

Erol Ozan, Ph.D.

Associate Professor East Carolina University Department of Technology Systems

Using Computer Vision Technology to Create Smart Work Zones

Work Zone Crashes in NC

January 1, 2008 – July 31,2018

Number of		Average (per
Accidents	Severity	year)
	B (NON-INCAPACITATING	
2973	INJURY)	281
325	A (INCAPACITATING INJURY)	31
200	K (FATAL)	19

K-Level : fatal (deaths that occur within twelve months of the crash)
A-Level: incapacitating injury (injuries serious enough to prevent normal activity for at least one day such as massive loss of blood, broken bones, etc.)
B-Level: non-incapacitating injury (non-K or A injuries that are evident at the scene such as bruises, swelling, limping, etc.)

Work Zone Crashes in NC

DESCRIPTION	%
REAR END, SLOW OR STOP	32.9
FIXED OBJECT	12.6
ANGLE	9.1
OVERTURN/ROLLOVER	5.5
PEDESTRIAN	5.2
SIDESWIPE, SAME DIRECTION	4.9
LEFT TURN, SAME ROADWAY	4
RAN OFF ROAD - RIGHT	4
HEAD ON	3.1
MOVABLE OBJECT	2.4
SIDESWIPE, OPPOSITE DIRECTION	2.4
RAN OFF ROAD - LEFT	2.4
OTHER NON-COLLISION	2
OTHER COLLISION WITH VEHICLE	1.1
PARKED MOTOR VEHICLE	1

Two focus areas emerge – Queue detection and alerts – Work zone intrusion detection and alerts

January 1, 2008 – July 31,2018

Year	Number of WZ Intrusion Fatalities in NC	Number of Fatal Accidents Involving Worker Fatality
2011	1	0
2012	2	1
2013	1	1
2014	4	1
2015	2	2
2016	2	1
2017	0	0
2018 (Jan - July)	1	0

Worker Safety

Road construction is one of the most dangerous occupations in the United States.

Road Workers are 6 times more likely to be injured or killed on the job compared to other professions.

Work activity type involved in WZ crashes

Type of Work	%
Construction work area	79.5
Intermittent/moving Work	3.4
Maintenance work area	12.6
No	1.1

Work Zone Intrusion Detection

- Commonly reported issues with existing products:
 - difficulties in deployment,
 - high false alert rates,
 - cost (\$1,200 \$6,000),
- Computer vision based approaches may address some of the issues
 - Easier to setup
 - Promising AI based object detection technology
 - Becoming more cost effective
 - Flexible implementation
 - Suitable for both long-term construction and short-term maintenance project deployments or moving work

ECU Proof-of-concept WZ Intrusion System Position the camera Work zone intrusion detection Work zone area wireless local area network Select the polygon area to Alert systems monitor When intrusion embedded in detected, the safety vests system alerts workers ECU

Selection of Polygons

TensorFlow Lite: lightweight solution for mobile and embedded devices. Capability run on Android, iOS and various embedded systems (Raspberry Pi and Edge TPUs). TensorFlow.js: Enables deploying models in JavaScript environments (e.g. in a web browser or server-side with Node.js). Supports defining models in JavaScript. Training directly in the web browser is possible.

 $\sum U_{i}$

In-situ Transfer Learning to Boost Detection Accuracy

Data gathered in the field

New Improved Model

Transfer Learning on location

Al Based Solutions Becoming More Cost-effective

- Low-cost hardware becoming available
- Model training time/required computing power can be reduced via transfer learning
- Open source object detection models
- AI development becoming easier (new TensorFlow release)

Conclusions/Thoughts

- Pragmatic short term solutions have potential to provide considerable safety improvements in WZ
- AI based computer vision solutions have potential for short term deployment
- Focusing on a pragmatic set of areas has potential to provide short/mid term benefits. Possible focus areas:
 - Queue detection
 - WZ intrusion detection
 - Methods to provide early warnings to large trucks
 - Push notification server to disseminate alerts

Questions? Comments?

Erol Ozan (ozang@ecu.edu)

Quadrant Roadway Intersection Guidebook

an NCDOT Research & Innovation Summit Presentation

May 7, 2019

Project Background

r US Department of Trave ederal Histway Ad

6300 Georgetown McLoan VA 22101Pederal Highw

Federal Highw Administratior

DI

Objective

Today's transpo resources avail meet the mobi tion. At many tinues to wor bicyclists expe ened exposur and travel de often lead to problems th 100 complex conventional section desig property Consequently, engineers are ering various vative treatm they seek as to these nenhlems.

The corres report. Alt Intersections anges: Inforr Report (ANR) HRT-09-060), four intersecti igns and two ange design offer substant

antages over tional at-grade sections and separated di

Federal Highway Administration

QUADRANT ROADWAY **INTERSECTION Informational Guide**

May 2019

Quadrant Roadway Guide Outline

- Chapter 1 Introduction
- Chapter 2 Policy and Planning
- Chapter 3 Multimodal Considerations
- Chapter 4 Safety
- Chapter 5 Operational Characteristics
- Chapter 6 Operational Analysis
- Chapter 7 Geometric Design
- Chapter 8 Signals, Signing & Marking
- Chapter 9 Construction and Maintenance

QR Intersection Overview

- Requires roadway in one intersection quadrant
- Preferable intersection spacing +/-500 ft
- Signal control at main and secondary T-intersections
- Only thru/right movements at main intersection
- All left turns made using quadrant roadway (various turn patterns)

QR Intersection Overview

- Requires roadway in one intersection quadrant
- Preferable intersection spacing +/-500 ft
- Signal control at main and secondary T-intersections
- Only thru/right movements at main intersection
- All left turns made using quadrant roadway (various turn patterns)

Applications: U.S. QR Intersections

Full, Partial and Hybrid QR's constructed (or under construction) in the U.S.

Applications: SR 4 / SR 4 Bypass, Fairfield OH

U.S. Department of Transportation Federal Highway Administration

Applications: US-21 at NC-73, Huntersville NC

U.S. Department of Transportation Federal Highway Administration

Applications: US-340/SR-522 at SR-55, Front Royal VA

Considerations for Alternative Intersections

- Alternative Intersections and Interchanges
 - Potential to improve safety and reduce delay
 - Potential for lower cost than traditional solutions
 - Unfamiliar to practitioners and drivers due to limited existing applications
 - Require specific planning and policy considerations for all users
 - On-going need for public involvement and education

Stakeholder Outreach: Marketing Materials

Graphic Explaining QR Operations

VDOT Video Explaining QR Operations and Benefits

QR Intersection Video

User Accommodations: Pedestrians

- Reduced pedestrian-vehicle conflict points
- Shorter pedestrian crossing distances (less exposure)
- Longer, more frequent pedestrian crossings

Safety Principles

- Conflict type correlated with severity
 - Crossing conflict most severe
- Conventional intersection
 - 32 conflict points
 - 16 crossing, 16 merge/diverge
- QR Intersection
 - 30 conflict points (3 intersections)
 - 10 crossing, 20 merge/diverge

Safety Considerations

• Each of four QR intersection left turns are unique and have significantly different geometric and operational impacts

MT-QL-QR

QL-QL

Safety Considerations

• Each of four QR intersection left turns are unique and have significantly different geometric and operational impacts

QR-QL-MT

MT-QR-QR-MT

Operational Considerations

- Access Management Principles
 - Median along quadrant roadway
 - RIRO or directional access to quadrant (if any)
 - Consolidate internal access
 - Preserve T-intersection
 - Impacts "perceived" greater than actual

Operational Characteristics

 No hard maximum spacing rule, but further the secondary Tintersection is from the main, the greater the travel distance; could become untenable to motorists

Geometric Design: QR Design Speed

- QR is low-speed urban roadway
- Minimum horizontal curve: DS=30 mph; max DS=35 mph
 - Larger radii encourages higher speeds than desired
- AASHTO minimum curve
 - DS=30: 250 ft
 - DS=35: 371 ft
- 100-ft tangent approaching main/cross street desired

Geometric Design: Lanes on QR

Signing: Regulatory Signs

Signing: Overhead Signs

- Overhead signs recommended for:
 - Left turn movements where motorists may have to move from left lane (expected) to the right lane

Pavement Marking

 In-pavement lane guidance shields are used at all QR intersections built to date to help w/ route guidance

Appendices

- Appendix A: Catalogue/Profiles of Known QR Intersections
- Appendix B: Marketing/Outreach Materials
- Appendix C: Publications
 - ITE Paper
 - FHWA Tech Brief
 - ACEC Paper on Ohio QR Intersection

Next Steps

Guide is written and reviewed by FHWA technical staff

- 508c Compliance Reviews and edits underway
- Guide published by late summer
- Full webinar presentation by FHWA (fall 2019)
- 6th International Urban Street Symposium (May 2020)

Questions?

Systemic, Risk-Based Pedestrian Safety Process

Libby Thomas

NCDOT Research and Innovation Summit NC A & T State University

Greensboro, NC

May 7, 2019

Overview of presentation

- What is the problem to be solved?
- How can the systemic safety analysis and prioritization approach help?
- What is the process?
- What are the steps?
- Who is using it?
- What is needed for NC to apply it?

Problem - NC Pedestrian Crash and Injuries

2012 – 2016 vs. 2007 - 2011

- 18% average increase in ped. crashes
- 13% average increase in ped. fatalities
- 14% of total fatalities
- Lack of mobility and options

May 15, 2019

Why do we need a systemic, risk-based safety process for pedestrians?

- Pedestrian crashes, although too high and climbing, are often rare, widely dispersed across a network, and mobile in time (especially severe ones) making cost-effective treatment targeting a challenge
- Crash risk factors for pedestrians may be different than for motor vehicle-only crashes (but some of the treatments improve safety for all modes)
- The process needs to be tailored to data related to pedestrians, and to provide guidance on how to gather, analyze needed data and apply context-appropriate treatments (and avoid building future problems)

"A systemic approach is a data-driven, network-wide (or system-level) approach to identifying and treating high-risk roadway features correlated with specific or severe crash types. Systemic approaches seek not only to address locations with prior crash occurrence, but also those locations with similar roadway or environmental crash risk characteristics."

Tenets of a systemic approach^{*}

- Identifies a safety concern based on an evaluation of data at the system (or network) level
- Establishes common characteristics (risk factors) of locations where severe crashes occur
- Emphasizes low-cost safety countermeasures to address the risk factors for high severity types of crashes
- Prioritizes locations across the entire roadway network where treatable risk *factors are present,* with or without a prior crash history

*Preston, H., R. Strom, J. D. Bennett, and B. Wemple. Systemic Safety Project Selection Tool. Publication FHWA-SA-12-019. FHWA, U.S. Department of Transportation, 2013.

Benefits of a Systemic Approach

- Improved safety at more locations with more proactive approach
- Informed decision-making utilizes data on key risk factors, reliable prioritization metrics
 - Don't simply "chase the hot spots"
- Optimized investment
 - Cost-effective use of resources
 - Consistency in application

Makes improvements at individual sites or road segments with relatively high numbers of crashes, without regard to other sites with similar risk factors.

Corridor Retrofit Approach

Makes improvements at several adjacent locations (with possibly similar risk factors), not all of which may have experienced a high number of crashes.

Makes improvements at locations with a high predicted crash risk or presence of key risk factors, regardless of actual crash history.

Systematic Approach

Most Reactive

Spot Safety Approach

Systemic Approach

Makes improvements at all sites in an area, regardless of predicted crash risk

Steps in the process

- 1. Define scope and crash type target
- 2. Compile data

HIGHWAY SAFE

RESEARCH CENTER

3. Determine risk factors

May 15, 2019

- 4. Identify potential treatment sites
- 5. Select potential countermeasures t address identified risks
- 6. Refine/prioritize projects, fund and implement
- 7. Evaluate / improve data and proces evaluate projects

Step 2 Compile Data

Step 3

Determine Risk Factors

Step 4

Identify Potential Treatment Sites

https://www.nap.edu/catalog/25255/systemic-pedestrian-safety-analysis

Step 1 – Define Study Scope & Focus

- Define boundaries
- Identify a 'problem' type that accounts for a large % of the problem
- Typically, only crash data is used
- May employ descriptive means such as crash tree diagrams (see NC example at right)

		Control Type	
4%	. /	Traffic Signal	15.0%
	1	No Control	3.4%
		Stop Sign	0.8%
		Other	0.2%
		Roadway Type	2
5%		Two-Way, Undivided	26.6%
	\langle	Two-Way, Divided	8.7%
		Other	0.2%

Step 2 – Compile Data for Analysis, Screening, Prioritization

- Guidebook provides information and examples on how and why to • make data:
 - Current and complete
 - Easily accessible (digital)
 - Centralized
 - Linkable across databases, and spatially-referenced
- Recommended data for systemic analysis include:
 - Pedestrian crash records, including injury severity, crash type, and spatial references
 - Detailed roadway data with key characteristics such as # of lanes
 - Vehicle traffic and pedestrian volumes or secondary data to estimate volumes (e.g., transit ridership, population/employment density, etc.)
 - Other measures of the built and social environment

Step 3 – Determine Risk Factors

- Recommended approach:
 - Identify risk factors from regression modeling of jurisdiction-wide data (i.e., develop Safety Performance Functions or SPFs) (City of Seattle, Washington)
- Alternative approaches:
 - Identify risk factors from prior research plus local judgment (Arizona, & Oregon, 1st iteration)
 - Infer risk factors from roadway and crash data frequency analyses (California, 1st iteration)

Systemic Pedestrian Safety Analysis, NCHRP Report 893 https://www.nap.edu/catalog/25255/systemic-pedestrian-safety-analysis

Identify *treatable* risk factors Arizona example – State highways

Risk Factor Category	Risk Factor				
	Posted Speed Limit				
	Operating Environment/Number of Lanes/ Roadway Width				
	Missing Sidewalk Link				
Existing conditions	Paved Shoulder Width				
	Prior Crashes				
	Traffic Volume				
	Signalized Intersection Spacing				
	Population Density				
Pedestrian Demand	Attractors (e.g., convenience stores, schools, parks)				
	Land Use (commercial and high-density housing)				
	% Households in Poverty				
At-Risk Groups	% Households with No Vehicle				
	At-Risk Groups (Children, Elderly, and Handicapped)				

Kimley-Horn and Associates, Inc. Arizona Department of Transportation Pedestrian Safety Action Plan Update. Publication MPD0053-16. Arizona Department of Transportation, 2017.

Data Source

ADOT GIS

U.S. Census Bureau

Land Use Maps and Visual Inspection (Corridor-level only)

U.S. Census Bureau

Land Use Maps and Visual Inspection (Corridor-level only)

Step 4 – Identify Treatment Sites

- Identify sites with risk factor characteristics from analysis results, or from prior knowledge
 - Sites with risk factors could be identified through combinations of existing roadway/land use/other data, internet tools (Google maps, etc.)
- Ideally data types needed to understand exposure potential and prioritize sites would be available from data and analysis steps
 - Predictive modeling *versus*
 - Expert weighting process and additional ranking considerations

Step 5 – Select Potential Countermeasures

- Criteria:
 - Relation to systemic target crash types and locations
 - Safety effectiveness
 - Cost (initial + maintenance)
 - Feasibility of systemic implementation
- Selection process:
 - Iterative process to match treatment sites (i.e., exhibiting focus risk factors or crash types) with potential countermeasures that address risks
 - Perform diagnosis at proposed treatment sites to confirm

Step 5 – Select Countermeasures

12 recommended countermeasures provided in NCHRP Report 893:

Signalized or Unsignalized crossing	Unsignalized locations only	Signaliz
locations (including midblock)	(midblock or intersection)	only (or
High visibility crosswalks	In-Roadway Yield-to-Pedestrian (R1-6) sign	Leading p
Traffic calming (raised devices)	Advance Stop/Yield Bars and R1-5/5a Sign	Longer pe
Median crossing island	Pedestrian Hybrid Beacon	Restricted
Reduce number of lanes / road diet		
Curb extension and parking restriction		N
Location-specific lighting improvement		

http://www.trb.org/NCHRP/Blurbs/178087.aspx

ed Intersections signal is added)

pedestrian interval

edestrian phase

d left turn

Systemic Pedestrian Safety Analysis NATIONAL COOPERATIVE HIGHWAY RESEARCH

The Mahing! Academics of SCENCES (ENGINEERING - MEDICINE TTUE

Next Steps

- Step 6 Refine/implement treatment plan
 - Validate diagnosis, identify other issues
 - Bundle like sites for potential treatment
 - Identify funding sources
 - Perform economic analysis package sites with similar risks and treatment plans
 - Consider other local priorities
 - Allocate funding and construct treatments
- Step 7 Evaluate combine sites for safety evaluation; evaluate process

Oregon uses Cost Effectiveness Index and splits funding 50:50 among crashbased and systemic risk-based projects.

Definition: Cost Effectiveness Index

The Cost Effectiveness Index (CEI) estimates the cost to reduce one vehiclepedestrian crash. It is calculated using the equation below:

Project cost CEI =Expected reduction in pedestrian crashes

Application – Identify Effective Potential Countermeasures

 Projects developed based on bundling sites with common risk factors, traffic/land use contexts, and matching with relevant treatments; prioritized based on model predictions (as needed)

Risk Characteristics	Nu Se (o ^r SF	umber o egments f top 500 PF-pred.	f 5 D	SPF- Prediction (average per site per year)	Prior Observ Crashes (average per per year)	ved r site	Potential Counter
4+ thru lanes (29.4 mi)		357		0.061	0.064		Road diets and/o
TWLTL (15.3 mi)		152		0.053	0.067		Median island (w
4+ thru lanes & TWLTL (12.7 mi)		129		0.054	0.067		Road diets and/o
4+ lanes & Parking (9.5 mi)		102		0.074	0.060		Road diets and/o AND Curb extension +
4+ lanes, TWLTL & Parking subset (3.1 mi)		25		0.055	0.085		Road diets and m

neasures ctors, prioritized

ermeasures

- r median islands
- ith/without road diet)
- r median islands
- r median islands
- parking restriction
- nedian islands; ANDparking restriction

Jurisdictions using systemic / partially systemic pedestrian safety process

Jurisdiction	Risk factor determination	Prioritization
Seattle	Modeling – SPF development	Risk factors presence + pre from the models
Oregon	Expert/prior risk factor research	Risk factor weighting, spat identify risk segments + ac up/downstream segment models); 50:50 funding with spot sa
Arizona	Expert / prior risk factor research	Risk factor weighting; Bundling of similar high cr for economic analysis, imp
California	Matrix of crash types by location types developed by expert team to generate high	Projects developed locally, funding allocated by State

edictions (SPF or EB)

cial screening to account for nearby scores (+SPF

afety

ash + high risk sites plementation

, apply for systemic

Can NC apply the Systemic approach to pedestrian safety?

NC status & Data needs

Crash data

 $\sqrt{+}$ NC already has multiple years high quality, crash typed, geo-located data

Roadway data – geometrics, operations, pedestrian/bicycle facilities, transit

 $\sqrt{-}$ Room for improvement, completion, GIS-linkable

"Exposure" data

Motor vehicle volume – very limited on some road types

 $\sqrt{-}$ Pedestrian volume – in progress, commitment to develop good short, long-term statewide sample and procedures for use in estimating volumes for specific locations

- ✓ Land use data Available*
- ✓ Census data Available*
 - * Just requires scaling, linking in GIS

eo-located data acilities,

Step 1 – NC example: Top NC Pedestrian Crash Type (15%) of all) and Most Injurious Type (31% of fatal and disabling)

Pedestrian is crossing the roadway, motorist is going straight

Thomas, L., M. Vann, & D. Levitt. (2018) North Carolina Pedestrian Crash Types, 2012-2016. Available at: <u>http://www.pedbikeinfo.org/pbcat_nc/pdf/summary_ped_types12-16.pdf</u>

Crosswalk Area

Intersection Proper

Travel Lane

Other / Unknown

Thomas, L., M. Vann, & D. Levitt. (2018) North Carolina Pedestrian Crash Types, 2012-2016. Available at: http://www.pedbikeinfo.org/pbcat_nc/pdf/summary_ped_types12-16.pdf

Can NC apply the Systemic approach to pedestrian safety?

- Already crash type and geo-code pedestrian crashes; summary trends/ focus types
- What are your ideas?
- Provide assistance to regional/local agencies in developing or compiling the needed data for analysis
 - Roadway and facilities variables, transit variables
 - Pedestrian and motor vehicle counts/volume estimates
 - Land use (typically available)
 - Census data
- Provide resources or support for analysis
- Incorporate risk-based prioritization metrics
- Provide funding for systemic projects

Step 3: Determine Risk Factors

What jurisdictional/analysis level:

- State level NC example done on a frequency/severity proportions basis
 - Ideally need to control for traffic volume and pedestrian activity
- Local/regional level needed for project development focus
 - Focus crash types may not be same statewide
 - Risk factors may also vary
 - Land use, demographic, transit data likely more readily available

Acknowledgments

- Funded under NCHRP Project 17-73
 - Libby Thomas, Laura Sandt, Charlie Zegeer, Wesley Kumfer, Katy Lang, and Bo Lan
 - University of North Carolina Highway Safety Research Center, Chapel Hill
 - Zachary Horowitz, Andrew Butsick, and Joseph Toole Kittelson & Associates, Inc., Portland, OR
 - Robert J. Schneider, Consultant, University of Wisconsin-Milwaukee
- NCHRP Project 17-73 panel members and Lori Sundstrom and Ann Hartell, project managers

Questions?

Thank you for your attention!

More information and case examples:

Thomas, L., L. Sandt, C. Zegeer, W. Kumfer, K. Lang, B. Lan, Z. Horowitz, A. Butsick, J. Toole, and R. J. Schneider. *NCHRP Research Report 893: Systemic Pedestrian Safety Analysis*. National Cooperative Highway Research Program Project No. 17-73. Transportation Research Board, 2018. Available at: <u>http://www.trb.org/NCHRP/Blurbs/178087.aspx</u>

www.hsrc.unc.edu

May 15, 2019

Type III Microprismatic Sign Service Life

Dr. William Rasdorf Patricia Machado

North Carolina State University

NCDOT Research & Innovation Summit

May 7, 2019 Greensboro, NC

1

Objective

Assess Sign Service Life for Microprismatic Type III Sheeting

Methodology

- Conducted an Extensive Literature Review
- Met with Three State DOTs and Two Sign Shops
- Simulated Sign Condition Over Time
- Analyzed Sign Service Life from Five Different Perspectives
 - 1. Retroreflectivity Deterioration Models
 - 2. Findings of Other Studies
 - 3. Comparison of Glass Beaded and Microprismatic Sheeting
 - 4. Microprismatic Sheeting Warranty
 - 5. Simulation Model

DETERIORATION MODELS

1. Retroreflectivity Deterioration Models

- Analysis of 10 retroreflectivity studies
- Sheeting was primarily glass beaded
- Retroreflectivity versus sign age
 - White sheeting: 20 years and above
 - Yellow sheeting: 21 years and above
 - Red sheeting: 15 years and above
 - Green sheeting: 22 years and above

 All previous deterioration models predict a sign life ≥ 20 years (red ≥ 15 years)

NC STATE UNIVERSITY

DETERIORATION MODELS

White Type III Sheeting

Red Type III Sheeting

2. Findings of Other Studies

Authors	Location	Sign Service Life-
Dumont et al. (2013)	Minnesota	Minimum: 15 years
Immaneni et al. (2009)	North Carolina	20 to 30 years for white24 years for yellow and red37 years for green
Clevenger et al. (2012)	Pennsylvania	Minimum: 15 years
Pulver et al. (2018)	South Carolina	10 years
Kipp and Fitch (2009)	Vermont	15 years for red 15 to 20 years for white, yellow, and green
Pike and Carlson (2014)	Wyoming	Recommendation: 15 years

• Most literature studies recommend a sign life ≥ 15 years

3. Comparison of Glass Beaded and Microprismatic Sheeting

• Microprismatic sheeting is more retroreflective than glass beaded sheeting

Source: 3M (2011), "High Intensity Prismatic vs High Intensity Beaded Reflective Sign Vinyl"
Glass Beaded Sheeting

 Glass beaded has a greater diffuse reflection (<u>less</u> light is reflected back to driver)

Microprismatic Sheeting

• Microprismatic has a lower diffuse reflection (<u>more</u> light is reflected back to the driver)

Initial R_A Comparison

	Ini		
Color	Glass Beaded Type III	Microprismatic Type III (High Intensity Prismatic)	Improvement From Glass-Beaded to Microprismatic
White	250	560	124%
Yellow	170	420	147%
Red	45	84	87%
Green	45	56	24%

- Most, if not all, previous studies were done on glass beaded signs
- Microprismatic sheeting is superior to previous results

4. Microprismatic Sheeting Warranty

Color	Initial R _A	Warranted R _A at 12 Years (80% initial R _A)	Minimum R _A (MUTCD)	Performance Above Minimum R _A
White	560	448	120ª 50 ^b 35°	328 398 413
Yellow	420	336	75 ^d 50 ^e	261 286
Red	84	67	7	60
Green	56	45	15	30

a white on green

c white on red

b black on white

d signs smaller than 48 inches

e signs greater or equal 48 inches

Warranty levels far exceed minimums for all colors

5. Simulation

Input Parameters	Values and Equations	Data Source
Number of Signs Simulated	10,000	-
Period Simulated	30 years	-
Annual Damage Rate	4.04%	Rasdorf et al. (2006)
Annual Spot Replacement Rate	41.09% (of damaged signs)	Modified from Rasdorf et al. (2006)
White Sign R _A Deterioration Model	304.089 – 4.815 Age	Immaneni et al. (2009)
Yellow Sign R _A Deterioration Model	193.01 + 5.644 Age – 0.552 Age ²	Immaneni et al. (2009)
Red Sign R _A Deterioration Model	59.632 – 2.658 Age	Immaneni et al. (2009)
Green Sign R _A Deterioration Model	53.386 – 1.345 Age	Immaneni et al. (2009)

R_A: Coefficient of Retroreflectivity

Simulation Results (10.000 signs)

Damage rate 4.04% of signs. Spot replacement rate 41.09% of damaged signs.

Simulation Results

• No Blanket Replacement or Nighttime Inspections

Years	Non Compliant Signs*	Damaged Signs	Unsatisfactory Signs **
1 to 19	0%	2% to 5%	2% to 5%
20 to 22	4% стор	5%	10%
23 to 28	21% STOP	5%	26%
29 and 30	23% STOP	tergenville Exer Intern →	28%

* Below the Minimum Required Retroreflectivity Levels

** Unsatisfactory Signs = Non Compliant + Damaged

Conclusions

• All sources decisively show that a sign service life of 20 years is acceptable for Type III microprismatic sheeting

Implementation

- NCDOT adopted a statewide blanket replacement cycle of 20 years
- After fully implemented, estimated annual cost savings of \$3.8 million related to sign replacement

Thank you!

Questions?

Crash Based Evaluation of the Watch for Me (WFM) NC Program

Raghavan Srinivasan

www.hsrc.unc.edu

Research Team and Sponsor

- Research Team
 - Taha Saleem (Principal Investigator)
 - Bo Lan
 - Raghavan Srinivasan
 - Laura Sandt
 - Kristin Blank
 - Sam Alden Blank
- Sponsor
 - North Carolina Department of Transportation (Project 2018-38)
 - Edward Johnson (Division of Bicycle and Pedestrian Transportation)

Watch for Me (WFM) NC Program

- Paid media
 - Distribute pedestrian and bicycle safety messages to the general public
 - Sidewalk stencils, traditional and digital billboards, and external/internal bus ads
- Local outreach and earned media
- Law enforcement operations
 - Targeted enforcement of pedestrian and/or bicyclerelated laws
- Implementation was different depending on the community

WFM Participation

- 4 communities participated in the program when it was piloted in 2012
- Between 2012 2017, a total of 41 communities (from 29 counties) participated in the program
 Varying participation duration
- The original 4 pilot communities are the only ones to have been involved in the program throughout
 - Carrboro
 - Chapel Hill
 - Durham
 - Raleigh

Study Objective

- Prior studies have focused on behavioral outcomes
- Examine the safety effectiveness of the Watch for Me program taking a crash-based approach
 Pedestrian and bicycle crashes
- Help NCDOT assess the value of the program

Methodology

- Empirical-Bayes (EB) before-after evaluation
 - Many applications of EB method to evaluate the safety effect of engineering improvements
 - Not very common method for evaluation of nonengineering improvements
 - Included a reference/comparison group of agencies that did not participate in Watch for Me
 - Accounted for change in "exposure" and trends
- Level of Analysis
 - Site level
 - Corridor level
 - City level
 - County level (selected due to data limitations)

Data

- Crash Data
 - Pedestrian and Bicycle Crash Analysis Tool (PBCAT) data
 - Traffic Engineering Accident Analysis System (TEAAS) data
- Exposure Data
 - NCDOT VMT data
 - Vehicle distribution by size
 - Journey to work by mode
 - Average household income
 - Total population (urban/rural)
 - Population distribution by age group

Focus Crash Types

- Pedestrian Crashes
 - Total pedestrian crashes
 - Failing to yield crashes
 - Permissive left turn crashes
 - Walking along roadway crashes
 - Nighttime pedestrian crashes
- Bicycle Crashes
 - Total bicycle crashes
 - Over-taking crashes
 - Right-hook crashes
 - Nighttime crashes

Estimated Pedestrian Crash Safety Effects

- Statistically significant effects
 - Total pedestrian crashes
 - 12.8% reduction
 - Nighttime pedestrian crashes
 - 21.7% reduction
 - Failed to yield
 - 9.5% reduction
- Effects on walking along roadway and permissive left turn crashes were not significant
- Results were consistent based on sensitivity analysis

Estimate Bicycle Crash Safety Effects

- Prediction models unable to reliably predict bicycle crashes
- Inconsistent results based on sensitivity analysis
- Unable to conclude on the effectiveness of WFM on bicycle crashes

Overall Conclusions

- Application of EB before-after in a nonengineering setting
- Watch for Me NC seems to have been effective in <u>reducing</u> total, nighttime, and failed to yield <u>pedestrian</u> crashes
- The effect of Watch for Me on <u>bicycle</u> crashes could not be determined
- Limitations
 - Did not have specific exposure data on pedestrian and bicycle travel
 - Effects were estimated at county level rather than at city/corridor level

Questions?

Taha Saleem, 919-962-3409, <u>saleem@hsrc.unc.edu</u> Raghavan Srinivasan, 919-962-7418, <u>srini@hsrc.unc.edu</u> Edward Johnson, 919-707-2604, <u>erjohnson2@ncdot.gov</u>

Optimal Variable Speed Limit Control in Connected Autonomous Vehicle Environment for Relieving Freeway Congestion

Wei (David) Fan, Ph.D., P.E.

Director, USDOT CAMMSE University Transportation Center Professor, Department of Civil and Environmental Engineering University of North Carolina at Charlotte (UNC Charlotte) Charlotte, NC 28223

NCDOT Innovation Summit North Carolina A&T University, Greensboro, NC Tuesday, May 7, 2019

Presentation Outline

- Introduction
- Design of Control Model
- Solution Algorithm
- Case Study
- Numerical Results
- Conclusion

Introduction

- Traffic congestion has become a major problem around the world
- Active traffic management (ATM) is a scheme which can be used to relieve congestion and improve safety on freeways
- Variable speed limit (VSL) belongs to the ATM strategy, which enables one to change the posted speed limits dynamically on the basis of the real-time traffic and/or weather conditions
- VSL has been widely implemented around the world
 Germany, England, Sweden, and the United States

Introduction – Cont.

- Emerging technologies have been developing during recent years
 - e.g., connected and autonomous vehicles (AVs)
- Enhanced outcomes can be achieved through integrating VSL control with CAVs
 - e.g., reduced total travel time and fuel consumption
- In this study, an integrated VSL control strategy with CAVs on the basis of cell transmission model (CTM) that explicitly considers mixed traffic flows including both trucks and cars

Design of Control Model

An Illustration of a Freeway Stretch with Multiple Bottlenecks

- The fundamental diagram (FD) is simplified as having a triangular relationship between flow and density
- When modeling mixed traffic flows, other classes of vehicles are converted to the passenger car equivalents (pce)
- A dynamic pce value that involves physical characteristics of vehicles and prevailing speeds on freeways is used (van Lint et al. 2008)

$$\eta_{i,j}(k) = \eta\left(sd_j, HW_j, v_{i,j}(k)\right) = \frac{sd_j + HW_jv_{i,j}(k)}{sd_{car} + HW_{car}v_{i,car}(k)}$$

Design of Control Model – Cont.

 To model the capacity drop phenomenon at bottlenecks, a discontinuous FD is used

To model mixed traffic flows, a combined FD is used

Design of Control Model – Cont.

- The intelligent driver model (IDM) developed by Treiber et al.
 (2000) is adopted to model the car-following characteristics
- In the IDM, the acceleration a(k) during time interval k can be computed

$$a(k) = a \left[1 - \left(\frac{v(k)}{v_0}\right)^4 - \left(\frac{s^*(k)}{s(k)}\right)^2 \right] \qquad s^*(k) = max \left(0, s_0 + v * HW + \frac{v(k)\Delta v(k)}{2\sqrt{ab}} \right)$$

- An AV is formulated by adopting the IDM with its headway being smaller than the human-driven vehicle's
- If an AV is following another AV, a smaller headway will be used (0.6s)
- If an AV is following a human-driven vehicle, the vehicle will be acting as a regular AV (1.1s)

Design of Control Model – Cont.

Minimize total travel time (TTT) and total speed variation (TSV)

$$TSV = \sum_{j=1}^{J} \sum_{k=1}^{T_p} \sum_{s=1}^{s} \sum_{i=vsl_{s-1}+1}^{s} \left[u_i(k) - \left(\frac{vsl_s - i}{N_s} v_{vsl_{s-1},j}(k) + \frac{i - vsl_{s-1}}{N_s} v_{vsl_s,j}(k) \right) \right]$$

min $J = w_1 TTT + w_2 TSV + \sum_{s=1}^{S-1} \left(u_{vsl_s}(k) - u_{vsl_s+1}(k) \right)^2$ penalty function

$$v_{min} \le u_i(k) \le v_{max}$$
 $u_i(k) \in V V = \{15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 \text{ mph}\}$
 $|u_i(k+1) - u_i(k)| \le 10$
 $|u_i(k) - u_{i-1}(k)| \le 10$

Solution Algorithm

- Genetic algorithm (GA), is selected to optimize the variable speed limits
- Two modules are included
 GA and VISSIM simulation
- The modified CTM is used to predict the traffic states

Case Study

- A real-world freeway corridor is selected
- The studying period is from 5:30 am to 9:00 am on weekdays
- The field data is aggregated into 5-min counts
- The length of the selected freeway corridor is about 5 miles

Ň

UNC CHARLOTTE

Case Study – Cont.

- A preliminary analysis is performed to identify the positions of bottlenecks (Fan and Gong 2017; Gong and Fan 2017; Gong and Fan 2018)
- Five bottlenecks

UNC CHARLOTTE

- Detectors 1, 5, 7, 9, and 14
- Three VSL control subsystems are deployed in this study

Numerical Results

- Three types of vehicles (i.e., human-driven cars, trucks, and autonomous cars) are included
- Traffic parameters need to be computed (Dervisoglu et al. 2008)
 - □ E.g., capacity, jam density, and shock wave speed

Parameters		Bottleneck 1	Bottleneck 2	Bottleneck 3	Bottleneck 4	Bottleneck 5
Capacity (pce/h/lane)		2232	1749	1797	1733	1702
Drop Capacity (pce/h/lane)		2023	1517	1669	1528	1630
Magnitude of Capacity Drop (%)		10.35	15.28	7.66	13.45	4.41
Shock Wa	ve Speed (mph)	10.99	7.26	8.67	8.62	9.24
Critical Dens	Critical Density (pce/mile/lane)		26.33	27.33	26.6	25.66
Jam densit	Jam density (pce/mile/lane)		235.3	219.86	203.81	202.08
Car	Free Flow Speed (mph)	64.99	66.42	65.74	65.16	66.32
(human-driven and AVs)	Critical Density (veh/mile/lane)	34.34	26.33	27.33	26.6	25.66
	Free Flow Speed (mph)	59.99	61.42	60.74	60.16	61.32
Truck	Critical Density (veh/mile/lane)	20.52	15.12	15.45	15.20	14.45

Computation Results of the CTM at each Bottleneck

Numerical Results – Cont.

- To obtain a close match between the collected and simulated traffic data, driver behavior parameters of VISSM are calibrated (Yu and Fan 2017)
 - e.g., standstill distance (CC0) and headway time (CC1)
- Parameters that are used to model the car-following characteristics of the AVs are selected on the basis of existing studies

Vehicle Types	HW _j	а	b	S ₀
Human-driven vehicle	1.6 s	3.28 ft/s ²	-6.56 ft/s ²	4.13 ft
AV follows a human- driven vehicle	1.1 s	3.28 ft/s ²	-6.56 ft/s ²	0
AV follows an AV	0.6 s	3.28 ft/s ²	-6.56 ft/s ²	0
References	Treiber et al. 2000; Shladover et al. 2012; Milanés and Shladover 2014; Khondaker and Kattan 2015; Grumert et al. 2015; Li et al. 2017			

The IDM's Parameter Value

Numerical Results - Cont.

- A 3.5-hour simulation with a 30-minute (from 5:30 am 6:00 am) warm up period is conducted
- The speed limit set that minimizes the objective function over a given prediction horizon (i.e., T_p=5 min)
- The speed limit changes every minute (i.e., T_c=1min)
- The discrete time step used in the control model is *T*=10s
- w₁=0.9 and w₂=0.1 are selected for the simulation
- Various scenarios are designed in this study

Scenarios	Description
Scenario 1	With 100% human-driven vehicles and without VSL control
Scenario 2	With 10% AVs and without VSL control
Scenario 3	With 100% human-driven vehicles, VSL control, and the CTM without considering mixed traffic flows
Scenario 4	With 100% human-driven vehicles, VSL control, and the extended CTM
Scenario 5	With 10% AVs and VSL control, and the extended CTM

Simulation Scenarios and Descriptions

Numerical Results – Cont.

Scenario	TTT (veh-h)	Average delays (s)	Average number of stops	Emission (g)			Improvement (%)					
				CO2	NOx	Particulate	TTT	Delays	Number of stops	CO_2	NOx	Particulate
Scenario 1	8140.51	400.76	67.58	650.33	1734.2	1951	-	-	-	-	-	-
Scenario 2	7988.12	385.75	61.77	641.59	1730.57	1950.45	1.87	3.75	8.59	1.34	0.21	0.03
Scenario 3	5469.65	170.59	26.99	608.91	1585.7	1851.3	32.81	57.43	60.06	6.37	8.56	5.11
Scenario 4	5337.68	158.71	25.74	605	1583.5	1846.12	34.43	60.4	61.91	6.97	8.69	5.38
Scenario 5	5328.65	139.81	25.33	600.32	1578.54	1838.54	34.54	65.11	62.52	7.69	8.98	5.76

Performance Comparison under Different Scenarios

- Simulation results under the five designed scenarios
 - TTT, average delays, average number of stops, and emission
- Scenario 1: without control
- Scenarios 3 and 4
 - Examining whether the extended CTM outperforms the CTM without considering mixed traffic flows
- Scenario 4 VSL control
- Scenario 5 VSL control in an AV environment

Numerical Results – Cont.

Contour of Speed Limit under Scenario 4

- Speed harmonization impact of VSL control
 - Speed differences among the adjacent cells are noticeably reduced
 - The vehicle speeds at the most congested bottlenecks begin to recover at the end of the simulation
 - The gradual change of color indicates that a smoother transition of speeds among cells has been achieved

Numerical Results – Cont.

Flow Profiles at Bottleneck 2

Flow Profiles at Bottleneck 3

- Equilibrium flow (pce/h/lane) profiles during the entire simulation period at bottlenecks 2 and 3 under scenario 1, scenario 4, and scenario 5
 - When traffic demands are greater than the bottleneck capacity, under scenario 1, a drop in flow at the bottleneck can be observed
 - Under scenarios 4 and 5, the equilibrium flow with VSL control remains steady and a higher discharge value is achieved compared to that without VSL control

Conclusion

- A proof-of-concept study on developing a VSL control strategy with CACC in an AV environment for a freeway corridor is performed
- The VSL control is developed on the basis of the extended CTM which considers the capacity drop phenomenon at the bottleneck
- The proposed VSL control model takes the mixed traffic flow (including human-driven cars, trucks and AVs) into consideration
- A real-world freeway corridor is selected to examine the developed control strategy
- The simulation results demonstrate that the developed VSL control can be used to greatly enhance the operational efficiency, improve safety, and reduce the emissions of greenhouse gases
- The VSL control in an AV environment outperforms the VSL control without CACC

References

- Yu, M. and Fan, W., Optimal Variable Speed Limit Control in Connected Autonomous Vehicle Environment for Relieving Freeway Congestion, ASCE Journal of Transportation Engineering, Part A: Systems, 145(4): 04019007, April, 2019.
- Yu, M. and Fan, W., Optimal Variable Speed Limit Control at a Lane Drop Bottleneck: Genetic Algorithm Approach, ASCE Journal of Computing in Civil Engineering, Volume 32 Issue 6, 04018049, pp. 1-17, 2018.
- Yu, M. and Fan, W., Tabu Search Strategies for Variable Speed Limit Control at a Lane Drop Bottleneck, ASCE Journal of Transportation Engineering, Part A: Systems, Volume 144, Issue 7, 04018033, pp. 1-12, 2018.
- Yu, M. and Fan, W., Calibration of Microscopic Traffic Simulation Models Using Metaheuristic Algorithms, *International Journal of Transportation Science and Technology*, 6(1), pp. 63–77, 2017.
- Gong, L. and Fan, W., Developing A Systematic Method for Identifying and Ranking Freeway Bottlenecks Using Vehicle Probe Data, ASCE Journal of Transportation Engineering, Part A: Systems, Volume 144, Issue 3, 04017083, pp. 1-14, 2018.
- Gong, L. and Fan, W., Applying Travel Time Reliability Measures in Identifying and Ranking Recurrent Freeway Bottlenecks at Network Level, ASCE Journal of Transportation Engineering, Part A: Systems, 143(8), 04017042, pp. 1-15, 2017.

QUESTIONS AND COMMENTS?

THANK YOU!

Contact Information:

Wei (David) Fan, Ph.D., P.E.

Professor and Director, USDOT CAMMSE University Transportation Center (<u>http://cammse.uncc.edu</u>) Director, ITS, Traffic Operations and Optimization Lab (ITS-TOOL) Faculty Advisor, ITE Student Chapter Department of Civil and Environmental Engineering The William States Lee College of Engineering University of North Carolina at Charlotte (UNC Charlotte) EPIC Building, Room 3261 9201 University City Blvd. | Charlotte, NC 28223-0001 Phone: 704-687-1222 | Fax: 704-687-0957 Email: wfan7@uncc.edu Webpage: https://sites.google.com/view/professorweifan/

