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This chapter presents the findings of a simulation 
study focused on the operational treatment of 
autonomous vehicles (AVs) and connected 
autonomous vehicles (CAVs) on freeway 
segments and a real-world freeway facility in 
mixed and segregated traffic environments, 
including significant merging and diverging 
maneuvers. The treatments involve no lane 
dedication to equipped vehicles (with autonomy 
or connectivity) and the dedication of a single 
freeway lane for the exclusive use of CAVs, and 
the effect of access control to and from that lane 
along the simulated facility. The latter type of 
treatment is already widely used, and has been 
successfully implemented around the nation as 
HOV, HOT and exclusive Toll lanes. We define 
CAVs to be those vehicles for which short time 
and/or space headways can be compressed 
when operating in a platoon mode with other 
CAVs, while maintaining longer headways when 
following other, non-CAV vehicles. Autonomous 
vehicles (AVs) are also driverless, but do not 
communicate with other vehicles, and generally 
maintain longer headways with leading vehicles. 
Connected vehicles (CVs) are human driven, but 

can communicate with other such vehicles (V2V) 
or with the infrastructure (V2I). Finally, traditional 
vehicles (TVs) represent human driven vehicles, 
for which ample simulation experience has been 
gained over the decades.
	 There is much uncertainty regarding the 
temporal microscale (1-10 Hz) operational modes 
of AV’s and CAV’s given the proprietary nature of 
the algorithms controlling their longitudinal and 
lateral spacing with other vehicles, as well as the 
potential variations in delivered customer options 
(e.g. settings for aggressive vs. conservative 
driving modes, or space headway options). 
Those trends are likely to result in even higher 

-

-

1.1 Introduction
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variability across AV and CAV operating modes. 
In order to gain an overall perspective of the 
system performance under various operating 
scenarios, simplifying assumptions must be made 
when exercising any simulation environment. For 
example, the literature generally assumes that 
AVs will maintain, on average, longer headways 
with leading vehicles than drivers of TVs do, 
mostly for safety reasons, at the expense of more 
efficient mobility (1, 2). On the other hand, CAV 
headways should be modeled as dynamic and 
made dependent on whether CAVs are following 
other CAV’s or other vehicle types. In other words, 
the same vehicle can operate with two different 
car following modes in simulation, depending on 
its lead vehicle type. Finally, this research treats 
CV’s as TV’s, with the assumption that from a 
car following and lane changing perspective, 
those two vehicle types will operate in a similar 
manner. Much of the advantages of V2V and V2I 
capabilities apply at the operational or strategic 
level (route diversion, incident avoidance, etc.) and 
not at the microscale car following level.
	 As a result of having different operating 
modes depending on the nature of the lead 
vehicles, two important objectives would be (i) 
an investigation of the impact of AVs and CAVs 
on different freeway segments’ throughput in a 
mixed flow environment, and (ii) maximization of 
the throughput of CAVs by having them operate 
in a dedicated lane exclusively, where they 
can maintain short headways in platoons. It is 
assumed that in mixed flow traffic lanes, such 
headways become infeasible, and the probability 
of platooning is significantly reduced, depending 
on market penetration. Therefore, the operational 
system performance will depend on a slew of 
parameters including (a) the overall traffic demand 
per lane, (b) the market penetration rates of TVs, 

AVs and CAVs, (c) the level of ramp demands on 
the facility and (d) the level of access to and from 
the dedicated lane for CAVs.
	 While much research work has been 
published on the effects of items (a) and (b) 
above, less attention has been given to items 
(c) and (d). It is clear for example that AVs and 
CAVs have different operating characteristics and 
cannot be treated equally in simulation. Similarly, 
CAVs will operate differently in mixed traffic when 
compared to an exclusive CAV environment. 
Research on (b) focuses on homogenous traffic 
streams that only include certain types of 
equipped vehicles and usually do not represent 
scenarios where all vehicle types are present. 
As such, it is important to study traffic streams 
that are composed of AVs, CAVs, TVs, and CVs. 
Furthermore, it is well understood that much of 
the perturbations which occur in today’s freeway 
facilities tend to take place near interchange 
areas, particularly—in this case— when CAVs 
must enter or exit the dedicated lane within 
restricted lane opening segments. Some of the 
access problems may be addressed by allowing 
continuous access to the dedicated lane but the 
results need to be investigated in the context of 
how they are affected by variable penetration 
rates and origin destination demands. These 
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factors have been integrated into a simulation 
experimental design that generates multiple 
scenarios and identifies the mobility outcomes for 
each of them. These outcomes are expressed in 
terms of overall system throughput, speed-flow 
diagrams, system level and OD movement travel 
rates. The simulation model described in this 
paper considers many of those effects, and has 
been calibrated to produce appropriate capacity 
for a fleet of TV’s, consistent with macroscopic 
measures documented in the Highway Capacity 
Manual. That work is documented elsewhere (3).
This chapter is organized as follows. A review 
of the technical literature focused on modeling 
autonomous and connected vehicles in a mixed 
traffic environment and dedicated lane(s) for 
AVs and CAVs is presented next. That section 
is followed by the methodology where the 
algorithms used to model the behavior of each 
vehicle type are provided. The analysis and 
result section is then presented, including the 
introduction of a planning level calculator for 
freeway capacity estimation under both mixed 
traffic and a CAV dedicated lane, followed by the 
summary and conclusions from this study.
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Connected Vehicles (CV)
There is abundant research regarding the impact 
of CV on mobility, safety, and the environment. 
However, the majority of this research is 
focused on the network-level impacts of these 
vehicles. Mei et al. (4) studied the impact of V2V 
communication on network operations using 
the AIMSUN simulation platform. Two strategies 
(dynamic route diversion and variable speed limit) 
were used in response to a severe incident in the 
network. They concluded that both penetration 
rate of CV and choice of control strategy impact 
the overall performance. Furthermore, they found 
that network performance improves as the market 
penetration (MPR) of CV increased from 5% to 
50% but declined when the MPR was 100% - 

The introduction of CAVs, AVs, and CVs mixed with TVs are expected to bring some mobility benefits for 
both freeway and arterial facilities. Nonetheless, the different operating characteristics of these vehicles 
have rendered these impacts to be highly variable. Furthermore, most mobility studies are simulation-
based since field observations of CAVs, AVs, or CVs mixed with TVs are very limited. Thus, the modeling 
assumptions play a significant role in reporting the impacts. The following section discusses the impact 
of CAVs, AVs, CVs, and TVs on freeway capacity estimation. In addition, mobility implications of the use of 
dedicated lanes and access control in a mixed traffic environment are presented.

1.2 Literature Review

Mixed Traffic on General Purpose Lanes
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compared to the 50% level. 
	 Lee and Park (5) investigated the impact 
of various route guidance strategies and factors 
(MPR, congestion level, updating intervals of route 
guidance information, and drivers’ compliance 
rates) in a CV environment using VISSIM 
simulation platform. They found a significant 
reduction in network travel time with the presence 
of V2V and V2I communication. The amount of 
improvement in travel times was reported to be 
directly related to the MPR of connected vehicles.  
Talebpour and Mahmassani (6) studied the impact 
of connected vehicles on freeway efficiency. 
Only V2V communication was simulated with 
the assumption that the reaction time of drivers 
would decrease by 50% in the presence of V2V 
communications. The acceleration behavior 
of connected vehicles was modeled using the 
Intelligent Driver Model or IDM (7, 8). Their results 
showed an increase in freeway efficiency as 
the MPR of connected vehicles increased. Zhu 
and Ukkusuri (9) also found that the amount of 
benefit from CV depends on the MPR and traffic 
demand. The benefits were found to be especially 
significant under high demand conditions. 
	 A simulation-based study of the 
impact of CV on network flow and travel 
time reliability was conducted by Mittal et al. 
(10). A microscopic simulation tool was used 
to establish the speed-density relationships at 
different MPRs. The resulting speed-density 
relationships were then used in the mesoscopic 
simulation tool DYNASMART-P to determine the 
effect of connectivity on transportation network 
performance. The acceleration behavior of the 
connected vehicles was again modeled on the 
basis of IDM. It was found that an increase in 
connectivity resulted in a decrease in density or 
an increase in flow or both at low demand levels. 

As a result , the authors speculated that there 
would be an increase in network capacity due to 
connectivity at all demand levels. 

Autonomous Vehicles (AV)
Among various AV technologies, Adaptive Cruise 
Control (ACC) is one example where onboard 
sensors automatically adjust vehicle speed and 
prevent collisions between vehicles (11). Since an 
AV movement depends entirely on its sensors, its 
longitudinal behavior resembles the behavior of an 
ACC. 
	 Chang and Lai (12) investigated the 
capacity impacts of auto piloted vehicles on 
a 4 km one-lane freeway section with an on 
ramp. Different merging and car following rules 
(separation between vehicles dependent on 
velocity and velocity squared) for autopiloted 
vehicles were introduced. While different market 
penetration rates of the auto-piloted vehicles 
were investigated, the traffic stream was chiefly 
kept homogeneous (all passenger cars). Findings 
of the study indicate a 33% increase in capacity 
of vehicles that can safely enter the highway in 
a saturated environment (assuming 100% auto-
piloted vehicles). 
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	 VanderWerf et al. (13) used a 1.4s time gap 
and found that the introduction of autonomous 
adaptive cruise control (AACC) had a small, 
7% increase in freeway capacity. The AACC 
acceleration of equipped vehicles was modeled 
as a function of (a) speed difference between 
lead and following vehicle and (b) difference of 
current and desired distance between vehicles 
(14). Shladover et al. (15) provided a simple model 
of ACC vehicles where the results showed an 
insignificant change in capacity for high MPRs of 
equipped vehicles and a worsening of other traffic 
flow dynamics. 
	 Minderhoud and Bovy conducted 
a simulation-based study of the impact of 
autonomous intelligent cruise control (AICC) on 
freeway capacity (16). The headway setting was 
found to have a significant impact on capacity 
at MPRs in excess of 20 percent.  Three distinct 
headways 1.2 s, 1.0 s, and 0.8 s were examined. 
Results showed no increase in capacity at a 
headway of 1.2 s, while an increase of 4% percent 
occurred at a 1.0 s headway. Finally, the increase in 
capacity was 12% when the headway was set to 
0.8 s.  
	 Tientrakool et al. assessed the impact 
of sensor-equipped vehicles (autonomous) 
on highway capacity using formal analysis 
(analytically - using equations of motion to 
derive speed and acceleration for AV rather than 
simulations. They assumed the same speed for 
all vehicles in the traffic stream, a sensing latency 
of 0.245 s, and mechanical brake delay of 0.1 s. 
The results showed a 43% increase in freeway 
capacity for a 100% market penetration rate of 
autonomous vehicles (17).
	 Le Vine et al. developed an analytical 
autonomous vehicle driving (highly-automated 
by SAE standards) model for freeway capacity 

estimation that is ACDA (Assured Clear Distance 
Ahead) compliant (18). They focused on traffic 
streams of homogenous AVs and did not account 
for the mix of AV and TV. Compared to human 
drivers, AV were found to sustain higher flow rates 
and maximum throughput at free-flow speeds; 
under congestion, however, the rate of speed 
degradation was found to be steeper. 
	 Another simulation-based study was 
conducted on the impact of AV (ACC) on freeway 
capacity (19). It used the VISSIM simulation 
platform and considered two types of operating 
behavior: conservative and aggressive. The 
conservative scenario had longer headways and 
lower acceleration/deceleration profiles compared 
to TVs. The aggressive scenario used an opposite 
set of assumptions. AV behavior was modeled 
using VISSIM’s native car-following model 
(Wiedemann 99) with the modification of its 
parameters. With 50% of MPR, the conservative 
AV resulted in increase in both travel time and 
delay, whereas the other scenario resulted in 
reduction of travel time and delay. 

	 Talebpour et al. (20) investigated the 
effects of reserved lanes for AVs on congestion 
and travel time reliability on two freeway sections 
(a hypothetical 4-lane freeway with one on ramp, 
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and a 4-lane freeway in Chicago with multiple on 
and off ramps) using a microscopic simulation 
tool. The longitudinal behavior of AV was modeled 
based on the work of Van Arem et al. (21) and 
Reece and Shafer (22) with adjustments for 
consideration of sensor characteristics (23). Three 
policies were tested on the use of reserved lanes 
by AV. The first scenario required the AV to use 
the reserved lanes. The second scenario required 
the AV to use the reserved lane but forced the 
operation to be manual in the general purpose 
(GP) lanes. The third scenario gave the AV 
freedom to choose between the reserved lanes 
and regular lanes with autonomous operation 
everywhere. Travel time reliability was measured 
as the mean and standard deviation of the travel 
time distribution. The standard deviation of the 
travel time was found to be lower for the third 
scenario compared to other scenarios. In addition, 
the travel time reliability was found to increase 
(decrease in standard deviation) as the MPR of AV 
increased. However, the first scenario performed 
better than the other scenarios from the mean 
travel time perspective.    

	 Findings from previous studies on 
the impact of AV on capacity and travel time 

reliability are not consistent. While a majority 
report that improvements can be achieved due 
to the introduction of AV in the traffic stream 
at all MPR’s, others indicate that an increase 
in MPR beyond a threshold results in a lower 
capacity. It must be noted that studies showing 
promising improvements report inconsistent 
levels of improvements for the same MPR.  These 
inconsistencies could be attributed to model 
selection and assumed AV parameter values.

Connected-Autonomous Vehicles (CAV)
Among different types of CAV technologies, 
cooperative adaptive cruise control (CACC) 
is specifically advantageous because of its 
capability to significantly change roadway traffic 
characteristics, by enhancing capacity and 
improving flow stability (24). The availability of 
vehicle-vehicle communication in coordination 
with sensors (as in ACC) enables CACCs to 
maintain shorter following time-gaps and achieve 
faster system responses. One of the early models 
of CACC was developed by VanderWerf et al. 
(14). The model used the acceleration of the lead 
vehicle, the difference between the speed of lead 
and following vehicles and the difference between 
the current and desired distance between vehicles 
to calculate the acceleration for the following 
vehicle. Using Monte Carlo and 100% CACC 
equipped vehicles, a single lane freeway with on 
and off ramps was simulated. With the assumption 
of 0.5 s time gap between CACC equipped 
vehicles, capacity was found to increase in excess 
of 100% (from 2,050 to 4,550 veh/h). VanderWerf 
et al. (13) also studied the impact of ACC and 
CACC in a mixed traffic stream environment 
(regular vehicles along with CACC and ACC 
vehicles present).  The findings, where 100% of 
traffic was CACC equipped, were almost similar to 
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those reported in (12).
	 In a later study, Shladover et al. (25) 
studied the impact of varying MPR of CACC on 
highway capacity using the distribution of time 
gap settings obtained from other publications 
through a field experiment. The ACC car-following 
models used were Nissan’s proprietary, where 
CACC behavior was modeled based on the car-
following behavior developed by Bu et al. (26). 
The control algorithms for ACC and CACC were 
similar in all aspects, except for the desired time 
gaps. AIMSUN platform was used to conduct 
this analysis on a 6.5 km long one-lane freeway 
with a speed limit of 65 mph. Results showed 
that above certain levels (moderate) of CACC 
the potential to substantially increase highway 
capacity is very high. An increase of up to 4,000 
vphpl was achieved in a saturated (100%) CACC 
environment. 
	 Apart from theoretical and simulation 
studies, a number of recent field experiments 
have shown promising improvements in roadway 
capacity and flow stability of this technology 
(24, 26, 27). Specifically, the field experiments 
conducted by Milanes et al. (24) and Shladover 
et al. (13) showed that vehicles equipped with the 
technology can maintain a time gap as low as 0.6 
s, which compared to the conventional 1.5 s time 
gap of un-automated/un-connected vehicles, 
yield significant potential for freeway capacity 
enhancement. Theoretical analysis by Ploeg 
et al. (27) suggest that even shorter time gaps 
between equipped vehicles, sub-0.5 s, are feasible 
– provided an optimized communication latency is 
available. 
	 Vanderwerf el al. (13) studied the impact of 
varying MPR of cooperative autonomous vehicles 
on traffic flow of a single lane freeway with one 
on-ramp and one off-ramp using Monte Carlo 

simulations. The transmitted data consisted of 
(a) velocity of lead vehicle (b) acceleration of the 
lead vehicle and (c) braking capability of the lead 
vehicle. The details of the control logic for the 
cooperative autonomous vehicles can be found in 
(14). Results of the study suggest that cooperative 
autonomous vehicles (CACC) have the potential 
to enhance highway capacity substantially. The 
amount of the increase, however, was found to be 
a quadratically related to the MPR of CACC.  Ni 
et al. (28) showed that assuming a 100% market 
penetration of IntelliDrive-automated vehicles, 
those capable of inter-vehicle communication and 
autonomous driving, highway capacity can be 
improved by up to 50 percent.  

	 Tientrakool et al. (17) assessed the 
impact of vehicles equipped with sensing and 
communication capabilities (CAV) on highway 
capacity using theoretical analysis. The 
communication medium was based on a Reliable 
Neighborcast Protocol (RNP). They assumed the 
following:  homogenous traffic stream, fixed speed 
for all vehicles in the traffic stream, minimum 
acceleration of -5 m/s2,   and a maximum value of        
-8.5 m/s2, vehicle length of 4.3 m, communication 
latency of 0.081 s, and mechanical brake delay 
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Finally, in an effort to develop a simulation 
roadmap, existing guidance on simulation needs 
to be reviewed. The Transportation System 
Simulation Manual by List et. al. (30) is one such 
document. Software agnostic, it is designed as a 
reference for practitioners, students, and teachers 
on all topics of vehicle simulation. It discusses the 
concepts pertaining to simulation paradigms that 
are presently in use (microscopic, mesoscopic, 
and macroscopic), and simulation verification, 
calibration, and validation. The simulation with 
the addition of new vehicle technologies needs a 
closer look at the aforementioned aspects.
This section provides a review of past work related 
to the impact of dedicated freeway lanes (DLs) on 
CAV and AV mobility in mixed traffic conditions. 
A project funded by the National Academies of 
Sciences (31) assessed the impact of CAV DLs 

of 0.1 s. The findings indicated that a 270% increase in freeway capacity could be achieved for a 100% 
market penetration rate of CAV.
	 Van Arem et al. (21) developed one of the most widely used CACC behavior models and 
employed it to study the impact of CACC on traffic-flow characteristics at a freeway merging location 
(from four to three lanes) using the simulation platform MIXIC. Results showed that CACC can improve 
traffic-flow performance. The amount of improvement, however, was found to be directly related to the 
MPR of CACC. They also investigated the impact of reserving a lane for CACC and found that at low 
CACC MPR (under 40%) it resulted in worsening the operational performance of the freeway. 
	 It is clear that the majority of the research on AV and CAV has focused on the dynamics of 
longitudinal control of these technologies and research towards their lateral dynamics is extremely 
scarce. The only relevant work on lateral control is that of Liu et al. (29), which explores the impact of 
lateral control algorithms on freeway capacity and other traffic flow dynamics. Their results show that 
capacity increases from 2,000 vph to 3,070 vph as CAV MPR varied from 0% to 100%. It was found that 
the impact of lane changing on flow was much less than expected. They reported that almost all of the 
improvements in traffic flow characteristics (mostly capacity) can be associated with alterations to the car 
following maneuvers of CAV than their lane-changing operations.   

under mixed flow conditions comprising CAVs and 
TVs (SOVs and HOVs), on mobility and safety in a 
simulation environment. The research tracked the 
speed differential between DL and the adjacent 
general-purpose lane (GPL), to decide whether 
to install a physical barrier between the DL and 
GPLs. The results indicate that it is advisable to 
(a) operate a mixed-use DL (DL can be used by 
HOVs as well as CAVs) at lower levels of CAV 
market penetration rate (MPR) (10%),(b) use 

Lane Dedication for Autonomous 
Connected Vehicles
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exclusive CAV DLs at medium levels of CAV MPR 
(20% to 45%), and (c) not use any CAV DLs for 
high CAV MPR (greater than 50%). The research 
further found that the lane friction is minimal at 
high or low MPR of CAV with mixed use of the 
DL but is significant at medium CAV MPR with an 
exclusive DL. This level of lane friction warrants 
physical separation for both enforcement and 
safety purposes. It is evident from the research 
that a physical barrier is only advisable when the 
CAV MPR ranges from 20% to 45%.
	 Making the use of dedicated lanes 
mandatory for CAVs or AVs can significantly 
impact traffic dynamics. For example, microscopic 
simulation-based research by Talebpour et al. (32) 
assessed the effect of DL on flow breakdown and 
travel time reliability. The analysis showed that 
the mandatory lane changing for AVs’ to merge 
or diverge from the DL was the primary source of 
disturbance and congestion on the GPLs. When 
AVs had the option to operate in both DL and 
GPLs, congestion and flow breakdowns on the 
GPLs decreased significantly. Results indicated 
that at AV MPR of 30%, the flow breakdown 
at GPL was minimal. This reduction in flow 
breakdown is due to the efficient merging and 
diverging of AVs. Besides, optional use of DLs 
reduced the standard deviation of travel time. 
Furthermore, if all AVs are obliged to use the 
DLs congestion and flow breakdowns on GPLs 
become more frequent than with the optional lane. 
A similar study by Xiao et al. (33) found that for 
a CAV MPR between 30% and 50%, a CAV DL 
improved throughput and travel time reliability. 
Additionally, the research found that for a low 
CAV MPR, the speed difference between the CAV 
DL and GPLs makes it difficult for CAVs’ entry to 
and exit from the DL. This difficulty often leads to 
increased travel time for the CAVs.

	 Zhong et al. (34) also used 
microsimulation to investigate the effect of CAV 
DLs on traffic flow at a four-lane directional 
freeway facility with two on-ramps and two off-
ramps. Similar to Talebpour et al. work (32), the 
research assumed that CAVs could operate in 
both GPLs and DL. The analysis showed that the 
allocation of one and two CAV DLs increased 
the overall throughput above a CAV MPR of 
50% and 70%, respectively. Interestingly, the 
researchers found that the average headway of 
the overall traffic is optimal when only one CAV 
DL is allocated, irrespective of CAV MPR.

	 Research by Guo and Ma (35) showed 
the effect of a dedicated CAV ramp on freeway 
mobility in three different DL scenarios. The first 
scenario includes one DL for HOVs, CAVs, and 
CVs with dedicated ramps for those vehicles. 
In the second scenario, the DL was accessible 
to HOVs, CAVs, and CVs but did not include 
a dedicated ramp. The third scenario had no 
dedicated ramps with the DL available only for 
HOVs. In the first and second scenarios, CAVs 
and CVs were able to use the DLs at specific 
access and egress segments. The simulation 
results show that the first scenario yielded the 
best performance, mostly for low and medium 
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CAV MPR. Furthermore, the research suggests 
that the reduction of weaving maneuvers and the 
higher probability of CAV platooning are the two 
most important benefits of dedicated ramps.
	 Several studies analyzed the impact 
of CAV DL on freeway basic segment traffic 
dynamics, see Ye and Yamamoto, Hussain et al., 
Liu and Song, Ghiasi et al., Zhou and Zhu, Hua et 
al. (36–41). For example, Ye and Yamamoto (36) 
investigated the impact of CAV DLs on overall 
throughput. The results show that setting a CAV 
DL had minimal effects on the overall throughput 
under free flow and congested conditions. The 
research suggests that an increase in CAV MPR 
increases the span of the free-flow regime. By 
analyzing the scatter in the fundamental diagram, 
Zhou and Zhu (40) found that an increase in 
the platooning probability of CAVs increased 
the overall throughput; however, the higher 
platooning probability also increased the scatter in 
the fundamental diagram for GPLs.
	 In addition to micro-simulation, analytical 
optimization models have been widely used to 
assess the impact of DL provision. For example, 
Hussain et al. (37) determined the optimal number 
of CAV DLs on a basic freeway segment that 
maximizes the overall throughput under mixed 
traffic conditions. The research found that at a 
traffic demand of 5,000 vphpl and aggressive car 
following (0.3 s while following a CAV and 1.2 s 
while following a TV), the allocation of two DLs of 
a three-lane directional basic segment is justified 
at CAV MPR at CAV MPR exceeding 76%. Ghiasi 
et al. (39) also proposed an analytical model to 
optimize the number of CAV DLs to maximize 
throughput under mixed flow conditions and 
found that at 100 % CAV MPR, with a 0.3 s time 
gap between CAVs and 5 DLs each 2.45 m (8 ft.) 
wide, the highest throughput achieved was 30,000 

vph. Similarly, for other CAV MPR, narrowing 
the DLs’ widths increased the number of DLs or 
GPLs, resulting in higher throughput. Benefits of 
narrowing CAV DL depends on the CAV time-gap 
setting, MPR, and overall demand levels.
	 Both the number and the placement of 
DL have a significant impact on traffic dynamics. 
For example, Hua et al. (41) investigated the 
effect of different CAV DL placement policies on 
freeway basic segment operations under mixed 
traffic comprising CAVs and TVs. This research 
considered discretionary lane changing and 
assumed that the lane change probability for 
TVs is 0.2, and for CAVs, it ranges from 0.2 to 1.0. 
Similar to previous findings, the research suggests 
that it is not advisable to implement a DL at low 
CAV MPRs. For a three-lane segment, the number 
of CAV DLs can only be increased if the CAV 
MPR exceeds 50%. The research also found that 
providing a DL will increase the average speed 
of the overall traffic when CAV MPR exceeds 
40%. Interestingly, in the case of two CAV DL, 
the increase in lane changing probability of CAVs 
increased the average speed.
	 The studies reviewed herein provide 
valuable insight into the impact of CAV dedicated 
lanes under mixed traffic conditions on overall 
traffic performance. However, some limitations 
are evident regarding their impact on traffic flow 
and operations. First, few researchers compared 
the effect of continuous versus restricted 
access to DLs. Also, the influence of the various 
weaving lengths on mobility due to restricted 
access and egress needs to be investigated. 
Last, the magnitude of merging and diverging 
maneuvers on facilities may play a significant role 
in determining the best treatment for CAV’s.
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1.3 Methodology

This study uses the current lane-changing model in SUMO (43) for all vehicle types. The model uses a       
4-layered hierarchy and motivation to determine a vehicle’s lane-changing behavior. These lane-changing 
levels are 1) Strategic change, 2) Cooperative change, 3) Tactical change, and 4) Regulatory change. Due 
to lack of experimental data on the lateral behavior of different vehicles, most parameters were kept at 
their default values. Only four parameters were modified in an attempt to reflect the anticipated response 
of these vehicles in the real-world. The modified parameters are lcStrategic (100 for CAVs and 10 for AVs 
and TVs), lcLookaheadLeft (1000 meters for all vehicles), lcAssertive (2 for all vehicles), and lcKeepRight          
(0 for AVs and CAVs, and 1 forTVs).

The presence of AVs and CAVs in the traffic stream will result in new set of interactions between road 
users. Vehicles in which the driving task is still relegated to humans (CVs and TVs) will require drivers to 
adjust their response to the new driving patterns. Accordingly, drastic changes in traffic flow dynamics 
is expected to occur in the presence of CVs, AVs, and CAVs. It is paramount to realistically model the 
motion of such vehicles in a mixed driving environment and make sure they account for changes in 
CV and TV behavior, and the characteristic of each type of vehicle. This research selected SUMO (42), 
an open source microscopic simulation software. Our focus was to investigate the impact of AVs and 
CAVs on freeway throughput and CAVs dedicated lanes on traffic flow dynamics, using state-of-the-art 
motion models to replicate the behavior of each vehicle type. The advantage of using SUMO is its facility 
allowing users to pick and execute algorithms available in the open literature, without the need to be 
constrained by those provided by a private model vendor. Based on the comprehensive review of the 
literature in the previous sections, the necessary details of modeling both longitudinal and lateral controls 
for various vehicle types and the simulation setup are now explained. 

Lateral Behavior Modeling
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Autonomous Vehicles (AVs)
Autonomous vehicles use onboard sensors 
to monitor vehicles and other objects in their 
immediate environment. This constant monitoring 
of the environment enables AV’s to swiftly cope 
with changes in driving and environmental 
conditions in the traffic stream. The reaction time 
attributed to autonomous vehicles, therefore, is 
basically sensing and system mechanical delays. 
The longitudinal behavior of such vehicles can 
therefore be represented by the acceleration 
framework developed by Xiao et al. (46). This 
integrated longitudinal behavioral model is 
explicitly divided into three modes. The first mode 

Traditional Vehicles (TVs)
In this study, we apply the widely used Wiedemann (44, 45) psycho-physical model to formulate the 
behavior of regular vehicles in the traffic stream. The model asserts that the driver of a faster moving 
vehicle approaching a slower vehicle will initiate deceleration upon reaching their personal perception 
threshold. At any given moment a driver is assumed to be in one of the four modes: free driving, 
approaching, following or braking. Acceleration by mode is determined by the current speed, speed 
difference, space headway and the individual characteristics of driver and vehicle. The parameter values 
for TVs and CVs in this study are given below:

The TVs desired speed distribution was estimated from field data, and follows a normal distribution with a 
minimum of 65 mph, maximum 85 mph, mean of 70 mph and a standard deviation of 2.9 mph.

CC0 (Stand still distance) = 2 m,
CC1 (Headway time) = 1 s,
CC2 (Following variation) = 2 m,
CC3 (Threshold for entering following) = -8,
CC4 (Negative following threshold) = -0.35,
CC5 (Positive following threshold) = 0.35,
CC6 (Speed dependency of Oscillation) = 11.44,
CC7 (Oscillation Acceleration) = 0.25 m/s2,
CC8 (Standstill Acceleration) = 3.50 m/s2,
CC9 (Acceleration with 80 km/h) = 1.5 m/s2

Longitudinal Behavior Modeling
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is cruising (or speed control) mode and is designed to maintain a desired speed. This mode is active 
when there are no preceding vehicles within the detection range of the AV, which in this study is assumed 
to be 120 meters. The equation of motion for this mode is shown below.

Where: k is a parameter for determining the rate of speed error for acceleration, vdes and v
are the desired (a fixed value equal to the speed limit – assumes that AVs never violate the posted speed 
limit) and current speeds, respectively. This study uses the same k (0.4 s-1) value proposed by Xiao et al.
The second mode is car-following. The AV acceleration in this mode is a function of gap error and speed 
difference with the preceding vehicle. This mode is active when a preceding vehicle is within the AV 
detection range, the speed difference between the AV and its preceding vehicle is less than 0.1 m/s, and 
the distance error is below 0.2 m between the two vehicles. The calculated AV acceleration is:

If the parameter d0 in the above equation equals the length 
of the vehicle, the desired gap becomes zero at standstill. To 
prevent rear-end collisions, d0 was formulated as a function 
of vehicle speed to provide additional space buffer between 
vehicles at low speeds. Depending on the speed, the value of 
d0 can be obtained as shown on the right:

	 The third mode is the gap-closing mode. This mode is applied when the gap between vehicles is 
greater than twice the desired gap and the preceding vehicle is within the detection range of the AV. The 
purpose of this “approaching” mode is to reduce the speed difference and decrease the gap between the 
vehicles. The function for this model is the same as that of the car-following with different parameters. 
The values for k1 and k2 are 0.04 s-2 and 0.8 s-1 in the approaching mode, respectively.
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Connected-Autonomous Vehicles 
(CAVs)
CAVs obtain information about their surroundings 
using onboard communication and sensing 
equipment. Critical driving decisions are 
constantly made based on the line-of-sight 
and intercepted signals from other connected 
vehicles/infrastructure. The addition of 
communication capability enables CAVs to swiftly 
receive this information, be certain of the motion 
of other vehicles, respond to driving changes of 
vehicles in their vicinity and the traffic stream 
almost instantaneously (mechanical delay and 
communication latency make up the essential 
parts of the delay for CAVs). This research 
assumes that any CAV is able to communicate 
with other CAVs in its vicinity and CAVs are 
capable of forming platoons at shorter following 
time gaps. Considering all these capabilities, a 
deterministic acceleration modeling approach 
best represents this environment. This study 
adopts the works of Xiao et al. (47), Nowakowski 
et al. (48),  Milanes and Shladover (49) and Xiao 
et al. (50) for modeling CAV movements. This 
framework confines the operations of a CAV to 
three different modes:

•	 A cruising mode is tasked to maintain either a 
user-defined desired speed or posted speed 
limit in absence of a preceding vehicle;

•	 A car-following mode to maintain a fixed time 
gap with its predecessor in a car-following 
scenario;

•	 A gap-closing mode tasked with controlling 
the transition from the cruising mode to car-
following mode when a CAV approaches its 
leader from a long distance.

	 The cruising mode for CAVs is treated 
similarly to AVs. It is activated when there are no 
preceding vehicles in the range covered by the 
sensors or when the time-gap with the leading 
vehicle is larger than 2 seconds. However, the 
car-following mode for CAVs is quite different 
from that for AVs and is triggered when the gap 
and speed deviations are simultaneously smaller 
than 0.2 m and 0.1 m/s, respectively. Vehicle speed 
under this mode is calculated from the vehicle 
speed calculated in the previous time step, as well 
as the gap error in the previous time step and its 
derivative. Detailed calculation for the CAV car 
following mode are provided on the next page.

	 The third, gap-closing mode, regulates 
the transition from the cruising mode to the 
car following mode when a CAV approaches 
its leader from a long distance. This mode is 
triggered when the time-gap is less than 1.5 
seconds. Under this mode the mathematical 
formulation of speed is identical to that of the car-
following mode. However, the values for kp and kd 
parameters are 0.005 s-1 and 0.05, respectively.
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The simulation runs conducted as part of this 
project can be classified into two groups covering 
mixed and segregated flow conditions. Under the 
mixed flow condition, three freeway segments, 
3 miles in length as shown in Figure 1.1 were 
simulated to investigate the impact of AVs and 
CAVs on freeway segment throughput. Different 
market shares of CAVs and AVs were simulated 
covering the 0%-100% range in increments of 
20%. The simulation setup for dedicated lane is 
more involved and is detailed in the following two 
paragraphs.  
	 The dedicated lane (DL) simulation design 
proceeded in two steps. The first was to identify 
the appropriate CAV MPR range over which 

having a dedicated CAV lane would be feasible. 
This part was carried by simulating individual 
basic, merge and diverge freeway segments. 
Within that feasible range, a simulated facility, 
six miles in length, modeled after the EB I-540 
facility in Raleigh, North Carolina focused on the 
combined mobility effects of the DL access and 
egress strategies, and the effects of merging and 
diverging demands. A schematic of the segments 
and facility is also shown in Figure 1.1.
	 Two DL scenarios were modeled: a) 
restricted access where CAVs are mandated to 
use the CAV DL and b) unrestricted access, where 
CAVs can use any lane; non-CAV’s , however, are 
confined to the general purpose lanes in both 

Fig. 1.1 Geometric characteristics of modeled a) basic b) merge c) diverge segments d) I-540 facility

Simulation Experiments Setup
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scenarios. In the restricted access or egress case, 
CAVs may enter or exit from the DL within 3,000 
ft or 4,500 ft from the ramp gore, respectively. 
Furthermore, the setup considered three mainline 
demand values of 1,000 veh/hr/ln, 1,800 veh/hr/
ln and 3,000 veh/hr/ln. Finally, in order to evaluate 
the effect of merging and diverging traffic, ramp 
volumes were set at 5%, 15% and 25% of the 
mainline demand. Six replications per scenario 
were made, yielding 3,402 facility runs (3 demand 
levels × 3 access strategies × 3 ramp demands × 
21 MPR × 6 replications). 
	 As shown in Figure 1.1, simulated flow 
detectors were placed at key segment and 
facility locations in order to identify the critical 
throughput associated with each set of 
experiments. Runs of one hour duration using the 
above stated flow rates were conducted. 
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1.4 Analysis and Results

In this section, we first report the impact of introducing AVs and CAVs on freeway segments’ 
throughput in a mixed traffic environment. This investigation sheds light on the potential impact that 
equipped vehicles will have on the overall throughput of freeway segments as a function of their MPR. 
Subsequently, we report the impact of CAV dedicated lane on freeway segment throughput. This analysis 
aims at identifying the range of CAV market share that would justify lane reservations for such vehicles. 
Next, we explore the impact of CAV dedicated lane on the section of I-540 facility with the aim of 
unraveling the combined effects of demand, MPR, ramp volume, and DL access policies for merging and 
diverging traffic. The last section uses travel rate and the fundamental diagram scatter of speed vs flow 
simulation data to quantify the impact of said factors on the mobility when applied to a real-world facility. 

Basic Segment Throughput
Figure 1.2 shows a heat map of the maximum throughput per lane for the basic segment shown in Figure 
1(a) without a dedicated lane. The vertical axis shows the CAV MPR and the horizontal axis shows the 
MPR for AVs. Visual observations of the heatmap reveal three emerging patterns. First, moving along 
the horizontal axis with increasing AV MPR, we observe a decrease in throughput up to a certain AV 
MPR and increase in throughput beyond certain MPR. This is believed to be a result of the nature 
of interaction between AVs and TVs – as the interaction increases--- the throughput of the segment 

This analysis is conducted at the segment level, and uses three hypothetical freeway segment types 
namely basic, merge, and diverge segments.

Longitudinal Behavior Modeling

Segment Analysis
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decreases. Second, moving down along the 
y-axis, we observe systematic increases in 
throughput as the MPR for CAVs increase. 
Thirdly, the diagonal movement from top right 
corner to bottom left corner shows that the 
throughput increases as the market share of 
AVs are reduced and added to the market 
share of CAVs. All in all, this shows that AV 
effects are generally similar to TVs, but that the 
combination of automation and connectivity 
(CAVs) can close to double the TV capacity at 
very high MPRs. 

Merge Segment Throughput
Figure 1.3 shows the heat map of maximum 
lane throughput for the merge segment shown 
in Figure 1(b) without the dedicated lane. 
Similar to the basic segment findings, three 
distinct patterns emerge for the merge segment 
as well. First , an increase in throughput 
is indirectly related to AV MPR – the higher 
the MPR the lower the overall throughput of 
the merge segment. Second, the increase in 
throughput is directly related to the MPR of 
CAVs. The higher the MPR of CAVs the higher 
the throughput. Lastly, as shown by the outer 
diagonal cells of the heatmap, the more AVs 
are replaced in the traffic stream by CAVs the 
higher the throughput.

Fig. 1.2 Maximum lane throughput for basic segment while varying 
CAV, AV and TV MPRs in a mixed traffic environment

Fig. 1.3 Maximum throughput per lane for merge segment varying CAV, 
AV and TV MPRs in a mixed traffic environment
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Diverge Segment Throughput
Figure 1.4 shows the heat map for the diverge 
segment portrayed in Figure 1(c). Similar 
patterns that were evident for the basic 
segment can be observed for a diverge 
segment as well. The rate of throughput 
increase, however, appears to be lower than 
that for the basic segment. 

This section provides the results and analysis 
for scenarios that assume a reserved lane for 
CAVs is in place. 

Basic Segment Throughput
Figure 1.5 shows a heat map of the difference 
in maximum throughput per lane between a 
basic segment with a DL and one without, 
i.e. with mixed traffic flow on all three lanes. 
It summarizes the results from 21 scenarios, 
varying MPR of CAVs, AVs, and TVs. For 
comparison purposes, maximum throughput 
(in vphpl) of basic segment for homogeneous 
traffic (100% MPR) was found to be 2,150, 2,020, 

Fig. 1.4 Maximum throughput per lane for diverge segment varying 
CAV, AV and TV MPRs in a mixed traffic environment

Fig. 1.5 Maximum throughput differential (v/hr/lane) for basic segment 
while varying

Segregated Traffic Stream
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and 4,050 for TVs, AVs, and CAVs, respectively. Visual observations of the heatmap cells indicate 
improvements due to a CAV DL when their market penetration is in the range of 20% to 60%. Outside 
this range, dedicating a CAV-only lane will significantly reduce the segment throughput. These MPRs 
represent conditions with either very low levels of CAVs on the DL (generating congestion on GP lanes 
and free flow on the DL) or very high ones (generating congestion on DL lane and free flow on GP lanes), 
respectively.
	 The amount of throughput gain within the feasible regime is not constant. The highest 
improvements are observed at the 40% CAV level, followed by 20% and lastly at 60%. The introduction of 
AVs within the improvement interval results in lowering the throughput level. This is mainly due to the fact 
that the presence of multiple types of vehicles in the traffic stream will ultimately result in lower overall 
segment throughput. The resulting degradation in performance is associated with the percent of the AVs 
in the traffic stream, which is in line with the previous findings indicated in a previous study (3).

Merge Segment Throughput 
Two policies, one optional and one requiring mandatory use of the DL by CAVs are investigated in 
the context of merge segments. In the mandatory case, CAVs entering the facility from the on-ramp 
have 4,500 feet to enter the DL. This case, as shown in Figure 1.6(a), indicates that the MPR at which 
the DL becomes feasible is identical to that for the basic segment (20% - 60% CAVs). The amount of 
improvement, however, is significantly lower than that observed for the basic segment. The maximum 
throughput gain was also detected at 40% CAV MPR. To reiterate, in neither scenario, non-CAVs are only 
allowed to operate in the two general purpose lanes.
	 Results of the case where CAVs are not mandated to use the DL (Figure 1.6b) show that the 
range at which improvement is observed remains between 20% and 60% MPR of CAVs, with maximum 
improvement occurring at 40% CAVs. The amount of improvement, however, is quite different compared 
to the limited access case. At low MPR range (20% CAVs) throughput is dramatically lower, while at the 
40% and 60% CAVs MPR it is significantly higher than the limited access case. Under this policy, some 
CAVs will opt not to use the DL, which when compounded with the low CAV demand results in negligible 
throughput improvement as observed in the 20% CAVs MPR range. Optional use of the DL by CAVs 
is beneficial when the DL demand is close to its operating capacity with 40% and 60% CAVs MPRs in 
Figure 6b.

Fig. 1.6 Maximum throughput differential (v/hr/lane) for merge segment varying CAV, AV and TV MPRs; use of dedicated lane a) mandatory 
and b) optional 
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Diverge Segment Throughput 
Figure 1.7 shows the results for the freeway diverge segment. Visual observations of the figure reveal 
improvement regions similar to those found for the merge and basic segments (20%-60% MPRs). 
Heat maps for both policies (restricted and unrestricted egress lengths) show similar patterns to the 
other segment types. First, the maximum throughput gains occur at CAVs MPR of 40%. Second, the 
introduction of AVs into the traffic stream seems to improve throughput under both policies, and the 
magnitude of the improvement is directly related to the share of these vehicles in the traffic stream. 
Third, loosening the mandatory use of DL when CAV MPRs are in the 20% range results in a lower 
improvement of the throughput compared to the scenario with the restriction in place.
	 In summary, the segment analysis has confirmed that for a three-lane segment, the feasibility 
of dedicating a single CAV lane is likely to start at an MPR of 20% and up to 60%. Outside that range, 
a CAV-only lane will yield severe congestion on either the dedicated (at high CAV MPR) or the general 
purpose (at low CAV MPR) lanes.

Facility Analysis
This section provides the results for a segment of EB I-540 facility with the primary goal of exploring 
the impact of demand, MPR, ramp volume, and three policies regarding the use of DL by CAVs. Two 
measures of performance are reported: a system level travel rate (in minutes/mile) distribution approach 
and an OD movement travel rate segregated by vehicle class. The rationale for using travel rate is to also 
distinguish between through, entering and exiting vehicle performance on the facility, who travel over 
different distances. Relying on the segments’ findings, this analysis focused on a subset CAV MPRs from 
20% to 60%. All runs are based on a mainline volume of 1,800 vph/lane.

Fig. 1.7 Maximum throughput differential (v/hr/lane) for diverge segment varying CAV, AV and TV MPRs; use of dedicated lane a) 
mandatory and b) optional
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Travel Rate Distribution  
Figure 1.8 depicts the travel rate distribution 
(TRD) for the entire population of vehicles in the 
traffic stream across all scenarios. Each subplot 
represents a unique MPR composed of CAVs, 
AVs, and TVs. There are nine such distributions 
within each subplot for specific combinations of 
ramp volumes (there are 3) and access policy for 
the dedicated lane (there are 3).
	 At the 20% CAV MPR, three distinct 
clusters of TRD associated with different ramp 
volumes (5%, 15%, and 25%) emerge. Visual 
observations of each distribution within the cluster 
reveal significant overlap among them, show 
substantial impact from the ramp volumes, and 
much lower impact due to the CAV DL access 
policies. Under this lower CAV MPR the 5% ramp 
volume distributions have two dominant modes: a 
lower mode at around 1 minute/mile and an upper 
mode at approximately 3-4 minutes/mile. Those 
are mostly reflective of CAV travel rates on the DL 
and the non CAVs on the two general-purpose 
lanes, respectively. The TRDs for the 15% ramp 
volumes also have two prominent modes: one 
at around 1 minute/mile and the other at about 
6 minutes/mile. The first mode also exists with 
the 25% ramp volume but the second mode is 
nonexistent. Segregation of distributions based 
on the ramp volumes persisted at the 40% CAV 
MPR. The multimodality is evident in a couple of 
the scenarios but is not very clear in others. At the 
5% ramp volume, access policies for DL do not 
significantly impact the TRD. However, at higher 
ramp volumes (15% and 25%) mandating the 
CAVs to use the DL and providing a 3,000 access 
zone will have negative travel rate consequences. 
Those two distributions peel-off from other 
distributions in their class and are shifted to the 
right, portraying the worsening of travel conditions 

on the facility.
	 Visual inspections at the 40% CAVs MPR 
exhibit a lower spread of the TRD compared 
to the 20% case. Furthermore, increasing AV 
MPRs results in lowering the spread of the TRD 
as more human drivers are swapped by AVs that 
are traveling at a fixed desired speed. At this CAV 
level, it becomes obvious that the ramp volume 
and policies regarding the use of the DL have a 
significant impact on the facility congestion.
	 The third row of subplots in Figure 1.8 
show the 60% CAV MPRs. Within each ramp 
volume group, the best travel rate-producing 
scenario occurs when DL use is optional 
(RV5AELx, RV15AELx, and RV25AELx). This 
clearly shows that at high CAV demands 
removing the mandate on CAVs to use the DL 
results in significant improvements. Similarly, the 
distributions with the highest spread are those 
where CAVs are constrained to the DL and are 
given 3,000 ft to merge/diverge to/from the facility. 
In the middle lies distributions where CAVs are 
mandated to use the dedicated lane and are given 
4,500 ft to conduct access/egress maneuvers to/
from the DL.
	 Thus, for a given DL access policy, one 
can observe that ramp volume significantly 
impacts travel rates. Compare, for example, the 
distributions at RV5AELx with RV15AELx, and 
RV25AELx. The effect of increasing AV MPR in 
the traffic stream is mixed at this level of CAVs. 
At a ramp volume of 5%, increasing the AV MPR 
decreases the spread for both the unrestricted 
and restricted (4,500 ft access/egress lengths) 
use of the dedicated lane. However, it yielded the 
opposite effect on the scenario with restricted use 
of dedicated lane with the 3,000ft access/egress 
length. At both the 15% and 25% ramp volumes, 
however, the increase of AVs market share 
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Fig. 1.8 Travel rate distribution for I-540subsection showing the impact of ramp volume, and DL access policy for different CAVs, AVs, and 
TV MPRs. 

Legend: RV: Ramp Volume 5%, 15%, and 25% of mainline flow); AEL3: mandatory use of DL with Access/Egress Length of 3,000 ft,     
AEL4: mandatory use of DL with Access/Egress Length of 4,500 ft; AELx: continuous DL access
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Fig. 1.9 OD based travel rate distribution with 15% ramp volume and mandatory use of DL at 40% CAVs, 40%AVs, and 20% TVs, 
segregated by vehicle type
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degrades the travel rate conditions significantly for 
all the dedicated lane access policies.
	 While the TRD plots shown in Figure 1.8 
provide an aggregate picture of how different 
factors impact travel rates, segregating trips based 
on OD and vehicle type is likely to shed more 
insight into the trends observed. In this analysis, 
we fixed the CAV MPR to 40% and ramp volumes 
to 15% of mainline demand. 
	 Two scenarios, one representing the 
mandatory DL use policy and the other 
representing the optional use of the DL are then 
contrasted.  Figure 1.9a  and Figure 1.10a display 
the segregated TRD by OD and dedicated lane 
access policy, respectively. For the modeled 
facility, a total of 6 origin-destination pairs are 
shown in the schematics above the figure. Figures 
1.9b to Figure 1.9g and Figure 1.10b - Figure 1.10g 
break down each OD distribution shown in Figure 
1.9a and Figure 1.10a into TRD by each vehicle 
type.
	 Comparison of Figure 1.9a and Figure 1.10a 
show that restricting CAVs to the DL has negative 
consequences on the TRDs for all ODs as evident 
by a distribution shift to the right and an increase 
in their range. This observation holds for all vehicle 
classes when comparing the associated subplots 
of Figure 1.9b- Figure 1.9g on the one hand, with 
Figure 1.10b - Figure 1.10g on the other. Another 
important observation is that the TRDs having a 
merge origin are very similar across vehicle types 
(Figure 1.9e-Figure 1.9g and Figure 1.10e-Figure 
1.10g). However, the through and diverging OD 
distributions (per Figures 1.9b-Figure 1.9c and 
Figures 1.10b-Figure 1.10c) show significant 
variation in their TRD dependent on the vehicle 
type. The TRD of CAVs exhibit lower spread and 
shifts leftwards, indicating lower travel rates than 
TVs and AVs. The poor TRDs for AVs and TVs are 

mainly due to perturbations experienced during 
merging and diverging vehicles to and from the 
traffic stream. As such, their TRDs are on average, 
higher than those for CAVs.

Speed Flow Scatters
	 The fundamental diagram analysis focuses 
on the observed speed-flow relationship for 
various vehicle classes and their OD paths. It 
explores the impact of factors such as MPR, 
dedicated lane use policy, and ramp volume on 
lane-based congestion patterns. This analysis 
is limited to a subset of scenarios where the 
dedication of a lane for CAVs is justified based on 
the throughput results shown earlier.
 	 At the 20% CAVs scenario, top row in 
Figure 1.11, two patterns emerge on the DL. In the 
first pattern, the data points form a straight line 
at around 70 mph speed with almost no scatter. 
The second pattern shows significant spread and 
is bounded by the 60-70 mph region. The first 
pattern is related to the optional use of CAV DL 
scenarios. Under this policy, CAVs may choose 
to use the general-purpose lanes throughout the 
facility or use the DL as they see fit. This flexibility, 
in turn, results in balanced and smooth merge and 
diverge maneuvers of vehicles to and from the DL 
and thus minimizes the perturbations on the DL 
as portrayed in Figure 1.11a. 
	 The second pattern is related to the 
mandatory use of DL scenarios where CAVs are 
limited to use the DL and carry out the merge and 
diverge maneuvers within a specified distance 
from the ramps’ gore. These maneuvers result in 
significant degradation of traffic conditions on the 
DL as witnessed by the scatter in the fundamental 
diagram for the lane. Observations in Figure 
1.11b and Figure 1.11c reveal that the conditions 
on the two general-purpose lanes remain fairly 
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Fig. 1.10 OD based travel rate distribution for 15% ramp volume and optional use of DL at the 40% CAVs, 40%AVs, and 20% TVs 
segregated by vehicle type
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Fig. 1.11 Speed flow relationships for different DL use policy and MPRs
Legend: AEL4: mandatory use of DL with Access/Egress Length of 4500 ft,; AELx: Optional use of DL);                                        

Ramp volume (RV: Ramp Volume 5, 15, and 25%), and MPR (20% CAV, 40% CAV, and 60%CAV)
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constant with changes in the ramp volumes and 
DL policies. These observations provide insights 
into each lane separately and indicate that at the 
20% CAVs MPR traffic conditions on the DL are 
significantly impacted by the DL policy, and not 
necessarily by the ramp volume.
	 At the 40% CAVs, the two previously 
identified patterns still exist in the DL. In this 
scenario, however, the scatter of the data points 
are significantly higher than that of the 20% 
MPR. At this CAV level, it appears that both the 
DL policy and ramp volume impact the traffic 
conditions on the DL. First, under optional use 
of DL, a slight scatter can be observed in the 
DL fundamental diagram at 15% ramp volume, 
where it is non-existent at the 5% level. This 
phenomenon occurs at flows higher than 2,000 
vphpl. 
	 Second, significant scatter in the 
fundamental diagram is observed for the 
scenarios where CAVs are forced to use the DL. 
The degradation is directly proportional to the 
ramp volume – the higher the more the scatter 
in the fundamental diagram. Furthermore, it can 
be observed that under the limited use of DL, the 
CAV lane becomes congested at lower flows, the 
higher the ramp volumes. The mixed-flow lanes 
exhibit similar characteristics detailed for the 20% 
CAVs.
	 Finally, at the 60% MPR of CAVs, the DL 
shows similar patterns as was commented on 
for the 40% CAVs. The general purpose lanes, 
however, show that under the mandatory use of 
CAV DL, the scatter in the fundamental diagram 
is higher. Similar observations can be made for 
higher ramp volumes compared to the lower ones.



35

The previous analysis has focused on the role of microsimulation in assisting decision makers regarding 
expected throughput and speed flow relationships at the lane level. These methods may not be suitable 
at an early stage for planning level decisions regarding expected link capacities under both mixed and 
dedicated lane conditions. This section addresses concerns at the high level. It presents a simplified, 
Excel-based, capacity calculation method for freeway segments servicing CAVs, AVs and TVs. It is 
intended to highlight two items that many studies do not consider: that capacity is dependent on the 
market penetration of vehicle types in the case of mix traffic and that capacity is very sensitive to the 
user or OEM gap settings in the AV or CAV. This is important since most research studies usually pick a 
gap and produces results that are only applicable for that gap setting. Following the analysis previously 
presented in this chapter, two versions of the calculator are presented, one assuming mixed flow of 
AVs, CAVs and TVs operating in general purpose lanes, and a second version where one or more lane 
is dedicated to CAVs to take advantage of their communication capabilities to operate in platoons. 
Connected vehicles (CVs) are assumed to operate similar to traditional vehicles (TVs) and that their 
benefits derive primarily at the macro level, for example in avoiding incident locations, or congested lanes 
when receiving alerts within range. Finally, the presented capacity values are targeted for basic segments. 
In the event there is considerable merge or diverge maneuvers, the prevailing capacity is expected to be 
slightly lower than the calculator reports.

Two types of inputs are required. One is related to vehicle characteristics and attributes, and the second 
is the tested market penetration rate (MPR) for CAV, AV and TV in the traffic stream. Figure 1.12 shows the 
first set of inputs by vehicle type. We describe the key inputs next.

1.5 A Planning-Level Capacity Calculator

Inputs to Calculator
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Market Penetration Rates: These simply are the percentages of CAVs, AVs and TVs to be analyzed in 
the capacity calculator.

Time gap: represents the clear time gap between two consecutive vehicles of the same class. A range 
of values between an upper and lower bound can be specified for AV and CAVs. As one would expect, 
CAVs having both autonomy and connectivity features are expected to be able to safely operate with 
lower time gaps when following other CAVs in a platoon. Time headway between two vehicles, on 
the other end, is the sum of both the time gap and the time it takes the vehicle length to travel at the 
designated speed.  

Max platoon size: this represents the maximum length of a platoon, which operates at a given time gap 
between the two bounds. Platoons are separated from each other by an inter-platoon headway which is 
equivalent to the selected platoon time gap multiplied by a multiplier (1.5 times value in Figure 1.12).  One 
would expect that longer platoons will generate higher mainline capacity, but lower merge capacity due 
to the paucity of large gaps. 

Other Inputs: The capacity for TVs is taken from the US HCM, Version 6 and is dependent on the 
designated input free flow speed, which is also an input for all vehicle classes. Finally, the number of total 
and CAV dedicated lanes are also entered in the calculator.  

	 Figure 1.13 is the input MPR for different vehicles types. These values are used to weigh the 
various vehicle type capacities when operating in the same lane(s). For example, in the case of mixed 
traffic on general purpose lanes, the following sample weights are given for pairs of vehicles following 
each other: CAV (following)    CAV= .3×.3 = .09 and in this case CAV capacity applies; 
CAV    TV = .3 ×.4= 0.12.

Fig. 1.12 Calculator Inputs
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	 In this case, CAV cannot communicate with the lead TV vehicle and simply is limited to the use of 
its autonomous features for car-following thus the AV capacity is used; TV     Any Vehicle always uses TV 
capacity, regardless of lead vehicle type. The sum of all weights accounting for all vehicle pairs will add 
up to one. So for the input shown in Figure 1.13, CAV capacity applies 9% of the time, AV capacity applies 
41% of the time, and TV capacity applies 40% of the time.

In this section we present the capacity estimates under both mixed flow and CAV dedicated lane 
conditions. The internal model computations are not shown for ease of reading and following. 

Output for Mixed Traffic on GP Lanes
Figure 1.14 shows a screenshot of the predicted per lane capacities for the range of gap settings 
applicable to both CAVs and TVs and for the MPRs shown in Figure 1.13. The top left corner cell gives 
the highest possible capacity per lane under the estimated MPRs and (most aggressive) gap settings, 
while the bottom right cell gives the opposite capacity value under the most conservative gap settings. 
It is clear under this MPR selection, the effect on capacity, compared to current HCM values for TVs is 
not significant, varying from a decrease of 15% to an increase of about 7%. This 22% range in possible 
capacity variation highlights the effect of uncertainty that is dependent on the gap settings that OEMs will 
make available to the consumers. That level of uncertainty must be considered when planning for future 
freeway facilities as planners cannot always assume the most optimistic scenarios on those gap settings.
Interestingly, by increasing the CAV MPR to 50%, while keeping the relative MPRs for both AVs and TVs 
vehicles the same, the capacity changes varied from a lower decrease of 10.5% to a tripling of the original 
increase to 22%.  

Calculator Outputs

Fig. 1.13 MPR Inputs for Calculator

Fig. 1.14 Calculator Output: Capacity / Lane under Mixed Traffic Conditions and Indicated Gap Settings
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Output for CAVs Operating in a Dedicated Lane
In this section, we present the capacity predictions for the case where one of three directional freeway 
lanes is reserved for CAVs, while the other two are GP lanes servicing a mix of AVs and TVs. For 
comparison purposes, the same set of MPRs shown in Figure 1.13 are used in this example as well. 
	 The first observation here is that once a lane is dedicated to a single, specific vehicle class, that 
lane capacity is independent of that vehicle MPR in the traffic stream.  Capacity can be thought of in this 
case as the saturation flow rate, which is independent of demand. This makes the dedicated lane capacity 
strictly dependent on the gap settings and the maximum platoon size, since inter-platoon headways 
are 50% longer than intra-platoon headways.  The second observation is that the GP lane capacity will 
depend on the relative MPR of the constituent vehicles. In our case, and based on Figure 1.13, the relative 
MPR for AVs is 30/ (30+40) = 42.9% and the corresponding TV values is 57.1%. These are the weights 
that are used for estimating the mixed flow capacities in the GP lanes. 
	 Figure 1.15 shows the capacity for the single, exclusive CAV lane. Since there are no AVs on this 
lane, the AV time gap settings—or columns-- have no effect on capacity, only the CAV time gap setting. 
As can be seen those capacities are substantially higher than those observed on the mixed flow lanes.

	 Figure 1.16 shows the combined capacity of the two GP lanes servicing AVs and TVs. Again, since 
there are no CAVs on those lanes, the CAV time gap setting – or rows---have no impact on capacity, only 
the AV settings do.  And finally, Figure 1.17 shows the average per lane capacity for the entire freeway 
cross section combining the single CAV dedicated lane and the two GP lanes servicing AVs and TVs and 
taking the lane average.

Fig. 1.15 Calculator Output: Capacity / Lane under Mixed Traffic Conditions and Indicated Gap Settings

Fig. 1.16 Calculator Output: Capacity / Lane under Mixed Traffic Conditions and Indicated Gap Settings
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Fig. 1.17 Calculator Output: Capacity / Lane under Mixed Traffic Conditions and Indicated Gap Settings

	 It is instructive to compare the relative capacity improvements of dedicating a single lane to 
CAVs, as opposed to the use of mixed traffic on all lanes. Figure 1.18 reports the ratio of lane capacities 
that are generated from Figure 1.17 to those generated in Figure 1.14, in order to highlight the effect of 
CAV lane dedication under various gap settings for a specific MPR distribution. Again, under this market 
penetration rate, the overall effect of lane dedication is not substantial, topping perhaps a 22% increase 
under the most favorable conditions.

Fig. 1.18 Capacity Ration Per Lane with and without exclusive lane
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It is important for the reader not to mix the 
concepts of capacity – or maximum throughput, 
presented here, with the actual vehicle 
throughput. Capacity assumes there is sufficient 
demand to use up all the available space, which is 
a freeway lane in our example. It should be clear 
that the value of having a CAV dedicated lane will 
depend on the demand for that lane, compared to 
the demand for AVs and TVs in the GP lanes. At 
low CAV MPRs, dedicating one of three lanes may 
result in underutilization of that lane, and perhaps 
creating additional congestion on the GP lanes. 
The earlier analysis in this chapter has indicated 
that for a 3 lane section, the optimal CAV MPR 
for which a dedicated lane becomes feasible is 
in the neighborhood of 40%. In essence, we are 
proposing to use 1/3 of the existing right of way to 
move 40% of the traffic, a fairly efficient process. 
The same process has been used in dedicating 
HOV or HOT lanes on urban freeways.  
	 One last important comment on CAV 
lane dedication. Some studies have suggested 
that because of the combined autonomy and 
connectivity, lateral control of vehicles can be 
much improved, thus requiring narrower lanes 
for their operations, compared to TVs. One can 
envision cases where an existing freeway cross 
section can be retrofitted to narrow all lanes by 
say one foot and shoulders by two feet each to 
create a 7-9 ft. CAV lane without the need to take 
out a full GP lane. This analysis is left for future 
work. An Excel spreadsheet of the presented 
material in this section will be delivered to NCDOT 
as part of the final report.    

Additional Thoughts
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This report explored the mobility effects of 
connected-autonomous vehicles (CAVs) operating 
on freeways in a mixed traffic environment, 
and in platoons on a dedicated freeway lane. 
In the first instance, CAVs operate along with 
autonomous (AV) and traditional (TV) vehicles 
in general purpose lanes. Microscopic simulation 
that is capable of distinguishing between vehicle 
technologies and employs state-of-the-art, vehicle 
type dependent car following and lane changing 
models to capture the interaction of those vehicles 
in the traffic stream was used for this analysis. In 
addition, the report provides a planning level Excel 
tool for capacity estimation under both mixed and 
dedicated lane scenarios. 
	 In general, both the literature review and 
microsimulation work have indicated that CAVs 
in most cases will yield significant improvements 
in freeway capacity, whether they operate in 
mixed flow, but more dramatically when using 
a dedicated lane. Under mixed flow, the level 
of improvements is highly dependent on the 
CAV MPR, since platooning is only feasible 
when multiple CAVs are in proximity of each 

other. The effect of AVs in mixed traffic is less 
clear, as their effect depends on the OEM gap 
setting which was found to cover a very wide 
range in the literature, with often conflicting 
impacts on capacity. Our simulation, which used 
a conservative gap setting generally shows a 
reduction in capacity with AV presence. Part of 
the potential negative impacts on capacity may be 
due the OEM policies to put a premium on crash 
avoidance in the early AV pilot studies, to the 
detriment of enhanced mobility considerations. 
	 Freeway segment throughput simulations 
indicated that reserving a lane for CAVs 
is beneficial when their market penetration is 
within 20%-60% and optimally at 40%. Outside 
of this range, throughput degrades significantly 
due to congestion on either the dedicated or 
general purpose lanes. Furthermore, mandating 
CAVs to operate exclusively in the dedicated 
lane negatively impacted the throughput at the 
medium and high feasible ranges (40%-60%), 
but proved beneficial at the low CAV MPR of 
20%. The analysis of travel rate distribution 
demonstrated the effect of CAV dedicated 

1.6 Summary and Conclusions
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lane access control restrictions. For CAVs, the 
distribution was clearly bimodal independent of 
origin and destination points. The second mode is 
thought to be due to perturbations at the access 
and egress segments. Under the same conditions, 
but with continuous access allowed, the travel rate 
distribution became unimodal and the travel rate 
dropped significantly. In fact this shift from two 
modes to one applied to most vehicle classes and 
to most OD paths under the continuous access 
strategy. 
	 The planning level calculator analysis 
has shown that CAV’s capacity contribution is 
not proportional to their market share in the fleet 
when operating in mixed traffic. Platooning – a key 
contributor to capacity increases requires multiple 
CAV vehicles to be in proximity of each other, 
which is not guaranteed in the case of mixed 
traffic. When CAV demand makes it feasible, 
a dedicated lane will yield significant capacity 
improvements to the freeway facility. 
	 Further research is needed to generate 
additional speed flow relationships from 
microsimulation, covering a range of market 
penetrations of vehicle technologies, with the 
possible objective of generating passenger car (or 
TV) equivalencies for mixed traffic flow. Another 
important direction is to model the heterogeneity 
in car following and lane changing behavior which 
will be available to OEM clients in the future and 
which will impact the capacity estimates. Thirdly, 
an analysis of lane width requirements for CAVs to 
operate is recommended. The literature provided 
some evidence that, because of automation and 
connectivity, seven or eight or feet lanes may be 
sufficient, raising the prospect of being able to 
retrofit existing freeway cross sections to serve 
CAVs without taking out any of the GP lanes.  
Finally, the team recommends the use of real 

world pilot test data of CAVs and AVs, in order to 
assist the development and testing of surrogate 
safety measures in a microscopic simulation 
environment.
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Autonomous vehicles (AVs) are emerging with 
the promise of improving mobility and safety on 
highway facilities. Many research laboratories, 
vehicle manufacturers, and technology companies 
are currently researching the potential impacts of 
AVs on highway facilities. For instance, Waymo’s 
AVs have traveled about 10 million miles on 
public roads in 25 cities across the US (1). Several 
car manufacturers such as Tesla, Cadillac, and 
Audi are building semi-autonomous commercial 
vehicles, while fully autonomous vehicles are 
expected to emerge by 2050 gradually (2, 3). 
	 Vehicle connectivity is also expected to 
play an essential role in improving mobility and 
safety (4–7). Current studies show that AVs are 
programmed to behave conservatively, perhaps 
to reduce the likelihood of severe crashes in the 
absence of information from other vehicles and 
obstacles that are not visible to the sensors of 
AVs. Establishing a dynamic communication 
among vehicles, infrastructure, and other wireless 
devices enables AVs to collect real-time data and 
predict the future states of other users on the road 
more accurately and consequently reduces the 
likelihood of crashes. As a result, connected AVs 

can drive more aggressively without increasing 
the risk of collision with other users. The advisory 
information also helps human drivers to oversight 
the upcoming traffic condition and adjust their 
speed and maneuvers appropriately (8–12). 
	 This study aims to understand the 
potential effects of connectivity and automation 
on traffic operations at signalized intersections. 
Existing studies paid attention to the operations 
of AVs on freeway facilities. Still, the interaction of 
AVs with other vehicles and the signal controller 
has not received the same amount of attention. 
We have considered four levels of connectivity/
automation to account for different driving 

2.1 Introduction
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behaviors and their interactions in traffic stream: 
I) human-driven vehicles (HVs), II) connected 
vehicles (CVs), III) automated vehicles (AVs), and 
IV) connected and automated vehicles (CAVs). 
Various scenarios are defined based on different 
market penetration rates of these vehicles. 
	 The potential effects of CVs, AVs, and 
CAVs on traffic operations will be studies using a 
simulated testbed created in Vissim. A signalized 
intersection and the mentioned four vehicle types 
are created in Vissim. These different vehicle 
types are made by changing car following model 
parameters in Vissim: Automated vehicles are 
assumed to have shorter reaction time and 
start-up lost time than human drivers. Besides, 
automated vehicles have a shorter stand-still 
distance. Connected vehicles are assumed to 
receive information about the future state of traffic 
lights and adjust their speeds to avoid stopping 
at the intersection. As a result, the movements of 
connected vehicles are expected to be smoother 
with a lower number of stops. Connected 
automated vehicles are assumed to have all these 
mentioned capabilities. A default Python script 
code developed by Vissim is used to provide the 
communication between the signal controller 
and connected vehicles and CAVs to adjust their 
speed accordingly.
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uncertainty in their performance, Sadigh et al.  (16) 
showed that a proper AV behavior could modify 
the human driver ’s behavior by leveraging their 
actions toward a more efficient driving behavior. 
Sezer et al. (22) also clarified that making AVs 
more aggressive could yield to operating higher 
traffic volumes in a mixed autonomy environment 
without compromising the safety when there is 
communication between vehicles.  
	 Connectivity can further improve the 
efficiency and reliability of autonomous systems 
(as well as human-controlled systems). The 
information sharing between vehicles and 
infrastructure affects the driving behavior of 

Different levels of automation and connectivity 
are associated with different driving behaviors 
for HVs, CVs, AVs, and CAVs. Lower automation 
levels aim to assist human drivers by technologies 
such as adaptive cruise control (13), collision 
warning (14, 15), collision avoidance (16), or 
assistant braking (17) utilizing onboard computers 
and sensors. On the other hand, higher 
automation levels let AVs and CAVs take complete 
control of vehicle’s movements without any 
assistance from the human driver by predicting 
the future trajectory of surrounding vehicles and 
avoiding any potential collisions. 
	 The interaction between vehicles with 
different levels of connectivity and automation 
will be a challenge in the near future since these 
vehicles have different driving behaviors (18). 
AVs, as of now, are programmed to behave 
cautiously while interacting with human drivers 
(19, 20). Human drivers require a higher reaction 
time to respond to any changes in the driving 
situation. Therefore, AVs need to consider various 
decision scenarios to overcome the uncertainty 
associated with human driver ’s decisions (21). 
Since AVs have shorter reaction times and lower 

2.2 Literature Review
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vehicles by increasing the chance of making 
reliable decisions, especially with respect to car-
following and lane-changing (23). CAVs can 
improve traffic mobility without sacrificing safety. 
For instance, controlling the trajectory of CAVs 
upstream of signalized intersections based 
on advanced knowledge of signal phase and 
timing (SPaT) increases intersection throughput 
and reduces the experienced delay and risk of 
collisions among vehicles (15, 24–29). Moreover, 
the trajectory of CAVs can be managed to avoid 
stops at the intersection and minimizing fuel 
consumption (9, 25, 30). In a traffic stream of 100% 
CAVs, traffic lights could be theoretically removed 
to achieve significant improvements in traffic 
operations (31, 32)
	 While many studies have examined the 
possible effects of connected and autonomous 
vehicles on traffic operations on uninterrupted 
flow facilities, the impact of connectivity and 
automation on interrupted flow facilities, 
especially signalized intersections, are not 
thoroughly studied.  This study aims to fill this 
gap and provide insights into how different 
market penetration rates of CVs, AVs, and CAVs 
will influence driving behavior and mobility on 
signalized intersections. 
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Vissim Simulation
A microscopic simulation testbed was developed 
in Vissim to study the connectivity and automation 
technologies’ effects on traffic operations at 
signalized intersections. The simulation testbed 
provides the ability to consider various driving 
behaviors associated with different connectivity 
and automation levels. Vissim microscopic 
simulation is used in this study because it can 
simulate connected and automated vehicles 
and their interaction with conventional human-
driven vehicles. In addition, information exchange 
is possible between cars and the infrastructure 
through Vissim’s Component Object Model 

(COM) interface. Finally, Vissim provides a host 
of outputs ranging from vehicle-level output to 
network-level performance measures.

Driving Behavior
The driving behavior of vehicles with different 
levels of automation is adopted from existing 
practical studies on the behavior of automated 
vehicles. In particular, the findings of the CoEXist 
project (33) are used as the default AV model in 
Vissim. The recommendations of this project are 
based on the empirical analysis of data collected 
in the Netherlands. The experimental results were 
confirmed through Vedecom Tech and several 
simulation tests done by PTV Group. 

Car-following Behavior
The CoEXist project recommended three variants 
of driving models associated with different AV 
driving behavior: 1) CoEXist cautious model, 
2) CoEXist normal model, and 3) CoEXist all-
knowing model. The cautious driving behavior 
respects the road-code and always ensures 
moving safely on the road. There is always a 
brick wall distance between the cautious-driving 

2.3 Experimental Design
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Table 2.1:  Wiedemann 99 car-following model Calibration Components (CC)

Table 2.2:  Car-following behavior near signalized intersections

Table 2.3:  Other driving behaviors for various automation levels
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vehicles and its immediate leading car. In addition, 
a large gap will be required to perform a lane 
change maneuver or pass the un-signalized 
intersections. The driving behavior of automated 
vehicles is assumed to be cautious. The normal 
driving behavior is very similar to the behavior 
of a human driver with the additional capacity of 
measuring distances and speeds of surrounding 
vehicles by collecting information from sensors. 
All-knowing driving behavior assumes a perfect 
perception of the surrounding environment 
and receives vehicle-to-vehicle and vehicle-
to-infrastructure communications. This driving 
behavior is associated with smaller gaps for all 
maneuvers. Table 2.1 summarizes the calibrated 
components of Wiedemann 99 car-following 
parameters through the CoEXist project. It should 
be noted that the signal timing information is 
shared with connected human-driven vehicles 
and connected automated vehicles. As a result, 
the driving behavior of vehicles under these two 
types will be different than the cases that the 
information is not received.
	 It should be noted that Vissim considers 
a normal distribution for the headway time and 
the desired speed to account for the randomness 
in driving behaviors. However, higher automation 
levels are associated with less uncertainty in 
driving behaviors. As a result , the standard 
deviation of normal distribution decreases from 
HVs to CVs, AVs, and CAVs. 

Signal Control Behavior
When there is no information available about 
the future signal timing plan at an intersection, 
vehicles either follow their lead vehicles or travel 
at their own desired speed. If they hit the green 
signal, they will go through the intersection; 
otherwise, they stop for the red light. Sharing 

signal timing information with upcoming 
vehicles can change their driving behavior as 
they approach the intersection. Table 2.2 shows 
Vissim’s car following behavior for different 
connectivity and automation levels as vehicles 
arrive at an intersection. HVs and AVs need to 
continuously check the signal timing status during 
the yellow time to avoid red-light violations. 
Although CVs receive the signal timing plans, the 
human driver still needs to check to constantly 
ensure safe entrance to the intersection.
	 On the other hand, CAVs have a perfect 
sense of future plans. Therefore, one decision will 
be made, and CAV will stick to that over time. In 
addition, the safety factor for AVs and CAVs is 
considered higher to make sure that no collision 
will occur with other vehicles at the intersection.

Other Behaviors
Other driving behavior parameters suggested 
by the CoEXist project are shown in Table 2.3. 
Enforce absolute braking distance (EABK) is 
active for AVs since they drive cautiously on the 
road. Based on EABK, a further gap between 
the following and leading vehicle is kept to let 
AVs stop safely anytime, even if the lead vehicle 
stops instantly. Vissim also does not consider the 
stochasticities associated with human driving for 
automated vehicles. CAVs are allowed to interact 
with more than one vehicle around, but other cars 
interact with the most immediate vehicle.

Vissim Calibration
Wiedemann’s 99 car-following model is selected 
as it can model autonomous and connected 
autonomous vehicles (33). Model parameters 
were calibrated to match the saturation headway. 
The headway depends on two main factors in 
Vissim: 1) the desired speed and 2) the car-
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following characteristics. Since the desired speed 
is assumed fixed for all vehicle types, only the 
car-following parameters should be calibrated. 
As shown in Table 2.1, the Wiedemann 99 car-
following model contains ten parameters. 
However, only two parameters (i.e., CC0 and CC1) 
influence the intersection headway significantly 
(34). CC0 is the average desired distance between 
two vehicles in meters at a stand-still while 
queuing before the traffic signal. The headway 
CC1 describes the speed-dependent part of the 
safety distance a driver desires. Therefore, various 
combinations of these two factors were tested 
to calibrate the model. The saturation headway 
is considered as the average headway between 
fourth and tenth passenger cars in the queue 
when the traffic light changes from red to green.

Advisory Speeds
CVs and CAVs can adjust their speeds based 
on the received information on future signal 
timing plans to smoothen their movement 
and arrive at the intersection during the green 
signal. This research utilized a default Python 
script code developed by the PTV group 
to allow communications between the signal 
controller and CVs and CAVs. The script adjusts 
the minimum and maximum speed required to 

arrive at the intersection during a green light. 
If the minimum speed is less than the desired 
speed, the vehicle moves with the desired speed; 
otherwise, a constant smooth speed will be 
provided. It should be noted that the constant 
speed needs to be higher than a certain amount 
to avoid crawling. For instance, a five mph speed 
will not be provided to vehicles. Similarly, the 
maximum speed to the intersection is calculated 
and compared to the desired speed. If the 
maximum speed is greater than the desired speed, 
the desired speed will be used. Otherwise, the 
maximum speed is considered as the optimal 
speed for arriving at the intersection during the 
green signal.  
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Figure 2.1 shows the layout of the intersection testbed used in this research. The 
testbed is designed to include various lane groups: The eastbound approach 
has exclusive left turn, through, and right turn lane groups. Other approaches 
include a shared right turn and through lane. Fixed-time signal timing is used, 
and the signal timing parameters are optimized using Vistro (35). The demand 
for the eastbound entry is 900 veh/hour, and the demand for other approaches 
is 1200 veh/hour. The turning percentage for left-turn movement is 15% for all 
approaches. The right-turn percentage for eastbound, northbound, westbound, 
and southbound are assumed to be 15%, 5%, 15%, and 25%, respectively. Six 
different market penetration rates for CVs, AVs, and CAVs are used: 0%, 20%, 
40%, 60%, 80%, and 100%. In total, 56 scenarios are considered. Each scenario 
is run ten times with different random seeds to account for randomness.

Intersection Testbed

Figure 2.1:  Case Study Intersection
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Lane Group-Level Analysis
Saturation Headway
Figure 2.2 shows the saturation headway of CVs, 
AVs, and CAVs compared to the base case, i.e., 
100% HVs. The results are shown for exclusive 
right turn, through, and left turn lanes. Increasing 
the market penetration rate of CVs and CAVs 
decreases the saturation headway at all these 
exclusive lanes. This trend could be attributed to 
having access to advanced information about the 
future signal plan of the traffic light. As a result, 
the drivers of CVs are ready to start to move with 
shorter start-up lost time and reaction times. CAVs 
have shorter saturation headway than CVs due to 
less uncertainty in their behavior when there is no 
human driver to control them. In contrast to CVs 
and CAVs, increasing the penetration rate of AVs 
increases the saturation headway since AVs travel 
more cautiously near the intersection to avoid 
collisions. As expected, the saturation headway 
is lower on exclusive through lanes compared to 
the exclusive left- and right-turn lanes because 
vehicles need to slow down to negotiate the curve. 
	 A similar analysis was performed for 

shared right-turn and through lanes, and the 
results are shown in Figure 2.3. The observed 
trends are similar to exclusive right-turn 
lanes. Different right turn percentages did not 
significantly impact the saturation headway in the 
shared right and through lanes. 

Total Delay
In addition to saturation headway, the delay of 
vehicles at each lane group under different market 
penetration rates and lane configuration were 
determined. Figure 2.4 shows that increasing the 
market penetration rate of CVs and CAVs will 
decrease the delay. On the other hand, increasing 
the AV market share will increase the delay due to 
AVs’ cautious driving behavior in the vicinity of the 
intersection. 
	 Figure 2.5 shows the total delay of 
vehicles in shared lanes with different turning 
percentages. Similar trends were observed: 
increasing the market penetration rates of 
CVs and CAVs decreased the total delay while 
increasing the AV market share lead to an 
increase in the total delay. 

2.4 Results
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Figure 2.2:  Saturation headway for exclusive right, through, and left turning lanes

Figure 2.3:  Saturation headway for shared right and through lanes with 5%, 15%, and 25% right turn percentages
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Figure 2.4:  Average delay for exclusive right, exclusive through, and exclusive left turning lanes

Figure 2.5:  Average delay for shared right and through lanes with 5%, 15%, and 25% turning percentages
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Figure 2.6:  Average queue length for all movements of the intersection
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Table 2.7:  Level of service for all movements of the intersection
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Queue Length
Figure 2.6 shows the average queue length for 
each lane group of the intersection, separately. 
Increasing the market penetration rate of CVs and 
CAVs decreases the average queue length for all 
lane groups. The reduction rate is more significant 
for through movements since they have higher 
demand volumes. On the other hand, increasing 
the market penetration rate of AVs increases 
the queue length because AVs maintain longer 
headway compared to other vehicle types. We 
observe that the queue length for southbound 
through (SBT) and southbound right (SBR) lane 
groups are longer than others due to high right-
turning percentages (i.e., 25% right turn).

Level of Service
Table 2.4 shows the level of service for each lane 
group of the intersection. The results show that 
increasing the penetration rate of CVs and CAVs 
improves the level of service, but increasing the 
AVs market penetration rate deteriorates the level 
of service for all movements. When the CAV 
penetration rate becomes more than 60%, the 
level of service improves significantly compared to 
the same market penetration rate of CVs.

Intersection-Level Analysis
In addition to the lane group-level analysis, the 
research team analyzed the effects of different 
connectivity and automation levels on mobility 
performance measures at the intersection level. 
Figure 2.7 shows the average delay for the entire 
intersection, where increasing the penetration 
rate of CVs and CAVs decreases the average 
delay. However, increasing the AV penetration rate 
increases the average delay at the intersection. 
We observe that the lowest delay is associated 

with the highest number of CAVs in the 
intersection. Similar trends are also observed for 
average travel time, which is shown in Figure 2.8.
	 Figure 2.9 shows that increasing the 
penetration rate of CVs and CAVs increases 
the intersection throughput slightly. However, 
increasing the AVs penetration rate decreases 
intersection throughput significantly. The 
maximum throughput for 1 hour of the simulation 
was 4,375 vehicles with 100% CAVs in traffic 
stram. On the other hand, the lowest throughput 
was 2,763 vehicles associated with 100% AV in the 
traffic stream.
	 Figure 2.10 shows the average saturation 
headway of through movements. The saturation 
headway of human drivers was equal to two 
seconds, which was achieved by the calibration 
process. Increasing the CV market penetration 
rate decreased the average saturation headway 
to 1.5 seconds representing a 25% reduction 
while increasing the AV market penetration rate 
increased it up to 2.6 seconds representing a 30% 
increase. CAVs moved more efficiently through 
the intersection with 1.2 seconds of saturation 
headway, indicating a 40% reduction. 
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Figure 2.7:  Intersection average delay

Figure 2.9:  Intersection throughput

Figure 2.8:  Intersection average travel time

Figure 2.10:  Intersection saturation headway
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This chapter evaluated the potential effect of 
different connectivity and automation level 
on saturation headway and several mobility 
performance measures at signalized intersections. 
Previous studies mainly focused on the operation 
of connected and/or automated vehicles 
on freeway facilities. However, the behavior of 
automated vehicles in signalized intersections 
could be significantly affected by the information 
received on future signal timing plans. The 
research team considered four vehicle types 
in this project as (I) human-driven vehicles, (II) 
connected vehicles, (III) automated vehicles, and 
(IV) connected and automated vehicles. Vissim 
was used as a testbed to simulate the movement 
of vehicles with different driving behaviors and 
study their potential effects on mobility when 
they interact with each other and traffic signal 
controllers under various market penetration rates. 
The result of this study showed that CAVs provide 
the most efficient mobility. CVs also improve 
mobility due to receiving advance information 
about the future signal timing plans. As a result, 
CVs will adjust their speed upstream of the 
intersection and arrive during the green traffic 

light. In contrast with CVs and CAVs, AVs drive 
more cautiously and yield longer saturation 
headways and delays. 
	 This study determined saturation headway 
for different lane groups under various CV, AV, 
and CAV market penetration rates. These values 
could be used to calculate the saturation flow 
rate and capacity of various lane groups in the 
presence of CAVs. The results of this study are 
based on making changes in certain parameters 
of car-following and lane-changing models of 
Vissim, which were originally designed to 
represent human driving behavior. Further studies 
are required to replace the car following and lane 
changing logics of existing simulation packages 
with logics specifically designed for CVs, AVs, and 
CAVs. 

2.5 Conclusion
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