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Executive Summary 
Cycling, as a healthier and greener travel mode, has been encouraged for short-distance trips by 

city planners and policymakers. Since cycling provides an efficient way to improve public 

health, alleviate traffic congestion, and reduce energy consumption, it is essential to analyze the 

contributing factors to cycling and bicyclist injury risk, to quantify the impact of certain 

attributes on bicycle volume as well as biking safety, and further provide better cycling 

environment for cyclists to encourage non-motorized travels. 

 

To map ridership, data including network characteristics, sociodemographic factors, time of day, 

and day of week are quite indispensable. There have been multiple bicycle volume data 

collection methods and the most commonly used include traditional manual counts, travel 

surveys, and crowdsourced data from third parties. Most of the previous research efforts used the 

first two methods to collect the data of interest. However, such methods are expensive and time-

consuming. Crowdsourced data, on the contrary, are cost-effective and timesaving, and therefore 

they have become widely collected and used by many public agencies and private sector groups 

in recent years. Among all the crowdsourced data, data collected from smartphone applications 

including Strava, CycleTracks, ORcycle, etc. have become more and more prevalent. 

Crowdsourcing has increased the availability of data collection and provided an efficient way to 

bridge the data gap for decision-making and performance measures. 

 

This project focuses on evaluating the potential use of crowdsourced bike data and comparing 

them with the traditional bike counting data that are collected in the City of Charlotte, North 

Carolina. Bicycle volume models were developed using bike data from both the Strava 

smartphone cycling application and permanent continuous bicycle count stations. Based on the 

results, a bicycle volume predictive model is presented, as well as a map illustrating the bicycle 

volume on most of the road segments in the City of Charlotte. 

 

In addition, this research project investigated the correction factor calculation methodology used 

in the North Carolina Non-Motorized Volume Data Program (NC NMVDP) to adjust bicycle and 

pedestrian count data collected by permanent continuous counters across the state. The analysis 

examines the impacts of rounding on corrected count data, appropriate temporal aggregations for 

applying linear correction factors, the minimum number of non-zero observations required to 

properly calibrate an Eco-Counter system, differences between the magnitude of correction 

factors as calculated using historic programmatic processes and those calculated with linear 

regression methods, and methods for accounting for accuracy, tolerance, and uncertainty in count 

data recorded by an Eco-Counter system. 

 

This research also developed bicycle volume prediction models using both the simple linear 

regression model and multiple linear regression model. In the simple linear regression model, the 

bicycle volume from counter stations are approximately 4.46 times those of the bicycle volume 

from the Strava data, with an intercept value of 5.72. In the multiple linear regression model, 

factors that have a significant impact on bicycle volumes are identified: five time periods, 

weekday, Strava counts, bike lane, and off-street path.   
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Furthermore, bicyclist injury risk analysis is also conducted to explore the impact factors 

affecting biking safety by developing a series of safety performance functions, including Poisson 

Model, Negative Binomial (NB) model, Zero-inflated Poisson (ZIP) model, and Zero-inflated 

Negative Binomial (ZINB) model. Several indicators for model comparison were used to select 

the best fitting model for bicyclist injury risk modeling. The ZINB model has the optimal 

performance compared to the other three models. Based on the results from the ZINB model, 

interstate, principal arterial, minor arterial, major collector, bus stop, bike lane, and annual 

average daily bicycle volume have significant impacts on bicycle injury risk.  

Finally, recommendations are made to help improve the cycling environment and cycling safety 

and to increase bicycle volume in the future. The research findings suggest more bike 

infrastructure should be built in uptown areas, especially in the vicinity of greenways and parks 

to reduce cyclist crash risks, separated bike lanes away from bus stops should be constructed.  
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1 INTRODUCTION 

1.1 Problem Statement and Motivation 

Numerous sources of novel data, including crowdsourced data collected from smartphones, have 

emerged and been used for transportation research. The innovative crowdsourcing data collection 

method offers unique features and advantages when compared with the traditional data collection 

method. Thus, many researchers in relevant research fields have applied the crowdsourced data 

method to their research. This is only the beginning of the benefit from crowdsourcing; and this 

kind of data collection method still has great potential to further advance transportation research 

studies. 

 

In order to estimate bicycle volume on each roadway segment and to encourage cycling, studies 

need to examine the contributing factors to bicycle volume and the correlation between bicycle 

data from permanent continuous count stations and crowdsourced bicycle data. One of the 

critical issues for the conduct of such research studies is that the traditional data collection 

methods have some limitations, and their data collection process can be time-consuming and 

expensive (Boss et al., 2018; Musakwa & Selala, 2016). 

 

As an advanced data collection method, crowdsourcing enables practitioners and scholars to 

obtain data from a broader range of people in a shorter and more cost-efficient way (Misra et al., 

2014). Howe (2006) first introduced this method in “The Rise of Crowdsourcing” and discussed 

how planners can use crowdsourced data to develop models, analyze travel behavior, estimate 

traffic demand, evaluate bike facilities, and explain road traffic safety. 

 

Different research efforts have been made with different definitions for crowdsourcing (Estellés-

Arolas & González-Ladrón-de-Guevara, 2012). According to Brabham (2008), crowdsourcing is 

“a strategic model to attract an interested, motivated crowd of individuals capable of providing 

solutions superior in quality and quantity to those that even traditional forms of business can” 

(see page 79). Usually, the definitions of crowdsourcing contain three main features: The users 

of the crowdsourcing application who provide critical information, the outsourcing procedure 

that spreads out the data, and the internet-based platform that enables the accomplishment of 

crowdsourcing (Saxton, 2013). 

 

The concept of crowdsourcing has also been used within various research areas (Whitla, 2009; 

Boulos et al., 2011; Brabham, 2012; Overeem et al., 2013; Marti et al., 2012), and numerous 

smartphone applications have been developed for transportation planning and management, 

including CycleTracks, Strava, MapMyRide, etc. (Figliozzi and Blanc, 2015). These applications 

use GPS technology to provide users’ information regarding their trip trajectories which will 

benefit  researchers’ and planners’ studies. 

 

Therefore, crowdsourcing is especially helpful and beneficial to transportation planning and 

management. It offers shared platforms and systems to invite a large amount of interested 

application users to address common issues that affect them all. Recently, crowdsourcing 

techniques have developed rapidly. Some studies regarding crowdsourced data use in 
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transportation have shown its immense potential in augmenting traditional data collection 

methods since it can provide temporal and spatial information to help researchers analyze the 

travel behavior of application users and increase the usage of the software. 

1.2 Study Objectives 

The objective of this research is to validate the bicycle volume data collected from counting 

machines and determine the correction factor, and to evaluate and apply the potential use of 

crowdsourced bicycle data in the City of Charlotte. This data will be used to develop bicycle 

volume estimation and prediction models, conduct injury risk analysis with safety performance 

functions, map bicycle ridership, and analyze biking safety influence. The proposed work in this 

research is to fulfill the following objectives: 

1. To analyze and evaluate the methodology used in the North Carolina Non-Motorized 

Volume Data Program (NC NMVDP) to validate the bicycle count data recorded by 

permanent continuous counters and to determine correction factors;  

2. To compile bicycle data from all the available sources: Strava data, bicycle count data 

collected from permanent continuous count stations, NC road characteristics data, 

demographic data, slope data, temporal data, annual average daily traffic (AADT), 

bicycle facility data, and bicyclist involved crash records as preparation for the follow-up 

work; 

3. To combine all the collected data using ArcGIS and SAS for model estimation; 

4. To develop bicycle volume estimation and prediction models based on the combined 

data; 

5. To calculate the predicted bicycle volume based on the developed models, and generate a 

bicycle ridership map for most of the road segments in the City of Charlotte;  

6. To develop safety performance functions based on bicycle volume for bicyclist safety 

analysis.  

1.3 Expected Contributions 

In order to provide a better cycling environment and to encourage more potential bicyclists to 

bike in the City of Charlotte, this research pairs the verified and validated bicycle counts 

recorded by permanent continuous count stations in the NC NMVDP with Strava data to develop 

models to analyze the factors that are associated with the actual bicycle volume on each roadway 

segment. Prediction of the bicycle volume on most of the roadway segments in the City of 

Charlotte should be conducted and used to provide guidance for bicycle facility construction and 

improvement in the future. The impacts of biking safety also need to be analyzed. Given these 

goals, the expected contributions of this research are as follows: 

1. Refine the method used to validate and correct bicycle count data collected by permanent 

continuous counters in the NC NMVDP; 

2. Present a systematic method for developing models to analyze the relationship between 

bicycle count data from count stations and Strava’s bicycle count data; 

3. Generate a bicycle ridership map of the City of Charlotte to give an overview of the 

predicted bicycle volume that can be used as a reference for future bicycle facility 

construction/improvement;  
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4. Provide a method to develop safety performance functions for analyzing bicyclist injury 

risk and mapping bicycle-vehicle crashes. 

1.4 Research Overview 

This report is organized as follows: 

 

Chapter 1 introduces the background of this research study and discusses the motivation of 

modeling cycling activities and conducting safety analysis. In addition, the objectives and 

expected contributions are described and presented. 

 

Chapter 2 presents a comprehensive review of the state-of-the-art and state-of-the-practice on the 

potential use of crowdsourced bicycle data. This chapter also summarizes the data collection 

methods used for relevant research studies including crowdsourcing and other traditional data 

collection methods.  Representative smartphone applications for crowdsourcing are presented 

and their use for different aspects of research is discussed. Methods for bicycle volume 

estimation and prediction, counting machine validation and correction, and bicyclist injury risk 

analysis are summarized. 

 

Chapter 3 gives an overview of the collected data and conducts a descriptive analysis of the data 

collected from the Strava smartphone application in terms of users’ demographics, different trip 

purposes, and total Strava counts. Chapter 3 also provides a simple data comparison between 

bicycle counts collecting from permanent continuous count stations and the Strava application. 

In addition, other supporting data are introduced in this chapter. 

 

Chapter 4 introduces the bicycle volume estimation and validation procedures. Specifically, this 

chapter discusses the impact of rounding on corrected count data, appropriate temporal 

aggregations for applying linear correction factors, the minimum number of non-zero 

observations required to properly calibrate an Eco-Counter system, differences between the 

magnitude of correction factors, and methodologies for accounting for accuracy, tolerance, and 

uncertainty in count data recorded by an Eco-Counter system. 

 

Chapter 5 presents a method for data processing and develops two linear regression models to 

analyze the relationship between bicycle count data from permanent continuous count stations 

and Strava, as well as other relevant attributes. The bicycle volume on most road segments in the 

City of Charlotte is predicted using the developed model. A bicycle ridership map is also created 

to display a graphical representation of the bicycle counts. 

 

Chapter 6 provides a method to develop safety performance functions for bicyclist injury risk 

analysis. The method is based on the bicycle volume from the previous chapter and other factors 

including bicycle facilities, annual average daily traffic (AADT), road characteristics, and the 

number of bus stops. The indicators for model comparison are used to identify the model best 

suited for bicyclist injury risk analysis. 
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Chapter 7 concludes this research with a summary of the methods for estimating and predicting 

bicycle volume on each road segment in the city network and conducting bicyclist injury risk 

analysis. 
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2 LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a comprehensive literature review on the current state-of-the-art and state-

of-the-practice of relevant non-motorized transportation research studies, especially counting 

machine validation and correction, bicycle volume estimation and prediction, impacts on bicycle 

activity, and bicyclist injury risk analysis. This literature review will summarize the data used for 

the research studies, methods applied for counting machine validation and correction, bicycle 

volume estimation and prediction, and injury risk analysis, as well as results concluded from 

previous and ongoing research. 

 

The remainder of this chapter is structured as follows: Section 2.2 introduces different types of 

data collection, such as crowdsourcing, open data, and big data, as well as other traditional data 

collection methods including travel surveys and count data. Section 2.3 summarizes the most 

prevalent smartphone crowdsourcing applications (e.g., CycleTracks, Cycle Atlanta, Mon 

RésoVélo, Strava, and ORcycle) and their use on different aspects of research. Section 2.4 details 

the bicycle volume estimation and prediction methods based on both traditional data collection 

methods and crowdsourcing. Section 2.5 reviews the methods for counting machine validation 

and correction. Section 2.6 presents the approach to bicyclist injury risk analysis based on 

different types of data. Finally, section 2.7 concludes this chapter with a summary. 

2.2 Data Collection 

This section summarizes advanced data collection methods and the traditional data used for 

relevant research studies. This section introduces each type of data and the advantages and 

disadvantages of novel data and traditional data. 

2.2.1 Crowdsourcing 

Crowdsourcing is an innovative sourcing model which brings new developments to data 

collection and data-driven research studies. Crowdsourcing techniques have evolved rapidly 

since they emerged approximately ten years ago. The concept of crowdsourcing was first 

introduced by Howe (2006) in his article “The Rise of Crowdsourcing” published in Wired 

Magazine in which he defines crowdsourcing as the act of taking a job traditionally performed 

by a designated agent (usually an employee) and outsourcing it to an undefined, generally large 

group of people in the form of an open call.” (Howe, 2008) He expands his definition as follows: 

 

“Crowdsourcing represents the act of a company or institution taking a function once performed by 

employees and outsourcing it to an undefined (and generally large) network of people in the form of 

an open call. This can take the form of peer-production (when the job is performed collaboratively) 

but is also often undertaken by sole individuals. The crucial prerequisite is the use of the open call 

format and the large network of potential laborers.” (Howe, 2008, page 1) 
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Crowdsourcing is a mixture of two components: crowd and outsourcing. Based on the definition 

of crowdsourcing provided by Howe (2006), numerous scholars have been interested in the new 

concept of this data collection method. Different definitions have emerged based on their 

understanding of crowdsourcing. According to Brabham (2008), crowdsourcing is “a strategic 

model to attract an interested, motivated crowd of individuals capable of providing solutions 

superior in quality and quantity to those that even traditional forms of business can.” Later in 

Brabham’s (2013) book, crowdsourcing was defined as “an online, distributed problem-solving 

and production model that leverages the collective intelligence of online communities to serve 

specific organizational goals.” Vukovic (2009) defined crowdsourcing as “a new online 

distributed problem-solving and production model in which networked people collaborate to 

complete a task.” Instead of interpreting crowdsourcing as a model that solves the problems of 

the crowd through an online platform, Chanal and CaronFasan (2008) defined crowdsourcing as 

“the opening of the innovation process of a firm to integrate numerous and disseminated outside 

competencies through web facilities.” Kleeman et al. (2008) found the essence of crowdsourcing 

to be intentional mobilization and defined crowdsourcing as “a form of the integration of users or 

consumers in internal processes of value creation.” To explain it simply, La Vecchia and 

Cisternino (2010) described crowdsourcing as “a tool for addressing problems in organizations 

and business.” 

 

With the development of crowdsourcing, researchers have analyzed various existing definitions 

of crowdsourcing to discern the basic features and common elements. Estellés-Arolas and 

González-Ladrón-De-Guevara (2012) reviewed and summarized the research studies on 

crowdsourcing in terms of the information about the crowd and crowdsourcer, the tasks that need 

to be conducted by the crowd, the benefit for the crowd and crowdsourcer, and the process of 

crowdsourcing. An integrated definition of crowdsourcing based on the critical elements 

extracted from the previous literature was created which defined crowdsourcing as “a type of 

participative online activity in which an individual, an institution, a non-profit organization, or 

company proposes to a group of individuals of varying knowledge, heterogeneity, and number, 

via a flexible open call, the voluntary undertaking of a task” (Arolas and González-Ladrón-De-

Guevara, 2012). Other analyses and summaries of crowdsourcing can be found in Świeszczak 

and Świeszczak, 2016; Estellés-Arolas, Navarro-Giner, & González-Ladrón-de-Guevara, 2015; 

and Hosseini et al., 2014. 

 

To summarize, most of the crowdsourcing definitions contain three main features which are the 

crowd itself, the outsourcing procedure, and an internet-based platform (Saxton, 2013). It means 

that crowdsourcing implies that individuals participate voluntarily to achieve the task which 

would tend to motivate both the experts and the individuals to find solutions to the tasks 

(Schenk, 2011). Table 2-1 presents a summary of the existing crowdsourcing definitions in 

chronological order. 
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Table 2-1 Summary of Existing Crowdsourcing Definitions 

Author Year Definition 

Howe 2006 The act of a company or institution taking a function once performed by 

employees and outsourcing it to an undefined (and generally large) 

network of people in the form of an open call. 

Brabham 2008 A strategic model to attract an interested, motivated crowd of individuals 

capable of providing solutions superior in quality and quantity to those that 

even traditional forms of business can. 

Chanal and 

CaronFasan 

2008 The opening of the innovation process of a firm to integrate numerous and 

disseminated outside competencies through web facilities. 

Howe 2008 The act of taking a job traditionally performed by a designated agent 

(usually an employee) and outsourcing it to an undefined, generally large 

group of people in the form of an open call. 

Kleeman et al. 2008 A form of the integration of users or consumers in internal processes of 

value creation. 

Vukovic 2009 A new online distributed problem-solving and production model in which 

networked people collaborate to complete a task. 

La Vecchia and 

Cisternino 

2010 A tool for addressing problems in organizations and business. 

Brabham 2013 An online, distributed problem-solving and production model that 

leverages the collective intelligence of online communities to serve specific 

organizational goals 

 

The development of crowdsourcing has brought improvements and benefits in data collection. 

This type of innovative data collection shows its potential to augment  traditional data collection 

methods. Recently, Misra et al. (2014) studied the use of crowdsourcing in transportation. In 

addition, as the number of GPS-enabled smartphones increases, crowdsourcing with smartphones 

(Chatzimilioudis et al., 2012) will see more possibilities in transportation-related research 

studies. A comprehensive summary of the existing smartphone applications used for different 

aspects of transportation research areas is provided in the following section. 

2.2.2 Open Data 

Open data is another type of data that researchers can use for their studies.  Open data is open for 

anyone to use freely, and to reuse or redistribute flexibly (Kitchin, 2014). In other words, an 

open data format should be “platform independent, machine readable, and made available to the 

public without restrictions that would impede the re-use of that information” (Attard et al., 

2015). Therefore, open data is available for anyone without any additional costs or limitations. 

 

Most open data are provided by local governments or institutions. This government-related data 

is also called open government data, which is a subset of open data (Kučera et al., 2013). This 

type of data is released openly to the public and usually contains public transportation 

information, crash records, population, infrastructure, use, etc. 

2.2.3 Big Data 

Big data is a general type of data that refers to large volumes of data from various sources which 

need to be cleaned and pre-processed before being used for research studies (McAfee et al., 
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2012). The main attributes of big data are the ‘3Vs’ which are volume - representing the size of 

the data, velocity - indicating the speed of the data generation or collection, and variety - 

referring to a synthetic range of sources (Laney, 2001). Besides these three Vs, other researchers 

(Kitchin, 2014) have added other attributes to define big data including veracity, demonstrating 

the quality of the data. 

 

However, most of the big data used in transportation research are under the “volume” feature, 

since many data sources are from a single application, internet platform, or data provider. In 

transportation research, the expansion and development of the smart card system for transit in 

several major cities (Pelletier et al., 2011), the increasing popularity of smartphone applications, 

the availability of GPS devices, and the broad range of online information (Romanillos et al., 

2016) have made a great contribution to the development of big data. 

2.2.4 Traditional Data Collection Methods 

Traditional traffic data collection methods can provide accurate and useful information for 

relevant transportation research studies. The two most common traditional traffic data collection 

methods are traffic counting equipment and travel surveys. 

 

Commonly used traffic counting equipment includes piezo-electric sensors, inductive loops, 

microwave, radar, video image detection, and manual observation, etc. (Skszek, 2001). Using the 

equipment to collect data may be more expensive and time-consuming compared to other 

methods. 

 

Travel survey methods can be divided into two groups: web-based and paper-based. The most 

well-known type of travel survey is the household survey (Kagerbauer et al. 2015). Information 

relevant to household travel patterns is collected through questionnaires. The process of filling 

out paper-based surveys and selecting useful and suitable answers can be time-consuming. Web-

based travel surveys, on the other hand, are used as an alternative that provides smart filter 

management features. However, bias and other issues associated with this type of travel survey 

cannot be ignored. One of the problems with data collected from travel surveys may come from 

the respondents. Since young participants can access the internet more easily compared to older 

respondents, the proportion of young respondents might be higher than older ones for web-based 

surveys. In addition, not all the questionnaires may be returned, as the receiving rate can be 

lower than travel surveys conducted in person. Other traditional transportation survey methods 

such as workplace surveys, longitudinal and panel surveys, transit onboard ridership surveys, 

commercial vehicle (truck) surveys, and external station surveys, usually have similar 

disadvantages. 

 

Travel surveys can be categorized as stated preference surveys (i.e., SP surveys) and revealed 

preference surveys (i.e., RP surveys) (Guan, 2004). The SP survey receives the decision-making 

results of the respondents in terms of certain different conditions.  RP surveys refer to the survey 

of completed selective behavior. The differences between these two kinds of travel surveys are: 

(1) the questions on an SP survey usually contain  investigation content that has not  occurred yet 

or is intentionally designed for  specific research topics,  while RP surveys contain  investigation 

questions about behaviors that  have already taken place; and (2) the scenario in an SP survey 

can be designed flexibly with assumed values of choices and attributes that are needed for the 
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research studies, while the results of choices and choice conditions in the RP survey are based on 

actual travel choice behavior. When considering these features of the two types of surveys, their 

advantages are revealed. With SP surveys, researchers can arbitrarily design the questionnaires 

and the corresponding scenarios for future conditions which will benefit transportation planning 

and design, especially for upcoming constructions and establishments. With RP surveys, 

researchers can show the results or phenomenon hidden in each individual’s choice which 

reflects the contribution of the impact factors and how individuals value these factors. 

 

 Figure 2-1 below shows a clear structure of the traditional data collection methods mentioned in 

this section. 
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Figure 2-1 Traditional Data Collection Methods 
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2.3 Smartphone Crowdsourcing Applications 

As mentioned in Section 2.2.1, there are numerous forms of crowdsourcing. Based on the 

literature review on bicycle-related research utilizing crowdsourced data, smartphone 

crowdsourcing applications are most prevalent for this innovative data collection method. There 

are multiple smartphone crowdsourcing applications that have been used for relevant research 

studies. This section will provide a comprehensive summary of the cycling applications and their 

use to conduct different aspects of research studies. 

2.3.1 CycleTracks 

The CycleTracks application is the first smartphone crowdsourcing application developed for 

collecting crowdsourced bicycle data for bicycle-related research studies (Blanc et al., 2016). It 

was designed by the San Francisco County Transportation Authority (SFCTA) in 2009 to utilize 

the built-in GPS in smartphones to collect cycling information and users’ space trajectories. In 

addition, some of the users’ demographic information can be collected fromusers’ optional 

answers to demographic questions to analyze the distinctive individual attributes for cycling 

behavior. The reported demographic information can be age, gender, home zip code, commute 

locations, cycling frequency, etc.  A comments field is provided for users to report the purpose of 

each cycling trip (e.g., commute, non-commute, recreational, exercise, shopping, school, work, 

social, etc.)  (SFCTA, 2013). This information is also optionally filled in by CycleTracks users 

(Charlton et al., 2011). 

 

Most of the studies used CycleTracks to analyze cyclists' route choice behavior. Charlton et al. 

(2011) collected the cycling data from CycleTracks from November 12, 2009, to April 18, 2010, 

to analyze these cyclists’ route choices in San Francisco. A total of 7,096 cycling trips generated 

by 1,083 cyclists were collected and selected as the chosen routes in the modeling procedure. A 

doubly-stochastic choice set generation method was used for modeling cyclists’ route choice. 

The impacts of the length of the route, turns per mile, the proportion of the route on wrong-way 

links, proportion on bike paths, bike lanes, and bike routes, infrequent cyclists, and average up-

slope were considered in the path size multinomial logit model (Hood et al., 2011). Results 

revealed that the length of the route, turns per mile, the proportion of route on wrong-way links, 

and average up-slope affected the cyclist’s route choice negatively, while other explanatory 

variables had positive impacts on route choice. 

 

Chen and Shen (2016) collected data from CycleTracks to analyze the effects of land use and 

roadway characteristics on cyclists’ route choices. The labeling route approach and the K-

shortest mean approach were used to generate the route choice set for cyclist route choice 

analysis. A path size logit model was developed, and results were concluded that cyclists 

selected their cycling routes based on the consideration of utility, cycling safety, and suitability. 

Subsequently, Chen et al. (2018) examined the influences of the built environment on cyclist 

route choice using the same dataset. Another comprehensive discrete choice model (i.e., path-

size-based mixed logit model) was developed for this research study. 

 

As the first application developed for cycling studies, researchers have compared this dataset 

with other data sources including traditional count data and data collected from other smartphone 
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applications. Griffin and Jiao (2019) compared CycleTracks with traditional count data from five 

selected locations in Austin, Texas, and data provided by Strava fitness application. The 

relationship between CycleTracks and count data, as well as the relationship between Strava and 

count data were examined utilizing ordinary least squares regression. Additional spatial 

autocorrelation was also evaluated using OpenGeoDa software. 

 

Based on the first smartphone crowdsourcing applications, other applications designed for 

cycling including AggieTracks, Cycle Atlanta, Mon RésoVélo, RenoTracks, CyclePhilly, 

Toronto Cycling App, ORcycle, CycleSac, C-Vill Bike mAPP, etc. were subsequently developed  

(Blanc et al., 2016). Some of the applications that were used for bicycle-related research studies 

are introduced in detail in the following sub-sections. 

2.3.2 AggieTracks 

AggieTracks was developed by Texas A&M University based on the open-source code of 

CycleTracks  to collect  cycling information on  users in the university area (Hudson et al. 2012). 

Data on travel purposes were collected from cyclists who completed optional questions after 

their cycling trips. Cyclists using AggieTracks also entered classification status e.g., student, 

faculty, or staff. Additional information such as users’ living locations (on or off campujs) and 

car ownership was also collected. Since this application was developed to track cycling patterns 

within the university area, few research studies choose to utilize this data source. 

2.3.3 Cycle Atlanta 

Like AggieTracks, Cycle Atlanta was developed based on the open-source code of the 

CycleTracks application by a research team from Georgia Tech collaborating with the City of 

Atlanta and the Atlanta Regional Commission (Figliozzi and Blanc, 2015). In addition to the 

cycling route data, Cycle Atlanta can collect demographic information including age, email, 

gender, ethnicity, home income, home zip code, work zip code, or school zip code, etc., Cycle 

Atlanta also notes selections including issues (e.g., pavement issue, traffic signal issue, bicycle 

lane design issue, enforcement request, bicycle parking request, and custom entry) and amenities 

(e.g., water fountain, public restroom, bicycle shop, bicycle parking, and custom entry). 

 

Like other data collected from smartphone applications, cycling information data extracted from 

Cycle Atlanta were compared with other types of cycling data including manual count data as 

well as data from other applications. Watkins et al. (2016) conducted a study to compare data 

collected from Cycle Atlanta and Strava in terms of demographic data, cycling trip information, 

time of day, and different road segments to examine the ability of GPS data from smartphone 

applications to map cyclist ridership. In addition, manual count data were compared with data 

from Cycle Atlanta to investigate the proportion of Cycle Atlanta users to the total number of 

cyclists. 

 

Cycle Atlanta data were used for route choice modeling, street segment choice, bicycle level of 

service (BLOS), and level of traffic stress (LTS). In a USDOT final report named “Using 

Crowdsourcing to Prioritize Bicycle Route Network Improvements”, LaMondia and Watkins 

(2017) conducted a comprehensive research study on calculating BLOS, measuring LTS, 

modeling bicyclist route choice, and route segment choice using data collected from three 
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smartphone applications: Strava, CycleDixie and Cycle Atlanta. An ordinal logistic regression 

model was developed to analyze the route segment choice of Cycle Atlanta users. Explanatory 

variables including roadway characteristics, access groups, and socio-demographic accessibility 

were included in the model. To analyze the willingness of a cyclist to choose a detour over the 

shortest route, a binary logistic choice model was developed based on the alternative (i.e., 

shortest route path) generated by the A-star algorithm. 

 

Misra and Watkins (2018) investigated the differences in bicyclist route choice between different 

genders and age groups. Multiple path size logit models were developed for different segments 

in terms of age and gender. A pooled path size logit model based on the entire data set collected 

from Cycle Atlanta was developed for comparison. Results revealed that traffic characteristics 

including speed and annual average daily traffic (AADT) might affect the cyclist’s route choice 

differently for male and female cyclists as well as young and old cyclists. 

2.3.4 Cycle Lane 

Cycle Lane is another smartphone application that is built on the code developed for 

CycleTracks (Roll, 2014). To collect bicycle trip information, Central Lane Metropolitan 

Planning Organization (CLMPO) developed the Cycle Lane application in 2011. Demographic 

information (including age and gender) on the cyclists using this application were collected 

through questions asked within the application. Additional information such as the frequency of 

riding was also collected before cycling. 

 

Zimmermann et al. (2017) modeled the bicyclist route choice based on the data collected from 

Cycle Lane to analyze the trade-offs cyclists make while selecting their cycling routes. The 

researchers applied a recursive logit model for the bicyclist route choice modeling since this type 

of link-based route choice model does not require generating route choice sets, compared to the 

path-based models such as the path size logit model. According to the results, this recursive logit 

model may save computational time. 

2.3.5 Mon RésoVélo 

Mon RésoVélo is also a smartphone application for collecting bicyclist route information in the 

City of Montreal based on CycleTracks and Cycle Atlanta. Cycling trip information including 

travel time, distance, and cycling route choice are collected for each trip. In addition, socio-

demographic information and other attributes of the cyclists using this application are obtained 

through an anonymous questionnaire. Different from the two applications that Mon RésoVélo 

was built on, this application adds a calorie counter and an emissions tool to calculate the 

greenhouse gas. (Jackson et al., 2014). 

 

Based on the GPS cycling trip data from Mon RésoVélo, deceleration rates at intersections and 

on-road segments were extracted by Strauss et al. (2017) to investigate the relationship between 

the deceleration rate and the number of injuries. The ranking of sites based on the deceleration 

rate and the expected injury number were compared using Spearman’s rank correlation 

coefficient. 

With the benefit of this innovative smartphone application, many other research studies were 

conducted based on the data extracted from Mon RésoVélo. Strauss and Miranda-Moreno (2017) 
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used the GPS cycling trip data from the Mon RésoVélo application to identify performance 

measures in terms of speed, delay, and travel time at both intersections and on-road segments in 

the whole city network on the island of Montreal. To examine the impacts of geometric design 

and built environment on cycling speed on each road segment, a linear regression model was 

developed. The model results demonstrated that cycling speeds were higher along arterials than 

on local streets, and cyclists biked faster on road segments with bicycle infrastructure. 

Furthermore, impact factors including geometry characteristics, built environment features, 

travel purposes, and peak hours were found to affect cycling speed significantly. 

2.3.6 RenoTracks 

RenoTracks is a smartphone application that builds on the Cycle Atlanta application. This 

application offers similar functions to CycleTracks, including recording cycling information, 

collecting travel distance, calculating travel speed, reporting issues, and collecting demographic 

data from cyclists. (RenoTracks 2013). In addition to the features adopted from previous 

smartphone crowdsourcing applications, RenoTracks added a customized user interface and a 

“CO2 Saved” counter to calculate the carbon dioxide that would be saved compared to traveling 

by automobile. 

2.3.7 ORcycle 

Portland State University and Oregon DOT developed the ORcycle smartphone application 

based on the code for CycleTracks to collect cycling information from application users. This 

application was released for both Android and iOS platforms in November 2014. Using this 

application, cycling data collected includes bicycle trip trajectories, user information, 

infrastructure issues, and crashes. 

 

With the help of ORcycle, useful data can be collected to design and upgrade  bicycle facilities 

and analyze the impacts on cyclists’ comfort levels. Blanc and Figliozzi (2016) leveraged the 

ORcycle application to collect data for cyclists’ comfort level modeling. Factors including 

bicycle facilities, sources of stress associated with the cycling routes, travel purposes, distance, 

cycling frequency, and temporal characteristics were considered in the model. Ordinal logistic 

regression models were developed to estimate the influence on cyclists’ comfort levels. Based on 

the model results, bicycle boulevards, separated cycling paths, sources of stress associated with 

the cycling routes, trip purposes, and cycling distance were found to affect cyclists’ comfort 

levels significantly. 

 

ORcycle data can also be used for safety analysis. Blanc and Figliozzi (2017) investigated the 

impact factors on the urgency of a perceived potential safety issue. Based on the statistical 

models, application users are usually reliable for reporting the  urgency of  safety issues and the 

infrastructure problems. The factors that affected safety urgency and type include user gender 

and income levels, traffic volumes, speed, and waiting times at signalized intersections. 

2.3.8 MapMyRide 

MapMyRide is one of the smartphone applications developed by MapMyFitness to get the most 

from the users’ bike rides and track their cycling trips, especially for recreational travel purposes. 

This application allows users worldwide to plan their cycling route, track their GPS trajectories, 
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share links with others, and provide users with information. Cyclists using MapMyRide can view 

others’ cycling routes to follow  popular cycling routes for comfortable and challenging 

activities. In addition to the smartphone application, MapMyRide also provides a web version 

that can present and summarize the statistics and ridership of the users’ cycling trips (Figliozzi 

and Blanc, 2015). 

 

As a smartphone application that can collect cycling data from the entire United States, 

MapMyRide provides data for investigating physical activity patterns. Hirsch et al. (2014) used 

data collected from MapMyFitness to analyze users’ physical activity patterns. It was concluded 

that this set of applications is a critical and useful platform to explore travel patterns within large 

geographic and temporal scales. 

2.3.9 Strava 

Similar to MapMyRide, Strava allows users to track their cycling routes through the GPS-

enabled smartphone and view and share the trip trajectories afterward via a website or 

application. Summary statistics including travel speed, trip distance, activity time, and another 

cycling route information are provided and displayed. Strava’s unique features are the ability to 

track the cycling performance of multiple cyclists on the same segment which enables Strava 

users to compete with each other for the least segment time, highest speed, etc. This particular 

functionality attracts numerous cyclists worldwide to use this smartphone application for 

recording their cycling trips which provides Strava a large dataset in extensive geographic and 

temporal scales. 

 

With their large dataset, Strava has become one of the most prevalent smartphone applications to 

collect cycling information from a variety of users. Multiple bicycle-related research studies 

were conducted using Strava data. 

 

Sun and Mobasheri (2017) used Strava data to analyze the spatial patterns of cycling activities 

for different travel purposes and air pollution exposure on a large scale. The improved 

Multidirectional Optimum Ecotope-Based algorithm was used to identify the clusters associated 

with a high non-commuting rate. Ordinary least squares, multilayer perceptron neutral network, 

random forest, and support vector machine methods were used to analyze the Strava users’ non-

commuting cycling activities. Results showed that more non-commuting cycling trips occurred 

on the outskirts of the city. In addition, cyclists biking for commuting were found to be more 

likely to be exposed to higher levels of air pollution. 

 

Other research studies conducted based on Strava data include non-motorized transport planning 

(Selala and Musakwa, 2016), cycling patterns and trends (Musakwa and Selala, 2016), cycling 

behavior (Sun et al, 2017), and bicycle trip volume (Hochmair et al., 2019). 

 

Table 2-2 and Table 2-3 summarize the literature reviewed in this section related to the 

crowdsourcing applications developed for collecting cycling information and research studies 

based on the data extracted from  smartphone applications.
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Table 2-2 Summary of Smartphone Crowdsourcing Applications 

Year Applications Developer Information Collected Emphasis 

2008 MapMyRide MapMyFitness 

Demographic information 

Travel purpose 

Cycling trajectories 

Physical activity patterns analysis 

2009 CycleTracks SFCTA 

Demographic information 

Travel purpose 

Cycling trajectories 

Route choice modeling  

2009 Strava Strava Metro 

Demographic information 

Travel purpose 

Cycling counts 

Non-motorized transport planning 

Air pollution exposure 

Cycling patterns and behavior 

Bicycle volume 

Active travel and health 

2011 AggieTracks Texas A&M University 

Trip purpose 

On campus living 

Car ownership 

Travel patterns analysis 

2011 Cycle Lane CLMPO 

Demographic information 

Travel purpose 

Cycling trajectories 

Route choice modeling 

Bicyclist behavior analysis 

2012 Cycle Atlanta Georgia Tech 

Demographic information 

Travel purpose 

Issue reporting 

Amenity reporting 

Route choice modeling 

Bicycle volume 

LTS 

2013 Mon RésoVélo The City of Montreal 

Demographic information 

Travel purpose 

Cycling trajectories 

Calorie 

Emissions 

Level of service measures 

Safety analysis 

2013 RenoTracks 2013 Hack4Reno Team 

Demographic information 

Travel purpose 

Cycling trajectories 

“CO2 Saved” 

Cycling data analysis 

2014 ORcycle Portland State University and ODOT 

Demographic information 

Travel purpose 

Cycling trajectories 

Infrastructure issues 

Crashes 

Cyclists’ comfort level 

Route choice modeling 

Crash and injury risk modeling 
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Table 2-3 Summary of Research Topics Based on Crowdsourced Bicycle Data 

Year Author Data Source Study Area Data Size Methods Research Area 

2011 Hood et al. CycleTracks San Francisco 

7,096 cycling trips 

generated by 1,083 

cyclists 

Path size multinomial logit 

model 

Route choice 

modeling 

2014 Hirsch et al.  MapMyFitness 
Winston-

Salem, NC 

43,872 unique workouts 

by 3,094 unique users 
Statistical analyses 

Physical activity 

patterns analysis 

2016 
Blanc and 

Figliozzi 
ORcycle Portland, OR 729 trips from 170 users 

Ordinal logistic regression 

models 

Cyclists’ comfort 

levels 

2016 Chen and Shen CycleTracks Seattle 543 observations  Path size logit model 
Route choice 

modeling 

2017 
LaMondia and 

Watkins 

Cycle Atlanta 

Strava 

CycleDixie 

Auburn, AL 

Atlanta, GA 

5,201 trips generated by 

458 cyclists 

Ordinal logistic regression 

model, 

Binary logistic choice model 

Route segment and 

path choice modeling 

2017 Strauss et al.  Mon RésoVélo Montreal 

Over 10,000 trips 

recorded by almost 1,000 

cyclists 

Spearman’s rank correlation 

coefficient 
Safety measure 

2017 
Strauss and 

Miranda-Moreno 
Mon RésoVélo Montreal 

Over 10,000 trips 

recorded by almost 1,000 

cyclists 

Linear regression model Performance measures 

2017 
Sun and 

Mobasheri 

Strava 

Scottish Air Quality 

Database 

Glasgow, 

United 

Kingdom 

287,833 cycling activities 

contributed by 13,684 

users 

Ordinary least squares, 

multilayer perceptron neutral 

network, 

random forest, 

support vector machine 

Cycling activities and 

air pollution exposure 

2017 
Zimmermann et 

al.  
Cycle Lane Eugene 

648 bike trips from 103 

users 
Recursive logit model 

Route choice 

modeling 

2018 Chen et al. CycleTracks Seattle 
3,310 routes created by 

197 cyclists 

Path-size-based mixed logit 

model 

Route choice 

modeling 

2018 
Misra and 

Watkins 
Cycle Atlanta Atlanta, GA 

About 20,000 trips by 

1,495 users 
Path size logit models  

Route choice 

modeling 

2019 Griffin and Jiao 
Traditional Count Data, 

CycleTracks, Strava 
Austin, Texas 

183,070 counts and 111 

CycleTracks records,  

4,372 counts and 209 

Strava records  

Ordinary least squares 

regression and spatial 

autocorrelation 

Bicycle volume 
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2.4 Bicycle Volume 

This section reviews the research studies regarding different methods of bicycle volume 

estimation and prediction based on different types of data (obtained from both traditional data 

collection methods and crowdsourcing). The potential impact factors that might significantly 

affect bicycle volume or cycling activities are summarized through the review of the state-of-the-

art and the state-of-the-practice literature. 

2.4.1 Research Based on Traditional Data Collection Methods 

Although crowdsourcing is an innovative data collection method, the importance of traditional 

data collection methods cannot be neglected. Manual count data and automated count data are 

the basic traditional data collected for annual average daily traffic (AADT) estimation. Many 

research studies are conducted based on this kind of data. 

 

To synthesize the approach to estimating AADT with non-motorized traffic monitoring, Lu et al. 

(2017) used three kinds of automated counters, including pneumatic tube, radio beam, and 

passive infrared, to collect long-term counts, and collected manual counts for a short duration. A 

strong correlation was found between these two kinds of data. Negative binomial regression 

models were developed for each site to estimate bicycle and pedestrian volume. In addition, day-

of-year scaling factors were applied to estimate AADT for both non-motorized traffic counts. 

The volume of bicycles and pedestrians was found to be positively affected by street functional 

class, certain facilities for bicyclists and pedestrians, and proximity to campus. 

 

Chen et al. (2017) investigated the impacts of built environment explanatory variables on bicycle 

volume with a dataset of five-year bicycle volume in Seattle, Washington. A generalized linear 

mixed model (GLMM) assumed to follow a Poisson distribution was developed to model the 

variation of bicycle volume over time. Model results indicated that exploratory variables, 

including non-winter seasons, temporal characteristics such as weekends and peak hours, bicycle 

facilities, and employment density, were likely to affect bicycle volume positively. Lower 

bicycle volume was associated with steep areas, while areas with more mixed land use, water 

bodies, and workplaces were found to be high bicycle volume locations. 

 

Miranda-Moreno et al. (2013) classified the bicycle volume data collected from 38 sites in five 

North American cities into four categories including recreational, mixed recreational, mixed 

utilitarian, and utilitarian. The variation of bicycle volume in terms of different time of day, day 

of week, months, and seasons was analyzed using standardized hourly, daily, and monthly 

indexes, as well as traffic distribution indexes. 

 

Esawey (2014) conducted a research study on estimating the annual average daily bicycle 

(AADB) with both daily adjustment factors (DFs) and monthly adjustment factors (MFs). 

Bicycle volume data collected from 12 permanent counting stations in the City of Vancouver 

were used for adjustment factor calculation. Subsequently, the calculated factors were used to 

estimate AADB at other counting stations. Later, Esawey and Mosa (2015) developed two 

variations of the standard K factors, which is another type of adjustment factor used for bicycle 

volume estimation and calculation, and provided an example of AADB calculation using the 
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developed standard K factors. (i.e., Kp/d and Kp/AADB). They also provided an example of 

AADB calculation using the developed standard K factors. The estimation accuracy based on the 

two variations of the K factors was also examined. 

 

To address the issue of missing bicycle count data at counting stations, Esawey et al. (2015) 

developed an innovative model, which is called autoencoder neural network to fill in data gaps 

and estimate missing daily bicycle volume using available data from nearby and at the same 

location. The model parameters that might have influenced the estimation accuracy were 

assessed, and a sensitivity analysis was conducted. 

 

Considering the impacts of seasonal and weather factors, Schmiedeskamp and Zhao (2016) 

investigated the relationship between these factors and bicycle volume based on the automated 

bicycle counts collected from Seattle, Washington. A negative binomial model was then 

developed, and quantities of interest were estimated with counterfactual simulation. Model 

results demonstrated that variables including season, holidays, day of week, temperature, and 

precipitation might affect bicycle volume significantly. 

 

Similarly, Lewin (2011) also analyzed the impact of temporal and weather factors on bicycle 

volume. A standard linear regression model was developed based on the detector data from two 

permanent bicycle count stations on multi-use paths in Boulder, Colorado.  The variables 

included in the model were carefully selected according to the temporal patterns of bicycle 

volume and weather correlation results. The bicycle volume was then estimated using the linear 

regression model. 

 

To conclude, a summary of the studies on bicycle volume estimation and analysis using 

traditional manual count data or automated count data is provided below in Table 2-4. 



NCDOT RP 2020-43 Final Report    

 
The University of North Carolina at Charlotte Page 20 
 

Table 2-4 Summary of Bicycle Volume Studies Using Bicycle Count Data 

Year Author Bicycle Data Study Area Methods Variables 

2011 Lewin Detector data Boulder, CO 
Linear regression 

model 

Temperature, weather condition 

(e.g., rain and snow), weekend 

2013 Miranda-Moreno et al. 

Long-term 

automated 

counting data 

Montreal, Ottawa, 

Vancouver, Portland, and 

San Francisco 

Standardized hourly, 

daily, and monthly 

indexes, and traffic 

distribution indexes 

Bicycle volume in terms of time of 

day, day of week, month of year, 

and seasonality 

2014 Esawey 

Bicycle volume 

from inductive 

loop counters 

Vancouver, British 

Columbia 
DFs and MFs 

Bicycle volume in terms of time of 

day, day of week, month of year, 

and seasonality 

2015 Esawey and Mosa 

Bicycle volume 

from inductive 

loop counters 

Vancouver, British 

Columbia 
Kp/d and Kp/AADB 

Bicycle volume in terms of time of 

day, day of week, month of year, 

and seasonality 

2015 Esawey et al. 

Bicycle volume 

from inductive 

loop counters 

Vancouver, British 

Columbia 

Autoencoder neural 

network models 
Daily bicycle volume 

2016 Schmiedeskamp and Zhao 
Automated bicycle 

counts 
Seattle, Washington 

Negative binomial 

model 

Hours of daylight, university in 

session, holiday, temperature, 

precipitation, day of week, season,  

2017 Chen et al. 
SDOT1 bicycle 

count data 
Seattle, Washington GLMM 

Winter, peak hours, weekends, land 

use, bicycle facilities, road 

characteristics, steep areas, 

demographics 

2017 Lu et al. 

Automated count 

data and validation 

counts 

Blacksburg, VA 
Negative binomial 

regression models 

Daily temperature variation, daily 

max temperature, precipitation, 

windspeed, weekend, proximity to 

university 

1 Seattle Department of Transportation 
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2.4.2 Research Based on Crowdsourcing 

Many researchers have conducted their studies using crowdsourced data. GPS-enabled 

smartphones provide researchers new opportunities to collect data from a broader group of 

people and use them to conduct research on bicycle volume estimation and prediction. The 

existing use of crowdsourced data for this research area is presented below. 

 

Moore (2015) conducted a study to analyze the impact of various factors on bicycle counts 

based on crowdsourced bicycle data collected from the Strava application. An ordinal logistic 

regression model was developed to examine the effect of impact factors on the cyclists’ route 

choice. GIS was applied to conduct a qualitative analysis to investigate the specific areas and 

facilities to discover their differences from other facilities. Results revealed that the selection 

of a road segment is highly associated with road characteristics and land use. 

 

Griffin and Jiao (2019) collected data from both the CycleTracks smartphone application and 

the Strava fitness application to conduct a data comparison between crowdsourced bicycle 

data and manual count bicycle data. Five specific locations were selected in downtown 

Austin, Texas. All the data were compiled and compared in GIS for these five locations. 

 

To explore the relationship between manual count data collected in Victoria, British 

Columbia, Canada, and crowdsourced bicycle data from the Strava application, a generalized 

linear model was developed by Jestico et al. (2016). The bicycle volumes were categorized 

into several levels, and a regression model was developed for the prediction of bicycle 

volume levels. Maps that illustrate the distribution of bicycle volumes were created. Results 

revealed that the bicycle trips recorded by Strava are similar to the commuting trips in  urban 

areas of the mid-size North American cities. 

 

Data comparison was conducted by Watkins et al. (2016) to find out the differences between 

Cycle Atlanta and Strava data in terms of their sociodemographic information, total cycling 

trips on each road segment, and the cycling trips during each time of day. In addition, manual 

count data were compared to the crowdsourced bicycle data from Cycle Atlanta in both AM 

and PM peak hours. The percentage of the manual count data collected by Cycle Atlanta was 

calculated based on data selected from 78 intersections, and data comparison results 

indicated that notable differences exist in the populations of the crowdsourced data. 

Thus, the bicycle data collected from smartphone applications should be carefully evaluated 

before conducting relevant research studies. 

 

Hochmair et al. (2019) used the crowdsourced bicycle data collected from the Strava 

application in the Miami-Dade County area to analyze the impact of demographic 

information, network characteristics (especially bicycle facilities), and place-specific features 

on bicycle ridership. A series of linear regression models were developed to predict the 

bicycle kilometers traveled for both commuting and non-commuting trips, and trips that 

occurred on both weekdays and weekends. Eigenvector spatial filtering was adopted to avoid 

bias and model spatial autocorrelation. Results showed that Strava data performs well for the 

analysis of the impact of explanatory variables on bicycle volumes for commuting and non-

commuting trips and during different days of the week. In addition, Strava data revealed the 
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broad coverage of spatial and temporal information and that they can be used as a critical 

supplement to bicycle volume estimation in large areas. 

 

Cycling activity analysis was conducted by LaMondia and Watkins (2017) based on the 

crowdsourced bicycle data collected from Strava, Cycle Dixie, and Cycle Atlanta. The 

impact factors were identified by modeling bicycle facility preferences. In addition, cyclists’ 

route segment choice and route choice were analyzed. Results revealed that 

sociodemographic information, road characteristics, and land use have a significant impact 

on the route segment choice. 

 

Proulx and Pozdnukhov (2017) developed a novel method with geographically weighted data 

fusion for bicycle volume estimation utilizing crowdsourced data from the Strava smartphone 

application and Bay Area Bikeshare data. Their research found that the method of 

Geographically Weighted Data Fusion can improve predictive accuracy for link-level bicycle 

volume estimation. 

 

To conclude, a summary of the studies on bicycle volume estimation and prediction as well 

as cycling activity analysis is provided below in Table 2-5.
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Table 2-5 Summary of Bicycle Volume Research Based on Crowdsourced Data 

Year Author Bicycle Data Methods Results 

2015 Moore Data from Strava application 
Ordinal logistic regression 

model 

Roadway characteristics and surrounding land-use have a 

significant impact on whether or not a particular street 

segment would be used. 

2016 Jestico et al. 
Data from Strava and manual 

counting data 
Generalized linear model 

In mid-size North American cities within urban areas, the 

routes recorded in crowdsourced fitness application tend to 

be similar with those of the commuter cyclists. 

2016 Watkins et al. 
Data from Cycle Atlanta, Strava, 

and actual cyclist trips 
Data comparison 

The smartphone application data should be carefully used 

considering the likely bias. 

2017 
LaMondia and 

Watkins 

Data collected using the Strava, 

Cycle Dixie and Cycle Atlanta 

Route suitability score and 

preference models 

Demographics, roadway characteristics and surrounding 

land-use have a significant impact on route choice. 

2017 
Proulx and 

Pozdnukhov 

Crowdsourced data from Strava 

and usage data from Bay Area 

Bikeshare 

Geographically Weighted 

Data Fusion 

The method of Geographically Weighted Data Fusion can 

improve predictive accuracy for link-level bicycle volume 

estimation.  

2019 Griffin and Jiao 
Data from CycleTracks, Strava 

application, and traffic counts 

Ordinary least squares 

regression 

Crowdsourced data are appropriate for bicycle volume 

evaluation.  

2019 Hochmair et al. Data from Strava application Linear regression models 
Strava data can be used to examine the impact of explanatory 

variables on estimated bicycle volume. 
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2.5 Counting Machine Validation and Correction Methods 

2.5.1 Introduction 

The North Carolina Non-Motorized Volume Data Program (NC NMVDP) was established in 

2013 to test a regional bicycle and pedestrian count data collection protocol and to determine 

how to replicate the methodology across the state of North Carolina (ITRE, 2016). The Institute 

for Transportation Research and Education (ITRE) worked in partnership with NCDOT, local 

agencies (municipalities and regional planning agencies), and the technology vendor Eco-

Counter to install and maintain a permanent sensor network on sidewalks, bike lanes, shared 

lanes, and shared-use paths. The purpose of these permanent counters was to establish 

statistically valid expansion factor groups, measure existing trends, and model future increases in 

non-motorized volumes at the site, corridor, and regional levels. 

 

Eco-Counter MULTI systems were installed on representative facilities to continuously monitor 

bicyclist and pedestrian activity over time. The counting systems were composed of inductive 

loops to detect bicyclists and passive infrared sensors to detect pedestrians. ITRE’s validation 

protocol is meant to account for the systematic error (i.e., over or undercounting) associated with 

the use of a particular counting technology by calculating correction factors to adjust raw counts 

closer to the ground truth. Video cameras were installed to record activity at a counting location 

when a counting system is first installed, when a sensitivity setting is changed, or when any part 

associated with the counting system is changed (loops, sensors, logger, smart-connect, or y-

connect). Historically, analysts review two days of video for each site to produce a manual count 

of pedestrian and bicycle users who pass through the sensors’ detection zones. Counts by mode 

are aggregated into 15-minute bins and related to the counts recorded by the Eco-Counter for the 

same period reviewed by the analysts to produce a correction factor. The correction factor is 

applied as a linear multiplicative factor to hourly count totals recorded by a sensor. Corrected 

hourly counts are then rounded to the nearest whole number and reported as the final adjusted 

hourly count for a particular sensor. Development of the historic NC NMVDP correction factor 

calculation methodology is outlined in the NC NMVDP Phase 1 Final Report (ITRE, 2016). 

 

This research project investigates several research questions related to the historic correction 

factor calculations produced in the NC NMVDP. These include: 

• Impacts of rounding on corrected count data; 

• Appropriate temporal aggregations for applying linear correction factors; 

• Minimum number of non-zero observations required to properly calibrate an Eco-

Counter system; 

• Differences between the magnitude of correction factors as calculated using 

historic programmatic processes and those calculated with linear regression 

methods; and 

• Proposed methodologies for accounting for accuracy, tolerance, and uncertainty 

in count data recorded by an Eco-Counter system. 
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2.5.2 Estimating Errors and Uncertainty 

Accuracy, tolerance, and uncertainty are essential concepts in determining the error of any 

measurement. While accuracy and tolerance standards are common in traffic monitoring, 

uncertainty measures are less available. The Federal Highway Administration (FHWA) states 

that “calibration/validation procedures (even if conducted on a limited scale) should be used to 

ensure that (non-motorized) count data is within the bounds of acceptable accuracy" (Jessberger, 

2017). Calibration of motorized traffic monitoring devices is recommended to be performed “at a 

minimum of every year as detailed in the FWHA TMG (Traffic Monitoring Guide)” (FHWA, 

2014), and field counts should be within 5-10% of the true count (FHWA, 2014). 

 

While FHWA provides guidance on best practices determining and ensuring the accuracy of 

motorized traffic monitoring devices, specific calibration protocols are typically set by state 

DOTs and are variable. State practices vary from no calibration, following manufacturer 

suggestions for calibration, to multiple calibration studies performed on equipment each year 

(Jessberger, 2017). For example, the Pennsylvania Department of Transportation (PennDOT) 

conducts a quality assurance test at least once every three years on their Automatic Traffic 

Recorders (ATRs) to determine if the percent error of their tests is within +/- 2%. Jessberger 

(2017) notes that “traffic monitoring program data quality requirements hinder some interagency 

departments from sharing traffic monitoring sites, installation, equipment, and data integration 

challenges due to technology configuration, cultural and institutional coordination” (Jessberger, 

2017). The traffic counting industry is currently working to establish methods for achieving 

standard accuracies and associated confidence intervals for federally mandated traffic monitoring 

data (Jessberger, 2017). 

2.5.3 Defining Accuracy, Tolerance, and Uncertainty 

Accuracy is defined as the closeness between the measured value and the true value. For the NC 

NMVDP, this relates to the bicyclists and pedestrians detected by an Eco-Counter device and the 

bicyclists and pedestrians observed by an analyst in video recordings during a validation study. 

Tolerance is defined as the maximum range of error that is acceptable in a device. A standard 

tolerance for bicycle and pedestrian counting technologies has not been established. The NC 

NMVDP defines the maximum range of error for counts recorded by Eco-Counter devices as +/- 

40% of the matched manual counts, which is much higher than the typical motorized traffic 

monitoring tolerance. Uncertainty is a non-negative parameter that characterizes the dispersion 

of values attributed to a measurement. Uncertainty parameters are typically derived from a 

standardized figure unique to the type and model of the measuring device. However, 

standardized uncertainty measures for bicycle and pedestrian counting technologies do not 

currently exist. 

 

Di Leo et al. (2007) suggest that the baseline data source for uncertainty in traffic monitoring is a 

manual observation of traffic flow.  They suggest the following methodology for calculating the 

uncertainty in traffic monitoring: 

 

“Following a type A approach, at first deterministic errors must be estimated (i.e., through a 

comparison with a reference instrument), to provide a correction “c” with its uncertainty uc; then 

the standard deviation σm of a set of measurements, carried out keeping constant the measurand 
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and all the controllable influence parameters, and corrected by “c,” allows the uncertainty u to be 

calculated as: 

 

𝑢𝟐 = 𝜎𝒎
𝟐 + 𝑢𝒄

𝟐           Eq. 2-1  

   
where uc is the difference between the corrected sensor data and the observed data, σm is standard 

deviation of measurements, and u is the uncertainty value.” 

 

While uncertainty measures were not incorporated into previous correction factor studies for the 

NC NMVDP, count data from historic validation studies can be used to develop uncertainty 

measures for all counting periods within a given validation study. NCDOT does not generate 

statistical measures of uncertainty for counting devices on a regular basis as it would require a 

large commitment of resources. 

 

2.6 Bicyclist Injury Risk Analysis 
 

Bicyclist injury risk analysis is another critical research topic that needs to be studied. This 

would enable researchers and relevant agencies to better understand the impact factors 

contributing to high injury risk and consequently help provide a greener and safer cycling 

environment and promote biking in large bicycle-friendly cities. 

 

Many research studies have been conducted to explore  bicyclist injury risk using different 

functions and models from various perspectives. Strauss et al.  are interested in bicyclist activity 

and injury risk, and a conducted a series of studies with multiple modeling approaches and 

different types of data. 

 

In 2013, Strauss et al. (2013) applied a Bayesian modeling approach to analyzing cycling activity 

and bicyclist injury risk at signalized intersections simultaneously. Impact factors contributing to 

both bicyclist injury risk and bicycle volume were identified. This two-equation modeling 

method reveals the potential existence of endogeneity and unobserved heterogeneities and can 

also be applied to find high-risk locations. The data used for this research study includes bicycle 

volume data and motor-vehicle counts collected at 647 signalized intersections by the Montreal 

Department of Transportation, and geometric design, built environment, bicycle facilities, and 

bicyclist injury data offered by the Montreal Department of Public Health. Temporal and weather 

adjustment factors were applied for manual bicycle count normalization in order to calculate 

average annual daily bicycle volumes. Results revealed that higher bicycle volume will lead to 

more bicyclist injuries yet lower bicyclist injury risk. In addition, total crosswalk length and bus 

stops were found to increase the likelihood of bicyclist injuries, while raised medians might have 

the opposite influence. 

 

A research study was conducted by Strauss et al. (2014) to analyze multimodal injury risk 

including motor-vehicle, pedestrian, and bicyclist injury risk and activities for both signalized 

and non-signalized intersections. Like the previous research, a Bayesian modeling approach was 

used for safety and volume analysis simultaneously based on the same dataset, along with the 

injury and volume data collected from 435 more non-signalized intersections. Afterward, the 

Bayesian multivariate Poisson models were calibrated and the explanatory variables contributing 
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to injury frequency were determined. A comparison of injury risk for different modes for both 

intersection types was conducted. Results showed that motor-vehicle traffic is the primary cause 

of all multimodal injuries for both signalized and non-signalized intersections. In addition, 

bicyclists and pedestrians have a much higher injury risk on average compared to motorists at 

signalized intersections. Factors including some geometric design and built environment 

characteristics were found to have a significant impact on injury risk for all three kinds of road 

users. 

 

Furthermore, with the development of crowdsourcing, smartphone GPS data collected from 

numerous applications were used for bicycle volume as well as bicyclist injury risk analysis. 

Strauss et al. (2015) proposed a method to estimate bicycle volume and map ridership and 

bicyclist injury risk in the whole city network in Montreal for both roadway segments and 

intersections based on data collected from Mon RésoVélo smartphone application as well as the 

manual count data. An extrapolation function approach was applied to combine the manual count 

bicycle data with crowdsourced bicycle data for bicycle volume estimation. Then, safety 

performance functions (SPFs) were developed based on the estimated AADB to validate the 

predicted AADB by comparing the parameter coefficients with the previous SPFs using manual 

count data. After calibration, the AADB function can be applied to predict bicycle volume on all 

the road segments and intersections within the  city network. Statistical models were used to 

compute empirical Bayes (EB) for bicyclist injury risk analysis. Injury risk maps can be 

generated to illustrate the distribution of bicyclist injuries. According to the results, more injuries 

and higher injury risk occurred at signalized intersections compared to non-signalized 

intersections. On average, more injuries occurred on segments with cycle tracks, yet the injury 

risk per bicyclist was lower because of the presence of cycle tracks. 

 

Data from Strava can also be used for bicyclist injury risk analysis. According to a research 

study conducted by Wang et al. (2016), bicycle safety performance functions including the 

negative binomial regression model (NBRM), the zero-inflated negative binomial regression 

model, and the Poisson regression model (PRM) were developed based on crowdsourced bicycle 

data. After model estimation, the best model for SPFs was identified using the likelihood ratio 

test and the Vuong non-nested hypothesis test. The comparison results revealed that the negative 

binomial model outperforms the Poisson regression model, and the normal negative binomial 

model performs better than the zero-inflated negative binomial regression model. 

 

Similarly, Saad et al. (2019) estimated safety performance functions for bicyclist injury risk 

analysis at intersections based on the crowdsourced bicycle data collected from the Strava 

application. Strava data were adjusted before being used as the input in safety performance 

functions. Models based on the original Strava data, the Strava data with field observation data 

adjustments, and Strava data with adjusted population were developed and compared. Negative 

binomial models were developed for bicycle crash prediction at intersections. The model 

estimation results demonstrated that the adjusted Strava data with both population and field 

observation perform best in bicyclist injury analysis. In addition, impact factors including signal 

control systems, bicycle lanes, and intersection size, etc. would affect bicyclist injury at 

intersections. 
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Chen (2017) used a data-driven method to build the bicycle safety performance functions for 

both micro and macro scales using Strava smartphone application data, automatic bicycle count 

data, and reported crash data. Poisson model, Negative Binomial (NB) model, Zero-inflated 

Poisson (ZIP) model, and Zero-inflated Negative Binomial (ZINB) model were developed to 

predict intersection crash frequency. A likelihood ratio test was used to identify the explanatory 

variables that affect crash frequency significantly. Similarly, SPFs were developed for corridor 

crash frequency. Crash severity distributions were adopted in the bicycle crash frequency 

prediction models. 

 

Another approach to injury risk factors other than developing SPFs using smartphone 

applications is to collect volunteered geographic information (VGI) from cyclists through 

websites or applications. von Stülpnagel and Krukar (2018) assessed this kind of crowdsourced 

data as well as the authoritative data as indicators for biking risk analysis. Bicyclists were 

recruited to voluntarily participate in laboratory-based virtual reality experiments to estimate 

their risk perception. Participants were divided into two groups for separate cases. The first 

group was made up of experienced and frequent bicyclists who are not familiar with the selected 

test locations. The second group was composed of bicyclists who are both experienced and 

familiar with the test locations. After the experiments were conducted, indicators of biking risk 

were extracted from the VGI. Based on the indicators from both VGI and collected authoritative 

data, biking risk perception was estimated using linear mixed-effect models. The model results 

revealed that the semantic severity described for cycling hazard and the public response to the 

hazard might affect the risk perception significantly. Based on the authoritative data, a Space 

Syntax analysis was conducted which demonstrated bicyclist sensitivity to street size and 

complexity. 

 

Jestico (2016) used crowdsourced bicycle data to conduct research on bicycle ridership and 

cycling safety analysis. Bicyclist safety and injury risk were analyzed based on bicycle volumes 

in certain areas estimated using crowdsourced bicycle data collected from Strava. Manual count 

data at intersections during peak hours were also collected to compare with the crowdsourced 

data with a generalized linear model. Results indicated that traffic speeds, time of year, and on-

street parking might affect the bicycle volume significantly. Based on the estimated bicycle 

volume, bicyclist injury risk was analyzed using Poisson generalized linear model based on the 

incident reports obtained from www.BikeMaps.org.  Results revealed that bicycle and motor-

vehicle volumes and lack of vehicle speed reduction were found to affect incident frequency 

significantly. 

 

Al-Fuqaha et al. (2017) developed a smartphone application called BikeableRoute to analyze risk 

factors using crowdsourced data. BikeableRoute enables bicyclists to report hazards during their 

cycling trips as well as to track their cycling information. The data collected from this 

application included risk reports generated by bicyclists, user evaluation on the biking ability of 

cycling routes, and cycling information such as speed, cycling time, and distance. Based on the 

data from BikeableRoute, risk factors were categorized into three groups: infrastructure-related, 

facility-related, and traffic-related factors. An ordered probit model was developed to analyze the 

perception of narrow bicycle lanes in terms of different ages and skill levels. Results revealed 

that bicyclists’ perceptions of hazards vary across different age groups.  

 

http://www.bikemaps.org/
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Table 2-6 summarizes the research studies conducted based on manual count bicycle data and 

crowdsourced bicycle data from smartphone applications for bicyclist injury risk analysis. 
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Table 2-6 Summary of Research on Bicyclist Injury Risk Analysis 

Year Author Research Objectives Bicycle Data Study Area Methods Variables 

2013 
Strauss et 

al.  

Bicyclist activity and 

injury risk analysis 

Manual bicycle 

counts and 

bicyclist injury 

data 

Montreal, 

Quebec, Canada 

Two-equation 

Bayesian 

modelling 

approach 

(1) Bicyclist injury model: 

Bicycle volume, vehicle right turn and left turn 

flows, bus stops, crosswalk length, raised median; 

(2) Bicycle volume model: 

Employment, schools, metro stations, land use, 

bicycle facility length, three approaches. 

2014 
Strauss et 

al.  

Multimodal injury 

risk analysis 

Manual bicycle 

counts and 

bicyclist injury 

data 

Montreal, 

Quebec, Canada 

Bayesian 

multivariate 

Poisson models 

(1) Bicyclist injury risk at signalized intersection: 

Bicycle volume, vehicle right turn and left turn 

volume, bus stops, crosswalk length, raised median; 

(2) Bicyclist injury risk at non-signalized 

intersection: 

Bicycle volume, vehicle volume, number of lanes. 

2015 
Strauss et 

al.  

Bicyclist activity and 

injury risk analysis 

Manual bicycle 

counts, 

smartphone 

GPS data, and 

bicyclist injury 

data 

Montreal, 

Quebec, Canada 

Extrapolation 

function and 

negative binomial 

SPF model 

(1) AADB: 

Bicycle facilities (cycle path, cycle track, bicycle 

lane, etc.), distance to downtown; 

(2) Injury models for signalized intersections: 

Bicycle volume, bus stops, three approaches; 

(3) Injury models for non-signalized intersections: 

Bicycle volume, arterial or collector, three 

approaches; 

(4) Injury models for segments: 

Bicycle volume, arterial or collector, downtown 

boroughs. 

2016 Jestico 
Ridership trends and 

safety 

Manual bicycle 

counts, Strava 

data, and 

incident reports 

from 

BikeMaps.org 

The Capital 

Regional 

District (CRD), 

British 

Columbia (BC), 

Canada 

Generalized linear 

model with a 

Poisson 

distribution 

(1) Bicycle volume model: 

Strava counts, slope, population density, pavement 

widths, on-street parking, speed limit, bike facilities 

(e.g., painted bike lanes and paved multiuse trails), 

and month.  

(2) Incident model: 

Bicyclist and vehicle volume, speed reduction 

factors. 

2016 
Wang et 

al. 

Bicycle safety 

analysis 

Strava data and 

bicycle crash 

data 

Seattle, 

Washington; 

Portland, 

Oregon 

NBRM, PRM, 

zero-inflated 

negative binomial 

regression model, 

etc. 

AADT & AADB 
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Year Author Research Objectives Bicycle Data Study Area Methods Variables 

2017 
Al-Fuqaha 

et al. 

Non-motorized 

behavior analysis and 

risk factor 

identification 

Crowdsourced 

data from 

BikeableRoute 

Kalamazoo, 

Michigan 

Web survey and 

order probit 

model 

Bicyclist skill level, age, gender, bicycle facility 

(e.g., narrow bicycle lane).  

2017 Chen 
Crash frequency 

prediction 

Strava data, 

automatic 

bicycle count 

data, and 

reported crash 

data 

Portland, 

Oregon and 

Eugene-

Springfield, 

Oregon 

Poisson, NB, ZIP 

and ZINB models 

(1) Crash frequency for intersections: 

Strava counts, AADT, network density, directions, 

bike lane, total lanes, signal, leg number. 

(2) Crash frequency for corridors: 

Signal/mile, median, two-way left turn lane, bus 

route number, on-street parking. 

2018 

von 

Stülpnagel 

and 

Krukar 

Risk perception 

Crowdsourced 

and 

authoritative 

data 

Munich and 

Freiburg, 

Germany  

Linear mixed-

effect models and 

Space Syntax 

analysis 

Semantic severity, number of votes, street size, 

traffic volume, complexity, accident category, 

familiarity. 

2019 Saad et al. 

Bicycle safety 

analysis 

Strava data and 

bicycle crash 

data 

Orange County, 

Florida 

Negative binomial 

models 

TEV1, bicycle exposure, intersection size, signal 

control system, number of legs, bike lane, sidewalk 

width, median width, speed limit. 

1 Total entering volume 
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2.7 Summary 

A comprehensive review and synthesis of the current and historical research studies related to 

different kinds of data collection methods including crowdsourcing, open data, big data, and 

other traditional data collection methods were presented in the first section of this chapter. Then, 

the most prevalent smartphone crowdsourcing applications and their use by relevant research 

studies were summarized. The methods that were applied by researchers to estimate and predict 

bicycle volume were provided and the methods for counting machine validation and correction 

were summarized. Then, existing studies on counting machine validation and correction methods 

were presented.  Finally, bicyclist injury risk analyses conducted based on different types of data 

were discussed. This literature review is intended to provide solid reference and guidance in 

counting machine validation and correction, bicycle volume estimation and prediction, and 

injury risk analysis in future studies. 
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3 DATA DESCRIPTION 

3.1 Introduction 

The first step of this research was to collect crowdsourced bicycle data from the Strava 

application and other relevant supporting data. This chapter gives an overview of the collected 

Strava bicycle data and other essential supporting data for later model development. Data 

comparison was conducted between bicycle count data from permanent continuous count 

stations in the City of Charlotte and the Strava bicycle data collected from the smartphone 

application. 

 

in this chapter, section 3.2 introduces the Strava data in terms of delivery contents, Strava users’ 

demographic information, and cycling trip distribution. Section 3.3 summarizes the supporting 

data collected for model development. Section 3.4 compares the actual bicycle count data and 

Strava data. Finally, Section 3.5 concludes this chapter with a summary. 

3.2 Strava Data 

This study utilizes the crowdsourced data collected from Strava Metro to conduct research on 

bicycle volume estimation and prediction. The City of Charlotte in North Carolina was selected 

as the study area. This data contains the Strava users’ cycling information on each road segment. 

A total of 140,428 cycling trips were recorded from 8,857 cyclists from December 2016 to 

November 2017, accounting for 1.03% of the total population in Charlotte in 2017. 

 

The core data are the primary parts of the delivery provided by Strava Metro, which includes 

three main components: bicycle volume for link level, intersection level, and origin-destination 

matrix. In this project, the link-level data were used for further model development. 

 

To provide options for researchers to leverage this innovative data, Strava also offers roll-up 

datasets. These datasets are the summary of bicycle volumes on each road segment/intersection 

during the time period of delivery. With these aggregated data, researchers can discover bicycle 

volumes for monthly use, weekday/weekend, on-season/off-season, hour groupings, and total 

bicycle counts. In addition, researchers can customize the roll-up datasets flexibly in terms of 

their needs. 

 

In this project, the hour groupings are categorized as follows: 

• Early AM hours: 00:00 to 05:59 (labeled as_0) 

• AM peak hours: 06:00 to 08:59 (labeled as_1) 

• Mid-day hours: 09:00 to 14:59 (labeled as_2) 

• Peak afternoon hours: 15:00 to 17:59 (labeled as_3) 

• Evening hours: 18:00 to 19:59 (labeled as_4) 

• Late evening hours: 20:00 to 23:59 (labeled as_5) 
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 The report file provided by Strava can be used to obtain the Strava users’ demographic 

information. Based on the data in the report, the gender and age summary of Strava users 

recorded during the research period (from December 2016 to November 2017) can be seen in 

Figure 3-1, Figure 3-2, and Figure 3-3. 

 

Figure 3-1 Gender Proportion of Strava Users’ 

 

 

Figure 3-2 Number of Strava Users from Different Age Groups 
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Figure 3-3 Number of Male and Female Strava Users from Different Age Groups 

In addition to the demographic information, a map showing the Strava users’ bicycle ridership 

was generated using ArcGIS with the availability of link-level Strava bicycle volume data. 

Figure 3-4 shows the total bicycle counts on each road segment in the City of Charlotte during 

the research period (from December 2016 to November 2017). 

 

 

Figure 3-4 Total Bicycle Volume Distribution Map 
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Based on the trip purpose information provided by Strava data, 82% of cycling trips are non-

commute trips, and 18% of cycling trips are commute trips. Two distribution maps illustrating 

the locations of commute and non-commute trips can be seen in the following figures. It can be 

seen in Figure 3-5 and Figure 3-6 that a higher number of commute trips occur in the uptown 

area, while a higher number of non-commute trips occur near parks and greenways. 

 

 

Figure 3-5 Total Commute Trips 
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Figure 3-6 Total Non-commute Trips 

3.3 Other Supporting Data 

Other supporting data collected for  bicycle volume estimation and prediction and injury risk 

analysis include bicycle counts from permanent continuous count stations, road characteristics 

(e.g., route class, length of the segment, number of through lanes,  road direction, speed limit), 

demographic characteristics (e.g., total population, the median age in census blocks, household 

income, total families), slope, bicycle facilities (e.g., off-street paths, bike lanes, signed bike 

lanes, suggested bike routes, suggested bike routes with low comfort, and greenway), zoning 

data, bus stops, sidewalk, AADT, and bicyclist involved crash data. 

 

Figure 3-7 shows the locations of the six permanent continuous count stations in the North 

Carolina Non-Motorized Volume Data Program (NC NMVDP) that are in Charlotte and were 

evaluated for the analysis. 
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Figure 3-7 The Locations of the Continuous Count Stations 

The crash data used in this project are  bicyclist-involved crash data collected in the City of 

Charlotte from 2007 to 2017. The data were obtained from the North Carolina Department of 

Transportation. There are 1183 observations contained in the dataset with most of the bicycle-

vehicle crashes (1149) occurring in  urban areas. The distribution of  bicycle-vehicle crashes in 

the City of Charlotte can be seen in Figure 3-8. 
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Figure 3-8 The Distribution of Bicycle-vehicle Crashes in the City of Charlotte 

 Figure 3-9 was generated to give a view of the crash numbers within each census block. 

 

 

Figure 3-9 Number of Bicycle-vehicle Crashes within Census Blocks 
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3.4 Data Comparison 

The difference remains between bicycle count data from the permanent continuous count stations 

and Strava data. Since crowdsourced data usually involves a large number of people, the 

coverage of the road segment that is being studied can be large. On the other hand, installing 

permanent continuous count stations can be costly and the geographic coverage limited since 

bicycle counts are collected at only a sample of locations. In addition, Strava data contains 

bicycle trip time and the trip purpose (commuting or recreation), while bicycle count data from 

permanent continuous count stations cannot collect such information. The bicycle counts from 

the different count stations and Strava user counts at the same locations are compared in Figure 

3-10 which shows that the bicycle counts from count stations are greater than the Strava counts. 

 

Figure 3-10 Comparison of Actual Bicycle Counts and Strava Counts 

3.5 Summary 

This chapter provides an overview of the data collected for this research. The descriptive 

analyses based on the data collected were conducted by creating several distribution maps for 

bicycle volume for different trip purposes. Data comparison between bicycle count data from 

permanent continuous count stations in the City of Charlotte and Strava bicycle data from the 

smartphone application is also provided.  
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4 BICYCLE VOLUME VALIDATION ANALYSIS 

4.1 Introduction 

This chapter introduces the validation and correction factor calculation methodology used in the 

North Carolina Non-Motorized Volume Data Program (NC NMVDP) to assess and adjust 

bicycle and pedestrian count data collected by permanent continuous counters across the state. 

Specifically, section 4.2 discusses the variation due to rounding, while section 4.3 introduces the 

correction factor model validation methodologies. Section 4.4 discusses the results. Finally, 

section 4.5 summarizes this chapter and provides relevant recommendations based on the 

research findings. 

4.2 Variation Due to Rounding 

The research team wanted to know whether significant differences in AADT estimations result 

based on how corrected counts are rounded. The distribution of volumes over the hours of the 

day may impact the magnitude that counts are adjusted using a correction factor. For example, 

suppose a validation study shows that the correction factor as derived from the historical method 

is 1.15. This signifies a 15% undercount error in the counts recorded by a sensor when compared 

with the manual counts. However, the spread of volume over the day impacts the daily volume 

estimate. When the total daily volume is evenly distributed across the hours of the day, rounding 

of the corrected hourly data results in a lower volume estimate than that if the total daily volume 

is concentrated in a single hour or a few hours of the day. In this example, an AADT estimate 

may be 14% different between one methodology and another (see Table 4-1). 

 

Table 4-1 Correction Factor Application Variability Example 

 

Time 

Example 1 Example 1 Example 2 Example 2 

Sensor Data 
Corrected 

Data 
Sensor Data Manual Data 

7:00 3 3 (3.45) 0 0 

8:00 3 3 (3.45) 0 0 

9:00 3 3 (3.45) 0 0 

10:00 3 3 (3.45) 0 0 

11:00 3 3 (3.45) 0 0 

12:00 3 3 (3.45) 0 0 

13:00 3 3 (3.45) 0 0 

14:00 3 3 (3.45) 0 0 

15:00 3 3 (3.45) 0 0 

16:00 3 3 (3.45) 0 0 

17:00 3 3 (3.45) 42 48(48.30) 

18:00 3 3 (3.45) 0 0 

19:00 3 3 (3.45) 0 0 

20:00 3 3 (3.45) 0 0 

Total 42 42 (48.30) 42 48 (48.30) 
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4.3 Correction Factor Model Validation 
 

Three linear regression models were tested during Phase 1 (Pilot) of the NC NMVDP using 

counts from thirteen validation studies. 

 

• Regression Model 1: Corrected Hourly Count = b1(AHC)  

• Regression Model 2: Corrected Hourly Count = b1(AHC) + b2(AHC)2-  

• Regression Model 3: Corrected Hourly Count = b1(AHC) + b2(AHC)2 + b3(AHC)3 

 

Where AHC stands for Automated Hourly Count. Based on the testing results, Model 1 was 

chosen because only minor improvements in model fit were achieved in Models 2 and 3. 

However, linear regression models with a constant term were not tested. 

 

For the current study, linear regression models were tested using count data from the NC 

NMVDP validation studies that were performed between 2014 and 2019. Two linear regression 

models were calculated using raw counts that were aggregated into 15-minute and one-hour 

intervals. The linear regression models were then used to correct raw counts that were 

aggregated into 15-minute, one-hour, and daily intervals. AADT values were estimated from the 

corrected data. The linear regression models were also applied to AADT estimates calculated 

from raw counts (ITRE, 2016). Pearson’s Correlation Coefficient values were calculated for each 

linear regression model. Weighted Average Percent Deviation (WAPD) was also calculated for 

all studies to calculate a reliable estimate of the accuracy of the sensors. WAPD is less sensitive 

to deviations in error due to low volume observations. 

4.3.1 AADT Calculations 

 

Impacts on count data due to rounding were measured by calculating the difference between 

AADT estimates where the correction factor is applied to the AADT value and AADT estimates 

where the correction factor is applied to other levels of temporal aggregation (daily, hourly, and 

15-minute binned data) prior to calculating the AADT value. Methodologies for calculating 

AADT and correction factors are outlined in the next sections. 

 

AASHTO AADT Methodology, no correction factors applied to counts 

 

𝐴𝐴𝐷𝑇 =
1
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∑ [

1

7
∑(

1

𝑛𝑗𝑚
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𝑛𝑗𝑚

𝑖=1

)

7

𝑗=1

]

12

𝑚=1

               Eq. 4-1 

 

where: 

𝑛 = number of days in a year (365 or 366) 

𝑉𝑂𝐿𝑖𝑗𝑚 = daily volume for the 𝑖th occurrence of the 𝑗th day of the week within the 𝑚th 

month 

𝑖 = occurrences of day j in month m for which traffic data are available 

𝑗 = day of week (1 to 7) 

𝑚 = month of year (1 to 12) 
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𝑛𝑗𝑚 = number of occurrences of day 𝑗 in month m for which traffic data are available 

 

Linear Regression, applied to AADT 
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𝑝=1
𝑝

                Eq. 4-2 

 

AADT is rounded to the nearest whole number. 

where: 

𝑠 = number of unique sensors that comprise each screenline modal count 

𝛽1 = linear regression coefficient, unique for each sensor 

𝛽0 = intercept term, unique for each sensor 

𝑑 = number of time intervals in one day  

 𝑑 = 1 for daily volume 

 𝑑 = 24 for hourly volume 

 𝑑 = 96 for fifteen-minute volume 

𝑛 = number of days in a year (365 or 366) 

𝑉𝑂𝐿𝑖𝑗𝑚 = daily volume for the ith occurrence of the jth day of the week within the mth 

month 

𝑖 = occurrences of day j in month m for which traffic data are available 

𝑗 = day of week (1 to 7) 

𝑚 = month of year (1 to 12) 

𝑛𝑗𝑚 = number of occurrences of day j in month m for which traffic data are available 

 

Linear Regression, applied to volume data 
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where: 

𝑠 = number of unique sensors that comprise each screenline modal count 

𝛽1 = linear regression coefficient, unique for each sensor 

𝛽0 = intercept term, unique for each sensor 

𝑉𝑂𝐿𝑘 = time interval volume for the kth occurrence for one day 

𝑑 = number of time intervals in one day  

 𝑑 = 1 for daily volume 

 𝑑 = 24 for hourly volume 

 𝑑 = 96 for fifteen-minute volume 

𝑖 = occurrences of day j in month m for which traffic data are available 

𝑗 = day of week (1 to 7) 

𝑚 = month of year (1 to 12) 
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𝑛𝑗𝑚 = number of occurrences of day j in month m for which traffic data are available 

4.3.2 Correction Factor Methodology 

 

∑ (∑ 𝑉𝑂𝐿𝑚𝑎𝑛𝑢𝑎𝑙)
𝑚
𝑗=1 𝑖

2
𝑖=1

∑ (∑ 𝑉𝑂𝐿𝑒𝑐𝑜)
𝑚
𝑗=1

2
𝑖=1 𝑖

                 Eq. 4-4 

 

where: 

𝑉𝑂𝐿𝑒𝑐𝑜= Total 15-minute volume as recorded by Eco-Counter device 

𝑉𝑂𝐿𝑚𝑎𝑛𝑢𝑎𝑙 = Total 15-minute volume as recorded by staff reviewing video observation 

of equipment installation site 

j = 15-minute observation period 

m = all 15-minute time intervals during daylight hours over the two-day observation 

period, for the “Two-Day Observation” correction factor method; or 

m = first 30 non-zero 15-minute time intervals or all 15-minute time intervals during 

daylight hours over two-day observation period, whichever is less, for “First 30” correction 

factor method 

 

Correction Factor, applied to AADT 
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             Eq. 4-5 

 

where: 

𝐶𝐹𝑃 = Correction factor for the 𝑝th sensor 

𝑠 = number of unique sensors that comprise each screenline modal count 

𝑛 = number of days in a year (365 or 366) 

𝑉𝑂𝐿𝑖𝑗𝑚 = daily volume for the 𝑖th occurrence of the 𝑗th day of the week within the mth 

month 

𝑖 = occurrences of day j in month m for which traffic data are available 

𝑗 = day of week (1 to 7) 

𝑚 = month of year (1 to 12) 

𝑛𝑗𝑚 = number of occurrences of day 𝑗 in month m for which traffic data are available 

 

Correction Factor, applied to volume data. 
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where: 

𝑠 = number of unique sensors that comprise each screenline modal count 
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𝐶𝐹 = correction factor, unique for each sensor 

𝑉𝑂𝐿𝑘 = time interval volume for the kth occurrence for one day 

𝑑 = number of time intervals in one day  

 𝑑 = 1 for daily volume 

 𝑑 = 24 for hourly volume 

 𝑑 = 96 for fifteen-minute volume 

 

Weighted Mean Percentage Error (WMPE) 

 

∑(
𝑉𝑂𝐿𝑒𝑐𝑜 − 𝑉𝑂𝐿𝑚𝑎𝑛𝑢𝑎𝑙

∑ 𝑉𝑂𝐿𝑚𝑎𝑛𝑢𝑎𝑙
𝑛
𝑡=1

) 

𝑛
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              Eq. 4-7 

 

where: 

𝑉𝑂𝐿𝑒𝑐𝑜 = Total 15-minute volume as recorded by Eco-Counter device 

𝑉𝑂𝐿𝑚𝑎𝑛𝑢𝑎𝑙 = Total 15-minute volume as recorded by staff reviewing video observation 

of equipment 

 

Notes on Data Processing: 

• All data were collected using Eco-Counter MULTI systems. Eco-Counter MULTI 

systems include passive infrared sensors to detect pedestrian traffic and inductive 

loops to detect bicycle traffic. 

• Data was flagged using the NM COAST process developed by the ITRE NC 

NMVDP team 

• Only days of data where all sensors were not flagged as invalid by the QA/QC 

process were included in the modal screenline and considered in the AADT 

calculation. 

• Years of data when more than sixty days of data were removed from 

consideration for the AADT calculation due to error flags are not included in this 

analysis. 

• An observation period is considered a “non-zero” observation if the sum of all 

observations as recorded by the Eco-Counter device and all observations made by 

a video review analyst is greater than zero. 

 

4.4 Results and Findings  

4.4.1 Number of Observations Required to Calculate a Consistent Correction Factor 

Comparisons of the differences between the correction factors calculated based on all two-day 

15-minute interval observations and the correction factors calculated based on the first 30 15-

minute interval observations are provided in the figures below. This analysis was performed to 

determine if accurate correction factors could be calculated using fewer observations than current 

practices, which could save analysts time in future validation studies. Figures 4-1 and 4-2 show 

that most validation studies are only within five percentage point differences, yet a significant 

number of studies have larger differences between the two methods (28 bicycle sensor studies 

and 45 pedestrian studies). This shows that less than two days of validation data may be 
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appropriate for most sites, but collecting more than 30 non-zero observations may be necessary 

for certain counting locations to ensure sufficient variability is captured in the validation study. 

Tables 4-2 and 4-3 summarize the validation studies with differences greater than 10% between 

the two correction factor methods. 

 

 
Figure 4-1 Percentage Point Difference Between Bicycle Two Day Correction Factor and 

First 30 Non-Zero Observations Correction Factor 

 

 
Figure 4-2 Percentage Point Difference Between Pedestrian Two Day Correction Factor 

and First 30 Non-Zero Observations Correction Factor 
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Table 4-2 Outlier Studies with > 10 Percentage Point Differences in Correction Factors 

Calculated from First 30 Observations Versus All Two Day Observations 

 

Site Name Mode 

Two Day 

Correction 

Factor 

First 30 Non-Zero 

Observations 

Correction Factor 

Difference 

Two Day Non-Zero 

Time Intervals 

Observed 

Two Day 

Total Users 

Observed 

GSO_ELM_B_E_RD Bike 1.03 1.24 0.21 40 34 

CRY_NHC_B_S_RD Bike 1.45 1.62 0.17 42 84 
CLT_USP_B_P_SU Bike 0.93 1.09 0.16 57 113 

BRV_BGW_B_P_SU Bike 0.99 0.88 -0.11 64 132 

GSO_SPR_B_N_RD Bike 0.89 0.78 -0.11 51 68 
CHL_MLK_B_E_RD Bike 0.75 0.63 -0.13 38 21 

DRH_MAI_B_S_RD Bike 2.51 2.27 -0.24 84 226 

CRB_OLD_B_W_RD Bike 0.80 0.51 -0.29 90 164 
CRY_NHC_B_N_RD Bike 3.43 2.57 -0.86 49 96 

 

Table 4-3 Outlier Studies with >10 Percentage Point Differences in Correction Factors 

Calculated from First 30 Observations Versus All Two Day Observations 

 

Sensor Name Mode 

Two Day 

Correction 

Factor 

First 30 Non-Zero 

Observations 

Correction Factor 

Difference 

Two Day Non-Zero 

Time Intervals 

Observed 

Two Day 

Total Users 

Observed 

BRV_BGW_P_P_SU Pedestrian 0.95 0.80 -0.15 79 261 
CHL_MLK_P_E_SW Pedestrian 1.27 1.15 -0.12 89 320 

CHL_MLK_P_W_SW Pedestrian 1.3 1.43 0.13 67 143 

CLT_BLT_P_P_SU Pedestrian 1.32 0.97 -0.35 109 2782 
CLT_ELZ_P_E_SW Pedestrian 1.12 0.87 -0.25 103 557 

CLT_ELZ_P_W_SW Pedestrian 0.99 0.76 -0.23 99 429 

CLT_ELZ_P_W_SW Pedestrian 1.15 1.25 0.1 75 727 
CLT_TEN_P_E_SW Pedestrian 1.41 1.28 -0.13 85 270 

CRB_LCB_P_P_SU Pedestrian 0.79 0.93 0.14 111 616 

CRY_BCT_P_P_SU Pedestrian 1.18 1.32 0.14 97 237 
DCK_TRL_P_P_SU Pedestrian 1.59 1.45 -0.14 103 2386 

DRH_ATD_P_P_SU Pedestrian 1.19 1.31 0.12 88 402 

DRH_ATD_P_P_SU Pedestrian 0.84 1.13 0.29 99 543 
DRH_ATT_P_P_SU Pedestrian 1.21 1.10 -0.11 106 827 

DRH_MAI_P_N_SW Pedestrian 1.2 1.06 -0.14 103 501 

DRH_MAI_P_S_SW Pedestrian 0.85 0.95 0.1 50 77 
GSO_ELM_P_E_SW Pedestrian 1.35 1.21 -0.14 110 2450 

GSO_ELM_P_W_SW Pedestrian 1.18 1.03 -0.15 118 3947 

SAN_EFG_P_P_SU Pedestrian 0.72 0.98 0.26 86 323 
W-S_STR_P_P_SU Pedestrian 1.08 0.92 -0.16 76 279 

 

4.4.2 Correlation Between Interval Observations and Eco-Visio Counts 

Pearson’s Correlation Coefficients (r) were calculated between the users observed by data 

analysts and the users recorded by Eco-Counters for all 15-minute intervals and hourly intervals. 

The statistical results for pedestrians are presented in Figure 4-3, Figure 4-4, Table 4-4, and 

Table 4-5, while the results for cyclists are presented in Figure 4-5, Figure 4-6, Table 4-6, and 

Table 4-7. This analysis informs whether the observations recorded by the Eco-Counter are well-

correlated with the users observed by data analysts and how under- and over-counting errors can 

be smoothed over an hourly interval. 

 

Thirteen 15-minute time interval validation studies and eight 1-hour time interval validation 

studies had a correlation coefficient less than 0.7. Of these studies, twelve 15-minute time 

interval validation studies and seven 1-hour time interval validation studies had correction 
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factors within the tolerance set by the NC NMVDP. This shows that the effects of counting 

device errors can be smoothed over the two-day validation observation period. 

 

 
Figure 4-3 Pedestrian 15-minute Validation Studies, Linear Regression (Pearson’s 

Correlation Coefficient Values) 

 

 
Figure 4-4 Pedestrian Hourly Validation Studies, Linear Regression (Pearson’s Correlation 

Coefficient Values) 
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Table 4-4 Outlier Studies in Pearson's Correlation Coefficient (r < 0.7) for 

Pedestrian 15-minute Validation Studies 

 

Sensor Name 
Time Intervals 

Observed 

Total Users 

Observed 

Correction 

Factor 
a(lin) b(lin) r 

GSO_WAL_P_S_SW 127 1224 2.10 1.43 3.05 0.69 

BRV_BGW_P_P_SU 95 261 0.95 0.68 0.79 0.67 

SAN_EFG_P_P_SU 112 323 0.72 0.41 1.23 0.64 
DRH_MAI_P_S_SW 108 77 0.85 0.40 0.38 0.60 

CLT_ELZ_P_W_SW 104 429 0.99 0.61 1.59 0.60 

DRH_ATD_P_P_SU 104 543 0.84 0.40 2.74 0.54 
CHL_MLK_P_E_SW 99 320 1.27 0.60 1.71 0.51 

CLT_4EX_P_S_SW 92 78 1.03 0.39 0.53 0.50 

CLT_TEN_P_W_SW 108 23 1.05 0.45 0.12 0.50 
CLT_ELZ_P_E_SW 104 557 1.12 0.50 2.96 0.41 

CLT_STN_P_S_SW 92 95 1.17 0.47 0.62 0.40 

CRY_BCT_P_P_SU 114 237 1.18 0.33 1.50 0.25 
CLT_NTR_P_S_SW 103 219 0.97 0.13 1.83 0.14 

 

Table 4-5 Outlier Studies in Pearson's Correlation Coefficient (r < 0.7) for Pedestrian 

Hourly Validation Studies 

 

Sensor Name 
Time Intervals 

Observed 

Total Users 

Observed 

Correction 

Factor 
a(lin) b(lin) r 

CHL_MLK_P_E_SW 25 320 1.27 0.92 3.52 0.70 

CLT_TEN_P_W_SW 27 23 1.05 0.72 0.27 0.70 
GSO_WAL_P_S_SW 32 1224 2.10 1.69 7.33 0.70 

SAN_EFG_P_P_SU 28 323 0.72 0.36 5.76 0.67 

CLT_STN_P_S_SW 23 95 1.17 0.75 1.50 0.61 
DRH_ATD_P_P_SU 26 543 0.84 0.25 14.76 0.35 

CLT_4EX_P_S_SW 24 78 1.03 0.26 2.41 0.26 

CLT_NTR_P_S_SW 26 219 0.97 0.07 7.82 0.07 
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Figure 4-5 Bicycle 15-minute Validation Studies, Linear Regression (Pearson’s Correlation 

Coefficient Values) 

 

 
Figure 4-6 Bicycle Hourly Validation Studies, Linear Regression (Pearson’s Correlation 

Coefficient Values) 
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Table 4-6 Outlier Studies in Pearson's Correlation Coefficient (r < 0.7) for Bicycle 15-

minute Validation Studies 

 

Sensor Name 
Time Intervals 

Observed 

Total Users 

Observed 

Correction 

Factor 
a(lin) b(lin) r 

APX_SAL_B_W_RD 112 32 1.23 0.04 1.07 0.69 

CRY_NHC_B_S_RD 120 84 1.45 0.19 1.06 0.68 

DVD_MAI_B_W_RD 112 41 1.28 0.11 0.89 0.63 
BRV_BGW_B_P_SU 95 120 1.03 0.54 0.59 0.61 

W-S_4TH_B_S_RD 127 57 1.06 0.17 0.66 0.59 

CLT_TEN_B_E_RD 112 17 0.41 0.04 0.32 0.55 
CLT_TEN_B_E_SW 112 17 0.41 0.04 0.32 0.55 

CLT_TEN_B_E_RD 114 33 3.30 0.20 1.06 0.55 

CRY_NHC_B_N_RD 120 96 3.43 0.50 1.27 0.53 
GSO_WAL_B_N_RD 91 8 0.67 0.04 0.40 0.52 

APX_SAL_B_E_RD 112 10 1.25 0.05 0.58 0.47 

CLT_STN_B_N_SW 104 47 0.66 0.21 0.35 0.41 
DRH_COR_B_S_RD 112 27 3.86 0.19 0.88 0.41 

DVD_MAI_B_E_RD 112 36 0.97 0.14 0.54 0.41 

GSO_ELM_B_E_RD 100 34 1.03 0.20 0.44 0.40 
W-S_4TH_B_N_RD 127 70 0.36 0.29 0.17 0.39 

CLT_STN_B_S_RD 92 3 0.75 0.02 0.24 0.39 

CLT_4EX_B_S_RD 80 36 3.00 0.33 0.82 0.31 
DVD_GRF_B_S_RD 97 5 1.67 0.04 0.29 0.23 

CLT_4EX_B_N_RD 92 24 12.00 0.23 1.27 0.20 
DVD_MAI_B_E_RD 104 11 5.50 0.10 0.40 0.18 

CHL_MLK_B_E_RD 99 21 0.75 0.18 0.13 0.14 

W-S_POL_B_N_RD 148 72 0.13 0.48 0.03 0.13 
CHL_MLK_B_W_RD 99 12 0.38 0.11 0.03 0.06 

CRY_BCT_B_P_SU 114 138 1.05 1.16 0.04 0.04 

DRH_COR_B_N_RD 112 25 1.92 0.21 0.07 0.04 
CLT_STN_B_N_RD 104 15 0.60 0.14 0.01 0.02 

 

Table 4-7 Outlier Studies in Pearson's Correlation Coefficient (r < 0.7) for Bicycle Hourly 

Validation Studies 

 

Sensor Name 
Time Intervals 

Observed 

Total Users 

Observed 

Correction 

Factor 
a(lin) b(lin) r 

DRH_MAI_B_N_RD 28 89 1.47 3.26 0.85 0.68 

CRY_NHC_B_N_RD 30 49 3.43 1.68 1.63 0.68 

W-S_4TH_B_S_RD 32 57 1.06 0.36 0.84 0.63 
DVD_GRF_B_S_RD 28 13 1.27 0.16 0.86 0.62 

APX_SAL_B_E_RD 28 12 1.25 0.10 0.90 0.61 

CLT_TEN_B_E_RD 28 30 0.41 0.11 0.34 0.61 
CLT_TEN_B_E_SW 28 30 0.41 0.11 0.34 0.61 

GSO_WAL_B_N_RD 23 14 0.67 0.09 0.50 0.61 
DVD_MAI_B_W_RD 26 20 0.95 0.32 0.51 0.60 

GSO_ELM_B_E_RD 26 40 1.03 0.57 0.58 0.60 

RAL_RBT_B_P_SU 28 58 0.94 0.93 0.56 0.57 
CLT_STN_B_N_SW 26 55 0.66 0.69 0.41 0.54 

W-S_4TH_B_N_RD 32 83 0.36 0.77 0.23 0.53 

CLT_TEN_B_E_RD 30 21 3.30 0.71 1.16 0.52 
DVD_MAI_B_E_RD 28 35 0.97 0.49 0.60 0.46 

DVD_MAI_B_E_RD 26 12 5.50 0.33 1.17 0.45 

DVD_GRF_B_S_RD 26 7 1.67 0.13 0.54 0.36 
CLT_STN_B_S_RD 23 4 0.75 0.10 0.20 0.34 

CHL_MLK_B_W_RD 25 34 0.38 0.30 0.14 0.25 

W-S_POL_B_N_RD 28 97 0.15 2.10 0.03 0.16 
DRH_COR_B_S_RD 28 18 3.86 0.85 0.46 0.15 

CLT_4EX_B_N_RD 24 12 12.00 0.91 1.09 0.12 

CLT_STN_B_N_RD 26 29 0.60 0.49 0.09 0.11 
CLT_4EX_B_S_RD 20 18 3.00 1.59 0.34 0.08 

CHL_MLK_B_E_RD 25 38 0.75 0.78 0.06 0.06 

DRH_COR_B_N_RD 28 24 1.92 0.97 -0.17 -0.12 
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4.4.3 Rounding Error Due to Correction Factor Application 

Correction factors calculated using the two-day validation studies were applied to volume totals 

at 15-minute time intervals, hourly time intervals, and daily time intervals and then compared to 

the yearly corrected AADT value. This analysis was performed to determine the effect of 

rounding a corrected count on the overall summary statistics of a counting site. Only years of 

data where the following criteria were met were included in the analysis: 

1. All sensors were well-functioning for at least 300 days in the year. 

2. All sensors had the same correction factor during the duration of the year; no 

maintenance requiring an additional validation study was required of any sensor. 

The results indicate that the effects of rounding increased as the time interval that the correction 

factor was applied to decreased; rounding had no impact on the AADT values when correction 

factors were applied at the daily levels and had a greater effect on the AADT calculations when 

applied to 15-minute intervals. Bicycle sensors were also more heavily impacted by changes in 

AADT values due to rounding than pedestrian sensors since bicycle volume patterns are more 

likely to be lower more consistently throughout the day. The impacts of rounding are also more 

pronounced for lower volume sites than higher volume sites. Low volume bicycle site AADT 

calculations with correction factors applied to the 15-minute time interval were 2% to 12% 

different than the corrected AADT value. Medium volume pedestrian sites AADT calculations 

with the correction factors applied to the 15-minute time interval were between 2% to 7%. This 

analysis shows that rounding errors due to correction factor application can have a significant 

impact on AADT estimates due to the lower volume nature of bicycle and pedestrian counting 

sites. 

 

The following tables show the AADT values of the uncorrected and corrected datasets as well as 

the percent difference between the uncorrected (baseline) AADT value and the AADT values 

produced by the corrected datasets when correction factors are applied at the daily, hourly, and 

15-minute time intervals (Day, Hour, 15Min). The charts summarize the difference in percentage 

points between yearly AADT figures developed by datasets with correction factors applied at the 

daily level and datasets with correction factors applied at hourly and 15-minute levels (Equations 

4-8 and 4-9). 

 

𝐷𝑖𝑓𝑓𝐻𝑜𝑢𝑟𝑙𝑦 = 
(𝐴𝐴𝐷𝑇𝐷𝑎𝑖𝑙𝑦 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐷𝑎𝑡𝑎 − 𝐴𝐴𝐷𝑇𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝐴𝐴𝐷𝑇𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

− 
(𝐴𝐴𝐷𝑇𝐻𝑜𝑢𝑟𝑙𝑦 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐷𝑎𝑡𝑎 − 𝐴𝐴𝐷𝑇𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝐴𝐴𝐷𝑇𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 

Eq. 4-8 
 

𝐷𝑖𝑓𝑓𝐻𝑜𝑢𝑟𝑙𝑦 =  
(𝐴𝐴𝐷𝑇𝐷𝑎𝑖𝑙𝑦 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐷𝑎𝑡𝑎 − 𝐴𝐴𝐷𝑇𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝐴𝐴𝐷𝑇𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

− 
(𝐴𝐴𝐷𝑇15−𝑀𝑖𝑛𝑢𝑡𝑒 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐷𝑎𝑡𝑎 − 𝐴𝐴𝐷𝑇𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝐴𝐴𝐷𝑇𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 

Eq. 4-9 

 

These equations measure the impact that applying correction factors at different aggregation 

levels of volume data have on final AADT calculations. Results for individual years at individual 

stations are also summarized in the following figures and tables. Processes with higher 
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incidences of years when the magnitude of difference in AADT values between methodologies is 

greater than +/- 5% indicate processes that are more sensitive to impacts of applying correction 

factors to different aggregation levels. 
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Figure 4-7 Difference in AADT Values when Correction Factor Applied to 15-minute 

Pedestrian Data 

 

 
Figure 4-8 Difference in AADT Values when Correction Factor Applied to Hourly 

Pedestrian Data 
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Table 4-8 Difference between AADT Values when Correction Factor is Applied to Daily 

Totals, Hourly Totals, and 15-Minute Totals; Medium Volume Pedestrian Sites (AADT < 

500) 

 

Station n Year 
Uncorrected 

AADT 

Day 

AADT 

Percent 

Difference 

Hour 

AADT 

Percent 

Difference 

15-Min 

AADT 

Percent 

Difference 

CLT_4EX 324 2017 132 144 9% 141 7% 135 2% 

CRB_OLD 361 2016 63 67 6% 65 3% 63 0% 
CLT_SWN 312 2017 251 280 12% 279 11% 266 6% 

CRB_OLD 365 2015 67 71 6% 70 4% 68 1% 

GSO_LDG 321 2015 173 200 16% 199 15% 193 12% 
GSO_LDG 333 2017 174 202 16% 201 16% 195 12% 

GSO_LDG 326 2016 191 221 16% 220 15% 214 12% 

CLT_USP 364 2019 201 241 20% 241 20% 235 17% 
DRH_ATT 353 2016 277 344 24% 343 24% 337 22% 

CLT_USP 364 2018 226 271 20% 271 20% 266 18% 

DRH_ATT 361 2017 287 355 24% 354 23% 349 22% 

WLK_YDK 365 2017 193 220 14% 220 14% 217 12% 

W-S_END 359 2015 256 336 31% 335 31% 333 30% 

W-S_END 323 2018 268 347 29% 345 29% 344 28% 
CLT_ELZ 323 2017 473 502 6% 503 6% 497 5% 

W-S_END 349 2017 266 353 33% 352 32% 351 32% 

W-S_END 334 2016 291 387 33% 386 33% 385 32% 
CRB_LCB 366 2016 466 368 -21% 368 -21% 372 -20% 

CRB_LCB 365 2015 454 359 -21% 360 -21% 363 -20% 

CRB_LCB 321 2017 440 347 -21% 348 -21% 351 -20% 

 

Table 4-9 Difference between AADT Values when Correction Factor is Applied to Daily 

Totals, Hourly Totals, and 15-Minute Totals; High Volume Pedestrian Sites (AADT > 500) 

 

Station n Year 
Uncorrected 

AADT 

Day 

AADT  

Percent 

Difference 

Hour 

AADT 

Percent 

Difference 

15-Min 

AADT 

Percent 

Difference 

CHL_MLK 363 2015 642 691 8% 690 7% 675 5% 

CHL_MLK 320 2016 640 689 8% 688 8% 674 5% 

GSO_SPR 365 2019 778 806 4% 804 3% 792 2% 
GSO_SPR 365 2018 787 815 4% 813 3% 801 2% 

GSO_SPR 357 2015 808 837 4% 835 3% 823 2% 

GSO_SPR 366 2016 831 862 4% 860 3% 848 2% 
GSO_SPR 365 2017 856 887 4% 885 3% 873 2% 

GSO_WAL 359 2015 850 968 14% 968 14% 963 13% 

DVD_MAI 360 2019 1736 2081 20% 2078 20% 2073 19% 
GSO_ELM 363 2015 2603 3251 25% 3251 25% 3242 25% 

DVD_MAI 353 2018 1636 1962 20% 1959 20% 1957 20% 

W-S_4TH 364 2015 3436 4284 25% 4285 25% 4276 24% 
GSO_WAL 360 2017 991 1124 13% 1124 13% 1122 13% 

GSO_WAL 352 2016 1035 1174 13% 1175 14% 1173 13% 
W-S_4TH 362 2017 3268 4079 25% 4079 25% 4078 25% 

GSO_ELM 366 2016 2552 3202 25% 3203 26% 3202 25% 

W-S_4TH 365 2016 3422 4269 25% 4270 25% 4269 25% 
W-S_4TH 358 2018 3027 3765 24% 3766 24% 3765 24% 

CLT_NTR 305 2017 674 646 -4% 649 -4% 665 -1% 
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Figure 4-9 Difference in AADT Values When Correction Factor Applied to 15-minute 

Bicycle Data 

 

 
Figure 4-10 Difference in AADT Values when Correction Factor Applied to Hourly Bicycle 

Data 

 

 

 

 



NCDOT RP 2020-43 Final Report    

 
The University of North Carolina at Charlotte Page 57 

Table 4-10 Difference between AADT Values when Correction Factor is Applied to Daily 

Totals, Hourly Totals, and 15-Minute Totals; Low Volume Bicycle Sites (AADT < 50) 

 

Station n Year 
Uncorrected 

AADT 

Day 

AADT 

Percent 

Difference 

Hour 

AADT 

Percent 

Difference 

15-Min 

AADT 

Percent 

Difference 

CLT_SWN 338 2017 43 50 16% 48 12% 46 7% 

CLT_USP 358 2018 41 38 -7% 40 -2% 41 0% 
CLT_USP 362 2019 47 44 -6% 46 -2% 47 0% 

GSO_LDG 304 2018 49 48 -2% 49 0% 49 0% 

GSO_WAL 365 2015 35 43 23% 41 17% 38 9% 
GSO_WAL 364 2016 33 40 21% 38 15% 36 9% 

WLK_YDK 360 2017 32 33 3% 32 0% 32 0% 

W-S_4TH 365 2018 50 58 16% 55 10% 52 4% 
W-S_END 364 2015 35 29 -17% 31 -11% 33 -6% 

W-S_END 366 2016 30 25 -17% 27 -10% 28 -7% 

W-S_END 365 2017 28 23 -18% 26 -7% 27 -4% 
W-S_END 349 2018 26 22 -15% 24 -8% 25 -4% 

 

Table 4-11 Difference between AADT Values when Correction Factor is Applied to Daily 

Totals, Hourly Totals, and 15-Minute Totals; Medium Volume Bicycle Sites (50 < AADT < 

250) 

 

Station n Year 
Uncorrected 

AADT 

Day 

AADT 

Percent 

Difference  

Hour 

AADT 

Percent 

Difference 

15-Min 

AADT 

Percent 

Difference 

CHL_MLK 361 2015 118 98 -17% 102 -14% 108 -8% 

CHL_MLK 364 2016 123 101 -18% 105 -15% 112 -9% 
CRB_OLD 365 2015 172 163 -5% 163 -5% 168 -2% 

CRB_OLD 366 2016 104 100 -4% 100 -4% 102 -2% 

CRB_OLD 365 2017 73 71 -3% 71 -3% 73 0% 
CRB_OLD 364 2018 61 59 -3% 60 -2% 61 0% 

DRH_ATT 351 2016 243 250 3% 249 2% 245 1% 

GSO_ELM 348 2015 74 80 8% 78 5% 75 1% 

GSO_ELM 348 2016 71 77 8% 75 6% 72 1% 

GSO_LDG 349 2015 62 62 0% 62 0% 62 0% 

GSO_LDG 363 2016 56 56 0% 56 0% 56 0% 
GSO_LDG 361 2017 56 55 -2% 56 0% 56 0% 

GSO_SPR 329 2015 110 113 3% 114 4% 111 1% 

GSO_SPR 364 2017 102 105 3% 106 4% 103 1% 
GSO_SPR 365 2018 82 85 4% 85 4% 83 1% 

GSO_SPR 365 2019 74 77 4% 77 4% 75 1% 

W-S_4TH 365 2018 50 58 16% 55 10% 52 4% 
W-S_4TH 363 2019 51 60 18% 56 10% 52 2% 

 

Table 4-12 Difference between AADT Values when Correction Factor is Applied to Daily 

Totals, Hourly Totals, and 15-Minute Totals; High Volume Bicycle Sites (500 < AADT) 

 

Station n Year 
Uncorrected 

AADT 

Day 

AADT 

Percent 

Difference 

Hour 

AADT 

Percent 

Difference 

15-Min 

AADT 

Percent 

Difference 

CRB_LCB 365 2015 539 571 6% 570 6% 565 5% 
CRB_LCB 366 2016 539 571 6% 571 6% 566 5% 

CRB_LCB 325 2017 559 593 6% 592 6% 588 5% 
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4.4.4 Weighted Average Percentage Deviation 

The Weighted Average Percentage Deviation (WAPD) is a measure of accuracy that accounts 

for the low-volume bias in the observations and is considered a more reliable statistic than the 

average percent error (Ryus et al., 2014). The WAPD for each validation study was calculated. 

Summary statistics for bicycle and pedestrian studies are displayed in Table 4-13. The results 

show that the mean WAPD for pedestrian sensors was about 9% while the mean WAPD for 

bicycle sensors was about -5%. However, the standard deviation for bicycle sensors was much 

higher than pedestrian sensors. These results show that the weighted mean percent error is not 

consistent between sensors installed in the field and the individual validation studies are still a 

valuable resource for determining if the accuracy and precision of a counting system is within 

the programs’ tolerance. 

 

Table 4-13 Weighted Average Percentage Deviation 

 

Pedestrian WAPD   
Mean 0.09 

Standard Error 0.02 

Median 0.10 

Standard Deviation 0.16 

Sample Variance 0.03 

Range 1.36 

Minimum -0.83 

Maximum 0.52 

Count (Validation Studies) 104 

Bicycle WAPD   
Mean -0.05 

Standard Error 0.06 

Median 0.04 

Standard Deviation 0.71 

Sample Variance 0.50 

Range 6.81 

Minimum -5.81 

Maximum 1.00 

Count 121 

 
Correlation - Pedestrian Studies 

   WAPD 

Total Users Observed 0.2000 

Correlation - Bicycle Studies 

  WAPD 

Total Users Observed 0.0009 
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4.4.5 Sensor Performance Over Time 

Sensor performance over time may deteriorate, which would cause the need to re-validate 

counting systems to determine if performance accuracy and precision are within acceptable 

ranges. Additional validation studies were performed on systems to determine if sensor 

performance deteriorated over time. Counting systems tested were required to have components 

that were all the same age and installed at the same time. Unfortunately, due to sensor 

maintenance needs, very few counting systems met these criteria. Results of the revalidation 

studies are summarized in Table 4-14. While these studies show that the correction factor 

calculated can change depending on when the study was performed, there were too few counting 

systems that met the criteria needed to make reliable conclusions on the counters' performance 

due to sensor aging. Other factors that may impact the correction factor calculated could be the 

number of user observations over the different validation studies and changes in user behavior, 

such as more groups of people passing the sensor causing higher occlusion rates. Further 

investigation into counting device performance over time will require analysis of other devices, 

likely in other regions of the country. 

 

Table 4-14 Correction Factor Changes in Aging Systems 

 

Sensor ID 
Original 

Validation 

Revalidation 

Start 

Age of 

System 

(Years) 

Original 

Correction 

Factor 

Revalidation 

Correction 

Factor 

Difference 

GSO_SPR_P_S_SW 11/11/2014 8/22/2020 6 1.02 1.02 0 

GSO_SPR_B_S_RD 11/11/2014 8/22/2020 6 1.16 0.98 -0.18 

GSO_SPR_P_N_SW 11/11/2014 8/22/2020 6 1.05 1.12 0.07 
GSO_SPR_B_N_RD 11/11/2014 8/22/2020 6 0.92 0.99 0.07 

RAL_HAR_P_N_SW 4/30/2019 8/21/2020 1 1.21 1.13 -0.08 

RAL_HAR_B_N_RD 4/30/2019 8/21/2020 1 1.09 0.94 -0.15 

RAL_NRG_P_P_SU 6/7/2018 8/21/2020 2 1.17 1.07 -0.1 

RAL_NRG_B_P_SU 6/7/2018 8/21/2020 2 0.98 1.07 0.09 

 

4.5 Summary 
 

This analysis shows that bicycle and pedestrian count data is affected by rounding errors due to 

the application of correction factors at shorter time intervals. The effect of this error is magnified 

at lower volume bicycle counting sites and when correction factors are applied to hourly data or 

15-minute data. The research team recommends mitigating this source of error by reporting raw 

hourly or 15-minute count data and then separately reporting correction factors calculated from 

validation studies. Aggregated figures, such as average volumes by the hour or AADT, are more 

representative of ground truth counts when correction factors are applied to aggregated figures as 

opposed to raw data. 

 

Correlation coefficients among validation studies showed that Eco-Counter data could be poorly 

correlated (r < 0.7) while the correction factor was in the acceptable tolerance (between 0.6 and 

1.4). The research team recommends calculating the correlation of validation data as well as 

error and determining a tolerance range for correlation. 

 

Validation studies can likely be optimized by reviewing data based on the number of users 

observed and time intervals where a user is observed, or where the Eco-Counter detects a user as 
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opposed to collecting two complete days of manual counts. Reviewing 30-time intervals when 

users were observed resulted in correction factors that were within five percentage points of 

correction factors calculated from two complete days of data. However, a significant number of 

validation studies resulted in correction factors with differences greater than five percentage 

points between the two correction factor calculation methodologies, which shows that more than 

30 non-zero intervals are likely needed to create accurate correction factors for more counting 

systems. 

 

Counter performance over time could not be adequately determined given the availability of 

systems with original components. The validation studies performed showed that the 

performance as represented by the correction factor did not change for some counting systems, 

overcounted more often for other counting systems, and undercounted more often for other 

counting systems. To determine if the results of this validation effort are due to counting system 

age, more systems with components that have not been replaced need to be revalidated. 

 

Comparison of WAPD values among available validation studies shows that the average error of 

systems is consistent with previous research (undercounting by 9% for pedestrian data and 

overcounting by -5% for bicycle data), but that the variability between studies was high. Higher 

errors also had no correlation between total users observed, so it is still difficult to predict which 

counting sites are more prone to higher rates of error. This analysis shows that validation studies 

of individual counting systems are still valuable for determining the individual system 

performance and account for that performance in reported counting figures.  
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5 BICYCLE VOLUME ESTIMATION AND PREDICTION 

5.1 Introduction 

This chapter provides a method to combine all the collected data for the development of the 

bicycle volume models utilizing ArcGIS and SAS. After the data processing procedure, two 

bicycle volume models were developed to quantify the relationship between bicycle count data 

from permanent continuous count stations and Strava bicycle data as well as other relevant 

variables. Model results were analyzed and bicycle volume on most of the road segments in the 

City of Charlotte was calculated based on the model estimation results. In addition, a map 

illustrating the bicycle ridership in the City of Charlotte was created. 

 

The following sections are organized as follows. Section 5.2 introduces the methods of data 

processing with ArcGIS and SAS. Section 5.3 presents the bicycle volume models and the model 

estimation results. Section 5.4 provides the bicycle volume predictions for most of the roadway 

segments in the City of Charlotte and creates a map to give an overall view of the bicycle 

ridership in the City of Charlotte. Finally, Section 5.5 concludes this chapter with a summary. 

5.2 Data Processing 

Before bicycle volume modeling, all the data collected including bicycle volume data from both 

Strava Metro and permanent continuous count stations, and other supporting data were compiled 

together for the preparation of bicycle volume estimation and prediction. To be specific, three 

steps were conducted using ArcGIS and SAS. 

 

Step 1: 

 

This step was to combine the bicycle volume data collected from Strava and permanent 

continuous count stations with the same date and time period. In these two datasets, information 

including bicycle counts on the specific road segment, and the cycling date and time period is 

provided. Therefore, to have a temporal relationship between these two datasets, time period 

variables are created to join the cycling information using SAS. Then bicycle counts were 

summed up by each location, date, and time period. Finally, the two datasets were combined 

with the temporal relationship. The detailed data processing procedure can be seen in the 

following figure. 
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Figure 5-1 First Step of the Data Processing Procedure in SAS 

Step 2: 

 

This step was to combine the Strava shapefile data with the other supporting data to build spatial 

relationship between the datasets. First, a point layer that mapped the locations of the permanent 

continuous count stations was created. Second, all the datasets were joined together by spatial 

join in ArcGIS. Finally, all the spatial information was compiled in Data 4 as shown in the 

following figure. 

 

 

Figure 5-2 Second Step of the Data Processing Procedure in ArcGIS 
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Step 3: 

 

This step was to generate the final data for model development. Basically, this step combined the 

final data obtained from the previous two steps to create both temporal and spatial relationships 

between the datasets. In addition, dummy variables including weekdays and time periods were 

added to the final dataset. The detailed data processing procedure for this step is shown in the 

following figure. 

 

Figure 5-3 Third Step of the Data Processing Procedure in SAS 

5.3 Bicycle Volume Regression Models 

5.3.1 Simple Linear Regression Model 

Based on the compiled data, a simple linear regression model was developed with the bicycle 

volume data collected from the permanent continuous count stations being the dependent 

variable, and the Strava bicycle counts being the independent variable. To conduct the model 

estimation process, SAS 9.4 was used. The model estimation results can be seen in Table 5-1. 

Table 5-1 Simple Linear Regression Model Estimation Results 

Variable Label Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| 

Intercept Intercept 5.72062 0.30014 19.06 <.0001 

StravaCounts Strava 4.45564 0.12772 34.89 <.0001 

R-Square 0.3354 Adj R-Square 0.3353 

 

Results revealed that total bicycle counts are about 4.46 times as high as the Strava counts on the 

same road segment. However, this model only shows a basic relationship between the two types 

of data, which can provide an approximate value of the actual bicycle counts on a specific road 

segment with the availability of Strava bicycle counts. In addition, the values of R square 

(0.3354) and adjusted R square (0.3353) are low. That probably means that one cannot simply 

estimate the bicycle counts from permanent continuous count stations only based on the 

available Strava data because the actual bicycle volume could be determined by many other 

factors that are not accounted for in this simple linear regression model. To estimate the bicycle 

volume on each road segment considering other relevant variables, a multiple linear regression 

model was developed. 
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5.3.2 Multiple Linear Regression Model 

To examine the association between the bicycle volume collected from permanent continuous 

count stations and other relevant variables including Strava bicycle counts, road characteristics, 

geometry, sociodemographic data, zoning data, temporal data, AADT and bicycle facilities, a 

multiple linear regression model was formulated, and the variables considered in this model 

based on the literature review are presented in Table 5-2. All of the variables in Table 5-2 are 

included in the multiple linear regression model to identify the variables that have a significant 

impact on bicycle count.   

 

Bicycle Count =  f (N, G, S, Z, T, B, C)               Eq. 5-1 

 

where:      

N = Road characteristics data which include speed limit, road segment length and number 

of through lanes. 

G = Slope. 

S = Sociodemographic data which include total population, median household income 

and median age. 

Z = Zoning data including residential, business and mixed use. 

T = Temporal data including different time periods and weekday. 

B = Bicycle facility data including off-street paths, bike lanes, signed bike lanes, 

suggested bike routes, suggested bike routes with low comfort, and greenways. 

V = Annual average daily traffic. 

C = Strava bicycle count.  
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Table 5-2 Variable Description 

Variable Type Variable Label Description 

Road Characteristics Speed Limit The posted speed limit on a roadway 

segment. 

Segment length The length of the segment in miles. 

Through lane The number of through lanes. 

Geometry Slope  The slope of a road segment at 

intersection.  

Sociodemographic 

characteristics 

TOTPOP_CY Total population in each census block. 

MEDAGE_CY The median age in each census block. 

MEDHINC_CY Median household income in each census 

block. 

Zoning Residential Charlotte zoning with residential land use. 

Business Charlotte zoning with business land use. 

Mixed use Charlotte zoning with mixed use land use. 

Temporal Variables Hour_0 If cycling time is during 00:00-05:59, then 

Hour_0 = 1. 

Hour_1 If cycling time is during 06:00-08:59, then 

Hour_1 = 1. 

Hour_2 If cycling time is during 09:00-14:59, then 

Hour_2 = 1. 

Hour_3 If cycling time is during 15:00-17:59, then 

Hour_3 = 1. 

Hour_4 If cycling time is during 18:00-19:59, then 

Hour_4 = 1. 

Hour_5 If cycling time is during 20:00-23:59, then 

Hour_5 = 1. 

Weekday  If bike on a weekday, then weekday = 1. 

Bicycle facilities Off_Street_Paths Off street paths. 

Bike_Lanes Bike lanes. 

Signed_bike_lanes Signed bike lanes. 

Suggested_bike_routes Suggested bike routes. 

Suggested_bike_routes_lowcomfort Suggested bike routes with low comfort. 

Greenway Greenway. 

AADT AADT Annual average daily traffic. 

Strava data StravaCounts Strava user count on a road segment. 

 

The multiple linear regression model estimation process  conducted in SAS 9.4, and the results 

are presented in Table 5-3. 
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Table 5-3 Multiple Linear Regression Model Estimation Results 

Variable Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 0.28556 0.87176 0.33 0.7432 

Hour_1 4.38905 0.77344 5.67 <.0001 

Hour_2 7.62742 0.73108 10.43 <.0001 

Hour_3 12.39803 0.74970 16.54 <.0001 

Hour_4 12.87091 0.79261 16.24 <.0001 

Hour_5 7.01667 0.87302 8.04 <.0001 

Weekday -5.50749 0.33801 -16.29 <.0001 

StravaCounts 3.87088 0.10425 37.13 <.0001 

Bike_Lanes -5.07751 0.46008 -11.04 <.0001 

Off_Street_Paths 11.77539 0.47767 24.65 <.0001 

R-Square 0.6345 Adj R-Square 0.6340 

 

Based on the model estimation results shown in Table 5-3, variables including five time periods 

from 6:00 am to midnight, weekday, Strava bicycle counts, the presence of a bike lane, and off-

street path are highly associated with the bicycle volume data collected from permanent 

continuous count stations. The detailed analysis of the relationship between each explanatory 

variable and the actual bicycle counts is discussed below. 

 

Time periods except 00:00 to 06:00 am have a positive impact on the actual bicycle volume on a 

specific road segment. This result indicates that the cycling activities of the bicyclists in the City 

of Charlotte start early in the morning and end late at night. Based on the negative impact of the 

weekday variable, it can be interpreted that bicycle volume during weekdays is lower compared 

to weekends, which is associated with the fact that bicyclists in the City of Charlotte prefer to 

bike on weekends. This result is probably related to the high proportion of recreational trips 

generated by Strava users. In addition, bicyclists may need to work during weekdays, which 

gives them less time for cycling compared with weekends. Therefore, weekdays show a negative 

impact on the bicycle counts on a specific road segment.  

 

Bicycle facilities are critical impact factors on bicycle counts. From the model estimation results, 

bike lanes and off-street paths have different impacts on the actual bicycle volume. To be 

specific, off-street paths have a positive impact, while bike lanes have a negative impact. It can 

be inferred that bicyclists in the City of Charlotte prefer to bike on off-street paths compared 

with other bicycle facilities. In addition, bike lanes are always shared with other lanes, which 

may provide a negative impact on the actual bicycle volume on the specific road segment. The 

values of R square (0.6345) and adjusted R square (0.6340) of this multiple linear regression 

model are higher than those of the simple linear regression model, which indicates that this 

model is better than the previous one. 

5.3.3 Bicycle Volume Prediction 

 

Based on the model estimation results in the multiple linear regression model, a bicycle volume 

prediction on all the road segments in the network of Charlotte with the availability of Strava 

data and bike facility data can be calculated using the following equation: 
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𝑉 = 𝛽0 + 𝛽𝑘𝑋𝑘              Eq. 5-2 

where:       

V = Predicted bicycle volume on each road segment. 

 𝛽0 = Constant term of the bicycle volume model. 

𝛽𝑘 = Estimated coefficient associated with kth attribute based on the multiple linear    

          regression model. 

 𝑋𝑘 = Attributes that have significant impacts on bicycle volume based on the multiple  

          linear regression model.  

 

To obtain the annual average daily bicycle (AADB) prediction, the predicted bicycle volumes on 

each road segment calculated using the equation above are rolled up for the whole year, which 

provides the aggregated whole year bicycle volume (VT) on each road segment in the City of 

Charlotte. 

 

Therefore, the AADB prediction can be calculated using the following equation: 

 

AADB = VT /365             Eq. 5-3 
 

Based on the AADB prediction, a map illustrating the predicted AADB on most of the road 

segments in the City of Charlotte is presented in the following figure. The predicted AADB are 

categorized into five levels, ranging from 0 to156 counts. The red lines represent the top level of 

AADB, which is 86.03 – 156.04, while the dark green lines represent the bottom level of AADB, 

which is 0 – 5.5. This map can  potentially be helpful for  strategic planning of bicycle facility 

management. 
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Figure 5-4 AADB Prediction in the City of Charlotte 

Table 5-4 AADT Distribution in the City of Charlotte 

Categories 
AADB 

0-5.6 5.6-19.2 19.2-43.5 43.5-86.0 86.0-156.0 

Percentages 86.14% 9.35% 3.57% 0.81% 0.13% 

5.4 Summary 

This chapter provides a method to combine all the collected data for the development of the 

bicycle volume models utilizing the ArcGIS and SAS. After the data processing, two bicycle 

volume models were developed to quantify the relationship between actual bicycle count data 

and Strava bicycle data as well as other relevant variables. Model results were analyzed and 

predicted bicycle volume on most of the road segments in the City of Charlotte were calculated 

using the developed estimation model. In addition, a map illustrating the bicycle ridership in the 

City of Charlotte was also created. The cycling activities may vary for different cities/locations, 

which limits the transferability of the developed model to another place. However, if the efforts 

to conduct localized modeling is not possible due to budget or resource limitations, the model 
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can work as a good rule-of-thumb to provide estimates, and in that sense, can be generally 

applied to other locations as long as the data in Table 5-3 are gathered.    



NCDOT RP 2020-43 Final Report    

 
The University of North Carolina at Charlotte Page 70 

6 BICYCLIST INJURY RISK ANALYSIS 

6.1 Introduction 
 

This chapter develops a series of safety performance functions to analyze bicyclist injury risk.  

Section 6.2 provides the data preparation procedure for the later bicyclist injury risk analysis. 

Section 6.3 through Section 6.6 present the methodology for analyzing the impact of cycling 

safety including the Poisson model, the NB model, the ZIP model, and the ZINBmodel. Section 

6.7 compares the model estimation results using the goodness of fit and summarizes the model 

results with the different impacts of various explanatory variables. Section 6.8 concludes this 

chapter with a summary. 

6.2 Data Preparation 
 

The data preparation procedure is similar to the data processing procedure presented in the 

previous two chapters. This process was conducted mainly using ArcGIS. The primary function 

used in ArcGIS was spatial join that helps researchers join multiple layers by the same location 

with different spatial and relevant information. Based on the literature review and the data 

availability, the following information including bicycle volume, bicycle-vehicle crashes, road 

characteristics, sidewalk information, bicycle facilities, bus stops, and AADT was collected for 

the model development of safety performance functions. The detailed data description and 

sources are presented in Table 6-1. 

Table 6-1 Data Description and Sources 

Data Description Sources 

Strava Bicycle volume data (December 2016 to November 2017) 

including bicycle counts on each road segment in the City 

of Charlotte and the Charlotte road network shapefile 

Strava Metro 

Bike Crashes Bicycle-vehicle crashes occurred in the City of Charlotte 

from 2007 to 2017 

NCDOT 

Road 

Characteristics 

North Carolina road characteristics NCDOT 

Sidewalks The sidewalk information in the City of Charlotte Charlotte Open 

Data Portal 

PBIN Bicycle facilities in North Carolina NCDOT 

AADT Annual average daily traffic information in North 

Carolina 

NCDOT 

 

To obtain the final combined dataset including the information mentioned above, all the data 

were imported into ArcGIS and spatial join was used to identify the spatial relationships between 

each dataset. To be specific, the Strava road segment shapefile created based on the 
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OpenStreetMap was used as the base of all the spatial joins/table joins. First, layers including 

road characteristics, AADT, sidewalks, bus stops, and bicycle facilities were joined spatially to 

the base layer (Strava road segment shapefile). Second, Strava data including the bicycle volume 

on each segment and all the spatial joined layers were compiled together with the same road 

segment ID to obtain the combined road shapefile. Finally, each bicycle-vehicle crash was 

assigned to its closest road segment and the bicycle crash counts on each road segment were 

rolled up to generate the final complete data for the development of safety performance 

functions. The data preparation procedure can be seen in Figure 6-1. 
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Figure 6-1 Data Preparation Procedure 
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Before using the combined data,  it was imported into SAS to remove the observations with 

missing values and convert variables into dummy variables. The detailed explanatory variables 

considered in the following safety performance functions and their descriptions are presented in 

Table 6-2. 

Table 6-2 Explanatory Variables 

Variable Description 

Volume Variables  

AADB Annual average daily bicycle counts on each road segment 

AADT Annual average daily traffic collected from AADT count stations 

Road Characteristics 

Oneway If the road segment is one way, then oneway = 1, dummy variable 

MPLength The length of the segment in miles. 

Functional Classification1 Interstate, dummy variable 

Functional Classification2 Principal Arterial, dummy variable 

Functional Classification3 Minor Arterial, dummy variable 

Functional Classification4 Major Collector, dummy variable 

Functional Classification5 Minor Collector, dummy variable 

Median The presence of a median, dummy variable 

MedianWidth The width of the median 

SpeedLimit The posted speed limit on a roadway segment  

Sidewalk The presence of a sidewalk, dummy variable 

SidewalkWidth The width of the sidewalk 

Bus_Stop The presence of a bus stop 

Bicycle Facilities 

Bike_Lane The presence of a bike lane, dummy variable 

Paved_Shoulder The presence of a paved shoulder, dummy variable 

 

6.3 Poisson Model 

The Poisson regression model is known as one of the most prevalent models for estimating count 

data. Many researchers have applied this method to numerous studies regarding transportation 

count data. In this case, bicycle-vehicle crash counts were studied. Thus, the Poisson regression 

model is applied as a safety performance function to analyze bicyclist injury risk. This Poisson 

regression model has an assumption, which is the mean equals  its variance, which can be 

expressed in the following equation: 
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𝑉𝐴𝑅[𝑦𝑖] = 𝐸[𝑦𝑖]           Eq. 6-1 

 

where VAR denotes the variance; yi indicates that segment i has y number of crashes  in the 

studied time period; and E represents the expected mean. The number of y crashes follows a 

Poisson distribution with a condition mean and the characteristics of an individual are related to 

the number of crashes. The expected value of y and the association with the considered 

explanatory variables are shown in the following equation: 

 

𝜇𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖)           Eq. 6-2 

 

where EXP means the exponential; 𝛽 denotes the estimated coefficient corresponding to the 

independent variable 𝑋𝑖; 𝜇𝑖 is the expected value of the dependent variable representing the total 

number of bicycle-vehicle crashes that happened at a specific segment. 

 

The probability of  segment i experiencing bicycle-vehicle crashes during the  research period is 

shown as the following equation: 

 

𝑃(𝑦𝑖) =
𝐸𝑋𝑃(−𝜇𝑖)𝜇𝑖

𝑦𝑖

𝑦𝑖!
          Eq. 6-3 

 

where 𝑃(𝑦𝑖) represents the probability of 𝑦𝑖 crashes occurred on a segment i; 𝜇𝑖 denotes the 

Poisson parameter for the specific segment, which equals to 𝐸[𝑦𝑖]. 
 

6.4 Negative Binomial Model 

Although Poisson regression is a prevalent method for modeling transportation count data, it has 

the assumption mentioned  above  that the mean equals  the variance. This assumption may bring 

bias to the model estimation results. In addition, bicycle crash count data are usually over-

dispersed based on the previous research studies, which shows a higher variance than the sample 

mean. Hence, the NB model was developed to address the over-dispersed issue. The following 

equation shows the relationship between the dependent and independent variables: 

 

𝜇𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖 + 𝜀𝑖)                Eq. 6-4 

  
where 𝜀 denotes the random error term that represents the unobserved attributes neglected in the 

NB model. It is assumed that the error term has no correlation with X. 𝐸𝑋𝑃(𝜀𝑖) means a 

disturbance term that follows Gamma distribution, where mean equals to 1 and variance equals 

to 𝛼. With this distinctive term, the variance is not restricted to be the same as the value of the 

mean. This can be expressed in the following equation: 

 

𝑉𝐴𝑅[𝑦𝑖] = 𝐸[𝑦𝑖][1 + 𝛼𝐸[𝑦𝑖]] = 𝐸[𝑦𝑖] + 𝛼𝐸[𝑦𝑖]
2                Eq. 6-5 

 

As is seen in the above equation, it can be interpreted that if the overdispersion parameter 𝛼 

equals  0, the variance will be the same as the value of the mean. The probability function of the 

NB model is shown by the following equation: 
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𝑃(𝑦𝑖|𝑋𝑖) =
Γ (𝑦𝑖 +

1
𝛼)

𝑦𝑖! Γ (
1
𝛼)

(

1
𝛼

1
𝛼 + 𝜇𝑖

)

1
𝛼

(
𝜇𝑖

1
𝛼 + 𝜇𝑖

)

𝑦𝑖

              Eq. 6-6 

  

where Γ represents the gamma distribution function. 

6.5 Zero-inflated Poisson Model 

One of the critical phenomena that cannot be neglected is that the number of observations with 

zero crashes during a certain study period can be an issue to the model estimation. It can be 

found that zero crashes may have occurred on numerous roadway segments. This problem is 

common since many road segments have no crash record.  

 

To solve the zero-state issue, the Zero-inflated Negative Binomial model and the Zero-inflated 

Poisson model were developed based on the zero model from the method of modeling with zero. 

These two models separate the model estimation process into two splitting means for zero counts 

and non-zero counts, respectively.  

 

It is assumed in the Zero-inflated Poisson model that the crashes 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) that 

occurred on road segments are independent and the probability functions for zero count and non-

zero count are shown in the following equations: 

 

𝑦𝑖 = 0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖 + (1 − 𝑝𝑖) exp(−𝑢𝑖)           Eq. 6-7 

  

𝑦𝑖 = 𝑦 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
(1 − 𝑝𝑖) exp(−𝑢𝑖) 𝑢𝑖

𝑦

𝑦!
             Eq. 6-8  

 

where 𝑝𝑖 is the probability of experiencing a zero observation, 𝑦𝑖 is the number of crashes that 

occurred on a specific road segment during the research period, where 𝑢𝑖 = exp (𝛽𝑋𝑖). The 

variance is shown in the following equation: 

 

 𝑉𝐴𝑅[𝑦𝑖|𝑋𝑖, 𝑍𝑖] = 𝑢𝑖(1 − 𝑝𝑖)(1 + 𝑢𝑖𝑝𝑖)                Eq. 6-9 

6.6 Zero-inflated Negative Binomial Model 

Similar to the ZIP model, the ZINB model also splits the underlying data generating process into 

two regimes. It is an extension of the Negative Binomial model, which solves the zero-state 

problem. 

 

The ZINB model is presented in the following equations: 

 

𝑦𝑖 = 0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖 + (1 − 𝑝𝑖) (

1
𝛼

1
𝛼 + 𝑢𝑖

)

1
𝛼

             Eq. 6-10 
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𝑦𝑖 = 𝑦 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝𝑖)

[
 
 
 
 Γ (𝑦𝑖 +

1
𝛼)

𝑦𝑖! Γ (
1
𝛼)

(

1
𝛼

1
𝛼 + 𝑢𝑖

)

1
𝛼

(
𝑢𝑖

1
𝛼 + 𝑢𝑖

)

𝑦𝑖

]
 
 
 
 

        Eq. 6-11 

 

where the disturbance term following Gamma distribution has the mean of 1 and the variance of 

𝛼. The variance of the Zero-inflated Negative Binomial model is shown as follows: 

 

𝑉𝐴𝑅[𝑦𝑖|𝑋𝑖, 𝑍𝑖] = 𝑢𝑖(1 − 𝑝𝑖)(1 + 𝑢𝑖(𝑝𝑖 + 𝛼))                               Eq. 6-12 

 

6.7 Model Result Analysis 

To analyze the bicyclist injury risk on road segments and explore the impact factors on the 

bicycle-vehicle crash counts in the City of Charlotte, several safety performance functions 

including the Poisson model, the Negative Binomial model, the Zero-inflated Poisson model, and 

the Zero-inflated Negative Binomial model have been developed. Explanatory variables 

(presented in Table 6-2) are carefully selected for model estimation based on the literature 

review and data availability. 

 

All the explanatory variables presented in Table 6-2 were first included in the safety performance 

functions to analyze the probability of certain crash counts. The maximum likelihood estimation 

method was applied to estimate the model parameters. SAS 9.4 was used to conduct the model 

estimation procedure. To keep the variables that have significant impacts on the crash counts on 

the roadway segments, the backward selection method was used in the model estimation 

procedure. The final model results for the four safety performance functions with significant 

variables only are presented in the following tables. 

Table 6-3 Poisson Model Estimation Results 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept -3.4211 0.0502 -3.5195 -3.3227 4643.27 <.0001 

AADB 0.0002 0.0000 0.0002 0.0002 65.91 <.0001 

Interstate -0.4781 0.2473 -0.9627 0.0066 3.74 0.0532 

Principal_Arterial 0.6010 0.1034 0.3984 0.8036 33.80 <.0001 

Minor_Arterial 0.5042 0.1046 0.2992 0.7092 23.24 <.0001 

Major_Collector 0.4612 0.1159 0.2340 0.6884 15.83 <.0001 

Minor_Collector 0.5449 0.3055 -0.0538 1.1437 3.18 0.0745 

Bus_Stop 1.2603 0.0787 1.1061 1.4146 256.41 <.0001 
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Analysis of Maximum Likelihood Parameter Estimates 

Parameter Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Wald Chi-

Square 

Pr > ChiSq 

Bike_Lane 0.6181 0.1103 0.4020 0.8342 31.43 <.0001 

Table 6-4 Negative Binomial Model Estimation Results 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept -3.4578 0.0551 -3.5658 -3.3499 3944.33 <.0001 

AADB 0.0002 0.0000 0.0002 0.0003 48.85 <.0001 

Interstate -0.4791 0.2580 -0.9847 0.0265 3.45 0.0633 

Principal_Arterial 0.6338 0.1192 0.4001 0.8675 28.25 <.0001 

Minor_Arterial 0.5029 0.1209 0.2659 0.7399 17.30 <.0001 

Major_Collector 0.5144 0.1352 0.2494 0.7794 14.48 0.0001 

Minor_Collector 0.6838 0.3469 0.0039 1.3638 3.89 0.0487 

Bus_Stop 1.3159 0.0937 1.1322 1.4996 197.08 <.0001 

Bike_Lane 0.6653 0.1355 0.3998 0.9309 24.11 <.0001 

 

Table 6-5 Zero-inflated Poisson Model Estimation Results 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept -2.0783 0.1007 -2.2756 -1.8810 426.12 <.0001 

Interstate -0.5033 0.2543 -1.0017 -0.0049 3.92 0.0478 

Principal_Arterial 0.5817 0.1143 0.3577 0.8057 25.90 <.0001 

Minor_Arterial 0.4544 0.1154 0.2283 0.6806 15.51 <.0001 

Major_Collector 0.4507 0.1288 0.1984 0.7031 12.26 0.0005 

Minor_Collector 0.6943 0.3548 -0.0011 1.3896 3.83 0.0504 

Bus_Stop 1.2172 0.0904 1.0400 1.3945 181.22 <.0001 

Bike_Lane 0.6704 0.1256 0.4242 0.9166 28.49 <.0001 

Analysis of Maximum Likelihood Zero Inflation Parameter Estimates 
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Analysis of Maximum Likelihood Parameter Estimates 

Parameter Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Wald Chi-

Square 

Pr > ChiSq 

Parameter Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept 1.0395 0.1190 0.8064 1.2726 76.37 <.0001 

AADB -0.0004 0.0001 -0.0005 -0.0002 19.64 <.0001 

 

Table 6-6 Zero-inflated Negative Binomial Model Estimation Results 

Parameter Estimates 

Parameter Estimate Standard 

Error 

t Value Approx 

Pr > |t| 

Intercept -2.957305 0.063632 -46.48 <.0001 

Interstate -0.472699 0.259744 -1.82 0.0688 

Principal_Arterial 0.537115 0.118766 4.52 <.0001 

Minor_Arterial 0.318137 0.118765 2.68 0.0074 

Major_Collector 0.402069 0.130228 3.09 0.0020 

Bus_Stop 1.111739 0.092795 11.98 <.0001 

Bike_Lane 0.659989 0.128543 5.13 <.0001 

Inf_Intercept 0.704238 0.169307 4.16 <.0001 

Inf_AADB -0.113304 0.029687 -3.82 0.0001 

 

To compare the four safety performance functions, the indicators for model comparison are 

adopted. Indicators used for  model comparison include -2Log-likelihood, the Akaike’s 

information criterion (AIC), and the Bayesian information criterion (BIC). 

 

The values of AIC and BIC are calculated with the following equations: 

 

                                                                        AIC = 2p – 2LL   Eq. 6-13 

 

BIC = pln(Q) – 2LL                                       Eq. 6-14 

 

where p represents the number of parameters in the model, Q is the number of observations and 

LL denotes the log-likelihood value of the model. 
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Therefore, the indicators for each model (including the Poisson model, the Negative Binomial 

model, the Zero-inflated Poisson model, and the Zero-inflated Negative Binomial model) are 

presented in Table 6-7. 
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Table 6-7 Indicators for Model Comparison 

Model No. of Obs (Q) No. of Vars. (p) -2LogL AIC BIC 

Poisson Model 15664 9 6312 6329 6398 

NB Model 15664 10 6156 6176 6252 

ZIP Model 15664 10 6188 6208 6285 

ZINB Model 15664 10 6090 6110 6186 

 

Smaller values of the indicators represent better fitness. Comparing the four models with the 

values of -2LogL, AIC, and BIC, the ZINB model outperforms the other three safety 

performance functions. This model comparison result is not hard to infer, since the estimation 

procedure of the ZINB model is a splitting data modeling process that considers the zero-state 

issue. The crash data used in this research study contains many road segments with zero crashes, 

which may lead to biases when developing traditional Poisson models or Negative Binomial 

models. Therefore, it is confirmed that ZINB is the best fit for this bicyclist injury risk analysis. 

 

Summarizing the model estimation results presented in Table 6-3, Table 6-4, Table 6-5, and 

Table 6-6, variables that have significant impact on bicyclist injury risk include annual average 

daily bicycle counts, interstate roads, principal arterials, minor arterials, major collectors, minor 

collectors, the presence of bus stops, and the presence of bicycle lanes. These are identified and 

will be interpreted in detail. The explanation of the impact of significant variables on bicyclist 

injury risk is provided below. 

 

1. Volume variables: 

 

As expected, the annual average daily bicycle counts have a significant impact on the crashes 

that occurred on a road segment. The number of bicycle counts on a road segment has a positive 

impact on  bicyclist injury risk. In other words, if the road segment has more bicycle counts, the 

probability of higher injury risk on this road segment is greater. In the Zero-inflated Poisson 

model and the Zero-inflated Negative Binomial model, the annual average daily bicycle counts 

are included in the zero-inflation parameter estimation. In this process, the effect of the AADB is 

different from that of the Poisson model and the Negative Binominal model. It can be interpreted 

that the higher the bicycle count on a road segment, the lower the probability of obtaining zero 

bicycle-vehicle crashes. 

 

2. Road characteristics: 

 

Interstate roads, principal arterials, minor arterials, major collectors, and minor collectors all 

have significant impact on bicyclist injury risk. The functional classification of a road segment is 

the major impact on bicycle-vehicle crash counts. Interstate roads have a negative impact on 

bicyclist injury risk, while principal arterials, minor arterials, major collectors, and minor 

collectors affect cycling safety positively. This result indicates that the likelihood of crash counts 



NCDOT RP 2020-43 Final Report    

 
The University of North Carolina at Charlotte Page 81 

on principal arterials, minor arterials, major collectors, and minor collectors is higher, while the 

probability of crashes occurring on interstate roads is lower. State law prohibits bicyclists from 

traveling on interstate roads, which may explain the lower probability of cyclist crashes on 

interstate roads.  

 

In addition, the presence of bus stops on a road segment has a positive impact on bicyclist injury 

risk, which indicates that the presence of bus stops may increase the probability of more bicycle-

vehicle crashes. One can imagine that if a bus stop is located on a road segment, the conflict 

between bicyclists and buses may increase the likelihood of a bicycle-vehicle crash. 

 

3. Bicycle facilities: 

 

The presence of a bike lane on a road segment affects bicyclist injury risk significantly. 

Interestingly, it is likely to increase the probability of crashes, which might be different from the 

expectation. This result may be related to the bicycle facility condition and the higher likelihood 

of more cycling activities on bike lanes. 

6.8 Summary 

This chapter develops several safety performance functions including the Poisson model, the 

Negative Binomial model, the Zero-inflated Poisson model, and the Zero-inflated Negative 

Binomial model to analyze bicyclist injury risk. Model comparison was conducted to select the 

best model structure for this research study. The results show that the ZINB model has the best 

performance and therefore it is recommended for use. Factors that have a significant impact on 

the number of bicycle-vehicle crashes that occurred on road segments in the City of Charlotte 

were identified and interpreted. The transferability of the developed injury risk model is similar 

to the bicycle volume prediction models. The same ZINB may be used but the significant 

variable and their corresponding coefficients may vary for other locations with the availability of 

localized data. However, if the local data is not available, then the model can work as a good 

rule-of-thumb to provide   estimates, and in that sense, can be generalized and transferred to 

other locations.    
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7 SUMMARY AND CONCLUSION 

Cycling has gained more attention from citizens and planners recently since it can provide 

benefits not only for society but also for the environment. By promoting cycling, especially for 

short-distance trips, Charlotte has been making every effort to become a bike-friendly city. As an 

ideal travel mode, cycling can improve public health, reduce energy consumption, and alleviate 

air pollution. 

 

To increase the mode share of cycling, research studies are needed to explore the methods for 

estimating and predicting bicycle volume on a road segment in a city network and bicyclist 

injury risk. One of the most critical issues that needs to be considered is the data collection 

method. Traditional data collection methods including travel surveys and data from permanent 

continuous count stations can be time-consuming and expensive. Novel crowdsourced data can 

address the issues brought by traditional data collection methods and provide temporal and 

spatial information on cycling to bridge the data gap. 

 

The primary objectives of this project are to validate the bicycle counts collected from counting 

machines, to determine the correction factors, to estimate and predict the bicycle volume on each 

road segment, and to conduct a cycling safety analysis. Based on the crowdsourced data 

collected from Strava, the descriptive analyses were conducted in terms of the demographic 

information on Strava users, cycling activities for different trip purposes, and the total cyclist 

count on each road segment in the City of Charlotte. 

 

Crowdsourced bicycle data from the Strava smartphone application were combined with a series 

of other relevant data including NC road characteristics data, demographic data, slope data, 

annual average daily traffic, bicycle count data from permanent continuous count stations in the 

City of Charlotte, temporal data, the presence of a bus stop, bicycle facility data, etc. Data 

comparison was conducted to demonstrate the differences between actual bicycle count data and 

Strava bicycle count data. Data processing and combination procedures were completed using 

ArcGIS and SAS. 

 

Based on the combined data, two linear regression models were developed. The relationship 

between actual bicycle count data collected by permanent continuous counters and Strava data as 

well as other relevant data was analyzed. To estimate the bicycle volume based on the linear 

regression model results, total bicycle counts are about 4.46 times as high as the Strava counts on 

the same road segment. However, this only shows a basic relationship between the actual bicycle 

count data and the crowdsourced bicycle data from Strava. The actual bicycle count data could 

be determined by many other factors that are not accounted for in the simple linear regression 

model. To be specific, variables including five time periods from 6:00 am to midnight, weekday, 

Strava bicycle counts, the presence of a bike lane, and off-street paths were found to be highly 

associated with  bicycle volume on each road segment.  

 

Comparing the values of R square and adjusted R square, the multiple linear regression model 

has higher values, which indicates better model performance than the simple linear regression 

model. According to the multiple linear regression model estimation results, it is more likely to 

have higher bicycle volume on weekends during the daytime. In terms of bicycle facilities, off-
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street paths are the preferred ones in the City of Charlotte. Bicycle volume on most of the road 

segments in the City of Charlotte can be predicted using the developed multiple linear regression 

model. A bicycle ridership map was created to have a graphical view of the bicycle volume for 

the whole city network. 

 

This research project also investigated the validation and correction factor calculation 

methodology used for bicycle and pedestrian count data collected by permanent continuous 

counters in the North Carolina Non-Motorized Volume Data Program (NC NMVDP). The 

analysis shows that bicycle and pedestrian count data is affected by rounding errors due to the 

application of correction factors at shorter time intervals, especially at lower volume bicycle 

counting sites and when correction factors are applied to hourly data or 15-minute data. 

Comparison of WAPD values among available validation studies shows that the average error of 

systems is consistent with previous research. 

 

In addition, several safety performance functions were developed to analyze bicyclist injury risk 

on road segments in the City of Charlotte. Models including the Poisson model, the NB model, 

the ZIP model, and the ZINB model were compared to identify the best fit for this cycling safety 

analysis. ZINB was  outperformed the other three models. Variables including AADB, principal 

arterials, minor arterials, major collectors, minor collectors, and the presence of bus stops and a 

bike lane on a road segment all have a positive impact on bicyclist injury risk, while interstate 

roads have a negative impact on the number of bicycle-vehicle crashes on a road segment. 

 

According to the bicycle volume estimation model results, the bicyclist injury risk analysis 

obtained, and conclusions made in this project, some policy-related recommendations are 

provided: 

• Based on the modeling results which indicate that bicyclists prefer off-street paths, 

planners can design more off-street paths to offer better bike environments in the City of 

Charlotte. 

• To promote biking to work, the locations of the off-street paths need to be constructed in 

the uptown area. There is much traffic in Charlotte’s uptown area, and the bicycle volume 

is higher there compared to other locations, especially during peak hours. 

• According to the modeling results, the predicted bicycle volume on road segments in the 

vicinity of parks and greenways in the City of Charlotte is greater than the predicted 

bicycle volume on other road segments. In the Strava data, it was found that greenways 

and parks attract considerable non-commuter bicycle trips. To encourage recreational 

bicycle trips, the bicycle facilities in parks or greenway areas should be improved.  

• It is important to identify the right of way on a roadway segment with bus stops. It is 

recommended that the city construct separated bike facilities for bicyclists to avoid 

crashes.  

• If the above policy-related recommendations are followed, better bike environments and 

cycling safety can be provided for the citizens of Charlotte to improve their quality of life 

and to mitigate traffic congestion to some extent.  
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