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In the coming decades, autonomous vehicles 
(AVs) are likely to grow in visibility on our 
highway networks. Although drastic changes 
are not expected, the fleet will begin to shift 
from being exclusively human-driven to a mix 
of traditional vehicles and AVs. Moreover, while 
our current fascination is with AVs for personal 
trips, commercial vehicles may be the actual 
early adaptors. Cost savings, productivity gains, 
and increased flexibility will pressure carriers 
to push forward with experimentation and 
deployment.
 The introduction of connected- 
autonomous vehicles (CAVs), AVs, and 
connected vehicles (CVs) mixed with human-
driven/ traditional vehicles (TVs) is expected 
to bring some mobility benefits for both 
freeway and arterial facilities. Nonetheless, 
the different operating characteristics of these 
vehicles have rendered these impacts highly 
variable. Furthermore, most mobility studies 
are simulation-based since field observations 
of CAVs, AVs, or CVs mixed with TVs are very 
limited. Thus, the modeling assumptions play a 
significant role in reporting the impacts. 

 This report discusses the impact of 
CAVs, AVs, CVs, and TVs on freeway network 
operation. Also, since the study focuses on the 
freight-related impacts of these technologies, 
the following nomenclature is followed in the 
rest of the text:
1. The term AVs is used to denote connected- 

autonomous trucks (i.e. all autos in the study 
are considered human-driven)

2. The term TVs is used to denote human-
driven/ traditional trucks

This nomenclature is not at odds with typical 
terms in use today, but it is slightly different from 
what might be seen in other documents. So, the 
reader needs to keep these “definitions” in mind 
when reading the report.
 It does not seem likely that truck AVs will 
simply be variants of existing trucks, as would 
be the case for hybrid or all-electric models. 
Instead, they may operate differently and have 
new infrastructure requirements. In many cases 
the driver cab is gone. The “tractor” looks more 
like a sports car than a truck. They may not 
have a driver on-board; they may be more 
conservative in their use of highway space; and 

-

-

1.1 Introduction
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they may need special facilities so they can 
transition between manned and unmanned 
operation. 
 Because of these differences, drivers 
of traditional autos, trucks, etc. may be 
uncomfortable having AVs interspersed in the 
traffic stream. A push toward dedicated lanes 
may emerge. But even if this happens, the AVs 
will have to weave across traffic to enter and 
leave those lanes. That might present policy 
and operational challenges. Industry players, 
like Waymo, have acknowledged that abnormal 
situations like construction zones and adverse 
weather may be challenging. AVs may also find 
it necessary to cross double yellow lines to 
enter driveways or multiple lanes to complete 
turns. Waymo says it is tackling these issues 
by designing trucks with more sensors and 
reduced occlusions (1).
 We study autonomy levels 4 and 
5 as specified by the Society of Automotive 
Engineers (SAE) (2). level 4 allows autonomous 
driving “under certain conditions” while in 
level 5 AVs can go anywhere. For level 4, we 
assume the AVs can operate autonomously 
on controlled access facilities like freeways; 
they will be more amenable to AV operation 
than ``lower class” facilities. For level 5, we 
assume they can use any link although we 
encourage them, through preferential weights, 
to use “higher-type” facilities where possible. 
We do not distinguish between AVs with and 
without communication/connection capabilities. 
We assume all of the AVs are connected as well 
as autonomous.  
 In level 4, we use the notion of a Mode 
Change Lot (MCL) to allow the trucks to 
transition between traditional truck (TV) and 
autonomous truck (AV) modes. These MCLs 

are much like the “Transfer Hubs” suggested by 
Waymo and Uber as part of their “vision” for the 
future of AV trucks (1, 3). With these MCLs, the 
level 4 AV trips become blends of automated 
and manual driving segments. A trip might 
begin in TV mode, transition to AV mode, and 
then transition back to TV mode. For, example, 
a truck making a local pickup and delivery trip 
might pick up the load and travel in TV mode 
to an MCL; transition to AV mode while on 
the freeway; and then transition back to TV 
mode at a second MCL so it can deliver the 
shipment to the receiver. We call these TAV trips 
because they involve operation both manually 
and autonomously. 
 Our focus is on peak period operation 
where capacity is scarce and congestion, 
common. Extension of our findings to other 
time periods seems reasonable. The three 
main questions we address are: 1) to what 
extent can AVs reduce the peak period levels 
of congestion, 2) what operational changes will 
be needed, and 3) what if any special facilities 
might be needed to accommodate these flows.
 Our case study setting is the 
metropolitan area of Raleigh, NC. Moreover, 
we use the Triangle Regional Model (TRM), the 
planning model employed by the Capital Area 
Metropolitan Planning Organization (CAMPO), 
as the analysis tool. We do two separate 
analyses for autonomy levels 4 and 5. In the 
case of level 4, we assume a probability that 
traditional truck (TV) trips will be converted to 
blended conventional-automated trips (TAVs); 
and for level 5 we assume a likelihood that all 
TV trips will become AV trips. Moreover, in the 
case of level 4, we impose a circuity restriction: 
that is, an eligible TV-to-AV conversion will only 
become a TAV trip if the extra distance traveled 
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by the TAV trip is at or below a maximum “extra 
distance” threshold.
 We use 2045 as the analysis year for the 
study because the TRM is presently validated 
for that horizon year. CAMPO is using 2045 
for demand forecasting purposes. We are not 
suggesting that 2045 is a year in which AVs 
will become common, under either level 4 or 5 
operations. Hence our analysis should be seen 
more as a with-without analysis than a forecast 
of conditions that might arise. 
 This report is organized as follows. A 
review of the technical literature focused on 
travel demand modeling of autonomous and 
connected vehicles in urban areas followed by 
a description of the Triangle Regional Model 
(TRM) that was used to conduct the analyses. 
Next is a description of the SAE level 4 analysis 
we conducted followed by a discussion 
about the level 5 analysis. Finally, we present 
conclusions and recommendations.
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The existing literature on AVs is sparse, at 
least insofar as planning-level network impact 
studies are concerned. This is true even though 
the incorporation of trucks into the planning 
process has a long history. The studies that do 
exist have examined the likelihood of “modal” 
diversions from TVs to AVs.
 Initially, and to some degree, even today, 
planning models used expansion factors to 
convert auto-only flows into mixed mode flows, 
including trucks. For a mixed flow rate of f, if 
the truck percentage p, and the passenger car 
equivalency (PCE) for the trucks was two autos, 
then the adjusted all-auto flow rate, fa, was fa 
= f *[(1-p) + 2*p] to be consistent with the BPR 
formula and the Highway Capacity Manual. 
It appears that the interest in explicitly 
accounting for truck flows began emerging 
in the 1980’s as illustrated by Zavattero and 
Weseman and Southworth (4, 5). Zavattero 
and Weseman in 1981 developed a commercial 
vehicle trip generation model for the Chicago 
region using regression analysis. Truck travel 
data, land use and employment data were 
used to derive relations between the truck trips 

generated to subareas of the Chicago region are 
estimated based on the land use characteristics 
of the area. Trucks are typically categorized 
into three sizes viz . (a) light for pickup and 
panel trucks, (b) medium for other single-
unit vehicles, and (c) heavy for tractor-trailer 
units. Land use types were categorized as: 
residential, manufacturing, commercial, public 
building, public open space, transportation-
communications-utilities (TCU), and other 
developed land. Land area and employment 
were used as measures of activity. Truck trips to 
each subarea were classified by vehicle size and 
land use of the subarea.
 In response to the Intermodal Surface 
Transportation Efficiency Act of 1991 (ISTEA), 
urban areas and states developed and 
improved their freight modeling efforts (6). 
Progress continued into the next decade as 
more sophisticated methods were developed. 
The Quick Response Model and its freight 
enhancements encouraged these developments 
because of its ease of use; see Cohen et al. 
( 7 ). Ruiter developed an urban truck travel 
model for the Phoenix metropolitan area in 1992 

1.2 Literature Review
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for which data was collected by conducting 
a truck travel survey of commercial vehicles 
operating in the area. The model was 
designed to be incorporated into the Maricopa 
Association of Governments Transportation 
and Planning Office’s (MAGTPO’s) travel model. 
A standard gravity model structure was used 
for the commercial vehicle trips distribution 
similar to the Phoenix person trip model (8). 
Fischer worked with the Monterey Bay region 
metropolitan planning organization (MPO) in 
1996, to provide solutions to their agricultural 
freight transportation problems. The study 
inventoried existing freight facilities and 
movements in order to project future demand 
for freight transportation. The study worked 
with limited data and proposed three projects: a 
regional freight logistics center, a transportation 
service center, and a rail-truck intermodal 
terminal as solutions to the regions freight 
transportation issues (9). List et al. describe the 
first instance of a freight transportation model 
being used for the New York City metropolitan 
region. Truck flows were explicitly considered 
in the ``Best Practice Model” used by the 
New York Metropolitan Transportation Council 
(NYMTC). Flow estimation was based on List 
and Turnquist (10, 11). Prem and Yu conducted 
a study in 1996 for the Quad County Regional 
Transportation Organization in Washington 
State. This is a large agro-based non-urban 
area and hence the model’s main focus was on 
agricultural truck trips (but vehicle trips were 
also modeled). External survey data and data 
from a similar rural highway projects in the 
Washington-Oregon and some other states 
was used to inform the trip making between 
communities in the area. The authors suggested 
that such areas have unique data requirements 

for freight transportation modeling, owing to 
their farm-to-market and roadway condition 
issues as opposed to the usual capacity-
related issues in urban regions (12). Marker 
and Goulias used the Quick Response Freight 
Manual (QRFM) to model truck flows in the 
Centre County, Pennsylvania. The three-step 
process of trip generation, trip distribution, and 
trip assignment were employed as suggested 
in the QRFM. Trip generation was performed 
by four business employment types and the 
households were aggregated to traffic analysis 
zones (TAZs). Three truck types (consistent with 
the QRFM) were identified: 1) four-tire trucks, 
2) one-unit trucks with six or more tires, and 
3) combination trucks. Trip generation rates 
were determined for each truck type separately. 
Trip distribution was done using a doubly 
constrained gravity model along with travel-
time based friction factors. Traffic assignment 
utilized the user equilibrium method. The model 
was calibrated by comparing total vehicle miles 
traveled as obtained from the model results 
against the observed data. The study tested 
the model by altering the TAZ sizes, one model 
used census tracts as TAZs while the other used 
census blocks as TAZs for the same network. 
No major loss of accuracy was found when 
comparing results from the two models even 
though the QRFM methods were originally 
designed for regional truck modeling using 
TAZs of tracts or larger (13). Slavin reviewed 
models for intra-urban trips and provided an 
improved framework to model truck trips in 
an urban environment. He also discussed how 
to use data more efficiently when estimating 
truck trips and using new data sources and 
tools for better modeling practices (14). Faris 
and Ismart developed a low-cost modeling 
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technique to model freight traffic for small to 
medium sized urban areas where limited local 
data is available. The purpose of their study was 
to provide freight modeling techniques that can 
be integrated easily with existing transportation 
demand models (like a traditional four-step 
model). Default QRFM trip generation rates 
and trucks classifications were used to evaluate 
truck trips and authors suggested conducting 
regional surveys in the future to replace the 
default values with local updated parameters 
(15).
 The advent of AVs has brought a new 
facet to these efforts. Although the focus 
is heavily on auto-like AVs, researchers are 
endeavoring to ascertain how these vehicles 
will be utilized, to what extent , and how they 
might be accommodated. A good example is 
Hasnat et al. who focused on the impacts of 
auto-like AVs in the context of urban traffic 
patterns (16). 
 For AVs, “mode choice” has been the 
topic more heavily considered. Huang and 
Kockelman examine shipper ’s choice between 
autonomous trucks and conventional or human-
driven trucks using a random-utility- based 
multi-regional input–output model, driven by 
foreign export demands (17). They simulated 
the impacts to freight traffic among 3109 U.S. 
counties and 117 export zones, via a nested-logit 
model for shipment or input origin and mode. 
They found that the adoption of autonomous 
trucks works in favor of longer truck trips, but 
rail ’s competitive prices hamper autonomous 
truck trips for trade distances over 3000 miles. 
Human driven trucks are found to dominate 
in shorter-distance freight movements, while 
Autonomous trucks dominate at distances of 
over 500 miles. Cantarella and Febbraro review 

the existing the existing methods for predicting 
truck trips and conclude that modeling user 
mode choice behavior with autonomous 
vehicles might require a hierarchically 
structured model (18). 
 The literature on network impacts of 
AVs is sparser. Smith examines the impacts 
of AVs on freight corridor planning (19). Nasri, 
Bektas, and Laporte explore the issues of route 
and speed optimization for AVs from a logistics 
network perspective (20). However, neither of 

these studies examine the impact of AVs on 
urban network operation and performance.

The Triangle Regional Model
The Triangle Regional Model (TRM) is 
the planning tool used by the Capital Area 
Metropolitan Planning Organization (CAMPO) 
to examine network performance in future years 
for proposed capital investment plans and new 
operating strategies. 
 Geographically, the TRM captures the 
combined statistical area (CSA) of Raleigh-
Durham-Chapel Hill. Dubbed the ‘’ Triangle 
Region”, this CSA has a population of slightly 
more than two million people and covers 3380 
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square miles. It includes all of Orange, Wake and Durham counties, and parts of Chatham, Person, 
Granville, Franklin, Nash, Johnston, and Harnett Counties. Within it, Raleigh, Durham and Chapel Hill 
are the major employment and population centers. The TRM has 2956 traffic analysis zones (TAZs). 
2857 of them are internal (I) and the remaining 99 are external (E), associated with highway entry/
exit points. Figure 1.1 shows the TAZs, superimposed on the county boundaries. 
 As is typically the case, the TRM has trip tables that are a combination of II, IE, EI, and EE 
trips. The “I” stands for “internal” and the “E” for external. Thus, an IE trip originates with the TRM 
region and exits the region to go to an external destination. The vehicle types are single occupant 
autos (SOVs), high-occupant vehicles (HOVs), light duty trucks (LCVs), single unit trucks (SUTs) and 
multiunit trucks (MUTs).

 The TRM uses four main time periods to model a typical weekday: AM peak (6:00-10:00 
am), midday (10:00 am - 3:30 pm), PM peak (3:30-7:30 pm), and nighttime (7:30 pm to 6:00 am). 
Moreover, the AM and PM peaks are further subdivided into a peak hour and pre- and post-peak 
shoulders that are 1.5 hours long. For the AM peak, the pre-shoulder is 6:00-7:30 am; the peak hour 
is 7:30-8:30 am; and the post-shoulder is 8:30-10:00 am. For the PM peak, those same time intervals 
are 3:30-5:00 pm, 5:00-6:00 pm, and 6:00-7:30 pm respectively. This means the TRM has eight (8) 
time periods altogether: the AM peak (3 time periods), midday, the PM peak (3 time periods), and 
overnight.

Fig. 1.1 The TRM, its geographic extent, and TAZs
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The TRM is the currently in version 6 (TRMv6). This version is calibrated to regional socio-economic 
conditions for 2013. Future years, like 2045 that we are using, are derived from this base. TRMv6 
is also the first version to have a separate submodel for commercial vehicle trip generation and 
distribution. 
The TRM uses a traditional four-step process to assess network performance: trip generation, trip 
distribution, mode choice, and trip assignment. Figure 1.2 presents an overview of the TRM analysis 
procedure. 

 Trip matrices are generated for five vehicle classes: single occupancy vehicles (SOVs), high-
occupancy vehicles (HOVs), light commercial vehicles (LCVs), single unit trucks (SUTs), and multiple 
unit trucks (MUTs). However, only four of these are passed forward to traffic assignment. The LCVs 
are merged with auto trips to form SOVs and HOVs. The SUTs can be thought of as box trucks (two-
axle, six tire), and the MUTs as tractor trailers (the typical 18-wheeler). Since these two truck types 
are explicitly considered in traffic assignment, the impacts of converting them to AV trips is the 
principle focus of our analyses.  
A process called “PA to OD” (productions and attractions to origin-destination trip matrices) 
transforms the person trips into “vehicle trip matrices”. The person trips encompass a rich variety of 
trip types, “complicated” by the fact that the region has several large universities and community 
colleges, which means student, staff and faculty trips are treated as special cases. The “PA to OD” 
process is not described in detail here because it is not germane to the AV assessment. Briefly, trips 
are generated by purpose, time period, and zone and then the congested travel times from the AM 
peak equilibrium assignment are fed back to trip distribution as network impedances using “skims”. 
For the truck trips, generation and distribution are handled by a stand-alone procedure. There are 
two trip categories: “goods” and “service”; they both pertain to the LCV, SUT, and MUT vehicle types. 

Fig. 1.2 Overview of the TRM process
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However, the “goods” trips pertain principally to 
the SUT and MUT truck types; and the “service” 
trips mainly pertain to the LCV and SUT truck 
types. 
Again, for the truck trips, the EE, EI, and IE 
trips are imported from the North Carolina 
Statewide Travel Model (NCSTM). Only SUT 
and MUT trip tables exist in the statewide 
model. The NCSTM uses nationwide and more 
economy-sensitive Freight Analysis Framework 
(FAF) data to forecast freight-related truck 
trips throughout the state of North Carolina. 
The TRMv6 disaggregates the trips from the 
statewide model’s zonal structure to that of the 
TRM. Again, see (21). TAZs in the statewide 
model that are inside the TRM’s geographic 
boundary are matched to corresponding zones 
in the TRM. TAZs in the statewide model that 
are outside that boundary are mapped to entry/
exit nodes on the TRM’s periphery. 
The II trip matrices are created separately. Daily 
LCV, SUT, and MUT trip matrices are created 
based on data obtained from a 2010 triangle 
region commercial vehicle travel survey. A 
cross-classification trip rate method is used. 
Inter-zonal travel impedances from the AM Peak 
equilibrium assignment are employed, as is the 
case for auto trips. The daily II trip matrices are 
then apportioned among the eight time periods 
using diurnal factors based on the 2010 survey 
results. These factors sum to unity (21).
Trip (traffic) assignment is done using a 
multiclass user equilibrium process. Solutions 
are obtained independently for each of the eight 
time periods. For each, capacities, by direction 
and link , are pre-multiplied by adjustment 
factors to account for the length of the time 
period and the extent to which peaking occurs. 
Truck trips are converted to ‘’vehicle trips” using 

‘’passenger car equivalent ” values by truck 
type. The IE, EI, and EE truck trips, which exist 
only for SUTs and MUTs, are then pre-loaded 
based on an all-or-nothing assignment. After 
this is done, capacities are downward adjusted 
to account for these f lows. A single-class 
equilibrium assignment follows. The results are 
presented in summary and detail for the PM 
peak.
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As previously explained, we examined the impacts of the autonomous trucks for both SAE level 
4 and level 5. Level 4 assumes the trucks can operate autonomously on portions of the highway 
network. Level 5 assumes they can operate anywhere.
 A “big picture” of the analysis, for both level 4 and 5, can be seen in Figure 1.3. “Normally”, the 
TRMv6 proceeds with two parallel processes, one on the top for trucks (SUTs, MUTs, and LCVs) and 
another on the bottom for SOVs and HOVs. In normal use, the dotted line with the scissors indicates 
that the SOV and HOV trip tables are augmented by the LCV trip table, a portion goes to each, 
and then assigned as part of the trip tables for vehicles for those two vehicle types. In our case, we 
modified that “scissors” process so that changes were made to the SUT and MUT trip tables as well 
before highway assignment occurred.

1.3 Level 4 Analysis

Fig. 1.3 Overview of the TRM process
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In the level 4 analysis, the LCV trips were 
untouched (the LCV treatment is explained in 
detail later in the text). Changes were made 
only to the SUT and MUT trip tables. In the level 
5 analysis, changes were made to the LCV trip 
matrices as well (again, more details given later 
in the text). Moreover, consistent with the SAE 
level 4 definition, we assumed that the trucks 
would only be able to operate autonomously 
on some portions of the highway network. We 
further assumed that these facilities would be 
the limited access freeways.

Trip Type Focus
In the level 4 analysis, we focused on the 
“goods” and “service” trips carried by the SUTs 
and MUTs. We did not include examination of 
the LCV trips in the level 4 analysis since LCV 
trips only comprise of “service” trips that might 
not be as amenable to AV conversion. This 
is because LCVs would traverse “lower level” 
facilities like arterials and the service person 
can be expected to provide a customized/ 
expertise based service which might not be as 
easy to automate in the near future (examples 
are cleaning/ plumbing based services offered 
in LCVs). 

AV Truck Routing 
Since it was assumed that the AV trucks 
would operate autonomously only in some 
locations, we needed to decide 1) how the mode 
transitions would occur and 3) where they 
would happen. 
For the first decision, we determined that safe 
“mode transitions” would need to occur. The 
truck should be standing still in a safe place. We 
invented the name “mode change lots” (MCLs) 
to designate these locations. Our notion of a 

MCL may be the same as the “Transfer Hubs” 
described by Waymo and Uber; although we 
developed the idea independently. For our 
MCLs, a TV would enter the MCL, shift from TV 
to AV mode, let the driver disembark (if deemed 
appropriate), and then move on (the driver also 
might stay with the vehicle). At the end of the 
AV segment of the trip, the truck would enter 
a second MCL and undergo a similar mode 
change, in reverse. The AV would enter the 
MCL, stop, a driver would board (or resume 
control), and then continue. 
 For the second decision, we 
determined that a limited number of MCLs 
should be created. Ideally, they would be at 
every interchange; but with more than 40 
interchanges in the TRM network, that seemed 
unreasonable. We examined numbers of MCLs 
ranging from one (1) to forty two (42) and 
determined that about 8-10 was reasonable. 
More will be said about this analysis shortly.
 To revisit the blended TV/AV trips, some 
illustrations are useful. As was said, every “AV” 
trip was a combination of TV and AV segments. 
We called these TAV trips. To illustrate, an II trip 
that became a TAV trip had three segments: 
TV, AV, and TV. The first TV segment took the 
truck from the uncontrolled origin to a MCL. 
The AV segment took it from the MCL where it 
transitioned to AV operation to the one where it 
transitioned back to TV operation. This pattern 
pertained not only to II trips but also IE, EI, and 
EE trips where the “E” end of the trip was on 
an uncontrolled facility such as a rural arterial. 
In contrast , an EE trip that went to and from 
entry/exit nodes on controlled facilities would 
only have an AV segment. Finally, for an IE or 
EI trip where the E node was on a controlled 
facility, two segments existed: TV and AV in 
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the first case, AV and TV in the second. The 
same pertained to EE trips where one of the 
end nodes, but not both, were on a controlled 
facility. 
 This differentiation of the E nodes 
between “controlled” and “uncontrolled” 
facilities meant we had to create a new type 
of node on the periphery of the network. The E 
nodes had to be separated into those that were 
on controlled facilities (C) and those that were 
not (U). This differentiation meant that instead 
of four trip types (II, IE, EI, and EE), we had nine 

(II, IU, IC, UI, UU, UC, CI, CU, and CC). 
 Figure 1.4 provides a graphical 
illustration of these ideas. Using a slightly more 
complex notation for the nodes in the trip, a 
trip from Ii to Ij would have three segments 
in its TAV trip: IiM1, M1M2 and M2Ij, using the 
subscripts “1” and “2” to differentiate between 
the first and second MCLs. An IU trip would 
become IiM1, M1M2, M2Uj and an IC trip would 
become I1M1 and M1Cj. CC trips would have 
only one segment: CiCj; no intermediate MCLs 
would be involved.

Fig. 1.4 Multi-segment trips involving mode change lots
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Mode Change Lot Locations
Given these assumptions, our next task was to identify locations for the MCLs. If cost were no object, 
and land was available, there would be one MCL at every interchange. This would maximize the 
use of AV segments. Instead, we perceived that a few would be built , near places where high trip 
productions and attractions occurred.
 A bi-objective p-Median / p-Center problem was formulated to identify the “best” locations 
for the MCLs. The best value for p was identified parametrically. 
 We started by identifying candidate locations. We computed the total truck trips originating 
and terminating in each of the internal TAZs. This originating-terminating (OT) value was obtained 
by adding the total originations (the row total in the trip matrix) to the total terminations (the column 
total) for both the SUT and MUT goods movement trips. The distribution of these OT values in the 
TRM region is shown in Figure 1.5. We then clustered TAZs with the greatest OT values and marked 
these clusters on the TRM network. Then, we identified interchanges near these clusters where 
creation of an MCL seemed feasible. This was done manually because it seemed that automating 
this selection would be complex, time consuming, and unlikely to yield a practical result. (Certainly, 
this process could in the future be automated.)

Fig. 1.5 Distribution of the Originating-Terminating (OT) Values in the TRM Region
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 Third, we identified TAZs within each cluster that could serve as surrogate MCLs. Originally, 
we wanted to add new “MCL” nodes to the TRM, but this proved to be an intractable idea because 
of the way the highway network was structured and the TRM processing code was written. Hence, 
technically, the AV trips are routed to and from these “off-freeway” TAZs. We perceived that this was 
a tolerable expedience. Where more than one TAZ might have been a logical one to select, we chose 
the one with the largest number of originating-terminating trips.
 To identify the best sets of MCLs, we formulated a bi-objective p-Median / p-Center integer 
programming problem. It was as follows:

where i = 1...N are the internal TAZs, j = 1...J are the MCL options, dij is the distance from TAZ i to 
MCL j, OTi is the total of the originating and terminating truck trips for TAZ i, Di the distance to the 
MCL assigned to TAZ i and p is the number of MCLs allowed. In equation 2, M is the sum of the OTi 
values:

 Equation (2) computes the OT-weighted average distance from the TAZs to the MCLs. 
By using the OT values, more importance is placed on the TAZs with large OT values. Equation 
(3) computes the maximum distance from any TAZ to its assigned MCL. (It is common in solving 
location problems to base the choice on both the average and the maximum distance and consider 
non-dominated tradeoffs between the two.) Equation (4) ensures that only p MCLs are selected, 
where p is a user input. Equation (5) ensures that every TAZ is assigned to an MCL. Equation (6) 
computes the distance from each TAZ to its assigned MCL. (Only one term in the sum will be non-
zero, the one for which the assignment variable xik is non-zero.) Equation (7) ensures that TAZs 
are assigned only to MCLs that have been selected. LINGO (22), a commercial math optimization 
software product was used to obtain the solution.
 One more equation was included, for ex-post-facto analysis, which calculated the actual 
average distance from the TAZs to the assigned MCLs:

(1)

(2)

(3)

(8)

(9)

(4)
(5)
(6)
(7)
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Figure 1.6 shows the location of the MCL location chosen if only one was allowed. Not surprisingly it 
is in the middle of the region.

 Figure 1.7 shows the downward trend in the weighted and unweighted average distances 
to the TAZs as the number of allowable MCL locations increases. There is no minimum. The trend 
will continue until zero is reached if the number of MCL locations is allowed to equal the number of 
TAZs. However, it is clear that the most significant drop occurs until the number of MCLs is about 
8-14.

Fig. 1.6 Mode Change Lot location if only one is allowed

Fig. 1.7 Downward trend in the weighted and unweighted distances to the internal TAZs as the number of MCLs increases
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 Figure 1.8 shows a similar downward trend in the maximum distance to any of the internal 
TAZs. It does differ from the trend in the average in that a long plateau in the value occurs from four 
sites until 40. So when trying to minimize both average and maximum distances between MCLs and 
TAZs, there is not much to be gain from the perspective of  maximum distance after four sites. But 
since the average distance still reduces significantly even after four sites, it was deemed practical 
to choose more than four MCL locations and in the range of 8-14 in order to gain some leverage 
in average distances. Since adding more MCL locations would increase costs, eight MCLs were 
deemed as the most cost-effective number for this study.

Fig. 1.8 Downward trend in the maximum distance to any internal TAZ as the number of MCLs increases



21

 It is very important to realize that the actual locations chosen changes, dramatically at first, 
as the allowable number of sites increases. Figure 1.9 illustrates this fact. The chosen sites are 
highlighted in light purple. Notice, for example that the site chosen when p =1, the very first site, 
does not reappear in the chosen set until the number of allowable sites is 12. In contrast, site “9” is 
selected when p = 2 (two sites allowed) and in every solution thereafter. The frequency with which 
the sites are selected is important information in determining which site should be selected. A trend 
we notice is that at 8 sites there is permanence in the selections. That is, the sites chosen when p 
= 8 remain chosen as part of the “best” set thereafter. Hence, from an investment standpoint, not 
only is the p = 8 solution a “good” one, based on Figures 1.7 and 1.8, but investments in those 8 sites 
would remain valuable if, “in the future”, investments were made in more.

 The locations of the sites in the p = 8 solution are shown in Figure 1.10. They tend to cover the 
Raleigh, Durham, and Chapel Hill urban areas with two additional sites along I-95.

Fig. 1.9 Trends in the sites chosen as the number of allowable MCL sites increases.

Fig. 1.10 Location of the MCLs chosen in the “8 site” solution



22

 Figure 1.11 shows the location of these MCLs from the 8-site solution as they relate to the 
highway network. It is easy to see that most of them are adjacent to interchanges on the freeway 
network. The one exception is the site south of Clayton which likely appears to be off the freeway 
network because no TAZ was immediately adjacent to US-70 in that location. (If we had been able to 
add nodes to the TRM network for the MCL site options, this anomaly would have disappeared.)

Mode Split / Diversion
For mode split , which is the same as TAV diversion, we used five rules when considering each OD 
pair. The first was that the number of trips had to exceed a minimum threshold. The second was that 
only a certain percentage of the trips could be diverted. We explored two values, 30% and 100%. The 
third was that, for simplicity, straight-line distances could be used to estimate the trip lengths (rather 
than distances across the actual network links). The fourth was that the length of the TAV trip could 
not be any more than P percent longer than the original TV trip. We used P = 20%.  The fifth was 
that the length of the AV portion of the trip had to exceed a minimum length. We used 20 miles.
 We examined every OD pair based on these five rules and identified those OD pairs for 
which diversion to TAV would be possible. Then for those, we adjusted the 2045 SUT and MUT 
goods movement trip tables so that they reflected the results of these diversions. The appropriate 
percentage (30% or 100%) of the trips for the “eligible” OD pairs were removed, and appropriate new 
TV and AVtrip segments were added back in. This meant two TV and one AV segment for every II, 
IU, UI, and UU trip (appropriate combinations of IM, MI, UM, and MU segments in the first case, and 
MM segments in the second); one TV and one AV segment for every IC, UC, CI and CU trip (IM, UM, 
MI, MU, CM, and MC segments as appropriate). In the latter case, it was assumed that the MC and 

Fig. 1.11 MCL Locations on the Highway Network for the 8-site solution
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CM segments could be removed from the PM 
time period and moved to another uncongested 
time period. 
 We did not attempt to compute a 
“defensible” mode split between traditional 
trucks (TVs) and TAVs. Instead, we were 
interested in seeing the impacts of diverting 
traditional trucks to AVs. Hence, two specific 
“diversion” percentages were assumed: 30%, 
which we thought was a “reasonable” value, 
and 100%, which would produce the greatest 
impacts. From a planning perspective, these 
choices are like “mode split ” decisions, but 
we did not derive either value based on a 
procedure akin to Huang and Kockelman, for 
example (17). 

 The OD pairs whose trips could be 
diverted to TAV trips was assessed using 
exhaustive enumeration. The five rules 
presented previously were employed. To repeat: 
1) the flow fij was at least Fmin, 2) a specific 
percentage of the trips would be diverted (either 
30% or 100%), 3) straight line distances could 
be used to approximate the node-to-node 
distances, 4) the extra distance added by the 
diversion would increases the total trip length 

by no more than E percent greater than dij 
and 5) the total distance traversed between 
the MCLs needed to be at least dMMmin. 
The pseudo code describing the process is as 
follows:

Once this analysis was complete, the list of 
ij pairs for which diversions could occur was 
known. 
 To describe the adjustment process, 
some matrix notations are useful. Let T be the 
set of all trips for a given truck and trip type in 
time period n. (The “subscripts” for truck type, 
trip type, and time period are omitted for now to 
simplify the notation. The time period subscript 
will be reintroduced later.) Tij is an element of 
matrix T and represents the number of trips for 
OD pair ij implicitly in time period n. We want to 
partition T based on whether the origin and the 
destination are of type I, M, U, or C. Doing this 
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creates 16 mutually exclusive submatrices: Tii, 
Tim, Tiu, Tic, Tmi, Tmm, Tmu, Tmc, Tui, TUM, 
Tuu, Tuc, Tci, Tcm, Tcu, and Tcc. Allowing 
that the nodes in U and C were originally in 
set E, nine of these submatrices are original: 
II , IU, IC , UI, UU, UC , CI, CU, and CC . These 
sub-matrices were used to capture the trips 
that were not converted to TAVs. The five new 
ones – IM, MI, MU, MC, UM, UC, and CM – were 
employed to capture the segments of the new 
TAV trips. 
 The action taken depended on the ij pair. 
For II, IU, UI, and UU trips, there was no change 
in when the trips occurred, including the AV 
(MM) segment. For the IC , UC, CU, CI, and CC 
trips, the AV segment was moved out of the 
original time period to some other time period 
when congestion is not an issue. 
 For the II, IU, UI, and UU trips, the “value” 
in utilizing the AV segments lies in lowering 
costs, simplifying driver logistics, and increasing 
labor productivity. For example, for a converted 
II trip, the driver that used to take the truck 
from I to I could now take it from I to MCL1, 
drop if off, put it in AV mode, pick up another 
AV truck and bring it back to i. The same could 
happen on the j end of the trip. This means 
the “carrier ” can reduce its labor cost because 
the driver does not have to accompany the 
truck for the entire trip. To illustrate numerically, 
assume the trip origin and destination are 30 
miles apart. Also assume there are ten (10) 
truck trips each way between them every day 
(20 trips total). Of the 30 miles, 10 are on “local 
highways” and 20 are on freeways. The speed 
on the “highway” portions averages 15 mph 
while the speed on the freeway averages 50 
mph. (This means for each trip 40 minutes is 
spent on the “local highways” and 24 minutes 

on the freeways. Moreover, assume the cost per 
mile is $2 and the cost per hour is $60. If these 
trips are “driver-driven”, each day the total miles 
driven is 600 miles, the total hours is 21.33, and 
the total cost is $2480. If these trips become 
TAV trips, the “driver-driven mileage” falls to 200 
miles and the driver hours drops to 13.33 hours. 
If we assume there is no savings in mileage 
cost, then the TAV-based cost is $2000, or 19.3% 
less than the TV cost. If P% of these trips are 
diverted to TAVs, then the driver-driven trips will 
be reduced by P%. If the trip is of type II, then 
P% of Tij is added to cells in the submatrices 
Tim, Tmm, and Tmi for the original time period. 
Borrowing from the notation used earlier, P% 
of Tij is added to TiM1Best, TM1BestM2Best, and TM2Bestj. 
The same is true for trips of type IU, UI, and 
UU . For trips of types IC and UC , additions 
are made to the T *M and TMC matrices and for 
those of type CI and CU, additions are made 
to matrices  TCM and TM*. However, in these 
cases, the AV portions of the trips are added 
to the overnight time period. For trip type CC, 
additions are made to the TCC matrix overnight. 
Put in pseudo-code, the process is:
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For all ij pairs in time period n such that diversions to TAVs occur, the following pseudo code 
describes the logic that was followed:

1) Decrement Tij by P%
2) For II, IU, UI, and UU trips, add P%* Tij to TiM1Best, TM1BestM2Best, and TM2Bestj in time period n
3) For IC and UC trips, add P%* Tij to TiM1Best in time period n and TM1Bestj in an uncongested 
 time period.
4) For CI and CU trips, add P%* Tij to TiM1Best in an uncongested time period and add TM1Best to
 time period n.
5) For CC trips, add P%* Tij to Tij in an uncongested time period.

 Figure 1.12 shows a simple TAV adjustment example. Starting from ten II trips that were found 
to qualify for diversion to TAV, 30%, or three trips, based on the diversion rate, are converted to TAV 
trips. Since these trips are of type II, two MCLs will be involved. Hence the three diverted TAV trips 
have three segments each. For each trip, one from the origin to the first MCL, one from the first MCL 
to the second, and a third from the second MCL to the destination. Even though the number of trip 
segments has increased, the new trips have a “long-enough” AV portion of the trip to be able to 
produce cost savings. The original 3 trips are subtracted from the II pair, and the new segments are 
added to the IM (IC), MM (CC), and MI (CI) pairs, since MCLs are a part of controlled facilities the 
trips show up in IC, CC and CI part of the matrix. 

Fig. 1.12 MCL Illustration of the quantitative analysis
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Traffic Assignment
For traffic assignment, a modified version of the normal TRMv6 process was employed. The TRMv6 
would normally use a time equivalent for the path teq based on the congested travel time timep plus 
the sum of the tolls tollp divided by a value of time vot (SUT or MUT):

 Technically, the times are arc dependent, tolls exist only on some arcs, and the tolls are 
distance dependent with rate r. This means equation (10) can be rewritten based on the arcs a   Ap 
that are in path p:

 The modification to (11) that was used for the SUTs and MUTs started by computing a 
generalized cost:

 Respectively, the terms in this formula capture time-dependent costs for the trucks, the tolls, 
distance-dependent costs, and a penalty for choosing lower class facilities (implicitly, a toll). 

 Since the third term uses a distance-based rate and the penalties are distance-and-facility-
type dependent, the generalized cost could be rewritten as:

 The distance dependency for the second, third, and fourth terms meant we could combine 
them into an equivalent toll for each arc eTolla = β*ra*dista + γ*dista + δ*pena* dista. Then we could 
sum these eTolla values across the arcs to create eTollp:

 Finally, since the value of time vot is the same as the coefficient α which appears in the first 
term, equation (14) can be divided by α on both sides to yield:

(10)

(11)

(12)

(13)

(14)

(15)
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 We used α = $1 per minute, β = $0.15 per mile, γ = $1.73 per mile. The pena values were 
facility type dependent as shown in Table 1.1:

 The values of time (VOTs) by vehicle class were adjusted to match the trends in TRM median 
income in terms of 2016 dollars:

 SUTs and MUTs were also prohibited from using High Occupancy Toll (HOT) links by 
employing a flag for that facility class. 
 As with the TRMv6, the MUTs were assigned first, choosing paths on an all-or-nothing basis 
using teqp from equation (15). These pre-loads resulted in a downward adjustment to the capacity 
remaining on the links used (by direction) and an upward adjustment to the starting values of the 
travel times.
 The SUTs were subsequently assigned as part of the standard multi-modal equilibrium 
assignment process where equation (15) was used for the SUTs and equation (10) was used for the 
SOVs and HOVs.

 
Functional Class

 11 12 13 14 15 16 21 22 23 24 25 26 99
New Penalty 
(pena) ($/mile)

0 0 0.3 1 2 3 0 0 0.3 1 2 3 0

Vehicle Class VOT US median 
income 2016$

VOT NC median 
income 2016$

VOT TRM 
median income 
2016$

Median Income 
2016

$57,617 $50,584 $61,004 

SOV $14 $12 $15 
HOV2 (1.75 x 
SOV)

$24 $21 $26 

SUT $35 $30 $37 
MUT $70 $60 $75 

Table 1.1 Penalties for facility use ($/mile) by facility type

Table 1.2 Values of Time by Vehicle Type
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Findings
Identifying a way to see the impacts and assess the change proved challenging. We tried looking 
at color-coded pictures of highway network, tables of values, total VMT (vehicle miles traveled), 
total VHT (vehicle hours of travel), differences in VMT and VHT by link, and several other ideas. 
Our finding was that, because the changes only pertain to SUTs and MUTs, and those flows are 
such a small portion of the overall trip table, and the VMT and VHT, that it was not possible to see 
significant changes in aggregate measures. This is a significant finding. Put another way, it should 
not be expected that a shift from TVs to a mixture of TVs and TAVs will not have a profound impact 
on the way in which the urban network functions during the peak hours. (This cannot be said for 
shifts from SOVs and HOVs to auto-related AVs.)
 Reflecting on the changes introduced (shifting TV trips to TAV trips; rerouting the TAV trips, 
with greater circuity, so that they made use of the freeways, and shifting the AV trips out of the 
peak) a mixed bag of impacts should be expected. The shift toward longer trips for the TAVs should 
increase VMT and maybe increase VHT. Removing the AV portions of some trips from the peak 
should lower VMT and VHT. The overall impact is unclear. Moreover, for some facilities the VMT and 
VHT might increase. For others, both might decrease.
 The clearest picture we found of the impacts was provided by showing by the change in total 
VMT and VHT, splayed out for all the links in the network, sorted by functional class and then by link 
number. A more sophisticated way to present the results was elusive. So, in Figure 1.13, the freeway 
or interstate with the lowest link number is at the left-hand end of the x-axis. The rural collector with 
the highest link number is at the right-hand end of the x-axis. (Actually, the centroid connectors are 
last.)

Fig. 1.13 The cumulative change in VMT for the 30% (top graph) and the 100% (bottom graph) diversion scenarios for a circuity limit of 25%
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 Hence, in the figure, the way to interpret the results is as follows, from left to right. The “lower 
numbered” freeway links all show a decline in VMT. (These tend to be the links in the urban areas.) 
In net, for all the freeways and interstates, the VMT is lower than in the base case (a net of 0) for 
both the 30% and 100% diversion scenarios. However, for the urban arterials, the trend is upward, in 
both cases. For the urban collector-distributors, the trend is slightly different for the two scenarios. 
For the 30% diversion case, the net VMT continues to increase; for the 100% case, there is an initial 
dip followed by a climb. In both scenarios, for the rural freeways, there is a drop in VMT that is then 
offset by increases for the rural arterials and the rural collector-distributors. All-in-all, for the 30% 
diversion scenario, the net effect is positive, the total VMT does not decrease, it increases. For the 
100% diversion scenario, the net effect is negative i.e. total VMT decreases. 
 Figure 1.14 shows the trends for VHT. In both scenarios the overall effect is positive. VHT 
increases. The increase is more dramatic for the 30% scenario than for the 100%. The same initial 
decreases can be seen for the urban freeways, although the decline is not as dramatic for the 30% 
scenario. The rural freeways also exhibit decreases. Our conclusion is that the 25% circuity allowance 
is encouraging longer TAV trips with the result that the overall net changes are positive, except for 
VMT in the 100% diversion case.

Fig. 1.14 The cumulative change in VHT for the 30% (top graph) and the 100% (bottom graph) diversion scenarios for a circuity limit of 25%
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 Figures 1.15 and 1.16 show the trends for the scenarios where the upper bound on circuity is 
15%. The net changes are smaller, but the trends are the same. Except for VMT for 100% diversion, 
the VMT and VHT increase.

Fig. 1.16 The cumulative change in VMT for the 30% (top graph) and the 100% (bottom graph) diversion scenarios for a circuity limit of 15%

Fig. 1.15 The cumulative change in VMT for the 30% (top graph) and the 100% (bottom graph) diversion scenarios for a circuity limit of 15%
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 Our conclusion is that , while shifts 
toward autonomous trucks may be beneficial for 
many reasons, expecting these shifts to produce 
savings in VMT or VHT during the peak hours 
may not be defensible.
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1.4 Level 5 Analysis

For the level 5 analysis, we focused on both 
“goods” trips and the “service” trips. We also 
focused on the LCV trips in addition to those for 
the SUTs and MUTs.

Problem Set-Up
Setting up the Level 5 analysis was much 
simpler than Level 4. Mainly, this was because 
it was assumed that the AV trucks could operate 
anywhere on the network. That being said, we 
did structure the generalized cost for the traffic 
assignment so that higher-type facilities were 
favored. The main hypotheses were these:

• The logic pertaining to the SUTs and MUTs 
would be the same.

• A percentage pg% of the SUT, MUT and LCV 
trips would be diverted to AVs. For SUTs and 
MUTs, a 100% for pg% was examined. For 
the LCVs, two values of pg% i.e. 30% and 
100% were explored.

• The AV trips between EE and EI TAZs 
would be moved out of the peak congested 
period. (While one could argue that some 
of these trips would “need to” remain in the 

congested period, we were interested in 
exploring the maximum impact that this shift 
to AVs might have. 

• The LCV trips that were converted to AVtrips 
would be removed from the LCV trip matrix 
and, through a PCE equivalency, added to 
the SUT trips.

 For trip generation there was no change. 
The same SUT, MUT, and LCV initial trip 
matrices were employed.
 For “mode split ” (trip diversion) there 
would only be AV trips. TV trips would be 
diverted to AV trips. There no longer were any 
TAV trips. 
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Traffic Assignment
For traffic assignment, we used the same process employed in level 4. The teqp values for the 
SUTs and MUTs were based on the generalized cost described in Equation (15). The MUTs were 
pre-loaded, and the SUTs were assigned as part of the normal multi-modal equilibrium assignment 
process. Moreover, since the LCV trips that were converted to AV trips were folded into the SUT trip 
matrix, the LCV-related AV trips were also subjected to the teqp calculation based on generalized 
cost.

Findings
The same changes in cumulative VMT and VHT proved to provide the clearest indication of the 
impacts. The changes in VMT and VHT were again summed in a sorted order by functional class and 
link number and then plotted.
 Figure 1.17 shows the change in total VMT for a 30% diversion of LCVs and a 100% diversion 
of SUT and MUT trips. The change is substantial across all functional classes.

Fig. 1.17 The cumulative change in VMT for a 30% diversion of LCV trips and 100% diversion of SUT and MUT trips to AV trips in level 5
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 Figure 1.18 shows the corresponding change in VHT for a 30% diversion of LCVs and a 100% 
diversion of SUT and MUT trips. The VHT decreases as well although not as substantially as the 
VMT, but the rural interstate links show a very sharp decline for VHT values.

 Figure 1.19 shows the cumulative change in VMT for the scenario where 100% of the SUT, 
MUT, and LCV trips are shifted to AVs. As was the case for the 30% diversion, the total VMT 
decreases.

Fig. 1.18 The cumulative change in VHT for a 30% diversion of LCV trips and 100% diversion of SUT and MUT trips to AV trips in level 5

Fig. 1.19 The cumulative change in VMT for a 100% diversion of LCV, SUT and MUT trips to AV trips in level 5
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 Figure 20 shows the change in cumulative VHT for the case where 100% of the LCV, SUT, 
and MUT trips are diverted to AVs.

Fig. 1.20 The cumulative change in VHT for a 100% diversion of LCV, SUT and MUT trips to AV trips in level 5
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1.5 Summary and Conclusions

This study presents the findings of a travel 
demand modeling study focused on 
autonomous freight trips in an urban area, in 
this case the Triangle region of North Carolina.  
The Triangle Regional Model (TRM), which is a 
planning model employed by the Capital Area 
Metropolitan Planning Organization (CAMPO), 
was used as the analysis tool. The analysis year 
was chosen to be 2045 simply because the 
TRM is presently validated for that horizon year.  
 We study autonomy levels 4 and 
5 as specified by the Society of Automotive 
Engineers (SAE)(2). For level 4, we assume the 
AVs can operate autonomously on controlled 
access facilities like freeways; they will be more 
amenable to AV operation than ``lower class” 
facilities. For level 5, we assume they can use 
any link although we encourage them, through 
preferential weights, to use “higher-type” 
facilities where possible. We do not distinguish 
between AVs with and without communication/
connection capabilities. We assume all of the 
AVs are connected as well as autonomous. The 
study focuses on peak period operation where 
capacity is scarce and congestion, common. 

 The three main questions we address 
are:
1. To what extent can AVs reduce the peak 

period levels of congestion?
2. what operational changes will be needed?
3. what if any special facilities might be 

needed to accommodate these flows?

There are different treatments done for AV trips 
depending on the level of automation. The 
following sections explains the level 4 and level 
5 treatments and results in detail.  
 In the case of level 4, we assume a 
probability that traditional truck (TV) trips 
will be converted to blended conventional-
automated trips (TAVs); and for level 5 we 
assume a likelihood that all TV trips will become 
AV trips. Level 4 also imposes a “circuity 
restriction” on trips: that is, an eligible TV-to-
AV conversion will only become a TAV trip 
if the extra distance traveled by the TAV trip 
is at or below a maximum “extra distance” 
threshold. Two sub-scenarios were considered: 
one where 30% of both the SUT and MUT trips 
and another 100% of both the SUT and MUT 
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trips would be diverted to AVs. The latter was 
examined to observe results from the maximum 
impacts. None of the LCV trips were converted 
to AV, since this was thought be a much more 
advanced scenario for level 4 in 2045. This is 
because LCVs are primarily “service” trips where 
the service person often provides a customized/ 
expertise based service which might not be as 
easy to automate in the near future (examples 
are cleaning/ plumbing based services). 

 Analysis of level 4 trips is more involved 
because we assumed only a portion of the 
network allows AV trips like freeways. So, AV 
portions of the diverted trips would take place 
on the freeways, and other segments of the trip 
would be human driven (TV). In order to have 
safe “mode transitions” between AV and TV 
modes, TAZs were flagged as “mode change 
lots” (MCLs). A TV can enter an MCL to shift 
from TV to AV mode, let the driver disembark 
(the driver also might stay with the vehicle). 
At the end of the AV segment of the trip, the 
truck would enter a second MCL and undergo a 
similar mode change, in reverse. The AV would 
enter the MCL, stop, a driver would board (or 
resume control), and then continue. A limited 

number of MCLs were created, keeping cost 
effectiveness in mind. We examined numbers 
of MCLs ranging from one (1) to forty two 
(42) using a bi-objective p-Median / p-Center 
problem and determined that eight (8) MCLs 
were enough to serve the regions demands. 
 Next in order to model the mode split 
from TV to TAV trips, the following five rules 
were applied when considering each OD 
pair : (a) the number of trips had to exceed 
a minimum threshold (b) only a certain 
percentage of the trips could be diverted 
(30% and 100% diversion rates were tested) 
(c) straight-line distances could be used to 
estimate the trip lengths (rather than distances 
across the actual network links) (d) The length 
of the TAV trip could not be any more than P 
percent longer than the original TV trip (P = 
20% was used) and (e) the length of the AV 
portion of the trip had to exceed a minimum 
length (we used 20). Once this analysis 
was complete, the list of OD pairs for which 
diversions could occur was known. The TV 
trips were then adjusted based their OD pair, 
some trips were also moved out of the peak 
period to examine how that effects network 
performance. For II, IU, UI, and UU trips, there 
was no change in when the trips occurred, 
including the AV (MM i.e. trip occurring 
between MCLs) segment. For the IC, UC, CU, 
CI, and CC trips, the AV segment was moved 
out of the original time period to some other 
time period when congestion is not an issue. 
For the II, IU, UI, and UU trips, the “value” in 
utilizing the AV segments lies in lowering costs, 
simplifying driver logistics, and increasing labor 
productivity.
 For traffic assignment , a modified 
version of the normal TRM process was 
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employed. To begin with a generalized cost 
was estimated for the SUTs and MUTs. The 
generalized cost equation used had four 
components: a time-dependent cost for the 
trucks, the tolls, distance-dependent costs, and 
a penalty for choosing lower class facilities 
(implicitly, a toll). Value of time (VOT) was then 
used to factor this cost into the time equivalent 
for a particular path. The VOT values were also 
adjusted to match the trends in TRM median 
income in terms of 2016 dollars, which was the 
most recent data available on VOTs. Exclusion 
sets were employed to prohibit SUTs and MUTs 
from using High Occupancy Toll (HOT) links. 
After these changes were made, the usual TRM 
highway assignment process was applied: 
MUTs were assigned first , choosing paths on 
an all-or-nothing basis using the new time 
equivalents. These pre-loads resulted in a 
downward adjustment to the capacity remaining 
on the links used (by direction) and an upward 
adjustment to the starting values of the travel 
times. The SUTs were subsequently assigned 
as part of the standard multi-modal equilibrium 
assignment using time equivalents pertaining to 
SUTs. 

 The level 4 study findings are as follows:
1. Because the changes only pertain to SUTs 

and MUTs, and those flows are such a small 
portion of the overall trip table, and the VMT 
and VHT, that it was not possible to see 
significant changes in aggregate measures. 
This is a significant finding. Thus, it should 
not be expected that a shift from TVs to 
a mixture of TVs and TAVs will not have a 
profound impact on the way in which the 
urban network functions during the peak 
hours. 

2. The various treatments applied like shifting 
TV trips to TAV trips; rerouting the TAV trips, 
with greater circuity, so that they made use 
of the freeways, and shifting the AV trips 
out of the peak, created a mixed impacts. 
The shift toward longer trips for the TAVs 
increased VMTs and VHTs in some facilities 
while reduced the VMTs and VHTs in others. 

3. The clearest picture was obtained by 
examining change in total VMT and VHT, 
splayed out for all the links in the network. 
This representation of results showed that 
there was decrease in VMTs and VHTs on 
urban freeways, urban and rural interstate, 
but an increase in other facilities like urban 
& rural collector-distributors and urban 
& rural arterials. This trend was observed 
for both 30% and 100% AV diversion rates 
and also for their respective sub-scenarios 
where circuity was 15% and 25%. 

 

 For the level 5 analysis, we focused on 
LCV trips in addition to the SUT and MUT trips. 
Here the logic pertaining to the SUTs and MUTs 
would be the same. A percentage of the SUT, 
MUT and LCV trips would be diverted to AVs: 
for SUTs and MUTs, a 100% was examined; for 
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the LCVs, 30% and 100% were explored. The 
AV trips between EE and EI facilities would 
be moved out of the peak congested period. 
The motivation for doing this was to be able 
to explore the maximum impact that the shift 
to AVs might have. Lastly, the LCV trips that 
were converted to AV trips would be removed 
from the LCV trip matrix and, through a PCE 
equivalency, added to the SUT trips.
 There was no change in trip generation. 
For “mode split ” (trip diversion) since there 
were only AV trips in level 5 (i.e. no TAV trips), 
TV trips would be diverted to AV trips. For 
traffic assignment, the same process as level 
4 was employed. The time equivalents for the 
SUTs and MUTs were based on the generalized 
cost as described earlier. The MUTs were pre-
loaded, and the SUTs were assigned as part of 
the normal multi-modal equilibrium assignment 
process. Since the LCV trips were converted 
to AV by folding them into the SUT trip matrix , 
the LCV-related AV trips were also subjected 
to the time equivalents calculated based on 
generalized cost.
 The same trends in cumulative VMT and 
VHT as level 4 were observed. The decrease 
in VMTs and VHTs was more substantial as 
compared to level 4 which is understandable 
given the assumptions for the two studies. 
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While connected and autonomous automobiles 
seem to be the major media focus presently, it 
may be autonomous trucks that emerge first in 
significant numbers. There are economic drivers, 
like reduced labor costs, that will drive carriers, 
shippers, and receivers toward the use of this 
technology.
 The question is: how will this technology 
be accommodated? How will it fit into the existing 
highway environment? Will it be disruptive? 
Will truck AVs be compatible with the existing 
mix of highway traffic? Will this depend on the 
percentage of the traffic stream that is truck AVs? 
It is not clear. Pictures of truck AV prototypes 
suggest they will look very different from existing 
trucks. For example, they do not have cabs. They 
look more like the push-back tractors that move 
planes at airports - low and boxy – or overgrown 
sports cars than present tractor-trailers or single 
unit trucks. 
 While questions about the visual 
acceptance of this technology are beyond the 
scope of an analytical study; we can examine 
the extent to which they will be compatible 
with existing highway flows in the sense of 

highway operations. We can model the highway 
environment and explore their impact.
 This study examined the way in which 
autonomous trucks might inter-relate with the 
existing traffic stream using microsimulation. 
We created a model of a hypothetical section of 
freeway that included both a basic freeway section 
with no ramps and one that included an on and 
off ramp in sequence. We conducted simulation 
studies of this facility for reasonable, but not at-
capacity flow rates, and examined the travel rate 
distributions and lane changing activity with and 
without truck AVs. We also explored what seemed 
to be reasonable ideas about how truck AVs 
might be accommodated, like setting a policy that 
they should make use of the middle lane and not 
operate anywhere on the facility. 
 Technically, we modeled CAV trucks, 
not AVs. That is, we assumed the autonomous 
trucks could talk to one another. While there is 
evidence of AV autos, that lack communication 
capabilities, and in some ways, they are already 
here, it seems far less likely that AV trucks will 
emerge that cannot communicate. Most trucks, 
particularly the ones that are large, over-the-

-

-

2.1 Introduction
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road tractor-trailers, are already equipped with 
communication technology and sensors. What is 
missing is robotic control. That is the feature we 
assume will be added. So anywhere in this report 
where we are talking about AV trucks, whether we 
say so or not, and whether the acronym employed 
is AV or CAV trucks, the implicit assumption is 
that the autonomous trucks are CAVs, they not 
only can operate autonomously but they can 
communicate with each other. Moreover, to keep 
the wording short, we will use the acronym T-CAV 
to refer to autonomous truck AVs, rather than 
writing out the words each time.
 Our representation of the T-CAVs is based 
on a premise that they would behave differently 
based on where they were in the traffic stream 
relative to other vehicles. If they were following 
another T-CAV, they would behave one way; and 
when following a traditional vehicle, differently. 
Hence, the T-CAV headways were modeled as 
dynamic and made dependent on whether a 
T-CAV was following another T-CAV or not. We 
adjusted model parameters used to represent 
vehicular “car following” and lane changing; and 
models of both that were more consistent with 
anticipated T-CAV behavior.  We assumed the 
T-CAVs would use shorter time and/or space 
headways and that they can operate in a platoon 
mode when in a string of T-CAV trucks, while 
maintaining longer headways when following 
other vehicles. This was done by having the 
T-CAVs use a car following that depended on the 
vehicle in front of it.
 The other vehicles in the traffic stream 
were assumed to be traditional vehicles, including 
autos and non-CAV trucks. These vehicles were 
presumed to be human driven. 
Since trucks are generally more limited in their 
maneuverability, our analysis included a major 

focus on lane changing. We monitored the extent 
to which lane changing was affected by the 
presence of the T-CAV trucks. This included an 
investigation of the extent to which lane use 
restrictions, imposed on the T-CAVs, might affect 
the operation of the freeway. 
 This remainder of the report is organized 
as follows. First, a review of the technical literature 
focused on modeling autonomous and connected 
trucks in a mixed traffic environment is presented. 
Second, the methodology is explained; where the 
algorithms used to model the behavior of each 
vehicle type are provided. Third, the analysis and 
results are described, and finally the summary and 
conclusions from the study are presented.
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Hurtado-Beltran and Rilet studied the impact of 
CAV Truck Platooning on the Highway Capacity 
Manual’s Capacity and Passenger Car Equivalent 
Values. They used the equal capacity passenger 
car equivalent (EC-PCE) methodology from 
the manual to estimate capacity and EC-PCEs 
for CAV truck platoons on freeway segments. 
The EC-PCE values for CAV trucks were on an 
average, 34.3% lower compared to the values 
for non-CAV trucks. The study shows that CAV 
platoons can have a positive effect on highway 
capacity. The decrease in the EC-PCE value 
depends on the CAV operational assumptions 
made by the study. (1) Yang et. al. assessed the 
safety performance of the Wyoming Connected 
Vehicle pilot deployment program under 
adverse weather conditions. A 23-mile section 
representative of the I-80 corridor was chosen to 
for the microsimulation model. Field data under 
winter snowy weather condition were collected 
to calibrate the base model. Various connected 
vehicle (CV) demand levels and CV penetration 
rates were studied and the reductions in conflicts 
displayed a decreasing trend with the increase of 
CV penetration rates. When all trucks were CVs, 

a maximum reduction in in conflicts of 85% was 
observed (2). Song et. al. developed a cellular 
automata (CA) model to simulate the influence of 
autonomous truck platoons (ATPs) on traffic flow. 
The model used a fine cell size as 0.5 m (length) 
plus 3.5 m (width). To examine the necessity of 
dedicated lane for ATPs, three scenarios were 
developed based on a three-lane expressway. 
In scenario 1, light vehicles were allowed on all 
three lanes and trucks on the two right most 
lanes. In the scenario 2, both the single truck and 
ATPs were allowed on the two right most lanes. 
In the scenario 3, the ATPs were limited to only 
the rightmost lane. They observed queuing in all 
three scenarios but scenario 3 was observed to 
have longer queues as compared to the other 
scenarios. With the increase of vehicles density, 
scenario 3 may encounter serious congestion 
eventually. An examination of the lane changing 
behavior showed that there was no significant 
difference in lane changing frequency among the 
three scenarios. The light vehicles were found 
switching lanes frequently when their front vehicle 
was a truck or ATPs, this was especially true 
for scenario 3. This caused longer ATPs to form 

2.2 Literature Review
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naturally such that the rightmost lane nearly 
became a truck only lane. For scenario 3, the 
two rightmost lanes had worse congestion than 
the other scenarios.(3) Calvert et. al. studied 
the effects of truck platooning on traffic flow. 
They proposed extensions to simulation to better 
model truck platoon interactions. They observed 
that traffic flow was negatively affected by truck 
platooning, especially in saturated states. Effects 
on merging were also explored. Merging was 
found to be effected but the impact was not too 
detrimental for short platoon sizes. (4)  Lee et. 
al. proposed a framework for exploring traffic 
mobility and safety performance for different 
market penetration rate (MPR) of truck platoons. 
Their study was based on microscopic traffic 
simulation in VISSIM using a platoon formation 
algorithm developed by the team. The results 
indicated that the difference in network mobility 
performance was not significant up to MPR of 
80%. For the truck-designated lane, the average 
speed was found to be lower than in other 
lanes. Moreover, the on-ramp section in the 
truck-designated lane had an average speed 
that was 33% lower. Increasing truck platoon 
MPRs were found to have a positive effect on 
longitudinal safety but a negative effect on 
lateral safety. (5) Duret et. al. devised an efficient 
method for splitting a platoon of vehicles near 
network merges. A model-based bi-level control 
strategy was proposed. The main motivation was 
to provide a solution to the problem of active 
platoon maneuver near merges for both CAV 
and mixed traffic conditions. The hierarchical 
framework proposed uses an analytical car-
following model to decide optimal tactical 
decisions. It then uses a more detailed model 
to predict and control operational acceleration 
dynamics of trucks. The tactical part of the 

provides optimal vehicle indexes in the platoon to 
yield gaps for merging vehicles and time instants 
they should start the yielding process. This was 
decided taking into account a speed drop that 
they can accept compared to the equilibrium 
speed. The operational part utilizes a third-order 
longitudinal dynamics model to estimate optimal 
truck accelerations so that new equilibrium gaps 
can be formed when the merging vehicles begin 
lane changing.(6) Mesa-Arango and Fabergas 
assessed the impacts of ATPs on travel time and 
travel time reliability at freeway diverge areas. 
They proposed a framework to integrate ATPs 
into a microscopic traffic simulator. The impact 
of four experimental variables on travel time 
and reliability was examined: (i) traffic volume 
projections, (ii) ATP penetration rates, (iii) ATP 
sizes, and (iv) ATP gaps. Two performance metrics 
were employed, and statistical analysis was done 
to measure impacts on through and divergent 
traffic. The results indicated the significance and 
impact of experimental variables on travel time 
and reliability.(7)
 Research on autonomous trucks 
is dominated by autonomous trucking related 
work, however, another largely explored area 
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worth mentioning is the challenges that come 
with human interactions with autonomous and 
connected vehicle technologies.  A slew of studies 
focus on the behavioral impacts on trucks drives 
in the context of autonomous driving.  Zhang et. 
al. studied how safe and comfortable transitions 
of control from the automated system back to 
the human drivers can be made. They examined 
truck drivers’ take-over response times after a 
system-initiated request to take back control in 
non-critical truck platooning scenarios. Truck 
driving simulator experiment was conducted on 
22 professional truck drivers and subjects were 
instructed to drive under three conditions during 
highly automated driving: 

•  Driver monitoring condition i.e., drivers were 
instructed to monitor the surroundings, 
•  Driver not-monitoring condition where 
drivers were provided with a hand-held tablet 
and were asked to use it, and 
•  Eyes-closed condition where the drivers 
were not allowed to open their eyes. The 
take-over response time was assumed to 
comprise the perception response time and 
the movement response time. 

 Results indicated longer total take-over 
times with high variability for the Driver not-
monitoring and Eyes-closed conditions. Hand 
movement response time was observed to be 
the major component of the total take-over time. 
It was influenced by the movements done to 
resume physical readiness before taking over 
control, like putting away the tablet, or adjusting 
the seat. (8) Many other researchers have looked 
into the taking-over process for truck drivers 
operating AV, CAV, and CV trucks. (9–14)
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Our main objective was to explore the extent to 
which highway operations, especially on freeways, 
might be affected by the presence of the T-CAVs. 
We perceived that the best way to do this was 
to create a microscopic simulation model of this 
mixed vehicular environment and apply that 
model to typical freeway situations; namely, a 
basic freeway section and a typical urban setting 
that involved an on ramp followed by an off-
ramp. We also wanted to explore the impacts 
of specifying which lanes could be used by the 
T-CAVs, either all lanes or just the middle lane.
 Many microscopic simulation software 
options exist – VISSIM, PARAMICS, TransModeler, 
and CORSIM. Of these, TransModeler is the 
platform that NCDOT typically employs. However, 
for this study, we did not want to be dependent 
upon pre-programmed logic for how the T-CAVs 
would operate. We wanted the ability to directly 
control the T-CAV lane changing and car-
following. Hence, we sought a microsimulation 
software platform that would be open source, and 
found SUMO (15). SUMO was chosen because it 
allows the user to select from models available in 

the literature rather than relying solely on models 
provided in the application framework. It also 
offers easy to use output file formats that provide 
a detailed picture of lane changing maneuvers/ 
events during simulation. 
 Since lane changing behavior was of 
significant interest , we will describe how 
SUMO handles that activity first. The default 
lane changing model in SUMO i.e. LC2013 (16) 
uses a four-layered hierarchy of motivations to 
determine what a vehicle will do in terms of its 
lateral behavior. Four incentives are employed to 
determine if a lane change will take place: 
1) strategic change, 2) cooperative change, 
3) tactical change, and 4) regulatory change. 
A strategic lane change is one when a vehicle 
must change its lane in order to be able to 
reach the next edge on its route. A cooperative 
represents the real-world situations when 
vehicles/ drivers change lanes solely to help 
another vehicle with lane changing towards their 
lane. Tactical lane changing refers to maneuvers 
where a vehicle attempts to avoid following a slow 
leader. Regulatory lane changes are motivated by 

2.3 Methodology



49

mandatory traffic laws. For example in countries 
with right-handed driving, drivers are under the 
obligation to clear the passing lane whenever they 
do not use it for an overtaking maneuver. 
 The lane-changing model has several 
parameters, but only four values were changed 
from their defaults to emulate the T-CAVs. As 
research on this area grows, we will have more 
information about parameter values specific 
to a vehicle type, but at present, no reference 
sources exist. We elected to modify the following 
parameters: 1) lcStrategic, the look-ahead 
distance for strategic decision making, which we 
set to 1000 meters for the T-CAVs and human 
driven trucks; 2) lcLookaheadLeft, the distance 
that vehicles look ahead for lane changing 
opportunities, which we set at 1000 meters for 
all vehicles, and 3) lcAssertive , the willingness 
to accept lower front and rear gaps on the target 
lane (The required gap is divided by this value), 
which we set at 2 for all vehicles. 
  Insofar as car-following is concerned, 
we employed a model built on the work of Xiao 
et al.(17), Nowakowski et al.(18) ,  Milanes and 
Shladover(19) and Xiao et al. (20). It is assumed 
that the T-CAVs obtain information about their 
surroundings using onboard communication 
and sensing equipment. Driving decisions are 
made using line-of-sight and signals received or 
intercepted from other connected vehicles and/or 
the infrastructure. The communication capability 

enables the T-CAVs to ascertain the real-time 
motion of other vehicles, respond to driving 
changes of vehicles in their vicinity and the traffic 
stream almost instantaneously (mechanical delay 
and communication latency make up the essential 
parts of the delay for the T-CAVs. We assumed 
that the T-CAVs can communicate with all other 
T-CAVs in their vicinity and that the T-CAVs can 
form platoons that involve shorter following time 
gaps. The T-CAV can operate in three modes:

•  Cruising: the T-CAV maintains either a user-
defined desired speed or posted speed limit 
in absence of a preceding vehicle;
•  Car-following: the T-CAV maintains a fixed 
time gap to its preceding vehicle; and
•  Gap closing: the T-CAV transitions from the 
cruising mode to car-following mode when 
it approaches a preceding vehicle that was a 
long distance away.

 The cruising mode for the T-CAVs is 
treated like AVs. It is activated when there are no 
preceding vehicles in the range covered by the 
sensors or when the time-gap with the leading 
vehicle is larger than two (2) seconds. However, 
the car-following mode for CAVs is quite different 
from that for AVs and is triggered when the gap 
and speed deviations are simultaneously smaller 
than 0.2 m and 0.1 m/s, respectively. 
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 Vehicle speed under this mode is calculated from the vehicle speed in the previous time step, 
as well as the gap error in the previous time step and its derivative. The details of this calculation for the 
T-CAV car-following mode are provided below.

The gap error (en,j-1) in equation 1 is determined as:

where:

 The dynamic spacing margins for the T-CAVs, d0, is a function of the vehicle speed as follows:

The third, gap-closing mode, regulates the transition from the cruising mode to the car following mode 
when a CAV approaches its leader from a long distance. This mode is triggered when the time-gap is 
less than 1.5 seconds. Under this mode, the mathematical formulation of speed is identical to that of the 
car-following mode. However, the values for kp and kd parameters are 0.005 s-1 and 0.05, respectively.
 For traditional vehicles, the widely used psycho-physical model by Wiedemann (21, 22) was 
utilized. The model asserts that the driver of a faster moving vehicle approaching a slower vehicle will 
initiate deceleration upon reaching their personal perception threshold. At any given moment, a driver 
is assumed to be in one of the four modes: free driving, approaching, following, or braking. Acceleration 
by mode is determined by the current speed, speed difference, space headway and the individual 
characteristics of driver and vehicle. The parameter values for autos and non-CAV trucks in this study 
are given in Table 1 below (the values changed are shown in bold, rest of the values are defaults for the 
parameter):

(1)

(2)

(3)
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included to buffer out any transients created by 
vehicle entry. The third segment was included to 
ensure that the operating conditions at the right-
hand edge of the “test”, second segment would 
implicitly match those at the left-hand edge. That 
is, no traffic-condition-induced constraints on 
operation would not be removed because the 
second segment simply ended abruptly.
 Within the “test” segment, we collected 
detailed information about vehicle trajectories. 
We installed loop detectors 100 ft inside the left- 
and right-hand edges of the “test” segment. With 
these detectors, we collected the vehicle ID, lane 
location, and a timestamp for every vehicle. We 
also used a pre-defined report provided by SUMO 

Figure 2.1: The Basic Segment

Table 2.1: Parameter values in car following for Autos and Non-CAV Trucks

 The simulation runs can be thought of as 
being of two types: 1) a basic freeway segment or 
2) a “weaving” segment, technically an on-ramp 
followed by an off-ramp. 
 For the basic segment case, a hypothetical 
freeway was created comprised of three freeway 
sections, each 3 miles in length as shown in 
Figure 2.1. We treated the first segment 
as the “loading” segment, the second as the 
“observation” or “test” segment, and the third as 
the “exit” or “post-experiment” segment. 
 Vehicles entered the system at the left-
hand edge of the first segment, transited through 
the system and exited at the right-hand edge 
of the third segment. The first segment was 
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from their entry lane to the middle lane by the 
time they reached the second segment. To make 
this happen, we provided a look-ahead ability for 
the T-CAVs so that they could see in advance 
when they needed to be in the middle lane. 
To see that this worked, we viewed the vehicle 
movements during simulation, and saw that the 
T-CAVs were able to comply with this requirement 
and did transition to the middle lane prior to 
entering the second segment.  
 The weaving section model involved a 
network of 5 segments, each 1 mile long except 
for the weaving portion which was determined 
to be 3450 ft. based on HCM recommendation 
of maximum weaving length.(23). The physical 
arrangement of the weaving model is shown in 
Figure 2.2 below.

Figure 2.3: Weaving Segment with Lane Reservation

Figure 2.2: The Weaving Section Model 

that reports all the lane changes that occurred 
between specific lanes within a given segment. 
 Different percentages of total trucks were 
examined, from 10% to 40%. For each of these, 
the percentage of T-CAVs was explored from 0% 
(all traditional trucks) to 100% (all T-CAVs). To 
label the scenarios for analysis purposes, we used 
a three-number scheme – the T-CAV percent, 
the conventional truck percent, and the auto 
percent. So, 10-10-80 would imply 10% T-CAVs, 
10% conventional trucks and 80% autos. 
 We explored two variants of the operation 
policy for the T-CAVs. One in which they could 
use any lane and another in which they were 
required (strongly encouraged) to use the middle 
lane. In the latter case, since all vehicles were 
allowed to enter any lane at the left-hand edge 
of the first segment, the T-CAVs had to transition 
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 As with the basic freeway section 
model, we introduced loop detectors that would 
provide detailed information about the vehicular 
movements within the weaving section. The 
detectors were placed 100’ inside the boundaries 
of the weaving section, 4330’ apart. are allowed 
on all lanes. Loop detectors were placed 100 ft 
inside the weaving segment. 
Also, as with the basic freeway section model, we 
examined two variants insofar as the operating 
conditions are concerned. One where the T-CAVs 
could use any lane (implicitly shown in Figure 2) 
and one where they were “required” to use the 
middle lane. The imposition of these lane use 
restrictions is shown in Figure 2.3. It is mandatory 
that they be varied so that the T-CAVs can both 
exit and enter the freeway. 
 Two main outputs from the SUMO 
simulations were utilized. The first was the lane 
change file. It provides information about all lane 
change events that took place within a given 
segment. For each it shows a time stamp (defined 
as the moment where the center line of the 
vehicle enters the new lane) and a reason for the 
lane change maneuver. The reasons for the lane 
change reasons can be:
 

a.  speedGain (i.e. to increase speed)
b.  strategic (i.e. focused on the future route) 
c.  cooperative (i.e. to yield to another vehicle)
d.  keepRight (i.e. if the vehicle parameters 
have been set such that it always tries to keep 
to the rightmost lane)
e.  sublane (i.e. due to a sublane model 
employed)
f.  traci (i.e. if a user manually forced a lane 
change using SUMO’s interface traci)

 The second type of output came from loop 
detector output files. These files indicate a vehicle 
ID, a time, and an event type for each vehicle 
detected. The event type is one of three options:

a.  “enter”: indicates that a vehicle has entered 
the detector in the simulation step
b.  “stay”: indicates a vehicle which entered 
the detector in a prior step is still on the 
detector
c.  “leave”: indicates that a vehicle has left the 
detector in the simulation step
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The results from the analysis are both informative 
and reassuring. As previously indicated, we 
explored truck percentages ranging from 10% to 
40%, and percentages of T-CAVs ranging from 0% 
to 100%. As stated earlier, a three-number scheme 
was used to identify the vehicle mix. For example, 
20-0-80 indicates 20% T-CAVs, no conventional 
trucks, and 80% autos.
 Many traffic mixes and operating 
conditions were explored. A select set for the 
basic freeway section analysis are shown 
in Table 2. The first four rows show results for 
situations where all vehicles could use any lanes. 
The last shows the results when the T-CAVs are 
required to use the middle lane. The specific 
vehicle mixes are shown in the second, third, and 
fourth columns, using, implicitly, the three-number 
identification scheme described in the previous 
paragraph. The next three columns show the 
5th, 50th, and 95th percentiles of the travel rate 
distributions. (The travel rates are in minutes per 
mile, where one minute per mile is 60 mph). The 
last three columns show the percentages of lane 
changes that occurred. 

2.4 Results and Discussion

 As can be seen, the effects of the T-CAVs 
are minor. Even when the percentage of T-CAVs is 
40%, there is not a dramatic impact on the travel 
rates. There appears to be a minor change in the 
percentage of lane changes that occur, especially 
from the right-hand lane (lane 0) to the middle 
lane (lane 1). But the increase from 29% to 32% 
may not be significant statistically.
 Moreover, when use of the middle lane is 
mandated for the T-CAVs, there does not appear 
to be a major impact on either the travel rates or 
the lane changing behavior. This is good news in 
that, if a policy decision is made to require T-CAVs 
to use the middle lane, that decision will not have 
an adverse effect on freeway operations, at least 
for T-CAV percentages up to 40%.
 Table 2.3 presents selected run results for 
the weaving section analysis. As with Table 2.2, 
the first column indicates whether the T-CAVs 
could use any lane or only the middle lane. 
The next three columns show the vehicle mix. 
The middle three show the 5th, 50th, and 95th 
percentile travel rates, and the last six (6) show the 
percentages of lane change maneuvers.
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Table 2.2: Basic Freeway Segment Performance for Various Vehicle Mixes and Operating Conditions

Table 2.3: Weaving Segment Performance for Various Vehicle Mixes and Operating Conditions
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 The key take-aways from Table 2.3 
appear to be the following. First , the travel 
rates are somewhat higher than for the basic 
freeway section, which should be expected since 
weaving movements are taking place. Second, 
the percentage of T-CAVs in the traffic stream, 
at least up to 20% does not appear to have a 
significant impact on either the travel rates or the 
percentages of lane changes. Third, restricting 
the T-CAVs to use of the middle lane does not 
appear to have a significant impact either. So, 
as was observed for the basic freeway section 
analysis, if there is desire to implement a policy 
where T-CAVs are “required” to use the center 
lane, this will not have an adverse impact on the 
performance of the weaving section.
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Our conclusions from this analysis are as follows. First, it is possible to create a 
simulation model that makes it possible to study the effects of T-CAVs on the 
performance of basic freeway segments and weaving sections. Second, it is 
possible to separately control the behavior of the T-CAVs and differentiate that 
behavior, in a meaningful way, from that of the conventional trucks and other 
vehicles. Third, it does not appear that, for reasonable ranges of both truck 
percentage (up to 40%) and for the percentage of T-CAVs, from 0% up to 100% 
of the truck flows, that the introduction of the T-CAVs has an adverse effect on 
the performance of the freeway facility. Moreover, if a policy decision to have 
the T-CAVs use a specific lane (e,g., the center lane) is of interest, such a policy 
decision will not have an adverse effect on freeway operation, at least for the 
operating conditions that were examined.

2.5 Conclusion
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Light-duty gasoline vehicles (LDGVs) account 
for over 95% of the U.S. light-duty vehicle fleet 
(U.S. EPA, 2019b) and contributed 58% of U.S. 
transportation energy use and CO₂ emissions 
in 2018 (Davis & Boundy, 2020). LDGVs directly 
emit CO, hydrocarbons (HC), NOₓ, and particulate 
matter (PM), which are linked to adverse health 
effects (Health Effects Institute, 2010; K.-H. Kim, 
Jahan, Kabir, & Brown, 2013; U.S. EPA, 2010, 2016, 
2019a). Locations with above-threshold tailpipe 
emission rates are emission hotspots (Fernandes, 
Salamati, Rouphail, & Coelho, 2015; Khan, Frey, 
Rastogi, & Wei, 2020; Unal, Frey, & Rouphail, 
2004). Hotspots worsen localized air quality and 
increase human exposure to traffic-related air 
pollution (Alexeeff et al., 2018; Apte et al., 2017; 
Robinson et al., 2019). Therefore, strategies are 
needed to reduce fuel use and emission rates 
(FUERs).
 One potential strategy is eco-driving, 
referring to economical or ecological driving 
depending on interest in reducing fuel use or 
air pollutant emissions, respectively (Felicitas 
Mensing, Bideaux, Trigui, Ribet, & Jeanneret, 
2014). Eco-driving requires modification of 

vehicle speed trajectories (hereafter referred to 
as trajectories) (He, Liu, & Liu, 2015; F. Mensing, 
Trigui, & Bideaux, 2011; Felicitas Mensing, Bideaux, 
Trigui, & Tattegrain, 2013; Xu, Li, Liu, Rodgers, & 
Guensler, 2017; Yuan & Frey, 2020). A trajectory  
is a continuous series of speed versus time data 
points, typically at 1 Hz (U.S. EPA, 2017). The U.S. 
Department of Energy promotes eco-driving 
practices, such as reducing idling, peak speed, 
acceleration, and braking, and using cruise 
control on freeways (U.S. Department of Energy, 
n.d.-b). Future autonomous vehicles (AVs) could 
enable fleet-wide eco-driving adoption (Wadud, 
MacKenzie, & Leiby, 2016). AVs can include 
LDGVs (Mersky & Samaras, 2016).
 There is not a standard approach to 
quantify fuel-saving potential for eco-driving 
(Huang et al., 2018; Wadud et al., 2016). 
Comparisons have been made among different 
simulated trajectories in optimization-based 
studies (He et al., 2015; F. Mensing et al., 2011; 
Felicitas Mensing et al., 2014, 2013; Rakha 
& Kamalanathsharma, 2011; Yang, Almutairi, 
& Rakha, 2020). Optimal trajectories are 
characterized by ideal driving, such as constant 

-

-

3.1 Introduction
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cruise speeds (He et al., 2015; F. Mensing 
et al., 2011; Yang et al., 2020). However, in real-
world driving, variations in posted speed limit 
(PSL), road grade (RG), and traffic lead to 
speed fluctuations (Liu & Frey, 2015a). Optimal 
trajectories can overestimate fuel-saving potential 
compared to real-world trajectories (Felicitas 
Mensing et al., 2013). Future AVs can be assumed 
to be operated similarly to those of the most 
energy-efficient human driving with traditional 
vehicles, and fuel savings can be estimated by 
comparing to average real-world driving (Brown, 
Gonder, & Repac, 2014).
 Eco-driving studies typically focus on 
economical driving for reducing fuel use and 
CO₂ emissions (Huang et al., 2018; Saboohi & 
Farzaneh, 2009; Sciarretta & Vahidi, 2020; Xing, Lv, 
Cao, & Lu, 2020; Zhou, Jin, & Wang, 2016). More 
than 99.8% of the carbon in gasoline is emitted as 
CO₂ (H. C. Frey, Unal, Rouphail, & Colyar, 2003). 
Thus, LDGV fuel-optimal trajectories are typically 
CO₂-optimal. However, eco-driving can lead to 
co-benefits and tradeoffs for other air pollutants. 
For example, based on engine dynamometer 
measurements of a gasoline engine for which 
engine load was controlled to simulate a moving 
vehicle, an economical trajectory reduced fuel use 
and emission rates of CO₂ and NOₓ by 16% to 32% 
but increased CO and HC emission rates by 181% 
and 76%, respectively, compared to a baseline 
(Felicitas Mensing et al., 2014). In contrast, in the 
same study, an ecological trajectory, for which CO, 
HC, and NOₓ emissions rates decreased by 46% 
to 62%, had a 5% increase in fuel use and CO₂ 
emission rates, compared to the same baseline 
(Felicitas Mensing et al., 2014). Compared to the 
ecological trajectory, the economical trajectory 
penalized CO and HC and NOₓ emissions by 
165%, 84%, and 90%, respectively, due to high 

episodic accelerations (Felicitas Mensing et al., 
2014). However, co-benefits or inter-species 
tradeoffs have not been quantified based on real-
world trajectories.
 Previous research has separately 
evaluated economical driving at mesoscale 
(Felicitas Mensing et al., 2014, 2013) or microscale 
(He et al., 2015; Rakha & Kamalanathsharma, 
2011; Yang et al., 2020). On a spatial basis, 
mesoscale refers to routes between an origin 
and a destination, on the order of miles, whereas 
microscale refers to short road segments, such 
as ¼ mile (Khan et al., 2020; U.S. EPA, 2001). 
Mesoscale fuel-optimal trajectories typically 
include a period of acceleration to achieve the 
lowest possible cruise speed that meets a travel 
time constraint (Felicitas Mensing et al., 2014, 
2013). However, episodes of acceleration can 
produce microscale emission hotspots (Khan et 
al., 2020). Thus, eco-driving needs to be jointly 
evaluated at mesoscale and microscale.
 The objective is to quantify the mesoscale 
and microscale FUERs reduction potential 
associated with LDGV eco-driving. Research 
questions include: (1) are there co-benefits or 
tradeoffs in emissions for economical driving; and 
(2) does eco-driving oriented to reduce mesoscale 
FUERs reduce microscale FUERs?
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From 2008 to 2019, NC State University 
(NCSU) has conducted real-world trajectory 
measurements for over 200 LDGVs measured 
on eight local one-way routes (H. C. Frey, 
Zhang, & Rouphail, 2008; Khan & Frey, 2018; 
Khan et al., 2020; Liu & Frey, 2015b; Wei & Frey, 
2020; Yuan et al., 2019). The routes were divided 
into segments for joint evaluation of mesoscale 
and microscale eco-driving.

Mesoscale routes
Figure 3.1a shows a map of eight one-way 
routes, including four outbound routes from 
NCSU to Research Triangle Park via North 
Raleigh and inbound routes in the reverse 
direction. The eight routes have lengths varying 
from 10 mi to 18 mi, with a total of 110 miles. The 
routes include three types of traffic control and 
five road types. PSLs range from 25 mph to 70 
mph. RG varies within ± 10% (Khan et al., 2020).

Microscale segments
To enable evaluation of microscale eco-
driving, the one-way routes were divided into 
segments based on separating traffic controls 

and road types. Traffic control and road type 
affect microscale variability in trajectories and 
variability in microscale FUERs (Khan et al., 
2020), and can also affect FUERs reduction 
potential via eco-driving (Asadi & Vahidi, 2011; 
Barth & Boriboonsomsin, 2009).
 As illustrations of factors considered 
in defining segments, example signalized 
intersection segments (Figure 3.1b) and example 
ramp segments (Figure 3.1c) are shown. For 
intersection segments 149 and 180, which 
represent opposite directions between common 
endpoints, the endpoints were selected to 
enclose an influence area of 1,000 ft before 
and after the signalized intersection. Based on 
empirical trajectories at signalized intersections 
with a red phase, over ¾ of the vehicles started 
deceleration at 1,000 ft or closer to signalized 
intersections. After the red phase, over ¾ of 
the vehicles reached arterial Free Flow Speed 
(FFS) within 1,000 ft beyond the signalized 
intersections. For ramp segments 101 and 119, 
endpoints were selected to be 2,000 ft before 
the beginning of deceleration lanes or after 
the end of acceleration lanes. Over ¾ of the 

3.2 Materials and Methods
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vehicles started deceleration from freeway 
FFS at 2 ,000 ft or closer to the beginning of 
deceleration lanes. Likewise, over ¾ of the 
vehicles reached freeway FFS within 2,000 ft 
beyond the end of acceleration lanes.

Trajectory measurements
Real-world 1 Hz trajectories were measured 
using an on-board diagnostic (OBD) scan tool. 
Trajectories of 214 LDGVs from prior studies (H. 
C. Frey et al., 2008; Khan & Frey, 2018; Khan 
et al., 2020; Liu & Frey, 2015b; Wei & Frey, 
2020; Yuan et al., 2019) were augmented with 
trajectories of 18 LDGVs measured in 2019. The 
232 LDGVs were recruited from NCSU students, 
NCSU motor pool, North Carolina Department 

of Transportation, or rental agencies. There were 
no supercars or high-performance modified 
vehicles. On each route, five LDGVs were each 
measured four times (Yuan et al., 2019), and the 
other 227 LDGVs were measured once. Each 
LDGV was driven by one driver, including 153 
NCSU students and seven researchers. One 
hundred and fifty-two drivers drove only one 
LDGV, and the remaining eight drivers drove 
between 2 and 32 LDGVs. About 60% of the 
measurements were made on weekdays. The 
start time of the measurements varied from 6 
am to 7 pm. A measurement typically took 5-6 
hours to complete.
 No eco-driving training was given to 
drivers prior to the measurements. Drivers were 

Figure 3.1 Maps of (a) study area routes, indicating inbound and outbound directions, (b) an example of segments at a signalized 
intersection (segment 149 & 180), and (c) an example of segments at a ramp (segment 101 & 119). The paths of the outbound routes overlap 
with the corresponding inbound routes except for ramps. Traffic control includes signalized intersection, roundabout, and stop-yield. Road 
types include collector, minor arterial, major arterial, freeway, and ramp.
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encouraged to drive naturally, except for a few 
cases. For example, the driver of a 2017 Honda 
Accord Hybrid (hereafter referred to as Accord) 
intended to maximize fuel economy. Cruise 
control was used on freeways of Routes C and 
1 for a study in which five vehicles were each 
measured four times (Yuan et al., 2019). 
 Trajectory-average FUERs for each 
trajectory were estimated for a typical LDGV, 
including a Tier 3 passenger car (PC) and a 
Tier 3 passenger truck (PT). Tier 3 is the current 
emission standard for light-duty vehicles in the 
U.S. except for California (U.S. Environmental 
Protection Agency, 2016). Tier 3 is assumed to 
continue for the foreseeable future (H. C. Frey, 
2018) and, therefore, to be applicable to future 
AVs. PCs and PTs are able to operate according 
to any of the observed empirical trajectories 
of each route. No significant differences were 
observed between 63 passenger cars and 
32 passenger trucks regarding the range of 
accelerations in real-world speeds from 0 mph 
to > 75 mph (Liu & Frey, 2015a). Also, the choice 
of vehicle is not a significant factor affecting 
naturalistic driving (Tanvir, Frey, & Rouphail, 
2018).
 Route- and segment-trajectories are 
based on driving on a route and a segment , 
respectively. Route- and segment-trajectories 
that had > 5% missing data with respect to 
travel time or travel distance were excluded. 

Vehicle Specific Power (VSP) 
modal model
VSP is an indicator of engine power demand 
and is a function of speed, acceleration, and RG 
(H. Frey, Unal, Chen, Li, & Xuan, 2002; Jiménez-
Palacios, 1998). VSP accounts for changes in 
kinetic and potential energy, rolling resistance, 

and aerodynamic drag. VSP for a typical LDGV 
was calculated at 1 Hz (Equation S1).
 To calibrate VSP modal models, 
previously reported 1 Hz real-world FUERs 
(g/s) for 14 PCs and 11 PTs (Wei & Frey, 2020; 
Yuan et al., 2019) were supplemented with new 
measurements of one PC and one PT. The 
measurements and data quality assurance 
procedures of these 27 vehicles were the same 
(Sandhu & Frey, 2013). The measurements were 
conducted on the routes shown in Figure 3.1a. 
FUERs of CO₂, CO, HC, NOₓ, and PM were 
measured using a GlobalMRV Axion Portable 
Emission Measurement System (PEMS). This 
PEMS has been independently evaluated 
(Myers, Kelly, Dindal, Willenberg, & Riggs, 
2003; Vu, Szente, Loos, & Maricq, 2020). The 
27 vehicles cover nine makes, 23 models, rated 
horsepower from 98 to 375, and curb weight 
from 2 ,278 lb to 5,534 lb. Over 95% of the 
raw data were valid. A combined 160,000 and 
130,000 seconds of valid data were measured 
for the 15 PCs and the 12 PTs, respectively.
 In model calibration, 1 Hz FUERs for 
each vehicle were binned into 14 VSP modes 
(H. Frey et al., 2002). This modeling approach 
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is accurate within ± 10% in predicting emission 
rates associated with route-trajectories (Wei 
& Frey, 2020). To represent modal-average 
FUERs for a typical PC and a typical PT, the 
modal-average FUERs for the 15 PCs and the 
12 PTs, respectively, were averaged. For each 
route- or segment-trajectory, trajectory-average 
FUERs (g/mi) were estimated based on the 
sum-product of VSP modal-average FUERs 
(g/s), for a typical PC and a typical PT, and time 
in each VSP mode, divided by route or segment 
length, respectively.

Sources of inter-trajectory 
variability in FUERs
To identify dynamic factors for eco-driving, 
sources of inter-trajectory variability in 
trajectory-average FUERs were quantified. 
Trajectory-average FUERs are sensitive to 
variability in average speed, peak speed, and 
travel time (Khan et al., 2020; Liu & Frey, 2015b). 
Engine idling and frequent stops adversely 
affect FUERs (Sanguinetti, Kurani, & Davies, 
2017). Aggressive driving contributes to 
excess FUERs (Faria, Duarte, Varella, Farias, 
& Baptista, 2019). Driving aggressiveness 
has been quantified based on peak speed, 
relative positive acceleration (RPA), and the 
95th percentile of the product of speed and 
acceleration (va+[95]) (Hooftman, Messagie, 
Van Mierlo, & Coosemans, 2018). Effective 
acceleration accounts for the effect of RG on 
acceleration (Bachman, 1998). RPA estimated 
based on effective acceleration is defined as 
relative positive effective acceleration (RPEA). 
Seven dynamic factors were quantified and 
evaluated simultaneously to explain inter-
trajectory variability in FUERs for each route, 
including: (1) average speed; (2) peak speed; (3) 

travel time; (4) idle time; (5) number of stops; 
(6) RPEA; and (7) va+[95]. 
 Collinearity refers to two or more factors 
that are closely linearly related to each other 
(James, Witten, Hastie, & Tibshirani, 2013). It 
is difficult to separate the individual effects 

of collinear factors on the response variable 
(James et al., 2013). To avoid collinearity, factors 
with Variance Inflation Factors (VIFs) > 5 were 
excluded (James et al., 2013). For a given route, 
significant sources of variability in trajectory-
average FUERs were evaluated using multi-
factor analysis of variance (ANOVA). ANOVA 
enables quantification of the proportion of 
variance explained by each factor (Tabachnick, 
Fidell, & Ullman, 2007). In particular, Eta² was 
used to quantify the relative importance of each 
factor to the response variable.

Mesoscale route-eco-driving
To represent mesoscale average real-world 
driving, the route-average rate (RARs,r,vt , g/
mi) for each species (s), route (r), and vehicle 
type (vt) was quantified based on the mean of 
trajectory-average rates of all empirical route-
trajectories. To represent the most efficient 
mesoscale real-world driving, the route-
minimum rate (RMRs,r,vt, g/mi) for each species, 
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route, and vehicle type was quantified based on 
the minimum of the trajectory-average rates of 
all empirical route-trajectories. The trajectories 
associated with RMRs,r,vt are defined as empirical 
route-eco-driving trajectories. Mesoscale 
FUERs reduction potential was quantified as the 
difference between RMRs,r,vt and RARs,r,vt.

Route-trajectory simulation
To infer possible route-eco-driving trajectories 
that concurrently reduce microscale FUERs for 
any segment, a simulator was developed based 
on bootstrapping and concatenating empirical 
segment-trajectories into route-trajectories. 
The concatenations require meeting speed and 
acceleration continuity constraints. The speed 
continuity constraints are based on limiting 
the rate-of-change between the final speed of 
the trajectory in a preceding segment and the 
initial speed of the trajectory in an adjacent 
successive segment. Similarly, the acceleration 
continuity constraints are based on limiting the 
rate-of-change between the final acceleration 
of the trajectory in a preceding segment and 
the initial acceleration of the trajectory in an 
adjacent successive segment. The rate-of-
change of speed is acceleration, and the rate-
of-change of acceleration is jerk (Fernandes, 
Tomás, Ferreira, Bahmankhah, & Coelho, 2020). 
The continuity constraints were quantified 
based on a Speed and Acceleration Activity 
Envelope (Figure S7) and an Acceleration and 
Jerk Activity Envelope (Figure S9). To simulate 
a route-trajectory, segment-trajectories were 
randomly selected, tested for continuity, 
resampled and retested as needed, and 
concatenated. 
 The simulator was evaluated regarding 
whether simulated route-trajectories that met 

continuity constraints had estimated trajectory-
average FUERs comparable to those of empirical 
route-trajectories. The simulator was calibrated 
to all segment-trajectories. To obtain a wide 
range of variations in trajectory-average FUERs, 
bootstrapping was performed iteratively until 
20,000 simulated route-trajectories that met the 
continuity constraints were accepted. Route-
average and route-minimum FUERs were 
quantified based on 20,000 simulated route-
trajectories that met continuity constraints. 
For each of the six species and two vehicle 
types, linear least squares regressions without 
intercept were used to quantify the goodness-
of-fit of route-average and route-minimum 
rates for the simulated versus empirical route-
trajectories on eight routes.

Microscale segment-eco-driving
To represent microscale average real-world 
driving, the segment-average rate (SARs,seg,vt, g/
mi) for each species (s), segment (seg), and 
vehicle type (vt) was quantified based on the 
mean of trajectory-average rates of all empirical 
segment-trajectories. SARs,seg,vt was used as the 
baseline for evaluating segment-eco-driving.
To evaluate whether empirical route-eco-
driving trajectories reduce SARs,seg,vt , the 
empirical route-eco-driving trajectories were 
disaggregated into segments, referred to as 
dependent segment-eco-driving trajectories. For 
dependent segment-eco-driving trajectories, the 
initial speed and acceleration of a segment are 
dependent on the final speed and acceleration, 
respectively, of the preceding segment. The 
rates estimated for dependent segment-eco-
driving trajectories were defined as segment 
dependent rates (SDRs,seg,vt, g/mi).
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 To represent the most efficient 
microscale real-world driving, the segment-
minimum rate (SMRs,seg,vt , g/mi) for each 
species, segment , and vehicle type was 
quantified separately for each segment based 
on the minimum of trajectory-average rates 
of all empirical segment-trajectories. The 
trajectories associated with SMRs,seg,vt were 
defined as independent segment-eco-driving 
trajectories, based on assuming independence 
of the final speed and acceleration of 
a preceding segment and the initial speed 
and acceleration, respectively, of an adjacent 
successive segment. Thus, these trajectories 
typically do not satisfy continuity constraints 
with adjacent segments but are used to identify 
a localized upper bound on reduction potential. 
 To identify segment-eco-driving with 
rates lower than SARs,seg,vt while satisfying 
continuity constraints, the simulator was re-run 
based on constraining the rates of segment-
trajectories to be lower than the corresponding 
SARs,seg,vt. For each route, bootstrapping was 
conducted iteratively until 20,000 simulated 
route-trajectories met the continuity and < 
SARs,seg,vt constraints. The simulated route-
trajectory with the minimum rate for a given 
species, route, and vehicle type was referred to 
as a simulated route-eco-driving trajectory. The 
segment rates for a simulated route-eco-driving 
trajectory are defined as segment constrained 
rates (SCRs,seg,vt, g/mi). The segment-trajectories 
associated with SCRs,seg,vt are identified as 
constrained segment-eco-driving trajectories.
 Segments were categorized into 
hotspots or non-hotspots. Various criteria have 
been used to define thresholds for hotspots 
(Fernandes et al., 2015; Khan et al., 2020; 
Mudgal, Hallmark, Carriquiry, & Gkritza, 2014; 

Unal et al., 2004). Based on a hotspot definition 
proposed by Khan et al. (Khan et al., 2020), 
hotspots were defined as the segments with ≥ 
90th percentile of segment-average rates of a 
species among all segments. 
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The eight routes were divided into 199 
segments. Segment lengths range from 0.08 
to 2.40 (mean = 0.56) miles. A route-trajectory 
includes 18 to 32 segment-trajectories, 
depending on the route. Typically, ≤ 15% of the 
route- and segment-trajectories were excluded, 
except for segments at the beginning and end 
of each route. There are 209 to 220 (mean 
= 214) route-trajectories, depending on the 
route, and 143 to 241 (mean = 229) segment-
trajectories, depending on the segment. Missing 
data were due to temporary OBD scan tool 
failure. About 20% to 40% segment-trajectories 
at the beginning and end of each route were 
excluded because of variations in travel 
distances associated with differing parking 
locations with designated parking areas.

VSP modal model
VSP modal average FUERs for an average PC 
and average PT are shown in Figure 3.2. For 
both PC and PT, modal average FUERs increase 
monotonically with positive VSP; however, 
inter-modal ratios of rates differ among species. 
For example, for PC, the inter-modal ratio for 

mode 14 versus mode 3 is the smallest for 
fuel use and CO₂, at 10, and the highest for 
CO, at 388. The large increment in CO modal 
average rates from mode 13 to 14 is related to 
fuel enrichment , which reduces the fraction 
of CO oxidized to CO₂ to prevent the catalyst 
from overheating (Eriksson & Nielsen, 2014). CO 
emission rates are more sensitive to high engine 
power demand compared to rates of the other 
five species.

3.3 Results and Discussion
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Fig. 3.2 Vehicle Specific Power (VSP) modal average fuel use and emission rates (FUERs) for an average Tier 3 passenger car (PC) and an 
average Tier 3 passenger truck (PT): (a) fuel use; (b) CO2, (c) CO, (d) hydrocarbons (HC), (e) NOx, and (f ) particulate matter (PM). All 15 
PCs and 12 PTs were measured for fuel, CO2, CO, HC, and NOx. PM was measured for 12 PCs and 5 PTs. Error bars are 95% confidence 
intervals based on the average rates in each VSP mode for each vehicle. The upper bounds of VSP (kW/ton) modes are: Mode 1, -2; Mode 
2, 0; Mode 3, 1; Mode 4, 4; Mode 5, 7; Mode 6, 10; Mode 7, 13; Mode 8, 16; Mode 9, 19; Mode 10, 23; Mode 11, 28; Mode 12, 33; Mode 13, 39 (H. 
Frey et al., 2002). Modes 1 and 2 indicate vehicle deceleration or coasting downhill. Mode 3 includes idling. Modes 4 to 14 indicate cruising, 
acceleration, or uphill driving.
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Mesoscale inter-trajectory variability in 
FUERs
Wide ranges of inter-trajectory variability in 
route trajectory-average FUERs were estimated, 
as illustrated in Figure 3.3 for fuel use and CO 
emission rates. For a given route and species, the 
ratios of the maximum to the minimum trajectory-
average rates range from 1.2 to 5.2, indicating wide 
ranges of driving activities. For a given route and 
vehicle type, the distributions of trajectory-average 
CO emission rates are more skewed than those of 
fuel use rates, attributable to the more highly non-
linear increments for high VSP modal average 
rates, such as from modes 13 to 14.
 Only a small fraction of empirical 
trajectories was associated with intentional eco-
driving. However, intentional eco-driving can 
reduce FUERs. For example, the minimum Route 
3-In CO and PM emission rates are associated 
with trajectories measured with the Accord. The 
other trajectories measured with the Accord have 
FUERs in the lowest decile among all trajectories. 
Route-minimum rates can be achieved with or 
without using cruise control on freeways. For 
example, based on PC, several route-minimum 
rates, including those for all six species for 
Route C-Out, HC for Routes C-In, NOx for Route 
1-Out, and CO for Route 1-In, were achieved 
by trajectories with cruise control, whereas the 
remaining route-minimum rates were achieved 
solely by human driving. Route-minimum rates are 
similar to the corresponding second-lowest rates 
within < 1% to 5% (mean = 2%), depending on 
species, route, and vehicle type.
 Based on multi-factor ANOVA, five 
dynamic factors explain 65% to 95% of the inter-
trajectory variability in trajectory-average FUERs, 
as illustrated in Figure 3.4 for fuel and CO based 
on PC. Average speed and travel time were 

excluded because of VIFs > 5. The most important 
factor, indicated by the largest Eta², explains 30% 
to 80% of the variability, depending on species, 
route, and vehicle type. For all species, the most 
important factor is approximately 2 to 10 times 
more important than the other factors. The most 
important factor differs by species and route but 
not vehicle type. For example, for fuel, CO₂, HC, 
NOx, and PM, idle time is the most important 
factor for six to eight routes, accounting for 
approximately 40% to 80% of FUERs variability. In 
contrast, peak speed is the most important factor 
for inter-trajectory variability in CO emission rates 
for all eight routes, accounting for 30% to 57% of 
the variability. Reducing idle time is recommended 
for reducing fuel use and emission rates of CO₂, 
HC, NOx, and PM, while reducing peak speed is 
recommended for reducing CO emission rates.
 FUERs reduction potential is more 
sensitive to species and route than vehicle type, 
as shown in Figure 3.3. Inter-route differences 
in idle time and peak speed contribute to inter-
route variability in FUERs reduction potential. 
For example, Routes 1-Out and 1-In have the 
lowest average idle time at about 100 seconds per 
trajectory and the highest average peak speed 
at 77 mph among all eight routes, which are on 
average 40% lower and 20% higher than the other 
six routes, respectively. Routes 1-Out and 1-In 
have about 80% freeway in terms of length, with 
a maximum PSL of 70 mph. Therefore, Routes 
1-Out and 1-In typically have less fuel-saving 
potential but more CO reduction potential than 
other routes.

Mesoscale co-benefits and tradeoffs
Figure 3.5 shows the empirical route-eco-driving 
trajectories for fuel and CO of Route 3-In based 
on PC. The fuel eco-driving trajectory has CO 
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Fig. 3.3 Distributions of route trajectory-average rates of: (a) fuel use and (b) CO emission for 
empirical route-trajectories based on the Vehicle Specific Power (VSP) modal model (see Figure 2). 
For each route, the trajectory-average fuel use and CO emission rates were estimated based on an 
average passenger car (PC) and an average passenger truck (PT). The skewness of each distribution, 
quantified based on the third standardized moment, is indicated above each distribution in italics. 
Reduction potential, estimated based on the differences of the mean and minimum rates, is labeled 
at the bottom.

Fig. 3.4 Sources of inter-trajectory variability in trajectory-average (a) fuel use rates and (b) CO 
emission rates based on an average passenger car (PC). Eta² was quantified based on multi-factor 
analysis of variance (ANOVA). Five factors with low collinearity were included: idle time, number 
of stops, peak speed, relative positive effective acceleration (RPEA), and the 95th percentile of the 
product of speed and acceleration (va+[95]).
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emission rate 17% lower than the route-average 
CO emission rate. Similarly, the CO eco-driving 
trajectory has fuel use and emission rates of 
CO₂, HC, NOx, and PM 7% to 12% lower than the 
corresponding route-average rates, depending on 
the species. Thus, there are potential co-benefits 
of eco-driving in reducing air pollutant emissions 
even if the goal is to save fuel and vice versa.
 Choosing the Route 3-In fuel eco-driving 
trajectory over the CO eco-driving trajectory 
would lead to 20% increase in CO emission rate 
compared to route-minimum CO emission rate. 
Similarly, choosing the CO eco-driving trajectory 
over the fuel eco-driving trajectory would lead to 
increase in fuel use and emission rates of CO₂, 
HC, NOx, and PM by 2% to 11%, depending on 
the species, compared to their route-minimums. 

Thus, there are inter-species tradeoffs in FUERs 
associated with empirical route-eco-driving 
trajectories.
 Based on PC or PT, inter-species eco-
driving tradeoffs were estimated for seven routes 
except for Route C-Out. For Route C-Out, the 
lowest rates of all species are associated with the 
same trajectory. For the seven routes, the tradeoffs 
among empirical route-eco-driving trajectories for 
fuel, CO₂, HC, NOx, and PM are typically within 
5%. Empirical route-eco-driving trajectories for 
CO are associated with 1% to 10% (mean = 5%) 
tradeoffs in fuel use and emission rates of CO₂, 
HC, NOx, and PM. Similarly, empirical route-
eco-driving trajectories for HC, NOx, and PM are 
typically associated with < 10% tradeoffs in CO 
emission rates. However, empirical route-eco-

Fig. 3.5 Examples of fuel use and emission rates (FUERs) and travel time based on three empirical route-trajectories of Route 3-In, 
including the eco-driving trajectory for fuel, the eco-driving trajectory for CO, and the fastest trajectory. The FUERs were estimated based 
on an average passenger car (PC). Route-average and route-minimum were estimated based on the 210 empirical route-trajectories. 
Tradeoffs, based on increases from route-minimum FUERs or travel time, are indicated in parentheses. The empirical route-eco-driving 
trajectories for CO2, HC, NOx, and PM are the same as the fuel eco-driving trajectory.



75

driving trajectories for fuel are associated with 
20% to 79% (mean = 33%) CO emission rate 
tradeoffs for Routes C-In, 1-Out, 3-Out, and 3-In, 
depending on the route and vehicle type. Thus, 
fuel eco-driving can cause larger tradeoffs in CO 
emission rates than the corresponding tradeoffs 
in fuel use rates associated with CO eco-driving, 
attributable to greater sensitivity to high engine 
power demand for CO emission rates versus fuel 
use rates. The disparity in fuel and CO tradeoffs 
is consistent with those based on dynamometer 
measurements (Felicitas Mensing et al., 2014).
 As shown in Figure 3.5, the fuel eco-
driving trajectory has travel time approximately 
the same as the fastest trajectory, indicating the 
potential, at least for some situations, to achieve 
eco-driving without sacrificing travel time. 
Although the fastest trajectory has 54% more idle 
time than the fuel eco-driving trajectory, it has 
29% higher peak speed, which compensates for 
the time loss due to idling. However, compared 
to the fuel eco-driving trajectory, the fastest 
trajectory leads to 15% to 34% higher fuel use 
and emission rates of CO₂, HC, NOx, and PM, 
and 211% higher CO emission rate. The fuel eco-
driving trajectory and the fastest trajectory have 
0.3% and 5%, respectively, time in VSP modes 
13 and 14. Thus, although high peak speed can 
compensate for idling, it leads to FUERs tradeoffs, 
especially for CO, due to more high engine power 
demand episodes.
 As shown in Figure 3.5, the CO eco-
driving trajectory has 4% less travel time than the 
route-average travel time, indicating that eco-
driving can have a co-benefit of reducing travel 
time. However, the CO eco-driving trajectory 
penalizes travel time by 28% compared to the 
fastest trajectory and has 25% lower peak speed. 
Thus, real-world eco-driving can lead to travel 

time tradeoffs compared to the fastest trajectory. 
However, choosing the fastest trajectory over the 
CO eco-driving trajectory would lead to 8% to 
31% higher fuel use and emission rates of CO₂, 
HC, NOx, and PM, and 274% higher CO emission 
rate. Compared to the fastest trajectory, the CO 
eco-driving trajectory reduces high engine power 
demand episodes and eliminates time spent in 
VSP modes 12 to 14.
 Among the eight routes, empirical 
route-eco-driving trajectories typically have 
less travel time than the route-average but 
more travel time than the fastest trajectories. 
Compared to the fastest trajectories, travel 
time tradeoffs associated with empirical route-
eco-driving trajectories are substantially larger 
for CO versus other species, with an average 
difference of 14 percentage points. CO eco-
driving typically requires peak speed reduction. 
Thus, eco-driving aimed at reducing CO typically 
induces travel time tradeoffs compared to the 
fastest trajectories. Such tradeoffs could be a 
challenge in promoting eco-driving because 
drivers tend to prioritize time savings over fuel 
savings (Dogan, Steg, & Delhomme, 2011; Harvey, 
Thorpe, & Fairchild, 2013). With future AVs, 
potential travel time increases associated with 
eco-driving could become less important since 
drivers can engage in activities other than driving 
(Manawadu, Ishikawa, Kamezaki, & Sugano, 2015). 
With connected vehicle technologies, travel time 
tradeoffs could be reduced by improved traffic 
management (Oh & Peng, 2018). 
 Among the eight routes, the rates 
associated with the fastest trajectories are 1% 
to 52% (mean = 18%) higher than the route-
minimum rates for fuel, CO₂, HC, NOx, or PM, 
and 15% to 284% (mean = 151%) higher than 
the route-minimum rates for CO. The fastest 
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trajectories have more episodes of high engine 
power demand. Hence, the fastest trajectories are 
typically associated with more tradeoffs in CO 
emission rates than other species.

Route-trajectory simulation
Simulated route-trajectories that met continuity 
constraints had estimated trajectory-average 
FUERs comparable to those of empirical route-
trajectories. For example, for all six species, eight 
routes, and two vehicle types, the simulated route-
trajectories are accurate within ± 5% and precise 
with R2 ≥ 0.98 in estimating route-average and 
route-minimum rates. 

Microscale co-benefits and tradeoffs
For a given segment, dependent segment-eco-
driving typically has lower microscale emission 
rates compared to segment-average rates among 
all trajectories, including those of hotspots. For 
example, dependent segment-eco-driving based 
on PC is compared to segment-average rates in 
Figure 3.6 for Route 3-In CO and NOx emission 
rates. For all five CO hotspots of Route 3-In, 
dependent segment-eco-driving has 29% to 
72% lower CO emission rates compared to the 
corresponding segment-average CO emission 
rate. For three of the four NOx hotspots of Route 
3-In, dependent segment-eco-driving has 12% to 
40% lower NOx emission rates compared to the 
corresponding segment-average NOx emission 
rate. However, for segment 199, which is a NOx 

hotspot, dependent segment-eco-driving has 23% 
higher NOx emission rate than the average NOx 

emission rate for segment 199. 
 Among all species, routes, and vehicle 
types, over 99% of hotspots are associated 
with traffic control, ramps, or both. Dependent 
segment-eco-driving was estimated to have rates 

0.2% to 72% (mean = 24%) lower than segment-
average rates among 85% to 95% of the hotspots, 
depending on the species, segment, vehicle type. 
However, dependent segment-eco-driving was 
also estimated to have rates 0.4% to 61% (mean = 
15%) higher than segment-average rates among 
5% to 15% of the hotspots, depending on the 
species, segment, vehicle type. Thus, eco-driving 
for a route typically has co-benefits in reducing 
microscale emissions, such as those of most 
hotspots, but can exacerbate hotspots at some 
locations.
 Nevertheless, dependent segment-
eco-driving rates are typically higher than the 
corresponding segment-minimum rates. For 
example, as shown in Figure 3.6, among the 
all 32 segments of Route 3-In, 29 segments 
have dependent segment-eco-driving CO 
emission rates higher than the corresponding 
segment-minimum rates, by 5% to 230%, while 
the remaining three segments have dependent 
segment-eco-driving CO emission rates the same 
as the corresponding segment-minimum rates. 
All 32 segments of Route 3-In have dependent 
segment-eco-driving NOx emission rates higher 
than segment-minimum rates, by 4% to 170%. 
Independent segment-eco-driving trajectories are 
characterized by high entry (e.g., PSL ± 5 mph) 
but low exit (e.g., < 10 mph) speeds, indicating 
dominance of deceleration. Deceleration (i.e., 
VSP modes 1 and 2) has lower FUERs compared 
to cruising, acceleration, or uphill driving (VSP 
modes 4 to 14).
 The FUERs reduction potential estimated 
based on dependent segment-eco-driving is more 
realistic than that based on independent segment-
eco-driving. For example, as illustrated in Figure 
3.7, the weighted mean, by segment length, of NOx 
reduction potential for independent 
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Fig. 3.6 Selected examples of the effects of dependent segment-eco-driving (DS) and independent segment-eco-driving (IS) on microscale 
emission rates for Route 3-In: (a) CO, and (b) NOx. Based on the 90th percentiles of segment-average rates among all 199 segments, CO 
and NOx hotspots are segments with segment-average rates > 1,132 mg/mi and > 17 mg/mi, respectively. The rates were estimated based 
on an average passenger car (PC).
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Fig. 3.7 Comparisons of NOx reduction potential, based on an average passenger car (PC), for four types of eco-driving, including 
mesoscale route-eco-driving, independent segment-eco-driving (IS), dependent segment-eco-driving (DS), and constrained segment-eco-
driving (CS). For a given route, the number of segments is the same among IS, DS, and CS.
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segment-eco-driving is consistently higher 
than the route reduction potential, by 6 to 20 
percentage points. In contrast , the weighted 
mean of NOx reduction potential for dependent 
segment-eco-driving is similar to the route 
reduction potential within ± 3 percentage points. 
Thus, continuity constraints between adjacent 
segments are needed to reduce overestimation of 
segment FUERs reduction potential.
 Constrained segment-eco-driving 
eliminates microscale FUERs tradeoffs. For 
example, Figure 3.7 illustrates that compared to 
dependent segment-eco-driving, for which 23 
segments among eight routes have negative 
reduction potential, there are no segments with 
negative reduction potential for constrained 
segment-eco-driving. Moreover, constrained 
segment-eco-driving typically leads to more 
reduction potential on a route-average basis 
compared to dependent segment-eco-driving. For 
example, constrained segment-eco-driving has 
more NOx reduction potential for 127 segments, by 
a partial mean of 12 percentage points, versus less 
NOx reduction potential for only 72 segments, by a 
partial mean of only six percentage points.
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At mesoscale ,  eco-driv ing is an effect ive 
strategy to reduce LDGV fuel  use and 
ta i lp ipe emiss ion rates o f  CO₂ ,  CO,  HC, 
NOx, and PM. Depending on species, route, 
and vehicle type, mesoscale rate reduction 
potential ranges from 6% to 40%, compared 
to average rates est imated based on al l 
tra jec tor ies .  FUERs reduct ion potent ia l 
varies by route and species and is typically 
s imi lar  wi th in three percentage points 
between PC and PT.
 For a given route and vehicle type , 
real-world route-eco-driv ing trajectories 
t ypical ly  di f fer  by spec ies .  Compared to 
route-average rates, there are co-benefits of 
economical driving in reducing air pollutant 
emiss ion rates ,  and,  s imi lar ly,  there are 
co-benef its of ecological driving in saving 
fuel. However, compared to route-minimum 
rates ,  there are inter-species tradeoffs in 
rates associated with eco-driv ing due to 
different sensitivity to engine power demand 
among spec ies .  Mesoscale eco-driv ing 
t yp ical ly  leads to trave l  t ime tradeoffs , 
on average 20%, compared to the fastest 

tra jec tor ies .  However,  compared to the 
route-minimum rates , choosing the fastest 
trajectories would cause on average 18% 
tradeoffs for rates of  fuel ,  CO₂,  HC, NOx, 
and PM and on average 151% tradeoffs for 
CO emission rates due to more high engine 
power demand episodes compared to eco-
driving.
 Real-world mesoscale eco-driv ing 
for  a route t yp ical ly  has co-benef i t s  in 
reducing microscale emissions, such as on 
average 24% FUERs reduct ion potent ia l 
for  85% to 95% of  the hotspots ,  but 
can exacerbate FUERs of  the remaining 
hotspots by an average 15%. Constrained 
segment-eco-driving i l lustrates that eco-
driving trajectories can be developed such 
that mesoscale and microscale FUERs are 
concurrently reduced.
 This  study is  novel  because 
i t  quant i f ies FUERs reduct ion potent ia l 
assoc iated wi th real-wor ld LDGV eco-
driving simultaneously based on six species 
( fuel ,  CO₂, CO, HC, NOx, and PM) and two 
spatial scales (mesoscale and microscale) 

3.4 Conclusions
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for  the f i rst  t ime.  This  work contr ibutes 
new general i zable ins ights into several 
environmental aspects of LDGV eco-driving: 
(1) real-world eco-driving focused on fuel 
sav ings t yp ical ly  reduced ai r  pol lu tant 
emissions and vice versa; and (2) real-world 
mesoscale eco-driving for a route typically 
has co-benef i t s  in reduc ing microscale 
emiss ions but  can exacerbate hotspots 
at  some locat ions .  The est imated co-
benefits and tradeoffs can be used to guide 
decisions related to adoption of eco-driving 
to reduce LDGV FUERs among the existing 
f leet and future AVs.
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3.5 Recommendations for Future Work

These results focus on individual vehicles. 
However,  eco-driv ing o f  one vehic le 
may affect eco-driv ing of  other vehicles 
wi th in a road network ,  such as due 
to conf l ic t ing movements o f  crossroads 
and main corr idors (Huang et  a l . ,  2018; 
X ia, Boriboonsomsin, & Bar th, 2013). Thus, 
evaluat ion o f  the e f fec t iveness o f  eco-
driving in mitigating road network FUERs is 
recommended.
 The methods to col lect and def ine 
mesoscale and microscale tra jec tor ies , 
the approaches to quant i f y  sources o f 
variabil i t y,  the route-trajectory simulation 
method,  and the approaches to quanti f y 
co-benefits and tradeoffs are applicable to 
other vehicle technologies, such as hybrid-
e lectr ic  vehic les (HEVs) ,  p lug- in hybrid 
e lec tr ic  vehic les (PHEVs) ,  and bat ter y-
electric vehicles (BEVs). VSP modal models 
have been developed to est imate energy 
consumption and emissions of HEVs (Zhai, 
Frey,  & Rouphai l ,  2011)  and PHEVs (H. 
C.  Frey,  Zheng, & Hu, 2020) .  BEV energy 
consumption can also be estimated based 
on 1 Hz trajectories and RG (Fiori ,  Ahn, & 
Rakha, 2016).

 When idl ing, HEVs and PHEVs are 
typically zero-emitting because of automatic 
engine shutoff (Graver, Frey, & Choi,  2011; 
Zhai et al . ,  2011) .  PHEVs running only on 
electric i t y during charge depleting mode, 
and BEVs, have no tai lpipe emissions but 
have indirect emissions from power plants 
that are propor t ional to electric i t y usage 
(U.S. Depar tment of Energy, n.d.-a). HEVs, 
PHEVs, and BEVs have regenerative braking 
for par tial kinetic energy recovery (Fiori et 
al. ,  2016; H. C. Frey, 2018; Hodges & Potter, 
2010). These features could lead to different 
FUERs reduction potential and eco-driving 
strategies compared to tradit ional LDGVs 
(Huang et al. ,  2018). For example, reducing 
id l ing may not be as e ffect ive for  HEVs , 
PHEVs, and BEVs compared to traditional 
LDGVs. Nevertheless, reducing peak speed 
on f reeways could be an impor tant eco-
driving practice for HEVs, PHEVs, and BEVs 
because of reduction in aerodynamic drag. 
For HEVs ,  PHEVs ,  and BEVs ,  addi t ional 
eco-driv ing pract ices could focus on 
optimizing the use of regenerative braking 
for  mi t igat ing energy loss ( Y.  K im et  a l . , 
2020; Sanguinetti et al., 2017).
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