of Bridge Components 

Table 3.30 and 3.31 report the classification performance results of Model 2. Figure 3.24 shows 
the prediction results of point clouds. From Table 3.31, we can see the distribution of categories 
in the validation dataset for Model 2 is imbalanced, where the largest category, beam, represents 
81.14% of the validation data and the smallest category, retaining wall only represents 2.94%. 
Therefore, those small categories' performance (IoU of Wall 2.94% and IoU of Railing 1.15%) 
might not be well estimated. Beam and Pier classes appear to have relatively higher proportions in 
the validation dataset, and they also have a relatively good performance as per their IOUs. We can 
also tell the long-tail of the data in Figure 3.24, where the pier and beam are represented well in 
comparison to the railing and wall bridge components. From Figure 3.24, we can tell different 
components of a bridge, where the pier and beam appear to be well detected via visual inspection. 
The only bridge with a retaining wall (Panel A) shows that the pier and wall might confuse the 
model a little bit when there is no pier for the bridge. It seems our validation dataset does not have 
an actual railing. Those points were predicted as railing because they were similar to the shape of 
the railing. However, there were some points on the ground (e.g., fencing). We originally had a 
fencing category in our dataset, but we aggregated it to the railing class due to their similarity. 
This can help the model to learn the shape of railing-like objects so that it can contribute to 
detecting railing in different types. 

Table 3.30. Results of Model 2 performance for the point cloud classification of bridge 
components.  

Measure Value 
Overall Accuracy 98.86% 
Average Accuracy 93.11% 
Averaged IoU 91.44% 
IoU for Retaining Wall 80.08% 
IoU for Pier 93.15% 
IoU for Beam 99.34% 
IoU for Railing 93.18% 

  

Table 3.31. Confusion matrix of classification results for Model 2 (Wall: retaining wall). 

  Predicted 
Wall 

Predicted 
Pier 

Predicted 
Beam 

Predicted 
Railing 

Total 

Actual Wall 2.38% 0.53% 0.03% 0.00% 2.94% 
Actual Pier 0.00% 14.50% 0.27% 0.00% 14.77% 
Actual Beam 0.03% 0.20% 80.90% 0.00% 81.14% 
Actual Railing 0.00% 0.07% 0.00% 1.07% 1.15% 
Total 2.42% 15.30% 81.20% 1.08% 100.00% 
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Figure 3.24. Demonstration of prediction results of Model 2 trained on bridge component dataset. 
A: Site# 2. D: Site # 5. B, C, E, and F are from previous projects (Chen unpublished data) (see 
Table 3.1. for the information of sites from this project). 
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3.3. Scientific Workflows for Model Automation  

The classification of point cloud data of hydraulic structures is involved with a collection of steps 
(including pre-processing, model training, model validation, model inference for classification, 
and post-processing). These steps are often connected together. While some processing steps 
(e.g., point cloud annotation) may require direct human interaction (a manual approach), a series 
of steps can be incorporated into scientific workflows for automation. In this project, we used a 
scientific workflow approach (Taylor et al. 2007) to implement the automated point cloud 
classification using deep learning techniques. Figure 3.25 shows the scientific workflows that we 
developed for the automation of point cloud classification using 3D deep learning.  

 

Figure 3.25. The framework of the DeepHyd scientific workflows (manual modules are in gray 
and automated modules are in blue). 

The scientific workflows of the DeepHyd system are implemented in Jupyter Notebooks 
(https://jupyter.org/) with input and output parameters. The notebook for each step is configured 
using these parameters, set by the user in the web interface. The notebooks provide a record of the 
code executed during each workflow step, as well as the corresponding output. In the case of an 
error, the notebook contains all code and parameters necessary to arrive at the error to allow us to 
fix problems which may arise. The notebooks are executed in Docker containers (a light-weighted 
cloud computing approach; https://www.docker.com/) defined explicitly for use in the DeepHyd 

https://www.docker.com/
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system. Each instance of a scientific workflow is executed in its own container which provides 
the necessary system environment to execute the processing or classification.  

3.3.1. Pre-processing of data 

The pre-processing of point clouds in our project includes the following steps: 1) georeferencing 
of the point cloud, 2) outlier removal to enhance the quality of point clouds, 3) resampling of 
point clouds to remove redundant points, and 4) format conversion of the data for DeepHyd 
utilization. Outlier removal, resampling, and formatting are the same preprocessing steps for 
training and inferencing workflows, while georeferencing is only necessary for inferencing 
workflow. They are explained as follows: 

1) Outlier removal is performed to improve the quality of point cloud by removing scattered 
points, which are noise, potentially misleading the classifier. This processing task is 
commonly implemented automatically in the official software for a specific LiDAR 
instrument, when the raw LiDAR scans were pre-processed (e.g., stitching scans, noise 
reduction, filtering with a cut-off distance) for further utilization. For example, we used 
FARO SCENE2, the manufacture’s official software to read and process LiDAR data 
collected by FARO LiDAR instruments.  

2) Resampling with a cut-off distance (e.g., 1cm) was applied to training data as a pre-
processing step, omitting redundancies and improving the efficiency of annotation. We 
also suggest the same resampling be applied to point clouds when inferencing; 
CloudCompare (or the official processing software from the vendor of a LiDAR 
instrument) can be a good option for this processing. In this project, we use 
CloudCompare for the resampling of point clouds. 

3) Georeferencing is necessary for the inference workflow as the output may need to have 
specific horizontal and vertical coordinate systems, which can be conducted manually in 
the official software for a specific LiDAR instrument. The point cloud for above-water 
point clouds (e.g., LiDAR data for bridge and ground) needs to be in the same horizontal 
and vertical coordinate systems as those of under-water point cloud (sonar data) so that 
they can be fused directly.   

4) The format of the point cloud data in DeepHyd includes at most four columns and each 
row represents one point (see Figure 3.26 for file formats of inputs and outputs), where the 
first three columns are spatial coordinates, x, y, z, and the last column is a label (necessary 
for training workflow). Table 3.32 shows the list of labels and their corresponding classes 
used in this project. Format conversion is to convert the input point cloud data from an 
ASCII text file (.txt) to a binary numpy file3 (.npy) that serves as input files of both 
training and inferencing workflows. 

 
2 https://www.faro.com/en/Products/Software/SCENE-Software  

3 https://numpy.org/doc/stable/index.html  

https://www.faro.com/en/Products/Software/SCENE-Software
https://numpy.org/doc/stable/index.html
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Input file format for model training workflow: 

          x, y, z, label 

Output file format for model training workflow: 

          x, y, z, label 

Input file format for model inference workflow: 

          x, y, z 

Output file format for model inference workflow: 

          x, y, z, label 

Figure 3.26. Input and output file formats for scientific workflows of model training and 
inference for point cloud classification (input and output files are ASCII text files; file format 
shows the columns in each line of data file; output file format for model training is the same as 
that for model inferencing).  

Table 3.32. List of labels for classes used by the DeepHyd system. 

Model 1 classes Model 2 classes Labels 
Bridge  1 

 
 
 
 

Wall 11 
Pier 12 

Beam 13 
Railing 14 

Vegetation  2 
Ground  3 

3.3.2. Post-Processing of Data 

Post-processing of point cloud in DeepHyd is necessary for inference workflow, comprising 1) 
merging prediction results and sonar data, 2) Point cloud simplification for linking with hydraulic 
models, and 3) Format conversion of point cloud for web-based visualization. 

1) Merging prediction results and sonar data: Prediction results of the two models in the 
inference workflow will be merged so that the input point cloud will be shown as labeled 
bridge components and ground (vegetation removed by the request of NCDOT). 
Georeferenced sonar data can be further manually integrated by the users or automatically 
merged by the workflow (input required for georeferenced sonar data).  

2) Point cloud simplification for linking with hydraulic models: Point cloud simplification is 
used to make point clouds suitable as input into hydraulic models. The classified point 
cloud data may be in large volumes that are not suitable for being used as inputs for 
hydraulic models (per communication with NCDOT professionals). We implemented this 
point cloud simplification in CloudCompare.  
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3) Format conversion of point cloud for web-based visualization: We post-process the 
inference output (classified point cloud) in order to visualize it in the Potree 
(http://potree.org/) web visualization interface. This step is necessary because the output 
of ConvPoint is not compatible with the Potree software. Every valid result from 
ConvPoint is post-processed in this way to allow immediate review of the results.  

 

3.3.3. Use of DeepHyd for point cloud classification.  

We implemented two user interfaces for the use of DeepHyd for point cloud classification: 
command line interface (DeepHyd-CLI) and web interface (DeepHyd-Web). Both interfaces now 
support the use of CPUs and GPUs for point cloud classification. Users can deploy the command 
line interface of DeepHyd to their own desktop computers. If GPU device is not available, then 
users can choose to use CPU environment for point cloud classification (though relatively slower 
than GPUs). Users just need to specify the parameter configuration file and point cloud data.   

The web interface of DeepHyd, i.e., DeepHyd-Web, is a web portal that is capable of receiving 
datasets, preparing them for classification, running classification, and visualizing and 
downloading the resulting datasets (see Figure 3.27 for the main web page of the portal). These 
functions are provided in separate web pages meant to provide a chained scientific flow from one 
task to the next. The web portal was custom-built for the DeepHyd system in Python so as to 
match the programming language used for inference and other workflow steps. The web portal is 
run in its own container separated from the workflow worker processing and job queue database. 
This intentional separation provides benefits such as resiliency to crashes, performance despite 
running multiple tasks, scalability across GPU and CPU resources, and asynchronous execution. 
Once the point cloud is classified, it can be visualized in the web portal (based on Potree; see 
Figure 3.28).  

The computing time for using DeepHyd for point cloud classification is affected by multiple 
factors such as point cloud size, characteristics of point cloud, or hardware configuration. Table 
B.1 in the Appendix B reports the computing time information for point clouds in varied sizes, 
which can provide insights into the estimation of computing time needed for point cloud 
classification using DeepHyd.  

http://potree.org/
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Figure 3.27. Snapshot of the main web page of the Web portal for using DeepHyd for point cloud 
classification. 

 

Figure 3.28. Snapshot of web-based visualization of classified point clouds in DeepHyd. 
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3.4. Software Implementation 

The DeepHyd system involves the use of a suite of software packages and libraries. Table 3.33 
documents the list of main software or libraries used in this project for the development of the 
DeepHyd system.  

Table 3.33. List of key software or libraries used for the implementation of DeepHyd. 

Utilization Software/Library URL 
Point cloud stitching Faro Scene https://www.faro.com/en/Products/Softwar

e/SCENE-Software 
Point cloud annotation CloudCompare https://www.cloudcompare.org/ 
Deep learning 
framework 

PyTorch https://pytorch.org/ 

Deep learning method ConvPoint https://github.com/aboulch/ConvPoint 
Programming language Python https://www.python.org/ 
Workflow step 
execution 

Jupyter Notebooks https://jupyter.org/ 

Database for job queue Redis https://redis.io/ 
Point cloud web viewer Potree https://github.com/potree/potree 
Containerization Docker https://www.docker.com/ 
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4. Findings and Conclusions 

Deep learning is a state-of-the-art artificial intelligence technique. The 3D deep learning approach 
that we used in DeepHyd provides substantial support for the automated classification of point 
cloud data collected from LiDAR. The use of the 3D deep learning for point cloud classification 
is inherently associated with a suite of steps, including field data collection, data processing, 
model training and validation, model inference for point cloud classification. The DeepHyd 
framework and system that we developed here can efficaciously handle these steps. Specifically, 
we have the following findings from this project: 

1) LiDAR techniques provide a powerful approach for the collection of point cloud data in 
large volumes and high resolutions to document hydraulic structures and their surrounding 
environments. In particular, terrestrial LiDAR is well suited to the collection of point 
cloud data under bridges or inside culverts.  

2) The use of sonar techniques supports the collection of underwater topography data 
particularly for those regions with deep water or turbid water. The relatively small streams 
examined in this study required the Lowrance sonar system to be mounted on a canoe and 
ground truthing had to be performed manually with a total and RTK station which was 
time- and labor-intensive. The resolution of point cloud data from sonar techniques 
employed in this study is not comparable with terrestrial LiDAR techniques, which 
suggests that deep learning-driven point cloud classification trained on terrestrial LiDAR 
data may not be suitable for the classification of sonar data directly.  An autonomous 
water surface drone equipped with sonar and GPS, likely would have generated a denser, 
more suitable dataset for deep learning-driven point cloud classification.  However, 
suitable training datasets would need to be developed.  

3) The fusion of point cloud data from different sources such as terrestrial LiDAR, sonar, 
GPS, and total station can be achieved once these data are georeferenced based on ground 
control points. The integrated point clouds from LiDAR and sonar scans allow us to 
construct 3D models of hydraulic structures and their surrounding environments both 
above- and under-water.  

4) The UAS used in this project has a battery life of less than 25 minutes, so the UAS 
missions were planned considering the battery life. In addition, FAA regulations and local 
weather conditions are required to be known before carrying out the flight missions. 
Lower flight altitude (60m) with a ground speed of less than 5 m/s was set to decrease 
motion blur and generate high-resolution DSM.  

5) The training of deep learning algorithms in our project uses 41 point cloud datasets (11 
collected from this project and others from previous projects). However, these point cloud 
data may not be enough. This is because 1) large amounts of training data are often 
required by deep learning algorithms, and 2) there are different types of hydraulic 
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structures. To (further) improve the classification performance would need more training 
data, while the annotation of point cloud data for training is labor intensive and expensive. 

6) Transfer learning provides substantial support for the use of deep learning algorithms for 
3D point cloud classification. Deep learning algorithms require significant amounts of 
training data to achieve high model performance. This poses a challenge for point cloud 
classification using 3D deep learning as there are not many annotated point cloud data of 
hydraulic structures. We used transfer learning to address this challenge by using deep 
neural networks pretrained on benchmark point cloud data similar to the study of 
hydraulic structures.  

7) Our trained deep neural networks can serve as the pre-trained model for the classification 
of hydraulic structures when more point cloud data are collected and annotated. Our deep 
learning models can be reused when more training data are available instead of being 
trained from scratch every time. Further, these trained deep neural networks can be shared 
and reused for the point cloud classification of hydraulic structures not only in NC but also 
in other regions.  

8) The tuning of deep learning algorithms is fundamental in the use of these algorithms for 
point cloud classification. The tuning process (including training and validation) is 
inherently associated with the analysis and optimization of hyperparameters of deep neural 
networks. Computational experiments need to be well crafted to identify combinations of 
optimal hyperparameters to ensure high classification performance of deep learning 
algorithms in our DeepHyd system. In this project, we focus on tuning two types of 
hyperparameters: one type is related to the deep learning per se (e.g., learning rate and 
number of iterations), the other type defines how point cloud data are used by deep 
learning algorithms (e.g., block size and number of points per block). These two types of 
hyperparameters would need to be analyzed and tuned if we are to achieve high model 
performance using deep learning algorithms for point cloud classification.  

9) In general, the 3D deep learning algorithms used in our DeepHyd system achieves 
relatively high accuracies for the classification of point cloud data of hydraulic structures. 
The overall classification accuracy for Model 1 approaches 98.55%. The classification 
accuracy in terms of IoU for all three classes (bridge, vegetation, and ground) are high (the 
lowest is 89.40% for vegetation). For Model 2, while the wall component achieves 
80.08% of accuracy in terms of IoU, all other three components (pier, beam, and railing) 
are more than 93%. The classification accuracies for both Model 1 and 2 tend to be high 
as experimental results indicated. However, we only used 6 annotated point clouds for 
validation.  

10) Distribution of point cloud data has an influence on the training and validation 
performance of our point cloud classification using deep learning algorithms. In Model 1, 
for example, vegetation only comprised 16.93% in our training point cloud data, compared 
to 52.71% for bridge and 30.36% for ground. The classification accuracy of Model 1 in 
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terms of IoU is 89.40% for vegetation, as compared to 98.63% for bridge and 96.36% for 
ground. As classification results from Model 2 (the classification of bridge components) 
indicate, bridge components with low representation in the training datasets (e.g., retaining 
wall 6.54% and railing 4.54%) tend to have low classification performance. Deep learning 
algorithms typically require a large number of training data to achieve their superior 
modeling performance. While a suite of approaches (e.g., transfer learning) have been 
developed to cope with the data availability issue, our Model 2 for the classification of 
bridge components is affected by unbalanced data distributions within point cloud data. 
This renders the information of specific bridge components insufficient for our deep 
learning algorithm to learn a reasonable representation of all bridge components.  

11) The use of deep learning for 3D point cloud classification is extremely computationally 
intensive. In this project, we introduced GPUs to accelerate the training, validation, and 
inference of point cloud data using deep learning algorithms. We trained our deep learning 
algorithms on a high-performance computing cluster with GPUs available. This saved 
significant amounts of training time for deep learning algorithms. Further, the use of deep 
learning algorithms for classification does not require a computing cluster. The trained 
deep learning algorithm can be deployed on workstations or servers with GPU devices 
available.  
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5. Recommendations 

Based on the findings from this project as reported in Section 4, we have the following 
recommendations for future directions regarding AI-driven point cloud classification of hydraulic 
structures: 

1) To cope with the low resolution of point cloud data collected from sonar techniques, 
bathymetric LiDAR techniques (both air-and UAV-borne platforms are available) can be 
considered in the future. Bathymetric LiDAR is based on the use of green laser light that 
can penetrate through water. For the survey of small-scale hydraulic structures, UAV-
borne bathymetric LiDAR is an alternative solution for constructing topography and 
hydraulic structures underwater. The point cloud data collected from bathymetric LiDAR 
will be in high resolution and are suited to the use of the DeepHyd system. However, 
given the current limitations of bathymetric LiDAR to collect information from many 
freshwater and marine environments with variable levels of turbidity, the use of sonar on 
unmanned and crewed boat platforms equipped with high resolution is recommended. 

2) It is recommended that more point cloud data of hydraulic structure be collected and 
annotated to further improve the classification performance of the DeepHyd system driven 
by deep learning. A wider variety of hydraulic structures should be surveyed. Once more 
annotated point cloud data are incorporated into the geodatabase of hydraulic structures, 
deep learning algorithms can be further trained and validated for higher classification 
performance.  

3) It is recommended that camera, gimble and compass be calibrated before carrying out the 
UAS missions to ensure the generation of high-resolution DSM and DEM. Moreover, a 
visual observer along with a remote pilot is recommended for conducting flight operations 
to ensure the safety of people, infrastructure and wildlife if a UAS approach is to be used. 

4) It is recommended to routinely collect point cloud data for the sites in this project over 
time. These point cloud data over time should be analyzed and compared to document 
potential changes in hydraulic structures and identify critical parts of hydraulic structures 
in need of maintenance or repair.  

5) It is recommended that 3D models of hydraulic structures (e.g., BrIM of bridges) can be 
used to address the challenge of point cloud annotation. The existing 3D models of 
hydraulic structures will be particularly helpful for generating annotated point clouds for 
specific bridge components. This will save considerable time and labor for point cloud 
data collection using a field survey approach.  

6) It is recommended that the balance in the proportion of alternative structure classes in 
point cloud data needs more attention when more point cloud data are to be collected. A 
systematic plan and analysis would be needed to cover alternative types of hydraulic 
structures and balance the information of different bridge component categories.  
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6. Implementation and Technology Transfer Plan - Developed in conjunction with the StIC 

We plan to disseminate the research outcome of this project via 1) delivery of research products to 
NCDOT, including transfer (including upgrade) of the software, data, and models, 2) publication 
of research findings, 3) presentation at national and regional conferences, and 4) training 
workshops. During our project period (2018-2021), we have delivered 26 presentations at 
national/regional conferences such as NCDOT Summit and Annual Meeting of the American 
Association of Geographers. We will have one to be presented in Spring 2022. By the end of 
2021, we have one peer-reviewed paper published, three manuscripts are in preparation, and one 
Ph.D. dissertation completed using the work from this project. There are two additional Ph.D. 
students who will use aspects of this project for their dissertation projects. Please refer to 
Appendix 2 for detail in these academic presentations and publications.  

Technology Transfer: Our DeepHyd system can effectively conduct the classification of point 
cloud data of hydraulic structures. While the model training of the DeepHyd system is time 
consuming, the use of the DeepHyd for the point cloud classification of hydraulic structures is 
relatively straightforward. We developed a web-based dashboard to support the AI-driven point 
cloud classification using DeepHyd. But this dashboard needs further improvement and tuning to 
be best deployed and used by NCDOT. We will thus further improve the web-based dashboard 
for the automated LiDAR point cloud classification driven by deep learning techniques. The 
dashboard provides a web-based interface for the collective use of DeepHyd system, a deep 
learning-driven LiDAR point cloud classification software platform. This web-based dashboard 
will 1) allow users (e.g., NCDOT professionals) to conduct point cloud classification on their own 
data in a collective manner, 2) post-process the classified point clouds to the formats required by, 
e.g., specific hydraulic models, and 3) integrate and update more point cloud data to the training 
database of DeepHyd to further improve the classification performance of LiDAR point cloud of 
hydraulic structures. We will use cutting-edge containers as service technologies for the rapid 
deployment of the web-based dashboard and the underlying deep learning-based point cloud 
classification algorithms. We have submitted this technology transfer application to NCDOT.  
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Appendix 

Appendix A. 

Table A1. Weather conditions for UAS operation on Site #5 (see Table 3.1 for site information) 

Date Temperature Dew Point Visibility  Wind 
Speed 

Wind 
Gust 

Wind 
Direction 

Weather 

Feb. 01st, 
2020 

52oF 38oF 10 miles 6 mph 0 mph 220o Mostly 
Cloudy 

 

Table A2. Planning parameters for the flight plan for Site #5. 

Planning Parameters Flight Plan 
Route Distance 1,404 m 
Side Overlap ratio 80 % 
Front Overlap ratio 90 % 
Course angle 95° 
Mission Altitude 61 m 
Speed 3 m/s 
Flight Time 10 min 28 s 
Photos Count 241 
Area Covered 0.01km2 

 

Table A3. Weather details of UAS operation on Site #16 (see Table 3.1 for site information). 

Date Temperature Dew 
Point 

Visibility Wind 
Speed 

Wind 
Gust 

Wind 
Direction 

Weather 

January 
26th, 2020 

54oF 28oF 10 miles 9 mph 0 mph 240o Sunny 

 

Table A4. Planning parameters for the flight plan on Site #16. 

Planning 
Parameters 

Flight Plan-I Flight Plan-II 

Route Distance 238 m 326 m 
Side Overlap ratio 90 % 90 % 
Front Overlap ratio 90 % 90 % 
Course angle 159o 251o 

Mission Altitude 60 m 60 m 
Speed 2.7 m/s 2.7 m/s 
Flight Time 2 min 28 s 3 min 10 s 
Photos Count 45 64 
Area Covered 1200.60 m2 1778.42 m2 
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Appendix B.  

Table B.1. Computing time for using DeepHyd for point cloud classification on sample datasets 
(bounding box size: the size or area of the bounding box of a point cloud on the XY dimension, 
calculated as (xmax-xmin)*(ymax-ymin)).  

Point Cloud 
File Name 

Data 
volume 

# points Bounding box 
size (x-y plane) 

GPU time 
(seconds)  

CPU time 
(seconds)  

Scan_042 1.2GB 36,747,384 284,622 406 498 
Scan_041 930MB 29,317,676 60,856 95 122 
Scan_045 740 MB 22,636,227 125,460 143 187 
Scan_044 569MB 17,259,928 261,448 123 201 
Scan_015 198MB 6,214,410 19,818 13 24 
Small_sample1 2.1 MB 100,000 208,089 17 26 
Small_sample2 1.1MB 52,019 756 3 3 

Hardware configuration:  

CPU: 10-core Intel Xeon CPU E5-2687W v3 with clock rate of 3.10 GHz; Memory: 251 GB 
GPU: NVIDIA Tesla K40c with 2880 cores, 12GB memory, and base clock speed of 745 MHz 
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Appendix C. 

Academic activities: 

Publications: 

1. Chavan, V.S., 2021, Finite Element Modeling of A Pier-on-bank Bridge Scour, Ph.D 
Dissertation, Department of Civil and Environmental Engineering, University of North 
Carolina at Charlotte. 

2. Chavan, V.S., Chen, S.E., Shanmugam, N.S., Tang, W., Diemer, J., Allan, C., Braxtan, N., 
Shukla, T., Chen, T. and Slocum, Z., 2022. An Analysis of Local and Combined (Global) 
Scours on Piers-on-Bank Bridges. CivilEng, 3(1), pp.1-20. 

 
Presentations: 

1. Chen, T., Tang, W., Chen, S., Allan, C., Diemer, J., Shukla, T., Slocum, Z., Shanmugam, 
N., Chavan, V., and Lauffer, M.S. 2022. Empirical knowledge related to deep learning-
based 3D point cloud classification in 3D GIS. American Association of Geographers 
Annual Meeting 2022, February 25 to March 1, 2022. 

2. Chavan, V., Chen, S., Tang, W., Allen, C., Diemer, J., Shanmugam, N., Chen, T., Shukla, 
T., Slocum, Z., Lauffer, M. 2021. Effect of Scour on Stability of Drilled Pier (Pile) 
Foundation Using Three-Dimensional Finite Element Analysis Method. NCDOT Research 
& Innovation Summit 2.0. Virtual. October 5-6, 2021. 

3. Chen, T., Tang, W., Chen, S., Allan, C., Diemer, J., Shukla, T., Shanmugam, N., Chavan, 
V., Lauffer, M.S. 2021. Automated semantic segmentation of point cloud data driven by 
deep learning and 3D GIS. NCDOT Research & Innovation Summit 2.0. Virtual. October 
5-6, 2021. 

4. Slocum, Z., Tang, W., Allan, C., Diemer, J., Chen, T., Chavan, V., Shanmugam, N., 
Shukla, T., Lauffer, M.S. 2021. A Web-based approach for the application of deep 
learning to the automated point cloud classification of hydraulic structures. NCDOT 
Research & Innovation Summit 2.0. Virtual. October 5-6, 2021. 

5. Shukla, T., Tang, W., Allan, C., Chen, S., Diemer, J., Chen, T., Slocum, Z., Shanmugam, 
N., Chavan, V., and Lauffer, M.S., 2021. Scour Monitoring of Hydraulic Structures using 
Unmanned Aerial System and Sonar. NCDOT Summit 2021, October 6th, 2021 

6. Tang, W., Chen, S., Diemer, J., Allan, C., and Lauffer, M., 2021, Deep learning-based 
detection of 3D hydraulic structures from point cloud data: Acceleration via a 
cyberinfrastructure-enabled high-performance computing approach, INES (Infrastructure 
and Environmental Systems) Seminar: Advanced Infrastructure Systems, the University of 
North Carolina at Charlotte, September 7, 2021. 

7. Shukla, T., Tang, W., Allan, C., Diemer, J., Chen, S., Chen, T., Slocum, Z., and Lauffer, 
M.S., 2021. The fusion of Unmanned Aerial System and sonar data for the assessment of 
scours of hydraulic structures, STRATUS, May 17th-19th, 2021. 

8. Chen, T., Tang, W., Chen, S., Allan, C., Diemer, J., Shukla, T., Shanmugam, N., Chavan, 
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