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Ch 1 Introduction 

Small Unmanned Aerial Vehicles (UAVs) or Unmanned aircraft systems (UASs) are often used in 

mapping, modeling, aerial surveying, jobsite surveillance and real-time inspections. It has been proven that 

small UAS can be extremely cost-effective in surveying large areas and creating 3D measurements. Rapid 

advances in imaging, sensing, avionics, battery and navigation technologies help make small UASs more 

affordable, capable, reliable and user-friendly.  

There are two types of UAS-based sensing technologies commonly used in construction and other 

industries, 1) photogrammetric (camera-based) Structure From Motion (SFM) and 2) Light Detection and 

Ranging (LIDAR). While both can be used to create the 3D map of a jobsite, they prefer different flight control 

and data processing strategies. With an airborne HD camera, multiple overlapping images will be captured from 

a loitering UAS, which are then used to reconstruct the 3D model of a target area in the SFM software. The 

performance of SFM has been well studied in literature.  

By contrast, UAS-based LIDAR has received less attention. LIDAR does not reply on images. Instead, 

it can directly measure a dense 3D point cloud from an overhead flight. A UAS LIDAR is typically more 

expensive than a camera, but the flight plan and data processing are more straightforward. LIDAR point cloud 

will be compared against that of SFM via quantitative analysis and case studies in this work. Based on that, the 

potential applications in construction management and disaster management of both technologies will be 

discussed in this report. A workshop is offered to NCDOT personnel to demonstrate the findings of this study. 

 

Ch 2 Literature review 

UAS-based photogrammetry and UAS-based LIDAR system are covered in this review. This chapter 

includes a summary of the original literature review, which has been attached to this document. The ECU team 

has also included part of the literature review in [Guan22a] and [Guan22b], which have also been attached. 

2.1 Introduction to UAS-based sensing systems 

UAS-based photogrammetry is based on imagery collected with small onboard cameras. It typically 

requires ground control points (GCPs) with surveyed locations, and can benefit from recorded location and 

orientation of the camera. A 3D point cloud of the target area can be estimated via indirect or direct geo-referencing.  

Indirect georeferencing refers to the methods that world-frame coordinates to 3D measurements collected 

in a relative reference frame. One of the most popularly used UAS-based georeferencing solution is SFM. It has 

been proven to be superior to conventional handheld surveying methods in certain environments, such as in 

projects with low vegetation, GPS availability and substantial sunlight [DJI19]. Multiple 2D images over the same 

area are combined and the point features are matched across them. These images are expected to have great overlap 

areas (80%). The 3D locations of these points are then estimated in the camera frame, which are then used to form 

a 3D model or point cloud. However, the camera pose (position and orientation) isn’t always precisely known in a 



world frame (GPS frame, for example) when a small commercial UAS is used. Therefore, the 3D model created 

with structure from motion with a small UAS is typically dimensionless, and cannot be directly georeferenced. It 

requires additional GCPs to relate back to the world frame. The absolute accuracy of this model depends on both 

image processing and the GCPs. It is also susceptive to camera calibration and settings, surface texture, flight pattern 

and vibration, light condition, etc.  

Users of SFM software are typically advised to place GCPs throughout the target site, on the edge of the 

worksite and in the center [Pix4D17].  The locations of GCPs can be surveyed using GNSS-based Real Time 

Kinematic (RTK), Post-Processed Kinematic (PPK) or Precise Point Positioning (PPP) solutions [GCPS19], Total 

Station Survey or Terrestrial Laser Scanner (TLS) [Shaw19]. PPP is post processed GNSS positioning that do not 

need a local reference station like RTK and PPK do, and could be less accurate. The best performance of GCP is 

likely from a PPK survey, which typically has positioning error around 1 centimeter, 1 sigma. [Sanz-Ablanedo18] 

provided a systematic overview of accuracy in point cloud involving GCPs. With a sufficient number of GCPs 

(more than 2 GCPs per 100 images as specified in this work), the error of point cloud could approach double of 

the GCP error.  If fewer GCPs were used, this paper reported that the point cloud error would be as high as 4-8 

times the GCP error, which was still in the centimeter range. Vertical errors were approximately 2.5 times the error 

of horizontal components. 

As an emerging technology, small UAS can become capable of recording the camera location and 

orientation for each of the images taken during a flight. In that case, camera-based direct georeferencing is possible. 

It can be achieved by raytracing from a single image to a known surface (such as DEM or other a priori terrain 

models), or triangulation from multiple overlapped images, or a combination of both. Since no ground control is 

necessary, the accuracy of 3D modeling is primarily determined the accuracy of camera timing, orientation and 

location. However, a small UAS that is not capable of carrying high-quality navigation sensor cannot be used for 

direct geo-referencing. Therefore, direct geo-referencing has not been commonly used in small UAS yet.  

If only inaccurate position and orientation are available from low-quality navigation sensors, they can also 

be optimized in the SFM software. For UAS that have precise location, through RTK, PPK or PPP, without 

orientation, SFM can still be used to estimate the 3D point cloud. It can be done with few or no GCPs.  

Modern SFM software would take known camera calibration, position or orientation as inputs if they are 

available. Commercial software is available from Agisoft [Agisoft19], Trimble [Trimble19], Pix4D [Pix4D19], and 

open-source software such as [Furukawa19] has also been used in scientific communities.  

Alternatively, camera systems can be combined with, or replaced by a direct ranging sensor, such as a 

UAS-LIDAR system, on some larger-sized UASs. LIDARs are less sensitive to natural light condition and other 

constraints in the environment. They may provide measurements in operational conditions which prohibits 

camera operation (such as low light). Some researchers also suggested that LIDAR could be more reliable than 

photogrammetry over weakly textured surfaces (such as sand). An airborne LIDAR directly measures point 

cloud in the sensor frame. The point cloud will be transformed into the world frame by knowing precise location 



and orientation of the LIDAR. Very much like camera direct georeferencing, airborne LIDAR point cloud 

accuracy is also sensitive to timing/synchronization, LIDAR orientation and location. Furthermore, airborne 

LIDAR sensors available today are still more expensive, more power-hungry and heavier than cameras in general. 

An airborne or UAS-LIDAR system typically includes three types of sensors, a ranging sensor (2D 

scanning LIDAR, 3D scanning LIDAR or 3D imager); a positioning sensor (such as GPS or GNSS receiver) 

and an inertial sensor that measures acceleration, rotation, velocity and orientation. These three sensors are 

integrated in the data collection system and in the 3D modeling procedure. The GNSS and inertial sensors are 

typically tightly coupled together to provide precise and smooth pose of the LIDAR. It is a common practice 

that the positioning sensor is also responsible for accurate 3D positioning and synchronization of an onboard 

antenna (optional). 

It is well known that a ground-based LIDAR system, such as a TLS, can provide a dense and accurate 

point cloud for construction measurements. The same however does not apply to UAS-based LIDAR, because the 

position and orientation of UAS constantly change during a flight. As a result, the point clouds captured by LIDAR 

cannot be geo-referenced as that of a stationary TLS. Instead, raw point cloud measurements from the airborne 

LIDAR must be integrated and synchronized with the UAS navigation measurements during pre-processing, which 

is typically a challenge and roadblock. The accuracy of geo-registration in airborne LIDAR point cloud has been 

studied for large, manned aircraft systems. It has been recognized that the errors in the navigation system, LIDAR 

installation, laser beam and ranging can all contribute to the geo-registration error [Schaer07]. The general error 

model can also apply to UAS-based system [Pilarska16]. A UAS typically flies at a lower altitude, and has a lower-

grade navigation system than manned aircraft. The LIDAR equipped on a UAS can have lower power and shorter 

range as well. Therefore, the error in a UAS-LIDAR point cloud may manifest itself in a way that is slightly different 

from ALS. In practice, the observed error magnitude and pattern is related to the target application as well. For 

example, errors have been assessed for forestry [Wallace11], meadow steppe [Zhao22], mountainous area 

[Muller21], flood plain [Chen21] and different vegetation levels [Salach18].  

In these recent publications, a consensus was formed that: 

a) LIDAR provides a more accurate point cloud when vegetation is present. 

b) LIDAR could be more reliable than photogrammetry over weakly textured surfaces.  

c) LIDAR provides coverage on where SFM or GCPs are not available. 

d) LIDAR does NOT seem to provide better accuracy than SFM. 

e) LIDAR data can be collected and processed faster than photogrammetry.  

Efficiency is a feature of UAS-LIDAR that is often over-looked by the construction industry. SFM needs 

overlapped imagery from multiple perspective. Therefore, it will take longer to cover the same area with UAS 

photogrammetry than LIDAR. Data processing is also more straightforward with direct geo-referencing. With a 

worksite of limited size, the difference in data collection and processing time may be insignificant. However, it 



would make a more significant difference for large areas, which is typical for disaster management applications. 

Furthermore, for these applications, time and efficiency may be of a greater concern than monitoring construction 

worksites. 

 

 

2.2 Applications on Construction Management and Disaster Management  

UAS-based imagery has been widely used in construction management. [de Melo17] discussed applications 

for safety inspection on construction sites. UAS-imagery could be used to identify the non-compliances with the 

safety requirements established. Structural damage assessment could be done with 2D or 3D imagery 

[Eschmann14] [Fernandaz15]. Construction progress monitoring could also benefit from using small UAS 

[Moeini17] [Hamledari18].    

3D mapping with UAS photogrammetry is the main application to be covered in this review. A review of 

relevant technologies can be found in [Remondino11]. In general, UAS photogrammetry can reduce the cost and 

the risks in mapping and surveying tasks in harsh environments. Centimeter-level accuracy is achievable, and 

rotatory-wing UAS are better choices for small sites. [Siebert14] demonstrated the use of UAS imagery and SFM 

on modeling the surface and volume of earth work in a field-realistic environment. [Álvares18] compared the 

efficacy of 3D mapping in terms of the easiness of model development, data quality, usefulness and limitations on 

two typical building cases. [Khaloo18] demonstrated the use of UAS for augmenting bridge inspections, using the 

Placer River Trail Bridge in Alaska as an example.  

LIDAR-based solutions are raising some interests within the construction industry as well [Knight19]. 

UAS-based LIDAR is a relatively new technology for construction management. As of the time of this report, users 

in this industry are more familiar with terrestrial laser scanners (TLS), mobile laser scanners (MLS) mounted on 

ground vehicles and airborne laser scanners (ALS) mounted on large manned aircraft.  

Similar to the applications in construction industry, SFM and UAS photogrammetry have been used 

successfully for data collection in environmental applications and disaster management, especially in coastal settings. 

The use of UAS has been found to be a convenient, low-cost, and less environmentally invasive technique to 

capture coastal data. It was also found that the number and distribution of GCPs play an important role in reducing 

the errors in the point cloud. Most substantial errors have been associated with areas of vegetation. 

Among the different types of natural disasters, floods are the most devastating, widespread, and frequent 

[Hashemi-Beni18]. This study investigated the quality of UAS-based DEM and evaluated the extent of a flood 

event in Princeville, North Carolina during Hurricane Matthew. Comparison against the US Geologic Survey 

(USGS) stream gauge station and LIDAR data showed that the SFM error is less than 30 centimeters. [Ruessink18] 

collected geomorphic change data of a foredune system between May 2013 and April 2016 at Dutch National Park 

Zuid-Kennemerland, Netherlands. The over-all accuracy of the SFM point cloud was between .04m and .05m. 

(Root mean square was between .015m-.025m in the xy direction and .03m for the z direction.) [Jaud19] showed 



long-term monitoring of Porsmilin Beach using SFM.  The accuracy was reported to be 3 centimeters in the vertical 

and horizontal directions, which was consistent with other work reported in literature. Similar accuracy were 

achieved in [Papakonstantinou16], which used UAS photogrammetry and SFM to map the Greece coastlines. It 

has been concluded that centimeter-level accuracy is achievable in UAS photogrammetry-based point cloud that is 

used to model environmental changes in coastal areas with a reputable SFM software. 

UAS-LIDAR has found applications in disaster management as well. [Assenbaum18] discussed the use of 

UAS LIDAR on the French Mediterranean coast. It was a complex natural environment where geology, climate 

and the sea interact and continuously reshape the landscape. Coastal erosion and the availability of drinking water 

were two major coastal management issues that necessitate precise monitoring of the morphological changes to the 

shoreline. A comparison between the land survey and the LIDAR point cloud revealed an average bias of 4.0 

centimeters and a standard deviation of 9.5 centimeters in the vertical direction. The expected performance was 2.5 

to 5.0 centimeters on hard, well-defined surfaces like roads or concrete.  

[Shaw19] directly compared UAS LIDAR with SFM in analyzing coastal changes pre- and post-storm 

events at Wamboro Sound, Safety Bay Australia. Either method was able to produce accurate point cloud. SFM 

accuracy as at centimeter level. However, adding LIDAR to SFM helped cover the gap in SFM point cloud where 

GCPs could not be surveyed with GNSS-RTK, Total Station or TLS. [Populus19] argued that the main reason for 

using LIDAR in the coastal zone is its capacity of rapidly covering large areas. UAS typically cover about 20 km² 

and over 50 km² per hour or more for hydrographic and topographic modes, respectively. It would be crucial for 

applications that only have a short time window.  

 

2.3  Safety Considerations 

Risks of small UAS could result from a number of technical reasons, including (but not limited to) power, 

communications, navigation and control. UAS operations may be autonomous, semi-autonomous or remote 

controlled [Wang16].  In a fully autonomous or semi-autonomous operation, the low-level control is governed by 

the on-board flight controller and navigator, which relies on GNSS (or an equivalent sensor) as afore mentioned.  

If the UAS follows a pre-loaded flight plan without the need of human intervention, it is considered fully 

autonomous.  In a semi-autonomous operation, sometimes also referred to as a GNSS-assisted operation, the UAS 

follows the guidance of a remote controller, with commands transmitted via a communication channel.  In a 

remote-controlled operation, the user directly performs low-level control functions, such as attitude or velocity 

control, without using on-board GNSS.  

When a UAS is close to a building or other structure, it may lose communications with the operator. 

Quality of GNSS positioning in the vicinity of a construction site could also suffer from blockage and multipath.  

In an autonomous operation where GNSS has been corrupted, the on-board flight controller could command 

erroneous operations. A properly designed UAS will attempt to stop the operation, by landing or returning to the 

home location, upon the loss of communications or GNSS. Without the ability to “sense and avoid”, the UAS 



could potentially cause damages during this process. An obvious way to prevent communication loss is for users 

to remain in line-of-sight when operating UAS, as often required in various regulations including FAA part 107 

[FAA16]. Autonomous operations should be enabled only when GNSS (or equivalence) is available. 

Small UAS with redundant navigation systems, payload capabilities, redundant rotors and battery capability 

in case of a rotary wing UAS provide additional safety protection. Furthermore, small UAS with GNSS-denied and 

indoor navigation capability, sense and avoid capability, are also available now. 

A list of State and Federal UAS regulations can be found in the attached literature review. 

  



Ch 3 UAS-based LIDAR and Camera Systems 

 

This chapter presents the design of low-cost UAS-based LIDAR and SFM systems that have been used 

in case studies. After this project had started in 2019, similar commercial systems had become available on the 

market (such as systems made by DJI). As of the time of this report, the cost of these systems remains 

prohibitively high. Unlike the commercial systems, the LIDAR and Camera systems designed by the ECU team 

keep interfaces open between different components. Any intermediate data products, such as navigation data, 

imagery and raw point cloud, are available for post-processing and analysis. High-quality navigation, laser and 

camera sensors have been used in these systems. The total cost of building and operating these systems is 

substantially lower than the commercial options. A generic error model will be discussed for the UAS-LIDAR 

point cloud, which will be validated using an ECU LIDAR system. On the other hand, the SFM point cloud 

errors are highly dependent on the surface texture and image quality. Instead of an analytical error model, the 

performance reported in literature for different SFM applications will be used in the comparison against LIDAR 

in this report. 

 

3.1 A Downward-Looking UAS-based LIDAR System 

The first UAS-LIDAR system uses a commercial rotary-wing small UAS, DJI Matrice 600 Pro, 

equipped an auxiliary sensing system. The sensing system mainly consists of a video camera, an industrial image 

camera, a LIDAR sensor, a GNSS receiver, an Inertial Measurement Unit (IMU), and three embedded 

computers. The following components are included: 

• A GoPro Hero 5 video camera 

• An IDS uEye industrial RGB image camera 

• A SICK LD-MRS LIDAR sensor 

• A NovAtel SPAN GNSS receiver with an integrated IMU 

• Three Raspberry Pi III embedded computers 

• A rigid lightweight cage to mount all the components above 

 

In addition, the GNSS receiver is paired with an onsite GNSS base station (NovAtel OEM 6 receiver) 

for post-processed navigation measurements. A close-up look of the major components of the sensing system 

is shown in Figure 1.  

Using this system as an example, a generic error prediction model for UAS-LIDAR is developed. With 

this model, systematic and random error components have been estimated respectively. The model shows that 

the random error is the dominant component for a low-flying UAS-based LIDAR, and the error level is 



tolerable for construction applications such as excavation and bulk pile measurements. The random errors in 

the vertical direction could be further reduced in post processing.  

 

3.1.1 Hardware components 

The cage attached to the bottom of the airframe is made of a rigid resin board supported by carbon 

fiber and 3D printed components. The system components are mounted on both sides of the board to conserve 

space and at the same time improve the rigidity of lever arms between the sensors. The total weight of the 

sensing system is approximately 3.6 kg and the maximum flight time of the UAS with this configuration is 

approximately 17 minutes. 

 

Figure 1 Major Components of the UAS Sensing System 

Two lightweight cameras are mounted onboard, a GoPro video camera and an IDS industrial RGB 

image camera. The video camera captures continuous video frames of the flight that can be used for 2D imaging 

and 3D mapping via Structure from Motion (SfM), which operates independently from the other sensors. By 

contrast, the image camera is tightly integrated with navigation and LIDAR sensors. The image camera collects 

images with a global shutter triggered by the navigation system, which is also synchronized to the LIDAR. 

Consequently, the image camera is effectively synchronized to the LIDAR and provides 2D imagery of the 

point cloud observed by it. The imagery was only used to identify targets from the LIDAR point cloud and was 

therefore not incorporated into the point cloud in the results reported in this work.  

The LIDAR is a SICK LD-MRS unit capable of scanning 4 layers simultaneously with a field of view 

of approximately 110° facing downwards at the ground. The aperture size is no greater than ± 0.4° in one 

direction and ± 0.04° in the other, corresponding to 0.23° and 0.023° in standard deviations, respectively. The 

LIDAR scans at 0.125° of angular resolution with a frequency of 12.5 Hz, and it takes approximately 10 ms to 



complete one sweep of the field of view, collecting around 3,000 ground points. It is assumed that all points 

from a single scan will be collected simultaneously, which is timestamped by the navigation system through a 

synchronization mechanism, although the precise scanning time of each point could be retrieved if needed. 

Therefore, the potential discrepancy in timing is up to ± 5 ms for each point and is considered part of the error 

sources. SICK provides an estimation of nominal ranging accuracy for the LD-MRS unit, which includes a 

noise level of a single point at 𝜎𝑅  ≈ 0.1m (quantization step 0.04 m) and a systematic bias ≈ 0.3 m (estimated 

ahead of time and removed from the data). It is noted from field testing that the specified noise level is rather 

conservative compared with results from actual observations, which ranges between 0.04 m and 0.1 m. 

The NovAtel SPAN GNSS-inertial integrated receiver is used as the primary navigation system for 

data collection over the native flight control system of Matrice 600 Pro, due to the superior performance in 

limiting potential systematic error [Guan19]. The GNSS receiver is paired with a GNSS base station to record 

raw data for accurate post-processing without relying on a live Real-Time Kinematic (RTK) solution, while the 

integrated IMU enables accurate orientation estimation. Nevertheless, any uncertainty in position and 

orientation from the GNSS-IMU will propagate to raw data of all the attached sensors, which becomes part of 

the systematic error. Figure 1 shows four GNSS antennas mounted on top of the airframe, of which three are 

used by the UAS for the redundancy and safety of flight control, and the fourth is part of the GNSS-IMU 

system.  

3.1.2 System Synchronization 

The time synchronization function is the core mechanism of sensor integration in the UAS-LIDAR 

system, as shown in Figure 2. Naturally, GNSS is synchronous to GPS time, which also enables additional 

timing services via input and output triggers to the receiver. The GNSS receiver in the UAS-LIDAR system 

triggers the shutter of the image camera and receives a timing trigger from the LIDAR. Raw data with 

corresponding timing information recorded by the image camera, LIDAR, and GNSS-IMU are streamed into 

three onboard Raspberry Pi embedded computers, which also control and initialize all the sensors. Due to the 

time-sensitivity of data collection, each computer records the raw data from only one sensor and stores it into 

a separate SD card for post-processing, avoiding onboard processing to allow sufficient throughput capability. 

The configuration of the sensing system can be easily adjusted for other applications. As illustrated in 

Figure 2, the various sensors use a parallel configuration: the GNSS-IMU sensors establish accurate position, 

orientation, and timing, which is essential to the system, whereas other sensors can be either replaced or 

expanded as long as they can be synchronized via a triggering mechanism. 



 

Figure 2 Synchronization Schematics of the UAS-LIDAR System 

3.1.3 Navigation Measurements 

The NovAtel Inertial Explorer software was used to process the raw data recorded by the GNSS and 

IMU sensors. GNSS carrier phase-based differential solution needs to be computed with respect to a nearby 

reference GNSS station, which could be either an onsite setup or from a local reference station, such as a 

Continuously Operating Reference Station (CORS). In this study, an onsite GNSS base station was set up and 

the positioning accuracy was defined based on the uncertainty of absolute positioning, which refers to the 

position geo-registered in a global frame. The positioning error from post-processing typically does not exceed 

centimeter level. The orientation accuracy was computed separately and differently. While the roll and pitch 

angles from the IMU are typically accurate and stable, the accuracy of true heading (geographic north instead 

of magnetic north), however, depends on the flight trajectory of the UAS. Since the IMU used in this work 

cannot directly sense the true heading, it must be inferred from an accurate position measurement while the 

UAS is moving. Therefore, the UAS must perform specific maneuvers at the beginning of each data collection 

flight to gain an accurate heading.  

3.1.4 Pre-Processed Point Clouds  

The point clouds collected by the LIDAR are referenced in the LIDAR body frame (L frame), which 

is constructed with Forward, Right, Down (FRD) directions. Since the LIDAR is constantly moving and 

rotating in the air, the point clouds cannot be directly geo-referenced in a global frame (G frame). The 

conversion between the two frames relies on the accurate position, orientation, and true heading of the LIDAR, 

as well as the accuracy in relative timing between each LIDAR scan point and the GNSS receiver. 

When a LIDAR point in the L frame is synchronized to GNSS time, it can be geo-referenced into a G 

frame based on the reference GNSS station. For example, if the reference station is located with World 

Geodetic System (such as WGS-84) coordinates, the G frame will use local North, East, Down (NED) 

coordinates based on the WGS-84 coordinates. The potential positioning error in the reference station is 

ignored in this study. 

 The following algorithm of frame conversion was implemented in a custom code in MATLAB. 



1. Record the 3D position of a static ground point x in L frame, 𝑷𝑥
𝐿(𝑡), at time t. The position error 

𝜀𝑷𝑥
𝐿(𝑡) is caused by LIDAR ranging error and beam angular error (aperture size). 

2. Convert 𝑷𝑥
𝐿(𝑡) into the G frame: 

 

  𝑷𝑥
𝐺 = 𝐶𝐿

𝐺(𝑡′)𝑷𝑥
𝐿(𝑡) + 𝑷𝐿

𝐺 (𝑡′)     (1)                                              

 

where 𝑷𝑥
𝐺 is the static position of this point in the G frame (no longer a function of time), 𝐶𝐿

𝐺 reflects the 

rotation from L frame to G frame, and 𝑷𝐿
𝐺stands for the LIDAR position. 

𝑡′ is the time of measurement of this LIDAR point perceived by the system, which could be slightly 

different from the actual time of measurement t. This time difference exists because the position and rotation 

of the LIDAR are computed based on measurements from the GNSS and IMU sensors at 𝑡′ instead of 𝑡. The 

LIDAR timing error is thus specified as 𝜀𝑡 = 𝑡 ′ − 𝑡 and could be up to 5 ms in a single scan point in the 

presented UAS-LIDAR system, as noted before. 

 𝐶𝐿
𝐺 is not directly measurable and is computed via the real-time IMU orientation and relative 

orientation of LIDAR from the IMU, also known as boresighting [May07]: 

 

  𝐶𝐿
𝐺 (𝑡′) = 𝐶𝑉

𝐺(𝑡′)𝐶𝐿
𝑉                                                                (2) 

 

where 𝐶𝐿
𝑉 is the fixed rotation from L frame to the vehicle frame (V) and 𝐶𝑉

𝐺 (𝑡′) reflects the rotation from the 

vehicle frame (IMU in this system) to G frame. 

 𝑷𝐿
𝐺 is not directly measurable either. The GNSS antenna location on the UAS 𝑷𝑎𝑛𝑡

𝐺  is measured at 

time 𝑡′, and the lever arm between the antenna and the LIDAR is measured in the vehicle frame as 𝑷𝐿
𝑉 −

𝑷𝑎𝑛𝑡
𝑉 . Thus, 

 

  𝑷𝐿
𝐺 (𝑡′) = 𝐶𝑉

𝐺(𝑡′)[ 𝑷𝐿
𝑉 − 𝑷𝑎𝑛𝑡

𝑉 ] + 𝑷𝑎𝑛𝑡
𝐺 (𝑡′)                (3)         

                    

3. Finally, the geo-referenced location of point x is found using 

  𝑷𝑥
𝐺 = 𝐶𝑉

𝐺(𝑡′)𝐶𝐿
𝑉𝑷𝑥

𝐿(𝑡) + 𝐶𝑉
𝐺 (𝑡′)[ 𝑷𝐿

𝑉 − 𝑷𝑎𝑛𝑡
𝑉 ] + 𝑷𝑎𝑛𝑡

𝐺 (𝑡′)              (4)                 

 

3.1.5 Error Model  

Errors in  𝑡′, 𝐶𝑉
𝐺 (𝑡′), 𝐶𝐿

𝑉, 𝑷𝐿
𝑉 − 𝑷𝑎𝑛𝑡

𝑉 and 𝑷𝑎𝑛𝑡
𝐺 (𝑡′) can contribute to the overall system error. It is 

further assumed in this study that with a rigorous calibration procedure in place, errors such as the ones found 

in boresighting are at least one order of magnitude smaller than those from IMU orientation. For simplicity of 



analysis, boresighting errors were not modeled in this study. Similarly, it is assumed that the lever arm error is 

also negligible. Therefore, the contributions of UAS orientation, positioning, timing, and LIDAR are considered 

in the error prediction model.  

 First, smaller angular errors in UAS roll (𝜀𝜑), pitch (𝜀𝜃), and heading (𝜀𝜓) angles are considered. In 

addition, a rotating or vibrating airframe will experience additional angular errors due to uncertainties in time, 

such that  

 

𝚫𝑻 = [𝜀𝜑 𝜀𝜃 𝜀𝜓] + [
𝑑𝜑

𝑑𝑡
 
𝑑𝜃

𝑑𝑡
 
𝑑𝜓

𝑑𝑡
] 𝜀𝑡    (5) 

  𝜀𝐶𝑉
𝐺(𝑡′) = 𝚫×𝐶𝑉

𝐺 (𝑡)    (6) 

 

where 𝚫× is a skew-symmetric matrix. Ideally, 𝜀𝜓 is at a sub-degree level for the sensor used in the system, 

whereas 𝜀𝜑 and 𝜀𝜃 are substantially smaller. 

 Next, the UAS position error, including the impact from the timing uncertainties, is represented with 

𝜀𝑡
𝑑𝑷𝑎𝑛𝑡

𝐺 (𝑡)

𝑑𝑡
+ 𝜀𝑷𝑎𝑛𝑡

𝐺 (𝑡), where 
𝑑𝑷𝑎𝑛𝑡

𝐺(𝑡)

𝑑𝑡
 is the velocity of the antenna in the G frame. 

 Finally, 𝜀𝑷𝑥
𝐿 is considered in the L frame in forward, right, and down directions. Since the LIDAR is 

pointing to the ground, the LIDAR forward direction is the vehicle down direction. The position error without 

timing error is 

 

  𝜀𝑷𝑥
𝐿(𝑡) = [0 𝛿𝑟 𝛿𝑑]×𝑷𝑥

𝐿(𝑡) + 𝜀𝑅
𝑷𝑥

𝐿(𝑡)

|𝑷𝑥
𝐿(𝑡)|

     (7) 

 

where 𝜀𝑅
𝑷𝑥

𝐿(𝑡)

|𝑷𝑥
𝐿(𝑡)|

 represents the LIDAR ranging error projected onto the direction of point x. 𝛿𝑟 and 𝛿𝑑 

indicate right and downward angular errors with respect to LIDAR.  

 The error in x is thus modeled with 

 

𝜀𝑷𝑥
𝐺 = [𝜀𝐶𝑉

𝐺 (𝑡′)]𝐶𝐿
𝑉 𝑷𝑥

𝐿(𝑡) + [𝜀𝐶𝑉
𝐺 (𝑡′)][ 𝑷𝐿

𝑉 − 𝑷𝑎𝑛𝑡
𝑉 ] + 𝐶𝑉

𝐺 (𝑡)𝐶𝐿
𝑉 ∙ [𝜀𝑷𝑥

𝐿(𝑡)] + 𝜀𝑷𝑎𝑛𝑡
𝐺 (𝑡) +

𝜀𝑡
𝑑𝑷𝑎𝑛𝑡

𝐺 (𝑡)

𝑑𝑡
      (8) 

 

Equation (8) can be used to predict the 3D error magnitude in a global frame for individual scan points. 

Noticeably, the LIDAR errors (𝛿𝑟, 𝛿𝑑, and 𝜀𝑅) are not considered systematic errors. Instead, 𝜀𝑷𝑥
𝐿 from Equation 

(7) is modeled as a random process, which is uncorrelated either among multiple points within the same scan or 

among repeated scans of the same point from a moving LIDAR. The other components from Equation (8) may 



be correlated among the points within the same scan, but are likely uncorrelated among repeated scans. Therefore, 

the total errors in 𝜀𝑷𝑥
𝐺 are expected to include a major component of random errors and a minor component of 

systematic errors. Since the random error component is caused by the LIDAR, it is considered a relative error, 

whereas the systematic error component was largely related to errors in the G frame, which is an absolute error.  

In a set of points X that are approximately collocated in the G frame horizontally, the vertical dimension 

can be estimated based on all the points, 𝑷𝑿
𝐺. In this study, the points were computed with a mean or median 

value. Therefore, a dense raw point cloud could be preprocessed, decimated, and turned into a more accurate 

elevation model. The expected accuracy can be significantly improved with the number of points. For example, the 

down-sampled point 𝑷𝑿,𝒗
𝐺 could be an average of all the points, as shown in Equation (9).  

  𝑷𝑿,𝒗
𝐺 = 𝑚𝑒𝑎𝑛{𝑷𝑥,𝑣

𝐺 ,∀𝑥 ∈ 𝑿}     (9) 

 The standard deviation of vertical errors in 𝑷𝑿,𝒗
𝐺 is reduced by the square root of the number of 

points in X. With a sufficiently large number of points in X, the random and relative errors in 𝑷𝑿,𝒗
𝐺  will 

approach zero, and therefore the systematic and absolute errors will dominate.  

Alternatively, 𝑷𝑿,𝒗
𝐺can be calculated based on the median value of all the points in X. Median values are 

less likely to be affected by outliers in the set. An implicit assumption is made such that all the points in the set 

share similar heights in a small horizontal neighborhood (centimeter to decimeter level), which is a valid assumption 

for most smooth surfaces. The median value shown in Equation (10) is expected to be a robust estimation. To 

better find all the points, some optimization methods will be applied as future work (Tao et al., 2019). 

  𝑷𝑿,𝒗
𝐺 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑷𝑥,𝑣

𝐺 ,∀𝑥 ∈ 𝑿}    (10) 

While the error model can predict horizontal and vertical errors separately, it is independent of the target 

surface. The texture, smoothness, and slope of a surface can contribute to the errors in the point cloud. For instance, 

a horizontal error can be perceived as a vertical error in a sloped surface. Vegetation on the surface could also result 

in additional uncertainty, and as a result, the optimal choice of the down-sampling method, i.e., mean vs. median 

values, may be dependent on the target surface. In general, the UAS-LIDAR system can measure a smooth, flat 

surface that is not covered by any vegetation with lower errors. 

Furthermore, this error model is generic, and would be applicable to any UAS-LIDAR system that has 

LIDAR synchronized to an onboard navigation system. However, in order to implement Equation (8), it does 

require intermediate data such as the error models of navigation and synchronization, which may not be available 

from a commercial system.  

 

3.1.6 Example of Error Prediction Model  

The presented error model helps with the quantification of the contribution of individual error sources in 

a single point in a LIDAR point cloud. As an illustrative example, consider a typical slow and smooth flight (speed 



= 5 m/s, no vibration or vertical velocity considered) where the UAS holds a constant altitude of 15 m above 

ground. Based on the typical performance of the UAS sensors in the system, it is assumed that [𝜀𝜑 𝜀𝜃 𝜀𝜓] =

[0.01, 0.01,0.1]° (1 standard deviation) and 𝜀𝑷𝑎𝑛𝑡
𝐺 = [0.01,0.01,0.02]𝑚 for positioning errors (1 standard 

deviation). The lever arm between the LIDAR and the antenna |𝑷𝐿
𝑉 − 𝑷𝑎𝑛𝑡

𝑉 | = 0.17𝑚. The LIDAR is pointing 

downward, thus 𝐶𝐿
𝑉 = [

0 0 −1
0 1 0
1 0 0

]. It is further assumed that the UAS is leveled and facing north, thus 𝐶𝑉
𝐺 (𝑡) =

[
1 0 0
0 1 0
0 0 1

]. The error magnitude on a ground point x right underneath the LIDAR (𝑷𝑥
𝐿(𝑡) = [15𝑚,0,0]𝑇) is 

analyzed and illustrated below: 

 Let 𝜀𝑷𝑥,𝚫
𝐺 represent the error component contributed by the orientation uncertainty. In a leveled flight 

with little vibration, it is assumed that there is unsensed orientation change within 𝜀𝑡 such that [
𝑑𝜑

𝑑𝑡
 
𝑑𝜃

𝑑𝑡
 
𝑑𝜓

𝑑𝑡
] 𝜀𝑡 =

0. Although this assumption may be too optimistic for the UAS in some practical fight conditions, it would be 

acceptable for the presented sensing system since the vibration of the sensing system could be damped or 

separated from the vibration of the UAS airframe. In this case, the orientation error has a simplified model 

𝚫𝑻 = [𝜀𝜑 𝜀𝜃 𝜀𝜓].  

Since the distance between x and the LIDAR is much greater than the lever arm, i.e., |𝑷𝑥
𝐿(𝑡)| ≫

|𝑷𝐿
𝑉 − 𝑷𝑎𝑛𝑡

𝑉 |, the main contribution from the orientation error will be based on the term [𝜀𝐶𝑉
𝐺(𝑡′)]𝐶𝐿

𝑉𝑷𝑥
𝐿(𝑡). 

Recall that 𝜀𝐶𝑉
𝐺(𝑡′) = 𝚫×𝐶𝑉

𝐺(𝑡), therefore, 

 

  𝜀𝑷𝑥,𝚫
𝐺 = 𝚫×𝐶𝑉

𝐺(𝑡)𝐶𝐿
𝑉 𝑷𝑥

𝐿(𝑡) = [0.0026,−0.0026, 0]𝑇𝑚.        (11) 

 

where 𝜀𝑷𝑥,𝚫
𝐺  is a component of the overall error, 𝜀𝑷𝑥

𝐺, which is caused by the orientation uncertainty 𝚫. The 

errors are provided in North, East, and vertical directions, respectively. 

 Similarly, the error component caused by UAS positioning can be estimated by 

 

  𝜀𝑷𝑥,𝑃
𝐺 = 𝜀𝑷𝑎𝑛𝑡

𝐺 = [0.010,0.010,0.020]𝑇𝑚.     (12) 

 

In this simplified model, the contribution of timing error is purely horizontal and is only proportional to UAS 

velocity. The magnitude is limited by 

 

  |𝜀𝑷𝑥,𝑡
𝐺 | = |

𝑑𝑷𝑎𝑛𝑡
𝐺 (𝑡)

𝑑𝑡
∙ 𝜀𝑡| ≤ 0.025 m.     (13) 

  



A greater contribution comes from LIDAR error 𝜀𝑷𝑥
𝐿(𝑡). As aforementioned, 𝛿𝑟 = 0.023°, 𝛿𝑑 = 0.23°  and 

𝜀𝑅 = 0.1𝑚 (a conservative error level) are assumed for this LIDAR.  

 

  𝜀𝑷𝑥
𝐿(𝑡) = [0 𝛿𝑟 𝛿𝑑]×𝑷𝑥

𝐿(𝑡) + 𝜀𝑅
𝑷𝑥

𝐿(𝑡)

|𝑷𝑥
𝐿(𝑡)|

= [0.10,0.06,− 0.006]𝑇𝑚                 (14) 

 

which contributes to the overall error via 

 

  𝜀𝑷𝑥
𝐺 = 𝐶𝑉

𝐺 (𝑡)𝐶𝐿
𝑉 ∙ [𝜀𝑷𝑥

𝐿(𝑡)] = [0.006,0.06,0.10]𝑇𝑚.   (15) 

  

It is evident from comparing Equations (11) to (15) that the LIDAR is the dominant error source (𝜀𝑷𝑥
𝐿) for point 

x. Since the majority of 𝜀𝑷𝑥
𝐺 is considered a random process that is independent among points, as mentioned 

earlier, the integration and synchronization with the navigation measurements does not introduce substantial 

systematic errors in the LIDAR point. As a result, the error magnitude is on the order of 0.1 m for both horizontal 

and vertical directions in a typical low-altitude flight. It agrees with the performance reported in literature, as 

discussed in Chapter 2. 

 

3.1.7 Error Validation  

The vertical and horizontal performance of raw point measurements 𝑷𝑥
𝐺 can be validated with 

customized calibration targets. The error prediction model was first validated for random errors with a flat surface 

cardboard box that measures 1.24 m (Width) by 0.94 m (Depth) by 0.95 m (Height). The box target was placed on 

flat paved ground with a reference GNSS antenna next to it to record raw data for post-processing. The UAS 

scanned the target at different heights from 20 m to 40 m above the target (~21 m to ~41 m above ground) with 

5 m intervals. Figure 3 illustrates the raw point cloud collected at 20 m above target with both the target and the 

reference antenna. 

 



 

Figure 3 Left: Raw Point Cloud of Box Target and Reference GNSS Antenna. Right: Image from Onboard 

Camera. Collected at 20 m above target (~21 m above ground) 

 

To improve the heading accuracy, the UAS performed initialization maneuvers immediately after taking 

off. After the flight, raw data were retrieved from the SD cards from both the UAS and the reference receivers. 

The data were post-processed, and the accuracy has been summarized in Table 1.   

 

Table 1 Post-Processed Error Level for Flat Surfaces, Averaged over the Entire Flight 

Error Level 
Positioning Orientation 

North East Down Roll Pitch Heading 

1 𝜎 0.006 m 0.007 m 0.008 m 0.006° 0.007° 0.02° 

  

The vertical and horizontal errors in 𝑷𝑥
𝐺 were assessed with the consistency of raw point cloud data 

collected from the top surface and one side surface of the box target, which contains mainly random and relative 

errors. As aforementioned, the vertical Root Mean Square Error (RMSE) of the raw point cloud is expected to be 

between 0.04 m and 0.1 m regardless of the height above the target, which was verified with results presented in 

Figure 4. On the other hand, Equation (8) indicates that the horizontal error would grow proportionally with the 

distance to target as it is mainly contributed to by angular uncertainties. As demonstrated in Figure 5, the observed 

RMSE in the horizontal direction closely follows the estimated nominal error level. 



 

Figure 4 Vertical Error of Raw Point Cloud of the Box Target 

 

Figure 5 Horizontal Error of Raw Point Cloud of the Box Target 

  

The box target used to validate the single point error model described in Equation (8) has known flat 

surfaces that are either vertical or horizontal. The error magnitude presented in Figures 4 and 5 is representative 

of the vertical and horizontal error components of individual scan points, which are dominated by random 

errors contributed to by the LIDAR. Figure 4, however, does not include the potential contribution of 

horizontal errors. On a box-shaped target, the horizontal errors of points on the edge of a surface could result 

in greater vertical errors, which will be discussed next.  

 Next, the magnitude of random and systematic errors was validated respectively, using a point cloud 
dataset with slope surfaces and survey points. Two tent-shape target objects were placed on flat paved 



ground, each with two smooth planar surfaces covered by white canvas, as shown in Figure 6. The UAS 
hovered at approximately 15 m to 17 m above the ground and scanned the targets multiple times. The 
navigation data were post-processed, and the accuracy has been summarized in  
Table 2. The accuracy level in this table is typical in a UAS flight. 

 

Figure 6 Experimental Setup for Model Validation with Tent Targets 

 

Table 2 Post-Processed Error Level for Slope Surfaces, Averaged over the Entire Flight 

Error Level 

Positioning Orientation 

North East Down Roll Pitch Heading 

1 𝜎 0.007 m 0.006 m 0.01 m 0.007° 0.008° 0.07° 

 

The raw LIDAR point cloud georeferenced in a G frame (NED) is shown in Figure 7, and Figure 8 

provides a zoomed-in view with the two corners of both tent targets marked, which were surveyed separately 

by post-processed GNSS with an accuracy of 0.005 m, 0.005 m, 0.01 m in NED. 



 

Figure 7 Raw Point Cloud of Tent Targets, Georeferenced in A Local G Frame (NED) 

 

Figure 8 Zoomed-In View of Raw Point Cloud of Tent Targets with Four Survey Points Marked 

 

In this dataset, raw point cloud (𝑷𝑥,𝑣
𝐺) reports 0.04 m relative vertical error (1 𝜎) on a flat ground 

surface, which is consistent with the results reported in Figure 4. However, the vertical error observed on the 

tent targets was expected to be greater. Since the slope on both sides of the targets is approximately 45°, a 

portion of the horizontal errors was mapped onto the vertical direction at a 1:1 ratio. In other words, the 

observed vertical error from a raw LIDAR point cloud would be a combination of the actual horizontal and 

vertical error components. As a result, the absolute vertical error of raw point cloud on slope surfaces is 

approximately 0.1 m (1 𝜎), which is also consistent with the error prediction model in Equation (8). 

Although the UAS-LIDAR system can collect relatively dense point clouds, it is not guaranteed that 

all surfaces of the target will be captured directly in the raw point cloud during a flight. As a result, it should 

not be assumed that the entire target will be included in the raw point cloud. Instead, the system is able to 



extract the geometry of targets from the raw point cloud in addition to measurements. The systematic error 

component of the point cloud can be estimated by using known geometric information of the target, such as 

shape and dimensions, and the target location from GNSS surveys. The geometric features of the target, such 

as planar surfaces, can then be extracted from a partial point cloud, and it is more convenient and robust to 

identify and extract planar features than point features on small-scale objects.  

The average height of an object can be estimated from two planar features that are extracted from all 

points measured by the UAS-LIDAR system, and the absolute positioning error on a point reflects the 

magnitude of systematic and absolute error. The measurements from one of the two tent targets are validated 

here as a demonstration. Figure 9 illustrates 8,280 points from Target 2 that are projected onto a 2D plane 

perpendicular to the ridgeline of the target. These points form the cross-section shape of the tent target as a 

triangle, and its left side and right side, colored in red and blue, respectively, represent all the points from both 

planar surfaces. An orthogonal linear fit is applied to each side to recover the shape of the triangle, the top of 

which is then compared against its GNSS survey reference projected onto the same plane. As shown in Table 

3, the LIDAR measurement of the height of Target 2 is 2.504 m whereas the GNSS measurement is 2.512 m 

(averaged between two corners), resulting in a vertical difference of 0.008 m. Since this difference is smaller 

than the GNSS survey accuracy of 0.01 m, it may not accurately represent the actual vertical error. Nonetheless, 

the absolute systematic error is indeed much smaller than the overall vertical error of 0.1 m, as predicted in 

Equation (8). 

 

Figure 9 Raw Point Cloud of Tent Target 2 Projected onto A 2D Perpendicular Plane 

Table 3 Height of Tent Target 2 by Measured by LLDAR and GNSS Survey 



Target 2 LIDAR GNSS Survey Difference 
GNSS Accuracy (1 

𝜎) 

Height 2.504 m 2.512 m 0.008 m 0.01 m 

 

LIDAR measurements of bulk piles will face the same challenges as the tent targets, and it would be 

impractical to directly extract the height, surface, and volume from a noisy raw point cloud. Instead, an 

averaged, down-sampled point cloud will be more reliable, assuming that the errors on single points are mostly 

independent of each other, which has been validated in this dataset. The vertical errors can be effectively 

reduced by pre-processing based on mean or median values introduced in Equations (9) and (10). As a 

demonstration, the pre-processed point cloud of the tent targets shown in Figure 10 appears much less noisy 

than the raw data point cloud in Figure 7. 

 

Figure 10 Pre-Processed Point Cloud of Tent Targets 

 

A robust error model was developed for a generic UAS-LIDAR system to predict the horizontal and 

vertical errors of single point geo-registration. The contributions of errors from different components, such as 

navigation, timing and LIDAR are all considered. This model was validated for the proposed UAS-LIDAR 

system with calibration targets and real-world data from three different measurement scenarios: a box target 

with smooth flat surfaces for random error validation, targets of known sloped surfaces for systematic error 

validation, and a test site rock stair pile for bulk measurement validation. The test results indicated that the 

random errors from raw LIDAR point cloud reach approximately 0.1m in the horizontal and vertical directions 

respectively during typical low-altitude flight conditions. Systematic errors, such as those caused by navigation 

and timing components are at or below centimeter-level in these flights, suggesting that the presented UAS-

LIDAR had introduced negligible systematic errors. In addition, pre-processing of the raw point cloud can 

further reduce the random errors. 

If substantial systematic error does exist, it will result in inconsistency within the point cloud. The 

points collected from the same object with the same UAS-LIDAR from different positions, angles and time 

will not agree with each other. Figure 11 illustrates a hypothetical case of vertical systematic error. The actual 

object, a black pile, can be observed with positive or negative vertical biases, which depends on the orientation 



and the position of the LIDAR. Even if the red and blue represent the same LIDAR in the same flight, both 

partial point clouds (red and blue) would not agree with each other. Either one of them can represent the pile 

precisely, but they cannot be directly merged. They will have to be registered to each other through manual 

correction or a specialized software solution. Luckily, the systematic bias is expected to be small based on the 

analysis of this system. However, it can still be visible in some of the datasets to be discussed in Chapter 4. 

 

Figure 11 Impact of Vertical Systematic Error (Black = True Object; Blue = LIDAR Point Cloud from Left; 

Red = LIDAR Point Cloud from Right) 

 

 

3.2 A Side-View UAS-based LIDAR System 

 

3.2.1 Hardware components 

It has been verified that the downward-looking LIDAR could scan ground objects, such as piles very 

effectively. However, it is not convenient to scan vertical objects and structures, such as bridges. The second 

UAS-LIDAR system was constructed by the ECU team to provide point cloud from a horizontal side view. 

Similar to the system shown in Figure 1, it is also using the DJI Matrice 600 Pro airframe, equipped an auxiliary 

sensing system including the following components: 

• A Velodyne PUCK-16 LIDAR sensor 

• A Garmin GPS receiver 

• A NovAtel SPAN GNSS receiver with an integrated Inertial Measurement Unit (IMU) 

• Two Raspberry Pi III embedded computers 

• A rigid lightweight cage to mount all the components above 

 

The Velodyne LIDAR is installed horizontally in this system, as can be seen in Figure 12. It has 16 

layers of laser beams (covering a 30° vertical field of view). It has an operational range of 100 m, with a 3 cm 

1 sigma accuracy. It can scan 360° around the sensor body with 0.2° resolution. The timing mechanism of this 

unit is different from the one used in the downward-looking system. The manufacturer recommended that the 



LIDAR data be synchronized to GPS time using a small Garmin receiver. Therefore, an additional Garmin 

receiver is added to the system for synchronization only. The data from the Garmin receiver is not used to 

compute the position and orientation of the UAS. Since the receiver is compact and light-weighted, it is not 

considered a substantial burden in the UAS payload. 

 

 

 

Figure 12 Velodyne LIDAR Installed in a Cage on Matrice 600 Pro 

 

The side-view LIDAR can scan large vertical structures very efficiently. Since the target is no longer on 

the ground, it may be as far as 100 m away from the UAS with this LIDAR, even if the UAS maintains a 15 m 

height above ground. It can create up to 300,000 points per second. Within few minutes, it can model a large area 

or object with dense point cloud. A segment of a bridge is shown in Figure 13. The point cloud was obtained 

within several seconds. 

 

 



 

Figure 13 Sample Point Cloud Data from the Side-View LIDAR 

3.2.2 Error Model 

The error model defined in Equation (8) can also be used to predict the 3D error magnitude in a global 

frame for individual scan points for the side-view LIDAR. Similar to the downward-looking LIDAR, the errors 

in this system will also have random, relative errors and systematic, absolute errors. However, there are two major 

differences: the relative geometry and the distance to the targets. 

The LIDAR is pointing forward instead of downward, thus 𝐶𝐿
𝑉 = [

1 0 0
0 1 0
0 0 0

]. Also assume that the UAS 

is leveled and facing north, thus 𝐶𝑉
𝐺 (𝑡) = [

1 0 0
0 1 0
0 0 1

]. The error magnitude on a target point x at 100 m way 

forward (𝑷𝑥
𝐿(𝑡) = [100𝑚,0,0]𝑇) will have a substantial error level. With the orientation error has a simplified 

model 𝚫𝑻 = [𝜀𝜑 𝜀𝜃 𝜀𝜓]. Using [𝜀𝜑 𝜀𝜃 𝜀𝜓] = [0.01, 0.01,0.1]°, the error due to UAS orientation is thus  

 

  𝜀𝑷𝑥,𝚫
𝐺 = 𝚫×𝐶𝑉

𝐺(𝑡)𝐶𝐿
𝑉 𝑷𝑥

𝐿(𝑡) = [0 0.524 0.0524]𝑇𝑚.        (16) 

 

The heading error of 0.1° (caused by navigation or boresighting) is responsible for a significant 

horizontal error of 0.524 m. The error magnitude is much greater than that observed in equation 11. It is mainly 

contributed to by the longer distance to the target (100 m vs 15 m) and a different geometric relationship. Since 

the orientation error may be observed as a bias, equation (16) reflects a potential systematic error in the side-

view LIDAR. It will dominate the overall error in 𝜀𝑷𝑥
𝐺, which is considerable larger than the one shown in 

equation (15). Clearly, centimeter-level error on single LIDAR points can no longer be guaranteed in this system 

due to orientation, especially heading errors. Further, the systematic error component could be greater than the 



random error component. It indicates that the side-view LIDAR could produce precise dimensional 

measurements, but the geo-registration of the point cloud may have a small offset in a global coordinate system. 

The impact of horizontal systematic error is illustrated in Figure 14. Similar to the vertical systematic error show 

in Figure 11, the horizontal systematic error also causes both partial point clouds (red and blue) to disagree with 

each other in the horizontal direction. In this case, it is primarily due to heading errors in UAS-LIDAR. 

 

 

Figure 14 Impact of Horizontal Systematic Error (Black = True Object; Blue = LIDAR Point Cloud from 

Left; Red = LIDAR Point Cloud from Right) 

 

In order to limit the error magnitude, the absolute heading error 𝜀𝜓 has to be constrained. It can be 

achieved by a more rigorous calibration procedure of boresighting before flight and calibration of heading 

during every flight. Furthermore, the target distance can be limited despite the sensor capability. In order words, 

only points measured within a certain distance (for example, 50 m) can be used in the final data product. 

 

3.3 Structure from Motion System with known Camera Pose 

Since the traditional UAS-based SFM system has been well studied in literature and discussed in chapter 

2 of this report, it will not be repeated here.  

Precise position and orientation (pose) of the camera recorded in a world coordinate system can be 

used to estimate a 3D model geo-registered in the same coordinate system. Precise camera location can be 

achieved using GNSS, more particularly, RTK and PPK technologies. While generally considered expensive, 

newer technologies are reducing the cost of RTK and PPK. Orientation of a camera can be sensed using an 

IMU that is typically integrated with a satellite navigation system on a small UAS. Precise camera position and 

orientation are crucial to proper scaling, orientation and geo-registration of the 3D model in the world frame. 

However, the high-quality IMUs required for geo-registration are not commonly available for small UAS yet. 

Even if the orientation measurement is not available to small UAS, geo-registration can still benefit from precise 

positioning alone.  

A SFM with precise location from GNSS RTK and a camera synchronized with GNSS is constructed 

in this project. The system is not based on a costly commercial solution. Instead, it is based on a combination 

of low-cost UAS, GNSS receiver and camera, with open and interchangeable interfaces between components. 



It has been verified that with precise location alone, SFM can achieve precise relative measurements with the 

correct scale, without using GCPs. The details of this system will be discussed in Chapter 6. 

 

  



Ch 4 Case Studies for Construction Management  

There were two main goals the ECU team had for the UAS-LIDAR data collection in construction 

and management projects. 

1. Accurate geo-registration of LIDAR points. The absolute vertical error of every individual 

point should be below 0.1 m, 1 sigma. 

2. Data presentation and visualization with a standard coordinate system (such as NC state 

plane), format (such as “.las” files) and ideally with imagery texture. 

Based on the analysis presented in Chapter 3, the accuracy is related to UAS flight pattern, hardware 

calibration and synchronization, and post processing steps. Therefore, the corresponding requirements for 

flight, data collection hardware and software, and data processing procedures have been provided in this 

chapter.  

 

4.1 Flight, Data Collection and Processing 

The following hardware is needed for data collection. Examples used in this project are included.  

1. UAS frame, DJI Matrice 600 Pro 

2. Navigation system, NovAtel OEM 6 + NovAtel IGM A1 

3. Downward-looking LIDAR synchronous to GPS time, SICK LD-MRS420201  

4. Ground reference GNSS antenna and receiver, with tripod (optional), NovAtel OEM 6  

5. Calibration targets (optional) 

6. Camera synchronized to GPS time (optional), IDS uEye 

 

The following software components are needed for post processing: 

1. Post processed position and orientation solution, NovAtel Inertial Explorer 

2. LIDAR point extraction and geo-registration, Custom MATLAB code for synchronization, 

geo-registration and exporting LIDAR points 

3. Reference system conversion (optional), NOAA Vdatum 

4. Point Cloud data viewing and file type conversion (optional), Lastools 

5. Custom MATLAB code, for integrating imagery (optional) 

 

The requirements for the UAS flight include:  

1. A safe, low-altitude and steady flight over the target area 

2. Sufficient initialization maneuvers to reduce navigation error (especially heading) 

3. Dense point cloud collected over the target area 



4. Dense point cloud collected over calibration targets at know locations to verify the 

performance in each flight 

 

A typical flight includes the following major steps 

1. Take off and hover at ~15 m above ground. 

2. Initialization maneuvers for ~ 3 min: including accelerations in horizontal directions. Make 

circular and figure-8 patterns.  

3. Fly over calibration targets (optional). The target can be the antenna and the tripod of the 

ground reference GNSS receiver. 

4. Fly over worksite, ~15 m above target, ~5 m/s. 

5. Fly over calibration targets (optional). 

6. Land. 

 

The LIDAR can collect a relatively dense point cloud during a flight (~37.5 K points per second). As 

discussed in Chapter 3, the error in the LIDAR point cloud heavily depends on the error in the navigation 

system. However, the performance of the navigation system cannot be reported in real time. Although the 

GNSS receivers have predictable performance with RTK or PPK, the accuracy of orientation measurements is 

harder to predict with the IMU device available on small UAS.  

The orientation accuracy specified by the manufacturer can be achieved based on certain assumptions 

of the UAS operation. Sufficient initialization maneuver is necessary, but it cannot always guarantee the 

orientation accuracy. In some cases, it may even be challenging for the post-processing software to estimate 

the orientation and its accuracy. It is possible for the post-processing software to be overly optimistic or 

pessimistic about the orientation.  

Therefore, the most reliable way to assess the accuracy of point cloud and the navigation solution is to 

directly observe one or few calibration targets with known location in the point cloud.  

 

The raw point cloud data will be retrieved from the UAS and post processed.  

1. Post-process GNSS position and orientation. 

2. Synchronize LIDAR and camera to GPS time. 

3. Geo-registered raw point cloud in local ENU frame by integrating LIDAR, GNSS and Inertial 

data. 

4. Down sampling to desired horizontal resolution; outliers removed.  

5. Convert the coordinates of the data points to target frame.  

6. Convert the data file into a desired format. 

7. Add imagery texture if available.  



4.2 Buildings 

The first case reported here is with data collected over an NCDOT site in Butler, NC. This location 

includes several buildings and ground targets pre-surveyed by NCDOT. In this dataset, the target area includes 

a building and a pre-surveyed target. This dataset demonstrates the workflow defined in section 4.1, the efficacy 

of UAS-LIDAR in scanning buildings and the accuracy verified with independent survey results. 

Figure 15 Butner Site with Surveyed Locations 

A ground reference GNSS antenna and receive and two calibration targets were used. A picture of 

both can be found in Figure 6. The locations of both targets were surveyed using GNSS onsite, as shown in 

Figure 16. These locations were computed in the NovAtel Inertial Explore software with a PPK solution with 

respect to the Durham CORS site (DURH). The antenna location was computed in NAD2011 as: 

• ECEF: 1004835.436 -5058567.965  3740131.122 (m)

• LLH 36º 07’ 57.30411”  -78º 45’ 53.98576”  80.597 (m)

• NCSP 2069399.74, 867245.54, 361.86 (US Survey ft)

• Expected accuracy 0.004 m horizontal and 0.009m vertical

The antenna was set up on top of a tripod, which is located on a pre-surveyed target (monument). Compared 

against the truth reference provided by NCDOT, the difference was  

• 0.0140   -0.0340   -0.0200 (ft), or approximately 0.004, -0.01, -0.006 m.



which agrees with the expected accuracy of the PPK solution. Notice that at this stage, these coordinates were 

not extracted from the UAS-LIDAR yet. The locations of the targets are geo-referenced relative to the antenna, 

as illustrated in Figure 16. 

  

 

Figure 16 Ground Survey of Calibration Targets from the Butner, NC Dataset 

 

Following the UAS flight steps listed in section 4.1, the UAS flew over the antenna and the calibration 

targets several times, to capture a dense point cloud. The ground track of the UAS can be found in Figure 17. 

Since each of the points has its unique coordinates, the location of the antenna and the calibration targets can 

be directly extracted from the point cloud. The point cloud of the antenna is shown in Figure 18, and the targets 

in Figure 19. 



 

Figure 17 Ground Track of UAS Flight from the Butner, NC Dataset 

 

 

  

 

 

 

Figure 18 Dense Point Cloud of Reference Antenna from the Butner, NC Dataset 

 

 

 



 

Figure 19 Dense Point Cloud of Calibration Targets from the Butner, NC Dataset 

 

Relative to the antenna location computed by ECU survey, the antenna location extracted from the 

point cloud is [0.039, 0.058 0.03] m. The original data is illustrated in Figure 18. The error is within the budget 

discussed in Chapter 3. Similar results can be found from the calibration targets. The vertical error observed as 

0.03 m, 1 sigma. The point cloud of the antenna and the calibration targets clearly validates the performance of 

the point cloud and the navigation system. 

An imagery map of the building complex can be found in Figure 20. The UAS flew over the building 

in less than 10 minutes. A dense point cloud of the building is created in the customized software, shown in 

Figure 21. The point cloud can be converted into a “.las” file in Lastools, shown in Figure 22. 

 

 

 

Figure 20 Building Complex from the Butner, NC Dataset 



 

 

 

 

Figure 21 Point Cloud of the Building Complex from the Butner, NC Dataset 

 

 

 

 

Figure 22 Point Cloud of the Building Complex from the Butner, NC Dataset, Viewed in Lastools 



It can be seen from this dataset that the absolute geo-registration accuracy of the UAS-LIDAR point 

cloud can be predicted and over-bounded by the analysis presented in Chapter 3. Centimeter-level accuracy is 

observed from calibration targets and the reference antenna. It appears that the accuracy validation can be 

achieved by using the antenna along, although it was also validated using both calibration targets in this dataset. 

Following the flight plan defined in section 4.1, the UAS can scan a building complex (approximately 

100m by 100 m) in a single flight, within minutes. The data can be converted into a desired format and 

coordinate system with the post-processing workflow. 

 

 

4.3 Pit and Piles in Havelock, NC 

The second case included in this report is with data collected over a site in Havelock, NC, suggested 

by NCDOT. This location includes piles and pits filled with water. Contractor Balfour Beatty had been working 

on this site when the dataset was collected. Figure 23 provide an overall image of the site. Two flights of the 

UAS-LIDAR system were performed. 

 

 

Figure 23 Imagery of the Havelock, NC Site (34°48'59.7"N 76°52'00.2"W, near Newport Loop), 

Courtesy from Balfour Beatty 

 

 



The image was collected several days before the UAS-LIDAR flight. A greater part of the pit area had 

been filled with water when the UAS flight took place. The point cloud of the UAS-LIDAR of the pit area 

(highlighted in a blue circle in Figure 23) can be found in Figure 24. Figure 25 shows the airborne imagery 

collected with the video camera on board the UAS. It corresponds to the section in Figure 24 highlighted in a 

red circle.  

 

 

Figure 24 UAS LIDAR Point Cloud of the Havelock, NC Site 

 

 

 

 

Figure 25 Imagery from a Camera onboard the UAS-LIDAR System 

 



Water in the pit was relatively still with a very smooth surface. There were few returns from the LIDAR, 

which could not form a meaningful point cloud. As expected, LIDAR is not a good choice for measuring a 

smooth water surface. It can still effectively measure piles and empty pits on this site. 

The first flight covered most of the dry land at approximately 12 m above ground. The second flight 

was higher to avoid obstacles. It covered most of the pit area, at approximately 24 m above ground. Due to the 

operational environment, there was no reference antenna or calibration target in the point cloud of Flight 2. 

There was a small overlap between both point clouds. On average, there is a 0.1 m difference between both 

flights. As discussed in Chapter 3, systematic errors are likely due to errors in navigation solution. Although the 

navigation solutions of both flights were reported with good quality in the post-processing software, one or 

both of them could still be overly optimistic. However, since flight 2 did not have a validation point (antenna 

or targets), it becomes difficult to independently verify the performance of this flight. The bias between 

overlapped point clouds will have to be manually corrected, which is not ideal. However, the relative precision 

of either point cloud is still well within the expected range.   

 

Figure 26 Point Cloud from the Havelock, NC Dataset, Green: Flight 1; Red: Flight 2 

 

Balfour Beatty also measured the area using SFM. However, due to a few operational reasons (weather 

forecast, permission to fly etc.) both teams could not fly on the same day. The changes in the area made it 

infeasible to compare SFM point cloud with UAS-LIDAR. However, a few observations were made regarding 

both technologies in this case: 

 

1. SFM needs a lot of GCPs. UAS-LIDAR will need one or two calibration targets, such as the antenna 

itself.  



2. UAS-LIDAR has a clear advantage over SFM in areas where GCPs cannot be placed, such as on sites 

involving pits and piles. 

3. It is more convenient to visualize SFM point cloud (LIDAR needs additional imagery which will be 

discussed in the following section). 

4. Still water surfaces could not be measured with either SFM or LIDAR. 

5. LIDAR seems to get some returns from water surface, which will be further explored in the following 

chapter. 

6. The LIDAR used in this project has a wide laser beam, which works properly in a dusty environment. 

 

4.4 Volumetric Measurements of Piles at Pitt County Maintenance Yard  

The third case is about volumetric measurements of piles. The NCDOT Pitt County Maintenance Yard 

is located near the Pitt County Airport. The area of interest is approximately 80m by 160m. There are several 

piles of different materials on the yard. As requested by the airport, the UAS flights at this location were kept 

at a low altitude (<60 ft above ground). Each flight lasts ~15 minutes, although it only needs 5 minutes to scan 

all the piles. No GCPs or calibration targets other than the antenna itself were used in any of the flights.  

 

 

4.4.1 Dataset 1 (Oct 2020) 

The first dataset was collected in October 2020. The dataset collected in the first flight was used to 

demonstrate volumetric measurements and expected accuracy. It also established a baseline 3D model of all 

the piles. The 3D point cloud can be found in  

Figure 27. The point cloud of each individual pile has been listed in Table 4 together with an image 

obtained with an onboard camera. 

 

 

 

 

 

Figure 27 Point Cloud of Pitt County Maintenance Yard, Dataset 1 (Oct 2020) 



 

 

Table 4 Point Cloud and Imagery of Piles 

 

 

 

 

 

 

 
 



  

 

The point cloud accuracy of every flight had been validated with the reference antenna. As discussed 

in Chapter 3, the random error of individual points can be as high as 0.1m (vertical, 1 sigma). However, after 

down sampling in post processing, it can be greatly reduced. It has been observed that the random vertical error 

is typically 0.01-0.02m 1 sigma with a grid size of 0.1 m. 

 

4.4.2 Dataset 2 (Feb 2021) 

As suggested by NCDOT, a second dataset was collected in February 2021, when all the piles were 

measured using a traditional GNSS-based survey. Figure 28 illustrates the six piles measured by NCDOT on a 

satellite image. Notice that the piles in the satellite image have different sizes than what was measured. The 

image should only be used to locate and identify the piles. 

 

 

Figure 28 Location of 6 Piles in Dataset 2, courtesy of NCDOT 

 



Figure 29 shows the UAS-LIDAR point cloud with a top-down view. It was oriented in the same 

direction as the satellite imagery for convenience. All the coordinates were East-North based on the reference 

antenna used in Dataset 2, which is also used to identify the piles. 

 

Figure 29 Point Cloud of 6 Piles in Dataset 2, Top View 

 

For volumetric measurements, a simplified model is used for this dataset, which will be updated in the 

next dataset. Assuming that the point cloud of a pile has been downsized with a fixed grid size, A. ℎ𝑖 stands for 

the vertical measurement of grid i. The total volume is computed using   

 

𝑉 = ∑ 𝐴 ∙ ℎ𝑖𝑖 .        (17) 

 

The number of grids depends on the grid size and the size of the pile. If a pile has a base of 3m by 3m, it 

will result in 900 grids with a grid size of 0.1m. The LIDAR vertical error is normally 0.1m 1 sigma, and the 

majority of it is random error. After the summing over 900 grids in Equation (17), the contribution of random 

error to the overall volumetric error is usually negligible.  

As shown in Chapter 3, the vertical systematic error is typically on the order of b = 0.01m. In the worst 

case scenario, it may present as a bias in all ℎ𝑖 measurements, which leaves a bias in V. As shown in Equation 



(18), the fractional volumetric bias is proportional to the bias over the average height  ℎ�̅�. For a pile that has an 

average height of at least 1m, the fractional volumetric bias would be smaller than 1%. 

 

∆𝑉/𝑉 =
𝑏

ℎ𝑖
̅̅ ̅

.        (18) 

  

Since the systematic error is bounded, the fractional volumetric bias becomes even smaller  with larger 

piles. Therefore, UAS-LIDAR system causes minimal error in volumetric measurements. It is a highly precise 

and efficient tool for bulk measurements.  

However, the vertical ℎ𝑖 is measured against a ground reference. Normally the ground under a pile 

would not be measured ahead of time. Therefore, the actual ground model is always unknown in practice. In 

the case, the ground is estimated based on the points around the pile. For example, the points around Pile A 

can be found in Figure 30. It may appear a flat ground, and it is in fact possible fit a 2D plane to these points, 

from which ℎ𝑖 is calculated. However, a zoomed in look from Figure 31 reveals that the ground is far from flat. 

In addition to the obvious slope, there is undulation on the order of 0.1m to 0.2m. As a result, the error 

introduced by an uneven ground would be greater than the LIDAR error described in Equation (18). 

 

Figure 30 Points around Pile A, with the Pile Removed 

 



 

 

Figure 31 Points around Pile A (zoomed in), with the Pile Removed 

 

The uneven ground would be a dominating error source to any absolute volumetric measurement, but 

it is not a unique error to UAS-LIDAR. Commercial software (such as Bentley MicroStation) does not rely on 

a flat ground assumption with sparse GNSS survey points. There have been different models developed to 

account for that, which can apply to UAS-LIDAR point cloud as well. More details will be provided in the 

following section. 

 Without accounting for the ground model difference, the Volumetric Measurements between GNSS 

Survey (reported by NCDOT) and UAS-LIDAR have been listed in Table 5. The difference can be as large as 

6% from the greatest pile.  

 

Table 5 Volumetric Measurements of Piles 

Pile Survey UAS-LIDAR Diff % 

A 360.83 370.81 2.8 

B 453.40 461.69 1.8 

C 97.72 95.95 -1.8 

D 13.60 13.23  -2.7 

E 343.59 346.54 0.86 

F 920.83 865.75 -5.98 



 

The UAS-LIDAR results from Table 5 are based on using a 0.1 m grid size. As afore mentioned, even 

with a small pile (3m by 3m base), it results in 900 grids. Although it causes little extra effort to process in 

automatic programs, it could be a significant burden is any manual operations, such as user input into 

commercial software, are required. Therefore, it is of interest to NCDOT to test the same method with larger 

grid size and fewer grids. As shown in Figure 32, a 0.5m grid size results far less (25 times) samples.  

As expected, a larger grid size affects the smaller piles more. Table 6 shows that Pile D sees the greatest 

difference between two grid sizes, which is the smallest pile. Figure 33 further elaborates the differences among 

different grid sizes. With a 0.5m grid size, the error can be as large as 1.8% in a small pile (~13 cubic yards). 

   

 

Figure 32 Sampling a Pile with Different Grid Size 0.1m vs 0.5m 

 

Table 6 Volumetric Measurements of Piles with Different Grid Sizes 

Pile UAS-LIDAR Diff % (0.5 m vs. 0.1m) 

A 370.81 0.48 

B 461.69 0.006 

C 95.95 0.15 

D 13.23  1.8 

E 346.54 0.017 

F 865.75 0.03 

 

 



 

Figure 33 Difference in Volume of Pile D with Different Grid Sizes 

 

The point clouds from 2020 and 2021 have been illustrated in Figure 34, with 2020 in green and 2021 

in red. On fixed structures, such as the buildings on the back, both point clouds agree with each other within 

the nominal error level (centimeter-level). It indicates that there is minimal systematic bias in year-to-year 

comparison. The change of all the piles can be observed with different colors. Both point clouds have been 

converted into the NC State Plane system, and can be viewed and compared in Lastools or MATLAB. 

  

 

Figure 34 Difference in Point Cloud (2021 Red vs. 2020 Green, NCPS, ft) 

 



 

4.4.3 Dataset 3 (March 2022) 

As suggested by NCDOT, a third dataset was collected in March 2022. This dataset is used as an 

additional data point to illustrate the change of volume of piles, and to better understand the differences 

between UAS-LIDAR and GNSS survey.  

Similar to Figure 34, the comparison of 2022 vs. 2020 can be found in Figure 35. It is also verified that 

the point clouds agree with each other on fixed structures within the nominal error level (centimeter-level), 

which means minimal systematic error from 2020 to 2022.  

 

Figure 35 Difference in Point Cloud (2022 Red vs. 2020 Green, NCPS, ft) 

 

 

In addition to UAS-LIDAR scan, a GNSS-based survey was performed simultaneously with the UAS-

LIDAR on a pile by NCDOT personnel. On a pile illustrated in Figure 36, a group of 37 points on the base 

and on the pile were surveyed with a Trimble R10 GPS receiver with a Trimble TSC3 Data collector. These 

points were used to calculate the volume in Bentley MicroStation, which was 354.84 cubic yards using the 

(courtesy from Mr. Christopher Cole). It was produced with a triangulated irregular network (TIN) model. The 

same result has been repeated by the ECU team in Civil 3D, with the same data points and a TIN model. 

The GNSS survey points were compared directly with the UAS-LIDAR point cloud. Among the all 

the GNSS points, the standard deviation is 0.06m and the bias is 0.01m. The difference is with the expected 

error range from GNSS and UAS-LIDAR. Since the bias is minimal, it is concluded that GNSS and UAS-

LIDAR agree with each other very well on this pile. However, the LIDAR point cloud has 14432 data points, 



which only took a few seconds to collect in the flight. When all the LIDAR points were used to compute the 

volume in TIN model, the result was 310.45 cubic yards (10% smaller).  

 

 

 

Figure 36 NCDOT GNSS Survey (Red Dots) vs. UAS-LIDAR Point Cloud (NCPS, ft) 

 

  

 

 

Figure 37 TIN Model in Civil 3D (Courtesy from Dr. Yilei Huang, ECU) 

 

Although volumetric measurements do not rely on imagery of the piles, it was suggested by NCDOT 

that it would be much more convenient for users to have imagery-based surface or texture in addition to a 3D 

point cloud or model. The low-cost LIDARs onboard small UAS typically do not have color-based returns, 

which means a colored surface would not be directly available on these point clouds. However, there is a 

synchronous IDS uEye camera onboard the ECU UAS system. As discussed in Chapter 3, every image from 

this camera has a GPS time tag, which means that the position and orientation of the UAS and the camera is 

known at the moment where each image was taken. For example, an image from the IDS camera collected as 



part of dataset 3 can be found in Figure 38. It shows pipes piled near the fence of the maintenance yard. Pipes 

instead of piles are used in this example since they are more visually distinguished than piles. 

 

Figure 38 Image over the Pitt County Maintenance Yard, from Synchronous Camera 

 

The IDS camera and lens had been calibrated ahead of the flight. With known location and orientation 

of the camera, the image can be directed mapped onto the 3D point cloud of the pipes. Each point in Figure 

39 has 3D coordinates in East, North, Up directions, referenced to the GNSS antenna on the ground, and a 

RGB color extracted from the image. 

 



Figure 39 3D Point Cloud with Imagery Texture Superimposed 

 

4.5 Summary 

• UAS-LIDAR is very effective at measuring volume of piles. 

o The geo-registration accuracy is more than enough for volumetric measurements. (1% volume 

error for small piles, less error for larger piles) 

o Data collection is quick. (a few seconds each pile) 

o There is little systematic bias from a low flight.  

o UAS-LIDAR can provide precise measurement on change of volume over a long time. 

o Imagery-surface can be super imposed on the point cloud if available.  

o UAS could fly at higher altitude or higher speed, since less points or greater grid size are 

acceptable.  

o Absolute accuracy depends on the model used. 

• UAS-LIDAR can measure buildings and pits effectively as well. 

o It cannot measure surface of still water. 

• UAS-LIDAR can measure road surfaces as well (to be included in the next chapter). 

• UAS-LIDAR vs. GNSS-based survey.  

o Both offer similar measurements and accuracy on individual points. 

o UAS-LIDAR data collection is much faster. 

o UAS-LIDAR point cloud is much denser, and can lead to different volume estimates (10%). 

• UAS-LIDAR vs. SFM 

o UAS-LIDAR does not require any GCPs over the worksite, but can benefit from having one 

or few for validation purposes. 

o UAS-LIDAR data collection is faster. 

o UAS-LIDAR can collect data over low-texture surfaces (sand or soil). 

o Usually UAS-LIDAR does not create an imagery surface. 

o Image can be superimposed on point cloud.  

 

  

  



Ch 5 Case Studies for Disaster Management  

Applications of both the downward-looking and the side-view UAS-LIDAR systems were explored in 

disaster management applications. Since the performance of the systems are well understood from the 

construction-related projects, these case studies are more focused on potential applications of the UAS-LIDAR 

technology, and less on error analysis. The first three cases were based on the downward-looking system and 

the last one is with the side-view system. The flight, data collection and processing procedures have been 

defined in Chapter 4, and will not be repeated in this chapter. 

 

5.1 Seashores and Water Surface 

As discussed in Chapter 2, UAS-LIDAR is expected to be an efficient tool for scanning a long seashore. 

It is expected capture all the land-based features, such as structures or trees with the accuracy discussed in 

Chapter 3. However, whether it can capture any water surface was unclear. Chapter 4 showed that UAS-LIDAR 

did not get good returns from a smooth water surface. It was likely due to reflection of the laser beam. It was 

realized that the reflection of a single laser beam over water depends on the following aspects: 

1) Roughness of water surface 

2) Water turbidity 

3) Laser beam size and footprint size of a single beam 

4) Laser beam incidence angle 

5) Laser power and distance 

In other words, it is possible for UAS-LIDAR to measure sea water surface with waves. However, 

there is a tradeoff in terms of UAS altitude. A high-flying UAS-LIDAR would have a wider footprint, but lower 

power density. There have been few studies in literature on whether a UAS-LIDAR can measure the sea water 

surface or waves in practice. 

Luckily, the SICK LIDAR used in the ECU system has a wide laser beam (0.4°), since it was designed 

to work in a dusty environment. At a distance of 42m, it has a footprint of  approximately 1 ft. For a very calm 

sea surface with wave size as small as 1 ft, the LIDAR needs to be at least 42m above the water so that an entire 

wavelength can be covered by the footprint. It helps to capture returns from the water surface. For waves with 

greater roughness on the surface, the flight altitude can be lower. 

In September 2021, the ECU team attempted a flight over open water in Albemarle Sound, NC. The 

UAS took off and scanned the seashore area first. It then flew into the sound and hovered over the water at 

40-60m above water. It scanned the water surface in a circular flight pattern before returned to launch position. 

An airborne image collected with the UAS can be found in Figure 40. A narrow canal leads into the sound in 

this area. The canal has relatively calm water, which could not be measured by the LIDAR. Figure 41 shows 

the point cloud that includes the canal (blank), the seashore, the trees and the water surface in the sound. The 



wave height forecast of the sound was 1 ft. A dense point cloud can be found over the water surface. Therefore, 

it confirms that the UAS-LIDAR can in fact scan a water surface with small waves. 

The 3D point cloud combined with the imagery can be used to estimate change in water level and any 

damage to the seashore after major disasters.  

 

  

 

Figure 40 UAS Image over Albemarle Sound, NC 

 

 

Figure 41 3D Point Cloud over Albemarle Sound, NC 

 

5.2 Road Surface  

The UAS-LIDAR can also scan road surfaces efficiently. Even with a smooth steady flight pattern 

suggested in Chapter 3, the UAS can still scan the road surface while moving at 5m/s. The dataset was collected 

over a part of a rural road (approximately 100 m long) on the campus of East Carolina University, in Greenville, 

NC, as shown in Figure 42. The point cloud can be found in Figure 43. It has been rotated to reflect the surface 

of the road in Figure 44.  

The point cloud is relatively precise. It was observed in this dataset that the random error before down 

sampling had 1 sigma of 5cm. The largest error magnitude observed as 0.14m. After down sampling, the error 

has 1 sigma of 1-2cm typically.  



Therefore, it is possible to detect centimeter-level elevation changes on the road surface with UAS-

LIDAR. The 3D point cloud combined with the imagery can be used to estimate any damage to the road surface 

after major disasters.  

  

 

 

Figure 42 Image of a Rural Road in Greenville, NC 

 

 

 

 

 

Figure 43 3D Point Cloud of a Rural Road in Greenville, NC 

 

Figure 44 3D Point Cloud of a Rural Road in Greenville, NC, Side View of the Road Surface 

 

 



 

5.3 Riverbed 

The third case was based on data collected near Town Creek in Greenville, North Carolina. The UAS-

LIDAR system scanned a stretch of the creek (approximately 100 m long) multiple times, where a pile of rock 

stairs was built on a dry riverbed as part of the creek drainage system. An image of the test site from the UAS 

camera is shown in Figure 45.  

 

Figure 45 UAS Image of Town Creek  

In this dataset, the collected raw point cloud was down sampled using a grid size of 0.05 m, to gain a 

more detailed view of the creek drainage system. The processed point cloud of the site with rock stairs is 

presented in Figure 46.   

 

Figure 46 Point Cloud of Rock Stairs at Town Creek 

 

In other datasets included in this report, the point cloud of the reference antenna has always been used 

as a truth reference to assess the accuracy and validate the point cloud. Such validation is usually sufficient for 

smooth surfaces, such as piles and road surfaces. However, the surface of the riverbed and the creek drainage 

system is more complex. The rock stairs have irregular surfaces, which could lead to additional errors in UAS-



LIDAR. Therefore, additional truth reference on the rock stairs will be provided. A TLS scan of the test site 

was performed separately, reported in [Cooper21], where a Leica ScanStation P40 with a 3 mm (1 𝜎) accuracy 

at 50 m was used. The TLS point cloud was used as a true reference for the comparison with a vertical profile  

of down-sampled UAS-LIDAR point cloud. As shown in Table 7, the difference between the measurements 

from the two sensors was 0.055 m in 1 𝜎 with a 0.064 m mean, and the maximum observed difference was 

0.24 m. The vertical profiles measured by the TLS and UAS-LIDAR are illustrated in Figure 47, where deviation 

between the two profiles can be seen at a few locations. It is likely due to the changes in horizontal locations 

that can contribute to vertical errors in UAS-LIDAR measurements, as previously discussed. At this test site, 

the rock stairs have irregular rock shapes with steep slopes on the edge, resulting in a substantial level of mean 

and maximum error. Nevertheless, the overall error is still consistent with the error model from Chapter 3. 

Table 7  Measurements Difference of Rock Stairs between TLS and UAS-LIDAR 

TLS-UAS Difference Mean 1 𝜎 Max 

Rock Stairs 0.055 m 0.064 m 0.24 m 

 

 

Figure 47 Comparison of Point Cloud Vertical Profile of Rock Stairs between TLS and UAS-LIDAR 

Measurements 

The 3D point cloud combined with the imagery can be used to estimate any change to the riverbed 

and drainage system after major disasters, although it may not be able to observe the water surface in the river. 

 

 



5.4 Bridge 

The last case is unique, as the data was collected using the side-view UAS-LIDAR system. As afore 

mentioned, this system was designed to scan vertical targets, such as bridges. The dataset was obtained from 

scanning a rural bridge in Pitt County, NC, suggested by NCDOT, in November 2021. An image of the bridge 

can be found in Figure 48. An area in the middle of the bridge is highlighted in this figure. Point clouds from 

this area will be shown in this section. 

The side-view system can produce a dense point cloud at 300,000 points per second, which is even 

more efficiently than the downward-looking system. In practice, it takes less than a minute to get a dense point 

cloud of the 20m by 20m area.  

As discussed in section 3.2, since it provides a side-view point cloud at a great range, it can be more 

sensitive to systematic errors caused by heading errors. Even if the heading error is within the spec of the 

navigation device, such as a 0.1°, it may still cause substantial horizontal errors. Additional steps have been 

taken to limit such errors, such as reducing the range from 100m to 50m, and more rigorous calibration 

procedure of boresighting and heading. In addition, the 3D point cloud of the reference antenna can provide 

additional validation of the accuracy. As shown in Figure 49, centimeter-level accuracy was observed on the 

antenna. Figure 50 illustrates the point cloud of the bridge collected during the flight. The structure of the 

bridge is clearly visible in the point cloud. Since it is geo-registered, the dimension and location of any 

components of the bridge, such as the beam and the piers, can be directly measured. 

The point cloud is precise, since the random errors are expected to be at centimeter-level in both 

horizontal and vertical directions. However, the potential heading angle bias could leave a small horizontal 

systematic error, which is at or above centimeter-level. For example, with 0.1° heading error there will be a 

0.087m horizontal bias at 50m away. The bias will only be 0.035m at 20m away. Since it is feasible for the UAS-

LIDAR to fly relatively close to the bridge, it is possible to limit the systematic error. 

The ECU team also tested the downward looking system on the same bridge. This system had to fly 

over the bridge. To ensure the safety of the UAS and the vehicles on the bridge, the UAS altitude was at least 

~20m over the bridge. It could only measure the surface of the bridge with moving vehicles on it. As shown in 

Figure 51, it does not provide much information about the structure. 



 

 

Figure 48 Bridge on South Grimesland Bridge Road, over Tar River in Pitt County, NC (Google Map) 

 

 

Figure 49 Point Cloud of Antenna, for Validation 

 



 

 

Figure 50 Point Cloud from the Side-View UAS-LIDAR, Flight Part 1 

 

 

 

Figure 51 Point Cloud from the Downward Looking UAS-LIDAR 

 

 After correction, all the points from the whole flight can be integrated into one point cloud, as shown 

in Figure 52. The 2D view of the columns and the pier can be extracted from this point cloud, which can be 

found in Figure 53 and Figure 54 respectively. They are compared against the structure design of the bridge. 

As shown in Figure 55, the distance between the centers of both columns is designed to be 20 ft. The columns 

in Figure 53 are measured in the point cloud, which are 6.125 m or 20.09 ft apart. The distance between the 

centers of the left and the right piers is 33 ft. The piers in Figure 54 are 10.099 m or 33.13 ft apart, as measured 



in the point cloud. The estimated systematic horizontal error is 3 cm, 1 sigma, after correction. The estimated 

random horizontal error is also at 3 cm, 1 sigma, based on the LIDAR performance. The difference between 

LIDAR point cloud and the design document is within LIDAR error budget.   

 

Figure 52 Point Cloud from the Side-View UAS-LIDAR, whole flight 

 



 

Figure 53 Point Cloud of columns 

 

Figure 54 Point Cloud from the Side-View UAS-LIDAR, Flight Part 1 

 



 

 

Figure 55 Dimensions of pier and columns, courtesy of NCDOT 

 

5.5 Summary 

The downward-looking UAS-LIDAR system can be used to measure 3D models of water level (with 

waves), road surface and riverbed/drainage systems. It may be used to detect changes caused by major disasters. 

However, the side-view system is more effective in taking 3D measurements of horizontal structures, such as 

bridges.  

  



Ch 6 Emerging Technologies  

Although camera/SFM has been the most popular UAS-based sensing technology in construction 

management and disaster management, a major challenge still remains, which is the dependence on GCPs. The 

quality of SFM point cloud is directly related to the density and accuracy of GCPs. A dense network of GCPs 

(such as 40 per squared kilometer) have to be established and surveyed ahead of the flight, to ensure the 

accuracy of geo-registration.  

With today’s technologies, small UAS could carry high-quality GNSS receivers that are capable of RTK 

on the fly, or recording data for post processing. Post-Processed position through PPK or PPP could be used 

to help improve the accuracy with limited GCPs. [Pix4D17] noted that RTK and PPK could both produce 

centimeter-level accuracy. The data with PPK was more accurate than that of RTK, but less than using GCPs, 

especially on the vertical direction.  

Although the approaches above claimed that GCPs were not necessary if PPK position were available 

for the cameras, the point cloud could not be directed registered with any GCPs. SFM with PPK can produce 

precise point cloud only in the camera body frame. Since high-quality IMUs have not been commonly available 

for small UAS, these systems cannot directly place the point cloud in a world frame. An additional step is 

needed to align the point cloud in the correct direction, often by using a few GCPs. 

In terms of geo-registration, the main focus is to reduce the number of GCPs with RTK and PPK, not 

to eliminate them. 

6.1 SFM with Precise Camera Position 

The main manufacturer of commercial UAS DJI has followed the strategy of fewer GCPs, since it 

reduces set-up time [DJI19]. The new UAS solution supports both RTK and PPK. However, since the 

commercial DJI UAS is closed-interface proprietary system with a high cost, it has not been used in the project. 

Instead, a low-cost open-interface system was built for research and demonstration purposes.  

6.1.1 Open Interface System 

The ECU team constructed an open-interface system that includes: 

1. A video camera 

2. PPK-capable GNSS receiver and antenna (onboard) 

3. PPK-capable GNSS receiver and antenna (ground, optional) 

4. A synchronization mechanism (onboard) 

5. Airframe with a sensor enclosure. 

6. PPK software 

7. SFM software 



The camera is required to capture and save images at a high frame rate. A GoPro Hero 7 was selected 

for this purpose. It is equipped with a fisheye lens to capture larger areas. It has a 240 frame per second (FPS) 

rate, which had been independently verified using LED-based timing circuitry by the ECU team. 

The onboard and ground GNSS receivers were the U-blox F9P chip embedded on the U-blox C099-

F9P development board. They are low-cost and capable of RTK/PPK. In practice, only PPK solution 

generated from recorded data is needed. The PPK solution was produced in an open-source library RTKLIB. 

More details of the algorithm behind the GNSS PPK solution can be found in [Krebs22]. GNSS data were 

recorded using Raspberry Pi III computers. The whole system was supported by 3.7V lithium batteries, which 

are independent of the UAS power supply. 

The images were synchronized to GPS time via an onboard timing mechanism, which is based on 

LEDs driven by the GNSS receiver. The details of this system can be found in [Hill22]. 

A 3D-printed enclosure is used to house all the onboard components (Figure 56). It can be attached to 

any UAS with sufficient payload capability. As shown in (Figure 57), it has been attached to a DJI Inspire Pro 

2.   

The SFM software selected is the Agisoft Metashape, although other commercial and open-source 

options are available as well. 

 

Figure 56 UAS Enclosure for SFM 

 



 

 

Figure 57 Sensor Enclosure Attached to a DJI Inspire Pro 2 

 

   



6.1.2 Performance 

To validate the geo-registration accuracy, a test flight was performed in March, 2022. The canvas targets 

introduced in Chapter 3 were modified to have checker board-like patterns on the surface.  Both targets are 

placed at a short distance away from one another. Both are identified with different colors, one in black and 

one in blue, as shown in Figure 58 and Figure 59 respectively. The point cloud was processed in Agisoft 

Metashape. Figure 60 shows the screenshot of an intermediate step from Agisoft, which displays the pose of 

camera from all the images used in SFM. The position of the camera was measured with PPK and provided to 

Agisoft, whereas the orientation was calculated by Agisoft. As afore mentioned, the orientation of the camera 

and the point cloud is relative, and does not represent the actual orientation in a world frame. 

The checker board pattern included a lot of corners, which are used as point features. The location, 

physical dimensions and patterns (corners) of both targets were carefully measured and used as a truth 

reference. Based on that, the performance of the point cloud, including accuracy and precision were evaluated. 

For example, Figure 61 illustrates the points identified on the corners of the checker board pattern.  

The location of all the points from SFM were compared against that from truth reference. It was found 

that the position error all these points range from 4mm to 8mm (1 𝜎). They are consistent with the precision 

reported in literature, as discussed in Chapter 2. However, this only reflects relative precision of the 

measurements. Since there is no GCPs involved at this stage, the point cloud could not be directly registered 

to a world frame. If a user is only interested in relative measurements, such as dimensions and sizes, SFM from 

this system alone is sufficient. Otherwise, GCPs have to be introduced.  

 

  

  



 

 

Figure 58 UAS and Calibration Targets. 

 

 

Figure 59 Targets as Seen by UAS 

 

 



 

Figure 60 Location of Camera Estimated by Agisoft Metashape 

 

 

Figure 61 Target One (Side A) Points Selected for Analysis. 

 

 

6.2 Comparison of SFM and UAS-LIDAR Point Clouds 

In addition to SFM, the downward-looking UAS-LIDAR was also used to collect a point cloud. The 

point cloud of a target from both systems can be found in Figure 62. The geo-registration error for a target has 



a standard deviation of approximately 0.04 m, which is close to the UAS-LIDAR ranging noise level. Therefore, 

it is concluded that there is a strong agreement between SFM and UAS-LIDAR models for each target after 

geo-registration. In general, the SFM point cloud has higher density and resolution than UAS-LIDAR. The 

targets in the SFM point cloud have smoother surfaces than those from UAS-LIDAR, which indicates that 

SFM offers higher relative precision as well. For example, the SFM relative error estimated in this flight test is 

below 0.01m, whereas the UAS-LIDAR error estimated in Chapter 3 is below 0.1m. 

 

 

Figure 62 SFM (Top) vs. UAS-LIDAR (Bottom) Point Cloud 

 

 The limitation of SFM is also obvious. Even with PPK, it would still need GCPs. In this case, the UAS-

LIDAR point cloud can be used as GCPs to geo-locate the SFM point cloud. However, if both targets are used 

simultaneously as GCPs, the comparison shows a drift between both targets in the SFM point cloud. One of 

the targets would have a horizontal bias of approximately 0.1 m in geo-registration. Since the UAS-LIDAR 

does not have large systematic errors, as proved in Chapter 3, the horizontal bias is likely in the SFM point 

cloud. It is likely because there is a large gap between both targets covered by grass, as can be seen in Figure 

59. This space does not have clear visible texture like the checker board, which results in less accurate point 

cloud. The SFM point cloud could be improved by adding more texture and GCPs between the targets. It is 

noted from this dataset that SFM with PPK may still need a few GCPs for practical reasons. 



6.3 Integration of SFM and UAS-LIDAR Point Clouds 
The integration of SFM (with or without PPK) and UAS-LIDAR can be accomplished using 

commercially available software. The following steps have been defined for Agisoft and Lastools, but are 

applicable to other options as well: 

1) Use Agisoft Metashape to align images and prepare them for a 3D point cloud. 

2) Use Lastools to pre-process the UAV LIDAR point cloud. 

3) Create markers (geo-referenced targets) from LIDAR and import them into Agisoft. 

4) Use Agisoft to geo-registered 3D imagery point cloud. 

  

 

  



Ch 7 Recommendations to NCDOT 

7.1 Comparison Among Different Technologies 
The following Tables demonstrate the comparison among three technologies, UAS-LIDAR, 

traditional SFM and SFM with RTK/PPK. The quality of data product (mainly the point cloud); the 

requirement and constraints on flight pattern, environment and the surface; the cost to acquire and to 

operate them; and potential applications. They are based on discoveries made with cases and literature 

review studied in this project. In the following tables, green = advantageous; red = disadvantageous; 

black or blank = neutral. 

 

Table 8 Data quality 

 UAS-LIDAR SFM SFM-RTK(PPK) 

Relative precision 

(typical values, 1 sigma) 

<0.1m Depends on GCPs <0.01m 

Absolute accuracy 

(typical values, 1 sigma) 

<0.1m Depends on GCPs Depends on GCPs 

Resolution / point 

density 

Medium High High 

Visualization Need external image Yes Yes 

 

UAS-LIDAR is accurate in a world frame (absolute accuracy), but has lower precision and resolution 

than SFM in general. SFM-RTK(PPK) can be very precise even without GCPs. 

 

Table 9 Requirements on Flight for Data Collection 

 UAS-LIDAR SFM SFM-RTK(PPK) 

Flight duration Short Long Long 

Flight pattern Straight (short) Circles Circles 

Desired flight height Low Multiple Multiple 

In flight calibration Yes No No 

 

UAS-LIDAR can cover a large area in a short amount of time, but prefers lower flight. UAS-LIDAR 

does also benefit from some circular flight patterns, especially during initialization. Long and straight flights 

should be avoided as they increase systematic error. The requirement for flight for SFM with and without RTK 

is the same. 

 



Table 10 Constraints on Environment and Surface 

 UAS-LIDAR SFM SFM-RTK(PPK) 

GCPs or ground 

reference points 

Few, optional Dense, onsite Sparse, onsite 

Light condition Not sensitive Sensitive Sensitive 

Shadow Not sensitive Sensitive Sensitive 

Surface texture Not sensitive Sensitive# Sensitive# 

Vegetation on surface Not sensitive* Sensitive Sensitive 

Dusty or foggy 

environment 

Not sensitive* Sensitive Sensitive 

Still water surface No No No 

Moving water surface Yes+ No No 

* Wide laser beam and multiple returns are helpful. 

+Wide laser beam is helpful. 

#High camera resolution is helpful. 

 

In general, UAS-LIDAR is less sensitive to the environment or the surface texture than SFM. 

Therefore, it should be considered for low-texture surfaces, such as sand dunes. High-resolution cameras can 

be used in SFM to compensate for low textures. 

 

Table 11 Cost 

 UAS-LIDAR SFM SFM-RTK(PPK) 

Hardware (typical cost) High(>$20K) Low (<$10K) Medium ($10K~20K) 

Software Medium  High High 

Operation (Labor) Low High High 

Post-processing (Labor) Medium High High 

 

The cost assessment is based on commercial proprietary solutions. The ECU systems have a 

different cost base. The UAS-LIDAR equipment is more expensive, but may cost less to operate in a long 

run. 

 

 

 

 

 



 

Table 12 Recommended Applications 

 UAS-LIDAR SFM SFM-RTK(PPK) 

Piles  Yes  Yes  Yes 

Pit with no water Yes  Yes Yes 

Pit with water No No No 

Buildings Yes Yes Yes 

Bridge Yes No TBD 

Road Yes Yes Yes 

Beach and sand dunes Yes Yes  Yes 

Seashore/riverbank Yes Yes Yes 

Sea/river water Yes No No 

 

This table does not include a complete list of applications that NCDOT may be interested in. It is 

mainly based on the case studies performed in this project. All three systems have limited application over water 

surface. 

 

7.2 UAS-LIDAR Recommendations 
 

7.2.1 Hardware 
The navigation system includes an IMU and a GNSS receiver. Commercial UAS-LIDAR system 

available today often uses a navigation system that is very similar to the one installed on the ECU system. The 

typical performance in orientation and position solution can be found in this table:  

 

Table 13 Typical Performance of Navigation System (with GNSS, after PPK) 

 Roll Pitch Heading East North Up 

1 sigma 0.01° 0.01° 0.1° 0.01m 0.01m 0.02m 

 

There is greater variety in LIDAR, in terms of maximum range, field of view and speed of scan. This 

table includes the expected performance in terms of synchronization error (vs GNSS), ranging error 

(centimeter-level) and laser beam angular uncertainty (due to laser aperture, for example). The installation and 

calibration of LIDAR also affects the quality of data. The lever arm and boresighting between LIDAR and 

IMU is also considered in this table. 

 

Table 14 Expected Performance of LIDAR, Installation/Calibration and Synchronization 



 Synchronizat

ion error 

Range error Beam angular 

uncertainty 

Lever arm X Lever arm Y Lever arm Z 

1 sigma 1ms 0.05m   0.1°+ 0.001m 0.001m 0.001m 

 Boresighting Roll Boresighting Pitch Boresighting Yaw 

1 sigma 0.01° 0.01° 0.1° 

+SICK LD-MRS420201 LIDAR actually has a wider laser beam since it was designed to work in a dusty 

environment.  

 

The point cloud accuracy is significantly affected by the configuration even with the identify LIDAR 

and navigation system. There are two factors to be considered: 1) angular errors caused by boresighting and 

the navigation solution often result in systematic errors or biases in the point cloud; 2) the error is the heading 

(yaw) direction tends to be greater, both from navigation solution and boresighting.  In order to limit biases in 

point cloud, it would be ideal to avoid the impact of the angular errors as much as possible. The boresighting 

error levels introduced in Table 14 are similar to those from the navigation system. These levels can be achieved 

by using calibration targets on the ground. 

The downward-looking LIDAR used in this work is a SICK LD-MRS420201 unit, and the side-view 

LIDAR is Velodyne Puck VLP-16. The SICK LIDAR has approximately 90° field of view. The vertical 

accuracy of the downward-looking SICK LIDAR is mainly sensitive to laser ranging error and the surface 

texture, and it is less sensitive to angular errors, especially the heading. Therefore, the downward-looking 

configuration presented in this work provides reliable vertical measurement with little bias, as shown in Chapter 

3. In some cases, the horizontal errors can be mapped into the vertical direction due to slope and texture of the 

surface.  

In theory, both LIDARs can be installed as downward-looking or side-view. However, since the VLP-

16 has a 360° field of view, it is a better choice as a side-view LIDAR. The vertical accuracy is only sensitive 

to errors in roll and pitch angles, which is usually much smaller than the heading errors in boresighting and the 

navigation solution. The horizontal error, however, can still be significant. As suggested in Chapter 3, the user 

would need a more rigorous calibration procedure of boresighting before flight, and careful calibration of 

heading during every flight. Furthermore, the target distance can be limited despite the sensor capability. In 

order words, only points measured within a certain distance (for example, 50 m) can be used in the final data 

product. 

The impact of UAS flight on these errors will be further explained in the follow subsection. 

 

Table 15 Point Cloud Accuracy of Downward and Sideview UAS-LIDAR 

 Downward (90° field of view) Side-view (360° field of view) 



Vertical accuracy sensitive to Laser ranging, surface texture, roll roll, pitch 

Horizontal accuracy sensitive to roll, pitch, heading  heading, laser ranging, texture 

 

AS shown in the table below, RTK or PPK can be used for UAS-LIDAR. PPK is a better option unless 

precise position is needed in real time. 

 

Table 16 RTK or PPK for UAS-LIDAR (also applicable to SFM) 

 RTK PPK (Post Processed RTK) 

Base station Yes Optional 

Datalink required Yes No 

Results available in real time Yes No 

Accuracy Good Best 

 

7.2.2 Flight Control 
UAS-LIDAR can cover a large area in a short amount of time. It can be controlled manually or with a 

pre-configured flight plan. Since a downward-looking UAS-LIDAR can better cover a horizontal worksite, 

which is more common in NCDOT applications, the flight control of this system will be discussed here. 

  

Table 17 Flight Control of UAS-LIDAR (Downward-Looking) 

 Manual control Pre-planned 

Height <30m >30m 

Worksite Small (100m by 100m) Large 

Waypoints No  Yes 

 

 A manual flight is feasible for a small worksite or at low altitude. At a low altitude, it may be convenient 

to control the UAS manually, to avoid potential obstacles and hazards (such as trees and buildings). The UAS 

can directly fly over the worksite, as shown in Figure 63, if LIDAR footprint is wide enough to cover the entire 

site. 

 



 

Figure 63 Flight Path over a Single Worksite (Red)   

 

For manual flight, the following steps may be helpful: 

Pre-flight 

1. Survey the target area. 

2. Estimate flight height above ground and above target. Estimate the boundaries of flight 

ground track. 

Onsite 

3. Place visual observers on boundaries. 

4. Take off and hover at ~15 m above ground. 

5. Initialization maneuvers for 3 min: including accelerations in horizontal directions. Make a 

straightforward flight followed by circular and figure-8 patterns.  

6. Fly over calibration targets (optional). The target can be the antenna and the tripod of the 

ground reference GNSS receiver. 

7. Fly over worksite, ~15 m above target, ~5 m/s. Use live camera link if available. 

8. Fly over calibration targets (optional). 

9. Land and retrieve data. 

 

The UAS can initialize a rough heading from a straightforward flight first. When the UAS is flying in 

circular (in both directions) and figure-8 patterns, as shown in Figure 64, it exercises acceleration in all 

horizontal directions (forward, back, left and right). These patterns can be repeated with rotating heading angle 

and fixed heading angle. With acceleration in horizontal directions, heading error can be corrected with GNSS-

PPK. Therefore, it is recommended that the UAS complete initialization maneuvers, which will help improve 

the initial heading accuracy. 

  



   

 

Figure 64 Circular and Figure-8 Patterns 

 

If feasible, the UAS should exercise acceleration in horizontal directions during the entire flight.  

Heading errors cannot be corrected during maneuvers such as straight steady flight, hovering and rotations. 

Therefore, these maneuvers should be avoided as much as possible during manual or planned flights. Circular  

and figure-8 flight patterns will help keep the heading error low through the flight.  

If calibration targets, such as the ground reference antenna (as shown in Chapter 4), are available, the 

UAS could fly over them at the same height as the rest of the flight. Ideally, the UAS can fly over them twice, 

at the beginning and at the end. If both partial point clouds from the beginning and the end agree with the 

truth reference (GNSS), they can be used to validate the performance of the entire point cloud. 

 

For pre-planned flight 

Pre-flight 

1. Survey the target area. 

2. Program waypoints and heading, including initial maneuvers and flight over calibration targets. 

Fly over worksite, ~15 m above target, ~5 m/s. 

Onsite 

3. Place visual observer. 

4. Take off and hover at ~15 m above ground. 

5. Execute flight plan. 

6. Land and retrieve data. 

 

 



 

Figure 65 Flight Path over Multiple Worksite (Red) with Overlapped Footprint (Blue Shade) 

 

If there is a large area to cover, possibly with multiple sites, and the UAS can fly at a higher altitude, a 

pre-planned flight may be more convenient. The flight altitude should be high enough to avoid any obstacles 

while taking into consideration the ground undulation. The LIDAR footprint on the ground should be 

calculated ahead of time, based on the altitude and LIDAR orientation. The flight should be planned so that 

there is small overlap of the LIDAR footprints between adjacent segments, as shown in Figure 65. It is 

important to keep these overlaps especially when the UAS altitude is high.  

Using the error model is Chapter 3, it can be found that the systematic angular errors are mapped onto 

the point cloud error via distance. Systematic errors are related to UAS orientation, position and time, which 

means that the errors would be different between different segments of the UAS flight. There could be a bias 

between the partial point cloud from the same area scanned in two segments of the UAS flight. As shown in 

Chapter 4, both the downward-looking and the side-view UAS-LIDAR systems could have biases.  

The bias could exist in vertical and horizontal directions. They can be observed in the overlapped area 

between two flight segments. The magnitude of the bias can be used to assess the actual accuracy of point cloud 

geo-registration. If the biases are constant, they could potentially be corrected.  

Although UAS-LIDAR and SFM are often carried by rotary-wing airframes, they can be carried by 

fixed-wing airframes as well. Although a rotary-wing UAS may be less efficient in carrying payload, which 

results in less payload capability and shorter distance, it is easier to take off, land in a smaller space, and easier 

to maneuver at low altitude. Therefore, it is a preferred choice for SFM and LIDAR. 

 

 

 



Table 18 Airframe 

 Fixed-wing Rotary-wing 

Takeoff/landing Hard Easy 

Distance Long Short 

Height High  Various 

Maneuverability  Low  High  

Payload High Low 

 

7.2.3 Processing and Dissemination 
The post processing steps are the same for both manual and pre-planned flights, as reported in Chapter 

4. 

  

1. Post-process GNSS position and orientation. 

2. Synchronize LIDAR and camera to GPS time. 

3. Geo-registered raw point cloud in local ENU frame by integrating LIDAR, GNSS and Inertial 

data. 

4. Down sampling to desired horizontal resolution; outliers removed.  

5. Convert the coordinates of the data points to target frame  

6. Convert the data file into a desired format. 

7. Add imagery texture if available.  

 

7.3 Measuring Pile Volume 
 
 It was shown in Chapter 4 that the UAS-LIDAR accuracy and resolution is more than enough for 

volumetric measurements. It is very efficient. It takes seconds to scan a single pile, and only minutes to scan an 

area of 100m by 100m. It would take 30 min total onsite time for a 2-person team, regardless of the number of 

piles. It can be even more efficient if the UAS can fly at a higher altitude and a higher speed. After the point 

cloud is converted into the desired format and coordinate system, the points can be used to calculate the volume 

of a pile. Here is a potential workflow: 

1. Visually select a boundary for the pile in the LIDAR processing software. 

2. Export the data of the points inside the boundary. 

3. Import the data to calculate volume, for example, in Civil 3D.  

4. Choose a model, such as the TIN model in the software. 

5. Compute the volume in the software. 

 



 

 

Table 19 LIDAR or GNSS 

 UAS-LIDAR GNSS-Survey 

Point density Thousands per pile Tens per pile 

Data collection speed Minutes for a site with multiple piles; 2-

person team 

Hours for a site with multiple piles 

Accuracy centimeter-level  centimeter-level 

Difference in volume ~10%, due to point density 

  

Based on the cases studied in this work, it is summarized that: 

1. UAS-LIDAR is more efficient than GNSS-based survey, with much higher density (resolution) 

and similar single point accuracy. The total volumetric measurements will be more accurate 

with UAS-LIDAR because of the density. 

2. The comparison between UAS-LIDAR and SFM can be found in section 7.1. 

3. Since it can be difficult to place visual observers in UAS-LIDAR flight, the UAS operator can 

benefit from a live downward video link if available. 

4. Since the UAS-LIDAR provides sufficient accuracy and resolution, it can fly at a higher 

altitude (30m) and a higher speed (>5m/s) to cover a larger area.  

5. UAS-LIDAR can measure absolute volume and relative volume change over time. The 

absolute accuracy depends on the choice of ground model. The relative accuracy can be 

achieved as long as the same ground model is used over time. 
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Appendix 

A.1 List of Parts  

A.1.1 ECU UAS System (downward looking) 
Drone (UAS) System 

- Make: DJI 

- Model: Matrice 600 pro 

- Specification sheet 

https://store.dji.com/product/matrice-600-pro 

 

Digital Camera  

- Make: GoPro 

- Model: Hero session  

- Specification sheet 

https://gopro.com/en/us/update/hero_session 

 

Digital Camera (secondary, sync) 

- Make: IDS 

- Model: uEye USB LE 

- Specification sheet 

https://en.ids-imaging.com/store/products/cameras/usb-2-0-cameras/ueye-le/show/all.html 

 

GNSS System 

- Make: NovAtel 

- Model: OEM 6  

- Specification sheet 

https://www.novatel.com/assets/Documents/Papers/OEM628.pdf 

 

Inertial (IMU) System 

- Make: Analog Devices/NovAtel 

- Model: IGM A1 

- Specification sheet 

https://www.novatel.com/products/span-gnss-inertial-systems/span-imus/span-mems-imus/imu-igm-a1/ 

 

GNSS-IMU Post Processing Software 

https://store.dji.com/product/matrice-600-pro
https://gopro.com/en/us/update/hero_session
https://en.ids-imaging.com/store/products/cameras/usb-2-0-cameras/ueye-le/show/all.html
https://www.novatel.com/assets/Documents/Papers/OEM628.pdf
https://www.novatel.com/products/span-gnss-inertial-systems/span-imus/span-mems-imus/imu-igm-a1/


- Product: NovAtel Waypoint/inertial explorer  

- Version 8.7 

- Specification sheet 

https://www.novatel.com/products/software/inertial-explorer/ 

 

 LIDAR 

- Make: SICK 

- Model: LD-MRS420201 

- Specification sheet 

https://www.sick.com/us/en/detection-and-ranging-solutions/3d-LIDAR-sensors/ld-mrs/ld-

mrs420201/p/p496644?ff_data=JmZmX2lkPXA0OTY2NDQmZmZfbWFzdGVySWQ9cDQ5NjY0NCZm

Zl90aXRsZT1MRC1NUlM0MjAyMDEmZmZfcXVlcnk9JmZmX3Bvcz0xJmZmX29yaWdQb3M9MSZmZl

9wYWdlPTEmZmZfcGFnZVNpemU9MjQmZmZfb3JpZ1BhZ2VTaXplPTI0JmZmX3NpbWk9OTMuMA

== 

 

A.1.2 ECU UAS System (side view) 
Drone (UAS) System 

- Make: DJI 

- Model: Matrice 600 pro 

- Specification sheet 

https://store.dji.com/product/matrice-600-pro 

  

 

GNSS + IMU System 

- Make: NovAtel 

- Model: pwrpak 7  

- Specification sheet 

https://www.novatel.com/assets/Documents/Papers/OEM628.pdfhttps://hexagondownloads.blob.core.windows.

net/public/Novatel/assets/Documents/Papers/PwrPak7-Product-Sheet/PwrPak7-Product-Sheet.pdf 

 

GNSS-IMU Post Processing Software 

- Product: NovAtel Waypoint/inertial explorer  

- Version 8.7 

- Specification sheet 

https://www.novatel.com/products/software/inertial-explorer/ 

https://www.novatel.com/products/software/inertial-explorer/
https://www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-sensors/ld-mrs/ld-mrs420201/p/p496644?ff_data=JmZmX2lkPXA0OTY2NDQmZmZfbWFzdGVySWQ9cDQ5NjY0NCZmZl90aXRsZT1MRC1NUlM0MjAyMDEmZmZfcXVlcnk9JmZmX3Bvcz0xJmZmX29yaWdQb3M9MSZmZl9wYWdlPTEmZmZfcGFnZVNpemU9MjQmZmZfb3JpZ1BhZ2VTaXplPTI0JmZmX3NpbWk9OTMuMA==
https://www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-sensors/ld-mrs/ld-mrs420201/p/p496644?ff_data=JmZmX2lkPXA0OTY2NDQmZmZfbWFzdGVySWQ9cDQ5NjY0NCZmZl90aXRsZT1MRC1NUlM0MjAyMDEmZmZfcXVlcnk9JmZmX3Bvcz0xJmZmX29yaWdQb3M9MSZmZl9wYWdlPTEmZmZfcGFnZVNpemU9MjQmZmZfb3JpZ1BhZ2VTaXplPTI0JmZmX3NpbWk9OTMuMA==
https://www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-sensors/ld-mrs/ld-mrs420201/p/p496644?ff_data=JmZmX2lkPXA0OTY2NDQmZmZfbWFzdGVySWQ9cDQ5NjY0NCZmZl90aXRsZT1MRC1NUlM0MjAyMDEmZmZfcXVlcnk9JmZmX3Bvcz0xJmZmX29yaWdQb3M9MSZmZl9wYWdlPTEmZmZfcGFnZVNpemU9MjQmZmZfb3JpZ1BhZ2VTaXplPTI0JmZmX3NpbWk9OTMuMA==
https://www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-sensors/ld-mrs/ld-mrs420201/p/p496644?ff_data=JmZmX2lkPXA0OTY2NDQmZmZfbWFzdGVySWQ9cDQ5NjY0NCZmZl90aXRsZT1MRC1NUlM0MjAyMDEmZmZfcXVlcnk9JmZmX3Bvcz0xJmZmX29yaWdQb3M9MSZmZl9wYWdlPTEmZmZfcGFnZVNpemU9MjQmZmZfb3JpZ1BhZ2VTaXplPTI0JmZmX3NpbWk9OTMuMA==
https://www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-sensors/ld-mrs/ld-mrs420201/p/p496644?ff_data=JmZmX2lkPXA0OTY2NDQmZmZfbWFzdGVySWQ9cDQ5NjY0NCZmZl90aXRsZT1MRC1NUlM0MjAyMDEmZmZfcXVlcnk9JmZmX3Bvcz0xJmZmX29yaWdQb3M9MSZmZl9wYWdlPTEmZmZfcGFnZVNpemU9MjQmZmZfb3JpZ1BhZ2VTaXplPTI0JmZmX3NpbWk9OTMuMA==
https://store.dji.com/product/matrice-600-pro
https://www.novatel.com/assets/Documents/Papers/OEM628.pdf
https://www.novatel.com/products/software/inertial-explorer/


 

 LIDAR 

- Make: Velodyne 

- Model: Puck-16 

- Specification sheet 

https://www.amtechs.co.jp/product/VLP-16-Puck.pdf 

A.1.3 ECU UAS System (SFM) 
Drone (UAS) System 

- Make: DJI 

- Model: Inspire pro 2 

- Specification sheet 

https://store.dji.com/product/matrice-600-pro https://www.dji.com/inspire-2 

  

GNSS System 

- Make: U-blox 

- Model: C099-F9P  

- Specification sheet 

https://www.novatel.com/assets/Documents/Papers/OEM628.pdf https://content.u-

blox.com/sites/default/files/documents/C099-F9P-AppBoard_UserGuide_UBX-18063024.pdf 

 

Camera  

- Make: GoPro 

- Model: Hero7  

- Specification sheet 

https://gopro.com/en/us/out-of-the-box-experience/hero-7-black 

 

 

GNSS-IMU Post Processing Software 

- Product: RTKLIB  

- Version 2.4.3 

- Specification sheet 

https://github.com/rtklibexplorer/RTKLIB/blob/demo5/doc/manual_demo5.pdf 

 

https://www.novatel.com/products/software/inertial-explorer/  

 

https://www.amtechs.co.jp/product/VLP-16-Puck.pdf
https://store.dji.com/product/matrice-600-pro
https://www.novatel.com/assets/Documents/Papers/OEM628.pdf
https://content.u-blox.com/sites/default/files/documents/C099-F9P-AppBoard_UserGuide_UBX-18063024.pdf
https://content.u-blox.com/sites/default/files/documents/C099-F9P-AppBoard_UserGuide_UBX-18063024.pdf
https://gopro.com/en/us/out-of-the-box-experience/hero-7-black
https://github.com/rtklibexplorer/RTKLIB/blob/demo5/doc/manual_demo5.pdf
https://www.novatel.com/products/software/inertial-explorer/
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1. Introduction to UAV-based sensing systems 

There are two types of remote sensing systems covered in this literature review: 1) Unmanned Aerial 

Vehicle (UAV)-based photogrammetry and 2) UAV-based LIDAR system. 

UAV-based photogrammetry is primarily based on imagery collected with small onboard cameras. It 

typically requires ground control points (GCPs) with surveyed locations and can benefit from 

recorded location and orientation of the camera. A 3D point cloud of the target area can be 

estimated via direct or indirect geo-referencing. Indirect georeferencing refers to the methods that 

world-frame coordinates to 3D measurements collected in a relative reference frame. One of the 

most popularly used UAV-based georeferencing solution is structure from motion (SFM). It has 

been proven to be superior to conventional handheld surveying methods in certain environments, 

such as in projects with low vegetation, stable GPS availability and substantial sunlight (DJI, 2019). 

Multiple 2D images over the same area can be combined and the point features are matched across 

them. These images are expected to have great overlap areas (~80%). The 3D locations of these 

points are then estimated in the camera frame, which are then used to form a 3D model or point 

cloud. However, the camera (position and orientation) isn’t always precisely known in a world frame 

(GPS frame, for example) when a small commercial UAV is used. Therefore, the 3D model created 

with structure from motion with a small UAV is typically dimensionless and cannot be directly 

georeferenced. It requires additional GCPs to relate back to the world frame. The absolute accuracy 

of this model depends on both image processing quality and the GCPs. 

Some customized and commercially off-the-shelf UAVs are capable of recording the camera 

location and orientation for each of the images taken during a flight. In that case, camera-based 

direct georeferencing is possible. It can be achieved by raytracing from a single image to a known 

surface (such as Digital Elevation Model (DEM)or other a priori terrain models), or triangulation 

from multiple overlapped images, or a combination of both. Since no ground control is necessary, 

the accuracy of 3D modeling is primarily determined by the accuracy of camera timing, orientation 

and location. However, a small UAV that is not capable of carrying high-quality navigation sensor 

cannot be used for direct geo-referencing. Therefore, direct geo-referencing has not been commonly 

used in small UAVs yet. It will be further discussed in the context of emerging technologies.  



Although there existed several specialized software solutions for triangulation, it has become part of 

the software solution for SFM. As discussed in previous sections, SFM does not require a priori 

position and orientation of the camera, or the complete camera calibration model. These items can 

be estimated as part of the outcome of SFM. The core algorithm in SFM is typically based on bundle 

adjustment. A good review of the algorithm can be found in (Triggs, McLauchlan, Hartley & 

Fitzgibbon, 2000).  

The main functions of Agisoft are listed here as examples, retrieved from (Semyonov, 2011). 

• Feature matching across the photos 

At the first stage Agisoft detects points in the source photos which are stable under 

viewpoint and lighting variations and generates a descriptor for each point based on its local 

neighborhood. These descriptors are used later to detect correspondences across the photos. 

This is similar to the well-known Scale Invariant Feature Transform (SIFT) approach (Lowe, 

1999), but uses different algorithms for a little higher alignment quality. 

 

• Solving for camera intrinsic and extrinsic orientation parameters  

Agisoft uses a greedy algorithm to find approximate camera locations and refines them later 

using a bundle-adjustment algorithm.  

 

• Dense surface reconstruction 

At this step several processing algorithms are available. Exact, Smooth and Height-field 

Methods are based on pair-wise depth map computation, while Fast Method utilizes a multi-

view approach. 

 

• Texture mapping 

At this stage the software parametrizes a surface possibly cutting it in smaller pieces, and 

then blends source photos to form a texture atlas . 

Modern SFM software would take known calibration, position or orientation as input. Commercial 

software is available from Agisoft (Agisoft, 2019), Trimble (Trimble, 2019), Pix4D (Pix4D, 2019), 

and open-source software such as CMVS (Furukawa, 2019) has also been used in scientific 

communities. They can help improve the quality of the 3D point cloud. If only inaccurate position 



and orientation are available from low-quality navigation sensors, they can also be optimized in the 

SFM software. Therefore, for UAVs that have precise location, through Real Time Kinematic 

(RTK), Post-Processed Kinematic (PPK), or post-processed Precise Point Positioning (PPP), 

without orientation, SFM can still be used to estimate the 3D point cloud. It can be done with few 

or no GCPs. PPP is post-processed GNSS positioning that does not need a local reference station 

like RTK and PPK do, which could be less accurate.  

Alternatively, camera systems can be combined with, or replaced by a direct ranging sensor, such as 

a UAV LIDAR system, on some bigger-sized UAVs. LIDARs are less sensitive to natural light 

condition, and may provide measurements in operational conditions which prohibits camera 

operation (such as low light). An airborne LIDAR directly measures point cloud in the sensor frame. 

The point cloud will be transformed into the world frame by knowing precise location and 

orientation of the LIDAR. Very much like camera direct georeferencing, airborne LIDAR point 

cloud accuracy is also sensitive to timing/synchronization, LIDAR orientation and location. 

Furthermore, airborne LIDAR sensors available today are still more expensive, more power-hungry 

and heavier than cameras in general. 

An airborne or UAV LIDAR system typically includes three types of sensors, a ranging sensor (2D 

scanning LIDAR, 3D scanning LIDAR or 3D imager); a positioning sensor (such as GPS or GNSS 

receiver) and an inertial sensor that measures acceleration, rotation, velocity and orientation. These 

three sensors are integrated in the data collection system and in the 3D modeling procedure. The 

GNSS and inertial sensors are typically tightly coupled together to provide precise and smooth pose 

of the LIDAR. It is a common practice that the positioning sensor is also responsible for accurate 

3D positioning and synchronization of an onboard antenna (optional). 

  



2. Data quality and error models 

The data quality from UAV photogrammetry based on SFM and indirect geo-referencing is 

discussed here.  

2.1 SFM and GCP errors 

The errors modeled considered in (Nasrullah, 2016) included camera/lens calibration errors; motion 

blurriness; altitude, pattern and stability of flight; image overlap and distribution of GCPs.  

1) Camera calibration can be estimated as part of SFM (self-calibration). However, a pre-calibrated 

camera/lens may be more convenient and robust. Other parameters, such as shutter speed, lens 

aperture, and ISO also have a considerable impact on the image quality.  

2) Small UAV platforms are often sensitive to wind and vibration problems. Even mild wind during 

data acquisition can cause offset in camera pointing direction, and eventually insufficient image 

overlap. Vibration can increase the blurriness. Furthermore, light conditions during image 

acquisition can add to the complexity. To compensate for low light conditions, a lower shutter speed 

or higher ISO are used. Lowered shutter speed increase motion blurriness, while higher ISO 

increases noise. In most target applications, a larger area of interest will probably need multiple flight 

acquisition. Appearance changes, such as change of shadows, can cause another problem.  

3) The impact of flight altitude on accuracy is a little more complex. Flight altitude changes the 

distance, image footprint, image overlap and geometry (slope) to the object. Errors tend to increase 

with distance and a steeper slope in SFM. Imaging the object from a steeper slope limits the variety 

in perspectives (view angles). Since SFM benefits from imagery from multiple perspectives, vertical 

accuracy decreases due to bad geometry. 

Examples to quantify the findings above can be found in (Nasrullah, 2016). 

Micheletti, Chandler & Lane (2013) gave specific advices for UAV SFM: 

• Plan camera survey and registration or scaling method in advance.  

• Capture the whole subject first, and then the detail, ensuring that occlusions are captured 

adequately (see item 3).  



• Ensure appropriate coverage. The basic principle is that every point on the subject must 

appear on at least three images acquired from spatially different locations.  

• Keep static scene.  

• Keep consistent light.  

• Avoid overexposed and underexposed images.  

• Avoid blurred images – normally arising from slow shutter speed and/or camera movement.  

• Avoid transparent, reflective or homogeneous surfaces. 

It was also noted in (Micheletti et al., 2013) that images did not need to be acquired from the same 

distance or have the same scale. The authors argued that it was better to acquire multi-scale image 

sets. High altitude, large-scaled images could initially capture the whole site with fewer frames. 

Closer images could capture the desired detail at the required resolution and precision. It is 

particularly important when capturing areas of detail which are physically obscured by occlusions.  

Users of SFM software are typically advised to place GCPs throughout the target site, on the edge of 

the worksite and in the center (Pix4D, 2017).  The locations of GCPs can be surveyed using GNSS-

based RTK solutions, RTK and PPK solutions (GCPS, 2019), Total Station Survey or TLS scans 

(Shaw, Helmholz, Belton, & Addy, 2019). PPK survey typically has positioning error around 1 cm, 1 

sigma. However, to achieve centimeter-level accuracy in the point cloud, the user is required to place 

up to 40 GCPs per square kilometer (DJI, 2019).  

Sanz-Ablanedo, Chandler, Rodríguez-Pérez & Ordóñez (2018) provided a systematic overview of 

accuracy in point cloud involving GCPs. With a sufficient number of GCPs (more than 2 GCPs per 

100 images as specified in this work), the error of point cloud could approach double of the GCP 

error. If fewer GCPs were used, this paper reported that the point cloud error would be as high as 4-

8 times the GCP error, which was still in the centimeter range. Vertical errors were approximately 

2.5 times the error of horizontal components. It was also suggested that GCPs should be evenly 

distributed around the whole interest area, ideally in a triangular mesh grid. For a greater project, 

denser GCPs were needed to achieve the same accuracy. This is probably because of possible 

systematic errors in SFM, which tends to amplify with growing distance and area. 

The goal of GCP placement strategy is to minimize the distance from point cloud to any GCP. 



In many scenarios or applications, it is not possible to place GCPs with this strategy. Sanz-Ablanedo 

et al. (2018) also recommended the use of  

• pre-calibrated cameras rather than the self-calibration;  

• mixing different altitude flights;  

• various degrees of image convergence; and  

• known positional and orientation parameters.  

They are consistent with recommendations made in other literature. 

Onboard pose error for direct geo-referencing was also considered (Nasrullah, 2016). With today’s 

technologies, small UAVs could carry high-quality GNSS receivers that are capable of RTK on the 

fly, or recording data for post processing. Post-Processed position through PPK or PPP could be 

used to help improve the accuracy with limited GCPs. Pix4D (2017) noted that RTK and PPK could 

both produce centimeter-level accuracy. PPK was more accurate RTK, but less than using GCPs, 

especially on the vertical direction. Grayson, Penna, Mills, & Grant (2018) further compared PPK 

with PPP. Since PPP does not need an additional local reference GNSS receiver, it is more 

convenient and flexible. However, it was found out that PPP produced worse accuracy on the 

vertical direction than RTK (10 cm error reported for PPP). Further RTK requires a live datalink 

between a reference station and the airborne receiver, which is not always possible or necessary. 

Although the approaches above claimed that GCPs were not necessary if PPK position were 

available for the cameras, the point cloud could not be directed registered yet. SFM with PPK can 

produce precise point cloud only in the camera body frame. Since PPK position does not direct 

solve the orientation of the camera or the point cloud, an additional step is needed to align the 

point cloud in the correct direction.  

It is practical to use a few GCPs even with PPK. (Zhang, Aldana-Jague, Clapuyt, Wilken, Vanacker 

& Oost, 2019) showed that a PPK–SFM solution workflow could provide consistent, repeatable 

point cloud over time, with an accuracy of a few centimeters. A vertical bias could be corrected 

using one single GCP. The results were used to estimate centimeter-level topographical change 

detection. PPK-SFM could accurately and quickly achieve a very high spatial and temporal 

resolution. 



The main manufacturer of commercial small UAVs DJI also stated similar conclusions (DJI, 2019). 

The new UAV supports both RTK and PPK solutions. Although it could potentially reduce the 

required amount of GCPs to 0, DJI mentioned the use of “fewer GCPs”, and a reduction in GCP 

set-up time. 

2.2 LIDAR and direct georeferencing errors 

Although a UAV LIDAR has different sensor quality from a more capable Airborne Laser Scanner 

(ALS), both follow the same principle for measurements. The error analysis of ALS is based on 

direct geo-referencing and is largely applicable to UAV LIDAR.  

LIDAR measurement error, navigation and timing error, and modeling error can all contribute to 

the error in the LIDAR point cloud. 

At any time of measurement, the LIDAR senses the distance to a point in the 3D world based on 

the return of a laser beam. Since the beam would be sent at a known direction specified in the 

LIDAR body frame, the position of this point is therefore directly measured in the LIDAR body 

frame.  

“LIDAR measurement error” refers to the single point position error in the body frame. It is 

dependent on the beam width (or divergence), the reflecting surface, the angle and the range 

measurement (Guan & Zhu, 2019). Beam divergence and the possible uncertainty in the scan angle 

are both considered angular errors in the LIDAR, whereas the reflecting surface and the 

measurement itself both contribute to the ranging error along the laser beam. In (May & Toth, 

2007), the angular and ranging errors are both modeled as random processes. The magnitude of 

these errors depends on the LIDAR manufacturer. In a downward looking laser beam, ranging error 

primarily contributes to the vertical position error. In practice, ranging error could also have a 

systematic component, such as a bias. It needs to be calibrated or bounded.  

Some LIDARs are designed with narrow beams (1 or few milliradians, 1milliradian is approximately 

0.06 degrees) to minimize this uncertainty such as (Velodyne, 2019). Some believe that a wider beam 

is more robust (~10 milliradians) for a UAV LIDAR. With multiple returns measured on the same 

beam, a wide beam may get returns on the target or the ground after it hits occlusion due to dust, 

rain and other objects (Webber, 2018). Therefore, it has the potential to measure distance to targets 

and ground in a harsh environment. The small angular error is scaled with distance to the ground, 



which contributes to horizontal position error in a downward looking laser beam. However, since 

the laser beam would have a slant angle even with a downward looking LIDAR, it will also 

contribute to the vertical uncertainty. 

The position in LIDAR body frame cannot be directly used in a 3D model if the LIDAR is mobile 

or airborne. The absolute position and orientation of the LIDAR in the global world frame need to 

be accurately measured and synchronized with the measurement time of each point in the point 

cloud. 

The position of LIDAR is not directly measured. Instead, it is inferred from the location of 

GPS/GNSS antenna measured with RTK, PPK or PPP. The accuracy of RTK, PPK or PPP had 

been discussed in the previous section, in the range of 1 cm to 10 cm. It must be noted that the 

navigation system used for UAV LIDAR should be GPS/GNSS tightly coupled with the onboard 

inertial measurement unit. The post-processed GNSS and inertial solution can be less noisy than 

PPK or PPP alone, typical values are 1 cm horizontal and 2 cm vertical (NovAtel, 2016); or 2-5 cm 

(Trimble-Applanix, 2019). The actual values are sensor-specific. 

The antenna position is combined with the lever arm between the antenna and the LIDAR center 

of measurement to compute the LIDAR position. Any errors in lever arm, which is typically at 

millimeter level, become biases in the point cloud.  

Similarly, the navigation system measures the orientation of the UAV in the world frame. It is 

transferred into the LIDAR orientation via known boresighting of the LIDAR. Boresighting errors 

can be calibrated, and any residual error will contribute to the angular errors discussed below. Ravi, 

Lin, Elbahnasawy, Shamseldin & Habib (2018) showed that successful calibration could reduce error 

magnitude down to centimeter level. 

The navigation system can be very accurate at measuring roll and pitch angles, typical values  are 

much lower than 1 degree (0.008 degrees (NovAtel, 2016) or 0.015 degrees (Trimble-Applanix, 

2019)). The actual values are sensor-specific.  

However, the reported true heading angle accuracy for these sensors could be overly optimistic and 

misleading. The nominal accuracy, typically better than 0.1 degrees, is achieved only after maneuvers 

of the UAV and fine alignment of heading. The maneuvers may not always be possible for small 



UAVs with a short flight time; or for the operational environment of a small urban worksite. 

Without that, the heading is initialized by vehicle velocity, gyro-compassing, compassing or manual 

input, which has the accuracy of a few degrees as reported in (Mostafa, Hutton, Reid & Hill, 2001). 

The heading accuracy levels with and without alignment are applicable to most high-end navigation 

systems that can fit on a small UAV.  

True heading error of a few degrees is a major concern for UAV LIDAR, although it was not a big 

issue for SFM. As discussed above, SFM point cloud is calculated from overlapping images. The 

points from SFM are precisely located with respect to each other within the camera body frame, and 

the relative precision does not depend on the absolute orientation in the world frame. In fact, 

camera orientation can be precisely solved from matching point features in images  (Hartley & 

Zisserman, 2004).  

The same does NOT apply to LIDAR point cloud. In processing raw LIDAR data, the points are 

geo-located independently from each other. There is no relative precision like SFM. As a result, a 

large angular error, such as the heading offset, causes each point to be out of its place. A point cloud 

formed in this case could be distorted so much that it could no longer represent the geometric shape 

of the target or the terrain. Therefore, point cloud becomes meaningless with large angular errors. 

Smaller heading and boresighting errors would cause the points measured in different parts of a 

UAV flight or from different flights to be inconsistent (Toth & Grejner-Brzezinska, 2009). 

Unfortunately, the operator of small UAVs may not know if the UAV has completed enough 

maneuvers to guarantee the desired heading accuracy. In the navigation industry, measuring true 

heading in real time has always been a challenge. A possible solution for airborne and ground 

vehicles is to use a dual-antenna system. For example, VectorNav has a dual antenna system that can 

measure the relative location of both antennas in the GPS coordinate frame. The vector between 

both antennas thus provides an absolute heading, with the error of 0.3 degrees 1 sigma (VectorNav, 

2019). However, the accuracy is achieved by placing both antennas at least 1 m away from each 

other. Unfortunately, the heading error would be inversely proportional to the distance between 

both antennas. If installed on a small UAV, the maximum distance between antennas is typically 

much shorter than 1 meter, and the heading error approaches 1 degree 1 sigma. Therefore, the dual 

antenna solution could not help with a lot of small UAVs. 



In addition, the timing error between the navigation system is often overlooked. Ideally, the LIDAR 

orientation at the exact moment of measuring every single point in the point cloud must be 

recorded. Sometimes process is simplified by using the same orientation for a batch of points, which 

leaves small uncertainty in time, at millisecond level. Any UAV rotation and vibration experienced 

within few milliseconds are therefore not compensated, which contributes to the overall angular 

error.  

Finally, the LIDAR point cloud will be processed and registered. In some applications, LIDAR 

points will be compared against a known model; and fit with the known model (Fernandaz, Kerle & 

Gerke, 2015). In this case, the location of the fit 3D model would not directly reflect the noise level 

on each point. Instead, it could be affected by the bias and systematic errors in LIDAR point cloud.   

In summary, the position errors observed in the navigation system are typically limited, and the 

orientation errors could be significant. In an ideal case, the orientation errors would mainly affect 

the horizontal locations of the individual points in the LIDAR point cloud. For example, an angular 

error of 0.1 degrees is equivalent to horizontal errors of 5 cm at 30 m away. The expected vertical 

error is also around the level of several centimeters. An analytical example can be found in (Guan & 

Zhu, 2019), and similar behavior and performance were observed in (Graham, 2019).  

2.2 ALS corrections 

If the angular error magnitude or the flight altitude increases, centimeter-level accuracies cannot be 

guaranteed anymore. Some of the error sources are in fact systematic errors that result in bias in the 

point cloud with respect to the truth, and discrepancies among subsets of the LIDAR point cloud 

measured from different flight paths. ALS point cloud was faced with similar problems (Toth & 

Grejner-Brzezinska, 2009).  

The lessons learned in SFM may be applicable here. Overlapped observation of the same terrain or 

target was not necessary to form LIDAR point cloud, but it helps correct the self-discrepancies. 

Overlapped area between the footprint of different flight paths (also called “strips”) can be used to 

correct the subsets of the point cloud, which makes the entire point cloud more precise in a relative 

sense. (Toth & Grejner-Brzezinska, 2009) mentioned the data-driven approach to minimize the 

differences between strips for a given transformation model. 



Points and geometric features can be extracted from LIDAR data and matched with ground control 

points or features with surveyed locations. This approach would to make the point cloud accurate in 

an absolute sense (Toth & Grejner-Brzezinska, 2009). These points and features could be calibration 

targets purposely distributed in the area, which makes them equivalent to GCPs; or common objects 

with recognizable shapes, such as sidewalks. 

3. Safety and risk considerations 

FAA part 107 guidelines (FAA, 2016) must be followed when operating small UAVs for these 

applications. Additional risks rise primarily from operating in construction applications. 

Howard, Murashov & Branche (2017) noted that “about 30 incidents of near-misses or crashes 

leading to human injury have been reported associated with the use of recreational UAVs. Unstable 

flying conditions, operator errors, and faulty equipment may represent potential hazards to nearby 

workers from the commercial use of UAVs.” This work described the use UAVs in construction, 

the potential risks of their use to workers, approaches for risk mitigation , including “prevention-

through-design” for small UAVs, adequate training of operators, updating occupational safety 

regulations.  

Risks of small UAVs could result from a number of technical reasons, including (but not limited to) 

power, communications, navigation and control. UAV operations may be autonomous, semi-

autonomous or remote controlled (Wang, Hollar, Sayger, Zhu, Buckeridge, Li, Chong, Duffield, Ryu 

& Hu, 2016).  In a fully autonomous or semi-autonomous operation, the low-level control is 

governed by the on-board flight controller and navigator, which relies on GNSS (or an equivalent 

sensor) as afore mentioned.  If the UAV follows a pre-loaded flight plan without the need of human 

intervention, it is considered fully autonomous.  In a semi-autonomous operation, sometimes also 

referred to as a GNSS-assisted operation, the UAV follows the guidance of a remote controller, with 

commands transmitted via a communication channel.  In a remote-controlled operation, the user 

directly performs low-level control functions, such as attitude or velocity control, without using on-

board GNSS.  

When a UAV is close to a building or other structure, it may lose communications with the operator. 

Quality of GNSS positioning in the vicinity of a construction site could also suffer from blockage 

and multipath.  In an autonomous operation where GNSS has been corrupted, the on-board flight 



controller could command erroneous operations. A properly designed UAV system will attempt to 

stop the operation, by landing or returning to the home location, upon the loss of communications 

or GNSS. Without the ability to “sense and avoid”, the UAV could potentially cause damages during 

this process. An obvious way to prevent communication loss is for users to remain in line-of-sight 

when operating UAVs, as often required in various regulations including FAA part 107 (FAA, 2016). 

Autonomous operations should be enabled only when GNSS (or equivalence) is available. 

Small UAVs with redundant navigation systems, payload capabilities, redundant rotors and battery 

capability in case of a rotary wing UAV provide additional safety protection. Furthermore, small 

UAVs with GNSS-denied and indoor navigation capability, sense and avoid capability, are also 

available now. 

 

  



4. Applications on construction management applications 

4.1 UAV-based photogrammetry 

UAV-based sensing systems have been widely used for various types of operations and applications 

in the construction industry. Main capabilities of UAV-based imaging system include 2D surveying, 

3D mapping and modelling, progress control, onsite monitoring, inspection and assessment. They 

are applicable to buildings, bridges, transportation areas and other infrastructure systems. A 

summary of these applications can be found in (Dastgheibifard & Asnafi, 2018).  

de Melo, Costa, Álvares, & Irizarry (2017) discussed applications for safety inspection on 

construction sites. UAV-imagery could be used to identify the non-compliances with the safety 

requirements established. With improved visualization of the working conditions, UAVs could help 

improve the safety inspection process on jobsites by means of a better visualization of working 

conditions. (de Melo et al., 2017) developed a set of procedures and guidelines for data collecting, 

processing and analyzing safety requirements based on 2D imagery. 

Construction progress monitoring could also benefit from using small UAVs. Instead of relying 

on manual input and observation of each and every phase of the construction projects, which are 

costly and time consuming, Moeini, Oudjehane, Baker & Hawkins (2017) proposed to integrate 

Building Information Modeling (BIM), UAVs and real-time cloud based-data modeling and analysis. 

It enabled an accurate comparison between as As-Planned and the UAS based As-Built states of the 

project. The limitation of this approach lies on the fact that the data generated is currently qualitative 

with a visualization of the project progress. A software approach to automatically align and compare 

the BIM model and the point cloud was needed to produce quantitative and measurable data for 

project control and performance monitoring. Hamledari, Davari, Azar, McCabe, Flager & Fischer 

(2018) proposed an industry foundation classes (IFC)-based solution for UAV-enabled as-built and 

as-is BIM development, quality control, and smart inspections. It enabled automated integration of 

as-built and as-is conditions into BIM. However, it was based on 2D images only.  

Structural damage assessment could be done with 2D or 3D imagery. (Eschmann, Kuo & Boller, 

2014) showed examples of building scanning and monitoring using a small rotary-wing UAV. 2D 

UAV images were stitched together to become a high-resolution imagery map. It allowed damages 

and cracks to be observed in the millimeter range. Additional algorithm and processing software 



were developed to recognize and highlight the cracks based on 2D edge detection. In (Fernandaz et 

al., 2015), a 3D point cloud was formed the multi-perspective, overlapping, very high-resolution 

oblique images collected wit UAVs. The 3-D point-cloud was collected for the entire building, and 

was combined with detailed object-based image analysis (OBIA) of façades and roofs. Major 

damages could be identified in the 3D point cloud, where as other cases are by OBIA-based damage 

indicators. However, it was recognized that the 3D point cloud was collected for individual parts of 

the building. It required an additional algorithm to aggregate the information from these parts. 

3D mapping with UAV photogrammetry is the main application to be covered in this review. A 

review of relevant technologies can be found in (Remondino, Barazzetti, Nex, Scaioni & Sarazzi, 

2011). In general, UAV photogrammetry can reduce the cost and the risks in mapping and surveying 

tasks in harsh environments. Centimeter-level accuracy is achievable, and rotatory-wing UAVs are 

better choices for small sites. However, the endurability of small UAVs may be a potential issue 

considering weather and wind conditions.  

The principle of SFM and estimation algorithm has not changed in the last few decades. However, 

high-quality cameras and sensors have become more suitable for small UAVs, as they become 

cheaper, smaller, lighter and less power hungry. SFM software and computation hardware have been 

improved as well. There are more choices for commercial software and more powerful hardware 

available today. 

Siebert & Teizer (2014) demonstrated the use of UAV imagery and SFM on modeling the surface 

and volume of earth work in a field-realistic environment. Although UAV was much more 

convenient than traditional methods, it was recognized that the volumetric measurements could bear 

large errors. The authors noted that error sources needed to be identified and mitigated. DEM of a 

designated area could be created from UAV imagery and SFM (Ajayi, Palmer, & Salubi, 2018). The 

horizontal and vertical accuracy fall within the desirable threshold according to National Standard 

for Spatial Data Accuracy. The DEM was used to choose a proper siting for dam construction. The 

authors concluded that the terrain model created in this approach was robust enough for planning 

purposes in construction and engineering applications. 

Álvares, Costa & de Melo (2018) compared the efficacy of 3D mapping in terms of the easiness of 

model development, data quality, usefulness and limitations on two typical building cases. The 



easiness of model development took into consideration the accessibility of the worksite for takeoff 

and landing; physical barriers for UAV flights; disruption on the worksite and software processing 

time. The data quality included the footprint, spatial resolution and overlap of the images, and visual 

inconsistency between images due to distortion, shadowing and gaps. The usefulness and limitations 

were defined for the users of the data product. The users interviewed in this work noted that the 3D 

maps were useful for logistics, monitoring work progress, planning and visualization. However, 

these maps could not provide details in a close range, and there were parts of the buildings that 

could not be modeled (such as inside and top). Due to safety considerations and regulations, the 

UAV flight could not cover certain parts of the site to create a full 3D point cloud. 

Khaloo, Lattanzi, Cunningham, Dell’Andrea & Riley (2018) demonstrated the use of UAVs for 

augmenting bridge inspections, using the Placer River Trail Bridge in Alaska as an example. The 

authors produced a 3D model of the bridge using UAV imagery and a hierarchical dense SFM 

algorithm. The UAV design, data capture and data analysis were optimized together for a dense 3D 

model, and the results are compared against models generated through laser scanning. The 3D 

models created with UAV-imagery did provide the accuracy to resolve defects and support the 

needs of infrastructure managers. 

In summary, UAV-based photogrammetry has found applications in pre-construction survey, 

mapping, volumetric measurement, monitoring and assessment. 

4.2 LIDAR applications 

LIDAR-based solutions are raising some interests within the construction industry as well (Knight, 

2019). UAV-based LIDAR is a relatively new technology for construction management. Users in 

this industry are more familiar with terrestrial laser scanners (TLS), mobile laser scanners (MLS) 

mounted on ground vehicles and ALS mounted on large manned aircraft.  

Mill, Alt & Liias (2014) showcased how TLS point cloud be integrated with Total Station surveying 

to create BIM models for existing buildings. The point cloud-based BIM model provided the ability 

to detect and define facade damage on buildings. It also provided the ability to detect discrepancies 

between the existing drawings and the real situation captured with the TLS point cloud. Limitations 

of this method were also pointed out, including: 1) difficulty in manipulating point cloud data; 2) 

lack of best fitting algorithm; 3) lack of ability to enforcing known shapes of opening such as 



windows in point cloud and 4) lack of a standard in managing data. Truong-Hong & Laefer (2014) 

focused on TLS application on bridge inspection, on involving geometric documentation, surface 

defect determination, and corrosion evaluation. Workflows based on TLS data were proposed to 

measure cracks and vertical deflection. They could save up to 90% of time, and could detect cracks 

1.6mm to 4.8mm.   

TLS measures point cloud from a fixed location, which is inconvenient in a lot of applications. 

LIDAR can be installed on airborne and ground vehicles, and can measure point cloud while the 

vehicles are moving. These types of LIDARs would require high-quality navigation sensors (typically 

differential GPS/GNSS and inertial measurement unit (Wang, Peethambaran & Dong, 2018)) to 

measure the position and orientation of the LIDAR.  

ALS has been widely used to survey the ground and create topographical models, although normally 

it would not be used to survey construction worksites, due to cost and other practical limitations. 

Suaraz, Ontiveros, Smith & Snape (2005) described the use of aerial photography and ALS to 

estimate individual tree heights in forests. The main challenge of modeling the forest-covered terrain 

was to differentiate the LIDAR returns from the tree and the ground. This process depended on 

multiple returns of the laser beam, since the first return is usually from the tree tops, and the last 

strong return is from the ground. However, due to the low density of ALS returns (3-4 returns per 

m2) and small foot print of laser beam (10 cm2), the tree models were not as accurate as one had 

hoped for with LIDAR measurements. Only meter-level accuracy was achieved. 

The application of MLS is similar to that of TLS. For example, Puri & Turkan (2020) proposed to 

use MLS in monitoring progress. MLS point cloud data and 4D design models were used to identify 

deviations of the performed work from the planned work. The proposed framework was tested 

using as-built data acquired from an on-going bridge construction project. The Percentage of 

Completion for the as-built bridge elements were calculated and compared with the as-planned 

values. The differences for every element on a specific scan date were used for assessing the 

performance of the proposed framework. The obtained difference ranged from −7% to 6% for 

most elements. 

Since MLS is mounted on ground vehicles, it can offer similar high data density as the TLS (higher 

than that of ALS), similar accuracy levels (millimeter to centimeter), and is more flexible than TLS. 



MLS is becoming a popular choice for mapping an urban environment (Wang et al., 2018). Available 

commercial systems today can produce close to or more than 1 million of points per second and a 

few hundred-meter range. The manufacturers of these LIDARs include Faro, Velodyne, Riegl, Sick, 

Optech and Leica. They have been used in mapping for transportation infrastructure, building 

information modeling, utilities surveying, vegetation. Road markings, zebra crossings, center lines 

and other features could be automatically identified from the integrated LIDAR-imagery data 

product. The challenges identified in using MLS include 1) classification and recognition of objects 

2) data integration and registration, and 3) city modeling.  

The issue with data integration and registration is the most relevant to this work. Although MLS 

point cloud can be directly geo-referenced, since position and orientation of the LIDAR are 

measured, errors in navigation (position and orientation) can cause discrepancies among the point 

cloud data sets. In particular, the authors noted that “the misalignment among sensors needs to 

carefully calibrated (through either indirect or direct sensor orientation), and their time needs to be 

rigorously synchronized”. It was because orientation and timing errors could cause great offset in 

the location of the point cloud. MLS point cloud could be registered with respect to other sensor 

data, such as a reference point cloud and imagery. Multiple sets of MLS point cloud could also be 

registered and stitched together. However, different data sets often had to be manually registered 

into the same coordinate system due to navigation errors. Special shaped artificial targets were used 

in the process. The precision of MLS point cloud was verified via registration, which was around 4-5 

cm. 

Wang et al. (2018) provided a summary on how urban objects could be modeled with LIDAR point 

cloud from TLS, MLS and ALS. Building roof and façade could be modeled with ALS or ground-

based LIDAR. The modeling process could be data-driven, which extracted models from the point 

cloud; or model-driven, which verified a hypothetic model with point cloud; or a hybrid between the 

two. The choice of models was a balance between geometry, topology and semantics. Power lines 

could be better modeled with ALS and geometric models (a more detailed example can be found in 

(Zhang, Yang, Xiao, Liang, Liu, & Wang, 2019)). Road surfaces could be modeled with ALS or 

MLS, and with various types of models. Wang et al. (2018) called for more research into LIDAR-

based bridge models. 



Wang et al. (2018) also recognized that it was more challenging to model free-form objects, such as 

statues, towers, fountains and certain types of buildings. Various types of surface reconstruction 

methods were discussed in this work, and it was certainly possible to extract robust and accurate 

(centimeter level) representation from the point cloud. However, the accuracy depended on the 

surface characteristics and the input data.  

Although there has not been much literature on the application of UAV-based ALS, the remote 

sensing industry has started to pay more attention to it. UAV LIDARs were developed based on 

adapted versions of ALS (Riegl, 2019) and MLS (Hokuyo, 2012) (Sick, 2017) (Velodyne, 2019). Like 

ALS and MLS, the UAV LIDARs were tightly integrated with navigation systems, such as 

Trimble/Applenix (Trimble-Applanix, 2019) and NovAtel (NovAtel, 2016). 

Due to constraints in cost, power, size and weight, the low-cost UAV LIDAR systems had 

limitations in range, point cloud density, ranging accuracy and navigation accuracy. For example, 

Hokuyo LIDAR in (Hokuyo, 2012) has a nominal range of 30m. They are only suitable for ground 

vehicles and UAVs flying very low to the ground. GPS/GNSS receivers with RTK or differential 

corrections could produce large position errors, which translates to large 3D position errors in the 

point cloud. The orientation of the low-cost IMU sensors produced substantial angular errors, 

especially in heading. As a result, the accuracy and resolution of low-cost UAV LIDARs were rather 

limited. Remote sensing experts had argued that UAV LIDARs are not as effective as UAV 

photogrammetry in construction management not too long ago (Graham, 2018).  

It is easier to obtain high-density point cloud with photogrammetry, and high-resolution cameras are 

much more cost effective than high-density LIDARs. More importantly, the relative precision of 3D 

point cloud from SFM photogrammetry is based on the consistency within imagery. It is relatively 

more convenient to achieve centimeter-level relative precision with sufficient imagery coverage. The 

absolute accuracy is dependent on GCPs. With sufficient GCPs, centimeter-level absolute accuracy 

can also be achieved. On the other hand, LIDAR point cloud is always using direct geo-referencing. 

As discussed above, the accuracy is highly dependent on the navigation sensors, especially angular 

measurements. As a result, the errors in 3D point cloud is amplified with distance. Limited by 

accuracy and range, low cost UAV LIDARs often have to take measurements close to the ground 

(tens of meters). Therefore, it was argued that low cost UAV LIDARs could only help when SFM or 

GCPs are not available (Graham, 2018). 



However, it was pointed out that there could be several types of environments where UAV LIDAR 

would enable projects to be delivered that may not have been possible otherwise (Tompkinson, 

2019). These projects included those that involved steep topography, or a linear-based survey, or 

sites covered by dense vegetation. LIDAR direct georeferencing minimizes the need for GCPs, and 

therefore are suitable in environments where it is either too expensive or impossible to place GCPs. 

More importantly, some LIDARs have multiple return capabilities (Sick, 2017) (Velodyne, 2019). 

The LIDAR beams are sometimes wide enough such that it can be reflected by multiple surfaces 

and objects, including dust, rain, foliage and the actual target (ground). It becomes possible for 

LIDAR to see through to the ground. Therefore, a main advantage of using LIDAR is potentially 

differentiating ground from vegetation. 

Furthermore, recent development in remote sensing and navigation industries has made available 

higher density UAV LIDARs at a greater range (few hundred meters), and better inertial 

measurement units that can measure orientation more precisely. They could be used to take 

volumetric or topographic measurements of ground, with or without vegetation cover; model roads, 

cuts and other surfaces, and even buildings (Graham, 2019). 

In the last few years, custom-built LIDAR systems have been reported that were specially designed 

for modelling the terrain or vegetation, such as (Guo, Su, Hu, Zhao, Wu, Li, … Wang, 17). 

Commercial solutions are becoming more available, such as (Microdrones, 2019). 

4.3 Data fusion applications 

In general, UAV LIDARs are more capable of measuring terrain and surfaces, with or without 

vegetation cover, via direct geo-referencing. The point cloud density and accuracy decrease with 

distance, therefore it may not provide the same level of details that UAV imagery can. Alternatively, 

UAV LIDAR point cloud can be fused with available imagery to construct 3D models. The fusion 

will be based on direct geo-referencing and can still provide more details.  

Mastin, Kepner & Fisher (2009) proposed an approach to register images with ALS point cloud for 

urban models. OpenGL and graphics hardware were used in the optimization process for efficient 

registration. Parmehr, Fraser, Zhang & Leach (2012) discussed a hybrid intensity-based approach 

that utilizes both statistical and functional relationships between images, particularly in the case of 

registering aerial images and 3D point clouds. Statistical dependence of Mutual Information or 



functional relationships of Correlation Ratio along was not sufficient to register photos to LIDAR 

reliably. However, the proposed method used both of them, and performed robust registration of 

urban areas. Thuy, Watanabe & Wakutsu (2020) discussed registering SFM 3D point clouds, 3D 

meshes, and georeferenced orthophoto imagery in a fully automated manner. The data product 

could be used in disaster relief response and construction progress monitoring. 

Kubota, Ho & Nishi (2019) focused more on road maintenance. This work combined TLS point 

cloud with UAV photogrammetry. The authors acknowledged the difficulties faced with road 

maintenance using TLS alone: 1) As passengers and cars use the road being surveyed during 

measurements, and available space for instrumentation setup is limited, it is sometimes difficult to 

set up TLS.  

2) TLS can only provide high density measurements in a limited range (10m). Part of the road that 

was surveyed used UAV photogrammetry and SFM. The point cloud was combined with that from 

TLS, which was used to scan a bridge, including sides and lower works. The inaccuracy for the 

bridge was an effective length of 1.2 cm and an effective width of 1.9 cm, and the three-dimensional 

data described the structure of the bridge with high accuracy. The combined point cloud could be 

used to develop a road maintenance management system that accumulates data and refers to the 

inspection results and repair information in three dimensions. 

The existing literature mainly covered the registration of imagery with TLS and ALS. The fusion and 

registration of UAV LIDAR with imagery collected by an onboard camera has not been well 

documented. It is one of the emerging technologies that will soon find applications in construction  

and civil engineering. 

  



5. Applications on environmental applications and disaster management 

Similar to the applications in the construction industry, SFM and UAV photogrammetry have been 

used successfully for data collection in environmental applications and disaster management, 

especially in coastal settings. The use of UAVs has been found to be a convenient, low-cost, and less 

environmentally invasive technique to capture coastal data, as well as having the ability to capture 

larger spatial areas and quickly without having to interpolate between points. Data analysis of coastal 

dunes, coastline change, and coastal cliffs have been well studied using SFM. The SFM data have 

been comparable to the data collected from TLS, with differences within millimeters. In most cases, 

researchers have used the software Agisoft to process the UAV imagery, which is also a popular 

choice in construction industry. It was also found that the number and distribution of GCPs play an 

important role in reducing the errors in the point cloud. Most substantial errors have been 

associated with areas of vegetation. 

5.1 UAV Photogrammetry and SFM  

The resolution in the point cloud has been proven to work well enough to capture small scale 

features within the environments, such as sand ripples. To capture the best imagery, it was also 

found that the camera should be set to a wide angle and fixed focal length, have low sensitivity and 

high depth of field, and have at least 80% overlap between images. These recommendations are 

similar to those found in construction applications, although the point cloud is usually constructed 

for a greater area. However, some of the limitations associated with UAVs are the necessity for good 

weather conditions and visibility, good quality control points . Some manual processing is still 

required.  

Among the different types of natural disasters, floods are the most devastating, widespread, and 

frequent (Hashemi-Beni, Jones, Thompson, Johnson & Gebrehiwot, 2018). They account for 

approximately 30% of the total loss caused by natural disasters. They are also one of the biggest 

challenged faced in disaster management in North Carolina. The reliability and accuracy of flood 

assessment maps is dependent on the quality of the DEM, which could be generated with UAV 

photogrammetry. This study investigated the quality of UAV-based DEM and evaluated the extent 

of a flood event in Princeville, North Carolina during Hurricane Matthew. Comparison against the 



US Geologic Survey (USGS) stream gauge station and LIDAR data showed that the SFM error is 

less than 30 cm.  

Without direct geo-referencing, the performance of SFM is largely dependent on the GCPs. In 

(Goldstein, Oliver, Devries, Moore & Jass, 2015) UAV photogrammetry and SFM were used to 

analyze a coastal cliff setting in Hog Island, VA. SFM requires images to be taken of an object at 

different angles and then are combined to create a point cloud for analysis. The authors purposely 

altered the number of GCPs used from 5 to 30, and repeated SFM 10 different times Agisoft. It was 

found that the accuracy did not increase significantly after the use of 10 GCPs in this project. The 

errors with 30 GCPs are roughly the same level as that with 10. The root mean square error 

remained constant at 4 cm with at least 10 GCPs. Obviously the optimum number and distribution 

of GCPs are dependent on the actual project and the target performance. The performance reported 

in (Goldstein et al., 2015) seems representative for small UAVs, sufficient GCPs and Agisoft SFM.  

Ruessink, Arens, Kuipers & Donker (2018) collected geomorphic change data of a foredune system 

between May 2013 and April 2016 at Dutch National Park Zuid-Kennemerland, Netherlands. 40 

GCPs were used in the study area, all measured for accuracy using a GNSS-RTK. Agisoft was also 

used to analyze 700-1400 images. The over-all accuracy of the SFM point cloud was between 4 cm 

and 5 cm. (Root mean square was between 1.5 cm and 2.5 cm in the xy direction and 3 cm for the z 

direction.) 

As afore mentioned, SFM in environmental studies is largely dependent on commercial software. 

(Jaud, Delacourt, Dantec, Allemand, Ammann, Grandjean, … Floc’H, 2019) showed long-term 

monitoring of Porsmilin Beach using SFM. The authors originally used custom software 

programmed in MATLAB for data processing and analysis; but later realized that Agisoft and 

MicMac software was more useful. DEMs of Difference (DoD) were created to model coastal beach 

evolution and sediment budget changes. The accuracy was reported to be 3 cm in the vertical and 

horizontal directions, which was consistent with other work reported in literature.  

Similar accuracy was achieved in (Papakonstantinou, Topouzelis & Pavlogeorgatos, 2016), which 

used UAV photogrammetry and SFM to map the Greece coastlines. This work also used Agisoft for 

SFM and geographic object-based image analysis for coastline detection. It was concluded that SFM 

point cloud fills in the gap between high-accuracy ground survey and large-scaled ALS.  



In (Sturdivant, Lentz, Thieler, Farris, Weber, Remsen, … Henderson , 2017), UAV imagery was 

collected over coastal features in Black Beach, MA. 250 images were collected at an altitude of 35 m 

and a near nadir angle. GCPs were used and surveyed in with a GNSS-RTK. Agisoft was used for 

SFM, while MATLAB was used to extract shorelines and foredune toe and crest positions. It was 

concluded that the UAV imagery was able to cover a larger spatial area and at lower resolutions 

without affecting the error negatively. However, UAVs do have some limitations such as: weather 

conditions and quality of control points. The GCPs had centimeter-level positioning accuracy. It 

reported SFM error of 6.1 cm in the horizontal and 2.8 cm in the vertical. Error increased in areas 

where there was more vegetation. 

There are other SFM software options used in these applications. (Kim, Park, Han, Son, Lee, Han,  

… Kim, 2019) reported results using Pix4D in monitoring coastal settings in Imiang Beach, Busan, 

Korea. A total of 40 GCPs were used for surveying and were measured with a GNSS-RTK and a 

total of 21 stations were set up for the use of the TLS. The error had a root mean square error of 4 

cm.  

James, Ilic, & Ružić, (2013) discussed how SFM techniques were used to analyze coastal cliff erosion 

in Sunderland Point, Morecambre Bay, UK. A camera with a wide angle and fixed focal length lens 

was used for data capture. The camera was UAV compatible, but was not actually mounted on a 

UAV. Two open-source software were used for data analysis: combination of Bundler and PMVS2 

and 123D catch. Compared against TLS, the data product error is approximately 2 cm. It was noted 

that SFM was good at detecting small geomorphic changes and was an appropriate method for 

monitoring coastal changes.  

In existing literature, TLS is the most commonly used tool for 3D modeling in these applications  

and was often used as the truth reference to gauge the accuracy of SFM. (Medjkane, Maquaire, 

Costa, Roulland, Letortu, Fauchard, … Davidson, 2018) compared SFM to TLS data to justify its 

accuracy in determining areas of erosion and deposition in coastal features. The Vaches -Noires 

coastal cliffs located in Normandy, France were the object of study for this research to understand 

whether SFM would be a suitable approach for coastal monitoring. Overall, SFM approaches seem 

to be comparable to that of the TLS and therefore are accurate and reliable. Agisoft, Adobe, and 

Riscan Pro 2.0 were used for the data processing and analysis of the SFM and TLS data. 



It is concluded that centimeter-level accuracy is achievable in UAV photogrammetry-based point 

cloud that is used to model environmental changes in coastal areas with a reputable SFM software. 

5.2 UAV LIDAR  

Similar to the findings by the construction industry, application of UAV LIDAR in environmental 

monitoring and disaster management are getting more attention recently (Terra news, 2019). Some 

of the literature in the previous section is also applicable to these applications and will not be 

repeated in this section. 

Jaboyedoff, Oppikofer, Abellán, Derron, Loye, Metzger, & Pedrazzini (2012) presented a short 

history of laser scanner technologies in geosciences used for imaging relief by high-resolution DEMs 

or 3D models. A general overview of light detection and ranging (LIDAR) techniques applied to 

landslides was followed by a review of different applications of LIDAR for landslide, rockfall and 

debris-flow. These applications were classified as: 1) detection and characterization of mass 

movements; 2) hazard assessment and susceptibility mapping; 3) modeling; 4) monitoring. This 

review emphasizes how LIDAR-derived high resolution DEMs can be used to investigate any type 

of landslides. Although not included in this review yet, UAV LIDARs today are capable of some of 

the applications mentioned in this work. 

Researchers started with low-cost LIDARs or MLS. For example, Nasrollahi, Bolourian, Zhu & 

Hammad (2018) proposed to use more affordable 2D LIDARs in the inspection and maintenance of 

bridges. They proposed to add additional mechanism to rotate the LIDAR and effectively turn a 2D 

LIDAR into a 3D LIDAR. As 3D UAV LIDARs are becoming smaller and more affordable (Sick, 

2017) (Velodyne, 2019), there will be less benefit in using a 2D LIDAR. 

Flener, Vaaja, Jaakkola, Krooks, Kaartinen, Kukko, Kasvi, Hyyppä, Hyyppä & Alho (2013) created 

high-resolution 3D models of river channels and their floodplains for a sub-arctic river by 

combining MLS with UAV photogrammetry. They achieved centimeter-level accuracy in the 

models, and were able to detect change of vertical level over a year. They used TLS as a truth 

reference. 

Assenbaum (2018) discussed application of UAV LIDAR on the French Mediterranean coast. It was 

a complex natural environment where geology, climate and the sea interact and continuously reshape 



the landscape. Coastal erosion and the availability of drinking water were two major coastal 

management issues that necessitate precise monitoring of the morphological changes to the 

shoreline. UAV LIDAR used in this region to produce comprehensive topographic surveys.  

A comparison between the land survey and the LIDAR point cloud revealed an average bias of 4.0 

cm and a standard deviation of 9.5 cm in the vertical direction. The expected performance was 2.5 

to 5.0 cm on hard, well-defined surfaces like roads or concrete surfaces. These results were 

consistent with expected sensor capability. The 900 m study area could be surveyed by UAV LIDAR 

within minutes. 

Populus (2019) also argued that the main reason for using LIDAR in the coastal zone is its capacity 

of rapidly covering large areas. UAVs typically cover about 20 km²; or over 50 km² per hour or more 

for hydrographic and topographic modes, respectively. It would be crucial for applications that only 

have a short time window.  

The unique sensor setup discussed in this work also included a Hydrographic LIDAR that can 

provide uniform and dense data in even the shallowest water. 

Shaw et al. (2019) directly compared UAV LIDAR with SFM in analyzing coastal changes pre- and 

post-storm events at Wamboro Sound, Safety Bay, Australia. Either method was able to produce 

accurate point cloud. SFM accuracy as at centimeter level. However, adding LIDAR to SFM helped 

cover the gap in SFM point cloud where GCPs could not be surveyed with GNSS-RTK, Total 

Station or TLS. 

In these recent publications, a consensus was formed that: 

• LIDAR provides a more accurate point cloud when vegetation is present, which is the case in 

some dune areas.  

It is consistent with the findings of the construction industry. 

 

• LIDAR provides coverage on where SFM or GCPs are not available. 

 

• LIDAR does NOT seem to provide better accuracy than SFM. 

 



• LIDAR data can be collected and processed faster than photogrammetry.  

It is a feature of UAV LIDAR that is often over-looked by the construction industry. SFM needs 

overlapped imagery from multiple perspective. Therefore, it will take longer to cover the same 

area with UAV photogrammetry than LIDAR. Data processing is also more straightforward 

with direct geo-referencing.  

 

With a worksite of limited size, the difference in data collection and processing time may be 

insignificant. However, it would make a more significant difference for large areas, which is 

typical for disaster management applications. Furthermore, for these applications, time and 

efficiency may be of a greater concern than monitoring construction worksites. 

Some researchers also suspected that LIDAR could be more reliable than photogrammetry over 

weakly textured surfaces. A high-resolution camera on a low-flying UAV could compensate for that, 

at a potential cost of efficiency. 

Finally, Serifoglu Yilmaz, Yilmaz & Güngör (2018) investigated the removal of ground covering 

objects including vegetation via ground filtering, in several different SFM and LIDAR processing 

software. This study compared the performances of seven widely used ground filtering algorithms 

on UAV-based point clouds in commonly used software: 1) the adaptive triangulated irregular 

network implemented in Agisoft, 2) the multi-scale curvature classification implemented into the 

commercial global mapper software, 3) the cloth simulation filtering (CSF) applied with a MATLAB 

script, 4) the interpolation-based Boise Centre Aerospace Laboratory-lidar algorithm embedded in 

the commercial environment for visualizing images software, 5) the interpolation-based gLiDAR 

non-commercial software, 6) the 2D progressive morphological algorithms, and 7) elevation 

threshold with expand window algorithms embedded in the non-commercial airborne lidar data 

processing and analysis tools software. The results showed that the CSF algorithm presented the 

best filtering results.  



6. State and Federal Regulations 

Since FAA published part 107 in 2016, rules and regulations before that became less relevant. This 

review focuses on publications after 2016. 

Cracknell (2017) described the development of UAV regulations in multiple countries. This research 

focused on Australia and UK as models to look towards, since the UAV regulations were well 

defined in both countries. Most European countries already have well-developed sets of laws or 

regulations regarding the operation of drones in their countries. The European Union had recently 

released the European Aviation Safety Agency’s Prototype Commission Regulation on Unmanned  

Aircraft Operations in 2016. With respect to international drone laws, this article mentioned how all 

civilian, unmanned aircraft was subject to Article 8 of the Convention on International Civil 

Aviation of 1944. However, Article 8 wasn’t necessarily productive or useful at the current time as a 

result of lack of enforcement.  

Stöcker, Bennett, Nex, Gerke & Zevenbergen (2017) discussed global UAV regulations as of 2017. 

The goal of this work was to compile an adequate list of regulations dealing with UAVs by looking 

through multiple data sources and using a comparative analysis. Comparisons were made between 

countries, in terms of applicability, technical requirements, operational limits, administrative 

procedures, human resource requirements, and Implementation of ethical constraints. A risk-based 

approach was found to be the preferred UAV regulation strategy overall in the countries studied. 

The regulations target the management of risks and minimization of perceived harms. Within the 

context of UAVs, the main harms are malfunction, mid-air collisions and consequent damages to 

people and property on the ground. It was found in this work that UAV regulations as of 2017 

focused on targeting the regulated use of airspace by UAVs; imposing operational limitations; and 

the administrative procedures of flight permissions, pilot licenses and data collection authorization. 

Okpala, Nnaji, & Awolusi (2019) assessed limitations to national regulations of UAVs, particularly in 

a construction setting. This was completed by conducting a global literature search on the standards 

and regulations for many of the technologies used in the construction industry, including LIDAR 

and UAVs. It was found at the time of this search that there were no regulations for using LIDAR 

in the construction industry. The researchers were also unable to find any sort of standards for 

UAVs that applied strictly to the construction industry besides FAA part 107. 



Gheisari & Esmaeili (2019) recognized that the construction industry had the potential to greatly 

increase safety and efficiency on the job site, particularly in safety inspections. This article discussed 

the opinions of safety managers and their thoughts on the implementation of UAVs. As of 2019, the 

construction industry was found as the second highest economic market sector for UAVs, with 

agriculture in first. It was found that various monitoring tasks such as cranes in the proximity of 

overhead power lines, are the most important safety-related tasks that might benefit from using 

UAVs on a construction project. It also found three most important technical features on the UAV 

were the camera movability, sense-and-avoid capability, and a real-time video communication feed. 

A list of state regulations can be found in (UAV coach, 2019). 

Alaska 

https://uavcoach.com/drone-laws-alaska/  

This website looks at the specific federal and state drone regulations in Alaska. There are currently 

no state laws that relate to the hobby or commercial flying of UAVs. The one state law in Alaska 

relates to law enforcement, and how the save the drone images.   

Arizona 

https://uavcoach.com/drone-laws-arizona/  

Arizona has one state law on drone usage. SB 1449 prohibits UAS’s from interfering with police, 

firefighters, or manned aircraft. Drones can’t be flown within dangerous proximity of people or 

property. UAS also can’t be flown within 500 ft horizontally or 250 ft vertically to any ‘critical 

facility’. Additionally, there must be at least one park that allows drones in cities that have more than 

one park.  Finally, individual cities are prohibited from creating local drone laws.  

Arkansas 

https://uavcoach.com/drone-laws-arkansas/ 

Arkansas has multiple state drone laws. Regulation HB 1349 prohibits drones from being used to 

record someone who has an expectation of privacy. HB 1770 prohibits using drones to collect 



information on critical infrastructure without consent. Arkansas State Parks  - State Park Regulation 

prohibits the use of drones in the state parks without a special use permit.  

California 

https://uavcoach.com/drone-laws-california/ 

California has three state laws on drone usage. SB 807 protects the rights of first responders in the 

case that they damage an interfering UAS while providing emergency services. AB 1680 prohibits 

flying a drone that interferes with first responders during emergencies. AB prohibits interfering with 

an individual’s privacy without their consent.  

Colorado 

https://uavcoach.com/drone-laws-colorado/ 

Colorado has two state laws relating to drone regulations. HB 1070 says that the Center of 

Excellence in the Department of Public Safety must determine ways to use UAS within local and 

state government activities relating to firefighting, search and rescue, and emergency management to 

name a few functions. The Colorado State Parks Regulation #100-c.24 prohibits drone use in state 

parks except for in the model airfields of Cheery Creek State Park and Chatfield State Park. A few 

additional parks have offered special use permits.  

Connecticut 

https://uavcoach.com/drone-laws-connecticut/ 

Regulation SB 975 prohibits the regulation of drones by municipalities but does allow water 

companies to regulate drone usage over public land and water supply. DEEP 23-4-1 prohibits drone 

flights at state parks, state forests, or any Department of Energy and Environmental Protection 

lands without a special use license.  

Delaware 

https://uavcoach.com/drone-laws-delaware/ 



Delaware has one state drone regulation. HB 195 prohibits flying drones over events with over 

5,000 people. It also prohibits flying drones over critical infrastructure.  

Florida 

https://uavcoach.com/drone-laws-florida/ 

Florida has multiple state drone regulations. HB 1027 allows only Florida Legislature to make state 

drone laws, but allows local governments to make regulations for nuisance flying or other minor 

infractions. Flying near critical infrastructure is also illegal, as is flying a weaponized UAS. SB 766 

protects the privacy of individuals and private property if there’s a reasonable expectation of privacy. 

SB 92 limits law enforcement’s use of drones. Florida Administrative Code 51-4.003 prohibits the 

use of drones on lands such as state parks and forests, without authorization, unless the flight is on a 

helispot or runway. Florida Administrative Code 40C-9.320 makes it illegal for drones to take 

off/land on district land without a special use authorization.  

Georgia 

https://uavcoach.com/drone-laws-georgia/ 

State regulation HB 481 allows state and local governments to regulate the launching and landing of 

UAV’s on public property. Georgia Department of Natural Resources Park Rules and Regulations 

prohibits the use of drones at state parks or historic sites without a waiver, which are occasionally 

approved for professional commercial projects. 

Hawaii 

https://uavcoach.com/drone-laws-hawaii/ 

Hawaii has one state law regarding drone usage. SB 661 created a chief operating position for the 

UAS test site and created an advisory board for the test site.  

Idaho 

https://uavcoach.com/drone-laws-idaho/ 



Idaho has two state laws for drone usage. Idaho Code 36-1101 prohibits using drones to track 

animals, particularly for hunting purposes. Idaho Code 21-213 requires law enforcement to have a 

warrant in order to use a drone.  

Illinois 

https://uavcoach.com/drone-laws-illinois/ 

Illinois has multiple drone regulations specific to the state. SB 2937 allows law enforcement to use 

UAVs in the case where public safety is in question. HB 1652 prohibits drone use that interferes 

with hunter or fisherman activities. SB 1587 allows law enforcement to use drones in cases such as 

terrorist attacks. SB 3291 states that cities aren’t able to create drone regulations unless they have a 

population greater than 1,000,000 people.  

Indiana 

https://uavcoach.com/drone-laws-indiana/ 

Indiana has five state drone laws. SB 299 prohibits sex offenders from following or contacting 

someone with the use of a drone. It also prohibits flying a drone in a way that interferes with public 

safety official’s work. HB 1013 allows drone use at a traffic crash site. HB 1246 prohibits using 

drones to track animals while hunting. HB 1009 outlines guidelines for police use of drones. IAC 

312 8-2-8 prohibits drone use on DNR land without permission.  

Iowa 

https://uavcoach.com/drone-laws-iowa/ 

Iowa has one state drone law. HB 2289 prohibits law enforcement from using drones to enforce 

traffic laws.  

Kansas 

https://uavcoach.com/drone-laws-kansas/ 

Kansas has one state drone regulation. SB 319 includes the use of some drones for their definition 

of stalking.  



Kentucky 

https://uavcoach.com/drone-laws-kentucky/ 

Kentucky has one state drone law. HB 540 allows airports to create maps of where UAVs are not 

permitted to fly.  

Louisiana 

https://uavcoach.com/drone-laws-louisiana/ 

Louisiana has eight state drone laws. SB 69 gives the state the power to regulate UAVs over local 

regulations. SB 73 prohibits interfering with police officers using a drone. HB 19 prohibits surveying 

school or correctional facility sites with drones. HB 335 regulates registration and license fees for 

UAVs. HB 635 makes using UAS for voyeurism illegal. SB 141 defines what is criminal trespass by 

unmanned aircraft. SB 183 regulates UAS in commercial agriculture operations. HB 1029 prohibits 

using drones to survey facilities without the consent of the owner.  

Maine 

https://uavcoach.com/drone-laws-maine/ 

The LD 25 regulation in Maine requires law enforcement to have approval before using drones. The 

Bureau of Parks and Lands Drone Policy prohibits drone use in state parks, historic sites, and boat 

launches without a special activity permit.  

Maryland 

https://uavcoach.com/drone-laws-maryland/ 

Maryland has one state drone law. SB 370 states that the state laws pre-empt county authority.  

Michigan 

https://uavcoach.com/drone-laws-michigan/ 

Michigan has two state drone laws. SB 992 prohibits local government from regulating UAVs, 

allows commercial and hobby drone operation, prohibits drone interference with emergency 



personnel, and prohibits sex offenders from following or photographing the person they are 

forbidden to contact. SB 54 prohibits using a drone to harass hunters.  

Minnesota 

https://uavcoach.com/drone-laws-minnesota/ 

There are multiple state drone laws in Minnesota. The MN DOT Aeronautics Rules Chapter 8800 

requires commercial drone operators to pay $30 to get the Commercial Operations License. The 

Minnesota Statute 360.59 requires commercial operators to have drone insurance. Minnesota Statute 

360.60 requires commercial and recreational drone pilots to register their drone with the MN DOT. 

SF 550 allots $348,000 to use UAVs for monitoring natural resources and the moose population.  

Mississippi 

https://uavcoach.com/drone-laws-mississippi/ 

Mississippi has one state drone law. SB 2022 considers using drones for ‘peeping tom’ activities a 

felony.  

Montana 

https://uavcoach.com/drone-laws-montana/ 

Montana has two state laws concerning the use of drones. Hb 644 prohibits the use of UAS in 

interfering with wildfire suppression efforts. SB 196 limits drone information that can be used as 

evidence in a prosecution.  

Nevada 

https://uavcoach.com/drone-laws-nevada/ 

The state of Nevada has one state drone law. AB 239 prohibits weaponization of UAVs, using 

UAVs within a distance of critical facilities and airports, and limits UAV use by law enforcement. 

New Hampshire 

https://uavcoach.com/drone-laws-new-hampshire/ 



New Hampshire has one state drone law. SB 222 prohibits the use of UAS for hunting, fishing, or 

trapping.  

New Jersey 

https://uavcoach.com/drone-laws-new-jersey/ 

The regulation SB 3370 states that owners of critical infrastructure can apply to limit drones near the 

infrastructure, protects public safety and security, protects the rights of first responders, prohibits 

the operation of drones while under the influence of drugs or alcohol, and pre-empts local 

governments from contradicting these rules. Additionally, the New Jersey State Park Service Policy 

prohibits flying drones within lands and waters managed by the state park without prior approval.  

New Mexico 

https://uavcoach.com/drone-laws-new-mexico/ 

New Mexico has one state drone law. SB 556 prohibits using drones for unwanted surveillance.  

North Carolina 

https://uavcoach.com/drone-laws-north-carolina/  

Multiple state laws on drone regulation exist in North Carolina. HB 128 prohibits flying drones near 

correctional facilities. HB 337 allows UAVs for emergency management activities such as search and 

rescue or damage assessment. SB446 allows the Chief Information Officer to buy and use a UAS by 

the state. NCAC 13B.1204 prohibits drones from landing or taking off within a state park without a 

special permit by the park. Lastly, SB 744 creates specific regulations for commercial, recreational, 

and government operators. Commercial regulations include that drone operators flying under part 

107 or 333 exemption need to have a commercial operator’s permit and must pass the NCDOT 

knowledge test and apply for a state permit. To get the permit, pilots need proof of a remote pilot 

certificate or equal alternative. Recreational pilots don’t need a license or permit from the Division 

of Aviation, but need to follow NC UAS regulations. Government pilots need to pass the NCDOT 

UAS knowledge test and apply for a state permit. One example of a local regulation is the city of 

Raleigh- Parks, Recreation, and Cultural Resources Drone Policy. This policy outlines which parks 



and recreational areas allow drones. Drone flight is not allowed in nature preserves, nature parks, 

wetland centers, or landing/taking off from cemeteries or over lakes.   

North Dakota 

https://uavcoach.com/drone-laws-north-dakota/ 

North Dakota has one state drone law. HB 1328 prohibits using lethal weapons on drones, and 

limits the use of UAS for surveillance.  

Ohio 

https://uavcoach.com/drone-laws-ohio/ 

Ohio has one state drone law. HB 292 created the aerospace and aviation technology committee.  

Oklahoma 

https://uavcoach.com/drone-laws-oklahoma/ 

Oklahoma has one state drone law. HB 2559 prohibits any drone within 400 feet of a critical 

infrastructure facility.  

Oregon 

https://uavcoach.com/drone-laws-oregon/ 

Oregon has four state drone laws. HB 3047 prohibits the weaponization of drones, allows law 

enforcement certain situations where drone use is acceptable, and flying UAVs over private property 

that annoys the owner. HB 4066 modifies definitions of weaponized UAVs, and prohibits drones 

near critical infrastructure. SB 5702 clarifies registration fees for public UAS. HB 2710 refines 

regulations for drones in law enforcement, requires registration of drones, refines penalties for drone 

weaponization, allows conditions where land owners can fly lower than 400 feet over their property, 

and looks at private party registration of aircraft.  

Pennsylvania 

https://uavcoach.com/drone-laws-pennsylvania/ 



The state of Pennsylvania has multiple laws on drone usage. Title 18 Sec 3505 people on private 

property form drone harassment. Title 53 Sec. 305 acts as a pre-empt which supersedes any rule 

regulating ownership of UAV. Drones can be used only in designated flying sites within certain state 

parks.  

Rhode Island 

https://uavcoach.com/drone-laws-rhode-island/ 

Rhode Island has one state drone law. HB7511 gives the state of Rhode and the Airport 

Corporation exclusive authority in UAS regulation.  

South Dakota 

https://uavcoach.com/drone-laws-south-dakota/ 

South Dakota has two state drone laws. SB 22 exempts UAVs weighing less than 55 from needing 

to follow registration requirements. SB 80 prohibits flying drones over military or correctional 

facilities, or intentionally invading someone’s privacy.  

Tennessee 

https://uavcoach.com/drone-laws-tennessee/ 

Tennessee has six state drone laws. SB 2106 prohibits drones within 250 feet of critical 

infrastructure. HB 2376 states that UAVs can be used by people of both public and private 

institutions of higher education. HB 153 prohibits drones over fireworks shows. SB 1777 prohibits 

using drones for video surveillance of hunters and fishers without permission. SB 1892 protects 

privacy rights of individuals. SB 796 allows law enforcement certain occasions where drone use is 

permitted.  

Texas 

https://uavcoach.com/drone-laws-texas/ 

Texas has multiple state drone laws. SB 840 permits only law enforcement to take drone images 

within 25 miles of the boarder for security reasons. HB 1424 prohibits drones over correctional and 



detention facilities, as well as sports venues. HB 1643 prohibits local government from regulating 

UAVs. HB 2167 allows individuals of certain professions to use UAVs to assist in their job. HB 

1481 clarifies the height a drone must reach to be over a critical infrastructure facility. Texas 

Administrative code 65.152 prohibits hunting or tracking wildlife. The Texas Parks and Wildlife 

Policy states drones aren’t allowed in state parks except in the specified zones in Lake Whitney and 

San Angelo state parks. Permits for other parks can be permitted by application.  

Utah 

https://uavcoach.com/drone-laws-utah/ 

The state of Utah has five drone laws. HB 217 prevents the harassment of livestock with drones. SB 

111 defines regulations for law enforcement use of drones, prohibits weaponized drones, and 

protects personal privacy. HB 296 allows law enforcement to use drones to locate a missing person. 

SB 167 requires law enforcement to have a warrant to use data from a UAV. SB 196 requires law 

enforcement to have a warrant before using UAVs in areas where people have a reasonable 

expectation of privacy.  

Vermont 

https://uavcoach.com/drone-laws-vermont/ 

Vermont has one state law for drones. SB 155 regulates the use of drones by law enforcement.  

Virginia  

https://uavcoach.com/drone-laws-virginia/ 

Virginia has multiple state drone laws. HB 2350 makes it illegal to spy with a drone by trespassing. 

SB 873 allows the fire chief full authority over the airspace in an emergency. HB 412 prohibits 

regulation of UAS by local governments. HB 2125 makes it necessary for law enforcement to have a 

warrant before using a drone. Code of Virginia 4VAC5-30-400 requires a special use permit for 

drone use at the state parks. Only commercial or research drone operations can get a special use 

permit. 

Washington 



https://uavcoach.com/drone-laws-washington/ 

Washington has one state law for drones. WAC 352-32-130 states that permission must be granted 

to fly drones in the state parks.  

West Virginia 

https://uavcoach.com/drone-laws-west-virginia/ 

West Virginia has two state drone laws. HB 2515 prohibits hunting with UAS. HB 4607 requires 

permission from the State Park Superintendent to fly a drone in any state park.  

Wisconsin 

https://uavcoach.com/drone-laws-wisconsin/ 

Wisconsin has two state drone laws. SB 338 prohibits using drones to interfere with hunting, fishing, 

or trapping activities. AB 670 prohibits operating UAVs over correctional facilities.  

Wyoming 

https://uavcoach.com/drone-laws-wyoming/ 

Wyoming has one state drone law. SF 170 is for the Wyoming Aeronautics Commission, requiring it 

to regulate where UAVs can take off and land.  

States with no specific state UAV regulations: Alabama; Massachusetts; Missouri; Nebraska; New 

York; South Carolina. 

These regulations do address the legal use of UAV photos. However, states do not usually set 

regulations on related technologies, such as GCPs in SFM and LIDAR. Academic and industrial 

organizations offer recommendations on the best practices, such as (GCPS, 2019) (Coastal Wiki, 

2019).  



7. Emerging technologies 

As can be seen in the previous sections of this review report, technologies in remote sensing, 

computer vision and image processing software, computational hardware, navigation and robotics 

have all been developed at a rapid pace in the last few years. This section focuses on the integration, 

visualization and applications of sensor data product. 

Although the principle of SFM has been well known for decades (Triggs et al., 2000). Efficient and 

robust commercial solution took years of development in image processing software and 

computational hardware. There have been several well-known software packages available today that 

can register images to each other, and/or produce a dense 3D point cloud. (von Übel, 2019) 

provided a list of software developers, some of which had been included in this review already: 

• COLMAP 

• Meshroom 

• MicMac 

• Regard3D 

• VisualSFM 

• OpenMVG 

• WebODM 

• Agisoft  

• RealityCapture 

• Autodesk ReCap 

• Photomodeler 

• SOCET GXP 

• 3DF Zephyr 

• DroneDeploy 

• Pix4D 

• iWitnessPRO 

• Bentley ContextCapture 

• IMAGINE Photogrammetry 



• Trimble Inpho 

Some of the developers of these packages also offer software for point cloud processing. In 

addition, LIDAR manufactures such as Leica has their own software solution (Leica, 2019). There 

are fewer options to autonomously register images to 3D point cloud, and to compare or merge 

different sets of point cloud. Examples include (Autodesk, 2019) (Meshlab, 2019) and 

(Cloudcompare, 2019).  

There are a few challenges in registering images with UAV LIDAR 3D point cloud. 1) The point 

cloud and imagery are both considered “unstructured scan” in (Autodesk, 2019). Manual input is 

often needed in registration with today’s software solutions. 2) The high noise level on each point in 

the point cloud make it difficult to register a “free form” object. (Wang et al. 2018) 3) Some UAV 

LIDARs are not able to produce a 3D “image”. A direct 3D image requires image-like intensity 

values measured in LIDAR returns, in addition to distance, and a very dense 3D point cloud. Either 

or both features are not available in low-cost UAV LIDARs today, although LIDARs with these 

features have become more affordable recently. As a result, image-based and intensity-based 

autonomous registration methods such as (Parmehr et al., 2012) are not applicable.  

Autonomous image and 3D point cloud technology could make it a lot more convenient to fuse data 

from imagery, SFM, DEM, LIDARs and other data sources. The data product will provide direct 

geo-referenced imagery without the limitations faced with SFM or LIDAR alone. It will create 3D 

models with proper surface and texture representation, which is the fundamental model used to 

create virtual reality (VR), augmented reality (AR) (Lee & Park, 2019) and mixed reality (XR). 3D 

visualization with VR, AR and XR technologies will soon find more applications in construction 

management, environmental monitoring and disaster management.    

 

  



References 

1. Agisoft (2019). Tutorial (Beginner level): Orthomosaic and DEM Generation with Agisoft 

PhotoScan Pro 1.3 (with GCPs). Available:  

https://www.agisoft.com/pdf/PS_1.3%20-Tutorial%20(BL)%20-

%20Orthophoto,%20DEM%20(GCPs).pdf 

Retrieved on 12/01/2019. 

 

2. Ajayi, O. G., Palmer, M., & Salubi, A. A. (2018). Modelling farmland topography for suitable 

site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry. 

Remote Sensing Applications: Society and Environment, 11, 220-230. 

 

3. Álvares, J. S., Costa, D. B., & de Melo, R. R. S. (2018). Exploratory study of using unmanned 

aerial system imagery for construction site 3D mapping. Construction Innovation, 18(3), 301-

320.  

 

4. Assenbaum, M. (2018). Monitoring coastal erosion with UAV lidar. GIM International. 32. 

18-21.  

 

5. Autodesk. (2019). Registering Unstructured Scans. Available: 

https://knowledge.autodesk.com/support/recap/learn-

explore/caas/CloudHelp/cloudhelp/2018/ENU/Reality-Capture/files/GUID-AF55A2EB-

FCE8-4982-B3D6-CEAD5732DF03-htm.html 

Retrieved on 12/01/2019. 

 

6. Cloudcompare. (2019). 3D point cloud and mesh processing software. Available: 

https://www.danielgm.net/cc/ 

 

7. Cracknell, A. (2017). UAVs: regulations and law enforcement. International Journal of 

Remote Sensing 38(8,10): 3054-3067 

 

8. Coastal Wiki. (2019). Use of Lidar for coastal habitat mapping. Available: 

http://www.coastalwiki.org/wiki/Use_of_Lidar_for_coastal_habitat_mapping  

https://www.agisoft.com/pdf/PS_1.3%20-Tutorial%20(BL)%20-%20Orthophoto,%20DEM%20(GCPs).pdf
https://www.agisoft.com/pdf/PS_1.3%20-Tutorial%20(BL)%20-%20Orthophoto,%20DEM%20(GCPs).pdf
https://www.danielgm.net/cc/
file:///C:/Users/wangg/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/OJRF6E74/Use%20of%20Lidar%20for%20coastal%20habitat%20mapping.%20Available:%20http:/www.coastalwiki.org/wiki/Use_of_Lidar_for_coastal_habitat_mapping
file:///C:/Users/wangg/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/OJRF6E74/Use%20of%20Lidar%20for%20coastal%20habitat%20mapping.%20Available:%20http:/www.coastalwiki.org/wiki/Use_of_Lidar_for_coastal_habitat_mapping


Retrieved on 12/01/2019. 

 

9. Dastgheibifard, Soroush & Asnafi, Mahsa. (2018). A Review on Potential Applications of 

Unmanned Aerial Vehicle for Construction Industry. 10.26392/SSM.2018.01.02.044.  

 

10. de Melo, RR. Costa, DB. Álvares, JS. & Irizarry, J. (2017). Applicability of unmanned aerial 

system (UAS) for safety inspection on construction sites. Safety science. Oct 1;98:174-85. 

 

11. DJI. (2019). Next Generation Mapping – Saving Time in Construction Surveying With 

Drones. Available: https://enterprise.dji.com/news/detail/next-generation-mapping 

Retrieved on 12/01/2019. 

 

12. Eschmann, C. Kuo, C. & Boller, C. (2012). Unmanned aircraft systems for remote building 

inspection and monitoring. Proceedings of the 6th European Workshop on Structural 

Health Monitoring, Dresden, Germany. Vol. 36,  

 

13. FAA. (2016) Part 107 of the Federal Aviation Regulations. 

 

14. Fernandez, Galarreta J. Kerle, N. & Gerke, M. (2015). UAV-based urban structural damage 

assessment using object-based image analysis and semantic reasoning. Natural hazards and 

earth system sciences. 15(6):1087-101. 

 

15. Flener, C., Vaaja, M., Jaakkola, A.; Krooks, A., Kaartinen, H., Kukko, A., Kasvi, E., Hyyppä, 

H., Hyyppä, J. & Alho, P. (2013). Seamless Mapping of River Channels at High Resolution 

Using Mobile LiDAR and UAV-Photography. Remote Sens., 5, 6382-6407. 

 

16. Furukawa, Yasutaka. Ponce, Jean. (2019) CMVS. Available: 

https://github.com/pmoulon/CMVS-PMVS 

Retrieved on 12/01/2019. 

 

17. GCPS. (2019). Creating Quality GCPs for Mapping Contour Lines . Available: 

https://www.groundcontrolpoints.com/mapping-contour-lines-using-gcps 

https://enterprise.dji.com/news/detail/next-generation-mapping
https://github.com/pmoulon/CMVS-PMVS
https://www.groundcontrolpoints.com/mapping-contour-lines-using-gcps


Retrieved on 12/01/2019. 

 

18. Gheisari, M. & Esmaeili, B. (2019). Applications and requirements of unmanned aerial 

systems (UASs) for construction safety. Safety Science 118(2019): 230-240 

 

19. Goldstein, E. B., Oliver, A. R., Devries, E., Moore, L. J., & Jass, T. (2015). GCP 

requirements for structure-from-motion derived topography in low-slope coastal 

environments. doi: 10.7287/peerj.preprints.1444 

 

20. Graham, Lewis. (2018) “Drone Mapping – SfM versus Low Precision LIDAR.” Available: 

https://support.geocue.com/drone-mapping-sfm-versus-low-precision-lidar/ 

Retrieved on 10/24/2019. 

 

21. Graham, Lewis. (2019) “Drone LIDAR Systems (Drone LIDAR Considerations).” 

Available:  

http://www.geocue.com 

Retrieved on 10/24/2019. 

 

22. Grayson, B., Penna, N.T., Mills, J.P. & Grant, D.S. (2018), GPS precise point positioning for 

UAV photogrammetry. Photogram Rec, 33: 427-447. doi:10.1111/phor.12259  

 

23. Guan, S. & Zhu, Z. (2019). UAS-Based 3D Reconstruction Imagery Error Analysis, 

Structural Health Monitoring 2019. 

 

24. Guo, Q., Su, Y., Hu, T., Zhao, X., Wu, F., Li, Y., . . . Wang, X. (2017). An integrated UAV-

borne lidar system for 3D habitat mapping in three forest ecosystems across china. 

International Journal of Remote Sensing, 38(8-10), 2954-2972. 

doi:10.1080/01431161.2017.1285083 

 

25. Hashemi-Beni, L. Jones, J. Thompson, G. Johnson, C.& Gebrehiwot, A. (2018). Challenges 

and opportunities for UAV-based digital elevation model generation for flood-risk 

management: A case of princeville, north carolina. Sensors 2018, 18, 3843. 

https://support.geocue.com/drone-mapping-sfm-versus-low-precision-lidar/
http://www.geocue.com/
https://doi.org/10.1111/phor.12259
https://scholar.google.com/scholar?oi=bibs&cluster=17189437921223952877&btnI=1&hl=en


 

26. Hamledari, H. Davari, S. Azar, E. McCabe, B. Flager, F. & Fischer, M. (2018). “UAV-

Enabled Site-to-BIM Automation: Aerial Robotic-and Computer Vision-Based 

Development of As-Built/As-Is BIMs and Quality Control”, 

Available: 

https://cife.stanford.edu/TR230 

Retrieved on 12/01/2019. 

 

27. Hartley, Richard & Zisserman, Andrew. (2014). Multiple View Geometry in Computer 

Vision, Second Edition, Cambridge University Press. 

 

28. Hokuyo. (2012). Scanning Laser Range Finder UTM-30LX/LN Specification. Available: 

https://www.hokuyo-aut.jp/search/single.php?serial=169 

Retrieved on 09/01/2017. 

 

29. Howard, John & Murashov, Vladimir & Branche, Christine. (2017). Unmanned aerial 

vehicles in construction and worker safety. American Journal of Industrial Medicine. 61. 

10.1002/ajim.22782. 

 

30. James, Mike & Ilic, S. & Ružić, Igor. (2013). Measuring 3D coastal change with a digital 

camera. 2013. 893-904.  

 

31. Jaud, M., Delacourt, C., Dantec, N. L., Allemand, P., Ammann, J., Grandjean, P., … Floc’H, 

F. (2019). Diachronic UAV Photogrammetry of a Sandy Beach in Brittany (France) for a 

Long-Term Coastal Observatory. ISPRS International Journal of Geo-Information, 8(6), 

267. doi: 10.3390/ijgi8060267 

 

32. Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M., Loye, A., Metzger, R., & Pedrazzini, 

A. (2010). Use of LIDAR in landslide investigations: a review. Natural Hazards, 61, 5-28. 

 

33. Karpowicz, K. (2014). The Use of Unmanned Aerial Systems for Steep Terrain 

Investigations 

https://cife.stanford.edu/TR230
https://www.hokuyo-aut.jp/search/single.php?serial=169


https://dot.ca.gov/-/media/dot-media/programs/research-innovation-system-

information/documents/f0016678-unmanned-aerial-systems-preliminary-investigation-rev8-

14-14.pdf 

Retrieved on 12/01/2019. 

 

34. Khaloo, A., Lattanzi, D., Cunningham, K., Dell’Andrea, R., & Riley, M. (2018). Unmanned 

aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D 

modelling. Structure and Infrastructure Engineering, 14(1), 124-136. 

 

35. Knight, Renee. (2019) LiDAR: Going Beyond Photogrammetry. Inside Unmanned Systems.  

 

36. Kim, S., Park, S., Han, J., Son, S., Lee, S., Han, K., … Kim, J. (2019). Feasibility of UAV 

Photogrammetry for Coastal Monitoring: A Case Study in Imlang Beach, South Korea. 

Journal of Coastal Research, 90(sp1), 386. doi: 10.2112/si90-049.1 

 

37. Kubota1a, S., Ho2b, C., & Nishi2b, K. (2019). Construction and Usage of Three-

dimensional Data for Road Structures Using Terrestrial Laser Scanning and UAV with 

Photogrammetry. In ISARC. Proceedings of the International Symposium on Automation 

and Robotics in Construction (Vol. 36, pp. 136-143). IAARC Publications. 

 

38. Laflamme, Simon, Turkan, Yelda & Tan, Liangyu., (2015). Bridge Structural Condition 

Assessment using 3D Imaging. Civil, Construction and Environmental Engineering 

Conference Presentations and Proceedings. 33. 

 

39. Lee, K. W., & Park, J. K. (2019). Comparison of UAV image and UAV LiDAR for 

construction of 3D geospatial information. Sensors and Materials, 31(10), 3327. 

doi:10.18494/SAM.2019.2466 

 

40. Leica. (2019). Cyclone 3D Point Cloud Processing Software. Available: 

https://leica-geosystems.com/en-us/products/laser-scanners/software/leica-cyclone 

Retrieved on 12/01/2019. 

 

https://dot.ca.gov/-/media/dot-media/programs/research-innovation-system-information/documents/f0016678-unmanned-aerial-systems-preliminary-investigation-rev8-14-14.pdf
https://dot.ca.gov/-/media/dot-media/programs/research-innovation-system-information/documents/f0016678-unmanned-aerial-systems-preliminary-investigation-rev8-14-14.pdf
https://dot.ca.gov/-/media/dot-media/programs/research-innovation-system-information/documents/f0016678-unmanned-aerial-systems-preliminary-investigation-rev8-14-14.pdf
https://leica-geosystems.com/en-us/products/laser-scanners/software/leica-cyclone


 

41. Lowe, David G. (1999). "Object recognition from local scale-invariant features" (PDF). 

Proceedings of the International Conference on Computer Vision. 2. pp. 1150–1157. 

doi:10.1109/ICCV.1999.790410. 

 

42. Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., & Gabbianelli, G. (2013). Using 

Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The 

Structure from Motion Approach on Coastal Environments. Remote Sensing, 5(12), 6880–

6898. doi: 10.3390/rs5126880 

 

43. Mastin, A. Kepner J. & Fisher, J. (2009). Automatic registration of LIDAR and optical 

images of urban scenes. IEEE Conference on Computer Vision and Pattern Recognition, 

Miami, FL, pp. 2639-2646. 

 

44. May, N., & Toth, C.K. (2007). Point Positioning Accuracy of Airborne Lidar Systems : A 

Rigorous Analysis. In: Stilla U et al (Eds) PIA07. International Archives of Photogrammetry, 

Remote Sensing and Spatial Information Sciences, 36 

 

45. Medjkane, M., Maquaire, O., Costa, S., Roulland, T., Letortu, P., Fauchard, C., … Davidson, 

R. (2018). High-resolution monitoring of complex coastal morphology changes: cross-

efficiency of SfM and TLS-based survey (Vaches-Noires cliffs, Normandy, France). 

Landslides, 15(6), 1097–1108. doi: 10.1007/s10346-017-0942-4 

 

46. Meshlab. (2019). Meshlab. Available:  

http://www.meshlab.net/#  

Retrieved on 10/01/2018. 

 

47. Moeini, Shahab. Oudjehane, Azzeddine. Baker, Tareq. & Hawkins, Wade. (2017). 

Application of an interrelated UAS - BIM system for construction progress monitoring, 

inspection and project management. Available: 

http://www.meshlab.net/


http://pmsymposium.umd.edu/pm2017/wp-

content/uploads/sites/3/2017/01/Application_of_an_interrelated_UAS_BIM-Azzeddine-

Oudjehane-Moeini.pdf 

Retrieved on 12/01/2019. 

 

48. Micheletti, N., Chandler, Jim & Lane, Stuart. (2013). Structure from motion (SFM) 

photogrammetry. 1-12.  

 

49. Microdrones. (2019). Fully Integrated Systems for Professionals. Available: 

https://www.microdrones.com/en/integrated-systems/mdlidar/mdlidar3000dl/ 

Retrieved on 12/01/2019. 

 

50. Mill, Tarvo., Alt, Aivars & Liias, Roode. (2014). Combined 3D building surveying 

techniques-Terrestrial laser scanning (TLS) and total station surveying for BIM data 

management purposes. Journal of Civil Engineering and Management. 19. S23-S32. 

10.3846/13923730.2013.795187. 

 

51. Mostafa, Mohamed., Hutton, Joe., Reid, Blake & Hill, Richmond. (2003). GPS/IMU 

products -- the Applanix approach. 

 

52. Nasrullah, Asgan Riza. (2016). Systematic Analysis of Unmanned Aerial Vehicle (UAV) 

Derived Product Quality. MS Thesis. University of Twente. 

 

53. Nasrollahi, M., Bolourian, N., Zhu, Z., & Hammad, A. (2018). Designing LiDAR-equipped 

UAV platform for structural inspection. ISARC. Proceedings of the International 

Symposium on Automation and Robotics in Construction, 35, 1-8. 

 

54. NovAtel. (2016). SPAN IMU-CPT. Available: 

https://www.novatel.com/assets/Documents/Papers/IMU-CPT.pdf 

Retrieved on 10/01/2017. 

 

http://pmsymposium.umd.edu/pm2017/wp-content/uploads/sites/3/2017/01/Application_of_an_interrelated_UAS_BIM-Azzeddine-Oudjehane-Moeini.pdf
http://pmsymposium.umd.edu/pm2017/wp-content/uploads/sites/3/2017/01/Application_of_an_interrelated_UAS_BIM-Azzeddine-Oudjehane-Moeini.pdf
http://pmsymposium.umd.edu/pm2017/wp-content/uploads/sites/3/2017/01/Application_of_an_interrelated_UAS_BIM-Azzeddine-Oudjehane-Moeini.pdf
https://www.microdrones.com/en/integrated-systems/mdlidar/mdlidar3000dl/
https://www.novatel.com/assets/Documents/Papers/IMU-CPT.pdf


55. Okpala. I., Nnaji, C. & Awolusi, I. (2019). Emerging Construction Technologies: State of 

Standard and Regulation Implementation. Computing in Civil Engineering. 

doi:10.1061/9780784482438.020 

 

56. Parmehr, E.G., Fraser, C.S., Zhang, C., & Leach, J. (2012). Automatic Registration of Aerial 

Images with 3D LiDAR Data Using a Hybrid Intensity-Based Method. International 

Conference on Digital Image Computing Techniques and Applications (DICTA), Fremantle, 

WA, 2012, pp. 1-7. 

 

57. Papakonstantinou, A., Topouzelis, K., & Pavlogeorgatos, G. (2016). Coastline Zones 

Identification and 3D Coastal Mapping Using UAV Spatial Data. ISPRS International 

Journal of Geo-Information, 5(6), 75. doi: 10.3390/ijgi5060075 

 

58. Pix4D. (2017). Do RTK/PPK drones give you better results than GCPs? Available: 

https://assets.ctfassets.net/go54bjdzbrgi/2VpGjAxJC2aaYIipsmFswD/3bcd8d512ccfe88ff

63168e15051baee/BLOG_rtk-ppk-drones-gcp-comparison.pdf 

Retrieved on 12/01/2019. 

 

59. Pix4D. (2019). Pix4D. Available:  

https://pix4D.com 

Retrieved on 12/01/2019. 

 

60. Populus, Jacques. (2019): Use of Lidar for coastal habitat mapping. Available: 

http://www.coastalwiki.org/wiki/Use_of_Lidar_for_coastal_habitat_mapping   

Retrieved on 12/01/2019. 

 

61. Puri, N., & Turkan, Y. (2020). Bridge construction progress monitoring using lidar and 4D 

design models. Automation in Construction, 109, 102961. 

 

62. Ravi, R., Lin, Y., Elbahnasawy, M., Shamseldin T. & Habib A. (2018). Bias Impact Analysis 

and Calibration of Terrestrial Mobile LiDAR System With Several Spinning Multibeam Laser 

https://assets.ctfassets.net/go54bjdzbrgi/2VpGjAxJC2aaYIipsmFswD/3bcd8d512ccfe88ff63168e15051baee/BLOG_rtk-ppk-drones-gcp-comparison.pdf
https://assets.ctfassets.net/go54bjdzbrgi/2VpGjAxJC2aaYIipsmFswD/3bcd8d512ccfe88ff63168e15051baee/BLOG_rtk-ppk-drones-gcp-comparison.pdf
https://pix4d.com/
http://www.coastalwiki.org/wiki/Use_of_Lidar_for_coastal_habitat_mapping


Scanners. IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 9, pp. 5261-

5275 

 

63. Remondino, Fabio., Barazzetti, Luigi., Nex, Francesco., Scaioni, Marco. & Sarazzi, D. (2011). 

UAV photogrammetry for mapping and 3D modeling-Current status and future 

perspectives. ISPRS - International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences. XXXVIII-1/C22. 10.5194/isprsarchives-XXXVIII-1-C22-25-

2011. 

 

64. Riegl. (2019). ”Downward-Looking” LiDAR Sensor for Unmanned Laser Scanning”. 

Available: 

http://www.riegl.com/products/unmanned-scanning/riegl-minivux-1dl/ 

Retrieved on 12/01/2019. 

 

65. Ruessink, B., Arens, S., Kuipers, M., & Donker, J. (2018). Coastal dune dynamics in response 

to excavated foredune notches. Aeolian Research, 31, 3–17. doi:10.1016/j.aeolia.2017.07.002 

 

66. Sanz-Ablanedo, E., Chandler, J.H., Rodríguez-Pérez, J.R. & Ordóñez, C. (2018). Accuracy of 

Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the 

Number and Location of GCPs Used. Remote Sens. 2018, 10, 1606 

 

67. Serifoglu Yilmaz, C., Yilmaz, V., & Güngör, O. (2018) Investigating the performances of 

commercial and non-commercial software for ground filtering of UAV-based point clouds. 

International Journal of Remote Sensing, 39(15-16), 5016-5042. 

doi:10.1080/01431161.2017.1420942 

 

68. Semyonov, Dmitry. (2011). Re: Algorithms used in Photoscan 

Available: https://www.agisoft.com/forum/index.php?topic=89.0 

Retrieved on 12/01/2019. 

 

69. Shaw, L., Helmholz, P., Belton, D., & Addy, N. (2019). Comparison Of Uav Lidar And 

Imagery For Beach Monitoring. ISPRS - International Archives of the Photogrammetry, 

http://www.riegl.com/products/unmanned-scanning/riegl-minivux-1dl/
https://www.agisoft.com/forum/index.php?topic=89.0


Remote Sensing and Spatial Information Sciences, XLII-2/W13, 589–596. doi: 

10.5194/isprs-archives-xlii-2-w13-589-2019 

 

70. Sick. (2017). Operating_instructions_LD_MRS_3D_LiDAR_sensors. Available: 

https://www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-sensors/ld-

mrs/c/g91913 

Retrieved on 10/01/2018. 

 

71. Siebert, S., & Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using 

an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 41, 1–14. 

doi:10.1016/j.autcon.2014.01.004 

 

72. Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. 2017. Review of the Current 

State of UAV Regulations. Remote Sensing 9(5): 459. DOI: 10.3390/rs9050459  

 

73. Sturdivant, E., Lentz, E., Thieler, E. R., Farris, A., Weber, K., Remsen, D., … Henderson, R. 

(2017). UAS-SfM for Coastal Research: Geomorphic Feature Extraction and Land Cover 

Classification from High-Resolution Elevation and Optical Imagery. Remote Sensing, 9(10), 

1020. doi: 10.3390/rs9101020 

 

74. Suárez, J.C., Ontiveros, C., Smith, S., & Snape, S. (2005). Use of airborne LiDAR and aerial 

photography in the estimation of individual tree heights in forestry. Computers & 

Geosciences, 31, 253-262. 

 

75. Terra news. (2019). “Terra Drone Indonesia’s LiDAR mapping UAVs are helping Palu 

recover from 2018 double disaster.” Available: 

https://www.terra-drone.net/global/2019/05/15/terra-drone-indonesia-lidar-drones-for-

disaster-recovery-palu/ 

Retrieved on 12/01/2019. 

 

76. Thuy, C. T., Watanabe, A., & Wakutsu, R. (2020). Cloud-Based 3D Data Processing and 

Modeling for UAV Application in Disaster Response and Construction Fields. 

https://www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-sensors/ld-mrs/c/g91913
https://www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-sensors/ld-mrs/c/g91913
https://www.terra-drone.net/global/2019/05/15/terra-drone-indonesia-lidar-drones-for-disaster-recovery-palu/
https://www.terra-drone.net/global/2019/05/15/terra-drone-indonesia-lidar-drones-for-disaster-recovery-palu/


In Geotechnics for Sustainable Infrastructure Development (pp. 1177-1182). Springer, 

Singapore. 

 

77. Trimble-Applanix. (2019). APX-20 UAV High Performance GNSS-Inertial Solution with 

Dual IMU’S. Available: 

https://www.applanix.com/downloads/products/specs/APX20_UAV.pdf 

Retrieved on 12/01/2019. 

 

78. Triggs B., McLauchlan P.F., Hartley R.I., Fitzgibbon A.W. (2000) Bundle Adjustment — A 

Modern Synthesis. In: Triggs B., Zisserman A., Szeliski R. (eds) Vision Algorithms: Theory 

and Practice. IWVA 1999. Lecture Notes in Computer Science, vol 1883. Springer, Berlin, 

Heidelberg 

 

79. Trimble. (2019). Trimble Inpho UASMaster. Available: 

https://geospatial.trimble.com/products-and-solutions/trimble-inpho-uasmaster. 

Retrieved on 12/01/2019. 

 

80. Truong-Hong, Linh & Laefer, Debra. (2014). Application of Terrestrial Laser Scanner in 

Bridge Inspection: Review and an Opportunity. IABSE Symposium Report. 102. 

10.2749/222137814814070190. 

 

81. Tompkinson, William. (2019). Professional UAV lidar is (finally) focusing on the ground . 

Available: 

https://www.spar3d.com/blogs/measuring-the-value/professional-UAV LIDAR-is-finally-

focusing-on-the-ground/ 

Retrieved on 12/01/2019. 

 

82. Toth, Charles. & Grejner-Brzezinska, Dorota A. (2009). Airborne LiDAR Reflective Linear 

Feature Extraction for Strip Adjustment and Horizontal Accuracy Determination. Available: 

https://rosap.ntl.bts.gov/view/dot/18475 

Retrieved on 12/01/2019. 

 

https://www.applanix.com/downloads/products/specs/APX20_UAV.pdf
https://geospatial.trimble.com/products-and-solutions/trimble-inpho-uasmaster
https://www.spar3d.com/blogs/measuring-the-value/professional-uav-lidar-is-finally-focusing-on-the-ground/
https://www.spar3d.com/blogs/measuring-the-value/professional-uav-lidar-is-finally-focusing-on-the-ground/
https://rosap.ntl.bts.gov/view/dot/18475


83. UAV coach. (2019). Master List of Drone Laws. Available: 

https://uavcoach.com/drone-laws/ 

Retrieved on 12/01/2019. 

 

84. von Übel, Max. (2019). Affordable and Easy 3D Scanning 2019 Best Photogrammetry 

Software. Available:  

https://all3dp.com/1/best-photogrammetry-software/ 

Retrieved on 12/01/2019. 

 

85. VectorNav. (2019). VectorNav Industrial Series. Available: 

https://www.vectornav.com/docs/default-source/product-brochures/industrial-series-

product-brochure-(12-0009).pdf 

Retrieved on 12/01/2019. 

 

86. Velodyne. (2019). VLP-16 User Manual63-9243 Rev. D. Available: 

https://github.com/UCSD-

E4E/aerial_lidar/blob/master/Datasheets%20and%20User%20Manuals/velodyne%20lidar

%20datasheets/***VLP-

16%20User%20Manual%20and%20Programming%20Guide%2063-9243%20Rev%20A.pdf 

Retrieved on 12/01/2019. 

 

87. Wang, George. Hollar, Donna. Sayger, Susan. Zhu, Zhen. Buckeridge, John. Li, Jie. Chong, 

Jimmy. Duffield, Colin. Ryu, Dongryeol. Hu, Wei. (2016). Risk Considerations in the Use of 

Unmanned Aerial Vehicles in the Construction Industry. The Journal of Risk Analysis and 

Crisis Response. 6. 10.2991/jrarc.2016.6.4.1.  

 

88. Wang, Ruisheng & Peethambaran, Jiju & Dong, Chen. (2018). LiDAR Point Clouds to 3D 

Urban Models: A Review. IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing. PP. 10.1109/JSTARS.2017.2781132. 

 

https://uavcoach.com/drone-laws/
https://all3dp.com/1/best-photogrammetry-software/
https://www.vectornav.com/docs/default-source/product-brochures/industrial-series-product-brochure-(12-0009).pdf
https://www.vectornav.com/docs/default-source/product-brochures/industrial-series-product-brochure-(12-0009).pdf
https://github.com/UCSD-E4E/aerial_lidar/blob/master/Datasheets%20and%20User%20Manuals/velodyne%20lidar%20datasheets/***VLP-16%20User%20Manual%20and%20Programming%20Guide%2063-9243%20Rev%20A.pdf
https://github.com/UCSD-E4E/aerial_lidar/blob/master/Datasheets%20and%20User%20Manuals/velodyne%20lidar%20datasheets/***VLP-16%20User%20Manual%20and%20Programming%20Guide%2063-9243%20Rev%20A.pdf
https://github.com/UCSD-E4E/aerial_lidar/blob/master/Datasheets%20and%20User%20Manuals/velodyne%20lidar%20datasheets/***VLP-16%20User%20Manual%20and%20Programming%20Guide%2063-9243%20Rev%20A.pdf
https://github.com/UCSD-E4E/aerial_lidar/blob/master/Datasheets%20and%20User%20Manuals/velodyne%20lidar%20datasheets/***VLP-16%20User%20Manual%20and%20Programming%20Guide%2063-9243%20Rev%20A.pdf


89. Webber, Harold. (2018). Sick AG Whitepaper. Available: 

https://cdn.sick.com/media/docs/2/22/322/Whitepaper_SICK_AG_Whitepaper_Select_the_best

_technology_for_your_vision_application_en_IM0063322.PDF 

Retrieved on 12/01/2019. 

 

90. Zhang, He. Aldana-Jague, Emilien. Clapuyt, François. Wilken, Florian. Vanacker, Veerle & 

Oost, Kristof. (2019). Evaluating the potential of post-processing kinematic (PPK) 

georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface 

change detection. Earth Surface Dynamics. 7. 10.5194/esurf-7-807-2019. 

 

91. Zhang, Ruizhuo. Yang, Bisheng. Xiao, Wen. Liang, Fuxun. Liu, Yang & Wang, Ziming. 

(2019). Automatic Extraction of High-Voltage Power Transmission Objects from UAV 

Lidar Point Clouds. Remote Sensing. 11. 2600. 10.3390/rs11222600. 

https://cdn.sick.com/media/docs/2/22/322/Whitepaper_SICK_AG_Whitepaper_Select_the_best_technology_for_your_vision_application_en_IM0063322.PDF
https://cdn.sick.com/media/docs/2/22/322/Whitepaper_SICK_AG_Whitepaper_Select_the_best_technology_for_your_vision_application_en_IM0063322.PDF


A.3 Literature Review Paper 1 (published 2022) 

 

  



Citation: Guan, S.; Zhu, Z.; Wang, G.

A Review on UAV-Based Remote

Sensing Technologies for

Construction and Civil Applications.

Drones 2022, 6, 117. https://doi.org/

10.3390/drones6050117

Academic Editor: Sungjin Kim

Received: 11 April 2022

Accepted: 28 April 2022

Published: 6 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Review

A Review on UAV-Based Remote Sensing Technologies for
Construction and Civil Applications
Shanyue Guan 1, Zhen Zhu 1,* and George Wang 2

1 Department of Engineering, East Carolina University, Greenville, NC 27858, USA; guans18@ecu.edu
2 Department of Construction Management, East Carolina University, Greenville, NC 27858, USA;

wangg@ecu.edu
* Correspondence: zhuz@ecu.edu

Abstract: UAV-based technologies are evolving and improving at a rapid pace. The abundance of
solutions and systems available today can make it difficult to identify the best option for construction
and civil projects. The purpose of this literature review is to examine the benefits and limitations of
UAV-based sensing systems in the context of construction management and civil engineering, with a
focus on camera-based and laser-based systems. The risk factors associated with UAV operations at
construction sites are also considered.

Keywords: UAV; LIDAR; photogrammetry; construction management; literature review

1. Introduction

The construction industry is one of the major industries in the world. There is about
USD 10 trillion spent on construction-related tasks every year. With the rapid growth of
the construction industry, construction sites and tasks are becoming more complex and
diverse than before. There is a strong demand for introducing automation and intelligent
technologies [1] to improve operation efficiency, reduce project costs, and most importantly
ensure the safety of construction workers and infrastructure. More and more cutting-edge
technologies are being introduced and put into practice, improving civil and construction
industry sustainability. Among all these emerging technologies, one of the most promising
and widely adopted technologies to improve construction and infrastructure sustainabil-
ity is unmanned aerial vehicles (UAVs). Because of their natural advantages, including
accessibility, high efficiency, and reasonable cost, UAVs act as a reliable partner to address
some practical challenges and have been deployed in many different areas. To better serve
practical applications, UAVs have been integrated with various types of navigation, sens-
ing, and monitoring systems. Focusing on the civil and construction industry, UAV-based
sensors are used to conduct multiple types of tasks, including construction site monitoring,
infrastructure assessment, and surface and volume measurements. The sensor data col-
lected in these tasks are usually integrated and analyzed with computer software. In this
paper, we summarize some of the literature about UAV-based sensing applications in civil
and construction industry applications, which covers topics including sensing technology
types, data product integration, data quality and error models, practical application cases,
and safety-related issues.

2. UAV-Based Sensing Systems

Various types of sensing systems have been integrated with UAVs to conduct different
types of tasks. The most commonly used sensors include HD cameras, light detection and
ranging (LIDAR), infrared cameras, and other imaging/ranging systems. In this paper,
we are going to focus on two types of sensing systems integrated with UAVs that can
be used in the civil and construction industry: (1) unmanned aerial vehicle (UAV)-based
photogrammetry and (2) LIDAR systems.

Drones 2022, 6, 117. https://doi.org/10.3390/drones6050117 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6050117
https://doi.org/10.3390/drones6050117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-1797-7312
https://doi.org/10.3390/drones6050117
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6050117?type=check_update&version=1


Drones 2022, 6, 117 2 of 20

2.1. UAV-Based Photogrammetry

UAV-based photogrammetry is primarily based on imageries collected with small
onboard cameras. It typically requires ground control points (GCPs) with surveyed loca-
tions and can benefit from the recorded location and orientation of the camera. A 3D point
cloud of the target area can be estimated via direct or indirect geo-referencing. Indirect geo-
referencing refers to the methods that assign world-frame coordinates to 3D measurements
collected in a relative local reference frame. One of the most popularly used UAV-based
geo-referencing solutions is structure from motion (SFM). It has been proven to be superior
to conventional handheld surveying methods in certain environments: projects with low
vegetation, stable GPS availability, and substantial sunlight [2].

Multiple 2D images over the same area can be combined and the point features are
matched across them. These images are expected to have great overlap areas (~80%). The
3D locations of these points are then estimated in the camera frame, which are then used
to form a 3D model or point cloud. However, the camera pose (position and orientation)
is not always precisely known in a world frame (a GPS frame, for example) when a small
commercial UAV is used. Therefore, the 3D model created with SFM with a small UAV is
typically dimensionless and cannot be directly geo-referenced. It requires additional GCPs
to relate back to the world frame. The absolute accuracy of this model depends on both the
image processing quality and the GCPs.

Some customized and commercially off-the-shelf UAVs are capable of recording the
camera location and/or orientation for each of the images taken during a flight. In that
case, camera-based direct geo-referencing is possible. It can be achieved by raytracing from
a single image to a known surface such as in the digital elevation model (DEM) or other a
priori terrain models; triangulation from multiple overlapped images; or a combination of
both. Since no ground control is necessary for this method, the accuracy of 3D modeling is
primarily determined by the accuracy of camera timing, orientation, and location. However,
a small UAV that is not capable of carrying a high-quality navigation sensor cannot be used
for direct geo-referencing. Therefore, direct geo-referencing has not been commonly used
in low-cost small UAVs yet.

SFM does not require an a priori position and orientation of the camera or the complete
camera calibration model. In fact, they can also be estimated as part of the outcome of SFM.
However, if an a priori estimation of these items is available, it can be incorporated into the
SFM software to further improve the quality of the data product. The core algorithm in SFM
is typically based on bundle adjustment, which is essentially a triangulation process using
multiple images. Triangulation is a key component in SFM and the direct geo-referencing
system. Although there are several specialized software solutions for triangulation, it is
usually included as a part of a commercial software solution for SFM today. A good review
of the bundle adjustment algorithm can be found in [3].

2.2. UAV-Based LIDAR System

Alternatively, camera systems can be combined with, or replaced by, a direct ranging
sensor, such as a UAV LIDAR system, on some bigger-sized UAVs. The LIDAR senses the
distance to a point in the 3D world based on the return of a laser beam. Since the beam
would be sent at a known direction specified in the LIDAR body frame, the position of this
point is therefore directly measured in the LIDAR body frame. LIDARs are less sensitive to
natural light conditions and may provide measurements in operational conditions which
prohibit camera operation (such as low light). An airborne LIDAR directly measures the
point cloud in the sensor frame, instead of the world frame. The point cloud will be
transformed into the world frame by knowing the precise location and orientation of the
LIDAR. Very much like camera direct geo-referencing, airborne LIDAR point cloud accuracy
is also sensitive to timing/synchronization, LIDAR orientation, and location. Furthermore,
airborne LIDAR sensors available today are still more expensive, more power-hungry, and
heavier than cameras in general.
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An airborne or UAV LIDAR system typically includes three types of sensors: a ranging
sensor (2D scanning LIDAR, 3D scanning LIDAR, or 3D imager); a positioning sensor,
such as a Global Positioning System (GPS) or Global Navigation Satellite System (GNSS)
receiver; and an inertial sensor that measures acceleration and rotation. These three
sensors are integrated into the data collection system and in the 3D modeling procedure.
The GNSS and inertial sensors are typically coupled together to provide a precise and
smooth pose (position and orientation) and velocity of the LIDAR. It is a good practice that
the GPS/GNSS also be responsible for the accurate time tagging and synchronization of
other sensors.

3. Sensor Data Product Integration

Technologies in remote sensing, computer vision and image processing software,
computational hardware, navigation, and robotics have all been developed at a rapid pace
in the last few years. This section focuses on the integration, visualization, and applications
of a sensor data product.

3.1. Photogrammetry Data Processing

The principle of SFM and estimation algorithms has not changed much in the last few
decades. However, high-quality cameras and sensors have become more suitable for small
UAVs as they become cheaper, smaller, lighter, and less power-hungry. SFM software and
computation hardware have been improved as well. There are more choices for commercial
software and more powerful hardware available today. Commercial software is available
from, for example, Agisoft [4], Trimble [5], and Pix4D [6], and open-source software such
as CMVS [7] has also been used in scientific communities. A more complete list will be
discussed below. As aforementioned, modern SFM software takes known calibration,
position, or orientation as inputs. However, if only inaccurate position and/or orientation
are available from low-quality navigation sensors, 3D point clouds can still be optimized
in the SFM software based on known error models of these measurements. Furthermore,
for UAVs that have a precise location, through real-time kinematic (RTK), Post-processed
kinematic (PPK), or post-processed precise point positioning (PPP), without orientation,
SFM can also be used to estimate the 3D point cloud. PPP is post-processed GNSS posi-
tioning that does not need a local reference station as RTK and PPK do, which could be
less accurate. In the presence of a precise camera position, SFM can be accomplished with
fewer GCPs.

Although the principle of SFM has been well known for decades [3], the efficient and
robust commercial solutions took years of development in image processing software and
computational hardware. There are several well-known software packages available today
that can register images to each other, and/or produce a dense 3D point cloud; von Übel [8]
provided a list of software developers shown in Table 1.

Table 1. Photogrammetry software.

Software Name Type Operating Systems

COLMAP Aerial, Close-range Windows, macOS, Linux

Meshroom Aerial, Close-range Windows, Linux

MicMac Aerial, Close-range Windows, macOS, Linux

Multi-View Environment Aerial, Close-range Windows, macOS

OpenMVG Aerial, Close-range Windows, macOS, Linux

Regard3D Aerial, Close-range Windows, macOS, Linux

VisualSFM Aerial, Close-range Windows, macOS, Linux

3DF Zephyr Aerial, Close-range Windows

Autodesk Recap Aerial, Close-range Windows
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Table 1. Cont.

Software Name Type Operating Systems

Agisoft Metashape Aerial, Close-range Windows, macOS, Linux

Bentley ContextCapture Aerial, Close-range Windows

Correlator3D Aerial Windows

DroneDeploy Aerial Windows, macOS, Linux,
Android, iOS

Elcovision 10 Aerial, Close-range Windows

iWitnessPro Aerial, Close-range Windows

IMAGINE Photogrammetry Aerial Windows

Photomodeler Aerial, Close-range Windows

Pix4Dmapper Aerial Windows, macOS, Linux

RealityCapture Aerial, Close-range Windows

SOCET GXP Aerial Windows

Trimble Inpho Aerial, Close-range Windows

WebODM Aerial Windows, macOS

Focusing on one of the most popular software products, Agisoft, as an example, the
main functions of Agisoft are listed here as examples, retrieved from [9].

• Point features are acquired and matched across multiple images. The software detects
point features in these images that are stable and repeatable. It then generates a
descriptor for each point based on the appearance, which is often based on a small
section of image centered on the point. The descriptors of all the points are then
matched to detect correspondences across the images. This is similar to the well-
known scale invariant feature transform (SIFT) approach [10].

• Solving for camera intrinsic and extrinsic parameters. Agisoft uses a greedy algorithm
to find approximate camera parameters and refines them in the bundle adjustment
algorithm. For example, the camera/lens model is considered intrinsic and camera ori-
entation is extrinsic. Both types of parameters can be estimated in bundle adjustment.

• Dense reconstruction. Different processing algorithms are available at this step to
create a dense point cloud based on all the involved images. The point cloud will be
treated as a surface at this stage.

• Texture mapping. As the last step, the software models a surface by possibly cutting it
into smaller pieces, and assigns color and texture extracted from images to the surface.

3.2. LIDAR Data Processing

Some of the developers of the SFM packages also offer software for point cloud
processing. In addition, LIDAR manufacturers such as Leica have their own software
solution [11]. There are fewer options to autonomously register images to a 3D point
cloud and to compare or merge different sets of clouds. Examples include Autodesk [12],
MeshLab [13], and CloudCompare [14].

There are a few challenges in registering images with UAV LIDAR 3D point cloud:
(1) The point cloud and imagery are both considered an ‘unstructured scan’ in [12]. Manual
input is often needed in registration with today’s software solutions. (2) The high noise
level on each point in the point cloud makes it difficult to register a ‘free form’ object [15].
(3) Some UAV LIDARs are not able to produce a 3D ‘image’. A direct 3D image requires
image-like intensity values measured in LIDAR returns, in addition to distance, and a very
dense 3D point cloud. Either or both features are not available in low-cost UAV LIDARs
today, although LIDARs with these features have become more affordable recently. As a
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result, image-based and intensity-based autonomous registration methods such as in [16]
are not applicable.

4. Error Models of UAV-Based Sensing

One of the most important factors to consider when using a UAV-based monitoring
system is the accuracy of the point cloud product.

4.1. Photogrammetry Errors

The errors modeled in [17] included camera/lens calibration errors; motion blurriness;
the altitude, pattern, and stability of flight; image overlap; and the distribution of GCPs.
The main discoveries and arguments from this work include the following:

(1) Camera calibration can be estimated as part of SFM (self-calibration). However, a
pre-calibrated camera/lens may be more convenient and robust. Other parameters, such as
shutter speed, lens aperture, and ISO also have a considerable impact on the image quality.

(2) Small UAVs are often sensitive to wind and airframe vibration. Even mild wind
during data acquisition can cause offset in the camera pointing direction, and eventually
insufficient image overlap. Vibration can increase blurriness. Furthermore, light conditions
during image acquisition can add to the complexity. To compensate for low light conditions,
a lower shutter speed or higher ISO is used. Lowered shutter speed increases motion
blurriness, while higher ISO increases noise. In most target applications, a larger area
of interest will probably need multiple flight acquisitions. Appearance changes, such as
changes in shadows, can cause another problem.

(3) The impact of flight altitude on accuracy is a little more complex. Flight altitude
changes the distance, image footprint, image overlap, and geometry (slope) of the object.
Errors tend to increase with distance and a steeper slope in SFM. Imaging the object from
a steeper slope limits the variety of perspectives (view angles). Since SFM benefits from
imagery from multiple perspectives, vertical accuracy decreases due to bad geometry.
Examples to quantify the findings above can be found in [17].

It was also noted in [18] that images did not need to be acquired from the same
distance or have the same scale. The authors argued that it was better to acquire multi-scale
image sets. High altitude, large-scaled images could initially capture the whole site with
fewer frames. Closer images could capture the desired detail at the required resolution and
precision. It is particularly important when capturing areas of detail that are physically
obscured by occlusions. Ref. [18] also gave specific advice to improve UAV SFM errors:
(1) plan the mission in advance; (2) capture the whole area first before focusing on the
details, but ensure that occlusions are captured adequately; (3) ensure appropriate coverage
and overlap so that every point on the subject must appear on at least three images
acquired from spatially different locations; (4) keep a static scene (no moving objects)
and consistent light condition; (5) avoid overexposed images, underexposed images, and
blurred images—normally arising from slow shutter speed and/or camera movement—and
avoid transparent, reflective, or homogeneous surfaces.

Users of SFM software are typically advised to place GCPs throughout the target site,
on the edge of the worksite, and in the center [19]. The locations of GCPs can be surveyed
using GNSS-based RTK solutions, RTK and PPK solutions [20], and total station survey
or TLS scans [21]. A PPK survey typically has positioning errors around 1 cm (1 sigma).
However, to achieve centimeter-level accuracy in the point cloud, the user is required to
place up to 40 GCPs per square kilometer [2].

Ref. [22] provided a systematic overview of accuracy in the point cloud involving
GCPs. With a sufficient number of GCPs (more than 2 GCPs per 100 images as specified
in this work), the error of the point cloud could approach double that of the GCP. If
fewer GCPs were used, this paper reported that the point cloud error would be as high
as 4–8 times the GCP error, which was still in the centimeter range. Vertical errors were
approximately 2.5 times the error of horizontal components. It was also suggested that
GCPs should be evenly distributed around the whole interest area, ideally in a triangular
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mesh grid. For a greater project, denser GCPs were needed to achieve the same accuracy.
This is probably because of possible systematic errors in SFM, which tend to amplify with
growing distance and area.

The goal of the GCP placement strategy is to minimize the distance from the point
cloud to any GCP. In many scenarios or applications, it is not possible to place GCPs with
this strategy. Ref. [22] also recommended the use of (1) pre-calibrated cameras rather
than the self-calibration; (2) mixing different altitude flights; (3) various degrees of image
convergence; and (4) known positional and orientation parameters.

The onboard pose error for direct geo-referencing was also considered [17]. If small
UAVs can carry high-quality GNSS receivers, they may be capable of RTK on the fly or
recording data for post processing. Post-processed position through PPK or PPP could
be used to help improve the accuracy with limited GCPs. It is noted that RTK and PPK
could both produce centimeter-level accuracy [19]. PPK would be more accurate than RTK,
but less than using GCPs, especially in the vertical direction. In [23], the authors further
compared PPK with PPP. Since PPP does not need an additional local reference GNSS
receiver, it is more convenient and flexible. However, it was found that PPP produced
worse accuracy in the vertical direction than RTK (10 cm error reported for PPP). Further,
RTK requires a live data link between a reference station and the airborne receiver, which is
not always possible or necessary.

Although the approaches above claimed that GCPs were not necessary if PPK positions
were available for the cameras, it would be challenging to directly register the point cloud
with just PPK. SFM with PPK can produce precise point clouds only in the camera body
frame. Since the PPK position does not directly solve the orientation of the camera or the
point cloud, an additional step is needed to align the point cloud in the correct direction.

Therefore, it is more practical to use a few GCPs even with PPK. Ref. [24] showed that
a PPK–SFM solution workflow could provide a consistent, repeatable point cloud over time,
with an accuracy of a few centimeters. A vertical bias could be corrected using one single
GCP. The results were used to estimate centimeter-level topographical change detection.
PPK-SFM could accurately and quickly achieve a very high spatial and temporal resolution.

As the main manufacturer of commercial small UAVs, DJI also stated similar con-
clusions [2]. The new UAV supports both RTK and PPK solutions. Although it could
potentially reduce the required amount of GCPs to 0, DJI mentioned the use of ‘fewer GCPs’
and a reduction in GCP set-up time.

4.2. LIDAR and Direct Geo-Referencing Errors

Although a UAV LIDAR may have lower sensor quality than a more capable airborne
laser scanner (ALS), both follow the same principle for measurements. The existing error
analysis approach of ALS is based on direct geo-referencing and is largely applicable to
UAV LIDAR. LIDAR measurement error, navigation and timing error, and modeling error
can all contribute to the error in the LIDAR point cloud.

In this review, ‘LIDAR measurement error’ refers to the single point position error in
the body frame. It is dependent on the beam width (or divergence), the reflecting surface,
and the angular and range measurement made with the laser beam [25]. Beam divergence
and the possible uncertainty in the scan angle are both considered angular errors in the
LIDAR, whereas the reflecting surface and the measurement noise both contribute to the
ranging error along the laser beam. In [26], the angular and ranging errors are both modeled
as random processes. The magnitude of these errors depends on the LIDAR manufacturer.
In a downward-looking laser beam, ranging error primarily contributes to the vertical
position error. In practice, ranging error could also have a systematic component, such as a
bias. It needs to be calibrated or bounded.

Some LIDARs are designed with narrow beams (1 or several milliradians; 1 milliradian
is approximately 0.06 degrees) to minimize the uncertainty, such as in [27]. Others believe
that a wider beam is more robust (~10 milliradians) for a UAV LIDAR, such as in [28]. With
multiple returns measured on the same beam, a wide beam may get returns on the target
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or the ground after it hits occlusion due to dust, rain, and other objects [28]. Therefore, it
has the potential to measure the distance to targets and the ground in a harsh environment.

The small angular error in LIDAR is scaled with the distance to the ground, which
contributes to horizontal position error in a downward-looking laser beam. However, since
the laser beam would have a slant angle on a sloped object even with a downward-looking
LIDAR, it will also contribute to the vertical uncertainty.

The position of laser return points in the LIDAR body frame cannot be directly used
in a 3D model if the LIDAR is mobile or airborne. The absolute position and orientation of
the LIDAR itself in the global world frame need to be accurately measured, which should
be synchronized with the measurement time of each point in the LIDAR point cloud.

The position of LIDAR is not directly measured. Instead, it is inferred from the location
of the GPS/GNSS antenna measured with RTK, PPK, or PPP. The accuracy of RTK, PPK,
or PPP had been discussed in the previous section, which is in the range of 1 cm to 10 cm.
It must be noted that the navigation system used for UAV LIDAR should be GPS/GNSS
tightly coupled with the onboard inertial measurement unit since it is mandatory for
the LIDAR system to be accompanied by accurate orientation measurements. The post-
processed solution with integrated GNSS and an inertial measurement unit can be less
noisy than PPK or PPP alone. The typical error magnitude is 1 cm horizontal and 2 cm
vertical in [29] or, similarly, 2–5 cm in [30]. The actual values are sensor specific.

The antenna position is combined with the lever arm between the antenna and the
LIDAR center of measurement to compute the LIDAR position. Any errors in the lever
arm, which is typically at the millimeter level, become biases in the point cloud.

Similarly, the navigation system measures the orientation of the UAV in the world
frame. It is transferred into the LIDAR orientation via known boresighting of the LIDAR.
Boresighting errors can be calibrated, and any residual error will contribute to the angular
errors discussed below. Ref. [31] showed that successful calibration could reduce error
magnitude down to the centimeter level.

The navigation system can be very accurate at measuring roll and pitch angles: typical
values are much lower than 1 degree (0.008 degrees [29] or 0.015 degrees [30]). The actual
values are also sensor specific.

However, the reported true heading angle accuracy for these sensors could be overly
optimistic and misleading. The nominal accuracy, typically close to 0.1 degrees, is achieved
only after maneuvers of the UAV and the fine alignment of the heading. The maneuvers
may not always be possible for small UAVs with a short flight time, or for the operational
environment at a small urban worksite. Without that, the heading is initialized by vehicle
velocity, gyro-compassing, compassing, or manual input, which has the accuracy of a few
degrees as reported in [32]. These heading accuracy levels are applicable to most high-end
navigation systems that can fit on a small UAV.

A true heading error of a few degrees is a major concern for UAV LIDAR, although
it is not a big issue for SFM. As discussed above, the SFM point cloud is calculated from
overlapping images. The points from SFM are precisely located with respect to each other
within the camera body frame, and the relative precision does not depend on the absolute
orientation in the world frame. In fact, camera orientation can be precisely solved by
matching point features in images [33].

The same does not apply to the LIDAR point cloud. In processing raw LIDAR data,
the points are geo-located independently from each other. There is no relative precision as
in SFM. As a result, a large angular error, such as the heading offset, causes each point to be
out of its place. A point cloud formed in this case could be distorted so much that it could
no longer represent the geometric shape of the target or the terrain. Therefore, the point
cloud becomes meaningless with large angular errors. Smaller heading and boresighting
errors would cause the points measured in different parts of a UAV flight or from different
flights to be inconsistent [34].

Unfortunately, the operator of small UAVs may not know if the UAV has completed
enough maneuvers to guarantee the desired heading accuracy. In the navigation industry,
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measuring true heading in real-time has always been a challenge. A possible solution for
airborne and ground vehicles is to use a dual-antenna system. For example, VectorNav has
a dual antenna system that can measure the relative location of both antennas in the GPS
coordinate frame. The vector between both antennas thus provides an absolute heading,
with the error of 0.3 degrees 1 sigma [35]. However, the accuracy is achieved by placing
both antennas at least 1 m away from each other. Unfortunately, the heading error would
be inversely proportional to the distance between both antennas. If installed on a small
UAV, the maximum distance between antennas is typically much shorter than 1 m, and the
heading error approaches 1 degree 1 sigma. Therefore, the dual antenna solution could not
help with a lot of small UAVs.

In addition, the timing error in the navigation system is often overlooked. Ideally,
the LIDAR orientation at the exact moment of measuring every single point in the point
cloud must be recorded. Sometimes, the geo-registration process is simplified by using
the same orientation for a batch of points, which leaves a small uncertainty in time, at the
millisecond level. Any UAV rotation and vibration experienced within a few milliseconds
are therefore not compensated, which contributes to the overall angular error.

Finally, the LIDAR point cloud will be processed and registered. In some applications,
LIDAR points will be compared against a known model and fit with the known model [36].
In this case, the location of the fit 3D model would not directly reflect the noise level on
each point. Instead, it could be affected by the bias and systematic errors in the LIDAR
point cloud.

In summary, the position errors observed in the navigation system are typically limited,
and the orientation errors could be significant. In an ideal case, the orientation errors would
mainly affect the horizontal locations of the individual points in the LIDAR point cloud.
For example, an angular error of 0.1 degrees is equivalent to horizontal errors of 5 cm at
30 m away. The expected vertical error is also around the level of several centimeters. An
analytical example can be found in [25], and a similar behavior and performance were
observed in [37].

4.3. Additional Error Reduction Methods

If the angular error magnitude or the flight altitude increases, centimeter-level accura-
cies cannot be guaranteed anymore. Some of the error sources are in fact systematic, which
result in bias in the point cloud with respect to the truth and discrepancies among subsets
of the LIDAR point cloud measured from different flight paths. An ALS point cloud was
faced with similar problems [34].

Overlapped observation of the same terrain or target is not necessary to form a LIDAR
point cloud, but it helps correct the self-discrepancies. The overlapped area between the
footprint of different flight paths (also called ‘strips’) can be used to correct the subsets
of the point cloud, which makes the entire point cloud more precise in a relative sense.
Ref. [34] mentioned the data-driven approach to minimize the differences between strips
for a given transformation model.

Points and geometric features can be extracted from LIDAR data and matched with
ground control points or features with surveyed locations. This approach makes the point
cloud accurate in an absolute sense [34]. These points and features could be calibration tar-
gets purposely distributed in the area, which makes them equivalent to GCPs, or common
objects with recognizable shapes, such as sidewalks.

5. UAV-Based Remote Sensing Construction Management Applications
5.1. UAV-Based Photogrammetry Applications

Infrastructure and materials conditions are estimated by various types of simulation
models. To obtain more detailed information, UAV-based sensing systems have been widely
used for various types of operations and applications in the construction industry [38].
The main capabilities of a UAV-based imaging system include 2D surveying, 3D mapping
and modeling, progress control, onsite monitoring, inspection, and assessment. They are
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applicable to buildings, bridges, transportation areas, and other infrastructure systems and
help improve infrastructure sustainability. A summary of these applications can be found
in [39].

Ref. [40] discussed applications for a safety inspection on construction sites. UAV
imagery could be used to identify non-compliances with the safety requirements established.
With improved visualization of the working conditions, UAVs could help improve the
safety inspection process on job sites by means of better visualization of working conditions.
Ref. [40] developed a set of procedures and guidelines for data collecting, processing, and
analyzing safety requirements based on 2D imagery.

Construction progress monitoring could also benefit from using small UAVs. Most of
the construction progress is simulated with computational models [41]. Instead of relying
on the manual input and observation of each and every phase of the construction projects,
which is costly and time-consuming, [42] proposed integrating building information mod-
eling (BIM), UAVs, and real-time cloud-based data modeling and analysis. This enabled an
accurate comparison between the as-planned and UAS-based as-built states of the project.
The limitation of this approach lies in the fact that the data generated are currently qualita-
tive with a visualization of the project’s progress. A software approach to automatically
align and compare the BIM model and the point cloud was needed to produce quantitative
and measurable data for project control and performance monitoring. Ref. [43] proposed
an industry foundation classes (IFC)-based solution for UAV-enabled as-built and as-is BIM
development, quality control, and smart inspections. It enabled the automated integration
of as-built and as-is conditions into BIM. However, it was based on 2D images only.

Structural damage assessment could be done with 2D or 3D imagery. Ref. [44] showed
examples of building scanning and monitoring using a small rotary-wing UAV. Two-
dimensional UAV images were stitched together to become a high-resolution imagery map.
It allowed damages and cracks to be observed in the millimeter range. Additional algo-
rithms and processing software were developed to recognize and highlight the cracks based
on 2D edge detection. In [36], a 3D point cloud was formed from the multi-perspective,
overlapping, very high-resolution oblique images collected with UAVs. The 3D point
cloud was collected for the entire building and was combined with a detailed object-based
image analysis (OBIA) of façades and roofs. Major damages could be identified in the 3D
point cloud, whereas other cases are by OBIA-based damage indicators. However, it was
recognized that the 3D point cloud was collected for individual parts of the building. It
required an additional algorithm to aggregate the information from these parts.

Three-dimensional mapping with UAV photogrammetry is the main application to be
covered in this review. A review of relevant technologies can be found in [45]. In general,
UAV photogrammetry can reduce the cost and the risks of mapping and surveying tasks in
harsh environments. Centimeter-level accuracy is achievable, and rotatory-wing UAVs are
better choices for small sites. However, the endurability of small UAVs may be a potential
issue considering weather and wind conditions.

Ref. [46] demonstrated the use of UAV imagery and SFM on modeling the surface and
volume of earthwork in a field-realistic environment. This study also incorporated the use
of autonomous flight of the UAV with pre-programmed waypoints. The methodology used
for this was based on the Mikrokopter Flight Planning Tool, and the new computer program
was specifically designed for surveying aspects of aerial photogrammetry that are relevant
for civil engineering. It was found that 70% longitudinal coverage and 40% traversal
coverage are recommended. Although UAV was much more convenient than traditional
methods, it was recognized that the volumetric measurements could bear large errors. The
authors noted that error sources needed to be identified and mitigated. The DEM of a
designated area could be created from UAV imagery and SFM [47]. The horizontal and
vertical accuracy falls within the desirable threshold according to the National Standard for
Spatial Data Accuracy. The DEM was used to choose a proper siting for dam construction.
The authors concluded that the terrain model created in this approach was robust enough
for planning purposes in construction and engineering applications.
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Ref. [48] compared the efficiency of 3D mapping in terms of the easiness of model
development, data quality, usefulness, and limitations on two typical building cases. The
easiness of model development took into consideration the accessibility of the worksite
for takeoff and landing; physical barriers for UAV flights; disruption on the worksite; and
software processing time. The data quality considerations included the footprint, spatial
resolution and overlap of the images, and visual inconsistency between images due to
distortion, shadowing, and gaps. The usefulness and limitations were defined for the users
of the data product. The users interviewed in this work noted that the 3D maps were useful
for logistics, monitoring work progress, planning, and visualization. However, these maps
could not provide details in a close range, and there were parts of the buildings that could
not be modeled (such as the inside and top). Due to safety considerations and regulations,
the UAV flight could not cover certain parts of the site to create a full 3D point cloud.

Ref. [49] demonstrated the use of UAVs for augmenting bridge inspections, using the
Placer River Trail Bridge in Alaska as an example. The authors produced a 3D model of the
bridge using UAV imagery and a hierarchical dense SFM algorithm. The UAV design, data
capture, and data analysis were optimized together for a dense 3D model, and the results
were compared against models generated through laser scanning. The 3D models created
with UAV imagery did provide the accuracy to resolve defects and support the needs of
infrastructure managers.

5.2. LIDAR Applications

LIDAR-based solutions are raising some interest within the construction industry as
well [50]. UAV-based LIDAR is a relatively new technology for construction management,
especially for improving construction and infrastructure sustainability. Users in this in-
dustry are more familiar with terrestrial laser scanners (TLS), mobile laser scanners (MLS)
mounted on ground vehicles, and ALS mounted on large, manned aircraft.

5.2.1. TLS Applications

Ref. [51] showcased how a TLS point cloud is integrated with total station surveying
to create BIM models for existing buildings. The point cloud-based BIM model provided
the ability to detect and define facade damage on buildings. It also provided the ability to
detect discrepancies between the existing drawings and the real situation captured with
the TLS point cloud. Limitations of this method were also pointed out, including (i) the
difficulty in manipulating point cloud data; (ii) the lack of a best fitting algorithm; (iii) the
lack of the ability to enforce known shapes of openings such as windows in the point
cloud; and (iv) the lack of a standard in managing data. Ref. [52] as well as [53] emphasize
that, in general, the maximum range of a scanner should be taken into account before
collecting data, as the low-density point clouds taken at the maximum distance range
may not be sufficient for all surveying needs. Ref. [54] focused on TLS application on
bridge inspection, involving geometric documentation, surface defect determination, and
corrosion evaluation. Workflows based on TLS data were proposed to measure cracks and
vertical deflection. They could save up to 90% of the time and could detect cracks between
1.6 mm and 4.8 mm.

TLS data are also able to assist with assessments of the saturation of building materials,
which can be used for several civil engineering applications, such as monitoring bridges,
landslides, dams, and tunnels [55]. Changes in roughness and color should be taken
into consideration with the analysis of structure moisture content. In [56], the authors
were able to use TLS to assess the deformation of bridge structures, suggesting that it
is a viable method for construction inspection. The TLS data collected were processed
using a shape information model and octree algorithm. It was found that this method is
effective in detecting deflections of greater than 4 mm. TLS data have also been effective
in measuring the thickness of concrete pavement on construction sites. Ref. [57] found
that surveying construction sites before and after the addition of concrete may be a more
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accurate and time-efficient alternative to traditional core sampling methods conducted at
construction sites.

With regards to construction site management, surface profiles have been created with
TLS point cloud data by attaching a 2D profilometer to an excavator machine. This method
is not commonly found in the literature but has been found to have an accuracy of better
than 10 mm, and the advantages of this technique include accuracy, a high update rate,
real-time measurements of the site, and construction without moving parts [58]. With the
correct algorithms, there is potential for the excavator to be fully autonomous through the
use of machine learning.

5.2.2. ALS Applications

TLS measures the point cloud from a fixed location, which is inconvenient in a lot of
applications. LIDAR can be installed on airborne and ground vehicles and can measure
point clouds while the vehicles are moving. As aforementioned, these types of LIDARs
would require high-quality navigation sensors (typically differential GPS/GNSS and an
inertial measurement unit [15]) to measure the position and orientation of the LIDAR.

ALS has been widely used to survey the ground and create topographical models,
although normally it would not be used to survey construction worksites, due to cost and
other practical limitations. The authors of [59] noted in their comparison of ALS, satellite
imagery, and USGS models that LIDAR technology is not the most accurate choice when
surveying in areas with steep slopes, ridges, or ditches. Ref. [60] described the use of aerial
photography and ALS to estimate individual tree heights in forests. The main challenge
of modeling the forest-covered terrain was to differentiate the LIDAR returns from the
tree and the ground. This process depended on multiple returns of the laser beam, since
the first return is usually from the treetops, and the last strong return is from the ground.
However, due to the low density of ALS returns (3–4 returns per m2) and the small footprint
of the laser beam (10 cm2), the tree models were not as accurate as one had hoped for
with LIDAR measurements. Only meter-level accuracy was achieved. Airborne LIDAR
may be effectively used for structural damage assessments. For example, airborne LIDAR
has been evaluated for the damage assessment of buildings caused by hurricanes [61].
However, only severely damaged structures are able to be detected with this method, and
high-density point cloud data are necessary.

5.2.3. MLS Applications

The application of MLS is similar to that of TLS. For example, [62] proposed using MLS
in monitoring progress. MLS point cloud data and 4D design models were used to identify
deviations of the performed work from the planned work. The proposed framework
was tested using as-built data acquired from an ongoing bridge construction project. The
percentage of completion for the as-built bridge elements was calculated and compared
with the as-planned values. The differences for every element on a specific scan date were
used for assessing the performance of the proposed framework. The obtained difference
ranged from −7% to 6% for most elements.

Since MLS is mounted on ground vehicles, it can offer similar high data density
as the TLS (higher than that of ALS), similar accuracy levels (millimeter to centimeter),
and is more flexible than TLS. MLS is becoming a popular choice for mapping urban
environments [15]. Available commercial systems today can produce close to or more
than one million points per second and a few hundred-meter range. The manufacturers
of these LIDARs include Faro, Velodyne, Riegl, Sick, Optech, and Leica. They have been
used in mapping transportation infrastructure, building information modeling, utility
surveying, and vegetation. Road markings, zebra crossings, center lines, and other features
could be automatically identified from the integrated LIDAR-imagery data product. For
example, the authors of [63] were able to extract road surface features from terrestrial
mobile LIDAR point cloud data using an algorithm. This effectively resulted in the creation
of an index of roadway features with greater than 90% correctness, suggesting that TLS data
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are useful in surface reconstruction situations [63]. The challenges identified in using MLS
include: (1) classification and recognition of objects, (2) data integration and registration,
and (3) city modeling.

The issue with data integration and registration is the most relevant to this work.
Although the MLS point cloud can be directly geo-referenced, errors in navigation (position
and orientation) can cause discrepancies among the point cloud data sets, since the position
and orientation are non-stationary. In particular, the authors from [15] noted that ‘the
misalignment among sensors needs to be carefully calibrated (through either indirect or
direct sensor orientation), and their time needs to be rigorously synchronized’. This was
because orientation and timing errors could cause a great offset in the location of the point
cloud, the same as in ALS. The MLS point cloud could be registered with respect to other
sensor data, such as a reference point cloud and imagery. Multiple sets of MLS point clouds
could also be registered and stitched together. However, different data sets often had to
be manually registered into the same coordinate system due to navigation errors. Special
shaped artificial targets were used in the process. The precision of the MLS point cloud
was verified via registration, which was around 4-5 cm.

Ref. [15] provided a summary of how urban objects could be modeled with a LIDAR
point cloud from TLS, MLS, and ALS. Building roofs and façades could be modeled with
ALS or ground-based LIDAR. The modeling process could be data-driven, which extracted
models from the point cloud; or model-driven, which verified a hypothetic model with a
point cloud; or a hybrid between the two. The choice of models was a balance between
geometry, topology, and semantics. Power lines could be better modeled with ALS and
geometric models (a more detailed example can be found in [24]). Road surfaces could be
modeled with ALS or MLS, and with various types of models. Ref. [15] called for more
research into LIDAR-based bridge models.

Ref. [15] also recognized that it was more challenging to model free-form objects,
such as statues, towers, fountains, and certain types of buildings. Various types of surface
reconstruction methods were discussed in this work, and it was certainly possible to extract
robust and accurate (centimeter-level) representation from the point cloud. However, the
accuracy depended on the surface characteristics and the input data.

Although there has not been much literature on the application of UAV-based ALS,
the remote sensing industry has started to pay more attention to it. UAV LIDARs were
developed based on adapted versions of ALS [64] and MLS [27,28,65]. As with ALS
and MLS, the UAV LIDARs were tightly integrated with navigation systems, such as
Trimble/Applenix [30] and NovAtel [29]. Attempts have also been made to use a hybrid
form of TLS data and UAV-based image processing. This technique is thought to be most
useful at large earthwork sites to improve the cost-effectiveness and means of efficiency of
construction management [66].

Due to constraints in cost, power, size, and weight, the low-cost UAV LIDAR systems
had limitations in range, point cloud density, ranging accuracy, and navigation accuracy.
For example, the Hokuyo LIDAR in [65] has a nominal range of 30 m. While UAV LIDAR
can be of use for capturing data over huge land areas, ground-based LIDAR is superior
in capturing the specific details of an area [67]. UAV LIDAR is typically only suitable for
ground vehicles and UAVs flying very low to the ground. GPS/GNSS receivers with RTK
or differential corrections could produce large position errors, which translates to large 3D
position errors in the point cloud. The orientation of the low-cost IMU sensors produced
substantial angular errors, especially in the heading. As a result, the accuracy and resolution
of low-cost UAV LIDARs were rather limited. Remote sensing experts had argued that UAV
LIDARs were not as effective as UAV photogrammetry in construction management not
too long ago [68]. Despite these constraints, a BIM–UAV LIDAR combination approach was
found to be effective for construction project monitoring and quality control. This system
provides real-time information which can assist in early defects detection on construction
sites. The use of technology can be considered advantageous over traditional quality
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control checks when taking into consideration the safety, accessibility, and efficiency of the
BIM–LIDAR system [69,70].

It is easier to obtain a high-density point cloud with photogrammetry, and high-
resolution cameras are much more cost-effective than high-density LIDARs. While LIDAR
sensors may be more costly and heavier than high-resolution cameras, [71] note that
the results may improve the overall quality of construction project management. More
importantly, the relative precision of the 3D point cloud from SFM photogrammetry is
based on the consistency within imagery. It is relatively more convenient to achieve
centimeter-level relative precision with sufficient imagery coverage. The absolute accuracy
is dependent on GCPs. With sufficient GCPs, centimeter-level absolute accuracy can
also be achieved. On the other hand, the LIDAR point cloud is always using direct geo-
referencing. As discussed above, the accuracy is highly dependent on the navigation
sensors, especially angular measurements. As a result, the errors in the 3D point cloud are
amplified with distance. Limited by accuracy and range, low-cost UAV LIDARs often have
to take measurements close to the ground (tens of meters). Therefore, it was argued that
low-cost UAV LIDARs could only help when SFM or GCPs are not available [68].

However, it was pointed out that there could be several types of environments where
UAV LIDAR would enable projects to be delivered that may not have been possible
otherwise [72]. These projects included those that involved steep topography, a linear-
based survey, or sites covered by dense vegetation. LIDAR direct geo-referencing minimizes
the need for GCPs and therefore is suitable in environments where it is either too expensive
or impossible to place GCPs. Ref. [73] tested the possibility of autonomous beyond visual
range (BVR) flights in unknown environments with LIDAR. The three qualities that this
study found to be necessary for autonomous long-distance UAV flights were BVR waypoint
navigation flight, ground detection/terrain following, and obstacle detection and avoidance.
More importantly, some LIDARs have multiple return capabilities [27]. The LIDAR beams
are sometimes wide enough that they can be reflected by multiple surfaces and objects,
including dust, rain, foliage, and the actual target (ground). It becomes possible for LIDAR
to see through to the ground. Therefore, the main advantage of using LIDAR is potentially
differentiating the ground from vegetation.

Furthermore, recent developments in the remote sensing and navigation industries
have made available higher density UAV LIDARs at a greater range (a few hundred meters)
and better inertial measurement units that can measure orientation more precisely. They
could be used to take volumetric or topographic measurements of the ground, with or
without vegetation cover, and model roads, cuts and other surfaces, and even buildings [37].

In the last few years, custom-built LIDAR systems have been reported that were
specially designed for modeling the terrain or vegetation, such as in [74]. Commercial
solutions are becoming more available, such as in [75]. Obviously, UAV-based photogram-
metry (SFM) and LIDAR have different limitations and requirements on the hardware
(UAV airframe and sensors) and the operational environment. The expected quality of
the data product also differs between both technologies. In general, the SFM point cloud
is expected to have a higher precision and higher density than that of UAV-LIDAR. For
example, Figure 1 shows a tent-shaped calibration target placed on the ground. The target
was designed by the authors of this paper to quantify the errors in SFM and the LIDAR
point cloud. It has a base of approximately 1 m by 1 m, and the height is about 0.4 m. The
surface of the target was covered with white canvas and painted with blue stripe patterns.
The SFM and LIDAR point clouds have been illustrated in Figures 2 and 3, respectively. The
SFM point cloud was formed with imagery collected with a GoPro camera installed on a
DJI Inspire UAV, and processed in Agisoft Metashape. This point cloud was geo-registered
in a local North-East-Up frame. Each point in this point cloud has been assigned with a
color extracted from the airborne imagery. A custom UAV-LIDAR system based on a Sick
UAV LIDAR and a DJI Matrice 600 Pro UAV was used to collect the point cloud in Figure 3.
The point cloud was displayed in the same North-East-Up frame as in Figure 2. The points
in Figure 3 were not colored with imagery, since the UAV LIDAR does not have color-based
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returns. Instead, the colors in Figure 3 are simply used to illustrate height, such that the
target can be visually differentiated from the ground. Both point clouds are accurately
geo-referenced and can be aligned with each other. However, Figure 2 shows more 3D
details of the target, with a higher density and colored points. On the other hand, the target
in Figure 3 appears coarse and noisy, with a lower density.
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UAV LIDARs and ALS are capable of measuring terrain and surfaces, with or without
vegetation cover, via direct geo-referencing. The point cloud density and accuracy decrease
with flight altitude. Therefore, it may not provide the same level of details that UAV
imagery can. However, the absolute accuracy of SFM is dependent on the GCPs, and is
more likely to be limited by the operational environment. The UAV used in this example
circled around the target at different altitude levels for multiple times, to ensure that there
were sufficient coverage and overlap between images, and that images were collected from
multiple view angles. It took several minutes to scan this small target. The LIDAR SFM
requires no GCP, and the UAV only needed one overhead flight in this example. It only
took a few seconds in a flight to capture the point cloud in Figure 3. The pros and cons of
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both technologies have been summarized in Table 2, in terms of hardware, operations, and
data quality.

Table 2. A comparison between UAV-based SFM and UAV-based LIDAR point cloud.

UAV-SFM UAV-LIDAR

Hardware
GCP Yes Optional
GNSS-IMU Optional Yes
Airframe Any Large
Cost Low High

Operations
Robustness (light/ground conditions) Low High
Flight altitude Various Low
Flight time Long Short

Data Quality
Precision mm-cm cm
Density High Medium
Imagery Yes No

Since SFM and LIDAR each have unique strengths, they can complement each other
in some applications. A data fusion method can be used to merge two types of point clouds
to obtain and analyze data in construction settings. Ref. [76] examines the compatibility
of aligning data sources from different types of point cloud collection methods. MLS
and ALS data are easily aligned through geo-referencing methods [76]. TLS data may
be better in smaller scanning areas compared to MLS, and are able to be combined with
ALS point cloud data. This process involves finding matching pairs of objects between
the two-point cloud datasets and creating Laplacian matrices and finding the resulting
correlation coefficients [76]. Point cloud data can also be overlaid with original design
models as a way of determining construction progress [77]. Similarly, the overlapping of
point clouds from consecutive days is a possibility as a way of assessing progress [77].

Overlaying point cloud data with imagery is an additional technique that may be used
effectively. Ref. [78] examined the concept of automatic change detection with UAV image-
based point clouds in the context of assessing landslide sites over time. This approach
allows for the comparison of a large number of images from different dates without the
necessity of having extensive ground control point information [78]. Construction progress
may also be monitored by superimposing two-dimensional photographs with 3D point
models. Ref. [79] utilized this technique in order to visualize the construction progress
schedule. For example, aspects of a building site that were considered on the schedule were
color-coded one color while entities that were behind schedule were coded a separate color
for clear distinction [79]. This allowed for easily visible progress reports in the construction
process. Alternatively, the LIDAR point cloud can be fused with available imagery to
construct 3D models. The fusion will be based on direct geo-referencing and can still
provide more details. Ref. [80] proposed an approach to register images with an ALS point
cloud for urban models. OpenGL and graphics hardware were used in the optimization
process for efficient registration. Ref. [16] discussed a hybrid intensity-based approach that
utilizes both statistical and functional relationships between images, particularly in the
case of registering aerial images and 3D point clouds. Statistical dependence of mutual
information or functional relationships of correlation ratio alone was not sufficient to
register photos to LIDAR reliably. However, the proposed method used both of them and
performed a robust registration of urban areas. Ref. [81] discussed registering SFM 3D
point clouds, 3D meshes, and geo-referenced orthophoto imagery in a fully automated
manner. The data product could be used in disaster relief response and construction
progress monitoring.

Ref. [82] focused more on road maintenance. This work combined a TLS point cloud
with UAV photogrammetry. The authors acknowledged the difficulties faced with road
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maintenance using TLS alone: (1) As passengers and cars use the road being surveyed dur-
ing measurements, and available space for instrumentation setup is limited, it is sometimes
difficult to set up TLS. (2) TLS can only provide high-density measurements in a limited
range (10 m). Part of the road that was surveyed used UAV photogrammetry and SFM. The
point cloud was combined with that from TLS, which was used to scan a bridge, including
sides and lower works. The inaccuracy for the bridge was an effective length of 1.2 cm
and an effective width of 1.9 cm, and the three-dimensional data described the structure
of the bridge with high accuracy. The combined point cloud could be used to develop a
road maintenance management system that accumulates data and refers to the inspection
results and repair information in three dimensions.

The existing literature mainly covered the registration of imagery with TLS and ALS.
The fusion and registration of UAV LIDAR with imagery collected by an onboard camera
has not been well documented yet. It is one of the emerging technologies that will soon
find more applications in construction and civil engineering.

6. Safety and Risk Considerations

Additional risks arise primarily from operating in construction applications. Ref. [83]
noted that ‘about 30 incidents of near-misses or crashes leading to human injury have
been reported associated with the use of recreational UAVs. Unstable flying conditions,
operator errors, and faulty equipment may represent potential hazards to nearby workers
from the commercial use of UAVs’. This work described the use of UAVs in construction,
the potential risks of their use to workers, and approaches for risk mitigation, includ-
ing ‘prevention-through-design’ for small UAVs, the adequate training of operators, and
updating occupational safety regulations.

Risks of small UAVs could result from a number of technical reasons, including (but
not limited to) power, communications, navigation, and control. UAV operations may be
autonomous, semi-autonomous, or remote-controlled [84]. In a fully autonomous or semi-
autonomous operation, the low-level control is governed by the onboard flight controller
and navigator, which relies on GNSS (or an equivalent sensor) as aforementioned. If
the UAV follows a pre-loaded flight plan without the need for human intervention, it is
considered fully autonomous. In a semi-autonomous operation, sometimes also referred to
as a GNSS-assisted operation, the UAV follows the guidance of a remote controller, with
commands transmitted via a communication channel. In a remote-controlled operation,
the user directly performs low-level control functions, such as attitude or velocity control,
without using on-board GNSS.

When a UAV is close to a building or other structure, it may lose communication with
the operator. The quality of GNSS positioning in the vicinity of a construction site could also
suffer from blockage and multipath. In an autonomous operation where GNSS has been
corrupted, the onboard flight controller could command erroneous operations. A properly
designed UAV system will attempt to stop the operation, by landing or returning to the
home location, upon the loss of communications or GNSS. Without the ability to ‘sense and
avoid’, the UAV could potentially cause damage during this process. An obvious way to
prevent communication loss is for users to remain in the line of sight when operating UAVs,
as often required in various regulations, including FAA part 107 (FAA 2016). Autonomous
operations should be enabled only when GNSS (or equivalent) is available. Small UAVs
with redundant navigation systems, payload capabilities, redundant rotors, and battery
capability in case of a rotary-wing UAV provide additional safety protection. Furthermore,
small UAVs with GNSS-denied and indoor navigation capabilities, and sense and avoid
capabilities, are also available now.

Ref. [85] recognized that the construction industry had the potential to greatly increase
safety and efficiency on the job site, particularly in safety inspections. This article discussed
the opinions of safety managers and their thoughts on the implementation of UAVs. In
2019, the construction industry was found to be the second-highest economic market sector
for UAVs, with agriculture coming first. It was found that various monitoring tasks, such as
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for cranes in the proximity of overhead power lines, are the most important safety-related
tasks that might benefit from using UAVs on a construction project. It was also found that
the three most important technical features of the UAV were the camera movability, sense
and avoid capability, and a real-time video communication feed. A list of state regulations
can be found in [86]. FAA part 107 guidelines [87] must be followed when operating small
UAVs for these applications.

7. Conclusions

UAV-based remote sensing and inspections have been used widely in construction
and civil fields. This paper summarizes the up-to-date performance and applications
of UAV-based photogrammetry and LIDAR technologies. UAV-based technologies have
demonstrated their unique advantages, especially in helping with construction and infras-
tructure sustainability, although there are also limitations in some of the applications. With
the recent development of sensing technologies and their application in UAV-based systems,
some of the limitations will be overcome soon. Although the operation of UAVs could
potentially raise risks at a construction site, especially in fully autonomous operations, they
can also improve the safety, efficiency, and sustainability of construction operations.
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Abstract: Coastal environments are some of the most dynamic environments in the world. As they
are constantly changing, so are the technologies and techniques we use to map and monitor them. The
rapid advancement of sUAS-based remote sensing calls for rigorous field and processing workflows
so that more reliable and consistent sUAS projects of coastal environments are carried out. Here, we
synthesize the best practices to create sUAS photo-based surveying and processing workflows that
can be used and modified by coastal scientists, depending on their project objective. While we aim
to simplify the complexity of these workflows, we note that the nature of this work is a craft that
carefully combines art, science, and technology. sUAS LiDAR is the next advancement in mapping
and monitoring coastal environments. Therefore, future work should consider synthesizing best
practices to develop rigorous field and data processing workflows used for sUAS LiDAR-based
projects of coastal environments.

Keywords: drone; UAS; coastal; coastal environments; data collection; data processing; structure
from motion; workflow

1. Introduction

Coastal zones are land surfaces that are influenced by marine processes, which is why
they are some of the most dynamic environments in the world. Both marine (e.g., waves and
tides) and atmospheric (e.g., precipitation and winds) processes create a variety of landforms
ranging from gently sloping sandy beaches to high rocky cliffs. Coastal zones are important
because they support many different complex ecosystems from tidal swamps and marshes
that extend from the landward limit of waves to coral reefs that extend to the seaward
limit where the waves interact with the seabed. Coastal zones not only provide essential
ecosystem services, such as shoreline protection, improved water quality, fisheries resources,
and food and habitat to wildlife, but they are also attractive to human populations for their
recreational opportunities [1]. For this reason, coastal scientists, engineers, and managers
prioritize mapping and monitoring these changing environments.

As our coastal environments are constantly changing, so are the technologies and
techniques that we use to map and monitor them. Traditionally, passive sensors mounted
on satellites and occupied aircraft were used to monitor coastal environments [2]. How-
ever, with the rapid advancement of small Unoccupied Aircraft Systems (sUAS), coastal
monitoring is now more affordable and efficient [3–7]. This makes sUAS highly attractive
“on-demand remote sensing devices” [7]. The ability to choose sensors and to control
temporal resolutions with a sUAS makes them excellent for mapping and monitoring small
coastal areas. For example, many coastal habitats need on-demand remote sensing moni-
toring devices to capture data at certain phases of the tide, such as oyster reef beds exposed
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at low tide [8–10]. In addition, on-demand remote sensing monitoring is needed to under-
stand the behavior of sea life, such as rays [6], sea turtles [11,12], and whales [9]. In addition
to the ability to control temporal resolution, sUAS help to reduce the time needed to collect
in situ data in challenging coastal environments (e.g., by as much as a week) [4,6,7]. While
sUAS have other benefits, such as the ability to provide high resolution imagery, dense
point clouds, and the ability to capture data simultaneously with in situ measurements,
the use of these technologies can be especially challenging in coastal environments. These
challenges include but are not limited to environmental conditions such as the weather,
sun glint on water, turbidity [8], distribution, and placement of Ground Control Points
(GCPs) [5,6], the phase of the tide [4–8], battery capacity limiting sUAS projects to small
coastal areas [6,7,13], and technical issues related to the computer power and skill needed
for image processing [5,7].

To address these challenges, this review article aims to synthesize and illustrate best
practices used to collect and process the sUAS data of coastal environments. To assist
with this objective, we reviewed recent review articles that focus on sUAS applications in
coastal environments and include topics such as regulations, sensors, platforms, calibration,
validation, and data processing. Based on the best practices identified from these review
articles in addition to the current literature, we illustrate a step-by-step workflow that can be
used for either conducting sUAS surveys or sUAS data processing, or both. It is anticipated
that this review will assist coastal scientists, engineers, and managers by providing flexible
workflows that help guide consistent and reliable sUAS projects of coastal environments.

2. Previous Reviews of sUAS Monitoring of Coastal Environments

The rapid advancement of sUAS-based remote sensing has resulted in several recent
review articles with a focus on coastal environments. Two academic research databases
were used in this study to locate these articles. A Scopus search was conducted using
the terms ‘coastal’, and ‘drone’, where 353 results were found. A Google Scholar search
was also conducted using these terms, where 33,800 results were found. Both database
searches were then limited to review documents, which produced 16 articles from Scopus
and 665 articles from Google Scholar. We examined each abstract to verify each review
article related to our overall goal of understanding the current sUAS applications in coastal
environments. We were interested in synthesizing and illustrating the best practices used
to collect and process sUAS data in coastal environments.

It should be noted that several of the review articles focused on other topics not
related to our goals. Some articles from the Scopus search included a short discussion
of how sUAS can be used in coastal environments, such as for non-destructive testing of
bridges [14], to benefit marine citizen science [15], or to study human behavior such as
recreational fishing or visitor use to public land [16]. Other articles from Scopus reviewed a
different topic altogether, such as the application of space-born synthetic aperture radar to
offshore wind sources [17]. The Google Scholar search results were similar, in that some
articles reviewed a different topic such as the application of sUAS for protected areas [18],
monitoring marine environments with autonomous underwater vehicles [19], and the
use of sUAS to conduct water sampling in freshwater environments [20]. These articles
were removed from the literature bases, and afterwards five remained from Scopus and an
additional four remained from Google Scholar. After thoroughly examining each article, a
review article was identified in the references that was not categorized accordingly in the
search engine [3]. All 10 of these articles focused on our interests above [3–9,11–13].

2.1. sUAS Regulations

Most of the review articles mention that a critical component to any sUAS project is the
employment of a commercial pilot who is knowledgeable with the current flight restrictions
and regulations placed by their respective country’s aviation authorities [3–7,9,11]. The authors
of [6] expands on this requirement to include that a commercial pilot should be knowledgeable
on the three common approaches to sUAS regulations, which include: (1) the Outright or
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Effective Ban, as used in countries such as Cuba to ban sUAS flights completely; (2) the Visual
Line of Sight (VLOS)-dependent approach, as used by Australia and the European Union to
limit the sUAS flight to be within the pilot’s VLOS; and (3) the Permissive approach, where
regulations are reasonable and less restrictive, such as in Sweden. Since flight restrictions
vary across the globe and continue to change as the technology advances, it is often difficult
for commercial pilots to keep up with these changes [11,13]. This is especially the case for
countries such as the United States that implement the VLOS-dependent approach that requires
scientific pilots to obtain a license. Once qualified as a commercial pilot for a respective
country, it is good practice to periodically check the sUAS regulations to ensure no changes
were implemented, especially if flights are not conducted on regular basis (e.g., once, or
twice a year). Regulations for the VLOS-dependent approach can be found at each aviation
authority’s website, such as the United States (https://www.faa.gov/uas/ (accessed on 7 May
2022)), Costa Rica (https://www.dgac.go.cr/ (accessed on 7 May 2022)), the European Union
(https://www.easa.europa.eu/domains/civil-drones (accessed on 7 May 2022)), New Zealand
(https://www.aviation.govt.nz/ (accessed on 7 May 2022)), and Japan (https://www.mlit.go.
jp/en/koku/index.html (accessed on 7 May 2022)).

2.2. Cameras and Platforms

The choice of a camera sensor should depend on the sUAS project objectives, although
this can be limited, based on the project’s budget costs and aircraft (multirotor or fixed-
wing). The review articles cover a range of camera sensors including basic Red, Green, Blue
(RGB), and more advanced sensors capable of measuring wavelengths not visible to the
human eye such as multispectral (red edge and near infrared), hyperspectral, and thermal
infrared. Basic camera RGB sensors are most often used because they are suitable for most
coastal applications due to their low-cost, light weight, and high resolution [4,5]. The visible
RGB bands of the electromagnetic spectrum are effective at capturing the behavior of marine
vertebrates [6,9,11,12], as well as accurate 3D changes in coastal geomorphology derived
from structure-from-motion (SfM) photogrammetry techniques. However, additional
portions of the electromagnetic spectrum are needed to capture certain phenomena. For
example, multispectral and hyperspectral sensors can capture the health and distribution
of different wetland [3–5,7,8] and coral species [3,9], algal blooms, and water quality [4].
Thermal infrared cameras provide images of temperature, which are used to assess animal
populations and water quality [4,6,8,9,11,13]. While the choice of sensor should depend on
the sUAS project objectives, the choice of platform should depend on its ability to carry the
sensor and meet the project’s quality specifications (e.g., image resolution and accuracy).

sUAS are either multirotors with propellors, or fixed wings. Fixed wings are the most
efficient at surveying large coastal areas due to the increased flight time, while multirotors are best
for small coastal areas because the flight height and speed are easier to control [3–5,7]. However, if
surveying several kilometers of coastline, the efficiency of fixed wings goes down while the project
costs go up. The higher payload and better stabilization offered by multirotors makes them better
suited for mounting more complex sensors, such as hyperspectral cameras [3,7]. Nonetheless,
the technology is advancing, and complex sensors are now being designed specifically for fixed
wings, such as the senseFly Parrot Sequoia+.

2.3. Calibration Procedures

Calibration is an important process that needs to be considered when conducting a
sUAS project. Calibration is performed by comparing a test measurement with a calibration
measurement standard of known accuracy. Calibration can refer to the platform, RAW
(uncompressed, which is preferred) imagery, camera, and the final products (i.e., orthomo-
saics, 3D dense clouds, Digital Elevation Models (DEMs). In terms of the platform itself,
the Inertial Measurement Unit (IMU), compass, and gimble need to be calibrated often to
ensure that the sUAS operates within the software tolerances. The IMU corrects for the
platform’s yaw, pitch, and roll allowing it to balance while moving in different directions.
One review article mentions that multirotors often calibrate their IMU at startup, which can

https://www.faa.gov/uas/
https://www.dgac.go.cr/
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be a problem if launching from a moving platform, such as a boat [9]. This issue can often be
resolved by first launching the aircraft on land using motion-boot or boat-mode calibration
sequences [9]. None of the review articles mention compass or gimbal calibration, which
are important for accuracy and safety. Compass calibration aligns the platform’s flight
system with the Earth’s magnetic north. We prefer to calibrate our platforms’ compass prior
to each flight to help prevent unwelcoming flyaways and unstable landings. The gimbal’s
motors support and stabilize the camera about an axis so it is not restricted from movement
when taking images at different angles that increase the image network’s geometry. We
typically calibrate our gimbal after any rough handling of the platform, such as a harsh
landing or even after an unwanted crash. A commercial pilot can often perform these
calibrations using the respective platform’s software.

In addition to platform calibration, both image and camera calibration need to be
acknowledged. Image calibration, or radiometric calibration, is necessary when using
multispectral and hyperspectral cameras because the raw Digital Numbers (DN) must be
converted into reflectance spectra. Radiometric calibration is also required when conducting
repeat flights where weather conditions are different so that the imagery is in a common
scale based on reflectance spectra, such as when using multispectral, hyperspectral and
RGB cameras. Sensor noise can also contribute to radiometric variability [7]. We note that
radiometric calibration is required when comparing reflectance spectra data through time,
such as when monitoring different vegetation communities. However, if the sUAS project
goal is to monitor topographic changes, as derived from SfM techniques, 3D point clouds
are compared and not the reflectance spectra data. While radiometric calibration is an
important process to consider in many sUAS projects, only 2 out of the 10 review articles
discussed radiometric calibration procedures [4,7]. These include the use of calibration
targets that are distributed prior to the sUAS survey, so that the corresponding imagery
(test measurement) can be used with the calibration target (calibration measurement of
standard accuracy) [4,7]. Spectroradiometers are also used in flight or in the field to collect
upwelling radiance and downwelling irradiance data [4]. Some camera manufacturers offer
calibration targets, such as MicaSense, and software available for radiometric calibration to
consider include Agisoft and Pix 4D.

A discussion on camera calibration is missing from all of the 10 review articles. Camera
calibration is a process used to describe the camera parameters needed to reliably relate the
2D image coordinate system with a 3D real-world coordinate system. The camera model can
be determined using a pre-calibration or self-calibration procedure. Pre-calibration is more
involved because it requires capturing images taken at many different angles of a calibration
pattern whose geometry in 2D or 3D space is precisely known [21], which is performed prior
to the bundle adjustment in the SfM workflow [21,22]. A workflow for determining a pre-
calibration camera model using a 2D geometric pattern is available using MATLAB (https://
www.mathworks.com/help/vision/ug/using-the-single-camera-calibrator-app.html (ac-
cessed on 7 May 2022)) and Agisoft (https://agisoft.freshdesk.com/support/solutions/
articles/31000160059-lens-calibration-using-chessboard-pattern-in-metashape (accessed
on 7 May 2022)). A caveat is that the geometric pattern should be captured at a distance
that is roughly equal to the flight height, which is not suitable for long-range capturing
scenarios. On the other hand, self-calibration procedures are more flexible because they do
not require an observation of a geometric pattern and are carried out automatically during
the bundle adjustment. However, this approach also has its cons, as many parameters
need to be estimated that do not always obtain accurate results [21]. The pre-calibration
and self-calibration approaches each have their pros and cons, and, regardless of which
approach is used for a sUAS project, we agree with [23] that sufficient image metadata such
as the camera make and model, ISO, shutter speed, aperture, and focal length need to be
reported to allow confidence and reproducibility in the results.

Geometric calibration (also known as georeferencing) is the process used to relate the
2D image coordinate system with a 3D real-world coordinate system. The calibration mea-
surements of known accuracy relative to an established 3D coordinate system are referred

https://www.mathworks.com/help/vision/ug/using-the-single-camera-calibrator-app.html
https://www.mathworks.com/help/vision/ug/using-the-single-camera-calibrator-app.html
https://agisoft.freshdesk.com/support/solutions/articles/31000160059-lens-calibration-using-chessboard-pattern-in-metashape
https://agisoft.freshdesk.com/support/solutions/articles/31000160059-lens-calibration-using-chessboard-pattern-in-metashape
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to as GCPs. GCPs are often surveyed with Real-time Kinematic Global Navigation Satellite
Systems (RTK-GNSS) prior to or after a sUAS survey, so that the corresponding imagery
(test measurement) can be matched up with their 3D ground coordinates (calibration mea-
surement of standard accuracy) in the SfM workflow. Only 1 out of the 10 review articles
mention the use of GCPs for registering the sUAS imagery to a 3D coordinate system [7].
In addition to accurate measurements of GCPs, their number and distribution throughout
the study area depends on the quality specifications of the sUAS project. The number of
GCPs should be sufficient where half are designated as control (calibration) and the other
half are designated as quality (validation) to assess the reliability of the georeferencing [24].

2.4. Validation Procedures

Validation is the process of determining whether the test measurement meets the
standard requirements for an intended sUAS project’s purpose. A total of 3 out of the 10
review articles discussed validation as the process of comparing the RTK-GNSS locations
of field samples of the phenomenon to be mapped (e.g., coastal habitat, water quality, etc.)
with the classified coastal habitat or predicted water quality values [4,5,7]. Validation in
this context is used to assess, for example, how well a machine learning model makes new
predictions on unseen data to predict the water quality. However, before we can validate
such a model, we must validate the geometric calibration results.

2.5. Literature Review Gaps

The best practices used to conduct sUAS surveys as well as process sUAS photo-based
data in coastal environments are missing from the review literature. Table 1 emphasizes the
gaps as data collection, calibration, validation, data processing, and software. We intend to
fill this gap by presenting two workflows to help guide coastal scientists. The following
section compiles the current best practices as a series of activities necessary to complete a
successful sUAS field campaign as well as a workflow to process sUAS photo-based data.

Table 1. Major topics either reviewed or not reviewed by each of the 10 review articles identified
in this study. Topics marked by a check in the box indicate the topic was covered. The topics least
reviewed are data collection, calibration, validation, data processing, and software.

Reference Regulations Sensors Platforms Collection Calibration Validation Processing Software Challenges Benefits Applications

Morgan
et al. (2022)

[7]
�

√ √ √ √ √
� �

√ √
�

Adade et al.
(2021) [5] �

√ √
� �

√
�

√ √
�

√

Kandrot
et al. (2021)

[13]

√
�

√
� �

√
� �

√
�

√

Oleksyn
et al. (2021)

[6]

√
� � � � � � �

√ √ √

Ridge and
Johnston
(2020) [8]

�
√ √

� � � � �
√ √ √

Johnston
et al. (2019)

[9]

√ √ √
�

√
� � �

√
�

√

Schofield
et al. (2019)

[12]
� � � � � � � � �

√ √

Kislik (2018)
[4]

√ √ √
�

√ √
�

√ √ √ √

Rees et al.
(2018) [11]

√
� �

√
� � � �

√ √ √

Klemas
(2015) [3]

√
�

√
� � � � �

√ √ √
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3. sUAS Photo-Based Surveys of Coastal Environments: Best Practices
3.1. sUAS Photo-Based Surveys

Good data can easily be lost due to poor field protocols. Here, we expand on the
existing literature and create a Red, Green, Blue (RGB) workflow organized in three phases
using best practices (Figure 1). This workflow can be modified to map and monitor
different coastal phenomena such as coastal habitats, beach nesting species, topographic
and nearshore bathymetry.

Drones 2022, 6, x FOR PEER REVIEW 7 of 15 
 

3. sUAS Photo-Based Surveys of Coastal Environments: Best Practices 
3.1. sUAS Photo-Based Surveys 

Good data can easily be lost due to poor field protocols. Here, we expand on the 
existing literature and create a Red, Green, Blue (RGB) workflow organized in three 
phases using best practices (Figure 1). This workflow can be modified to map and monitor 
different coastal phenomena such as coastal habitats, beach nesting species, topographic 
and nearshore bathymetry. 

 
Figure 1. Red, Green, Blue (RGB) workflow organized in three phases using best practices for con-
ducting sUAS photo-based surveys of coastal environments. 

In phase red of the workflow, the scientific pilot follows sUAS regulations while ob-
taining any special permissions from landowners and managers to access the survey area 
[25,26]. While sUAS regulations differ among nations, [26] identified three general aspects 
of sUAS regulations, which include: (1) targeting regulated use of airspace; (2) imposing 
operational limitations; and (3) administration of flight permissions, pilot licenses, and 
authorization of data collection. This demonstrates the importance of knowing these rules 
before beginning a sUAS survey. The next step in phase red is to determine the project 
objective(s). In our example, the project objective is to conduct repeat annual surveys to 
monitor vertical changes in newly restored oyster reefs. With the project objective identi-
fied, the quality specifications of minimum vertical accuracy (mean bias) and precision (1 
σ or Root Mean Square Error (RMSE)) assuming data follow a normal distribution) re-
quirements can be justified. This requires some background knowledge of the features 
being mapped. In our example, intertidal oyster reefs can grow 10 to 13 cm yr−1 vertically 
[27], so one approach is to determine the required precision by dividing the minimum 
annual expected vertical change of 10 cm by two (10/2 = 5 cm). The required mean bias 
should be zero. This allows the minimum expected annual vertical change of 10 cm to be 
measured more reliably. The next step in phase red of the workflow is to determine the 
optimal resolution based on the minimum object to be mapped, which, in our example, is 
a 2 × 4 cm oyster. Traditionally, the Minimum Mapping Unit (MMU), which is the smallest 
feature to be mapped, is useful when considering the Ground Sampling Distance (GSD) 

Figure 1. Red, Green, Blue (RGB) workflow organized in three phases using best practices for
conducting sUAS photo-based surveys of coastal environments.

In phase red of the workflow, the scientific pilot follows sUAS regulations while obtain-
ing any special permissions from landowners and managers to access the survey area [25,26].
While sUAS regulations differ among nations, [26] identified three general aspects of sUAS
regulations, which include: (1) targeting regulated use of airspace; (2) imposing operational
limitations; and (3) administration of flight permissions, pilot licenses, and authorization of
data collection. This demonstrates the importance of knowing these rules before beginning
a sUAS survey. The next step in phase red is to determine the project objective(s). In
our example, the project objective is to conduct repeat annual surveys to monitor vertical
changes in newly restored oyster reefs. With the project objective identified, the quality
specifications of minimum vertical accuracy (mean bias) and precision (1 σ or Root Mean
Square Error (RMSE)) assuming data follow a normal distribution) requirements can be
justified. This requires some background knowledge of the features being mapped. In our
example, intertidal oyster reefs can grow 10 to 13 cm yr−1 vertically [27], so one approach
is to determine the required precision by dividing the minimum annual expected vertical
change of 10 cm by two (10/2 = 5 cm). The required mean bias should be zero. This allows
the minimum expected annual vertical change of 10 cm to be measured more reliably. The
next step in phase red of the workflow is to determine the optimal resolution based on the
minimum object to be mapped, which, in our example, is a 2 × 4 cm oyster. Traditionally,
the Minimum Mapping Unit (MMU), which is the smallest feature to be mapped, is useful
when considering the Ground Sampling Distance (GSD) [28]. The GSD can be illustrated
as the distance between the center of two cells when using an orthogonal plane. In our
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example, the GSD should be at a maximum 1 cm, so that the shape and size of an oyster
can resolved. GSD is a result of flight height, focal length, and sensor resolution, which can
automatically be calculated in most flight planning software, such as DJI GS Pro.

Once regulations, project objective(s), quality specifications, and GSD are defined in
phase red, the next phase in the workflow is phase green, where the first step is to identify
the appropriate sensor. RGB sensors with fine resolutions (≥20 MP), a wide range in
global shutter speed, lens aperture, and ISO should be considered for accurate topographic
mapping [16]. An RGB sensor is a reasonable choice for our example project objective,
to monitor vertical changes in oyster reefs. Currently, multispectral, and hyperspectral
sensors produce non-aligned bands and low-resolution images [26,29] making them less
suitable for fine resolution topographic mapping. However, if our project objective was to
classify coastal vegetation at the species level or estimate water quality, multispectral or
hyperspectral sensors would be preferred because they provide more spectral information
for training a machine or deep learning classification model. Although vendors typically
carry out sensor calibration, an ongoing assessment in the lab is also necessary [26]. The
next step in phase green of the workflow is to determine the aircraft on which the sensor
will be mounted. Multicoptors are best suited for our example project, due to their vertical
takeoff and landing in complex coastal terrain, their ability to fly slowly and stop to capture
imagery (reducing motion blur), hover at low flight heights for close data capture of small
objects, and the project’s small spatial coverage (e.g., <2 ha), which is suitable for a low
battery capacity.

A field reconnaissance of the survey site is critical for safety, which is the next step in
phase green. This visual ground assessment helps to identify any flight obstacles, potential
takeoff and landing sites, and accessible areas with full visibility of GCPs [26]. It is also
useful to take good field notes that map out these safety concerns to assist with proper
placement of the GCPs and geometric calibration targets (if comparing spectral information).
Important considerations in GCP placement include the number (more GCPs tend to reduce
vertical errors), an even spatial distribution that also reflects the variations in topography,
and accurate and precise measurement, such as with RTK-GNSS [26]. One helpful tool for
managing the placement of GCPs is the open-source PhenoFly Planning Tool [26,30]. The
combination of this tool with field reconnaissance notes maximizes careful GCP planning
in the coastal zone. Additional considerations for our example project objective are the use
of semi-permanent elevated GCPs on a platform [7] on the marsh-side and seaward-side
of the oyster reefs. Additionally, the dimension of the GCPs should be about 10 times
the GSD [26,31]. With our required GSD of 1 cm, GCP dimensions should be no less than
10 cm in dimension. In addition to the GCPs, radiometric calibration target(s) should be
considered if comparing reflectance spectra data through time, such as when monitoring
different vegetation communities.

Once the sensor, aircraft, field reconnaissance, and GCP placement are determined
in phase green of the workflow, the last phase in the workflow is the blue phase, which
involves planning and conducting the sUAS surveys. The first step in phase blue is flight
planning, which can be performed a few days before or on the day of the survey. The
options for flight planning software are well covered in the literature [5,7,26]. The open-
source PhenoFly Planning Tool is unique because, in addition to planning the number and
placement of GCPs, the software allows for flight mission planning that considers many
important parameters, such as sensor and lens, flight height needed to achieve the required
GSD, exposure value due to a sunny or cloudy day, side and end lap, motion blur, and
flight path [30]. The choice of autopilot software, such as DJI GS Pro and DroneDeploy,
should be made, based on its compatibility with the aircraft and pilot control over as many
of these parameters as possible. In setting the GSD, the software optimizes flying speed and
height, based on the aircraft and camera. To reduce motion blur, we use a capture mode of
hover and capture at each point. For homogenous coastal areas, such as beaches and sandy
bottoms in the intertidal zone, we prefer a cross flight pattern, a tilted camera, and an 80%
front and side overlap (this requires more images and longer flights). These parameter
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settings help mitigate fewer tie points from being identified in the SfM process and improve
the self-calibration process [26]. Another important consideration in this step is to set the
image file format as a RAW file rather than a JPEG file, because RAW files do not compress
information that leads to lower quality imagery [28]. It is wise to save the mission in the
autopilot software and adjust as needed when in the field.

Additional considerations in the blue phase include weather and tides, which should
be checked prior to and on the day of the survey. Many aircraft cannot sustain winds over
20 mph, nor should they be flown in the rain. We prefer a calm cloudy day to reduce shadows
amongst objects on the surface. In addition, the flight needs to be timed right at low tide
when collecting data in the intertidal zone. There are useful apps that can be used to check
airspace notifications, weather, and tides prior to and during flight operations. In the US, there
are the notices to airmen (NOTAMs; identifies where a pilot can fly), the aviation weather
report (METAR), and the terminal aerodrome forecast (TAF) from the National Weather Service
Aviation Weather Center at www.aviationweather.gov (accessed on 7 May 2022). Tides can be
predicted far in advance with a high degree of accuracy, and tidal predictions in the US can be
obtained from the National Oceanic Atmospheric Administration’s Tide Alert app or for free at:
https://tidesandcurrents.noaa.gov/ (accessed on 7 May 2022). The next steps in phase blue are
to conduct the GCP survey and flights. For safety and efficiency, a preliminary checklist should
be followed and is provided in Appendix A by [26] including aircraft calibration procedures.
In the final step of phase blue, the procedures, settings, and parameters are documented and
shared with the data products and any results derived from them. We recommend following
Appendix B by [26] for creating metadata associated with the sUAS survey, which are critical
for reproducibility and confidence in the results.

3.2. sUAS Photo-Based Processing of Dense Point Clouds, DEMs and Orthomosaics

A sUAS photo-based workflow is created in this study by combining the best practices
of several proven data processing approaches into one (Figure 2). We expand on the
workflow provided by [24] (see Figure 3), focusing more in detail on the processing of
sUAS photo-based data.

Step 1 of the workflow requires the use of radiometrically calibrated images when
conducting repeat sUAS surveys where the spectral data are compared through time (e.g.,
classifying coastal vegetation). The Empirical Line Method (ELM) is commonly used due
to its accuracy and simplification [32], which was further simplified by [33]. However,
in projects that require dense point clouds to be compared through time, radiometric
calibration may be less necessary. This is because radiometric calibration is not directly
related to the performance of SfM photogrammetry used to derive dense point clouds [34].
The next step in the workflow is to determine the processing software and removal of
poorly focused images. Agisoft Photoscan/Metashape (Metashape) is the leading software
used by coastal scientists for geometric calibration, orthomosaic, and dense point cloud
generation [4,7]. Therefore, Metashape is used here to illustrate the sUAS photo-based
processing workflow. In Step 2, poorly focused images are excluded because they can
negatively impact image alignment. Metashape offers an automatic image quality feature
that calculates a value, based on the sharpness of the most focused area of an image [35].
While images with a value less than 0.5 units are recommended for removal, a unit of 0.8
was found to be a more conservative estimate [24].

www.aviationweather.gov
https://tidesandcurrents.noaa.gov/
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Step 3 in the processing workflow is image alignment. This involves SfM to reconstruct
3D geometry by identifying and matching common features on overlapping images into
tie points. In Step 4, a bundle adjustment is carried, which uses a least-squares global
optimization approach to reduce image residuals by adjusting camera parameters, camera
orientations, and the 3D point positions [36,37]. The output from this procedure results in a
more reliable, aligned image network based on the estimated camera positions from the
imagery alone and a resulting sparse cloud. Step 5 involves performing a quality control
assessment on the image network by checking for errors in the potential mismatching of
tie points [24,37]. At this step, the RMSE between the projected reconstructed tie points
and their corresponding original projections detected on the photos are calculated for each
photo in the network and the results visualized in a statistical software, such as open-source
R v4.1.3. This helps to identify any photos with high image residuals that may need removal
from the image network [24,37].

Step 6 in the workflow involves the process of hand marking GCPs on the images.
The GCPs are then added to the image network without setting them as a control, followed
by another bundle adjustment (Step 7) [24,37]. This allows for the quality of the GCPs to be
captured in pixels (Step 8). In Step 9, georeferencing to an established coordinate system is
achieved by linking the GCPs with their 3D ground coordinates. This is followed by another
bundle adjustment, using all GCPs as control (Step 10). A Python script is then executed in
Metashape [37] to export the GCP errors into a statistical software, so that the RMSE between
the estimated positions and GCP 3D coordinates can be calculated (Step 11).

The next step in the processing workflow is camera model optimization (Step 12).
A camera model can be determined either by a pre-calibration or self-calibration procedure
during the bundle adjustment. The pre-calibrated procedure involves determining the
intrinsic geometry and distortion camera model parameters prior to camera model opti-
mization, such as through a common checkboard routine [22]. Self-calibration is where
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the camera model parameters are determined during the bundle adjustment. It should be
noted that capturing imagery at various angles during the survey (e.g., different crosshatch
flight patterns and gimbal pitches) increases the image geometry and can minimize error
in the dense point clouds when self-calibrating [38]. Whether using a pre-calibrated or
self-calibrated procedure, a suitable camera model is determined by evaluating different
camera models (i.e., different combinations of camera parameters such as focal length,
principal point, etc.) to determine which provides the lowest RMSE [38]. To test a camera
model, half of the GCPs are randomly selected as control when running many Monte
Carlo simulations in Metashape [24], using the Python script provided by [37]. The Monte
Carlo results are then compiled in the open source sfm_georef v.3.0 [39] and brought into a
statistical software to estimate the RMSE where the camera model with the lowest RMSE
prevails. Then another bundle adjustment is performed, but this time, all GCPs are set as
control so the reprojection RMSE, GCP image RMSE, and GCP ground RMSE are captured
(Step 13). These parameter values are important for any coastal scientist to report, as they
are used in the final calculation of the reported error for the derived dense point clouds
and orthomosaics.

For Step 14 in the processing workflow, Step 12 is repeated but this time the camera
model is set because it is already optimized, and the errors calculated in step 13 are used in
many Monte Carlo simulations, each followed by a bundle adjustment [37]. The Monte
Carlo results are then compiled in sfm_georef v.3.0 and brought into a statistical software to
estimate the control and quality of the GCP RMSEs. With a high-quality image network, a
dense point cloud is generated (Step 15), but first, all of the GCPs are selected as control, the
errors calculated in Step 13 are included, and the camera model is set followed by a bundle
adjustment. Dense point clouds are generated using “high” quality and “aggressive” depth
filtering, followed by automatic and manual classification [24]. The workflow is concluded
by generating a high resolution and accurate DEM (Step 16), and orthomosaic (Step 17).

4. Discussion

Our analysis of recent review articles on sUAS-based remote sensing of coastal envi-
ronments demonstrates the need for workflows to help guide coastal scientists in carrying
out consistent and reliable sUAS projects from field to lab. The art and science of capturing
and processing accurate sUAS data involves field survey requirements and rigorous pho-
togrammetric workflows to compensate for the potential shortcomings in sUAS-derived
products [24]. Traditionally, geographers and remote sensing scientists are trained in the use
of such technologies and data processing. However, with the accessibility and affordability
of these on demand remote sensing devices for real-time monitoring, coastal scientists
from a variety of backgrounds are taking advantage of their benefits. While the workflows
presented in Sections 3.1 and 3.2 of this study aim to provide helpful guidance on the steps
needed to carry out reliable and repeatable sUAS projects in coastal environments, we
acknowledge the detail and complexity of the workflows, which is a part of the craft.

The sUAS survey workflow Illustrated in this article was divided into three phases
to help simplify the process. In phase 1 of the workflow, the requirement of a licensed
pilot who is knowledgeable of the scientific questions that are being addressed is required.
Phase 1 in the workflow ultimately relies on the pilot’s ability to carry out phase 2, where
the choice of sensor and aircraft are determined, along with a field reconnaissance to ensure
the survey can be conducted efficiently and safely. Otherwise, the ability to address the
sUAS objectives may be compromised. The sUAS survey workflow illustrated in this article
demonstrates that there is more to simply being a commercial pilot when carrying out
sUAS projects for science.

Although we also attempted to help simplify a sUAS data processing workflow that
results in data products that meet strict sUAS project quality specifications (see Figure 2),
the need for coastal scientists with advanced technical skills persists. The 17-step processing
workflow illustrates that sUAS photo-based data processing requires special attention to
the image network, GCP image observations, and camera model optimization procedures



Drones 2022, 6, 142 11 of 13

to prevent propagation of errors into the resulting data products. This requires knowledge
of the SfM process as well as of many different software packages.

Currently, there is not one single software that can carry out all the steps provided in
the sUAS processing workflow. Instead, a combination of Metashape SfM photogrammetry
software, open-source programming such as Python, and statistical software such as R, and
sfm_georef [39] are used (see Figure 2). However, coastal scientists with minimum program-
ming experience can use the Python script provided by [37], because basic information such
as the file path and version of Metashape require basic re-scripting. The Python scripting
associated with each version of Metashape is also provided by the software’s scripting
reference [40]. For coastal scientists that do not have access to Metashape, another option
is the open-source photogrammetry software MicMac [41]. Future work may consider
modifying our sUAS data processing workflow using MicMac instead of Metashape to
allow accessibility to all coastal scientists regardless of budget.

While this article focused on sUAS photo-based data collection and processing, future
work is needed to create reliable sUAS LiDAR-based workflows used for surveying coastal
environments. sUAS LiDAR is the next advancement in coastal mapping and monitor-
ing [3–5,7]. sUAS LiDAR-based surveys are faster than sUAS photo-based surveys, which
require multiple flight paths at different angles and large image overlap (e.g., 70–80%).
When compared to sUAS photo-based data, sUAS LiDAR-based data are more reliable at
estimating ground, vegetation height, and density in coastal marshes [42]. While sUAS
photo-based surveys seem promising for the measurement of nearshore bathymetry, they
are limited to areas with distinct visible features on the seafloor and do not perform well in
homogeneous sandy bottoms. sUAS LiDAR-based surveys, on the other hand, have proven
effective at measuring homogenous sandy bottoms [43]. Many of the reviews converge on
sUAS-based LiDAR as the next advancement in coastal mapping and monitoring [3–5,7].

5. Conclusions

We assessed the current state of review articles on the use of sUAS in coastal environ-
ments [3–9,11–13]. These review articles covered a wide range of topics including sUAS
photo-based regulations, sensors, platforms, calibration, validation, software, challenges,
benefits, and applications. Table 1 emphasizes the major gaps as data collection, calibra-
tion, validation, and processing. We expanded on these review articles to create both a
sUAS survey and sUAS processing workflow, using several proven data collection and
processing techniques.

sUAS photo-based surveys require more time than sUAS LiDAR-based surveys, and
this poses a challenge for pilots tasked with collecting data at certain phases of the tide. The
sUAS survey workflow presented in this study can be modified to fit other sUAS projects
to ensure more reliable and rapid data are captured during sensitive time constraints. For
example, the sUAS survey workflow helps prepare the scientific pilot with knowledge of
sUAS regulations, the project objective along with its quality specifications, the layout of
the survey site, and the GCP placement. With data collected using reliable field protocols,
rigorous photogrammetric workflows can be carried out to compensate for the potential
shortcomings in the final sUAS-derived products. The sUAS processing workflow pre-
sented in this study is rigorous, so that accurate and reliable products are produced. Key
steps include performing quality and control assessments on the image network, GCPs,
and camera calibration model.

While this article focused on sUAS photo-based surveys due to the current rapid
advance of technology, future work should focus on developing rigorous field and process-
ing workflows for using sUAS LiDAR in coastal environments. sUAS LiDAR is the next
important advancement in mapping and monitoring coastal environments. We hope that
this study will stimulate the application of sUAS photo-based and sUAS LiDAR-based best
practices in coastal environments.



A.5 LIDAR Error Model Paper 1 (published 2022) 
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Abstract: Small unmanned aerial systems (UAS) have been increasingly popular in surveying
and mapping tasks. While photogrammetry has been the primary UAS sensing technology in
other industries, construction activities can also benefit from accurate surveying measurements
from airborne LIDAR. This paper discusses a custom-designed low-cost UAS-based LIDAR system
that can effectively measure construction excavation and bulk piles. The system is designed with
open interfaces that can be easily upgraded and expanded. An error model was developed to
predict the horizontal and vertical errors of single point geo-registration for a generic UAS-LIDAR.
This model was validated for the proposed UAS-LIDAR system using calibration targets and real-
world measurements from different scenarios. The results indicated random errors from LIDAR at
approximately 0.1 m and systematic errors at or below centimeter level. Additional pre-processing of
the raw point cloud can further reduce the random errors in LIDAR measurements of bulk piles.

Keywords: UAS; LIDAR; point cloud; construction; error model

1. Introduction

A successful construction project depends on many quantitative and qualitative sur-
veying measurements, including both the fine dimensions for building structures and the
bulk measurements for civil infrastructures. Traditional construction surveying equipment
includes total stations and GNSS devices [1] and their accuracy of measurements varies
depending on the equipment calibration, jobsite environment, and the specific surveying
application. For example, the accuracy standard of earthwork measurements is more
tolerant than that of the locations of pile foundations. The accuracy requirements typically
range from a minimum of 1:2500 up to 1:20,000, as set forth by construction professional
organizations, such as the American Society for Photogrammetry and Remote Sensing, the
American Society of Civil Engineers, the American Congress on Surveying and Mapping,
and the American Land Title Association [2].

With the rapid advancement of technology, the construction industry has embraced
many new surveying and mapping techniques for better work efficiency and more con-
sistent levels of accuracy. These new surveying technologies include terrestrial, aerial,
and satellite imaging, which acquire planimetric, topographic, hydrographic, or feature
attribute data for photogrammetry, as well as terrestrial and aerial light detection and
ranging (LIDAR) that directly captures 3D point clouds of objects and surfaces. One of the
most promising approaches for the implementation of these new surveying technologies is
using a small unmanned aerial system (UAS). Due to the significant improvements in their
flight time, payload capability, and affordability in the last decade, the small UAS has been
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increasingly applied in broader surveying areas, such as agriculture, civil infrastructure,
and disaster management [3]. While photogrammetry has been the primary UAS sensing
technology in these areas, the construction industry, on the other side, can also benefit from
accurate surveying measurements from a UAS-based LIDAR. The level of accuracy and
error prediction of UAS-based LIDAR measurements, however, have been less studied for
construction uses. Consequently, there is a knowledge gap regarding UAS-based LIDAR
technology and its application in construction projects.

This paper presents the design of a custom UAS-based LIDAR system that is capable
of effectively measuring construction excavation and bulk piles. The system mainly consists
of a commercial small UAS equipped with a video camera, an industrial image camera,
a LIDAR sensor, a GNSS receiver, an inertial measurement unit, and three embedded
computers. The onboard GNSS receiver is paired to an onsite GNSS base station for post-
processed navigation measurements. The effectiveness of the overall system was validated
with point clouds collected from three different measurement scenarios using surveyed
results as the truth reference.

Using this system as an example, a robust and generic error prediction model is de-
veloped to estimate the position accuracy of individual point in the LIDAR point cloud.
With this model, systematic and random error components have been estimated, respec-
tively. The model shows that the random error is the dominant component for a low-flying
UAS-based LIDAR, and the error level is tolerable for construction applications, such as
excavation and bulk pile measurements. The random error in the vertical direction could
be further reduced in post processing. The UAS-LIDAR systems and the error model could
have significant potential for the civil engineering and construction industries.

2. Background

The accurate and efficient surveying of the construction site and construction materials
is critical to the safety, quality, and overall success of the construction process. Several
different approaches exist to perform construction surveying and measuring activities,
including traditional manual tools, such as tape measures, straight edges, levels, and
transits for lengths, angles, areas, and volume quantities [4,5]; and modern automated
equipment, such as total stations, GNSS, and cameras for spatial positions, coordinates,
and 3D digital models [6–8]; as well as a combination of different types of measuring
equipment [9]. Nevertheless, all the conventional techniques or their combinations have
certain disadvantages, which have limited their overall applications. For example, the
robotic total station is one of the commonly used pieces of surveying equipment due to
its efficiency in capturing the information of multiple locations within a short amount of
time [10,11]. However, a robotic total station is usually cost-prohibitive and is heavy and
bulky to transport, making it inconvenient to use for large areas. GNSS receivers have also
been used frequently for construction surveying activities due to their high accuracy in
measurements and rapid relocation in large areas [12]. However, GNSS applications are
often limited by the conditions of their operational environment, especially in urban areas
with obstructed view of the sky, electromagnetic shielding, multipath reflection, etc., which
can significantly reduce the accuracy of measurements [13,14].

Furthermore, conventional building and construction surveying activities in most
cases require the equipment operators to physically enter the structure or site to be able
to perform such activities. With considerations of safety, efficiency, approachability, and
practicality, it is imperative to implement new technologies with less or no human labor
at the site [15–17]. In response to this demand, different types of innovative devices
have been developed during the last decade for construction surveying, such as robotic
platforms [18,19]. Due to their own limitations, however, most of these systems have not
yet been used widely in construction projects.

UAS-based surveying equipment is another type of innovative device that can address
some of the drawbacks and limitations faced by traditional surveying technologies. With
the recent technological advancement in materials, batteries, sensors, navigation, and flight
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control, the performance of small UASs has improved dramatically. In the meantime,
their cost has decreased considerably. As a result, small UASs have been increasingly
used for forest inventory, package delivery, and agriculture growth monitoring [20–23].
At the same time, the improvements of payload capability and flight time of small UAS
have enabled their uses in many types of civil and construction applications, such as
the post-disaster assessment of infrastructure [24–26], construction site planning [27–30],
construction process monitoring [31], and infrastructure inspections [32,33]. Small UASs
deployed for construction applications use either a fixed-wing airframe or a rotary-wing
airframe. Fixed-wing airframes provide much longer flight time whereas rotary-wing
airframes do not require a special taking off/landing pad and are thus more versatile [34,35].

Vision-based sensors are most commonly equipped on UAS for general purposes,
including high-definition image cameras and video cameras [36–39]. To conduct civil and
construction surveying applications, a LIDAR system or other active ranging/imaging
devices are proven to provide better performance [20]. Operations at night or in low
visibility scenarios require infrared or thermal sensors to detect structural conditions [40].
Other types of sensors, such as ultrasound or compact continuous-wave radar, can also be
deployed with a small UAS for specific purposes [41,42]. Sophisticated tasks and operations
often require a small UAS to carry multiple types of sensors simultaneously to perform
comprehensive measurements. Due to the limited UAS payload and the challenges in
integrating different sensing systems, however, it is still challenging to find a capable small
UAS with integrated multiple sensor modalities for civil engineering and construction
surveying applications.

It is well proven that a ground-based LIDAR system, such as a terrestrial laser scanner
(TLS), can provide a dense and accurate point cloud for construction measurements. The
same however does not apply to UAS-based LIDAR, because the position and orientation of
the UAS constantly change during a flight. As a result, the point clouds captured by LIDAR
cannot be geo-referenced as that of a stationary TLS. Instead, raw point cloud measurements
from the airborne LIDAR must be integrated and synchronized with the UAS navigation
measurements during pre-processing, which is typically a challenge and roadblock. The
accuracy of geo-registration in airborne LIDAR point cloud has been studied for large,
manned aircraft systems. It has been recognized that the errors in the navigation system,
LIDAR installation, laser beam, and ranging can all contribute to the geo-registration
error [43]. The general error model can also apply to UAS-based systems [44]. A UAS
typically flies at a lower altitude and has a lower-grade navigation system than manned
aircraft. The LIDAR equipped on a UAS can have lower power and shorter range as well.
Therefore, the error in a UAS-LIDAR point cloud may manifest itself in a way that is slightly
different from ALS. In practice, the observed error magnitude and pattern is related to
the target application as well. For example, errors have been assessed for forestry [45],
meadow steppe [46], mountainous areas [47], flood plains [48], and different vegetation
levels [49]. The focus of this work is on the vertical error on bulk measurements, such as
piles or excavation.

3. System Design
3.1. Hardware Components

The presented UAS-LIDAR system uses a commercial rotary-wing small UAS, DJI Ma-
trice 600 Pro, equipped with an auxiliary sensing system, including the following components:

• A GoPro Hero 5 video camera;
• An IDS uEye industrial RGB image camera;
• A SICK LD-MRS LIDAR sensor;
• A NovAtel SPAN GNSS receiver with an integrated inertial measurement unit (IMU);
• Three Raspberry Pi III-embedded computers;
• A rigid lightweight cage to mount all the components above.

In addition, the GNSS receiver can use both the US constellation GPS and the Russian
constellation Global Navigation Satellite System (GLONASS). This receiver is paired with
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an onsite GNSS base station (NovAtel OEM 6 receiver) for post-processed navigation
measurements. A close-up look of the major components of the sensing system is shown in
Figure 1.
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The cage attached to the bottom of the airframe is made of a rigid resin board supported
by carbon fiber and 3D printed components. The system components are mounted on both
sides of the board to conserve space and at the same time improve the rigidity of lever arms
between the sensors. The total weight of the sensing system is approximately 3.6 kg and
the maximum flight time of the UAS with this configuration is approximately 17 min.

Two lightweight cameras are mounted onboard, a GoPro video camera and an IDS
industrial RGB image camera. The video camera captures continuous video frames of the
flight that can be used for 2D imaging and 3D mapping via Structure from Motion (SfM),
which operates independently from the other sensors. By contrast, the image camera is
tightly integrated with navigation and LIDAR sensors. The image camera collects images
with a global shutter triggered by the navigation system, which is also synchronized to
the LIDAR. Consequently, the image camera is effectively synchronized to the LIDAR and
provides 2D imagery of the point cloud observed by it. The imagery was only used to
identify targets from the LIDAR point cloud and was therefore not incorporated into the
point cloud in the results reported in this work.

The LIDAR is a SICK LD-MRS unit capable of scanning four layers simultaneously
with a field of view of approximately 110◦ facing downwards at the ground. The aperture
size is no greater than ±0.4◦ in one direction and ±0.04◦ in the other, corresponding to
0.23◦ and 0.023◦ in standard deviations, respectively. The LIDAR scans at 0.125◦ of angular
resolution with a frequency of 12.5 Hz, and it takes approximately 10 ms to complete one
sweep of the field of view, collecting around 3000 ground points. It is assumed that all
points from a single scan will be collected simultaneously, which is timestamped by the
navigation system through a synchronization mechanism, although the precise scanning
time of each point could be retrieved if needed. Therefore, the potential discrepancy in
timing is up to ±5 ms for each point and is considered part of the error sources. SICK
provides an estimation of nominal ranging accuracy for the LD-MRS unit, which includes a
noise level of a single point at σεR ≈ 0.1 m (quantization step 0.04 m) and a systematic bias
≈ 0.3 m (estimated ahead of time and removed from the data). It is noted from field testing
that the specified noise level is rather conservative compared with results from actual
observations, which ranges between 0.04 m and 0.1 m. This unit cost approximately USD
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10,000 in 2018, which is significantly lower than the price of other UAS-LIDAR systems on
the market (estimated average cost USD 23,000 [50]). However, more low-cost UAS-LIDARs
are expected to become available commercially.

The NovAtel SPAN GNSS-inertial integrated receiver is used as the primary navigation
system for data collection over the native flight control system of Matrice 600 Pro, due to
the superior performance in limiting potential systematic error [51]. The GNSS receiver is
paired with a GNSS base station to record raw data for accurate post-processed kinematic
(PPK) solutions without relying on a live real-time kinematic (RTK) solution. The GNSS
measurements are also tightly coupled with the integrated IMU, which enables precise
position, velocity, and orientation measurements at a high update rate. Nevertheless, any
residual uncertainty in the position and orientation from the GNSS-IMU will propagate to
raw data of all the attached sensors, which becomes part of the systematic error. Figure 1
shows four GNSS antennas mounted on top of the airframe, of which three are used by
the UAS for the redundancy and safety of flight control, and the fourth is part of the
GNSS-IMU system.

The LIDAR and the GNSS receiver are both powered by a 3-cell lithium-polymer
battery, which supplies approximately 12VDC. Both sensors can accept a wide range of
voltage level and their performance is not dependent on the voltage [52,53]. As illustrated
in Figure 2, the battery voltage is also converted into 5VDC through a DC–DC voltage
converter, to support the onboard embedded computers for data recording. The sensor
power system is completely separated from the airframe batteries, such that they do not
interfere with each other.
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3.2. System Synchronization

The time synchronization function is the core mechanism of sensor integration in the
UAS-LIDAR system, also shown in Figure 2. Naturally, GNSS is synchronous to GPS time,
which also enables additional timing services via input and output triggers to the receiver.
The GNSS receiver in the UAS-LIDAR system triggers the shutter of the image camera and
receives a timing trigger from the LIDAR. Raw data with corresponding timing information
recorded by the image camera, LIDAR, and GNSS-IMU are streamed into three onboard
Raspberry Pi-embedded computers, which also control and initialize all the sensors. Due
to the time-sensitivity of data collection, each computer records the raw data from only one
sensor and stores it on a separate SD card for post-processing, avoiding onboard processing
to allow sufficient throughput capability.

The configuration of the sensing system can be easily adjusted for other applications.
As illustrated in Figure 2, the various sensors use a parallel configuration: the GNSS-IMU
sensors establish the accurate position, orientation, and timing, which is essential to the
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system, whereas other sensors can be either replaced or expanded as long as they can be
synchronized via a triggering mechanism.

3.3. Post-Processed Navigation Measurements

The NovAtel Inertial Explorer software was used to process the raw data recorded
by the GNSS and IMU sensors. GNSS carrier phase-based differential solution needs to be
computed with respect to a nearby reference GNSS station, which could be either an onsite
setup or from a local reference station, such as a Continuously Operating Reference Station
(CORS). In this study, an onsite GNSS base station was set up and the positioning accuracy
was defined based on the uncertainty of absolute positioning, which refers to the position
geo-registered in a global frame. The positioning error from post-processing typically
does not exceed centimeter level. The orientation accuracy was computed separately
and differently. While the roll and pitch angles from the IMU are typically accurate and
stable, the accuracy of true heading (geographic north instead of magnetic north), however,
depends on the flight trajectory of the UAS. Since the IMU used in this work cannot directly
sense the true heading, it must be inferred from an accurate position measurement while
the UAS is moving. Therefore, the UAS must perform specific maneuvers at the beginning
of each data collection flight to gain an accurate heading.

3.4. Pre-Processed Point Clouds

The point clouds collected by the LIDAR are referenced in the LIDAR body frame
(L frame), which is constructed with Forward, Right, Down (FRD) directions. Since the
LIDAR is constantly moving and rotating in the air, the point clouds cannot be directly
geo-referenced in a global frame (G frame). The conversion between the two frames relies
on the accurate position, orientation, and true heading of the LIDAR, as well as the accuracy
in relative timing between each LIDAR scan point and the GNSS receiver.

When a LIDAR point in the L frame is synchronized to GNSS time, it can be geo-
referenced into a G frame based on the reference GNSS station. For example, if the reference
station is located with World Geodetic System (such as WGS-84) coordinates, the G frame
will use local North, East, Down (NED) coordinates based on the WGS-84 coordinates. The
potential positioning error in the reference station is ignored in this study.

The following algorithm of frame conversion was implemented in a custom code
in MATLAB.

1. Record the 3D position of a static ground point x in L frame, Px
L(t), at time t. The

position error εPx
L(t) is caused by LIDAR ranging error and beam angular error

(aperture size);
2. Convert Px

L(t) into the G frame:

Px
G = CG

L (t′)Px
L(t) + PL

G(t′) (1)

where Px
G is the static position of this point in the G frame (no longer a function of time),

CG
L reflects the rotation from L frame to G frame, and PL

G stands for the LIDAR position.
t′ is the time of measurement of this LIDAR point perceived by the system, which

could be slightly different from the actual time of measurement t. This time difference exists
because the position and rotation of the LIDAR are computed based on measurements
from the GNSS and IMU sensors at t′ instead of t. The LIDAR timing error is thus specified
as εt = t′ − t and could be up to 5 ms in a single scan point in the presented UAS-LIDAR
system, as noted before.

CG
L is not directly measurable and is computed via the real-time IMU orientation and

relative orientation of LIDAR from the IMU, also known as boresighting [54]:

CG
L (t′) = CG

V (t′)CV
L (2)

where CV
L is the fixed rotation from L frame to the vehicle frame (V) and CG

V (t′) reflects the
rotation from the vehicle frame (IMU in this system) to G frame.
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PL
G is not directly measurable either. The GNSS antenna location on the UAS Pant

G is
measured at time t′, and the lever arm between the antenna and the LIDAR is measured in
the vehicle frame as PL

V − Pant
V . Thus,

PL
G(t′) = CG

V (t′)
[

PL
V − Pant

V
]
+ Pant

G(t′) (3)

3. Finally, the geo-referenced location of point x is found using

Px
G = CG

V (t′)CV
L Px

L(t) + CG
V (t′)

[
PL

V − Pant
V
]
+ Pant

G(t′) (4)

4. Error Prediction Model

The error prediction model introduced in this work follows the same principles of
ALS [43,44], which includes errors in position, orientation, lever arm, and boresighting.
It can be expanded to include synchronization errors as well. More importantly, this
model can be used to understand and differentiate the random and relative errors from the
systematic and absolute errors.

4.1. Measurement Error Prediction

Errors in t′, CG
V (t′), CV

L , PL
V −Pant

V and Pant
G(t′) can contribute to the overall system

error. It is further assumed in this study that with a rigorous calibration procedure in
place, errors, such as the ones found in boresighting, are at least one order of magnitude
smaller than those from IMU orientation. For simplicity of analysis, boresighting errors
were not modeled in this study. Similarly, it is assumed that the lever arm error is also
negligible. Therefore, the contributions of UAS orientation, positioning, timing, and LIDAR
are considered in the error prediction model.

First, smaller angular errors in UAS roll (εϕ), pitch (εθ), and heading (εψ) angles are
considered. In addition, a rotating or vibrating airframe will experience additional angular
errors due to uncertainties in time, such that

∆T = [εϕ εθ εψ] +

[
dϕ

dt
dθ

dt
dψ

dt

]
εt (5)

εCG
V (t′) = ∆×CG

V (t) (6)

where ∆× is a skew-symmetric matrix. Ideally, εψ is at a sub-degree level for the sensor
used in the system, whereas εϕ and εθ are substantially smaller.

Next, the UAS position error, including the impact from the timing uncertainties, is

represented with εt dPant
G(t)

dt + εPant
G(t), where dPant

G(t)
dt is the velocity of the antenna in the

G frame.
Finally, εPx

L is considered in the L frame in forward, right, and down directions. Since
the LIDAR is pointing to the ground, the LIDAR forward direction is the vehicle down
direction. The position error without timing error is

εPx
L(t) = [0 δr δd]×Px

L(t) + εR
Px

L(t)∣∣Px
L(t)

∣∣ (7)

where εR Px
L(t)

|Px
L(t)| represents the LIDAR ranging error projected onto the direction of point x.

δr and δd indicate right and downward angular errors with respect to LIDAR.
The error in x is thus modeled with

εPx
G =

[
εCG

V (t′)
]
CV

L Px
L(t) +

[
εCG

V (t′)
][

PL
V − Pant

V
]
+ CG

V (t)C
V
L ·
[
εPx

L(t)
]
+ εPant

G(t) + εt
dPant

G(t)
dt

(8)

Equation (8) can be used to predict the 3D error magnitude in a global frame for
individual scan points. Noticeably, the LIDAR errors (δr, δd and εR) are not considered
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systematic errors. Instead, εPx
L from Equation (7) is modeled as a random process, which

is uncorrelated either among multiple points within the same scan or among repeated
scans of the same point from a moving LIDAR. The other components from Equation
(8) may be correlated among the points within the same scan but are likely uncorrelated
among repeated scans. Therefore, the total errors in εPx

G are expected to include a major
component of random errors and a minor component of systematic errors. Since the
random error component is caused by the LIDAR, it is considered a relative error, whereas
the systematic error component was largely related to errors in the G frame, which is an
absolute error.

In a set of points X that are approximately collocated in the G frame horizontally, the
vertical dimension can be estimated based on all the points, PX

G. In this study, the points
were computed with a mean or median value. Therefore, a dense raw point cloud could be
preprocessed, decimated, and turned into a more accurate elevation model. The expected
accuracy can be significantly improved with the number of points. For example, the
down-sampled point PX,v

G could be an average of all the points, as shown in Equation (9).

PX,v
G = mean

{
Px,v

G, ∀x ∈ X
}

(9)

The standard deviation of vertical errors in PX,v
G is reduced by the square root of the

number of points in X. With a sufficiently large number of points in X, the random and
relative errors in PX,v

G will approach zero, and therefore the systematic and absolute errors
will dominate.

Alternatively, PX,v
G can be calculated based on the median value of all the points in X.

Median values are less likely to be affected by outliers in the set. An implicit assumption is
made that all the points in the set share similar heights in a small horizontal neighborhood
(centimeter to decimeter level), which is a valid assumption for most smooth surfaces. The
median value shown in Equation (10) is expected to be a robust estimation. To better find
all the points, some optimization methods will be applied in future work [55].

PX,v
G = median

{
Px,v

G, ∀x ∈ X
}

(10)

While the error model can predict horizontal and vertical errors separately, it is
independent of the target surface. The texture, smoothness, and slope of a surface can
contribute to the errors in the point cloud. For instance, a horizontal error can be perceived
as a vertical error in a sloped surface. Vegetation on the surface could also result in
additional uncertainty and, as a result, the optimal choice of the down-sampling method,
i.e., mean vs. median values, may be dependent on the target surface. In general, the
UAS-LIDAR system can measure a smooth and flat surface that is not covered by any
vegetation with lower errors.

Furthermore, this error model is generic and would be applicable to any UAS-LIDAR
system that has LIDAR synchronized to an onboard navigation system. However, in order
to implement Equation (8), it does require intermediate data, such as the error models of
navigation and synchronization, which may not be available from a commercial system.

4.2. An Ilustrative Example of Error Prediction Model

The presented error model helps with the quantification of the contribution of indi-
vidual error sources in a single point in a LIDAR point cloud. As an illustrative example,
consider a typical slow and smooth flight (speed = 5 m/s, no vibration or vertical velocity
considered), where the UAS holds a constant altitude of 15 m above ground. The UAS flight
control is often based on a standalone GNSS receiver, which can only achieve meter-level
accuracy. For example, the 3D position error of GPS alone is 4.5 m (95% value) [56]. How-
ever, the UAS is not required to fly at a precise altitude. Instead, the precise position of the
UAS and the LIDAR will be computed in the PPK solution. Since the UAS flights discussed
in this work all had open sky conditions, typically there are at least 15 GNSS satellites from
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GPS and GLONASS combined. The number of satellites has always been sufficient for a
successful PPK or RTK solution. The precise LIDAR position, instead of the approximate
flight altitude, will be used to compute a point cloud as shown in Equation (1).

Based on the typical performance provided by the manufacturer in [52], it is assumed
that [εϕ εθ εψ] = [0.01, 0.01, 0.1]◦ (1 standard deviation) and εPant

G = [0.01, 0.01, 0.02]m
for positioning errors (1 standard deviation). The lever arm between the LIDAR and the an-

tenna
∣∣PL

V − Pant
V ∣∣ = 0.17 m. The LIDAR is pointing downward, thus CV

L =

0 0 −1
0 1 0
1 0 0

.

It is further assumed that the UAS is leveled and facing north, thus CG
V (t) =

1 0 0
0 1 0
0 0 1

.

The error magnitude on a ground point x right underneath the LIDAR (Px
L(t) = [15 m, 0, 0]T)

is analyzed and illustrated below:
Let εPx,∆

G represent the error component contributed by the orientation uncertainty.
In a leveled flight with little vibration, it is assumed that there is unsensed orientation
change within εt, so that

[
dϕ
dt

dθ
dt

dψ
dt

]
εt = 0. Although this assumption may be too optimistic

for the UAS in some practical fight conditions, it would be acceptable for the presented
sensing system since the vibration of the sensing system could be damped or separated
from the vibration of the UAS airframe. In this case, the orientation error has a simplified
model ∆T = [εϕ εθ εψ].

Since the distance between x and the LIDAR is much greater than the lever arm, i.e.,∣∣Px
L(t)

∣∣� ∣∣PL
V − Pant

V ∣∣, the main contribution from the orientation error will be based
on the term

[
εCG

V (t′)
]
CV

L Px
L(t). Recall that εCG

V (t′) = ∆×CG
V (t); therefore,

εPx,∆
G = ∆×CG

V (t)C
V
L Px

L(t) = [0.0026,−0.0026, 0]Tm. (11)

where εPx,∆
G is a component of the overall error, εPx

G, which is caused by the orientation
uncertainty ∆. The errors are provided in North, East, and vertical directions, respectively.

Similarly, the error component caused by UAS positioning can be estimated by

εPx,P
G = εPant

G = [0.010, 0.010, 0.020]Tm. (12)

In this simplified model, the contribution of timing error is purely horizontal and is
only proportional to UAS velocity. The magnitude is limited by

∣∣∣εPx,t
G
∣∣∣ = ∣∣∣∣∣dPant

G(t)
dt

·εt

∣∣∣∣∣ ≤ 0.025 m. (13)

A greater contribution comes from LIDAR error εPx
L(t). As aforementioned, δr = 0.023◦,

δd = 0.23◦, and εR = 0.1 m (a conservative error level) are assumed for this LIDAR.

εPx
L(t) = [0 δr δd]×Px

L(t) + εR
Px

L(t)∣∣Px
L(t)

∣∣ = [0.10, 0.06,−0.006]Tm (14)

which contributes to the overall error via

εPx
G = CG

V (t)C
V
L ·
[
εPx

L(t)
]
= [0.006, 0.06, 0.10]Tm. (15)

It is evident from comparing Equations (11)–(15) that the LIDAR is the dominant error
source (εPx

L) for point x. Since the majority of εPx
G is considered a random process that

is independent among points, as mentioned earlier, the integration and synchronization
with the navigation measurements does not introduce substantial systematic errors in the
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LIDAR point. As a result, the error magnitude is on the order of 0.1 m for both horizontal
and vertical directions in a typical low-altitude flight.

5. Error Model Validation
5.1. Validation of Random Errors

The vertical and horizontal performance of raw point measurements Px
G can be vali-

dated with customized calibration targets. The error prediction model was first validated
for random errors with a flat surface cardboard box. The dimensions of this target can be
found in Table 1. The box target was placed on flat paved ground with a reference GNSS
antenna next to it to record raw data for post-processing. The UAS scanned the target
at different heights from 20 m to 40 m above the target (~21 m to ~41 m above ground)
with 5 m intervals. Figure 3 illustrates the raw point cloud collected at 20 m above target
with both the target and the reference antenna. The exact height of the UAS above ground
during this flight was measured with the PPK solution, which can be found in Figure 4.

Table 1. Box Target Dimensions.

Width Depth Height Volume

1.24 m 0.94 m 0.95 m 1.11 m3
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Figure 3. Left: Raw Point Cloud of Box Target and Reference GNSS Antenna. Right: Image from
Onboard Camera. Collected at 20 m above target (~21 m above ground).
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Figure 4. UAS Height Above Ground.
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To improve the heading accuracy, the UAS performed initialization maneuvers imme-
diately after taking off. After the flight, raw data were retrieved from the SD cards from
both the UAS and the reference receivers. The data were post-processed, and the accuracy
has been summarized in Table 2.

Table 2. Post-Processed Error Level for Flat Surfaces, Averaged over the Entire Flight.

Error Level
Positioning Orientation

North East Down Roll Pitch Heading

1 σ 0.006 m 0.007 m 0.008 m 0.006◦ 0.007◦ 0.02◦

The vertical and horizontal errors in Px
G were assessed with the consistency of raw

point cloud data collected from the top surface and one side surface of the box target,
which contains mainly random and relative errors. As aforementioned, the vertical root
mean square error (RMSE) of the raw point cloud is expected to be between 0.04 m and
0.1 m regardless of the height above the target, which was verified with results presented
in Figure 5. On the other hand, Equation (8) indicates that the horizontal error would
grow proportionally with the distance to target as it is mainly contributed by angular
uncertainties. As demonstrated in Figure 6, the observed RMSE in the horizontal direction
closely follows the estimated nominal error level.

The box target used to validate the single point error model described in Equation (8)
has known flat surfaces that are either vertical or horizontal. The error magnitude presented
in Figures 5 and 6 are representative of the vertical and horizontal error components of
individual scan points, which are dominated by random errors contributed to by the LIDAR.
Figure 4, however, does not include the potential contribution of horizontal errors. On a
box-shaped target, the horizontal errors of points on the edge of a surface could result in
greater vertical errors, which will be discussed next.
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5.2. Validation of Systematic Errors

Next, the magnitude of random and systematic errors was validated respectively,
using a point cloud dataset with slope surfaces and survey points. Two tent-shape target
objects were placed on flat paved ground, each with two smooth planar surfaces covered
by white canvas, as shown in Figure 7. Both targets are identical and their dimensions
have been provided in Table 3. The UAS hovered at approximately 15 m to 17 m above the
ground and scanned the targets multiple times. The navigation data were post-processed,
and the accuracy is summarized in Table 4.
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Table 3. Tent Target Dimensions.

Left Side Right Side Width Depth Height Volume
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Table 4. Post-Processed Error Level for Slope Surfaces, Averaged over the Entire Flight.

Error Level
Positioning Orientation

North East Down Roll Pitch Heading

1 σ 0.007 m 0.006 m 0.001 m 0.007◦ 0.008◦ 0.07◦

The raw LIDAR point cloud georeferenced in a G frame (NED) is shown in Figure 8,
and Figure 9 provides a zoomed-in view with the two corners of both tent targets marked,
which were surveyed separately by post-processed GNSS with an accuracy of 0.005 m,
0.005 m, 0.01 m in NED. The raw point cloud included laser returns from the open ends
of both targets, which appear lower than the surface. Therefore, the side view of the
point cloud will include more noisy points between the target surfaces and the ground.
This artifact is excluded from the error analysis in this section. If both targets were piles
of bulk materials, there would be no open ends, and the point cloud would not include
these points.
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Figure 9. Zoomed-In View of Raw Point Cloud of Tent Targets with Four Survey Points Marked.

In this dataset, raw point cloud (Px,v
G) reports 0.04 m relative vertical error (1 σ) on

a flat ground surface, which is consistent with the results reported in Figure 5. However,
the vertical error observed on the tent targets was expected to be greater. Since the slope
on both sides of the targets is approximately 45◦, a portion of the horizontal errors was
mapped onto the vertical direction at a 1:1 ratio. In other words, the observed vertical error
from a raw LIDAR point cloud would be a combination of the actual horizontal and vertical
error components. As a result, the absolute vertical error of raw point cloud on slope
surfaces is approximately 0.1 m (1 σ), which is also consistent with the error prediction
model in Equation (8).

Although the UAS-LIDAR system can collect relatively dense point clouds, it is not
guaranteed that all surfaces of the target will be captured directly in the raw point cloud
during a flight. As a result, it should not be assumed that the entire target will be included
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in the raw point cloud. Instead, the system is able to extract the geometry of targets from
the raw point cloud in addition to measurements. The systematic error component of the
point cloud can be estimated by using known geometric information of the target, such as
shape and dimensions, and the target location from GNSS surveys. The geometric features
of the target, such as planar surfaces, can then be extracted from a partial point cloud, and
it is more convenient and robust to identify and extract planar features than point features
on small-scale objects.

The average height of an object can be estimated from two planar features that are
extracted from all points measured by the UAS-LIDAR system, and the absolute positioning
error on a point reflects the magnitude of systematic and absolute error. The measurements
from one of the two tent targets are validated here as a demonstration. Figure 10 illustrates
8280 points from Target 2 that are projected onto a 2D plane perpendicular to the ridgeline
of the target. These points form the cross-section shape of the tent target as a triangle, and
its left side and right side, colored in red and blue, respectively, represent all the points
from both planar surfaces. An orthogonal linear fit is applied to each side to recover the
shape of the triangle. The top of the triangle is then compared against its GNSS survey
reference projected onto the same plane. As shown in Table 5, the LIDAR measurement
of the height of Target 2 is 2.504 m whereas the GNSS measurement is 2.512 m (averaged
between two corners), resulting in a vertical difference of 0.008 m. Since this difference
is smaller than the GNSS survey accuracy of 0.01 m, it may not accurately represent the
actual vertical error. Nonetheless, the absolute systematic error is indeed much smaller
than the overall vertical error of 0.1 m, as predicted in Equation (8).
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Figure 10. Raw Point Cloud of Tent Target 2 Projected onto A 2D Perpendicular Plane.

Table 5. Height of Tent Target 2 Measured by LIDAR and GNSS Survey.

Target 2 LIDAR GNSS Survey Difference GNSS Accuracy (1 σ)

Height 2.504 m 2.512 m 0.008 m 0.01 m

LIDAR measurements of bulk piles will face the same challenges as the tent targets,
and it would be impractical to directly extract the height, surface, and volume from a
noisy raw point cloud. Instead, an averaged, down-sampled point cloud will be more
reliable, assuming that the errors on single points are mostly independent of each other,
which has been validated in this dataset. The vertical errors can be effectively reduced
by pre-processing based on mean or median values introduced in Equations (9) and (10).
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As a demonstration, the pre-processed point cloud of the tent targets shown in Figure 11
appears much less noisy than the raw data point cloud in Figure 8.
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Figure 11. Pre-Processed Point Cloud of Tent Targets.

5.3. Test Site Bulk Measurements

Finally, the presented system was validated with bulk materials at a test site located
by Town Creek in Greenville, North Carolina. The UAS-LIDAR system scanned a stretch of
the creek (approximately 100 m long) multiple times at a speed of approximately 5 m/s
or lower, where a bulk pile of rock stairs was built on a dry riverbed as part of the creek
drainage system. An image of the test site from the synchronous camera is shown in
Figure 12.

Drones 2022, 6, x FOR PEER REVIEW 16 of 20 
 

5.3. Test Site Bulk Measurements 
Finally, the presented system was validated with bulk materials at a test site located 

by Town Creek in Greenville, North Carolina. The UAS-LIDAR system scanned a stretch 
of the creek (approximately 100 m long) multiple times at a speed of approximately 5 m/s 
or lower, where a bulk pile of rock stairs was built on a dry riverbed as part of the creek 
drainage system. An image of the test site from the synchronous camera is shown in Fig-
ure 12. 

 
Figure 12. UAS Image of Test Site with Bulk Materials (Length of Rock Stairs: 14 m). 

In this test, the collected raw point cloud was pre-processed and decimated into a 
lower resolution. The site was divided into small cells of 0.05 m by 0.05 m, and a single 
point 𝑷ீ was reported for every cell following Equation (9). The magnitude of random 
error in point cloud would be reduced by the down-sampling process, whereas the sys-
tematic error is expected to remain the same. The processed point cloud of the site with 
rock stairs is presented in Figure 13. The navigation performance of this flight is shown in 
Table 6. 

 
Figure 13. Point Cloud of Test Site with Bulk Materials. 

Table 6. Post-Processed Error Level for Test Site, Averaged over the Entire Flight. 

Error Level 
Positioning Orientation 

North East Down Roll Pitch Heading 
1 𝜎 0.007 m 0.006 m 0.01 m 0.007° 0.008° 0.07° 

Figure 12. UAS Image of Test Site with Bulk Materials (Length of Rock Stairs: 14 m).

In this test, the collected raw point cloud was pre-processed and decimated into a
lower resolution. The site was divided into small cells of 0.05 m by 0.05 m, and a single point
PX

G was reported for every cell following Equation (9). The magnitude of random error in
point cloud would be reduced by the down-sampling process, whereas the systematic error
is expected to remain the same. The processed point cloud of the site with rock stairs is
presented in Figure 13. The navigation performance of this flight is shown in Table 6.
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Table 6. Post-Processed Error Level for Test Site, Averaged over the Entire Flight.

Error Level
Positioning Orientation

North East Down Roll Pitch Heading

1 σ 0.007 m 0.006 m 0.01 m 0.007◦ 0.008◦ 0.07◦

A terrestrial laser scan (TLS) of the test site was performed separately [57], where a
Leica ScanStation P40 with a 3 mm (1 σ) accuracy at 50 m was used. In this validation of
the test site, the TLS point cloud was used as a true reference for the comparison with a
vertical profile of down-sampled UAS-LIDAR point cloud collected on the rock stairs at
the test site. As shown in Table 7, the difference between the measurements from the two
sensors was 0.055 m in 1 σ with a 0.064 m mean, and the maximum observed difference
was 0.24 m. The vertical profiles measured by the TLS and UAS-LIDAR are illustrated
in Figure 14, where deviation between the two profiles can be seen at a few locations. It
is likely due to the changes in horizontal locations that can contribute to vertical errors
in UAS-LIDAR measurements, as previously discussed. At this test site, the rock stairs
have irregular rock shapes with steep slopes on the edge, resulting in a substantial level
of mean and maximum error. Nevertheless, the overall error is still consistent with the
predictions suggested by the presented error model. Designated calibration targets placed
in a controlled environment can be used to compare the performance of bulk measurement
with both technologies in the future.

Table 7. Measurements Difference of Rock Stairs between TLS and UAS-LIDAR.

TLS-UAS Difference Mean 1 σ Max

Rock Stairs 0.055 m 0.064 m 0.24 m
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6. Conclusions

Technology advancement in the last decade has given the construction industry many
new approaches for traditional daily jobs, among which using a small UAS for survey-
ing and mapping tasks has been increasingly adopted due to its unparalleled efficiency.
A custom-designed high-accuracy UAS-LIDAR system is discussed in this work. It is
equipped with a combination of camera and LIDAR sensors that are synced to an onboard
GNSS-IMU navigation system to enable precise time-stamping and geo-referencing. The
presented UAS-LIDAR system also provides the flexibility of upgrading existing sensors
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or including additional sensors for other civil and construction applications, thanks to its
parallel sensor configuration with a core navigation and timing system.

A robust error model was developed for a generic UAS-LIDAR system to predict the
horizontal and vertical errors of single point geo-registration. The contributions of errors
from different components, such as navigation, timing, and LIDAR are all considered.

This model was validated for the proposed UAS-LIDAR system with calibration targets
and real-world data from three different measurement scenarios: a box target with smooth
flat surfaces for random error validation, targets of known sloped surfaces for systematic
error validation, and a test site rock stair pile for bulk measurement validation. The test
results indicated that the random errors from raw LIDAR point cloud reach approximately
0.1 m in the horizontal and vertical directions, respectively, during typical low-altitude
flight conditions.

Some of the error sources, such as angular error from navigation or boresighting, are
considered systematic. Other error sources, such as LIDAR ranging error, are modeled as
random errors. This error model can be used to estimate the magnitude for each error type
individually. Different strategies can be developed to reduce the overall error level based on
that. For example, systematic errors could leave a bias in the point cloud, which affects the
absolute accuracy. It can be limited by a carefully designed calibration process. It has been
shown in these flights that the systematic errors are at or below centimeter-level, suggesting
that the presented UAS-LIDAR had introduced negligible systematic errors. Random errors
affect the relative precision. Random errors can be reduced via the pre-processing of the
raw point cloud.

The comprehensive validation of the system has proven the capability and effective-
ness of a downward-looking UAS-LIDAR system in construction applications, such as
excavation and bulk pile measurements, and therefore has significant potential for civil
engineering and construction projects. The prediction model currently focuses on the
errors originated from the UAS and the LIDAR and can be further expanded to include
characteristics of the target surfaces, such as material, texture, smoothness, and slope in
future work.
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Typical positioning accuracy 

GPS/GNSS RTK PPK* PPP+ 
Horizontal error (1 

sigma) 

1 m 2 cm 1 cm 6 cm 

Vertical error (1 
sigma) 

2 m 3 cm 2 cm 15 cm 

Additional 

equipment/data 

Live 

datalink 

Recorded data from 

UAV and a reference 
nearby; Data from a 

network of reference 

stations (such as 

CORS) 

Data from a network of 

reference stations (such 
as CORS) 

*Post-processed kinematic: post processed version of RTK. It will use better satellite orbit and clock data,

and will be more accurate than RTK.

+Precise Point Positioning (PPP): post processed single point positioning. It will use data from a network

of reference stations.

Typical orientation accuracy* 

Live/recorded Post-processed 

Roll/pitch (1 sigma) 0.02 deg 0.01 deg 

Heading (1 sigma) 0.1 deg 0.04 deg 

Additional equipment/data May need live datalink if 
using RTK 

Recorded data from UAV 
and a reference nearby if 

using PPK; Data from a 

network of reference 

stations (such as CORS) 

*They are based on a good commercial IMU[1]. The error levels may be different with other IMUs[2,3].



Typical geo-referencing accuracy of point cloud 

 

 Error (1 sigma) Ground control points 

UAV SFM cm level dense; surveyed with RTK or PPK 

UAV SFM with RTK or 

PPK[4] 

cm level sparse; surveyed with RTK or PPK 

UAV LIDAR with RTK or 
PPK and orientation 

cm level (usually no 
smaller than SFM) 

None 
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What will we cover

What is a UAS-LIDAR system and how does it work?
How can it help with construction and disaster management 

projects?
LIDAR vs. SFM 
LIDAR vs. GNSS survey
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UAS-LIDAR
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UAS-LIDAR
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Airframe
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Navigation system (orientation)

IMU type Navigation grade (near) Tactical grade Commercial grade

Roll 0.003° 0.004° 0.01°

Pitch 0.003° 0.004° 0.01°

Heading 0.004° 0.01° 0.05°

https://en.calameo.com/read/001915796d1d051759463?authid=gKG8Ej
L5yKMt

Typical values from post processing. Requires initialization maneuver. 
Practical error budget 0.01° 0.01° 0.1°.
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Navigation system (position)

Solution Type RTK PPK PPP

East-North 0.02m 0.01m 0.06m

Up 0.03m 0.01m 0.15m

https://hexagondownloads.blob.core.windows.net/public/Novatel/a
ssets/Documents/Papers/IMU-IGM-A1-PS/IMU-IGM-A1-PS.pdf

Real Time Kinematic (RTK), Post-Processed Kinematic (PPK), Precise Point Positioning (PPP) 

Practical error budget 0.01m, 0.01m, 0.02m.
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SICK LIDAR

LD-MRS420201

 +/- 0.4° by 0.04° narrow aperture (divergence) 

 0.125° angular resolution, 12.5 Hz

 4 layers of  laser beam, 3.2 ° vertical FOV

 10 ms per sweep of  the FOV (90°) 
 300,000 points per second. 

 150 m range
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SICK LIDAR
9

3.2° 90°

<150m



Velodyne LIDAR

VLP-16

 +/- 0.09° aperture(divergence) 

 16 layers of  laser beams (30° vertical FOV)

 50 to 200 ms per rotation, 360° FOV

 0.1° to 0.4° angular resolution

 3,000,000 points per second

 150 m range
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Velodyne LIDAR
11

30°

<100m

360°



Sensor system

LD-MRS420201 VLP-16
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LIDAR error model

𝜀𝑷௫ீ ൌ 𝜀𝐶ீ 𝑡′ 𝐶𝑷௫ 𝑡  𝜀𝐶ீ 𝑡′ ሾ 𝑷 െ 𝑷௧ሿ 

𝐶ீ 𝑡 𝐶 · 𝜀𝑷௫ 𝑡  𝜀𝑷௧ீ 𝑡  𝜀𝑡 ௗ𝑷ೌ
ಸ ௧

ௗ௧

Timing error

GNSS/PPK error
LIDAR error

Angular error
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Error control

 Random errors:
 GNSS/PPK position, LIDAR
 Can be reduced by post-processing redundant measurements 

 Systematic errors:
 Angular errors from IMU (orientation) and boresighting; Lever arm 
 Can be reduced by calibration and in-flight initialization 
 Low altitude (short distance to target)
 In flight validation

 Synchronization error:
 Sync mechanism
 Low speed, less vibration 
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LIDAR Installation
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Verification of error model 
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sec
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Test vertical and horizontal precision with a box target at different height.
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Precision model verified at different heights

20 25 30 35 40 45
height above ground, m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
RMSE
nominal vertical error
quantization error

20 25 30 35 40 45
height above ground, m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
RMSE
nominal horizontal error

For downward-looking LIDAR, the vertical random error is almost constant.
Minimum vertical systematic error <0.01m. 

Vertical error is almost constant Horizontal error grows with height
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Flight control

1. Take off and hover at ~15 m above ground.

2. Initialization maneuvers for ~ 3 min: including accelerations in horizontal

directions. Make circular and figure-8 patterns.

3. Fly over calibration targets (optional). The target can be the antenna and

the tripod of the ground reference GNSS receiver.

4. Fly over worksite, ~15 m above target, ~5 m/s.

5. Fly over calibration targets (optional).

6. Land.
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Flight

Ground targets and/or antenna are 
used for validation.

Butner, NC, 02/20
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Onboard video camera
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UAS-LIDAR 
applications in 
construction 
management
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Piles and bulk measurements

Pitt County Maintenance Yard
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Pitt County Maintenance Yard

Greenville, NC
09/20
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UAS-LIDAR performance

 Downward-looking LIDAR, low altitude
 Accurate orientation with initial maneuver
 Verified accuracy of each flight every year
 For individual points: ~0.06 m random error; <0.01 m systematic error (bias)
 Same performance every year
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Point accuracy: LIDAR and GNSS

 UAS-LIDAR is almost as accurate as GNSS survey, but much more 
efficient.

 15-30 min for GNSS survey (37 points)
 Few seconds in UAS flight (14432 points )

Red: GNSS

Blue: LIDAR
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Volumetric measurement

 GNSS and LIDAR points can both be processed in commercial software, 
such as Civil3D or Bentley MicroStation

 Both use Triangulated irregular network (TIN) model
 Choice of model and ground points 
affects absolute volume only
 Volume change is always precise.

 Difference: 10% volume
 Due to resolution.
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Volumetric measurement

Pile UAS-LIDAR Diff % (0.5 m vs.

0.1m)
A 370.81 0.48
B 461.69 0.006
C 95.95 0.15
D 13.23 1.8
E 346.54 0.017
F 865.75 0.03

 A Sparse LIDAR point cloud can be used instead.
 0.1m vs 0.5m grid size.

 May save time in manual processing
 UAS can fly higher and faster, which may save time  for a 

bigger site.
 Current flights <60ft, 5 m/s, due to nearby airport
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Long-term monitoring

2021 (r) vs 2020 (g)

2022 (r) vs 2020 (g)

Minimal systematic bias (cm-level) in year-to-year 
comparison, verified with antenna and fixed structure.

UAS-LIDAR is very precise in measuring volumetric 
changes.
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UAS-LIDAR vs. SFM

1. UAS-LIDAR does not require any GCPs over the worksite, but can

benefit from having one or few for validation purposes.

2. SFM needs a relatively dense network of GCPs.

3. UAS-LIDAR data collection is faster than SFM.

4. UAS-LIDAR can collect data over low-texture surfaces (sand or soil).

5. Usually UAS-LIDAR does not create an imagery surface.

6. Image can be superimposed on point cloud.
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Imagery on point cloud

Image from sync camera can be automatically
superimposed onto point cloud.
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Questions

 Data product (point cloud and volume) format
 Visualization
 Software compatibility 
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Other applications

Borrow pits

Buildings

Courtesy from Balfour Beatty
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Borrow pit

Havelock, NC

First flight: green; 12 m above ground. Second flight: pink; 24 m above ground. 

 UAS-LIDAR can measure the volume or changes of borrow pit precisely.
 Neither LIDAR nor SFM measures stationary water surface.

 Pits must be measured before ground water build up.

 Certain flight patterns will increase systematic errors in UAS-LIDAR.
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Building

 UAS-LIDAR point cloud can measure buildings and other structures.
 LIDAR provides higher absolute accuracy. SFM provides better relative 

precision and resolution. 
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UAS-LIDAR 
applications in 
disaster management
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Bridge
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UAS-LIDAR flight

South Grimesland Road,
Pitt County, NC

UAS initialization flight
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360 deg side-view LIDAR

 Dataset set with Velodyne VLP-16 

 Quickly scans the side of a bridge, <1 
min for a 20 m by 20 m area.
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Bridge point cloud
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Potential issues

 Small systematic error (several cm), 
caused by angular errors, can cause 
shift of point cloud from different 
angles.

 Systematic error can be limited by 
distance and calibration; can be 
removed by manual calibration.

 It does not affect precision, but may 
affect absolute geo-registration.

 Onsite validation with antenna can 
be helpful.
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Measurements with LIDAR
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Measurements with LIDAR

Design: 20 ft
LIDAR measurement 6.125 m or 20.09 ft
Random error: 1 sigma ~ 3 cm 
Systematic error: 1 sigma ~ 3 cm
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Measurements with LIDAR
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Measurements with LIDAR

Design: 33 ft
LIDAR measurement 10.099 m or 33.13 ft
Random error: 1 sigma ~ 3 cm 
Systematic error: 1 sigma ~ 3 cm
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Questions

 How to use the point cloud measurement

 SFM with RTK vs. LIDAR for bridges

 Other structures
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Other applications

Seashore

Riverbed

Road
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Havelock borrow pit scan

Few returns from smooth water surface.
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Albemarle Sound
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LiDAR over water

sound Sea shore

At 40-60m above water, even calm water surface with 1ft wave from sound can be measured 
with SICK LIDAR (narrow aperture).

LIDAR about 50 m above water

Circular motion of UAV
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Towncreek
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UAS-LIDAR vs TLS

 UAS-LIDAR has cm-level accuracy.

 UAS-LIDAR may not always agree 
with TLS due to resolution and 
perspective.
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LIDAR and SFM

52



SFM with navigation system

 Camera can be integrated with precise positioning and/or orientation.
 For orientation, SFM can only benefit from a high-quality IMU. 

 SFM can benefit from precise positioning alone, but camera has to be in sync with 
navigation (ms-level).

53

IMU type Navigation grade (near) Tactical grade Commercial grade

Roll 0.003° 0.004° 0.01°

Pitch 0.003° 0.004° 0.01°

Heading 0.004° 0.01° 0.05°



SFM with RTK (PPK)
54

DJI Inspire 2 pro, Gopro Hero 7 camera, 
UBLOX GNSS, sync mechanism, recording 
computer 



SFM with PPK

Ground station
No real-time data link 
needed for PPK

DJI Inspire 2 pro
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SFM with PPK

 No GCP needed for relative measurements 
 dimension, scale, distance, size, etc.

 Precision: 3-8mm 1 sigma

 Need few GCPs for absolute geo-location (in GPS frame)
 Since PPK does not measure orientation of camera

 GCPs can be targets or LIDAR point cloud.
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LIDAR vs. SFM: point cloud

SICK LIDAR, no imagery

SFM/PPK

Difference: 4 cm 
1 sigma
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LIDAR vs. SFM: data quality
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SFM flight and operation

 Capture the whole subject first, and then the detail, ensuring that occlusions are captured 
adequately .

 Appropriate coverage. Basic principle: every point on the subject must appear on at least 
three images acquired from spatially different locations and mixed altitude.

 Static scene. Consistent light. Avoid overexposed and underexposed images.

 Avoid transparent, reflective or homogeneous surfaces.

 Without PPK, an evenly spaced dense network (such as 40 per squared kilometer) of GCPs 
are needed. 
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UAS-LIDAR flight

 UAS-LIDAR must have accurate orientation.

 Orientation accuracy is dependent on IMU quality and initialization.
 There are other methods of getting absolute heading accuracy, such as duo-antenna or 

gyrocompassing. They are less feasible for small UAS.

 Low altitude, overhead flight.

1. Rotation

2. Figure-8

3. Waypoints and rectangular patterns

4. Straight

5. Hover

6. Spin

60

} in-flight initialization and data collection 

} avoid to reduce systematic error 



Flight patterns - circle
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Flight patterns – figure8
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Flight patterns – rectangular
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Flight patterns - straight
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Flight patterns - hover
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Flight patterns - spin
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LIDAR coverage and footprint
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LIDAR vs. SFM: flight requirement for data collection
68



LIDAR vs. SFM: environment requirement
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LIDAR vs. SFM: cost
70

For typical commercial systems, not ECU systems.



LIDAR vs. SFM: application
71



General 
recommendations
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Airframe
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RTK or PPK
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Flight control for LIDAR
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LIDAR vs. GNSS for piles and borrow pits
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LIDAR sensor demo
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A ground test of VLP16
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Angular errors
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Bias and systematic error
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North 

East 

target



Bias and systematic error
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North 
LIDAR perceived 
north, with error LIDAR perceived 

target, from east

East 



Bias and systematic error
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North 
LIDAR perceived 
north, with the 
same error 

LIDAR perceived 
target, from east

East 

LIDAR perceived 
target, from west



Bias and systematic error

 Boresighting angular bias is constant. 
 Systematic error in point cloud will change with LIDAR location.
 Repeatable in every flight, can be calibrated.

 Navigation angular bias could slowly vary over time.
 Systematic error in point cloud will change with LIDAR location and time.
 Not repeatable, can be corrected manually.
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