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Executive Summary 
NCDOT uses a data-driven process to inform the funding of transportation infrastructure, a process that 
includes a high degree of collaboration and cooperation with metropolitan and rural Planning 
Organizations (POs). The primary analytical tool supporting this data-driven process is the travel demand 
model (TDM) for the PO’s region. The TDM is used to develop traffic forecasts that inform project 
decisions and millions of dollars of spending.  The introduction and deployment of Connected and 
Automated Vehicles (CAVs) have the potential to significantly change traffic forecasts and may result in 
the Department having unnecessarily spent significant amounts of money–or on the other hand, being 
left unprepared for the disruption that CAVs may create in our transportation system.  

This study focuses on advanced models for large POs and NCDOT’s Regional Travel Demand Model (RTDM) 
for small and rural POs and aims to provide guidance to NCDOT on the consideration of CAVs in travel 
demand models developed by or for NCDOT in support of transportation planning analysis and traffic 
forecasts across the state.  

Key findings from this research support the use of strategic scenario planning both within an existing 
model design (Tier 1) and design modifications (Tier 2) to evaluate the potential impact of CAVs on both 
system-level performance measures and project-level traffic forecasts. System-level performance 
measures for both the Tier 1 and Tier 2 analyses showed increases in daily vehicle miles traveled (VMT) 
but decreases in congested VMT and delay for both a high (95%) and medium-high (70%) CAV adoption 
level. The project-level analysis showed improvements in the demand-to-capacity ratio (D/C) and delay 
cost savings, but did not always indicate that project construction would no longer be necessary given 
increased CAV adoption. The evaluation of NCDOT’s RTDM in Tier 3 suggests that CAV results may not be 
as intuitive in a small area with little congestion, but also that a deeper dive into the functionality and 
assumptions of this model is needed.   

The study concludes that applying travel models in a scenario planning context is an effective way to 
understand the potential risks and benefits of CAVs on traffic forecasts. While model design (Tier 2) is the 
preferred method, this approach is more time and resource-intensive and requires a certain level of model 
development expertise. On the other hand, using an existing model (Tier 1) is an approach that could be 
implemented without delay on most, if not all, upcoming traffic forecasts. While not as realistic a 
representation of travel behavior, the results are shown to be an effective way to evaluate the risk and 
uncertainty of CAVs on transportation planning analysis and project-level traffic forecasts.   

Based on the findings from this research, the team recommends that NCDOT immediately move forward 

with the consideration of CAVs in traffic forecasts and long-range transportation plans with a forecast year 

of 2050 and beyond. For existing models, the Tier 1 approach should be implemented for existing project 

analysis. For future model updates, the model design should incorporate the recommended methods for 

evaluating CAVs. It is also recommended that NCDOT incorporate a regular practice of risk and uncertainty 

analysis not just in consideration of CAVs, but to capture the variety of unknowns about the future. 
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Introduction 
NCDOT makes major investment decisions related to the development of transportation infrastructure 
across the state every year. Following the guidance outlined in the Strategic Transportation Investments 
law, the Department endeavors to use funding efficiently and effectively through a data-driven process 
that includes high levels of collaboration and cooperation with both metropolitan and rural Planning 
Organizations (POs). This data-driven process uses various tools, but the primary tool used by the POs is 
the travel demand model (TDM) for their region. Once projects are prioritized and advanced to 
implementation, the travel demand model is again used as the primary analytical tool for developing 
traffic forecasts. These forecasts then inform project decisions that influence the spending of tens of 
millions of dollars. While there are always points of dispute when envisioning the details around specific 
projects, the technical process is generally well-accepted, robust, and technically sound and has served 
the Department and its constituents well for years. The introduction and deployment of Connected and 
Automated Vehicles (CAVs) have the potential to significantly disrupt this well-established decision-
making process and may result in the Department unnecessarily spending significant amounts of money–
or on the other hand, being left unprepared for the disruption that CAVs may create in our transportation 
system.  

There are three key factors at play in understanding the impact that CAVs will have on traffic forecasts: 1) 
supply side impacts, 2) demand side impacts, and 3) CAV deployment predictions. From extensive 
research around supply side impacts, there is a commendable understanding of supply side benefits. This 
is not the case on the demand side of the equation, in large part because it is related to travel behavior 
and how people will respond to the vast array of new choices that CAVs will provide and how these choices 
will impact travel demand and project-level traffic forecasts. The third factor is related to the timeline and 
intensity of CAV deployment, especially within the context of future year traffic forecasts, and how the 
number of CAVs impacts not only the proportion of CAVs in the travel stream but also the size of the travel 
stream. 

While the impacts of CAVs will not be fully understood until more observable data is available, it is not 
prudent for NCDOT to wait until that time. There is an urgent need to provide guidance on how CAVs will 
impact travel in future years, and how travel demand models can be adjusted to capture these potential 
impacts. Some Metropolitan Transportation Plans (MTPs) have a future year of 2045, but most already 
have a future year of 2050, and some POs are currently working on MTPs with a future year of 2055. The 
North Carolina Long Range Multimodal Transportation Plan has a horizon year of 2050, and most, if not 
all, project-level traffic forecasts will soon have a design year of 2050. Some CAV forecasts suggest that 
by 2050 nearly 60% of new vehicle sales will be autonomous vehicles (AVs), and close to 40% of all vehicle 
travel will be made by AVs (Litman, 2021)–and these forecasts are thought by many to be too low.  

When it comes to investing in North Carolina’s transportation future, there are enormous implications if 
NCDOT does not plan and invest appropriately in infrastructure. It would take many years for a high-
growth region to recover from under-investment in infrastructure due to overly optimistic assumptions 
about the benefits gained from CAVs. On the other hand, there are also consequences if NCDOT 
overbuilds, including unnecessary spending, environmental impacts, and community consequences. By 
their very nature, traffic forecasts have always included a certain level of uncertainty, but continuing to 
advance traffic forecasts that fail to consider CAVs will almost certainly lead to NCDOT making poor 
decisions given the very high likelihood that the vehicle fleet in 2050 will include a large percentage of 
CAVs. This research is urgently needed to better understand how CAVs impact transportation systems 
analysis and project forecasts so North Carolina can invest wisely in our future.  
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To address this need, NCDOT funded this study to better understand the potential implications of CAVs 
on travel demand and project-level traffic forecasts. The results of this study inform the conversation 
around CAV deployment and adoption and provide guidance on how best to capture the supply and 
demand side changes that will likely result from different levels of CAVs in the travel stream.  

Overall, the research objectives of this research project are: 

1. Provide guidance to NCDOT on possible updates to the RTDM Development Guidelines and to 
regional POs on how they should update and exercise their TDMs to include CAVs and their 
effects. 

2. Develop guidelines for the modification and applications of TDMs using a realistic set of CAV 
scenarios.  

The detailed results of this study are outlined in this report and the accompanying appendices, including 

guidelines for implementation within both an existing model and model design change context. For the 

purposes of this research, automated vehicles (AVs) are vehicles that rely on onboard sensors for driving 

tasks. AVs are a disruptive technology that can potentially enhance safety, capacity, and travel time 

reliability. There is a significant effort from the automotive industry to produce fully autonomous vehicles 

(SAE levels 4 and 5). However, lower-level applications of this technology such as adaptive cruise control 

are already in use with the goals of driver convenience, congestion relief, safety, and capacity 

enhancements. 

Connected vehicles have the potential to gather information on their surroundings by communicating 

with other equipped vehicles and the infrastructure in their vicinity. Access to this information in real-

time impacts drivers’ response and decision making which can lead to potential improvements in safety 

and capacity. It is worth noting that the human driver is in control and makes all the operational, tactical, 

and driving decisions based on the information received through the vehicle’s communication capabilities. 

Vehicles that have both connectivity and automation are classified as connected and automated vehicles 

(CAVs). These vehicles not only rely on their onboard sensors but also their communication capabilities to 

make decisions and execute driving tasks. Equipped with both technologies these vehicles have access to 

real-time information about other vehicles’ behavior and whereabouts in their vicinity along with the 

environmental and driving conditions downstream of their locations. 

This study focused exclusively on CAVs, assuming Level 4 or 5 automation. 

Literature Review Summary 
A detailed literature review is provided in Appendix A. In summary, the literature review for this project 

focused first on establishing basic definitions for automated vehicles (AVs) and CAVs. The literature was 

then used to frame a possible understanding of CAV market penetration and ownership patterns. Changes 

in travel behavior and transportation system performance associated with CAV adoption were explored, 

as were methods for implementing these changes into travel demand models. These findings helped 

inform the development of an index of predictions and factors (Appendix B) and a conceptual framework 

for updating a travel demand model to include CAVs (Appendix C). 

The review of literature also included a scan of peer agencies, summarized below.  
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The consulting firm Resource Systems Group (RSG) and Caliper Corporation collaborated with the 

Michigan Department of Transportation (MDOT) on the development of a new statewide transportation 

model emphasizing a data-driven approach and utilizing big data to accurately represent travel patterns. 

A significant aspect of this project was the integration of CAVs into the modeling framework. This addition 

aims to facilitate the examination of various scenarios that CAVs might present, despite the current 

inability to generate CAV-informed forecasts. The model’s adaptability allows for exploring assumptions 

around the impact of CAVs on travel behavior, including changes in trip frequency, mode, duration, and 

timing, as well as considering the implications of zero-occupant vehicle trips (RSG et al., 2019).  

In Virginia, VDOT publishes Travel Demand Modeling Policies and Procedures that guide public agencies 

in the development and application of travel models in Virginia (Cambridge, 2020). Version 3.00, released 

in August 2020, provides a section on model enhancement options for trip-based models to incorporate 

the effects of CAVs. In addition to covering model enhancement options, they also encourage the use of 

scenario planning for modeling CAV impacts.  

While no specific guidance could be located, several MPOs in Ohio have coordinated with ODOT on the 

consideration of CAVs in their travel models (CDM, 2022). 

Finally, project NCHRP 20-102(29), led by the University of Central Florida, aims to incorporate new 

mobility options (NMOs) including CAVs into travel demand forecasting and modeling. It addresses 

challenges such as data acquisition, model structure adaptation, calibration, and validation for emerging 

transportation technologies. The objective is to develop a guide for implementing the best practices in 

incorporating NMOs into travel demand models, focusing on understanding travel behavior changes, 

adoption rates, and benefits of NMOs to inform decision-making and investment in transportation 

planning (National Academies, 2024).  

Definition of Terms 
Average Trip Length: The average length calculated for all trips made in the region as a measure of either 

time or distance. The calculated value typically varies by trip purpose.  

CAV: Connected and automated vehicle. 

CAVihvi: CAV household classified as income high and vehicle insufficient, where vehicle insufficient refers 

to fewer vehicles than workers in the household.  

CAVihvs: CAV household classified as income high and vehicle sufficient, where vehicle sufficient refers 

to vehicles equal to, or greater than workers in the household.  

CAVilvi: CAV household classified as income low and vehicle insufficient. 

CAVilvs: CAV household classified as income low and vehicle sufficient. 

CAVvi: CAV household classified as vehicle insufficient. 

CAVvs: CAV household classified as vehicle sufficient. 
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Congested VMT: Vehicle miles traveled under congestion conditions as defined by conditions where the 

roadway link demand exceeds capacity at a level of service (LOS) D. This is calculated as demand/capacity 

greater than one for LOS D.  

Delay: Delay is calculated as the difference between the roadway link congested travel time and the 

roadway link free flow travel time multiplied by roadway link demand. The free flow speed is determined 

using the area type, facility type, and posted speed. The unit of delay is minutes.  

System Delay: Calculated using all the roadway links in the travel model.    

Project Delay: Calculated using only the roadway links for the identified project.  

EE: External to external trips defined as vehicle trips that travel completing through the region.  

HOV2: High-occupancy vehicle (HOV) trips defined as a trip with two people per vehicle. 

HOV3: High-occupancy vehicle (HOV) trips defined as a trip with 3 or more people per vehicle.  

HV: Vehicles classified as a human-driven vehicle. 

IE/EI: Internal to external or external to internal trips defined as vehicle trips that have one end of the trip 

internal to the region and one end of the trip external to the region.  

IVTT: The In-vehicle travel time for the transit mode.  

KNR: A kiss and ride lot serving transit.  

K12: Trips defined as trips from home to a k12 school.  

MPR: Market penetration rate.  

MUT: Multi-unit truck. 

OD_Long: Trips defined as long duration discretionary trips made with one trip end at home.  

OME: Trips defined as shopping, dining out or other maintenance trips with one trip end at home.  

pCAV: Privately owned connected and automated vehicle. 

PCE: Passenger car equivalent.  

Peak Period Congested VMT or PM Peak Period Congested VMT: Refers to vehicle miles traveled under 

congestion conditions, as previously defined, during the 3-hour PM peak period from 3:30pm to 6:30pm 

Peak Period VMT or PM Peak Period VMT: Vehicle miles traveled during the 3-hour PM peak period from 

3:30pm to 6:30pm. 

PNR: A park and ride lot serving transit. 

sCAV: Shared connected and automated vehicle. 

SOV: Single occupant vehicle trips defined as a trip with one person per vehicle. 

SUT: Single unit truck. 
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Trip Length: The calculated length of an individual trip from the production (or origin) end of the trip to 

the attraction (or destination) end of the trip as a measure of either time or distance.  

VMT: Vehicle miles traveled. 

VOT: Value of time.  

W_HB_O: Trips defined as work tours with one trip end at home and an interim stop along the tour.  

W_HB_W: Trips defined as work tours with one trip end at home and no stops along the tour.  

ZOV: Zero occupancy vehicle. 

Linkages to Long-Range Planning 
Long-range transportation planning is the process of planning, evaluating, and developing strategies for 

operating, managing, maintaining, and financing a region’s transportation system in such a way as to 

advance the area’s long-term goals. The planning process follows a well-established process of: 

▪ Establishing a community vision, 

▪ Understanding the types of decisions needed to achieve this vision, 

▪ Assessing the opportunities and limitations of the future in relationship to goals and desired 

system performance measures,  

▪ Identifying short- and long-term consequences of choices, 

▪ Relating alternative decisions to goals, objectives, and performance measures, and 

▪ Presenting information to decision-makers to help them make informed decisions. 

A simplified version of this process along with travel modeling touchpoints is shown in Figure 1. The 

dashed line between the first step (goal setting) and travel modeling indicates that outputs from travel 

models can be used to inform targets related to goals, but it is not common practice to do so.  
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FIGURE 1 TRANSPORTATION PLANNING PROCESS WITH TRAVEL MODELING TOUCHPOINTS 

The transportation plans developed through this process typically have a horizon year of 20- to 30-years. 

As such, these plans should consider potential disruptors to travel behavior and transportation systems 

in addition to past and future trends. Given predictions for CAV adoption rates, transportation plans being 

developed today for a horizon year of 2050 or 2055 should be considering CAVs as a part of plan 

development, even if nothing more than through scenario planning via modifying existing model 

parameters to better understand project priorities and risk and uncertainty.  

Since travel demand models are the principal analytical tool supporting the transportation planning 

process, models designed with CAVs in mind, or models applied in scenario planning context that simply 

modify existing model parameters, will provide a better context for assessing likely future problems where 

CAVs are a part of that future. Likewise, alternative solutions can be evaluated through the lens of both 

the benefits and impacts of a CAV future. This analysis could inform the development of long-range 

transportation plans that consider the need for and prioritization of projects that may shift to a later 

horizon year, or may no longer be needed in a CAV future.  

Scenario Development 
Scenario planning is a well-regarded approach to understanding the risk and uncertainty inherent in any 

systems or project-level forecast. By defining specific scenarios to assess the impact of CAVs on travel 

demand models, scenario planning allows for a comprehensive evaluation of potential outcomes. The 

findings from the literature were used to develop scenarios for testing and evaluation through the 

application of case studies. These case studies are discussed in detail in the case studies section. This 

section focuses on the development of scenarios that will be tested and evaluated through the application 

of case studies. The case studies include analysis using a travel model from a large urbanized region and 

a travel model from a small urban region. The developed scenarios consider various model parameters 

related to both supply and demand and the potential for change in these parameters based on a medium-

high (70%) and high (95%) CAV adoption rate. Scenario testing also considers the degree of uncertainty 

about the value of the different parameters informed by whether these parameter modifications are cited 
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in the literature, and the process by which they were developed. For example, did previous researchers 

assert the documented parameters, or were they informed by data or modeling efforts? The development 

of scenarios informed the procedures for model design changes discussed in detail in the section on model 

adjustments.    

Index of Predictions and Factors 
Rather than associate a specific forecast year with a specific CAV adoption rate, this research informed 

the development of an index of predictions and factors for CAVs–see Appendix B. The index synthesizes 

findings from literature, conversations with experts, and the research team’s knowledge. It provides a 

timeline of possible CAV adoption based on influencing factors, subsequent changes in travel behavior, 

and how to incorporate these changes in travel demand models. The primary purpose of the index is to 

inform the conversation around model adjustments to support scenario planning and model design 

changes needed to evaluate CAVs (assuming fully automated CAVs). Instead of using forecast years, a 

scale of low (0-30%), medium (30-70%), and high (70-100%) adoption was considered. The low scale 

captures early adopters, the medium represents majority adoption, and the high includes late adopters. 

The influencing factors towards CAV adoption were identified as cost, technology, driver experience, and 

policies. Each of these factors was evaluated within the context of the changes that might move the 

adoption rate from low, to medium, to high.  

CAV adoption at various rates is likely to influence how people travel including the number of trips made, 

mode of travel, distance traveled, time of day traveled, and lifestyle. While some behavioral changes are 

initially likely, other changes may not occur until higher adoption levels. Having insight into these possible 

behavioral changes at various adoption rates informs the development of scenarios for evaluation. In 

total, six scenarios are evaluated, one at a Medium-High (MH) (70%) CAV adoption level, and one at a 

High (H) (95%) CAV adoption level for each of the three tiers of analysis. This research did not consider 

adoption levels below 70% given the focus of this research on planning horizon years of 2050 or later. The 

goal was to try and balance CAV adoption levels with the travel forecasts and associated infrastructure 

decisions for that time frame.  

The first tier focuses on the modification of parameters in a regional model without any existing 

accommodations for CAVs. The advantage of this approach is that it can be quickly and easily 

implemented. The second tier focuses on a model redesign. This approach is more resource-intensive and 

may not be implemented by MPOs until the next update of their model which could be 5-10 years away. 

The third tier is the evaluation of an existing model that already includes a CAV component as a part of 

the original design.   

The first and second tiers are implemented using the Triangle Regional Model Generation 2 (TRMG2) and 

the third tier is implemented using NCDOT’s Regional Travel Demand Model (RTDM). The RTDM is the 

standardized model platform developed by NCDOT to meet the modeling needs of small MPOs and RPOs. 

All scenarios are based on a 2050 forecast year.       

For each of the scenarios, the literature informed the assertion of parameter values, or parameter 

adjustments, for the different stages of the demand model. Sensitivity testing was used to evaluate the 

level of uncertainty for key parameter values for the Tier 1 and Tier 2 analyses.  

See Appendix B for details on the index and parameter changes. These values were used to inform the 

development of scenarios for all three tiers.   
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Tier 1: Existing Model Design 
The application of the travel demand model under the Tier 1 approach does not involve any model design 

changes but rather allows the user to modify existing rates and coefficients to reflect expected changes 

in travel behavior or transportation system operating characteristics. This approach is easier to apply than 

the Tier 2 approach and requires less modeling expertise and resource investment.  

The scenarios developed for Tier 1 included both a MH and a H scenario. For each scenario, model 

parameter adjustments were made to account for changes in mode choice value of time, trip rates, and 

highway capacity. Adjusting the time coefficient (or friction factors) for trip distribution requires an 

iterative approach of adjusting the model coefficients, applying the model, and reviewing the modified 

trip lengths. This process repeats until the desired average trip length is achieved. To simplify the 

application of the Tier 1 approach, the time coefficient for the trip distribution models was not adjusted.  

Table 1 summarizes the parameter adjustments for each scenario. These adjustments were informed by 

the literature, both with respect to which parameters to adjust and the amount. These values are directly 

transferable to all models with respect to trip rates and highway capacity. The value of time adjustment 

is also directly transferable to other models. As noted above, the user would simply adjust the shape of 

the impedance function until the desired reductions in average trip length are achieved.   

TABLE 1 MODEL PARAMETER ADJUSTMENTS FOR TIER 1 SCENARIOS 

Parameter Adjustment Sub-category Scenarios 

Medium-High (70%) High (95%) 

Value of Time All people1 -60% -65% 

Trip rates All purposes2  9% 15% 

Highway Capacity 
Signalized arterial 40% 70% 

Control access facility 47% 77% 
1 The reduction applied in the model reflects the recommended reduction multiplied by the expected CAV adoption rate for the scenario. For 

medium-high scenario, VOT should be reduced by 42% (60%*70%). 

2The adjustment captures additional trips as a result of ease of travel with CAVs, increased accessibility for elderly and disabled people, and 

empty trips from car sharing among household members. 

Tier 2: Model Design Changes 
Unlike the Tier 1 approach which is largely constrained by the existing construct of the model, the model 

design approach provides greater flexibility to reflect the change when CAVs become prevalent. 

Modifications to eight aspects of TRMG2, a four-step travel demand model, are proposed, and two CAV 

scenarios are developed to reflect the MH (70%) and H (95%) CAV adoption rate. The model design 

approach is preferred as it provides more realism but must be balanced against the available time and 

expertise of the analyst. The modified values for all parameters and coefficients were informed by the 

literature as documented in Table 2.  
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TABLE 2 RECOMMENDED PARAMETER MODIFICATIONS 

Model 
Steps 

Model Adjustments Medium High 
(70%) 

High (95%) 

Category Sub-category 

Initial Processing 
 

Higher capacity Signalized arterial 40% 70% 
 

Controlled access 47% 77% 
 

Add CAV ownership Apply cross-classification model MPR = 70% MPR = 95% 

Trip Generation 
 

Increased trip rates (because of ease of 
travel, ZOV trips from car sharing among 
household members, and enhanced 
mobility for elderly and disabled) 

All purposes 9% 15% 

Time of Day (*see note 1) 
 

More through trips (EE) in night period EE - SUT/MUT 30% 50% 
 

EE - Auto 15% 25% 
 

More external <--> internal (IE/EI) in night 
period 

IE/EI 2% 8% 

ZOV Trips 
 

CAV parking avoidance trips (CAV users 
send CAV back to home to park. However, 
since at this step market segmentation is 
no longer preserved, a lower probability is 
picked to reflect the fact that not all trips 
can use this option) (*see note 1) 

Trip distance > 20 miles 0% 0% 
 

Trip distance 15 -20 miles 10% 10% 
 

Trip distance 10 - 15 miles 20% 20% 
 

Trip distance 5 - 10 miles 35% 35% 
 

Trip distance <= 5 miles 50% 50% 
 

sCAV empty miles (*see note 2) Apply growth factor to sCAV trip table 67% 50% 

Mode Choice 
 

Change auto pay mode to sCAV Discount fare coefficient fare coef -40% fare coef -60% 
 

Add sCAV as an access mode to transit for 
the work tour 

Treat as KNR but w/ lower drive access 
time 

coef -60% coef -65% 

 
Decrease value of time for all auto modes 
(except k12) 

Discount VOT coefficient except for 
N_K12 

coef -60% coef -65% 

Trip Distribution 
 

Longer trip distance Discount travel time for work purposes 
(both w_hb_w and w_hb_o) 

31% for w_hb_o 
and 11% for 

w_hb_w 

same adjustment 
but results a 14% 

longer w_hb_w and 
40% longer in 

w_hb_o  
Discount travel time for 
social/recreational purposes (only ome 
and od_long) 

27% *see note 
3 

44% *see note 3 

Airport 
 

Add CAV return home parking trips Assume MPR% of airport trips will use 
CAV and those will go back home to 
park 

70% of trips 95% of trips 

1These numbers were developed based on professional experience due to a lack of relevant literature 
2Only two papers were found related to this topic, suggesting empty miles are 50%-67% of sCAV miles. Under higher MPR scenario, the 

assumption is sCAV is easier to pick up next passenger thus reducing empty miles 
3OD_Short purpose is already longer after mode choice adjustment because it uses auto log sum instead of travel time, which is around 27% 

longer in MH and 44% longer in H. Remaining trip purposes are adjusted to match this change. 
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Tier 3: Evaluating NCDOT’s RTDM  
As a part of the base design, NCDOT’s RTDM includes a user option for evaluating the presence of CAVs 
based on a user input CAV adoption level. This model is well documented with respect to the treatment 
of CAVs and that document can be referenced for details (Stantec, 2023). The application of the model 
requires the user to modify a CAV cost ratio that considers the cost of a CAV as compared to the cost of a 
human driven vehicle. This ratio varies by horizon year and in doing so, forms the shape of a negative 
exponential curve that informs the CAV adoption rate, the number of new vehicles sold, and old vehicles 
retired each year. The CAV adoption level influences other modeling components as summarized in Table 
3. The only parameter not tied to the cost ratio is the trip length parameter. This parameter requires 
independent adjustment by the user and is capped at 15%. This value is lower than the change in trip 
length suggested in the literature, and that applied for both the MH and H scenarios in the Tier 1 and Tier 
2 analysis.   

Scenario development for the RTDM focused on adjusting the cost ratio to achieve the MH and H scenario 
that matched the CAV adoption rates targeted in the TRMG2 to the extent possible. A trip length 
adjustment is capped at 15%, so this value was applied to the social/recreational trips for both the MH 
and H scenarios.   

TABLE 3 SUMMARY OF MODEL COMPONENT ADJUSTMENTS BY SCENARIO 

Parameter 
Adjustment 

Sub-category Scenarios 

Medium-High 
(70%) 

Cost ratio: 
2030=1.5, 
2040=1.2, 
2050=1.1 

High (90%) 
Cost ratio: 
2030=1.5, 
2040=1.1, 
2050=1.1 

Trip rates Trip rate adjustments informed by the cost ratio are applied to CAV households 
only. A factor is applied by trip purpose and household characteristics such as 
income, lifecycle, worker, and household size. These factors are used to boost trip 
rates. For details, see the model development documentation. (Stantec, 2023)    

Trip length  Manual adjustment 
that gets applied to 
all trip purposes 
(capped at 15%) 

Work 11% 14% 

Social/Recreational 15% 15% 

Time of day Different time-of-day factors are applied for CAV autos owned by residents, CAV 
through trips, and CAV internal/external trips. The adjustment is informed by the 
cost ratio.  

Highway 
Capacity 

Limited Access CBD 1.175 1.363 

All other area types 1.21 1.388 

Multilane Hwy CBD 1.175 1.363 

All other area types 1.21 1.388 

Two-lane Hwy CBD and Urban NA NA 

All other area types 1.256 1.427 

Principal Arterial All area types 1.256 1.427 

Minor Arterial All area types 1.264 1.437 

Collector Rural 1.264 1.437 

All other area types NA NA 
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Model Design Changes 
Findings from the literature along with the development of scenarios informed the development of a 
broad conceptual framework that aligns with the proposed scenarios. This framework was used to guide 
design changes to the TRMG2 and to inform scenario development and case study analysis for the RTDM. 
Based on the current design of the RTDM, design modifications were not required. Individual elements of 
the conceptual framework elements are included in the model design discussion below. The full 
conceptual framework is provided in Appendix C.  

Model Design Framework 
This section documents both the recommended conceptual design changes for most trip-based models 

and the specific structural changes made to TRMG2 to capture the presence of CAVs.  

Initial Processing 
The first step in the TRMG2 model is initial processing. Figure 2 shows the first step of the recommended 

conceptual design framework for this step.  

 
FIGURE 2 INITIAL PROCESSING CONCEPTUAL DESIGN CHANGES 

The implementation of this step in TRMG2 required modifications to the auto ownership model to support 

the forecasting of both CAV households and human vehicle (HV) households. This approach assumed that 

households would be designated as one or the other and did not allow for mixed ownership households. 

As such, households designated as CAV households will have only CAV, while HV households will only have 

HV.  Allowing mixed ownership households has been identified as a desirable future enhancement. 

The TRMG2 model uses a logit-based auto ownership model that forecasts auto ownership based on 

household and person level variables such as income, household size, worker status, transit access, and 

walkability. After the TRMG2 auto ownership model is run, those results are stratified by household 

members into CAV and HV households using a cross-classification model based on age and income. The 

cross-classification table by age and income is shown in Table 4. The probabilities in the model were 

developed through an iterative process of selecting a probability for the age and income combinations to 
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achieve the desired target CAV market penetration rate (MPR) for the MH scenario (70%) and H scenario 

(95%).  Age and income were selected as the variables in the cross-classification model based on findings 

from the literature that suggest these variables will be strong predictors of CAV adoption (Bansal, 2018; 

Harb, 2022; Lavieri, 2017). The output from this model step is a data file with a record for each household 

in the region flagged as either a CAV or HV household.   

TABLE 4 CAV OWNERSHIP CROSS-CLASSIFICATION TABLE 

Max Adult Age Category Income Category Probability (MH) Probability (H) 
Age < 18 $0 - $25,000 0.46 0.87 

Age < 18 $25,000 - $75,000 0.49 0.88 

Age < 18 $75,000 - $150,000 0.52 0.89 

Age < 18 $150,000 + 0.55 0.9 

Age > 45 $0 - $25,000 0.58 0.91 

Age > 45 $25,000 - $75,000 0.61 0.92 

Age > 45 $75,000 - $150,000 0.64 0.93 

Age > 45 $150,000 + 0.67 0.94 

18 <= Age <= 45 $0 - $25,000 0.7 0.95 

18 <= Age <= 45 $25,000 - $75,000 0.73 0.96 

18 <= Age <= 45 $75,000 - $150,000 0.76 0.97 

18 <= Age <= 45 $150,000 + 0.79 0.98 

 

In addition to classifying households as either CAV or HV, the initial processing step also creates the 

highway network data structure and associated data values required for subsequent model steps. The 

most important highway network data attribute related to CAVs is the value of the highway capacity. As 

discussed in the literature review, it is commonly accepted that CAVs are expected to increase highway 

capacity. While initially the presence of CAVs will disrupt capacity, as CAV adoption levels increase so will 

the benefits to capacity. As noted previously, this research project assumes a medium-high and high CAV 

MPR at 70% and 95%, respectively. Based on these assumptions, the capacity lookup table for TRMG2 was 

modified to increase capacity for signalized arterials and controlled access facilities by the percentages in 

Table 5 for the MH and H scenarios. These ranges are more optimistic than those included in the HCM 

manual but were developed by fellow researchers on this project using rigorous simulation methods as 

documented in (Hajbabaie, et al., 2024; Bardaka, et al., 2021).    

TABLE 5 CAPACITY ADJUSTMENT FACTORS 

Facility type MH (70%) H (95%) 

Signalized arterial 40% 70% 

Controlled access facility 47% 77% 
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Trip Generation 
The next step in the process is trip generation where trips for different trip purposes are estimated for 

each person in the model region. Figure 3 shows the second step of the recommended conceptual design 

framework for trip generation.   

 
FIGURE 3 TRIP GENERATION CONCEPTUAL DESIGN CHANGES 

To account for increases in trip-making by CAV households, modifications were made to the output trip 

productions for persons living in CAV-owning households. In this manner, the original trip production rates 

are not modified, but rather adjustments are made to the trip records for CAV-owning households after 

the model is applied. The rates estimated from the travel behavior survey are applied to individuals in 

both CAV and HV households. The output from this step is a record of trips by home-based trip purpose 

for each person and household in the model region. For trips made by CAV-owning households, an 

adjustment factor is applied to increase the number of home-based trips. This adjustment factor is coded 

in the model script. The initial modification of the model assumed the same adjustment factor for all trip 

purposes. The factors were set to both capture the increase in trip-making by CAV-owning households 

and to account for zero occupant vehicle (ZOV) trips resulting from car sharing among household 

members. The model design decision to apply a factor after the initial estimation of trip productions, 

rather than to redesign the structure of the production model and modify trip rates, was made to facilitate 

a simpler design modification.   

Trip Distribution 
Trip distribution, also referred to as destination choice, is the process of linking the trips produced by 

mode for each trip purpose to the destination. This process is heavily informed by the activities at the 

destination zone, distance to the destination zone, logsums from the mode choice model, and various 

accessibility measures. Capturing the influence of CAVs on destination choice focuses on the influence of 

CAVs on the value of time as discussed in the section on mode choice. Figure 4 shows the third step of the 

recommended conceptual design framework for trip distribution.   
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FIGURE 4 TRIP DISTRIBUTION CONCEPTUAL DESIGN CHANGES 

The destination choice design changes implemented in TRMG2 required adjusting the coefficient on the 

congested travel time. No adjustments were made to the coefficient on free flow time as this variable is 

not used in the destination choice utility equation; it is the congested travel time that influences choice. 

Adjusting the coefficient on congested travel time has the effect of either shortening or lengthening the 

average trip length, depending on the direction of the change. Because the coefficient on travel time is 

very much influenced by the individual region, the literature did not make recommendations for directly 

adjusting the coefficient but rather suggested that the average trip length would increase for work trips 

and social/recreational trips (He, 2022). TRMG2 has two work-related trip purposes and three 

social/recreational trip purposes. The literature was used to inform the increased trip length for work trip 

purposes for the MH scenario as documented in Table 6. Achieving the suggested increase in average 

travel length as outlined in Table 6 was an iterative process of adjusting the congested travel time 

coefficient, running the model, assessing the new trip length, and repeating the process until the desired 

increase in average travel time was achieved. Once achieved, the same coefficient adjustments are 

applied in the H scenario, resulting in an even longer trip length given less occurrence of congestion. The 

final adjustments by trip purpose and market segment are shown in Table 7. Regarding the social and 

recreational trip types, the trip length increases in short-duration discretionary trips drive the remaining 

two purposes. Unlike the other trip purposes, the short-duration discretionary trips use the logsum value 

from the mode choice model. The adjustments to the value of time in the mode choice model result in 

logsum values that capture the longer trip length. These logsum values result in longer trip lengths for the 

short-duration discretionary trips without the need to directly modify the congested travel time 

coefficient in the destination choice model. This is why the coefficient adjustment for short-duration 

discretionary trips in Table 7 is blank, even though trip length adjustments are reflected in Table 6.  

 

TABLE 6 TRIP LENGTH DISTRIBUTION ADJUSTMENT BY TRIP PURPOSE AND SCENARIO 

Trip Type Trip Purpose MH (70%) H (95%) 

Work Trips Work tour 11% 25% 

 Work tour - interim stop 31% 45% 

Social/Recreational 
Trips 

Short-duration 
discretionary trips 

29% 42%  

 Long-duration 
discretionary trips and 
shop, dine, other trips 

29% 42%  

1 Trip length adjustments captured through the mode choice model 

 



NCDOT 2023-11 Project Report 

 

15 
 

TABLE 7 MODEL DESIGN FINAL ADJUSTMENTS TO THE DESTINATION CHOICE UTILITY EQUATIONS 

Purpose Market Segment Coefficient Adjustment 

Work tour 
CAVihvi, CAVihvs, 
CAVilvi, CAVilvs2 

-0.0965 *0.79 

Work tour – interim 
stop 

CAVvi, CAVvs -0.193 *0.79 

Short duration 
discretionary trips1  

-- -- -- 

Long duration 
discretionary trips  

CAVvi, CAVvs -0.171 *0.8 

Shop, dine and other 
trips 

CAVvi, CAVvs -0.208 *0.79 

1 Trip length adjustments captured through the mode choice model 
2 ih: income high; il: income low; vs: vehicle sufficient; vi: vehicle insufficient. 

 

Mode Choice 
Most trip-based models in the United States execute the trip distribution step before the mode choice 

step. Intuitively, this sequencing does not best reflect reality because someone’s choice of destination is 

influenced by their choice of mode. For example, a person from a zero-car household is unlikely to select 

a destination that cannot be accessed by a travel mode other than the automobile. In the TRMG2 model, 

the mode choice step and destination choice step are nested within each other such that the choice of 

mode influences the choice of destination. This section covers mode choice, and Figure 5 shows the 

recommended conceptual design framework for mode choice, the fourth step in the framework.   

 

FIGURE 5 MODE CHOICE CONCEPTUAL DESIGN CHANGES 

The mode choice model design changes implemented to account for CAVs focus on the mode choice utility 

equation variables, and the application of a factor for specific variables to account for differences in the 

utility coefficient for CAV households by different market strata. The household market strata are: 
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▪ Vehicle insufficient, high income; 

▪ Vehicle insufficient, low income; 

▪ Vehicle sufficient, high income; 

▪ Vehicle sufficient, low income; and 

▪ Zero vehicle households. 

Vehicle insufficiency captures households where the number of adults is greater than the number of 

vehicles, and high income is defined as income greater than or equal to $70,000. Table 2 provides a 

summary of modified coefficients by mode and trip purpose. These adjustments were informed by the 

literature. The auto modes include single occupant vehicles (SOV), high occupant vehicles with 2 persons 

(HOV2), high-occupant vehicles with 3 or more persons (HOV3), and auto pay (e.g. Uber or Lyft). Transit 

modes include local bus, express bus, bus rapid transit, light rail transit, and commuter rail. Transit access 

includes walking to transit and driving to transit, with the drive access being further stratified as park and 

ride, kiss and ride, and shared CAV (sCAV) access.  

Coefficient adjustments include adjustments to capture changes in the value of time, auto-pay fare, and 

access mode. The adjustment to the value of time coefficient is not intended to imply that CAVs will 

change someone’s value of time, but rather is intended to approximate the in-vehicle time productivity 

experienced by someone who has access to a CAV. This increased productivity may influence the 

likelihood of choosing an auto mode and may induce some people to live further away from their jobs. 

The reduction in the fare for auto pay modes is intended to capture an increase in usage and ease of use 

for subscription services as the auto pay mode becomes dominated by CAVs and the direct out-of-pocket 

cost goes down. For transit access, a new drive access mode for work trips was added to the model 

structure to cover access to transit by CAV.  

For all modes, the coefficients on congested travel time are reduced by 60% in the MH scenario and 65% 

in the H scenario. This applies to all modes in the auto nest and sCAV access in the transit nest. For the 

auto modes, this is applied to all purposes except K12. For transit, the sCAV adjustment only exists in the 

work trip. 

Time of Day 
Figure 6 shows the recommended conceptual design framework for modifying the time-of-day factors for 

external trips, which is defined as trips that pass through the region, trips that start in the region but have 

a destination outside the region, or trips that start outside the region but have a destination inside the 

region. This is step six in the framework.    

 
FIGURE 6 TIME OF DAY CONCEPTUAL DESIGN CHANGES 
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The design modification for implementing time-of-day changes for external trips was straightforward 

given the design of the external trip model. Time of day factors, estimated from travel surveys, are applied 

to the “through trip,” external/internal, and internal/external trip tables. These factors were modified to 

shift more trips to the night period, thereby reducing the number of external trips during the AM, midday, 

and PM time periods. Table 8 summarizes the percent change applied to the existing nighttime factors by 

trip type and vehicle type.  

TABLE 8 TIME OF DAY FACTOR ADJUSTMENTS TO THE NIGHT PERIOD 

Trip Type Vehicle Type MH (70%) H (95%) 

 
Through trips 

Autos 15% 25% 

Single-unit trucks  
30% 

 
50% Multi-unit trucks 

External/Internal and 
Internal/External 

All  
2% 

 
8% 

 

Zero Occupancy Vehicle (ZOV) Trips 
One of the potential negative impacts of increased CAV adoption is the number of new trips that will be 

generated by zero occupant vehicles (ZOV). Figure 7 provides a conceptual framework for addressing ZOVs 

in a travel demand model. The concept focuses on ZOV trips that will occur because of car sharing among 

household members, trips that will occur as a result of parking avoidance, and empty trips that result from 

shared sCAVs traveling between passenger drop off and pick up.  

 
FIGURE 7 ZERO OCCUPANT VEHICLE TRIPS CONCEPTUAL DESIGN CHANGES 

The TRMG2 design changes to account for ZOV trips related to CAV sharing among household members 

are accounted for in the design changes for the trip generation model. Design changes to account for ZOV 

trips resulting from parking avoidance were accounted for in the parking model. The TRMG2 model 

identifies specific zones in the region where parking is restricted either by supply or by cost. The ZOV 

calculation focused on all home-based trips using these parking zones. The trips going to these zones were 

stratified by the distance traveled from home to the parking location. Any trips traveling less than 20 miles 

from the home location to the parking location are candidates for avoiding parking and sending the CAV 

back to the home location. For these trips, a reverse trip back home was added, as was an additional trip 
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from home back to the destination to pick the traveler up. Market segmentation, i.e. the ability to identify 

specific CAV travelers, is no longer preserved. To account for the fact that some of the trips going to the 

parking zones would be HV trips, a lower probability was applied to the total number of trips.  

To account for sCAV empty miles, a growth factor was applied to the sCAV trip table output from the 

mode and destination choice step. This has the effect of growing the background traffic associated with 

sCAVs. 

NHB 
The handling of non-home-based trips in traditional trip-based models poses many problems stemming 

from the fact that the trips are disconnected from the original home-based trip. The TRMG2 model 

includes an advanced approach for handling these trips with a simple design change to the structure of 

the model, where the NHB trip model is run after, and conditional upon, the home-based model 

components instead of in parallel and independently of them in the traditional four-step model. Because 

of this unique design, no additional design changes are required for TRMG2 to account for CAV trips. The 

increase in NHB trips by CAV owners will happen as a function of the increased home-based trips by CAV 

owners.  

Figure 8 shows the advanced design for NHB trips in the TRMG2 model. While identified as step seven in 

the framework, for traditional four-step models, the increase in NHB trips by CAV owners will be handled 

in design modifications for the trip production model.   

 
FIGURE 8 ADVANCED DESIGN CHANGES TO CAPTURE NHB TRIPS 

Special Market - Airport 
Travel to and from regional airports represents an important travel market that requires special attention 

in travel demand models. If the existing design of the travel model includes an airport sub-model to 

capture these unique travel patterns, then that design should be modified to account for CAV owners who 

travel to the airport but choose to send their vehicles back home to avoid parking costs. Most special 

market airport models do not include detailed level market segmentation in the airport sub-model. As 

such, the adjustment for CAVs is applied to all airport travelers assumed to have CAVs. For the MH 

scenario, the factor was applied to 70% of the airport trips, and for the H scenario to 95% of the airport 

trips. For each scenario, the appropriate proportion of the trip table is factored to generate an additional 

trip going back to the trip origin.  

NCDOT RTDM Framework 
The recently released NCDOT RTDM includes a CAV component, and no model design changes were 

required. Details on the design of the CAV model are found in the model development documentation 

(Stantec, 2023). The design of this model includes key elements captured in the literature. The Tier 3 case 
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study analysis evaluates this model using the set of performance measures and evaluation criteria and 

presents findings and recommendations specific to this model design.   

Case Study Evaluation and Findings 
To support this research, the research team conducted case study evaluations using two different travel 
demand models, the Triangle Regional Model Generation 2 (TRMG2) and the NCDOT Regional Travel 
Demand Model (RTDM) for the Albemarle Rural Planning Organization. The case studies for each model 
are informed by the scenarios documented in the Scenario Development section.  

For the Existing Model Design and NCDOT RTDM applications, only the input parameters were modified 
prior to running the model. In the Model Design Change application, the model was redesigned and input 
parameters were modified prior to running the model.  

For each application, system-level performance measures were captured and reported. After confirming 
that the model was performing in a logical and expected way, project-level performance measures were 
captured and a project-level evaluation was conducted. These results are presented and summarized in 
the following sections. In addition to evaluating each case study for a medium-high and high CAV adoption 
level, the sensitivity of asserted parameters was evaluated independently and in combination with the 
other variables for the TRMG2 model.   

System-level performance measures include: 

▪ Average trip length by trip purpose, 
▪ Vehicle miles traveled, 
▪ Congested vehicle miles traveled, and 
▪ Delay. 

Project-level performance measures include: 

▪ Demand, 
▪ Capacity, 
▪ Demand-to-capacity ratio, 
▪ Daily delay, and 
▪ Daily delay per mile. 

The calculation of delay considers the difference between the free flow link travel time and congested link 
travel time multiplied by the demand on the link. While it is reasonable to assume that the presence of 
CAVs in the travel stream may impact the free flow travel time in addition to the congested travel time, a 
simplifying assumption in this analysis is that the free flow time is based on the posted speed limit and 
facility type and does not change between the CAV and no CAV scenarios.  

A sensitivity analysis was conducted for the Tier 1 and Tier 2 case studies. This effort helped inform the 
development of a cone of uncertainty around model outputs informed by the CAV adoption level and the 
influence on model coefficients.  
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Triangle Region 
Model Overview 
ITRE and Caliper recently completed development on a new generation model for the Triangle region that 
reflects a best practice approach to both travel modeling and code development, with many advanced 
components designed to best capture travel behavior choices and an agile code base that makes model 
adjustments more streamlined and intuitive. This model was selected as the platform for evaluating 
various parameter changes designed to capture supply and demand uncertainty related to CAV 
deployment. Additionally, the Triangle region has a highly educated and affluent population and an 
economy that is largely driven by technology industries. Given these factors, it is likely that the Triangle 
region will be an early adopter of CAV technologies.  

Selection of Projects 
The research team coordinated with NCDOT to identify several project locations across the Triangle region 
to be used for evaluation purposes.  

These selected projects were identified using NCDOT’s online Traffic Forecasting Data Maps. These maps 
display NCDOT projects geographically and provide additional information on the progress of the project 
within the traffic forecast portion of the project development phase. The selected projects were cross-
checked in the latest State Transportation Improvement Program (STIP) and the Metropolitan 
Transportation Plan (MTP), also available online. Finally, the shortlisted projects were submitted to the 
NCDOT project champion for review and approval. Regional significance, travel demand, and whether the 
project is programmed within the STIP and MTP were all considered in project selection. The case study 
projects for the Triangle region are listed in Table 9 and mapped in Figure 9. The table also lists the county 
where the project is located and the average hourly wage rate for the county. This information is used in 
later analysis to calculate the cost of delay.  
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TABLE 9 CASE PROJECTS IN THE TRIANGLE REGION 

P# Facility Type 
STIP 

Number 

Project 

Type 

Roadway 

Name 
Project Extent County 

Hourly 

Wage 

Rate 

1 Interstate I-3306 

Widening 

(from 4 to 6 

lanes) 

I-40 I-85 to US 15-501  Orange $43.62 

2 Interstate R-2829 
New 

Location 
I-540 I-40 to I-87/ US 64 /US 264 Wake 

$35.99 

3 Freeway U-6066 

Widening 

(from 2 to 3 

lanes) 

US 1 US 64 to NC 55 Wake 

4 Freeway U-5307A 

Widening 

(upgrade to 

freeway) 

US 1 I-540 to Thornton Rd Wake 

5 Arterial  U-5891 

Widening 

(upgrade to 

divided 

highway) 

NC 50 I-540 to NC 98 Wake 

6 Arterial  R-3410B 

Widening 

(from 2 to 4 

lanes) 

NC 42 
Son-Lan Parkway/Cleveland 

Crossings Drive to US 70 Bus 
 Johnson 

7 
Rural 

Roadway 

R-5930 / 

R-5963 

New 

Location 

Chatham 

Parkway 
US 15-501 N to US 15-501 S Chatham $23.28 

https://www.commerce.nc.gov/north-carolina-county-average-wages 

 

NOTE: While STIP projects were used to support case study analysis, the actual project extent, details, 

and results do NOT reflect actual projects. These projects were selected as guidance only and the traffic 

forecast data comes directly from the travel model. It has not been post-processed and analyzed, as is 

best practice for actual traffic forecasts.  

https://www.commerce.nc.gov/north-carolina-county-average-wages
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FIGURE 9 LOCATION OF PROJECTS IN THE TRIANGLE REGION 

Existing Model Design Approach (Tier 1) 
Overview 
For the existing model design approach, model parameters were adjusted as documented in the Scenario 

Development section.  

Approach 
For each application, system-level performance measures were captured and reported. These results 
were reviewed for reasonableness. Project-level performance measures were also captured, and a 
project-level evaluation was conducted. These results are detailed and summarized in the following 
sections. In addition to evaluating each case study for medium-high and high levels of CAV adoption, the 
contribution of asserted parameters was evaluated independently and in combination with one another. 
The results of this sensitivity analysis help to identify the most uncertain parameter which requires further 
analysis. Identifying this parameter is crucial, as it highlights the areas where the model is most sensitive 
and where additional study is required to ensure robustness and reliability.  

For further analysis on the identified parameter, a new sensitivity analysis was conducted to make sure 
that model outputs exist for all possible outcomes within the uncertainty cone of the model. This 
comprehensive approach ensures that the model is extensively tested across a broad range of possible 



NCDOT 2023-11 Project Report 

 

23 
 

scenarios, thereby validating its predictive capability and ensuring its resilience to variations in key 
parameters. Through this iterative process, we can refine our understanding, improve the accuracy of the 
model’s forecasts, and ultimately support more informed decision-making. 

Summary of Results  
This section provides a high-level overview of the findings from the Tier 1 case study. A more detailed and 

comprehensive analysis is provided in Appendix D.  

At the systems level, the introduction of CAVs results in notable changes across key performance 

measures. There was a modest increase in the average trip length, accompanied by an overall rise in daily 

VMT. However, this increase in VMT was balanced by a significant reduction in congested VMT, indicating 

that while vehicles traveled more, the presence of CAVs helped alleviate the congestion. Furthermore, 

delay showed substantial improvements. Specifically, delays on freeways were reduced by 60% under the 

medium-high (MH) CAV adoption scenario and by 74% under the high (H) CAV adoption scenario. These 

improvements highlight the potential of CAVs to enhance traffic flow and reduce the burden of 

congestion. However, not all facility types experienced the same level of benefit. For example, major 

collectors showed only marginal reductions in delay, suggesting that the positive effects of CAVs may vary 

based on roadway characteristics.  

At the project level, performance measures were computed for each individual project analyzed earlier in 

the “Triangle Region” section. These results indicate that demand generally increases across all projects 

under the MH and H scenarios. Despite this increased demand, the demand-to-capacity (D/C) ratios 

decreased, suggesting that CAVs improved the efficiency of roadway capacity utilization.  

The case study projects were further evaluated under a build condition with and without CAVs, and a no-

build condition with CAVs considering medium-high CAV adoption level. The focus of this analysis was on 

trying to determine whether the presence of CAVs changes both the supply and demand side of 

transportation enough to reconsider whether the project should be built, built differently, or delayed due 

to the changes brought about by CAV adoption. Despite the advantages brought by CAVs, the analysis 

revealed that the improvements under the medium-high CAV adoption scenario were not sufficient to 

eliminate the need for all of the planned projects. In other words, while CAVs contribute to better system 

performance, they do not fully replace the necessity for infrastructure investments, at least under the 

medium-high adoption scenarios. Accordingly, although CAVs offer measurable benefits, they should 

complement rather than replace traditional infrastructure improvements to achieve optimal system 

performance. 

Sensitivity Analysis  
The Tier 1 (existing model design) approach included two types of sensitivity testing. The first focused on 

the interaction of the different variables that were adjusted during the Tier 1 approach (variables are 

presented in Table 1). The results of the variable interaction showed that the capacity variable emerged 

as the pivotal factor driving the results of the analysis. Capacity increases due to CAVs resulted in at least 

84% reduction in congested VMT during the peak hour and 43% reduction in daily delay of mobility-

oriented facilities. Therefore, capacity deserves further sensitivity analysis due to its foundational position 

at the base of the uncertainty cone in the scenario evaluations. 

This effort informed the second sensitivity test that focused on evaluating different values for the capacity 

variable. So far, we examined the effect of increases in capacity variables by two scenario types of 
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medium-high and high levels of CAV adoption. Therefore, we are interested to see how the performance 

measures will change if the increases in capacity variables are not high as expected. Figure 10 shows the 

range of uncertainty in variable values as measured by changes in daily delay, peak period VMT, and peak 

period congested VMT for the two scenarios, reducing medium-high CAV adoption capacity by 25% (C1) 

and 50% (C2). Figure 10 indicates a higher level of uncertainty in the C2 scenario, where the change in 

daily delay reaches more than 40% compared to C1, which demonstrates a more moderate capacity 

increase. This analysis highlights how lower CAV capacity scenarios significantly impact the level of 

uncertainty in system performance in terms of daily delays. Again, the findings emphasize the critical role 

of capacity values in influencing the reliability of system-level outcomes.  

 

 

FIGURE 10 RANGE OF UNCERTAINTY AS MEASURED BY DAILY DELAY (MIN), PEAK PERIOD VMT, AND PEAK PERIOD 

CONGESTED VMT 

According to Figure 10, moving from the MH scenario to C1 and then C2 results in a small reduction in 

peak period VMT values. These changes are less than 3% in the most critical scenario (C2) which means 

that VMT is not sensitive to changes in capacity values. Similar to the delay, congested VMT experiences 

a high risk when capacity values drop to level 1.  

Figure 11 presents the comparison of peak hour D/C ratios for Project 1 under various scenarios projected 

for the year 2050. These scenarios include a build project without CAVs, a build project with MH CAV 

adoption, a no-build project with MH CAV adoption, and a build project with different levels of CAV 

capacity benefits, specifically C1 and C2. 

In the 2050 baseline scenario without any CAV implementation, the D/C ratio is recorded at 0.69. With 

the introduction of CAVs under the MH adoption level, the D/C ratio improves to 0.56. In a scenario with 

CAVs only, the D/C ratio goes up to 0.72 which is higher than the build scenario without CAVs but is still 

in good condition. This implies that according to the Tier 1 method, this project can be deferred. When 

considering more cautious capacity adjustments with CAVs as seen in C2, the D/C ratio slightly increases 

to 0.60, while a less cautious adjustment in C1 shows a D/C ratio of 0.56. Intuitively, the capacity benefits 
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for CAVs can be enough to defer this project based on CAV benefits alone, considering even the most 

cautious capacity benefit in the C2 scenario. 

 

FIGURE 11 COMPARISON OF PEAK HOUR D/C RATIO FOR PROJECT 1 BY SCENARIO 

Tier 1 Summary and Findings 
The results of this analysis show that a strategic modification of parameters, informed by literature, in an 
existing model design is an effective and efficient approach for considering the potential impact of CAVs 
on project-level traffic forecast. Given the fact that no model design changes are required, this approach 
could be quickly deployed for most, if not all, traffic forecasts to improve the level of risk and uncertainty 
in the forecast traffic which can lead to better-informed decision-making. The results are shown to be 
effective as the model responds in the expected direction and the performance measures track with 
expectations documented in the literature. Model performance measures also trend in the same direction 
as the measures from the more advanced Tier 2 analysis described in the next section.   

Model Design Changes (Tier 2)  
Overview 
For the Tier 2 analysis, model parameter adjustments were made as outlined in the Scenario Development 

section.  

Approach 
For each application, system-level performance measures were captured and reported, and system-wide 
performance measures were reviewed. Project-level performance measures were then captured, and a 
project-level evaluation was conducted. These results are captured and summarized in the following 
sections. In addition to evaluating each case study for a medium-high and high CAV adoption level, the 
contribution of asserted parameters was evaluated independently and in combination with each other.  

Summary Results 
This section provides a high-level summary of the Tier 2 case study. Detailed analysis is provided in 

Appendix E.  

In the Tier 2 analysis, CAVs also lead to increased average trip lengths. Total VMT increases for both the 

MH and H scenarios, but the congested VMT is reduced by 34% under the MH scenario and 48% under 
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the H scenario. Delay is also reduced in both the MH and H scenarios with the biggest reduction in delay 

for the mobility-focused facilities.  

The Tier 2 project-level analysis included the same projects evaluated for the Tier 1 analysis. Project-level 

demand increases for all projects, but the D/C ratio decreases reflecting the capacity benefits of the CAV 

scenarios. 

The build and no-build analysis showed improvements in D/C and daily delay for all projects under the 

build MH CAV scenario, leading to delay cost savings for the project with CAVs as compared to the project 

with no CAVs. For the no-build MH CAV scenario, both the D/C and daily delay increased, leading to 

increased costs. These results suggest CAV benefits, but not enough to negate the need for the project 

under the MH CAV adoption rate scenario.   

Risk and Uncertainty 
The emergence of CAVs presents a transformative potential for transportation systems, but their exact 

impact remains uncertain as they are not yet widely deployed. In this study, we have made various 

assumptions to forecast the future with CAVs. To evaluate the risk and uncertainty associated with the 

modified variables, a sensitivity analysis was conducted to better capture the contribution of the original 

asserted values for key variables in the model, including capacity, trip rates, and land use. The MH scenario 

was selected for the sensitivity analysis as it is more likely than the H scenario for CAV adoption in 2050. 

This analysis focused on both system and project-level outputs.  

Six scenarios were evaluated–two cases for each key variable. The scenarios evaluated are described 

below. For each, the baseline is the MH CAV adoption scenario reflecting the originally asserted values 

based on the literature.  

 

Capacity 

▪ Baseline Scenario: optimistic benefits in capacity improvements (40-47% increase, depending on 

the facility type) 

▪ C1: moderate benefits in capacity improvements (25% less capacity from baseline) 

▪ C2: cautious benefits in capacity improvements (50% less capacity from baseline) 

Land Use 

▪ Baseline Scenario: 2050 land use forecasts from the 2050 Metropolitan Transportation Plan 

▪ A1: Increased downtown and urban core density while maintaining regional control totals 

▪ A2: Increased development in suburban and rural areas while maintaining regional control totals 

Trip Rates 

▪ Baseline Scenario: trips for all trip purposes increased by 9% 

▪ B1: 33% more recreational trips, 55% fewer work trips from baseline (yields 9% increase in total 

trips)  

▪ B2: 55% more recreational trips, 89% fewer work trips from MH values (yields 9% increase in total 

trips) 

 

Figures 12 – 14 show the range of uncertainty in delay, VMT, and congested VMT at the systems-level for 

the different variable values. The effect on system-level delay to changes in land use patterns and trip 

making is very small, suggesting lower levels of risk in the asserted values of these variables. On the other 

hand, the capacity variable shows a higher degree of risk with a 40% higher measure of systems delay for 
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the cautious capacity values. In other words, delay increases as the capacity improvements do not offset 

increases in demand.    

 

 

 

FIGURE 12 RANGE OF UNCERTAINTY AS MEASURED BY DELAY 

 

The effect on system-level peak period VMT to changes in all variables is very small, suggesting lower 

levels of risk in the asserted values of these variables through the lens of systems-level VMT.   

 

 

FIGURE 13 RANGE OF UNCERTAINTY AS MEASURED BY PEAK PERIOD VMT 

The effect on system-level peak period congested VMT shows a similar pattern as the daily delay measure 

with changes in land use patterns and trip making having a very small impact on congested VMT indicating 

a low risk for these variables. The degree of risk for the capacity variable is much higher, especially for the 

capacity adjustment reflecting more cautious benefits.  
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FIGURE 14 RANGE OF UNCERTAINTY AS MEASURED BY CONGESTED VMT 

Systems-level performance measures are useful for understanding overall patterns, but the project-level 

analysis is needed to help answer the question of whether project improvements are still necessary with 

the presence of CAVs, or whether these project investments can be deferred to a later time frame allowing 

for a redistribution of project funds. Given that changes in land use and trip rates were identified as having 

low risk in the systems-level analysis, the project-level analysis focuses on how more cautious changes in 

capacity benefits might affect project-level decision-making. Project 1 is used as the case study example 

documented in the main body of the report. Details on additional projects are provided in Appendix E.  

In Figure 15 below, we see that in 2050 the D/C ratio with the project is 0.69 during the PM peak hour 

using a level-of-service (LOS) D capacity. With CAVs in the travel stream at the MH adoption level, the D/C 

improves to 0.56 reflecting the added capacity benefits of CAVs. An important question then becomes 

whether the capacity benefits from CAVs are high enough to suggest that the project can be deferred to 

a future date. In this case, the capacity benefits of the MH scenario without the project yield a PM peak 

hour D/C ratio of 0.82 which may suggest that the project could be deferred, and the money invested in 

another project that has greater needs. A D/C ratio of 0.82 during peak conditions suggests that the facility 

is operating below capacity during heavy demand, even with no investment in infrastructure.   

Given the potential negative impacts of deferring important transportation investments to a later time 

frame, understanding the level of uncertainty around that decision is key. We know from the earlier 

analysis that there is a high degree of risk if the capacity benefits from CAVs are in the cautious to 

moderate range. In the Project 1 example, Figure 15 shows a 0.08 higher D/C ratio than the MH CAV 

scenario for the cautious scenario. This result suggests that the capacity benefits for CAVs may not be 

enough to defer this project based on CAV benefits alone. In application, this strongly supports risk and 

uncertainty analysis on the asserted capacity values for any traffic forecast that includes CAVs as a part 

of the forecast scenario. While risk and uncertainty analysis is not conducted on traffic forecasts as a 

matter of practice, this would be good practice for NCDOT to adopt.       
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FIGURE 15 COMPARISON OF PEAK HOUR D/C RATIO FOR PROJECT 1 BY SCENARIO 

Model Design Summary and Findings 
The results of this analysis support model design changes that can improve the utility of travel forecasting 

for considering a future that includes CAVs. The consideration of CAVs in travel models and the associated 

traffic forecast at different levels of CAV adoption can help NCDOT understand the level of risk and 

uncertainty in the traffic forecast which can lead to better-informed decision-making.  

Comparative Analysis between Tier 1 and Tier 2 
The Existing Model Design (Tier 1) and Model Design Changes (Tier 2) both used the Triangle Regional 

Model for implementation and analysis. This provides an opportunity to compare the two methods. The 

Tier 1 method focused on the modification of parameters within the existing model design and an 

approach that was quickly and easily implemented. The redesign of the model (Tier 2) was more time- 

and resource-intensive and required a certain level of model development expertise. In many ways, the 

implementation of a Tier 1 approach could lead to the development and evaluation of traffic forecasts 

that consider CAVs sooner than what a model redesign might require. This section evaluates the 

difference between key outputs between the two approaches. Comparison Tables are provided in 

Appendix G. 

Tier 2 (Model Design Changes), on the other hand, was a more involved process requiring significant 

model redesign and testing. This resulted in a more realistic representation of travel behaviors, 

particularly with respect to travel time, trip lengths, and congestion factors. The model incorporated 

additional demand elements like empty CAV parking trips and sCAV trips, which significantly impacted the 

network performance. These adjustments led to higher VMT and increased congestion and delay, as the 

model was better able to simulate the real-world complexities introduced by automated vehicle 

technologies. Ultimately, the differences in the results between the two tiers stem from the contrasting 

methodologies; see Table 10. While Tier 1 allowed for faster evaluations with fewer resource demands, 

Tier 2 provided a more nuanced and precise understanding of traffic and demand dynamics due to the 

more robust behavioral design changes and inclusion of additional factors. The key driver of the 

differences in outputs is the increased demand captured in Tier 2, which translates into higher VMT, 

longer trip lengths, and increased delays, offering a more comprehensive picture of potential traffic 

scenarios. This difference does not suggest that the Tier 1 analysis has limited usefulness, but rather that 
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a more detailed approach offers more behavioral realism. When time and resources allow, the Tier 2 

approach is preferred, but the Tier 1 approach is much better than nothing.  

TABLE 10 TOTAL DAILY VMT, CONGESTED VMT, AND DAILY DELAY BY TIER 

Performance Measure Tier 1 Tier 2 % Diff 

Daily VMT (veh.mi) 98,622,106 103,506,007 4.9% 

Cong. VMT (veh.mi) 2,796,820 4,499,830 60.9% 

Daily Delay (min) 137,650 170,702 24.0% 

 

At a project level, the results presented in Table 11 suggest that the Tier 1 and Tier 2 approaches are 

comparable, especially when considering the D/C ratios across projects and segments. While there are 

minor differences in D/C ratios between Tier 1 and Tier 2 these variations are not significant, as most 

differences remain small across all projects, including the three segments of P7. This indicates that Tier 1 

can provide reasonable estimates of network performance without requiring the additional time and 

resources needed for the more complex Tier 2 approach. For scenarios where quick and efficient 

evaluations are prioritized, Tier 1 proves to be a practical and effective option while still delivering results 

close to those of Tier 2. 

TABLE 11 PROJECT LEVEL PEAK HOUR DEMAND AND DEMAND-TO-CAPACITY RATIO (D/C) BY TIER 

Project 
Peak Hour Demand (veh/h) D/C 

Tier 1 Tier 2 % Diff Tier 1 Tier 2 % Diff 

P1 9,519 10,165 6.36% 0.53 0.56 5.36% 

P2 2,636 2,844 7.31% 0.14 0.15 6.67% 

P3 14,845 15,333 3.18% 0.82 0.85 3.53% 

P4 13,105 13,786 4.94% 0.68 0.71 4.23% 

P5 3,710 4,199 11.65% 0.48 0.55 12.73% 

P6 2,683 2,675 -0.30% 0.37 0.37 0.00% 

P7 

1,085 1,078 -0.65% 0.29 0.29 0.00% 

449 460 2.39% 0.06 0.06 0.00% 

1,227 1,225 -0.16% 0.33 0.33 0.00% 

 

NCDOT RTDM (Tier 3) 
Model Overview 
Given that North Carolina is still largely a rural state, and the fact that CAV deployment will likely be 
different for these regions of the state, a second case study focusing on a more rural part of the state was 
conducted. NCDOT develops and maintains all travel demand models outside of the three regional models 
and has developed guidelines for the newly created Regional Travel Demand Models (RTDMs) that will, 
region by region, eventually provide model coverage for the entire state. The new RTDM platform has a 
built-in process for considering CAVs. The first model developed using the RTDM is the Region 17 RTDM 
covering the Albemarle Rural Planning Organization (RPO) in the far northeast of the state. The model 
provides a framework for using scenario planning to evaluate the existing CAV guidance.  
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Selection of Projects 
The same approach for project selection applied in the Triangle was followed for the Albemarle RPO 
region. The case study projects for the Albemarle RPO region are listed in Table 12 and displayed in Figure 
16.  

TABLE 12 PROJECTS IN THE ALBEMARLE REGION 

P# Facility 
Type 

TIP 
Number 

Project Type Roadway 
Name 

Project Extent STIP # 

1 Arterial R-2574 Widening US 158 
(Shortcut Rd) 

NC 34 to NC 168 / US 158 
(Caratoke Highway) 

R-2574 

2 Arterial NA Widening US 17 US 17/US 158 North of Elizabeth 
City to Virginia State line 

 

 

NOTE: While STIP projects were used to support case study analysis, the actual project extent, details, 

and results do NOT reflect actual projects. These projects were selected as guidance only and the traffic 

forecast data comes directly from the travel model. It has not been post-processed and analyzed, as is 

best practice for actual traffic forecasts.  

 

FIGURE 16 LOCATION OF PROJECTS IN THE ALBEMARLE REGION 
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RTDM Evaluation  
Overview 
For the RTDM evaluation, the cost ratio was modified and the trip length was adjusted as outlined in the 

Scenario Development section.  

Approach 
For each application, system-level performance measures were captured and reported. Project-level 
performance measures were captured, and a project-level evaluation was conducted. These results are 
captured and summarized in the following sections.  

Summary Results 
This section provides a high-level summary of the Tier 3 case study. Detailed analysis is provided in 

Appendix F.  

Unlike the previous two case studies, trip purposes are modeled separately for HV and CAV households. 

As with the Tier 1 and 2 case studies, the average trip length increases for the home-to-work trip for the 

CAV households. However, the average trip length decreases for all other trip purposes, and for all trip 

purposes made by the HV households. A case can be made that CAVs may only impact work trips, but it is 

unclear why HV trip lengths would decrease with the presence of CAVs.   

Unlike the Triangle region, the Albemarle region does not experience significant congestion. For both the 

MH and H scenarios, the total VMT decreases while the congested VMT increases slightly. The decrease 

in total VMT presumably results from the reduced average trip lengths, but the increase in congested VMT 

is unexpected. Most facilities in the Albemarle region experience little to no delay. The presence of CAVs 

leads to a slight increase in delay for multilane and two-lane highways which seems to suggest that the 

CAV-associated capacity improvements are not sufficient to offset the increased travel demand resulting 

from CAVs under both the MH and H scenarios. These results seem counterintuitive and cannot be 

explained without an in-depth review of the model specification and assumed values. It is possible that 

the slight increase in delay simply shows that there are still large uncertainties in rural area predictions.   

To evaluate changes at a project-level, performance measures were summarized for the individual 

projects described previously.  

The project-level analysis shows a small decrease in forecast demand from 2,354 vehicles in the peak hour 

to 2,308 vehicles for Project 1 under the MH scenario, but an increase of 490 vehicles for the H scenario. 

The base level forecast demand for Project 2 is 10,763 vehicles in the peak hour. Project 2 shows small 

increases in demand for both MH and H, 715 and 524 vehicles respectively. The demand is so low 

compared to the roadway capacity for both projects that the D/C is 0.1, and therefore inconsequential to 

the analysis.  

The build CAV alternative showed slight improvements to both D/C and delay for Project 1, resulting in 

very small delay cost savings; see Table 13. While the reported performance measures do not strongly 

indicate a need for the project under any scenario, the CAV benefits alone do not perform better than the 

build CAV scenario, which is expected.  
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TABLE 13 PROJECT 1 (US 158) PROJECT LEVEL PERFORMANCE MEASURES – PM PEAK HOUR 

 Build No CAV Build CAV No Build CAV 

D/C 0.14 0.10 0.24 

Delay (min) 0.70 0.67 2.8 

Cost of delay per mile $6.10 $5.86 $24.51 

 

The results of the build MH CAV alternative for Project 2 do not show improvement in either the D/C or 

delay as compared to the build no CAV alternative; see Table 14. As expected under this situation, the no-

build CAV alternative performs much worse than the build no CAV for both D/C and delay. It should be 

noted that there is very little congestion, and this may very well impact the results.  

TABLE 14 PROJECT 2 (US 17) PROJECT LEVEL PERFORMANCE MEASURES – PM PEAK HOUR 

 Build No CAV Build CAV No Build CAV 

D/C 0.1 0.1 0.1 

Delay (min) 0.06-0.571 0.08-0.581 0.12-0.991 

Cost of delay per mile $22.62 $26.17 $45.65 
1Varies by segment. 

The research project did not include a sensitivity analysis of the NCDOT RTDM, but it is clear from these 

results that additional investigation into the CAV assumptions and functionality of this model is needed 

to better understand the unexpected results. 

Research Limitations and Assumptions 
As with any analytical approach, especially one developed with fully asserted parameters, there are 

several limitations and assumptions that bear mentioning.    

Focus on CAVs 
This research project concentrated exclusively on Connected and Autonomous Vehicles (CAVs) and did 

not examine Automated Vehicles (AVs). The likelihood of AVs operating on roadways in the near future is 

high; for instance, many vehicles currently function with low levels of automation within our 

transportation networks. In contrast, the widespread implementation of CAVs is expected to occur over 

a longer time horizon. The coexistence of AVs, CAVs, and human-driven vehicles (HVs) in the traffic stream 

is anticipated to be highly disruptive. However, this potential future scenario involving the mixed presence 

of AVs, CAVs, and HVs was not evaluated in this study. 

Roadway Capacity 
The biggest benefit of CAVs captured in the travel model is the positive influence on roadway capacity at 

high levels of CAV adoption. At lower levels of CAV adoption, the impact may be disruptive to roadway 

capacity and may create higher levels of congestion and delay. This research focused on medium-high 

(70% adoption) and high (95% adoption) CAV levels. Based on these levels, capacity improvements for 

mobility-focused corridors were increased. The increase applied was based on results documented in the 

literature, largely informed by microsimulation. These are all hypothesized results based on sound analysis 

but are not directly informed by actual observations. The sensitivity testing showed that the degree of 
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capacity gain has a large impact on the measured benefit and how this influences the decision around 

project build versus no-build. The other limitation of a travel demand model that bears mentioning is that 

aggregate traffic assignment, as opposed to microsimulation, requires broad assumptions such as all 

facilities of a certain type receiving the same broad percent increase in capacity. In actuality, the capacity 

changes are likely to be much more nuanced than that.   

ZOV Trips 
There is a great deal of uncertainty around the impact of ZOVs in the future with CAVs. Perhaps the best 

paper on this topic was by Harb et al. (2022) where chauffeured cars were used to simulate the way people 

would use AVs. The findings from this paper suggest a 60% increase in VMT, half of which can be attributed 

to ZOV trips. To account for these changes, the Tier 2 model design captured ZOV trips in three different 

model steps based on how ZOV trips are expected to be generated. ZOV trips related to CAV sharing 

among household members are accounted for in the trip generation model. The parking model was 

redesigned to account for ZOV trips resulting from parking avoidance. A growth factor was applied to the 

sCAV trip table output from the mode and destination choice model to account for sCAV empty trip miles 

and to increase the background traffic associated with sCAVs. Sensitivity analysis was performed on the 

trip rates, and that captures some uncertainty in ZOV trips related to car sharing among household 

members. Given the potential impact of ZOVs and the uncertainty associated with these new trip types, 

additional research into this area would be beneficial.  

Land Use Assumptions 
In general, it is not expected that CAVs will increase trip lengths while everyone continues to live in the 

same location that they live in today. Increased trip lengths will likely result because people move farther 

away from their jobs or the more developed region for reasons that may be motivated by affordability or 

a more rural lifestyle. For all models in North Carolina and most across the country, future land use is a 

model input. As a fixed input, the location of jobs and households will not dynamically be informed by the 

changes in travel impedance and accessibility expected to result from higher levels of CAV adoption. An 

integrated land use transportation model would capture this effect–but in lieu of that, an increase in trip 

length was asserted. Leaving land use the same but increasing trip lengths creates an incorrect picture of 

which roads will be impacted from land use shifts brought about from higher levels of CAV adoption.    

Fleet versus Ownership 
There is a high degree of uncertainty around whether the majority of CAVs will be owned by individual 

drivers or operated by fleet companies. If CAVs are very expensive, it is more likely that companies will 

own them and will use sophisticated control software to maximize revenue miles per vehicle. The travel 

future may look completely different if companies like Uber own CAVs rather than most individual 

households in the current auto ownership paradigm. If this is the case, then the current construct and 

logic represented by travel demand models may no longer apply when CAV penetration reaches 70% or 

greater. In this case, shopping and dining trips may be substituted with freight trips, and most households 

may no longer choose to own vehicles. Shared CAVs may choose the path of travel to minimize cost rather 

than travel time, as the current path builder assumes. On the other hand, studies have shown that CAVs 

could still be the least costly option in most cases, which would make private ownership more attractive 

(Wadud and Mattioli, 2021; Galich and Stark, 2021). 
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Black Swans 
The term “black swan” is often used to describe an event that is unexpected, but that could have positive 

or negative impacts on the future. A recent example of this is the impact of COVID on teleworking. An 

earlier example is women entering the workforce. Both events stress the previous models because the 

observed behavior and associated model parameters no longer represent the expected future. Well-

specified and estimated travel models rely heavily on travel behavior survey data that captures revealed 

decision-making about travel under today’s conditions. Until CAVs become more commonplace, we 

cannot estimate models based on revealed travel behavior but rather must assert parameters informed 

by literature or expert opinion. As such, these assumptions and asserted parameters should be revisited 

on a regular basis to make sure they reflect the best information we have at the time, until such time that 

models can be estimated using observed data.   

Conclusions and Recommendations 
CAVs have the potential to significantly change travel demand across North Carolina by the year 2050, 

and NCDOT is currently planning the infrastructure that will service travel needs in 2050 and beyond. 

There is an urgent need for NCDOT to better understand the potential effects of CAVs on travel demand 

and traffic forecasts, as a failure to do so could lead to significant implications for NCDOT and the citizens 

of North Carolina. 

This research effort explored the use of travel demand models to better understand the possible impacts 

of a future with a 70% or greater adoption rate of CAVs. Work focused on the modification of parameters 

and assumptions within a scenario planning context for an existing model design (Tier 1), a redesigned 

model (Tier 2), and a model that already includes some accommodation of CAVs (Tier 3). Case studies 

were used to evaluate the potential effects of CAVs on regional and project-specific performance 

measures. The results of the case studies for the medium-high (MH) scenario, reflecting a 70% CAV 

adoption, show an increase in peak period VMT of 13% (Tier 1) and 16% (Tier 2). While peak period VMT 

increased, the peak period congested VMT declined by 50% (Tier 1) and 34% (Tier 2), and freeway delay 

declined by 60% (Tier 1) and 44% (Tier 2). The results for the Tier 3 model analysis showed unexpected 

results with a slight decrease (0.3%) in peak period VMT and a slight increase (0.4%) in peak congested 

VMT. There are no freeway facilities in Tier 3 but delays on multilane and two-lane showed small increases 

with MH CAV adoption.  

At the project-level, the analysis for the Tier 1 and Tier 2 models shows an increase in demand across all 

projects evaluated, while demand over capacity (D/C) improves. The benefits of CAVs did not, however, 

remove the need for the projects under the MH scenario. The Tier 3 model showed no project-level 

benefit at either the MH or H CAV adoption level, primarily due to very low demand on the projects for 

the base, MH, and H scenarios. A sensitivity analysis of the key variables shows that the uncertainty in 

capacity improvements associated with CAVs has the highest level of risk and uncertainty when 

considering the effects of CAVs on key performance measures.  

Given the level of risk and uncertainty associated with the adjustment of the capacity values, this work 

would benefit from additional research into additional scenarios that vary both adoption, capacity, and 

ZOVs. The analysis presented in this research included the CAV adoption level as a scenario analysis and 

separately conducted sensitivity analysis on the parameters. In practice, analysts should conduct a risk 
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and uncertainty analysis using a best case and worst-case scenario. The best-case scenario would assume 

high adoption, optimistic capacity improvements, and low ZOV generation. The worst-case scenario would 

assume medium adoption, HCM recommended capacity improvements, and high ZOV generation. 

Additionally, all changes to model parameters were asserted based on knowledge gleaned from the 

literature and professional experience. It is impossible to estimate these parameters that reflect actual 

behavior until we have observed travel behavior for households who own a CAV. In lieu of that, stated 

preference surveys could be used to better understand how people might behave if they owned a CAV, 

and that data could then be used to estimate, rather than assert, the coefficients. NCDOT should consider 

investing in such a survey.  

Given the level of uncertainty in the asserted parameters, additional sensitivity analysis is also 

recommended, especially with respect to the varied components of ZOV trips. This effort would help to 

tighten the range of recommended asserted values for each parameter in conjunction with the level of 

uncertainty associated with each. In addition to the additional testing recommended for the capacity 

values at different levels of CAV adoption, this should be undertaken for all parameters.  

Finally, the results from the NCDOT RTDM were unexpected. For instance, the literature suggests that 

CAVs will result in longer trip distances, resulting in increased VMT. The RTDM does show increased 

average trip length for work trips made by CAV households, but a decreased trip length for non-work trips 

made by CAV households and decreased trip lengths for all trips made by non-CAV households. 

Additionally, VMT decreases slightly while congested VMT increases slightly. Delay is insignificant in the 

rural region covered by the RTDM; even so, the delay on most facilities increases with the presence of 

CAVs, counterintuitive to what experts say will be a benefit of CAVs at the adoption rates evaluated. While 

this research was not designed to delve deeply into the functionality and assumptions of the model, 

further examination is warranted if this model is to become the standard for small urban and rural POs.  

This research has provided a significant contribution to the use of travel models in a scenario planning 

context to better understand the potential effects of CAVs on key transportation system performance 

measures and traffic forecasts. The tiered approach lays a solid groundwork for changes that could be 

implemented immediately as well as those that require more time and effort but offer more behavioral 

realism. Additionally, this work informed the development of guidelines that can be used to incorporate 

these findings into the models that NCDOT funds or develops to better capture the effects of CAVs on long 

range transportation plans, project prioritization, and project-level traffic forecasts.  

Most Metropolitan Transportation Plans (MTPs) have a future year of 2050 and some MPOs are initiating 

work on MTPs with a 2055 future year. While a handful of traffic forecasts are using a forecast year of 

2045, the majority are using a 2050 forecast year. The time to start considering CAVs in future planning 

and infrastructure development is now. At a minimum, MTPs and traffic forecasts currently underway 

should incorporate a Tier 1 approach on the selection and prioritization of projects, and to better 

understand the risk and uncertainty around traffic forecasts and the decisions they inform. For planned 

model development projects, the recommended guidelines should be followed such that future travel 

demand models incorporate a robust and behaviorally-realistic approach to evaluating CAVs. NCDOT 

should conduct additional analysis on the RTDM to better determine if the counterintuitive results capture 

the uncertainties of CAV deployment in rural areas with little to no congestion, or if design modifications 

are required. Following this investigation, NCDOT should continue to move forward with the development 
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of RTDMs with a CAV component for small MPOs and RPOs so these regions can consider the influence of 

CAVs in the development of their transportation plans.     
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1. Introduction 
The emergence of connected and autonomous vehicle (CAV) technology is expected to significantly alter 

transportation systems from various aspects. CAVs have the potential to improve safety, reduce 

congestion, and increase efficiency (Mondal et al. 2022). In addition, the widespread adoption of CAVs 

will also have a significant impact on current travel demand models (He, Jiang, and Ma 2022). Travel 

demand models are a crucial component as they assist in the planning and management of transportation 

infrastructure.  

The advent of CAVs has the potential to change many aspects of travel demand models. These may include 

trip generation, trip distribution, mode choice, travel behavior coefficients, transportation system 

performance, highway capacity, parking pricing, and travelers’ value of time. These factors can be 

modified to capture changes in travel behavior for CAV users, thereby reflecting possible shifts in forecast 

travel demand.   

For instance, CAVs can lead to changes in land use patterns as they will impact the way people travel and 

how land is used for transportation (Bansal and Kockelman 2018). Additionally, CAVs can impact trip 

generation and distribution as they can change the way people travel including how often they travel, 

their destination, and the route selected (Bridgelall and Stubbing 2021). The use of CAVs can also influence 

mode choice, leading to a decrease in traditional modes of transportation (Malokin, Circella, and 

Mokhtarian 2015). Moreover, CAV adoption can lead to significant changes in the performance of 

transportation systems, including intersection and highway capacity (Hajbabaie, Tajalli, and Bardaka 

2022).  

Overall, the emergence of CAVs has the potential to transform the transportation system and therefore, 

travel demand models will need to transform as well.  Examining travel demand model elements that can 

be changed because of CAVs, will lead to a better understanding of the potential needed adjustments in 

existing models. 

The remaining sections will cover topics related to incorporating the impact of CAVs into travel demand 

models. First, basic definitions for both Autonomous Vehicles (AV) and CAVs are provided. The market 

penetration rate of CAVs and how CAV ownership patterns may change in the future is then discussed. 

Next, the relationship between land use and transportation planning, with a focus on the four-step 

modeling approach is discussed. Then, how CAVs could impact travel behavior and the potential effects 

on transportation system performance and capacity is explored. Additionally, parking pricing as a tool for 

managing demand for parking spaces in a future with CAVs is discussed. Finally, the methodology and 

scenario development used in the literature to analyze the potential impacts of CAVs on travel demand 

models is described. 

2. Definitions and Classification of Vehicle Types 
Over the past decade, there has been significant interest and research in two emerging technologies, 

connectivity and automation, as a means to enhance the efficiency, reliability, and safety of vehicles and 

transportation systems. By leveraging these technologies, there is a growing expectation that the benefits 

of enhanced connectivity and automation will provide promising outcomes. 
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This research classifies vehicles into four categories based on the existence and integration of automation 

and connectivity technologies, as demonstrated in Figure 1. These categories include autonomous 

vehicles (AVs), connected vehicles (CVs), connected-autonomous vehicles (CAVs), and human-driven 

vehicles (HVs). 

 

FIGURE A-1: VEHICLE CLASSIFICATION BASED ON CONNECTED/AUTONOMOUS TECHNOLOGIES EXISTENCE AND INTEGRATION  
[Source: (Samandar 2019)] 

 

AVs, according to the United States Department of Transportation (USDOT), refer to vehicles where some 

aspects of safety-critical control functions, such as steering, braking, or throttle, occur without direct input 

from the driver (Administration 2013). The Society of Automotive Engineers (2021) has established six 

levels of autonomous driving, which vary from no autonomous intervention to full vehicle autonomy. 

Table 1 outlines the different levels of automation identified by the Society of Automotive Engineers (SAE) 

J3016 standard. 

 
TABLE A-1: SAE J3016 LEVELS OF AUTOMATION  

 

[Source (SAE Levels of Driving AutomationTM Refined for Clarity and International Audience, n.d.)] 
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reliability, and safety through the integration of connectivity and automation technologies, and 

underscores the need for further research and development in this area.  

2.2. Autonomous vehicles  
AVs utilize built-in sensors to monitor their surroundings and control driving functions. They are 

considered a game-changing technology with the capability to substantially improve safety, increase 

capacity, and ensure dependable travel times. The car manufacturing industry is putting considerable 

efforts into developing completely self-driving vehicles (as defined by SAE levels 4 and 5). Yet, simpler 

implementations of this groundbreaking technology, such as adaptive cruise control, have already been 

successfully deployed. These features aim to enhance driver comfort, alleviate traffic bottlenecks, bolster 

safety measures, and augment vehicular capacity.  

2.3. Connected vehicles  
CVs hold the potential to collect data about their environment through interaction with similarly equipped 

vehicles and local infrastructure. This real-time information access can significantly influence the driver's 

reactions and decision-making processes, potentially leading to considerable enhancements in safety and 

vehicle capacity. It is crucial to underscore that the human operator retains control and makes all the 

operational, tactical, and driving decisions, drawing upon the data obtained via the vehicle's 

communication features.  

2.4. Connected and autonomous vehicles  
CAVs incorporate both connectivity and automation technologies. These advanced vehicles utilize not 

only their integrated sensors but also their communication abilities to formulate decisions and perform 

driving tasks. They leverage real-time data about the actions and locations of other vehicles nearby, as 

well as environmental factors and driving conditions further along their path. This wealth of information 

enables these sophisticated vehicles to make educated and timely decisions, optimizing their performance 

and safety.  

3. Market Penetration Rate (MPR) 
Estimating the CAV penetration rate is crucial for strategic planning purposes. Several studies examined 

the factors that can influence changes in CAV penetration rate. One study by Lavasani, Jin, and Du (2016) 

used a market diffusion model to estimate the CAV penetration rate up to 2045, considering variables 

such as the price of vehicles and the economic status of households. Their results indicate that the AV 

market size could reach 8 million by 2035, if AVs are commercialized by 2025. Assuming a market 

saturation of 75%, it would take 35 years for the market to reach its maximum potential. In another study 

Johnson and Walker (2016) developed two scenarios of slow and fast CAV growth rates to predict the 

market penetration rate of CAVs, estimating that it could be 3% and 11%, respectively by 2024. In a more 

recent study, Litman (2020) predicted that Level 5 AVs may become commercially available by the 2020s, 

but the real benefits of this technology will be realized when self-driving cars become common and 

affordable, which may happen between 2040 and 2060. The study identified six factors that affect the 

growth rate of AVs, including technological advancements, evaluation standards, additional costs, lifestyle 

of users, predictable level of service, and social preference for new products.   
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4. CAV Ownership 
Previous research focuses on predicting auto ownership, whether a household owns a vehicle and if that 

vehicle is a CAV or human driven vehicle (HV). Once the autonomous driving technology is widely adopted, 

people may choose to trade their HVs for private CAVs (pCAV) or solely rely on other modes like shared 

CAVs.  

Multiple researches tried to simulate this by adding a CAV ownership scheme to household stratification 

(Bernardin Jr et al. 2019; Dias et al. 2020). Generally, two types of factors are suspected to have impact 

on CAV ownership – traveler level characteristics and trip level characteristics. Traveler characteristics can 

be further categorized into physical and psychological. Physical characteristics like age, income, household 

size, education, and especially life cycle are believed to have a strong impact (Pendyala et al. 2017; Tu et 

al. 2022). Psychological characteristics like CAV safety perception, technology savviness, and interests in 

using travel time productively also play an important role (Dannemiller et al. 2021; Lavieri et al. 2017). 

Parking cost, travel time, and built environment, as trip level characteristics, have less significant but 

measurable effects (Pendyala et al. 2017; Tu et al. 2022).  

5. Land Use 
The existing literature presents conflicting findings on the influence of CAVs on land use. A survey 

conducted in Texas by Bansal and Kockelman (2018) found that AVs and Shared-autonomous vehicles 

(SAVs) are less likely to impact relocation decisions, with a significant proportion of respondents 

expressing a desire to remain in their current location. In contrast, a study by Moore et al. (2020) predicts 

significant urban sprawl, as the ability to use travel time productively may lead to workers tolerating 

longer commutes. The NCHRP guidance (Zmud et al. 2018) on updating regional models to address the 

impacts of CAVs, suggests that adjustments to accessibility measures in land use models should be made 

based on the potential impact that CAVs will have on travel costs. Since higher accessibilities make regions 

more attractive for development, the reduced travel costs from CAVs may lead to greater development 

in suburban and rural areas. 

6. Travel Behavior  
Several studies in the literature have analyzed the potential effects of CAV technology on travel behavior. 

In one of the first articles published, Childress et al. (2015) defined four scenarios using an activity-based 

travel model from Seattle WA. They assumed changes in MPR, capacity, and travel cost. The results show 

that vehicle-miles traveled (VMT) will increase continuously with an increasing MPR. Eventually, a 100% 

MPR yields a 20% increase in VMT. This increasing trend was also observed in the number of daily trips 

per person. In addition, the average distance traveled for work and school trips also increased by about 

16%. 

In a study from Southern California, He et al. (2022) evaluated the effects of CAVs on the transportation 

system using an activity-based model. The changes in people’s travel behavior were investigated based 

on survey results. The model predicted that in the presence of CAVs, total trips will increase by 9% and 

the total distance traveled will increase by 13%. 
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Harb et al. (2022a) have used chauffeured cars to simulate the way people would use AVs. A total of 43 

households from Sacramento CA were selected to participate in this study. They presented the results of 

the experiment to investigate AVs-related changes in travel behaviors. Of the selected households, 34 

households benefited from the chauffeur service for 1 week and the remaining 9 households had this 

service for 2 weeks. Moreover, smartphones were used to collect travel data. This research had 5 main 

findings, 3 of which are related to changes in passenger travel behavior: 1) in the presence of AVs, VMT 

increased by 60% (half of which were zero occupancy vehicle or ZOV trips) and vehicle trips increased by 

39%, 2) households decreased their use of non-autonomous household vehicles by 53%, 3) the share of 

transit, ride-hailing, biking, and walking trips in the weeks of using AV respectively decreased by 71%, 58%, 

37%, and 13%. 

6.1. Long Distance Trips 
CAVs are also speculated to significantly impact long distance travel. Dannemiller et al. (2021) examined 

potential CAV impact on travel behaviors using survey-based modeling approach based on data collected 

in the Austin, Texas area. Results suggested that over 50% of people would make more long distance trips. 

Huang, Kockelman, and Quarles (2020) used the Texas statewide model to forecast travel changes across 

the megaregion and predicted that 82% of within-region airline passenger travel will be replaced by CAVs. 

6.2. Value of Time 
Travelers’ perception of travel time would change once they are released from the task of driving. Instead 

of being a disutility, travel time could be productive and relaxing. Studies using stated preference surveys 

or revealed preference surveys indicate that the value of time reduction varies. Moore et al. concludes 

that individuals who are young and have more interest in productively using travel time can tolerate 

longer commute times. They suggests a modest decrease of 30% in value of time (VOT) (Moore et al. 

2020). Harb et al. (2022a) did a simulation experiment by offering selected households free chauffer 

services to estimate CAVs effect on VOT and found a 60% reduction in VOT. Researchers also implemented 

changes in various travel demand models by reducing VOT by 25% - 50% (Cohn et al. 2019; Gucwa 2014; 

Kim et al. 2015; Sonnleitner, Friedrich, and Richter 2022; Vyas et al. 2019). 

6.3. Truck Trips 
As AVs continue to gain attention in the transportation industry, it is crucial for transportation planners 

to understand their potential impact on truck trips. Recent studies have examined the effects of AVs on 

truck trip efficiency, employment, and freight transportation. 

Efficiency is a major concern for the trucking industry, and AVs have the potential to increase efficiency 

(Rad et al. 2020) through optimized routing, reduced fuel consumption, and constant speed travel. In 

addition to efficiency, employment in the trucking industry may also be impacted by AVs (Clements and 

Kockelman 2017). Research suggests that the increased efficiency and automation brought about by AVs 

could lead to a reduction in the need for human truck drivers, which could have significant implications 

for the labor market. 

Freight transportation is another area that may be affected by AVs. Huang et al. (2020) examine shippers’ 

choice between autonomous trucks and conventional or human-driven trucks using a random-utility-

based multi-region input–output model, driven by foreign export demands. They simulated the impacts 

to freight traffic among 3109 U.S. counties and 117 export zones via a nested logit model for shipment or 

input origin and mode. They found that the adoption of autonomous trucks works in favor of longer truck 
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trips, but rail’s competitive prices hamper autonomous truck trips for trade distances over 3000 miles. 

Human driven trucks dominate in shorter-distance freight movements, while autonomous trucks 

dominate at distances of over 500 miles. In another study, Huang et al. (2020) used a four-step model 

structure with nested logit models to reflect future availability of AVs across Texas. They found that the 

truck trips in all of the commodity classes are predicted to increase. Cantarella and Di Febbraro (2017) 

reviewed the existing methods for predicting truck trips and conclude that modeling user mode choice 

behavior with autonomous vehicles might require a hierarchically structured model. 

7. Parking 
One of the most discussed advantages of CAVs is that travelers no longer need to park their cars close to 

their destinations, nor do they need to go to the parking lot to pick up their car. After getting dropped off, 

CAVs can either find a cheaper parking lot somewhere else, cruising at a low speed, or return to home to 

park and then pick up the passenger at the destination.  

To simulate CAV’s impact on parking, previous research primarily considered two approaches - reducing 

parking costs and relaxing parking constraints. The first approach reflects CAV’s behavior in parking at 

cheaper locations. Kim et al. (2015) set parking costs at the primary destination to zero together with 

other modifications using Atlanta’s activity-based model and found an increase of 2.6% in daily vehicle 

trips and 12.2% in total VMT.  Similarly, Childress et al. (2015) and Cohn et al. (2019) assumed a 50% 

reduction in modeled parking costs. The second approach, relaxing  parking constraints, is used in models 

which parking lot choice is modeled in the trip distribution or mode choice model (Kang, Hu, and Levin 

2022). It is commonly implemented in tour-based models as the tour mode choice rules are based on car 

status and mode cannot be switched (for instance, a commuter that takes transit to work cannot drive a 

traditional vehicle back home) (Vyas et al. 2019). 

8. Four-Step Modeling 
8.1. Trip Generation Process 
Many researchers attempt to predict how trip generation will change as CAVs become more prevalent. 

The predictions are fairly broad. Bridgelall and Stubbing (2021) state that CAVs may increase trip rates by 

50% and the demand for shopping, dining and entertainment may increase by a factor of 2.24. However, 

Dannemiller et al. (2021) state that AVs may not have a substantial impact on overall trip-making levels, 

although local area trips are likely to become longer. Cohn et al. (2019) suggest that non-work trips may 

increase by 25% accounting for more discretionary vehicle trips including those by unlicensed drivers. 

Bernardin Jr et al. (2019) suggest that these populations, including disabled persons, seniors, and/or 

children, may increase trip rates more moderately at 5%. NCHRP (Zmud et al. 2018) suggests the 

consideration of trip rate adjustments to account for expanded mobile populations, though no specific 

rate adjustments were specified. 

Cohn et al. (2019) offer nuances to potential changes in trip making behavior. Up to 50% of single-

occupancy vehicles (SOV) trips may shift to high-occupancy vehicles (HOV) trips. And, there is no 

significant difference in the number of days people choose to travel; in other words, having access to a 

CAV is unlikely to change whether people choose to stay home or engage in non-home activities (Harb et 
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al. 2022a). The difference in trip generation rates between AV and non-AV households is fairly minimal; 

Dias et al. (2020) suggest a 5% increase to rates for AV households.  

Overall trips could increase by CAVs introducing an entirely new trip – zero-occupant vehicle trips (ZOV) 

– where a driver- and passenger-less vehicle independently makes a trip. Many researchers offer rates for 

ZOV trips (Bernardin Jr et al. 2019). Areas with constrained parking may see more ZOV trips where the 

vehicle parks itself in a neighboring area with available parking and then returns to pick up its owner 

(Bernardin Jr et al. 2019). Mondal et al. (2022) segmented CAV owners into those who have access to free 

parking at their destination and those who use alternative parking locations; it was assumed that 40% of 

CAV owners have access to onsite parking and do not generate empty trips. CAV empty trip generation, 

parking costs, and empty trip timings are also considered. NCHRP also suggests rate modifications to 

account for zero-occupant trips, though no specific adjustments were recommended. (Zmud et al. 2018). 

Researchers also offer potential adjustments to trip generation components of travel demand models. 

Vyas et al. (2019) modifies the Columbus, Ohio activity-based model to account for AVs and they evaluate 

the potential impacts on accessibility measures, activity participation, tour formation and mode choice. 

Dannemiller et al. (2021) suggested adjustments to modeling coefficients and t-stats. Mondal et al. (2022) 

offers a framework that incorporates empty trips for CAVs. And Harb et al. (2022b) model personal tours 

in activity-based models. 

8.2. Trip Distribution Process 
Researchers attempt to predict how trip distribution will change as CAVs become more prevalent, 

specifically where people will travel to, how long they will travel, and how far they will travel. The 

predictions are fairly broad. Many agree that travelers will have a reduced sensitivity to travel time 

(Bernardin Jr et al. 2019). In their study, Dannemiller et al. (2021) found that over 60% are willing to accept 

between 5 and 15 minutes of additional commute travel time. This goes hand in hand with willingness to 

travel farther distances.  There is some propensity for CAV users to travel farther for work, to shop, pursue 

leisure, and in general, make more long-distance trips (Dannemiller et al. 2021; He et al. 2022). 

Some researchers have studied how CAVs may change people’s willingness to relocate their residence and 

therefore cause even more changes in trip distribution. There are three main decisions of interest: binary 

choice of moving (or not) home location, binary choice of moving (or not) work location, and the amount 

of additional travel time people are willing to tolerate (Moore et al. 2020). Individuals who significantly 

value productively using travel time are more willing to relocate their home and office locations and travel 

further for commuting (Moore et al. 2020). Young adults (18-34 years old) and suburban dwellers show a 

strong tendency for both home and work relocations as well as commute time increases; women are on 

the opposite end of that spectrum. The magnitude of impact or trickle-down effects of CAV ownership 

plus potential home and office relocation may be very significant for trip distribution (Moore et al. 2020). 

Modeling trip distribution impacts by CAVs has also been investigated. Dias et al. (2020) used a unique 

trip distribution value of time variable of 0.75, obtaining impedances for AV trips by multiplying the non-

AV impedances by this variable. Harb et al. (2022b) modeled the decrease in disutility of traveling to 

farther locations through the mode choice log-sum that captures the value of time reduction. CAV parking 

is also related; Kang et al. (2022) modeled parking lot choice as a trip distribution problem. And lastly, 

NCHRP offers trip distribution factors including network cost matrices reflecting CAVs and new friction 

factor matrices if CAVs affect trip lengths (Zmud et al. 2018). 
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8.3. Mode Choice 
Many researchers attempt to predict how people’s choice of transportation mode will change as CAVs 

become more prevalent. As with other transportation variables, it is often dependent on demographic 

characteristics. Lavieri et al. (2017) estimated a heterogeneous data model system with data from Puget 

Sound, Washington and determined that lifestyle factors play an important role in shaping AV usage. 

Younger, educated, tech-savvy, urban residents are more likely to be early adopters of CAVs than are 

older, suburban or rural individuals. Malokin, Circella, and Mokhtarian (2015) created and administered a 

survey to determine who would be more likely to use CAVs. They determined that those who prioritize 

engaging in productive activities while driving could significantly increase their utility by using CAVs and 

could account for a small but non-trivial portion of the current mode shares. A study in southern California 

had other mode choice related findings: more than half the population are willing to use CAVs, many HOV 

trips shift to CAVs and transit trips increased (He et al. 2022). Cohn et al. (2019) also found that transit 

frequency increased especially for services with dedicated right-of-way. 

Researchers also investigated willingness to use shared CAVs and how that would both introduce a new 

mode and impact selection of existing modes. Eluru and Choudhury (2019) explored preferences towards 

personal AVs, shared AV and existing ride-sharing options. In another study Gurumurthy and Kockelman 

(2020) investigated willingness to pay to ride with a stranger in a shared AV on various trip types using a 

stated-preference survey; it provided insight on privacy concerns and safety. Moreno et al. (2018) applied 

a logit model for willingness to use shared CAVs and its impact to mode choice. Hardman, Chakraborty, 

and Tal (2022) and Dias et al. (2020) both offer mode choice specific coefficient modifications. These 

impacts on people’s value of time were one of the main aspects of Harb et al. (2022a)’s study and this 

adjustment can be made directly within the model. 

Some researchers have studied how to incorporate CAV impacts to mode choice components of travel 

demand models. Lavieri et al. (2017) provides alternative coefficients, t-stats and model elasticities based 

on education level, age, income, employment status and household composition. Bernardin Jr et al. (2019) 

and NCHRP suggest model adjustments to add CAVs and shared CAVs as separate modes and transit 

access modes, introducing a new nesting structure. NCHRP also recommends new routing routines to 

model dynamic ridesharing and coordinated multimodal mobility services (Zmud et al. 2018). 

9. Transportation System Performance 
CAVs can transform the transportation system from both supply and demand perspectives. To investigate 

these alternations, Vyas et al. (2019) conducted a study in Columbus, OH. They used different scenarios 

related to AV deployment to enhance the regional activity-based travel demand model. Based on the 

results, AV deployment yielded two fundamental changes in system performance: 1) reduced highway 

headway and 2) increased roadway capacity.  

In another study, Bernardin Jr et al. (2019) investigated the effects of CAVs on system performance. They 

defined two scenarios to predict the potential effects of CAVs. In scenario 1, they assumed 80% CAV 

market share for 2050, and a fully CAV fleet in scenario 2. Their results show that the total system delay 

for the first and second scenarios increased by 40% and decreased by 15%, respectively. Also, the average 

delay of each user increased by 45% and decreased by 20% for these scenarios, respectively. 
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Dias et al. (2020) considered a general framework to extend the four-step model to observe AV-related 

changes in the system. The methodology defined different scenarios to capture the system response to 

different AV MPRs. Five scenarios were generated based on different assumptions. In the first scenario, 

no AVs are used. In the second, AV use is high. For the next three scenarios, they considered some changes 

in the share of travel generation for vehicle types, time value, and capacity. By examining link speeds, a 

direct relationship between average speeds and MPR was observed. In addition, as the capacity 

decreases, the speed also decreases.  

The important point in examining the changes caused by CAVs is that without the CAV-related observed 

data, the integration of CAVs in travel demand models requires basic assumptions.  

9.1. Highway Capacity Change Due to Use of AVs 

Among the various autonomous vehicle technologies, adaptive cruise control (ACC) stands out. This 

system uses onboard sensors to automatically adjust vehicle speed and prevent collisions (Bishop 2000). 

The performance of ACC relies heavily on its sensor systems, leading to driving behaviors similar to fully 

autonomous vehicles. 

Chang and Lai (1997) previously studied the impact of autopiloted vehicles on the capacity of a one-lane 

freeway. They found a 33% increase in the number of vehicles that can safely merge onto the highway 

when all vehicles were autopiloted. Meanwhile, Vander Werf et al. (2002) showed that the introduction 

of autonomous adaptive cruise control (AACC) had a modest but significant 7% impact on freeway 

capacity. 

Minderhoud and Bovy (1999) explored the effect of autonomous intelligent cruise control (AICC) on 

freeway capacity using simulations. They discovered that the time gap between vehicles significantly 

influenced capacity when more than 20 percent of vehicles used AICC. 

Tientrakool, Ho, and Maxemchuk (2011) used equations of motion instead of simulations to analyze the 

impact of sensor-equipped autonomous vehicles on highway capacity. They found a 43% increase in 

freeway capacity when all vehicles were autonomous. 

Le Vine et al. (2019) created a model of autonomous vehicles driving to estimate freeway capacity. They 

also conducted a simulation-based study to examine the effect of ACC on freeway capacity, revealing that 

conservative ACC increased travel time and delay, while aggressive ACC reduced them. 

Another study examined the effects of dedicated lanes for AVs on congestion and travel time (Talebpour, 

Mahmassani, and Elfar 2017). They found that AVs using dedicated lanes resulted in better travel time. 

While there is a lot of research on how AVs affect capacity and travel time reliability, less research exists 

on their safety impact. However, Carbaugh, Godbole, and Sengupta (1998) found that AVs are safer than 

manually driven ones, and the transition to CAVs further improved safety. 

9.2. Highway Capacity Change Due to Use of CAVs  

Cooperative adaptive cruise control (CACC) is a notable technology among various CAV innovations due 

to its potential to greatly enhance roadway traffic conditions by increasing capacity and stabilizing flow 

(Milanés et al. 2013). The integration of vehicle-to-vehicle communication with onboard sensors allows 

CACC to maintain shorter following distances and respond more quickly to changes in traffic conditions. 
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Vander Werf et al. (2002) developed one of the first models of CACC. Their model and subsequent 

simulations showed that with a 0.5 seconds time gap between CACC equipped vehicles, road capacity 

could more than double. Later studies by the same team confirmed these findings in mixed traffic 

scenarios. 

Shladover et al. (2012) conducted a study to understand the effect of different levels of CACC adoption 

on highway capacity. Their findings showed that once a moderate level of CACC adoption was reached, 

the potential for a substantial increase in highway capacity was very high, with increases of up to 4000 

vehicles per hour per lane in a fully saturated CACC environment. 

Recent field experiments also validate the potential of CACC to enhance roadway capacity and flow 

stability (Bu, Tan, and Huang 2010; Milanés et al. 2013; Ploeg et al. 2011). Particularly, experiments 

conducted by Milanés et al. (2013) and Shladover et al. (2012) demonstrated the ability of CACC equipped 

vehicles to maintain a time gap as small as 0.6 seconds, significantly lower than the typical gap maintained 

by traditional vehicles, thus indicating a significant potential for freeway capacity enhancement. 

Vander Werf et al. (2002) also studied the impact of varying CACC adoption levels on traffic flow using 

Monte Carlo simulations. Their findings suggest that CACC has the potential to substantially enhance 

highway capacity, with the degree of increase being quadratically related to the level of CACC adoption. 

Several studies, such as those conducted by Ni et al. (2010), Tientrakool et al. (2011), and Van Arem, Van 

Driel, and Visser (2006), also demonstrate the potential of CACC and other CAV technologies to 

significantly improve highway capacity, with increases of up to 270% under certain conditions. 

However, the majority of existing research on AVs and CAVs has predominantly focused on the 

longitudinal control dynamics of these technologies, with very little attention given to their lateral 

dynamics. A notable exception is the work of Liu et al. (2017), which explores the impact of lateral control 

algorithms on freeway capacity and traffic flow dynamics. Their findings suggest that the potential 

benefits of CAVs, particularly in terms of freeway capacity and safety, are most pronounced at high levels 

of adoption. 

9.3. Intersection Capacity Change Due to Use of CAVs 
The integration of wireless communication and autonomous driving in CAVs bears the potential to 

revolutionize intelligent transportation systems by reducing accidents, improving mobility, and reducing 

emissions (Deng et al. 2023; Mirheli et al. 2019; Tajalli, Mehrabipour, and Hajbabaie 2020; Wu, Wang, and 

Zhu 2022; Zong 2019). Since intersections are critical components of transportation networks, utilizing 

CAVs for controlling them would be beneficial. CAVs have two main benefits for intersection control. 

Firstly, CAVs facilitate joint optimization between signal timing and motion trajectories at fully- or 

partially-autonomous traffic intersections (Niroumand et al. 2020a). In other words, vehicles will operate 

with predetermined trajectories within assigned timeslots to improve traffic efficiency by circumventing 

unnecessary speed changes and stops at stop bars. Secondly, CAVs allow for vehicle platooning, which 

can further increase the capacity by reducing inter-vehicular headway and improving energy efficiency by 

mitigating aerodynamic drag and unnecessary speed variations (Deng et al. 2023; Niroumand et al. 2020b; 

Wu et al. 2022). As a result, CAVs in traffic streams can have significant effects on intersection capacity.  

Sun, Zheng, and Liu (2017) proposed a new intersection operation scheme called MCross that maximizes 

intersection capacity by utilizing all lanes of a road simultaneously through dynamically optimized lane 

assignments and green durations. The motivation behind this research was to utilize the controllability of 
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CAVs in order to maximize intersection capacity. The proposed scheme is formulated as a multi-objective, 

mixed-integer, non-linear programming model (MO-MINLP), and its demand conditions for achieving full 

capacity are derived analytically. They used theoretical analysis and problem decomposition to mitigate 

the complexity and solve the MO-MINLP problem. The results showed that MCross can nearly double 

intersection capacity compared to conventional signal operation schemes, with an increase of up to 

99.51%. The authors acknowledged that implementing MCross in the real world is limited to theoretical 

analysis until a sufficient amount of CAVs are available. Furthermore, the authors acknowledged the 

importance of investigating the scalability of MCross to larger control areas. 

Ding et al. (2022) have proposed a method to optimize the management and control of signalized 

intersections by taking advantage of the real-time traffic information that can be collected from CAVs. 

The authors developed a mixed integer quadratic programming (MIQP) model that jointly optimizes signal 

timings and variable guiding lane (VGL) settings at a typical four-legged intersection. The proposed 

method overcomes the restrictions of a conventional signal cycle and assigns phase sequences, green 

start, and duration for each CAV platoon based on movement-based signal timing. The allocation of lane 

resources is also optimized to consider the dynamic traffic demand distribution. The proposed method 

integrates vehicle trajectory control into the collaborative control framework to reduce or eliminate 

wasted green time. The simulation results show that the proposed collaborative control method (signal 

timing and VGL) outperforms the fixed-time and signal optimization control modes in terms of travel time 

and intersection capacity, particularly when traffic demand is under-saturated with strong uncertainty. 

Intersection capacity can increase up to 17.7% by considering the signal timing optimization and VGL 

simultaneously in comparison to fixed-time traffic signal. The study provides a framework for the 

collaborative control of traffic signal, VGL, and vehicle trajectory in a fully connected and autonomous 

driving environment. However, the uncertainties of human driving behaviors under mixed traffic 

conditions are not considered.  

Adebisi et al. (2022) estimated the capacity benefits of CAVs at signalized intersections and developed 

capacity adjustment factors (CAFs) that can be integrated into the Highway Capacity Manual (HCM). 

Microscopic traffic simulation was used to model CAVs, and variations in CAV gap/headway settings, 

platoon lengths, turning movement types, and left-turn phasing modes were considered. The results 

showed that CAVs could lead to a 40% capacity increase for protected movements and a 45% capacity 

increase for permitted left turns at 100% MPR. The CAF tables consider factors such as CAV market 

penetration rate, opposing traffic demand, and the type of vehicle automation in the traffic stream. The 

lookup tables can be used directly as multipliers for existing HCM equations to account for CAV impacts, 

giving HCM users more flexibility.  

Mohammadi, Roncoli, and Mladenović (2021) have proposed a user-based signal timing optimization 

(UBSTO) strategy for optimizing user throughput at signalized intersections using connected vehicle data. 

The strategy comprises three main components: user throughput prediction, signal timing optimization, 

and cycle dynamic adaptation. The inputs of the proposed algorithm include the position, speed, and the 

number of passengers traveling in each vehicle, while the output is the optimal green time duration for 

each signal phase. The proposed strategy was tested against a fully actuated controller in microscopic 

simulation for various scenarios, including different CV penetration rates. Results show that UBSTO can 

significantly increase user throughput, decrease average user delay, and reduce the number of stops per 

vehicle, while also prioritizing vehicles with higher numbers of passengers on-board. In a fully-connected 
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environment, UBSTO is able to increase user throughput 40% to 100%, depending on the demand level. 

However, their strategy lacked consideration of the automation aspect of future vehicles. 

Wu, Wang, and Zhu (2022) explored the impact of CAVs on intersection capacity in a mixed traffic 

environment where conventional human-driven vehicles also share the road space. The study considers 

the penetration rate and platooning behavior of CAVs as major concerns and investigates individual 

willingness of CAVs to form platoons. Intersection capacity is modeled as an objective function of a linear 

program problem that maximizes the sum of throughput of each stream crossing the intersection under 

collision-free constraints, and the average occupation time of conflict points is used to determine the 

constraints. The results show that higher platooning willingness and lower platoon gaps are associated 

with higher intersection capacity, and that higher CAV penetration rate does not necessarily correspond 

to higher intersection capacity. Based on the results of this study, CAV platooning can increase 

intersection capacity up to 250%, when platooning willingness and MPR are at the highest level.  

Hajbabaie, Tajalli, and Bardaka (2022) investigated the potential effects of CAVs on saturation headway 

and capacity at signalized intersections. The authors used simulation and created a signalized intersection 

testbed in Vissim, where four vehicle types were modeled and tested: HVs, CVs, AVs, and CAVs. Various 

scenarios were defined based on different market penetration rates of these four vehicle types, and their 

effects in mixed traffic were investigated in terms of saturation headway, capacity, travel time, delay, and 

queue length in different lane groups of an intersection. The authors used a Python script code developed 

by Vissim to provide the communication between the signal controller and CVs and CAVs to adjust their 

speeds accordingly. The authors developed a model of saturation headway as a function of HV, CV, AV, 

and CAV market penetration rate, lane group configuration, and turning percentage. This model was used 

to determine capacity adjustment factors that could be used to calculate the saturation flow rate and 

capacity of various lane groups. The authors note that the study makes certain assumptions and changes 

in certain parameters of Vissim's car-following and lane-changing models, which were originally designed 

to represent human driving behavior. The study found that increasing CV and CAV market penetration 

rates reduces saturation headway and increases capacity at signalized intersections. In contrast, 

increasing AV market penetration rate deteriorates traffic operations, as AVs drive more cautiously and 

yield longer saturation headways and delays. The study also found that the highest increase (80%) and 

decrease (20%) in lane group capacity were observed, respectively, in a traffic stream of 100% CAVs and 

100% AVs.  

Song and Fan (2023) have estimated both lane-level and intersection-level capacity to guide intersection 

planning and operations under different CAV market shares and traffic demands. The study investigates 

adjustment factors for saturation headway and saturation traffic flow rate for each lane under different 

MPRs and calibrates the maximum throughput function. The study utilizes a typical four-approach 

intersection with three lanes per approach and assumes a decentralized signal CAV control logic with no 

limitation on the platoon length within the intersection control range. The results of the study show that 

with 100% CAVs, the saturation headways for the exclusive through lane, exclusive left-turn lane, and 

shared-right-and-through lane decrease by 55.8%, 48.9%, and 42.4%, respectively. The maximum 

throughput of the intersection with 100% CAVs increases by 70% compared to the scenario with only HVs. 

Moreover, the maximum throughput increases rapidly after 60% MPRs of CAVs, as CAVs are more likely 

to follow a CAV and activate the cooperative adaptive cruise control mode under high MPRs of CAV 

scenarios. 
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10. Implementation Methodology 
Many efforts have been made to estimate the impact of CAVs on travel patterns. Generally, these efforts 

can be categorized into two parts – with and without Travel Demand Model (TDM) approaches.  

Non-TDM approaches include statistical models, micro simulation models, and computer programming 

simulation. Dannemiller et al. adopts a direct survey-based modeling approach to examine potential AV 

effects on short-term activity travel behavior patterns as opposed to the factor modification-based 

approach. Four latent constructs representing tech-savviness, safety concern, variety-seeking lifestyle, 

and interests in productive travel time are used in the statistical model system to explain the main 

outcomes of interest (Dannemiller et al. 2021). Similarly, Harb et al. (2022a), Hardman et al. (2022), and 

He et al. (2022) use survey-based approaches to capture people’s behavior changes associated with CAV 

deployment. Microsimulation models are also commonly used to investigate the potential impact of CAVs 

(Auld, Sokolov, and Stephens 2017; Kumakoshi, Hanabusa, and Oguchi 2021). Tu et al. (2022) use 

computer programming to investigate the potential reduction of vehicle ownership under 100% CAV 

penetration rate using Atlanta travel profile. 

The second approach – TDM – can be more systematic. NCHRP published a report on how to update 

modeling tools to address impacts of CAVs and recommended a list of TDM modifications (Zmud et al. 

2018). Table 2 is built on that and summarized techniques recent researchers applied. None of the nine 

papers analyzed in this table take into account the crucial model components, sociodemographic factors 

and fleet composition.  
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TABLE A-2: RECENT RESEARCH CATEGORIZED BY RECOMMENDED TDM MODIFICATIONS 
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Auto Ownership 
Auto ownership 

model 
Estimate and forecast CAV or 

manual vehicle ownership 
  x x x    x 

Auto availability 
model 

Estimate and forecast availability of 
SAVs and carsharing 

   x      

Trip Generation 

Trip rates 
Estimate and forecast rates for 
expanded mobile populations 

  x x  x x   

Trip rates 
Account for zero-occupant vehicle 

trip generation 
  x  x  x x  

Trip Distribution 

Impedance to travel 
Estimate network cost matrices 

reflecting CAVs 
  x    x   

Impedance to travel 
Estimate new friction factor 

matrices if CAVs affect trip lengths 
(though IVTT) 

 x   x x   x 

Ease of parking 
Adjust parking constrain for parking 

restricted area 
x         

Mode Choice 

Mode choice model 
Design new nesting structure 

including CAVs, SAVs, and SAV 
access to transit 

x  x x x x   x 

Mode choice model 
Account for MaaS impacts on 

multimodal tour plans 
  x   x    

Operating cost 
Account for future auto operating 

cost 
 x    x    

Value of time 
Account for improved value of time 

for CAV modes 
x   x x  x x  

Options of parking   x    x    

Network Assignment 

Supply models 
Estimate CAV-enhanced capacity on 

signalized arterial systems 
x x x x      

Network capacity 
Estimate CAV-enhanced capacity on 

grade-separated facilities 
 x x x      

Path costs; pricing and 
tolling 

Estimate value of time including 
discounts for CAV passengers 

 x   x  x   

Commercial Vehicle / 
Truck 

  x    x    

 

One other element is time of day (TOD). Harb et al. (2022a) suggests that there is no need to modify the 

parameters of a time-of-day model as AVs do not appear to significantly influence the TOD decision for 

individual activity participation at aggregate levels. Though Bernardin Jr et al. (2019) indicates a new, 

shifted diurnal distribution of long-distance passenger and freight travel. 

10.1. Scenario Development  
The development of behaviorally rich travel demand models relies on observed travel survey data for the 

estimation of coefficients and parameters that capture observed travel behavior. However, in cases where 

such data is not available, scenario generation with asserted coefficients and parameters can estimate 

changes in travel demand due to factors that are yet to be observed or are difficult to measure. This method 

has been used to understand the impact of CAVs on travel demand, as demonstrated in various studies. For 

instance, Cohn et al. (2019) evaluated eight different scenarios that considered various levels of AV 

adoption, auto occupancy rates, non-work trips, transit service, freeway capacity, terminal time, parking 
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cost, and values of time to quantify the equity impacts of CAVs. In another study, an activity-based model 

was used by Childress et al. (2015) to evaluate the impact of AVs with scenarios focused on increased 

capacity for freeways and major arterials, reduced value of time, and reduced parking cost. Finally, Dias et 

al. (2020) utilized a traditional four-step model to assess the impact of AVs by developing scenarios that 

captured changes in auto ownership, trip generation, trip distribution, mode choice, and the value of time 

parameter in highway trip assignment. 
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Appendix 
Table A.1 includes all the information from Table 2 in a more comprehensive form. The table follows the 

same structure provided in NCHRP Report 896 and captures the current practice of modifying travel 

models to capture CAV impacts. The table suggests that models should be modified to account for several 

travel behavior impacts of CAVs. Table cells with an “x” notation represent papers where the particular 

model adjustment was addressed by the authors but sufficient detail was not provided on the 

implementation of such an adjustment. Additionally, NCHRP Report 896 recommends a modest increase 

to all trip production rates to reflect the improved accessibility.  
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TABLE A-A.1: COMPREHENSIVE INFORMATION OF RECENT RESEARCH CATEGORIZED BY RECOMMENDED TDM MODIFICATIONS 

Model 

Component 

Model 

Improvement 

Literature 

Harb et 

al (2022) 
Vyas (2019) 

Dias 

(2020) 
Bernardin (2019) 

Mondal 

(2022) 

Huang et 

al (2020) 

Childress 

et al 

(2015) 

Kim et al 

(2015) 

He et al 

(2022) 

Auto Ownership 

Auto 

ownership 

model 

Estimate and 

forecast CAV or 

conventional 

vehicle ownership 

  x x x         x 

Auto 

availability 

model 

Estimate and 

forecast 

availability of 

SAVs and 

carsharing 

  x               

Trip Generation 

Trip rates 

Estimate and 

forecast rates for 

expanded mobile 

populations 

 
Expand car 

availability to 

other population 

 5% more HBO 5% 15%    

Account for zero-

occupant vehicle 

trip generation 

  5% 

50% HBW, HBO 

and NHB will 

generate 2 empty 

parking 

(applicable only 

for destinations 

where there is 

paid parking) 

Matrices 

(35%-47% 

empty 

miles) 
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Model 

Component 

Model 

Improvement 

Literature 

Harb et 

al (2022) 
Vyas (2019) 

Dias 

(2020) 
Bernardin (2019) 

Mondal 

(2022) 

Huang et 

al (2020) 

Childress 

et al 

(2015) 

Kim et al 

(2015) 

He et al 

(2022) 

Trip Distribution 

Impedance to 

travel 

Estimate network 

cost matrices 

reflecting CAVs 

      x x         

Impedance to 

travel 

Estimate new 

friction factors 
    75%     

-0.019 for 

IVTT 

coeff.  

  

IVTT 

travel time 

coefficient 

decreased 

by -50% 

Reduced β1 

and β2 by 

31% and 

72% to 

reflect the 

31% 

increase in 

work-home 

travel 

distance 

Ease of 

parking 

Adjust parking 

constrain for 

parking restricted 

area 

            -50%     
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Model 

Component 

Model 

Improvement 

Literature 

Harb et 

al (2022) 
Vyas (2019) 

Dias 

(2020) 

Bernardin 

(2019) 

Mondal 

(2022) 

Huang et 

al (2020) 

Childress 

et al 

(2015) 

Kim et al 

(2015) 

He et al 

(2022) 

Mode Choice 

Mode choice 

model 

Design new 

nesting structure 

including CAVs, 

SAVs, and SAV 

access to transit 

  x x x   x 

SAV cost 

of 

$1.65/mi 

  

SAV 

borrows taxi 

coefficients 

Mode choice 

model 

Account for 

MaaS impacts on 

multimodal tour 

plans 

      x   x       

Operating cost 

Account for 

future changes in 

auto operating 

cost 

          

$0.6 for 

HV, 0.8 

for AV, 

$1 for 

SAV 

  -71%   

Value of time 

Account for 

improved value 

of time for CAV 

modes 

60% 25% - 50% 75%   25%   

-65% 

(high 

income 

HH for 

low CAVs 

all HHs 

for high 

CAVs)   

    

Options of 

parking 

Adjust parking 

cost 
          

No 

parking 

cost for 

SAV 

  
No cost for 

CAV 
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Model 

Component 

Model 

Improvement 

Literature 

Harb et 

al (2022) 
Vyas (2019) 

Dias 

(2020) 

Bernardin 

(2019) 

Mondal 

(2022) 

Huang et 

al (2020) 

Childress 

et al 

(2015) 

Kim et al 

(2015) 

He et al 

(2022) 

Network Assignment 

Supply models 

Estimate CAV-

enhanced 

capacity on 

signalized arterial 

systems 

  15% - 60%   50%     30% 50%   

Network 

capacity 

Estimate CAV-

enhanced 

capacity on 

grade-separated 

facilities 

  20% - 80%   75%       50%   

Path costs; 

pricing and 

tolling 

Estimate value of 

time including 

discounts for 

CAV passengers 

    PCE = 0.7   PCE = 0.7     

Reduce 

operating 

cost 
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Appendix B – Index of Predictions and Factors 
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Appendix C – Conceptual Framework 
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Appendix D –Tier 1 Existing Model Design 
Systems Level Performance Measures 

Average Trip Length by Trip Purpose 
Table D-1 summarizes the average trip length for home-based trips by trip purpose for the scenario with 

no CAVs (base), scenario with medium-high CAV adoption, and scenario with high CAV adoption. All 

scenarios reflect a 2050 forecast year. The analysis shows a modest increase in trip length for most trip 

purposes with the presence of CAVs. The results are intuitive given the increase in capacity that in turn 

leads to less congestion and travelers being able to travel farther in less time, paired with lower values of 

time that result from the opportunity to be productive during the trip. The largest increase in trip distance 

is for short duration trips. Intuitively, people generally travel less distance for a trip with a short duration 

stay. However, as the “cost” of making that trip is reduced, travelers are willing to travel farther for trips 

that may only last 10 minutes or less.  

Table D-1 Average Trip Length in Miles by Home-based Trip Purpose and Scenario  

Trip Purpose 
Base Medium-High High 

Avg. Trip 
Length (mi) 

Avg. Trip 
Length (mi) 

% Diff 
Avg. Trip 

Length (mi) 
% Diff 

K12 trips 6.04 6.30 4% 6.40 6% 

Long duration discretionary trips 8.96 9.39 5% 9.63 7% 

Short duration discretionary trips 4.92 6.26 27% 7.07 44% 

Medical trips 10.11 10.82 7% 11.14 10% 

Shop, dine, other trips 6.58 6.88 5% 7.24 10% 

Work tour – drop off kids K12 6.12 6.46 6% 6.62 8% 

Work tour - interim stop 8.39 8.82 5% 9.03 8% 

Work tour 13.29 13.61 2% 13.73 3% 

 

Vehicle Miles Traveled 
Table D-2 summarizes daily VMT by facility type. Table D-3 reports the same information for the PM peak 

period VMT and the PM peak period congested VMT for each scenario for the entire region.  

A review of daily VMT shows increased VMT for both the medium-high and high scenarios, but reduced 

congested VMT for all facilities except collectors and locals. The capacity values for these facilities were 

not adjusted as no supporting evidence for doing so was found in the literature. With the improved 

capacity and operating conditions for the higher-level facilities, trips are diverted to these facilities 

resulting in a slight reduction in VMT for collectors and locals in the medium-high scenario. For the high 

level of CAV adoption, the increase in overall trips overcomes any VMT benefits for these lower-level 

facilities.   
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Table D-2 Daily VMT and Congested VMT by Facility Type and Scenario 

Facility Type 

Base Medium-High High 

VMT 
Cong. 
VMT 

VMT 
% 

Diff 
Cong. 
VMT 

% 
Diff 

VMT 
% 

Diff 
Cong. 
VMT 

% 
Diff 

Freeway 36,868,915 6,256,314 42,825,329 16% 1,888,472 -70% 45,938,303 25% 696,366 
-

89% 

ML Highway 3,194,051 371,833 3,618,003 13% 96,116 -74% 3,879,606 21% 0 - 

TL Highway 601,669 18,035 614,287 2% 0 - 639,210 6% 0 - 

Major Arterial 14,372,606 525,916 16,202,527 13% 299,152 -43% 17,403,832 21% 231,136 
-

56% 

Arterial 22,643,077 515,891 24,417,203 8% 269,205 -48% 25,783,596 14% 186,480 
-

64% 

Superstreet 999,943 84,795 1,231,226 23% 58,379 -31% 1,381,396 38% 28,269 
-

67% 

Major Collector 2,284,146 77,622 2,245,386 -2% 57,763 -26% 2,278,342 0% 63,870 
-

18% 

Collector 5,522,634 104,958 5,467,283 -1% 110,914 6% 5,563,039 1% 122,075 16% 

Local 2,020,949 16,559 2,000,862 -1% 16,819 2% 2,033,907 1% 19,743 19% 
Total 88,507,990 7,971,923 98,622,106 11% 2,796,820 -65% 104,901,231 19% 1,347,939 -83% 

 

As with the daily VMT trends, total VMT increases for both scenarios, but congested VMT goes down by a 

significant amount indicating a strong benefit for CAVs in the travel stream. 

Table D-3 VMT and Congested VMT by Scenario for the Peak Period 

Base Medium-High High 

VMT 
Cong. 
VMT 

VMT 
% 

Diff 
Cong. 
VMT 

% 
Diff 

VMT 
% 

Diff 
Cong. 
VMT 

% 
Diff 

19,951,727 3,023,255 22,575,659 13% 1,526,009 -50% 24,227,716 21% 574,981 -81% 

 

Delay 
The delay is a measure of congestion and how many people experience it. Delay results from increased 

demand that results in slower travel speed. It is the difference between the free flow and congested travel 

time for each link in the highway network, multiplied by the demand on that given link. Table D-4 

summarizes the daily delay by facility type and scenario. The capacity improvements resulting from CAV 

adoption led to reductions in delay, with the bigger benefits realized on the higher level facilities.  

Table D-4 Daily Delay by Facility Type and Scenario 

Facility Type 
Base Medium-High High 

Delay (min) Delay (min) % Diff Delay (min) % Diff 

Freeway 110,423 43,676 -60% 28,795 -74% 

ML Highway 10,921 4,626 -58% 3,229 -70% 

TL Highway 1,088 352 -68% 236 -78% 

Major Arterial 44,480 25,678 -42% 19,607 -56% 

Arterial 46,324 28,382 -39% 22,455 -52% 

Superstreet 3,669 2,960 -19% 2,526 -31% 

Major Collector 7,070 6,170 -13% 6,448 -9% 

Collector 18,594 18,151 -2% 19,252 4% 

Local 7,690 7,655 0% 8,125 6% 

Total 250,259 137,650 -45% 110,673 -56% 
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Figures D1-D-4 show maps comparing system performance measures including VMT and delay in the MH 

and H scenarios against the Base scenario. The maps reveal that in the MH scenario, as depicted in Figure 

D-1, mobility-oriented facilities see a greater rise in VMT due to increased capacity. Similarly, the H 

scenario, shown in Figure D-2, follows this trend and shows even higher VMT increases with additional 

capacity enhancements. 

 

Figure D-1 Difference in Daily VMT between MH and Base Scenario 
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Figure D-2 Difference in Daily VMT between H and Base Scenario 

Daily delay follows the same pattern. This means that mobility-oriented facilities experience a decrease 

in the delay value for both MH and H scenarios compared to the base scenario. By comparing MH and H 

scenarios it can be concluded that there is a larger delay drop in H scenario.  
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Figure D-3 Difference in Daily Delay between MH and Base Scenario 

 

Figure D-4 Difference in Daily Delay between H and Base Scenario 
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Project Level Performance Measures 
To evaluate changes at a project level, performance measures were summarized for the individual 

projects described previously. NOTE: these projects are for illustrative and case study purposes. Neither 

the projects nor the data presented reflect official projects and forecasts.  

Table D-5 summarizes the projects’ peak hour demands and demand/capacity (D/C) for the base 2050 

scenario with no CAVs, 2050 with MH CAV adoption, and 2050 H CAV adoption. The project level 

performance measures indicate that with MH and high H CAV adoption, demand generally increases 

across all projects while demand/capacity (D/C) ratios decrease, suggesting improved capacity utilization. 

For example, in Project P1, demand increases by 12% and 21% under MH and H CAV adoption respectively, 

while the D/C ratio drops from 0.69 to 0.53 and 0.47. Similar trends are observed in Projects P2 through 

P7. Across these projects, the increase in demand ranges from 4% to 18% with MH CAV adoption and 8% 

to 30% with H CAV adoption, while D/C ratios consistently decline, indicating enhanced capacity efficiency. 

This pattern highlights the potential for CAV adoption to significantly impact traffic demand and network 

performance.  

 Table D-5 Project Level Peak Hour Demand and Demand/Capacity (D/C) by Scenario 

Project 
Base Medium-High High 

Demand D/C Demand % Diff D/C Demand % Diff D/C 

P1 8,473 0.69 9,519 12% 0.53 10,241 21% 0.47 

P2 2,529 0.20 2,636 4% 0.14 2,742 8% 0.12 

P3 12,555 1.02 14,845 18% 0.82 16,373 30% 0.75 

P4 11,123 0.83 13,105 18% 0.68 14,472 30% 0.62 

P5 3,420 0.63 3,710 8% 0.48 3,920 15% 0.42 

P6 2,370 0.45 2,683 13% 0.37 2,875 21% 0.32 

P7 

1,018 0.38 1,085 7% 0.29 1,132 11% 0.25 

398 0.08 449 13% 0.06 479 20% 0.05 

1,087 0.41 1,227 13% 0.33 1,306 20% 0.29 

 

Project Evaluation 
The case study projects were further evaluated under a build condition with and without CAVs, and a no-

build condition with CAVs. The focus of this analysis was on trying to determine whether the presence of 

CAVs changes both the supply and demand side of transportation enough to reconsider whether the 

project should be built, built differently, or delayed. This analysis considers capacity, demand, D/C, and 

delay. Instead of using the overall project length, we utilized “Miles of Travel,” representing the total 

project distance, in both directions of travel, over which daily delays are measured. Delay is further 

evaluated using an average wage rate for the county where the project mostly resides. See Table 9 for the 

wage rate by county and project.  

I-40 (Project 1)  
The analysis of this case study project under three scenarios—build with no CAV, build with medium-high 

CAV (MH CAV), and no-build with medium-high CAV—reveals critical differences in capacity, demand, D/C 

ratio, and daily delay. A summary of the build and no-build analysis for I-40 is shown in Table D-6. The 

build no CAV scenario has a LOS D capacity of 12,329, a demand of 8,473, a D/C ratio of 0.69, and a daily 

delay of 1,815 minutes. In contrast, the build MH CAV scenario shows substantial improvements with a 



NCDOT 2023-11 Project Report 

 

D7 
 

capacity of 18,124, a demand of 9,519, a D/C ratio of 0.53, and a significantly reduced daily delay of 389 

minutes. The no-build MH CAV scenario presents a capacity of 12,803, a demand of 9,270, a D/C ratio of 

0.72, and a daily delay of 1,749 minutes. 

The cost analysis shown in Table D-7 further emphasizes the benefits of CAV integration. The savings from 

implementing the project with CAVs, calculated as the difference between the costs of delay per mile with 

the project but no CAVs ($56.94) and with CAVs ($12.20), amount to $44.74 per mile. Additionally, the 

loss when comparing the cost of delay per mile with CAVs but no project ($54.87) against the cost with 

the project but no CAVs results in a minimal savings of $2.07 per mile. These results suggest that building 

the project with medium-high CAVs not only enhances transportation efficiency but also offers significant 

economic benefits by reducing delays and associated costs. Almost similarly, postponing the project while 

there are MH CAVs on the road can improve the overall condition, but the improvement is not significant 

and needs to be evaluated through sensitivity analysis. 

Table D-6 I-40 MH Build and No-Build Project Level Performance Measures – PM Peak Hour (Project 1) 

 Build No CAV Build MH CAV No Build MH CAV 

Miles of Travel 23.17 

Capacity 12,329 18,124 12,083 

Demand (peak hour) 8,473 9,519 9,270 

D/C 0.69 0.53 0.77 

Daily Delay (min) 1,815 389 1,749 

 

Table D-7 I-40 MH Build and No-Build Annual Cost of Delay 

Cost of delay per minute per mile with project but no CAVs  $    56.94  

Cost of delay per minute per mile with project and CAVs  $    12.20  

Savings  $    44.74  

Cost of delay per minute per mile with CAVs but no project  $    54.87  

Loss  $    (2.07) 

 

US 1 South of Cary (Project 3)  
The analysis of the case study projects for US 1 South of Cary under three scenarios provides important 

insights into capacity, demand, D/C ratio, and daily delay. Results are summarized in Table D-8. In the 

build no CAV scenario, the capacity is 12,277, demand is 12,555, D/C ratio is 1.02, and delay is 833 minutes. 

For the build MH CAV scenario, the capacity increases to 18,048, demand rises to 14,845, D/C ratio 

improves to 0.82, and delay reduces significantly to 449 minutes. In the no-build MH CAV scenario, the 

capacity is 12,032, demand is 13,963, D/C ratio is 1.16, and delay is 1,712 minutes. 

The cost analysis, summarized in Table D-9, highlights the economic impact of these scenarios. The 

savings, calculated as the difference between the cost of delay per mile with the project but no CAVs 

($73.72) and the cost with the project and MH CAVs ($39.73), amounts to $34.00 per mile. The loss, 

calculated as the difference between the cost of delay per mile with CAVs but no project ($151.47) and 

the cost with the project but no CAVs, amounts to $77.75 per mile. These results indicate that building 

the project with medium-high CAVs significantly enhances transportation efficiency, reduces delays, and 

offers substantial economic benefits. Conversely, not building the project with CAVs results in significant 

losses due to increased delays and associated costs. 
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Table D-8 US 1 South MH Build and No-Build Project Level Performance Measures – PM Peak Hour 

 Build No CAV Build CAV No Build CAV 

Miles of Travel 6.78 

Capacity 12,277 18,048 12,032 

Demand (peak hour) 12,555 14,845 13,963 

D/C 1.02 0.82 1.16 

Delay (min) 833 449 1,712 

 

Table D-9 US 1 South MH Build and No-Build Annual Cost of Delay  

Cost of delay per minute per mile with project but no CAVs  $ 73.72  

Cost of delay per minute per mile with project and CAVs  $ 39.73  

Savings  $ 34.00  

Cost of delay per minute per mile with CAVs but no project  $ 151.47  

Loss  $ (77.75)  

 

US 1 North (Project 4)  
The evaluation of the case study projects for US 1 North under three scenarios reveals critical insights into 

capacity, demand, D/C ratio, and delay, see Table D-10. In the build no CAV scenario, the capacity is 

13,440, demand is 11,123, D/C ratio is 0.83, and delay is 506 minutes. In contrast, the build MH CAV 

scenario significantly improves the metrics with a capacity of 19,393, demand of 13,105, a D/C ratio of 

0.68, and a reduced delay of 367 minutes. The no-build MH CAV scenario shows a capacity of 9,297, a 

demand of 9,692, a D/C ratio of 1.04, and a substantial delay of 1,492 minutes. 

The cost analysis underscores the economic implications of these scenarios, see Table D-11. The savings, 

calculated as the difference between the cost of delay per mile with the project but no CAVs ($72.63) and 

the cost with the project and CAVs ($52.64), amount to $19.98 per mile. The loss, determined as the 

difference between the cost of delay per mile with CAVs but no project ($214.02) and the cost with the 

project but no CAVs, results in a significant loss of $141.39 per mile. These findings suggest that building 

the project with medium-high CAVs not only enhances transportation efficiency and reduces delays but 

also provides substantial economic benefits. Conversely, not building the project while having CAVs leads 

to considerable losses due to increased delays and associated costs. 

Table D-10 US 1 North MH Build and No-Build Project Level Performance Measures – PM Peak Hour 

 Build No CAV Build CAV No Build CAV 

Miles of Travel 4.18 

Capacity 13,440 19,393 9,297 

Demand (peak hour) 11,123 13,105 9,692 

D/C 0.83 0.68 1.04 

Delay (min) 506 367 1,492 
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Table D-11 US 1 North MH Build and No-Build Annual Cost of Delay  

Cost of delay per minute per mile with project but no CAVs  $ 72.63  

Cost of delay per minute per mile with project and CAVs  $ 52.64  

Savings  $ 19.98  

Cost of delay per minute per mile with CAVs but no project  $ 214.02  

Loss  $ (141.39)  

 

Sensitivity Analysis on Variable Interactions 
This section summarizes the results and the rationale behind conducting sensitivity tests, which were 

primarily aimed at evaluating the impact of the individual variables asserted within the Tier 1 approach. 

Specifically, three critical variables were examined: Trip Rates, Value of Time (VOT), and Capacity. These 

analyses were conducted under the premise of a high CAV adoption rate to understand how each variable 

affects overall model performance. To comprehensively assess the potential interactions and 

independent effects of these variables, we considered six new scenarios: three involving individual 

changes to each variable and three involving pairwise combinations of these variable changes. This 

approach allows us to isolate the impact of each variable as well as understand how their interactions 

influence outcomes. Notably, altering all three variables simultaneously would result in a scenario 

identical to the high CAV adoption scenario, indicating that the model’s high CAV scenario encompasses 

the combined effects of changes in Trip Rates, VOT, and Capacity. This approach ensures a thorough 

investigation into the model’s sensitivity to variations in key parameters, thereby enhancing the 

robustness and reliability of Tier 1 outcomes and enabling more precise and informed decision-making. 

Table D-12 presents the average trip length (in miles) by trip purpose across six scenarios, each compared 

to the base scenario. The scenarios are: VOT Only, Trip Rates Only, Capacity Only, VOT + Trip Rates, VOT 

+ Capacity, and Trip Rates + Capacity. The measure of effectiveness is the average trip length for all trips 

within the study region. 

In the VOT Only scenario, average trip lengths show minimal changes compared to the base, with the 

most significant difference being a 33% increase in short duration discretionary trips. The Trip Rates Only 

scenario generally results in slight reductions in average trip lengths, with the most notable decrease 

being 2% for work tour – drop off kids K12 trips. Conversely, the Capacity Only scenario sees increases 

across most trip purposes, with the largest being a 10% increase for work tour – drop off kids K12 trips. 

When combining VOT and Trip Rates, trip lengths generally remain close to the base values, with a notable 

30% increase for short duration discretionary trips. The VOT + Capacity scenario results in significant 

increases in trip lengths across most purposes, especially for short duration discretionary trips (45%) and 

work tours (8%). The Trip Rates + Capacity scenario shows mixed results, with some trip lengths increasing 

and others decreasing, but generally aligning more closely with the Capacity Only scenario. 

In general, scenarios involving changes to VOT or Capacity tend to increase trip lengths, particularly for 

short duration discretionary trips, while changes to Trip Rates tend to decrease trip lengths. Based on the 

results it can be assumed that among all three variables, capacity is the biggest driver of the increasing 

trends in average trip length values. 
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Table D-12 Average Trip Length in Miles by Trip Purpose and Sensitivity Test   

Trip Purpose 

Base VOT Only Trip Rates Only Capacity Only 
VOT + Trips 

Rates 
VOT + Capacity 

Trip Rates + 
Capacity 

Avg. 
Trip 

Length 
(mi) 

Avg. 
Trip 

Length 
(mi) 

% 
Diff 

Avg. 
Trip 

Length 
(mi) 

% 
Diff 

Avg. 
Trip 

Length 
(mi) 

% 
Diff 

Avg. 
Trip 

Length 
(mi) 

% 
Diff 

Avg. 
Trip 

Length 
(mi) 

% 
Diff 

Avg. 
Trip 

Length 
(mi) 

% 
Diff 

K12 trips 6.04 6.00 -1% 5.92 -2% 6.48 7% 5.86 -3% 6.46 7% 6.43 6% 

Long duration 
discretionary 
trips 

8.96 9.10 2% 8.84 -1% 9.49 6% 8.97 0% 9.68 8% 9.45 5% 

Short duration 
discretionary 
trips 

4.92 6.53 33% 4.79 -2% 5.36 9% 6.38 30% 7.15 45% 5.30 8% 

Medical trips 10.11 10.64 5% 10.00 -1% 10.66 5% 10.54 4% 11.20 11% 10.60 5% 

Shop, dine, other 
trips 

6.58 6.76 3% 6.48 -2% 7.02 7% 6.64 1% 7.30 11% 6.98 6% 

Work tour – 
drop off kids K12 

6.12 6.05 -1% 5.94 -3% 6.73 10% 5.87 -4% 6.71 10% 6.65 9% 

Work tour - 
interim stop 

8.39 8.41 0% 8.23 -2% 9.03 8% 8.24 -2% 9.10 8% 8.97 7% 

Work tour 13.29 13.26 0% 13.22 0% 13.78 4% 13.18 -1% 13.77 4% 13.75 3% 

 

Table D-13 shows the Peak Period VMT and Congested VMT across six scenarios compared to the base scenario. In the VOT Only scenario, there 

is a 2% increase in total VMT and an 8% increase in congested VMT. The Trip Rates Only scenario results in an 8% increase in total VMT and a 23% 

rise in congested VMT. The Capacity Only scenario demonstrates an 8% increase in total VMT but significantly reduces congested VMT by 90%, 

highlighting the effectiveness of capacity improvements in reducing congestion. The VOT + Trip Rates scenario sees a 10% increase in total VMT 

and a 34% increase in congested VMT. The VOT + Capacity scenario shows an 11% increase in total VMT, with an 88% reduction in congested VMT, 

again emphasizing the impact of capacity enhancements. Lastly, the Trip Rates + Capacity scenario experiences an 18% increase in total VMT, with 

an 84% drop in congested VMT. Overall, capacity changes consistently result in substantial reductions in congested VMT, while VOT and Trip Rates 

changes alone tend to increase both total and congested VMT. Combining these variables yields varied impacts, but the dominant influence of 

capacity improvements on reducing congestion is evident across scenarios. 
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Table D-13 Peak Period VMT and Congested VMT by Sensitivity Test 

Base VOT Only Trip Rates Only Capacity Only 

VMT 
Cong. 
VMT 

VMT Cong. VMT VMT Cong. VMT VMT Cong. VMT 

19,951,727 3,023,255 20,438,861 2% 3,269,498 8% 21,474,886 8% 3,724,621 23% 21,525,452 8% 310,830 -90% 

 

VOT + Trip Rates VOT + Capacity Trip Rates + Capacity 

VMT Cong. VMT VMT Cong. VMT VMT Cong. VMT 

22,022,246 10% 4,056,232 34% 22,178,140 11% 358,560 -88% 23,509,482 18% 494,201 -84% 

 

Table D-14 presents the Daily VMT by facility type across six scenarios compared to the base scenario. For Freeways, VMT increases slightly by 1% 

in the VOT Only scenario, by 5% in the Trip Rates Only scenario, and significantly by 15% in the Capacity Only scenario. This trend continues with 

combined scenarios showing increases, particularly the Rates + Capacity scenario with a 22% rise. Similarly, major increases are observed for other 

mobility-oriented roads such as ML Highways and TL Highways across various scenarios, with Capacity Only and combined scenarios leading to 

notable rises. Conversely, accessibility-oriented roads like Major Collectors and Local roads exhibit a drop in VMT under Capacity Only (-10%) and 

VOT + Capacity scenarios (-8%), indicating improved capacity on higher-tier roads reduces usage on lower-tier roads. Arterials and Superstreets 

show mixed results with minor increases across most scenarios. This pattern suggests that capacity improvements on major roads effectively 

redistribute traffic, enhancing mobility and reducing congestion on less critical routes. Overall, while VOT and Trip Rates changes alone produce 

varied effects, capacity changes dominate in increasing VMT on primary roads and decreasing VMT on secondary, accessibility-oriented roads, 

underscoring the significant influence of capacity enhancements on traffic distribution. 
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Table D-14 Daily VMT by Facility Type and Sensitivity Test 

Facility Type Base VOT Only Trip Rates Only Capacity Only VOT + Rates VOT + Capacity Rates + Capacity 

Freeway 36,868,915 37,385,312 1% 38,695,055 5% 42,243,940 15% 39,253,615 6% 43,130,816 17% 44,993,217 22% 

ML Highway 3,194,051 3,262,882 2% 3,368,895 5% 3,538,347 11% 3,440,999 8% 3,630,614 14% 3,777,038 18% 

TL Highway 601,669 615,045 2% 632,264 5% 592,908 -1% 647,750 8% 605,656 1% 624,455 4% 

Major Arterial 14,372,606 14,808,630 3% 15,631,419 9% 15,060,870 5% 16,099,897 12% 15,652,420 9% 16,748,835 17% 

Arterial 22,643,077 23,405,272 3% 24,979,822 10% 22,353,693 -1% 25,842,144 14% 23,164,314 2% 24,856,557 10% 

Superstreet 999,943 1,027,837 3% 1,057,337 6% 1,231,254 23% 1,086,812 9% 1,279,967 28% 1,330,662 33% 

Major Collector 2,284,146 2,346,693 3% 2,483,245 9% 2,057,150 -10% 2,555,547 12% 2,105,625 -8% 2,223,753 -3% 

Collector 5,522,634 5,689,999 3% 6,061,031 10% 4,978,901 -10% 6,249,882 13% 5,104,341 -8% 5,417,469 -2% 

Local 2,020,949 2,082,423 3% 2,238,432 11% 1,815,674 -10% 2,313,145 14% 1,857,213 -8% 1,985,109 -2% 

 

Like previous tables, Table D-15 shows the dominant role of capacity to decrease the congested VMT for all types of facilities, except for collectors 

and locals. It is mainly due to keeping the same capacity values for these types in different scenarios. It should be noted that VOT and Trip Rates 

increase the congested VMT values for all facility types.  

Table D-15 Daily Congested VMT by Facility Type and Sensitivity Test 

Facility Type Base 
Scenario 

VOT Only Trip Rates Only Capacity Only VOT + Rates VOT + Capacity Rates + Capacity 

Freeway 6,256,314 6,807,005 9% 7,854,411 26% 379,221 -94% 8,424,539 35% 429,321 -93% 577,683 -91% 

ML Highway 371,833 383,346 3% 406,612 9% 0   469,090 26% 0   0   

TL Highway 18,035 30,959 72% 31,151 73% 0   36,268 101% 0   0   

Major Arterial 525,916 597,743 14% 769,830 46% 132,611 -75% 911,515 73% 154,826 -71% 201,679 -62% 

Arterial 515,891 590,824 15% 780,840 51% 101,317 -80% 892,575 73% 114,650 -78% 153,674 -70% 

Superstreet 84,795 110,558 30% 119,257 41% 6,754 -92% 171,966 103% 12,080 -86% 14,787 -83% 

Major Collector 77,622 79,725 3% 104,057 34% 42,350 -45% 118,719 53% 44,580 -43% 57,629 -26% 

Collector 104,958 110,798 6% 131,961 26% 85,832 -18% 148,073 41% 91,517 -13% 111,680 6% 

Local 16,559 18,892 14% 21,775 31% 11,687 -29% 24,280 47% 13,781 -17% 17,672 7% 
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Table D-16 presents the results from sensitivity tests on daily delay across various facility types. Notably, increases in Capacity generally result in 

significant reductions in daily delay across all types of facilities. For example, on Freeways, an increase in Capacity alone reduces daily delays by 

82%, highlighting its potent impact. When variables are combined, the effects on delay can vary. For instance, the combination of decreased VOT 

and increased Capacity on Freeways results in a smaller delay reduction compared to the impact of increased Capacity alone. This indicates that 

while increasing Capacity typically reduces delay, other factors like VOT can moderate this effect. Similarly, the combination of increased Rates 

and Capacity generally shows lesser reductions in delay compared to just increasing Capacity, but still significantly reduces delays compared to 

the base scenario. The sensitivity tests underscore that while individual changes to variables such as VOT, Trip Rates, and Capacity can influence 

delays, the interactions between these variables can sometimes diminish these impacts. Again, the Capacity is having the dominant role in delay 

changes.  

Table D-16 Daily Delay (min) by Facility Type and Sensitivity Test 

Facility Type Base VOT Rates Capacity VOT + Rates VOT + Capacity Rates + Capacity 

Freeway 110,423  116,027  5% 128,618  16% 17,742  -84% 136,231  23% 20,162  -82% 25,438  -77% 

ML Highway   10,921    11,350  4%   12,250  12%   2,444  -78%   12,868  18%   2,639  -76%   2,976  -73% 

TL Highway     1,088      1,170  8%     1,218  12%      162  -85%     1,320  21%      185  -83%      204  -81% 

Major Arterial   44,480    49,460  11%   59,213  33% 11,486  -74%   66,374  49% 13,305  -70% 16,857  -62% 

Arterial   46,324    51,544  11%   62,805  36% 14,174  -69%   70,543  52% 15,953  -66% 19,834  -57% 

Superstreet     3,669      4,185  14%     4,596  25%   1,488  -59%     5,257  43%   1,812  -51%  2,090  -43% 

Major Collector     7,070      7,683  9%     9,112  29%   4,587  -35%     9,991  41%   4,971  -30%   5,924  -16% 

Collector   18,594    20,107  8%   23,813  28% 14,288  -23%   26,001  40% 15,262  -18% 17,898  -4% 

Local     7,690      8,250  7%     9,572  24%   6,331  -18%   10,404  35%   6,692  -13%   7,627  -1% 

 

 

Table D-17 focuses on Project 3 for its sensitivity tests, targeting the worst D/C conditions among seven projects analyzed. The table presents 

changes in peak hour demand and D/C ratios under various scenarios involving modifications in three aforementioned variables. 

In the base scenario, Project 3 starts with a D/C ratio of 1.02, slightly exceeding full capacity. When VOT alone is adjusted, the demand increases 

slightly, worsening congestion with a D/C ratio of 1.05. Altering Trip Rates results in a higher increase in both demand and D/C ratio to 1.09, 

indicating more severe congestion. A substantial improvement is seen when Capacity is increased: demand rises moderately, but the D/C ratio 

drops to 0.67, significantly alleviating congestion. The scenario combinations show varying effects; VOT + Rates increases the D/C ratio to 1.40, 

exacerbating congestion, whereas VOT + Capacity decreases it to 0.69, effectively managing congestion despite higher demand. The combination 

of Rates + Capacity also successfully reduces the D/C ratio to 0.73, improving traffic flow despite a significant rise in demand. This analysis highlights 
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that while changes in VOT and Rates generally worsen congestion, increasing Capacity, either alone or in combination with other variables, 

effectively counteracts these effects. This demonstrates the importance of capacity enhancements resulted from high adoption rate of CAVs. 

Table D-17 Project Level Peak Hour Demand and Demand/Capacity (D/C) by Scenario Test 

Project Base VOT Rates Capacity VOT + Rates VOT + Capacity Rates + Capacity 

Demand D/C Demand D/C Demand D/C Demand D/C Demand D/C Demand D/C Demand D/C 

P3 12,555 1.02 12,847 2% 1.05 13,321 6% 1.09 14,450 15% 0.67 13,641 9% 1.40 15,032 20% 0.69 15,799 26% 0.73 

 

In conclusion, Capacity emerges as the pivotal factor in driving the anticipated improvements from high CAV adoption rates, warranting further 

sensitivity analysis due to its foundational position at the base of the uncertainty cone in the scenario evaluations. 

Sensitivity Analysis on Capacity Benefits 
Given the dominant role that asserted capacity values play in the overall systems benefits of CAVs, the sensitivity analysis for the Tier 1 Case Study 

focused on modifications to the asserted capacity values. This analysis employed the medium-high adoption rate of CAVs as the reference point 

to anchor the evaluations in a more realistic framework rather than an overly optimistic one. The sensitivity assessment incorporated two distinct 

scenarios, each altering only the capacity metrics relative to the baseline medium-high (MH) scenario. 

In the first scenario, capacity was posited to be approximately 50% of that in the established MH scenario. Conversely, the second scenario 

envisioned capacity at roughly 75% of the MH scenario’s level. These scenarios are designed to elucidate the effects of varying capacity constraints 

on the overall efficacy and benefits of CAVs, highlighting critical thresholds and operational breakpoints.  

Table D-18 presents an analysis of average trip lengths by home-based trip purpose across three scenarios compared to a Base, detailing variations 

under different capacity conditions. The scenarios include the MH CAV adoption rate, and two reduced capacity scenarios. Notably, the MH 

scenario generally exhibits an increase in trip lengths across most trip purposes, with the most substantial rise observed in short duration 

discretionary trips at 27%, suggesting higher capacities may facilitate longer trips. In contrast, Capacity 1 and Capacity 2 scenarios show more 

modest changes; for example, K12 trips increase by 2% and 3% respectively, illustrating a nearly linear relationship with capacity changes. However, 

other trip purposes such as short duration discretionary and medical trips display less predictability, with increases of 24% and 6% under Capacity 

1, and 26% and 7% under Capacity 2, indicating a nonlinear relationship where even reduced capacities result in longer trips, likely due to factors 

like rerouting or altered traffic flows. This analysis underscores the varied impact of capacity on trip lengths, revealing both linear and nonlinear 

responses across different trip types. 
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Table D-18 Average Trip Length in Miles by Home-based Trip Purpose and Scenario  

Trip Purpose 
Base Medium-High Capacity 1 Capacity 2 

Avg. Trip 
Length (mi) 

Avg. Trip Length 
(mi) 

% 
Diff 

Avg. Trip Length 
(mi) 

% Diff 
Avg. Trip Length 

(mi) 
% 

Diff 

K12 trips 6.04 6.30 4% 6.17 2% 6.25 3% 

Long duration discretionary trips 8.96 9.39 5% 9.24 3% 9.34 4% 

Short duration discretionary trips 4.92 6.26 27% 6.11 24% 6.20 26% 

Medical trips 10.11 10.82 7% 10.68 6% 10.77 7% 

Shop, dine, other trips 6.58 6.88 5% 6.76 3% 6.84 4% 

Work tour – drop off kids K12 6.12 6.46 6% 6.28 3% 6.39 4% 

Work tour - interim stop 8.39 8.82 5% 8.64 3% 8.76 4% 

Work tour 13.29 13.61 2% 13.48 1% 13.57 2% 

 

Table D-19 analyzes Peak Period VMT and Congested VMT by comparing three scenarios against the base scenario, focusing on the PM peak 

period. In the base scenario, the total VMT is recorded at 19,951,727 with 3,023,255 of those being congested VMT. Transitioning to the MH 

scenario, total VMT increases by 13% and congested VMT experiences a substantial drop of 50%. This indicates that higher capacity under the MH 

scenario significantly reduces congestion levels. Conversely, under Capacity 1, where capacity is about 50% of the MH scenario, total VMT sees a 

modest increase of 11% from the base, totaling 22,050,669, while congested VMT drops by 18%. Capacity 2, representing approximately 75% of 

the Medium-High scenario capacity, also exhibits a rise in total VMT by 12%, and a decrease in congested VMT by 31%. The relationship between 

changes in capacity and congested VMT appears closer to linear compared to total VMT, reflecting a more predictable response in congestion 

levels relative to total vehicle miles, yet the overall trend suggests that capacity changes affect both VMT and congestion in significant yet non-

linear ways during peak periods. 

Table D-19 Peak Period VMT and Congested VMT by Scenario 

Base Medium-High Capacity 1 Capacity 2 

VMT 
Cong. 
VMT 

VMT 
% 

Diff 
Cong. 
VMT 

% 
Diff 

VMT 
% 

Diff 
Cong. 
VMT 

% 
Diff 

VMT 
% 

Diff 
Cong. 
VMT 

% 
Diff 

19,951,727 3,023,255 22,575,659 13% 1,526,009 -50% 22,050,669 11% 2,467,823 -18% 22,348,460 12% 2,072,786 -31% 

 

Table D-20 illustrates variations in Daily VMT and Congested VMT across different facility types under three scenarios compared to a base scenario. 

The data shows that mobility-oriented facilities like freeways experience notable increases in daily VMT in the MH scenario, with a 16% rise, while 

congested VMT significantly decreases by 70%. This suggests that increased capacity in mobility-oriented facilities effectively mitigates congestion. 
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In contrast, the Capacity 1 and Capacity 2 scenarios, which represent reductions to 50% and 75% of MH scenario capacity, respectively, reveal less 

linear impacts on VMT and congested VMT. For example, Capacity 1 leads to an 11% increase in freeway VMT but a 34% reduction in congested 

VMT, demonstrating that decreased capacity does not straightforwardly lead to increased congestion in these facilities. 

Interestingly, accessibility-oriented facilities such as local roads and collectors show different trends. Under the Capacity 2 scenario, congested 

VMT in collector roads increases by 6%, indicating that reduced capacity tends to exacerbate congestion more in accessibility-oriented facilities. 

This increase is likely due to not changing their capacity and also the traffic spillover and rerouting from the constrained mobility-oriented roads 

to accessibility-oriented roads, highlighting the overflow effects in areas serving more localized traffic functions. Such patterns underscore the 

complex interaction between different types of road networks and how capacity changes influence traffic flow and congestion distribution under 

varying capacity scenarios. 

Table D-20 Daily VMT and Congested VMT by Facility Type and Scenario 

Facility Type 

Base Medium-High Capacity 1 Capacity 2 

VMT Cong. VMT VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% Diff VMT % Diff Cong. 
VMT 

% Diff 

Freeway 36,868,915 6,256,314 42,825,329 16% 1,888,472 -70% 41,091,792 11% 4,155,428 -34% 42,049,737 14% 3,019,814 -52% 

ML Highway 3,194,051 371,833 3,618,003 13% 96,116 -74% 3,510,302 10% 232,079 -38% 3,569,463 12% 178,193 -52% 

TL Highway 601,669 18,035 614,287 2% 0 100% 617,955 3% 0 -100% 615,546 2% 0 -100% 

Major Arterial 14,372,606 525,916 16,202,527 13% 299,152 -43% 15,953,154 11% 476,693 -9% 16,125,139 12% 365,696 -30% 

Arterial 22,643,077 515,891 24,417,203 8% 269,205 -48% 24,518,974 8% 421,163 -18% 24,489,432 8% 342,249 -34% 

Superstreet 999,943 84,795 1,231,226 23% 58,379 -31% 1,152,549 15% 75,316 -11% 1,194,712 19% 61,020 -28% 

Major Collector 2,284,146 77,622 2,245,386 -2% 57,763 -26% 2,320,810 2% 73,666 -5% 2,278,889 0% 61,289 -21% 

Collector 5,522,634 104,958 5,467,283 -1% 110,914 6% 5,642,999 2% 117,196 12% 5,547,750 0% 111,768 6% 

Local 2,020,949 16,559 2,000,862 -1% 16,819 2% 2,072,635 3% 17,183 4% 2,032,084 1% 17,266 4% 

 

Table D-21 provides a comparative analysis of daily delays across various facility types under three scenarios against a base scenario. The data 

shows that in mobility-oriented facilities such as freeways and multi-lane highways, the effect of capacity changes on daily delay appears almost 

linear. For instance, in the MH scenario, freeways see a significant reduction in delay of 60.45% from the base, and lower reductions are noted in 

the Capacity 1 and Capacity 2 scenarios by 33.90% and 47.79%, respectively. This trend indicates that increases in capacity effectively decrease 

delays in these high-volume roads. Conversely, in accessibility-oriented facilities like local roads and collectors, delays tend to increase when 

capacity is not adjusted, exacerbated by the traffic spillover from the more congested mobility-oriented roads. For example, in the MH scenario, 

local roads see a slight decrease in delay by 0.46% from the base. On the other hand, under Capacity 1 and Capacity 2, the delays continue to rise 

by 6.62% and 2.74%, respectively. These increases underscore the overflow effects where localized traffic functions are stressed due to rerouted 

flows from main arterials and highways under constrained conditions. 
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Table D-21 Daily Delay (min) by Facility Type and Scenario 

Facility Type 
Base Medium-High Capacity 1 Capacity 2 

Delay Delay % Diff Delay % Diff Delay % Diff 

Freeway 110,423 43,676 -60.45% 72,990 -33.90% 57,651 -47.79% 

ML Highway 10,921 4,626 -57.64% 7,270 -33.43% 5,883 -46.13% 

TL Highway 1,088 352 -67.65% 625 -42.60% 472 -56.62% 

Major Arterial 44,480 25,678 -42.27% 37,508 -15.68% 31,141 -29.99% 

Arterial 46,324 28,382 -38.73% 40,332 -12.93% 33,867 -26.89% 

Superstreet 3,669 2,960 -19.32% 3,728 1.60% 3,336 -9.08% 

Major Collector 7,070 6,170 -12.73% 7,009 -0.86% 6,531 -7.62% 

Collector 18,594 18,151 -2.38% 19,633 5.59% 18,807 1.15% 

Local 7,690 7,655 -0.46% 8,199 6.62% 7,901 2.74% 

 

Table D-22 offers a sensitivity analysis for the I-40 Project during PM peak hour, comparing traffic metrics across various capacity scenarios to a 

base scenario. The base scenario shows a capacity of 12,329 vehicles per hour, resulting in a daily delay of 1,815 minutes. With the introduction 

of CAVs in the Build MH CAV scenario, capacity increases to 18,124, reducing the daily delay dramatically to 389 minutes. However, when capacity 

is slightly reduced in subsequent scenarios—15,289 in Capacity Level 1 and 16,645 in Capacity Level 2—delays increase to 923 and 609 minutes, 

respectively.  

Table D-22 I-40 MH Build Project Sensitivity Analysis for Capacity – PM Peak Hour (Project 1) 

 Base (Build No CAV) Build MH CAV Build MH CAV – Capacity Level 1 Build MH CAV – Capacity Level 2 

Capacity (hourly) 12,329 18,124 15,289 16,645 

Demand (peak hour) 8,473 9,519 9,217 9,382 

D/C 0.69 0.53 0.60 0.56 

Daily Delay (min) 1,815 389 923 609 
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Appendix E – Tier 2 Model Design Changes 
Systems Level Performance Measures 

Average Trip Length by Trip Purpose 
Table E-1 summarizes the average trip length for home-based trips by trip purpose for the scenario with 

no CAVs (base), scenario with medium-high CAV adoption, and scenario with high CAV adoption. All 

scenarios reflect a 2050 forecast year. The analysis shows a large increase in trip length for work and 

recreational trip purposes, where the congested travel time coefficients are modified in the destination 

choice model. Although the coefficients of K12, K12 drop off on work tour, and medical trips are not 

adjusted, there is still slight increase in trip length for these purposes as a result of less congestion 

experienced with the prevalence of CAVs. 

Table E-1 Average Trip Length in Miles by Home-based Trip Purpose and Scenario  

 
 
Trip Purpose 

Base Medium-High High 

Avg. Trip 
Length (mi) 

Avg. Trip 
Length (mi) 

% Diff Avg. Trip 
Length (mi) 

% Diff 

K12 trips 6.04 6.26 4% 6.32 5% 

Long duration discretionary trips 8.96 11.49 28% 12.80 43% 

Short duration discretionary trips 4.92 6.34 29% 6.98 42% 

Medical trips 10.11 10.81 7% 11.09 10% 

Shop, dine, other trips 6.58 8.45 28% 9.40 43% 

Work tour – drop off kids K12 6.12 6.41 5% 6.51 6% 

Work tour - interim stop 8.39 10.99 31% 11.72 40% 

Work tour 13.29 14.68 10% 15.18 14% 

 

Vehicle Miles Traveled 
Table E-2 summarizes the daily VMT and congested VMT by facility type and scenario. Table E-3 

summarizes the PM peak period VMT and congested VMT for the region and each scenario. As with the 

Tier 1 results, total VMT increases for all facility types, while congested VMT decreases for all but the 

lower-level facilities. The capacity values for these facilities were not adjusted as no supporting evidence 

for doing so was found in the literature.   

Table E-2 Daily VMT and Congested VMT by Facility Type and Scenario 
Facility Type Base Medium-High High 

VMT Cong. 
VMT 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

Freeway 36,868,915 6,256,314 45,314,230 23% 3,403,121 -46% 50,419,827 37% 2,314,891 -63% 

ML Highway 3,194,051 371,833 3,870,402 21% 114,679 -69% 4,336,212 36% 0 -100% 

TL Highway 601,669 18,035 629,169 5% 0 -100% 666,118 11% 0 -100% 

Major Arterial 14,372,606 525,916 17,084,034 19% 389,633 -26% 18,982,199 32% 322,294 -39% 

Arterial 22,643,077 515,891 25,405,121 12% 313,466 -39% 27,663,082 22% 272,670 -47% 

Superstreet 999,943 84,795 1,278,221 28% 65,883 -22% 1,475,020 48% 62,120 -27% 

Major 
Collector 

2,284,146 77,622 2,278,686 0% 74,850 -4% 2,338,540 2% 81,905 6% 

Collector 5,522,634 104,958 5,587,346 1% 119,483 14% 5,778,148 5% 137,346 31% 

Local 2,020,949 16,559 2,058,798 2% 18,715 13% 2,137,703 6% 33,664 103% 
Total 88,507,990 7,971,923 103,506,007 17% 4,499,830 -44% 113,796,849 29% 3,224,890 -60% 
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Regionally, total VMT increases for both scenarios, but congested VMT goes down by a significant amount 

indicating a strong benefit for CAVs in the travel stream. 

Table E-3 Peak Period VMT and Congested VMT by Scenario 

Base Medium-High High 

VMT Cong. 
VMT 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

19,951,727 3,023,255 23,138,507 16% 1,988,373 -34% 25,752,927 29% 1,585,389 -48% 

 

Delay 
The capacity improvements resulting from CAV adoption led to reductions in delay, with the bigger 

benefits realized on the higher level facilities as shown in Table E-4. This is expected given higher level 

facilities receive larger capacity benefits from the presence of CAVs. 

Table E-4 Daily Delay by Facility Type and Scenario 

Facility Type Base Medium-High High 

Delay (min) Delay (min) % Diff Delay (min) % Diff 

Freeway 110,423      61,731  -44%      51,369  -53% 

ML Highway 10,921         5,556  -49%         4,616  -58% 

TL Highway 1,088            381  -65%            288  -73% 

Major Arterial 44,480      31,765  -29%      28,085  -37% 

Arterial 46,324      32,803  -29%      28,812  -38% 

Superstreet 3,669         3,513  -4%         3,370  -8% 

Major Collector 7,070         6,559  -7%         7,187  2% 

Collector 18,594      19,234  3%      21,529  16% 

Local 7,690         9,160  19%      11,008  43% 

Total 250,259 170,702 -32% 156,264 -38% 

 

Figures E-1 to E-4 provide a geographic representation of the differences in the systems level performance 

measures for VMT and Delay for the MH and H scenarios as compared to the Base scenario.  

Looking at the change in total VMT spatially between the MH and Base scenario as shown in Figure E-1, 

capacity oriented facilities experience higher increase in VMT compared to accessibility oriented 

roadways as they receive more capacity benefits. Following the same pattern, with more capacity added, 

even more VMT is generated in the H scenario as illustrated in Figure E-2. 
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Figure E-1 Difference in Daily VMT between MH and Base Scenario 

 

 

Figure E-2 Difference in Daily VMT between H and Base Scenario 
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Regarding the spatial difference in daily delay, for both MH and H scenario, generally higher-level facilities 

experience much less congestion compared to the base as shown in Figure E-3 and E-4. However, there 

are three hot spots that emerged that do not fit in the overall pattern. The first one is a congestion 

bottleneck that appeared near the RDU airport which is counterintuitive. Upon further investigation, this 

is the result of additional airport ZOV trips added to reflect the behavior that CAV travelers will send their 

vehicles back home to avoid paying airport parking fee. The other two congestion spots are located on 

Capital Boulevard coming off Buffaloe Rd and I-40 heading onto I-440. Congestion happens on ramp-like 

facilities without capacity enhancement but coming off roadways with capacity benefits.    

 
Figure E-3 Difference in Daily Delay between MH and Base Scenario 
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Figure E-4 Difference in Daily Delay between H and Base Scenario  
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Project Level Performance Measures 
To evaluate changes at a project level, performance measures were summarized for the individual 

projects described previously, see Table E-5. The demand increases for all projects in both the medium-

high and high CAV scenarios as compared to the base. Project level demand increases, but the D/C ratio 

decreases reflecting the capacity benefits of the CAV scenarios.  

Table E-5 Project Level PM Peak Hour Demand and Demand/Capacity (D/C) by Scenario 

Project Base Medium-High High 

Demand D/C Demand % Diff D/C Demand % Diff D/C 

P1 8,473 0.69 10,165 20% 0.56 11,352 34% 0.52 

P2 2,529 0.20 2,844 12% 0.15 3,110 23% 0.14 

P3 12,555 1.02 15,333 22% 0.85 17,237 37% 0.79 

P4 11,123 0.83 13,786 24% 0.71 15,742 42% 0.67 

P5 3,420 0.63 4,199 23% 0.55 4,791 40% 0.52 

P6 2,370 0.45 2,675 13% 0.37 2,899 22% 0.33 

 
P7 

1,018 0.38 1,078 6% 0.29 1,153 13% 0.25 

398 0.08 460 16% 0.06 498 25% 0.06 

1,087 0.41 1,225 13% 0.33 1,324 22% 0.30 

 

Build vs. No-build Project Evaluation 
A subset of the case study projects was further evaluated under a build condition with and without CAVs, 

and a no-build condition with CAVs. The focus of this analysis was on trying to determine whether or not 

the presence of CAVs changes both the supply and demand side of transportation enough to reconsider 

whether the project should be build, built differently, or delayed. This analysis considers capacity, 

demand, D/C, and delay for the medium-high (MH) scenario only. Delay is further evaluated using an 

average wage rate for the county where the project mostly resides. 

I-40 (Project 1)  
The capacity benefits derived from the presence of CAVs far exceed any increases in travel demand 

resulting from changes in travel behavior as shown in Table E-6. Without the project, but with the 

presence of CAVs, the D/C ratio does increase, as does daily delay. This results in a small loss of benefit 

without the project as shown in Table E-7, but these results would suggest that the loss is so small that 

this project is likely not needed by the horizon year and could possibly be delayed.   

Table E-6 I-40 MH Build and No-Build Project Level Performance Measures – PM Peak Hour 

 Build No CAV Build MH CAV No Build MH CAV 

Length (mi) 23.17 

Capacity 12,329 18,124 12,083 

Demand (peak hour) 8,473 10,165 9,891 

D/C 0.69 0.56 0.82 

Daily Delay (min) 1,815 500 2,223 
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Table E-7 I-40 MH Build and No-Build Annual Cost of Delay – PM Peak Hour 

Cost of delay per minute per mile with project but no CAVs $114 

Cost of delay per minute per mile with project and CAVs $31 

Savings $82 

Cost of delay per minute per mile with CAVs but no project $139 

Loss ($26) 

 

US 1 South (Project 3)  
As with the I-40 project, the capacity benefits derived from the presence of CAVs exceed increases in 

travel demand resulting from changes in travel behavior. As summarized in Table E-8, without the project, 

but with the presence of CAVs, the D/C ratio increases above one, resulting in a near doubling of delay. 

The cost of delay per mile with CAVs, but no project results in an overall loss of benefit as discussed in 

Table E-9. These results suggest that even with the benefits of CAVs, this project may still be needed.  

Table E-8 US 1 South MH Build and No-Build Project Level Performance Measures – PM Peak Hour 

 Build No CAV Build CAV No Build CAV 

Length (mi) 6.78 

Capacity 12,277 18,048 12,032 

Demand (peak hour) 12,555 15,333 14,458 

D/C 1.02 0.85 1.20 

Delay (min) 833 497 1,823 

 

Table E-9 US 1 South MH Build and No-Build Annual Cost of Delay – PM Peak Hour 

Cost of delay per minute per mile with project but no CAVs $147 

Cost of delay per minute per mile with project and CAVs $88 

Savings $59 

Cost of delay per minute per mile with CAVs but no project $322 

Loss ($175) 

 

US 1 North (Project 4)  
As with earlier projects, the capacity benefits derived from the presence of CAVs exceed increases in travel 

demand. This leads to a reduction in delay and the D/C ratio. Without the project, but with the presence 

of CAVs, the D/C ratio increases above one, more than tripling the peak hour delay as seen in Table E-10. 

The cost of delay per mile with CAVs but no project also results in a huge loss, see Table E-11 suggesting 

that even with the benefits of CAVs, this project would still be needed.  

Table E-10 US 1 North MH Build and No-Build Project Level Performance Measures – PM Peak Hour 

 Build No CAV Build CAV No Build CAV 

Length (mi) 4.18 

Capacity 13,440 19,393 9,297 

Demand (peak hour) 11,123 13,786 12,635 

D/C 0.83 0.71 1.36 

Delay (min) 506 404 3077 
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Table E-11 US 1 North MH Build and No-Build Annual Cost of Delay – PM Peak Hour 

Cost of delay per minute per mile with project but no CAVs $145 

Cost of delay per minute per mile with project and CAVs $115 

Savings $29 

Cost of delay per minute per mile with CAVs but no project $443 

Loss ($298) 

 

Sensitivity Analysis 
A sensitivity analysis was conducted to better capture the contribution of the original asserted values for 

key variables in the model, including capacity, trip rates, and land use. The MH scenario was selected for 

the sensitivity analysis to reflect a more conservative approach for CAV adoption. This analysis focused on 

both system and project level outputs.  

Capacity 
Feedback from experts in the field suggests that the anticipated capacity benefits from CAVs may be overly 

optimistic in this study. To address these concerns, we conducted two levels of sensitivity tests to identify 

a potential breakpoint where capacity ceases to be the primary influencing factor. Table E-12 summarizes 

the capacity adjustment factors for each scenario tested. In the first scenario, labeled as Capacity 1, the 

capacity benefits are reduced by 50% from the Medium-High scenario. The second scenario serves as an 

intermediate point between the Medium-High scenario and Capacity 1. This scenario is labeled as Capacity 

2.  

Table E-12 Capacity Adjustment Factors by Facility Type and Scenario  

 Facility Type Base Medium-High Capacity 1 Capacity 2 

Control Access 0 47% 24% 35% 

Signalized 0 40% 20% 30% 

 

Table E-13 to E-19 summarizes the results from this comparison analysis. In all scenarios, the average trip 

lengths increase compared to the base scenario by a similar amount. Trip lengths tend to get longer as 

more capacity is added and less congestion occurs on the road. Table E-15 to E-16 shift the focus to peak 

period and daily VMT and congested VMT. Both peak period and daily VMT become higher as travelers 

making longer trips. However, in the Capacity 1 scenario, peak period congested VMT slightly increases 

compared to the base, where the capacity benefits are halved. This indicates that at this point, the induced 

demand coming from CAVs outweighs the additional capacity provided by CAVs. Similarly, the system 

experienced more delay as less capacity is added to each facility type, as illustrated in Table E-16. In all 

scenarios, local and collector roads show higher delay because they don’t receive any capacity 

adjustments. The capacity impacts on project level are shown in Tables E-17 to E-19. Like VMT, congested 

VMT, and delay discussed earlier, as capacity increases, the Demand/Capacity (D/C) ratio and delay 

decrease.
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Table E-13 Average Trip Length in Miles by Home-based Trip Purpose and Scenario  

 
 
Trip Purpose 

Base Medium-High Capacity 1 Capacity 2 

Avg. Trip 
Length (mi) 

Avg. Trip 
Length (mi) 

% Diff Avg. Trip 
Length (mi) 

% Diff Avg. Trip 
Length (mi) 

% Diff 

K12 trips 6.04 6.26 4% 6.11 1% 6.19 3% 

Long duration discretionary trips 8.96 11.49 28% 11.32 26% 11.42 27% 

Short duration discretionary trips 4.92 6.34 29% 6.17 25% 6.27 27% 

Medical trips 10.11 10.81 7% 10.64 5% 10.74 6% 

Shop, dine, other trips 8.39 8.45 31% 10.78 29% 10.90 30% 

Work tour – drop off kids K12 6.12 6.41 5% 6.21 2% 6.32 3% 

Work tour - interim stop 8.39 10.99 31% 10.78 29% 10.90 30% 

Work tour 13.29 14.68 10% 14.48 9% 14.60 10% 

 

Table E-14 Peak Period VMT and Congested VMT by Scenario 

Base Medium-High Capacity 1 Capacity 2 

VMT Cong. 
VMT 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

19,951,727 3,023,255 23,597,928 18% 1,988,373 -34% 23,011,020 15% 3,094,424 2% 23,325,255 17% 2,693,845 -11% 

 

Table E-15 Daily VMT and Congested VMT by Facility Type and Scenario 

Facility Type Base Medium-High Capacity 1 Capacity 2 

VMT Cong. 
VMT 

VMT % 
Diff 

Cong. 
VMT 

% Diff VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

Freeway 36,868,915 6,256,314 45,314,230 23% 3,403,121 -46% 43,174,244 17% 5,895,512 -6% 44,319,252 20% 4,747,785 -24% 
ML Highway 3,194,051 371,833 3,870,402 21% 114,679 -69% 3,744,371 17% 246,313 -34% 3,811,058 19% 195,519 -47% 

TL Highway 601,669 18,035 629,169 5% 0 -100% 636,919 6% 0 
-

100% 
631,971 5% 0 

-
100% 

Major Arterial 14,372,606 525,916 17,084,034 19% 389,633 -26% 16,821,822 17% 591,981 13% 16,976,215 18% 475,629 -10% 
Arterial 22,643,077 515,891 25,405,121 12% 313,466 -39% 25,568,962 13% 481,902 -7% 25,489,281 13% 402,585 -22% 

Superstreet 999,943 84,795 1,278,221 28% 65,883 -22% 1,192,969 19% 89,509 6% 1,238,722 24% 81,818 -4% 
Major Collector 2,284,146 77,622 2,278,686 0% 74,850 -4% 2,397,159 5% 85,275 10% 2,320,332 2% 76,351 -2% 

Collector 5,522,634 104,958 5,587,346 1% 119,483 14% 5,794,552 5% 127,083 21% 5,683,532 3% 123,071 17% 
Local 2,020,949 16,559 2,058,798 2% 18,715 13% 2,162,469 7% 19,851 20% 2,097,553 4% 19,509 18% 
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Table E-16 Daily Delay by Facility Type and Scenario 

Facility Type Base Medium-High Capacity 1 Capacity 2 

Delay (min) Delay (min) % Diff Delay (min) % Diff Delay (min) % Diff 

Freeway 110,423 61,731 -44% 93,472 -15% 77,532 -30% 

ML Highway 10,921 5,556 -49% 8,496 -22% 6,941 -36% 

TL Highway 1,088 381 -65% 710 -35% 520 -52% 

Major Arterial 44,480 31,765 -29% 46,507 5% 38,025 -15% 

Arterial 46,324 32,803 -29% 45,940 -1% 38,956 -16% 

Superstreet 3,669 3,513 -4% 4,350 19% 3,929 7% 

Major Collector 7,070 6,559 -7% 7,802 10% 6,986 -1% 

Collector 18,594 19,234 3% 21,006 13% 19,991 8% 

Local 7,690 9,160 19% 9,792 27% 9,427 23% 

 

Table E-17 I-40 MH Build Project Sensitivity Analysis for Capacity – PM Peak Hour (Project 1) 

 Base (Build No CAV) Build MH CAV 
Build MH CAV – Capacity 

Level 1 
Build MH CAV – Capacity 

Level 2 

Capacity (hourly) 12,329 18,124 15,297 16,645 

Demand (peak hour) 8,473 10,165 9,813 10,004 

D/C 0.69 0.56 0.64 0.60 

Daily Delay (min) 1,815 500 1,159 779 

 

Table E-18 US 1 South Build Project Sensitivity Analysis for Capacity – PM Peak Hour (Project 3) 

 Base (Build No CAV) Build MH CAV 
Build MH CAV – Capacity 

Level 1 
Build MH CAV – Capacity 

Level 2 

Capacity (hourly) 12,227 18,048 15,225 16,574 

Demand (peak hour) 12,555 15,333 14,590 15,037 

D/C 1.02 0.85 0.96 0.91 

Daily Delay (min) 833 497 772 637 
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Table E-19 US 1 North Build Project Sensitivity Analysis for Capacity – PM Peak Hour (Project 4) 

 Base (Build No CAV) Build MH CAV 
Build MH CAV – Capacity 

Level 1 
Build MH CAV – Capacity 

Level 2 

Capacity (hourly) 13,440 19,393 16,460 17,887 

Demand (peak hour) 11,123 13,786 13,222 13,544 

D/C 0.83 0.71 0.80 0.76 

Daily Delay (min) 506 404 506 447 

 

Trip Rates 
Another feedback from the field of experts is that CAVs may have a varying impact on trip generation depending on the trip purpose. Essential 

travel, such as school and medical trips, is less likely to change simply because travelers own CAVs. Conversely, households with CAVs might make 

more recreational trips, like shopping and dining, due to the convenience provided by CAVs. Therefore, two levels of sensitivity analysis are 

conducted to assess whether this variation impacts system and project-level performance.  

Table E-20 shows the trip generation adjustment factors for each scenario. The medium-high scenario serves as a reference, with all trip purposes 

increased by 9% compared to the base scenario. The first scenario, labeled Trip Rate 1, allocates a higher increase (12%) to discretionary and 

shopping and dining trips, with a smaller increase for the remaining purposes. The second scenario, labeled Trip Rate 2, maintains the same level 

of essential travel by providing only a 1% adjustment while increasing discretionary and shopping and dining trips by 14%. All three scenarios 

increase overall trip generation by 9%. 

 

 Table E-20 Trip Generation Adjustment Factors by Home-based Trip Purpose and Scenario  

Trip Purpose Medium-High Trip Rate 1 Trip Rate 2 

K12 trips 9% 4% 1% 

Long duration discretionary trips 9% 12% 14% 

Short duration discretionary trips 9% 12% 14% 

Medical trips 9% 4% 1% 

Shop, dine, other trips 9% 12% 14% 

Work tour – drop off kids K12 9% 4% 1% 

Work tour - interim stop 9% 4% 1% 

Work tour 9% 4% 1% 

Overall 9% 9% 9% 
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Tables E-21 to E-27 summarize the comparison results. Both trip rate scenarios resulted in similar increases in average trip length, peak hour VMT, 

and daily VMT compared to the medium-high scenario. As fewer trip generation allocates to essential purposes, scenarios show more reduction 

in congestion and delay. It indicates that essential travel, especially work-related trips, contributes more to the congestion as they tend to occur 

within the same period, while recreational trips can spread out through the day and utilize roadway capacity better. The impact of different trip 

generation allocation on project 1,3, and 4 is minimal. These results suggest that different allocation of trip growth resulting from CAV adoption 

will not have significant systems level or project level impacts beyond the changes brought on by the presence of CAVs.  

Table E-21 Average Trip Length in Miles by Home-based Trip Purpose and Scenario  

 
 
Trip Purpose 

Base Medium-High Trip Rates 1 Trip Rates 2 

Avg. Trip 
Length (mi) 

Avg. Trip 
Length (mi) 

% Diff Avg. Trip 
Length (mi) 

% Diff Avg. Trip 
Length (mi) 

% Diff 

K12 trips 6.04 6.26 4% 6.27 4% 6.28 4% 

Long duration discretionary trips 8.96 11.49 28% 11.52 29% 11.52 29% 

Short duration discretionary trips 4.92 6.34 29% 6.37 29% 6.38 30% 

Medical trips 10.11 10.81 7% 10.82 7% 10.81 7% 

Shop, dine, other trips 8.39 8.45 31% 11.00 31% 10.98 31% 

Work tour – drop off kids K12 6.12 6.41 5% 6.44 5% 6.45 5% 

Work tour - interim stop 8.39 10.99 31% 11.00 31% 10.98 31% 

Work tour 13.29 14.68 10% 14.70 11% 14.69 11% 
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Table E-22 Daily VMT and Congested VMT by Facility Type and Scenario 

Facility Type Base Medium-High Trip Rates 1 Trip Rates 2 

VMT Cong. 
VMT 

VMT % 
Diff 

Cong. 
VMT 

% Diff VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

Freeway 36,868,915 6,256,314 45,314,230 23% 3,403,121 -46% 45,219,843 23% 3,370,144 -46% 45,121,986 22% 3,199,238 -49% 
ML Highway 3,194,051 371,833 3,870,402 21% 114,679 -69% 3,864,034 21% 114,771 -69% 3,857,758 21% 114,516 -69% 

TL Highway 601,669 18,035 629,169 5% 0 -100% 628,535 4% 0 
-

100% 
627,885 4% 0 

-
100% 

Major Arterial 14,372,606 525,916 17,084,034 19% 389,633 -26% 17,041,962 19% 381,231 -28% 16,998,953 18% 370,574 -30% 
Arterial 22,643,077 515,891 25,405,121 12% 313,466 -39% 25,318,377 12% 310,049 -40% 25,253,273 12% 298,421 -42% 

Superstreet 999,943 84,795 1,278,221 28% 65,883 -22% 1,277,134 28% 65,911 -22% 1,275,548 28% 65,833 -22% 
Major Collector 2,284,146 77,622 2,278,686 0% 74,850 -4% 2,274,237 0% 73,182 -6% 2,271,194 -1% 73,133 -6% 

Collector 5,522,634 104,958 5,587,346 1% 119,483 14% 5,573,135 1% 117,685 12% 5,563,222 1% 115,954 10% 
Local 2,020,949 16,559 2,058,798 2% 18,715 13% 2,052,623 2% 19,155 16% 2,048,335 1% 19,140 16% 

 

Table E-23 Peak Hour VMT and Congested VMT by Scenario 

Base Medium-High Trip Rates 1 Trip Rates 2 

VMT Cong. 
VMT 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % Diff Cong. 
VMT 

% Diff 

19,951,727 3,023,255 23,597,928 18% 1,988,373 -34% 23,519,346 18% 1,982,382 -34% 23,428,329 17% 1,926,157 -36% 

 

Table E-24 Daily Delay by Facility Type and Scenario 

Facility Type Base Medium-High Trip Rates 1 Trip Rates 2 

Delay (min) Delay (min) % Diff Delay (min) % Diff Delay (min) % Diff 

Freeway      110,423  61,731 -44%  61,025  -45%      60,119  -46% 

ML Highway        10,921  5,556 -49%  5,529  -49%         5,475  -50% 

TL Highway           1,088  381 -65%  378  -65%            373  -66% 

Major Arterial        44,480  31,765 -29%  31,365  -29%      30,896  -31% 

Arterial        46,324  32,803 -29%  32,385  -30%      31,953  -31% 

Superstreet           3,669  3,513 -4%  3,505  -4%         3,479  -5% 

Major Collector           7,070  6,559 -7%  6,494  -8%         6,440  -9% 

Collector        18,594  19,234 3%  19,031  2%      18,871  1% 

Local           7,690  9,160 19%  9,080  18%         9,023  17% 

 

 



NCDOT 2023-11 Project Report 

 

E14 
 

Table E-25 I-40 MH Build Project Sensitivity Analysis for Trip Rates – PM Peak Hour (Project 1) 

 Base (Build No CAV) Build MH CAV 
Build MH CAV – Trip 

Rates 1 
Build MH CAV – Trip 

Rates 2 

Capacity (hourly) 12,329 18,124 18,124 18,124 

Demand (peak hour) 8,473 10,165 10,192 10,175 

D/C 0.69 0.56 0.56 0.56 

Daily Delay (min) 1,815 500 499 494 

 

Table E-26 US 1 South MH Build Project Sensitivity Analysis for Trip Rates – PM Peak Hour (Project 3) 

 Base (Build No CAV) Build MH CAV 
Build MH CAV – Trip 

Rates 1 
Build MH CAV – Trip 

Rates 2 

Capacity (hourly) 12,227 18,048 18,048 18,048 

Demand (peak hour) 12,555 15,333 15,318 15,256 

D/C 1.02 0.85 0.85 0.85 

Daily Delay (min) 833 497 491 483 

 

Table E-27 US 1 North MH Build Project Sensitivity Analysis for Trip Rates – PM Peak Hour (Project 4) 

 Base (Build No CAV) Build MH CAV 
Build MH CAV – Trip 

Rates 1 
Build MH CAV – Trip 

Rates 2 

Capacity (hourly) 13,440 19,393 19,393 19,393 

Demand (peak hour) 11,123 13,786 13,747 13,687 

D/C 0.83 0.71 0.71 0.71 

Daily Delay (min) 506 404 401 397 

 

Land Use 
Based on findings in the literature, the sensitivity test for land use included two separate land use scenarios. The first scenario evaluated the 

impacts of increased downtown density (Llocra, et al, 2022; Stein, G.M., 2021; Bardaka, et al. 2021; Hummer, J., 2020). This scenario is labeled as 

Land Use 1. A second scenario focused on an increase in suburban and rural development (Llocra, et al, 2022; Bardaka, et al. 2021). This scenario 

is labeled as Land Use 2. For both scenarios the regional control totals for households and population remained constant. For Land Use 1, the rural 

households and population were reduced to account for increases in downtown density. For Land Use 2, the downtown and urban households 

and population decreased to account for increases in suburban and rural households and population.    
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Tables E-28 to E-31 summarize the results of this analysis in comparison to the base alternative. Both land use scenarios resulted in increased trip 

lengths as compared to the base scenario, the increase was like that seen for the medium-high scenario. As with the medium-high scenario, there 

was a reduction in congested VMT as compared to the base, but slightly less for the land use scenarios. The changes in VMT between the three 

scenarios was very similar with increases in regional VMT for all. This trend follows for the VMT and congested VMT by facility type, though 

increases in downtown density resulted in a small decrease in congested VMT for major collectors as compared to the medium-high scenario. The 

land use pattern that increased suburban and rural household resulted in small decrease in congested VMT for local roads as compared to the 

medium-high scenario. The impacts to delay were also mostly neutral with no big changes in measured delay by facility type.  

The land use impacts to Projects 1, 3 and 4 shown in Tables E-32 to E-34, are without consequence in comparison to the medium-high scenario. 

These results suggest that conservative shifts in land development patterns resulting from CAV adoption will not have the systems level or project 

level impacts over and above the changes brought on by the presence of CAVs.  

Table E-28 Average Trip Length in Miles by Home-based Trip Purpose and Scenario  

 
 
Trip Purpose 

Base Medium-High Land Use 1 Land Use 2 

Avg. Trip 
Length (mi) 

Avg. Trip 
Length (mi) 

% Diff Avg. Trip 
Length (mi) 

% Diff Avg. Trip 
Length (mi) 

% Diff 

K12 trips 6.04 6.26 4% 6.26 4% 6.28 4% 

Long duration discretionary trips 8.96 11.49 28% 11.49 28% 11.59 29% 

Short duration discretionary trips 4.92 6.34 29% 6.35 29% 6.40 30% 

Medical trips 10.11 10.81 7% 10.82 7% 10.91 8% 

Shop, dine, other trips 8.39 8.45 31% 10.99 31% 11.10 32% 

Work tour – drop off kids K12 6.12 6.41 5% 6.42 5% 6.45 5% 

Work tour - interim stop 8.39 10.99 31% 10.99 31% 11.10 32% 

Work tour 13.29 14.68 10% 14.69 11% 14.80 11% 
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Table E-29 Daily VMT and Congested VMT by Facility Type and Scenario 

Facility Type Base Medium-High Land Use 1 Land Use 2 

VMT Cong. 
VMT 

VMT % 
Diff 

Cong. 
VMT 

% Diff VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

Freeway 36,868,915 6,256,314 45,314,230 23% 3,403,121 -46% 45,363,355 23% 3,465,129 -45% 45,504,530 23% 3,478,506 -44% 
ML Highway 3,194,051 371,833 3,870,402 21% 114,679 -69% 3,864,572 21% 115,393 -69% 3,907,996 22% 115,937 -69% 
TL Highway 601,669 18,035 629,169 5% 0 -100% 628,963 5% 0 0% 632,886 5% 0 0% 

Major Arterial 14,372,606 525,916 17,084,034 19% 389,633 -26% 17,118,305 19% 401,343 -24% 17,128,006 19% 398,604 -24% 
Arterial 22,643,077 515,891 25,405,121 12% 313,466 -39% 25,394,685 12% 316,177 -39% 25,728,501 14% 325,480 -37% 

Superstreet 999,943 84,795 1,278,221 28% 65,883 -22% 1,280,138 28% 66,033 -22% 1,284,636 28% 65,988 -22% 
Major Collector 2,284,146 77,622 2,278,686 0% 74,850 -4% 2,274,807 0% 72,068 -7% 2,306,135 1% 76,169 -2% 

Collector 5,522,634 104,958 5,587,346 1% 119,483 14% 5,582,226 1% 119,812 14% 5,651,537 2% 119,636 14% 
Local 2,020,949 16,559 2,058,798 2% 18,715 13% 2,057,640 2% 19,415 17% 2,078,421 3% 18,279 10% 

 

Table E-30 Peak Period VMT and Congested VMT by Scenario 

Base Medium-High Land Use 2 Land Use 2 

VMT Cong. 
VMT 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

19,951,727 3,023,255 23,597,928 18% 1,988,373 -34% 23,627,394 18% 2,044,961 -32% 23,785,306 19% 2,026,823 -33% 

 

 

Table E-31 Daily Delay by Facility Type and Scenario 

Facility Type Base Medium-High Land Use 1 Land Use 2 

Delay Delay % Diff Delay % Diff Delay % Diff 

Freeway      110,423  61,731 -44%  62,513  -43%  62,495  -43% 

ML Highway        10,921  5,556 -49%  5,560  -49%  5,721  -48% 

TL Highway           1,088  381 -65%  385  -65%  388  -64% 

Major Arterial        44,480  31,765 -29%  32,188  -28%  32,081  -28% 

Arterial        46,324  32,803 -29%  33,064  -29%  33,595  -27% 

Superstreet           3,669  3,513 -4%  3,550  -3%  3,552  -3% 

Major Collector           7,070  6,559 -7%  6,522  -8%  6,911  -2% 

Collector        18,594  19,234 3%  19,219  3%  19,479  5% 

Local           7,690  9,160 19%  9,183  19%  9,203  20% 

 



NCDOT 2023-11 Project Report 

 

E17 
 

Table E-32 I-40 MH Build Project Sensitivity Analysis for Land Use – PM Peak Hour (Project 1) 

 Base (Build No CAV) Build MH CAV 
Build MH CAV – Land Use 

1 
Build MH CAV – Land Use 

2 

Capacity (hourly) 12,329 18,124 18,124 18,124 

Demand (peak hour) 8,473 10,165 10,223 10,204 

D/C 0.69 0.56 0.56 0.56 

Daily Delay (min) 1,815 500 513 508 

 

Table E-33 US 1 South MH Build Project Sensitivity Analysis for Land Use – PM Peak Hour 

 Base (Build No CAV) Build MH CAV 
Build MH CAV – Land Use 

1 
Build MH CAV – Land Use 

2 

Capacity (hourly) 12,227 18,048 18,048 18,048 

Demand (peak hour) 12,555 15,333 15,385 15,322 

D/C 1.02 0.85 0.85 0.85 

Daily Delay (min) 833 497 506 496 

 

Table E-34 US 1 North MH Build Project Sensitivity Analysis for Land Use – PM Peak Hour 

 Base (Build No CAV) Build MH CAV 
Build MH CAV – Land Use 

1 
Build MH CAV – Land Use 

2 

Capacity (hourly) 13,440 19,393 19,393 19,393 

Demand (peak hour) 11,123 13,786 13,826 13,903 

D/C 0.83 0.71 0.71 0.72 

Daily Delay (min) 506 404 409 419 
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Appendix F – Tier 3 NCDOT RTDM 
Systems Level Performance Measures 

Average Trip Length by Trip Purpose 
Table F-1 summarizes the average trip length for home to work, home to other and home to school trips 

for both HVs and CAVs. All scenarios reflect a 2050 forecast year. The trip lengths were adjusted as 

documented in the earlier Table 3, but the analysis shows a trip length decrease for all HV trips in both 

the MH and H scenarios. This is somewhat counterintuitive, and not clear why HV trip lengths would 

decrease with the increasing presence of CAVs in the traffic stream. The only increase in trip lengths for 

CAVs is for the work trip purpose. Trip length for other trip purposes made by CAVs decrease for both the 

MH and H scenarios. Unlike the Triangle region, this region does not experience a great deal of system-

wide congestion in 2050, as will be shown in later data summaries. The lower congestion dampens the 

benefits of the CAV capacity improvements but does not fully explain the decrease in trip lengths. A 

cursory model design review did not reveal any obvious reason. To fully understand this behavior deep 

modeling forensics of this model would be required. Such analysis is beyond the scope of this research 

project.   

Table F-1 Average Trip Length in Miles by Home-based Trip Purpose and Scenario (PM Peak Period) 

 
 
Trip Purpose 

Base Medium-High High 

Avg. Trip 
Length (mi) 

Avg. Trip 
Length (mi) 

% Diff 
from Base 

Avg. Trip 
Length (mi) 

% Diff 
from Base 

Home to work – HV 10.93 8.81 -19.4% 8.58 -21.5% 

Home to work – CAV   12.54 14.7% 12.44 13.8% 

Home to other – HV  9.17 7.44 -18.9% 7.23 -21.2% 

Home to other – CAV   8.90 -2.9% 8.67 -5.5% 

Home to school – HV  7.98 7.05 -11.7% 7.13 -10.7% 

Home to school – CAV   4.33 -45.7% 4.13 -48.2% 

 

Vehicle Miles Traveled 
Table F-2 summarizes the PM peak period VMT and the peak period congested VMT for each scenario. 

The PM peak period is 3 hours long and covers the period between 3 p.m. and 6 p.m. Table F-3 reports 

this same information by facility type. Unexpectedly, but trending with the reduced trip lengths, total VMT 

decreases slightly for both scenarios. Congested VMT increases slightly, which is an unexpected result, 

but it’s also important to note that there is very little congested VMT in this region. In this analysis CAVs 

in the travel stream appear to offer little benefit.  

Table F-2 PM Peak Period VMT and Congested VMT by Scenario 

Base Medium-High High 

VMT Cong. 
VMT 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

1,524,190 6,837  1,519,491  -0.3%        6,866  0.4%  1,523,219  -0.1%     6,864  0.4% 
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There are no VMT nor congested VMT trends by facility type in this region. For most facilities, there is no 

congested VMT under any scenario. Two lane highways and major collectors see the biggest decline in 

VMT, but neither facility has any congested VMT. Minor arterials and local streets have a high percentage 

increase in congested VMT, but the absolute difference is very small. These results may suggest that the 

benefits of CAVs are not fully realized in regions operating under mostly uncongested conditions.  

Table F-3 PM Peak Period VMT and Congested VMT by Facility Type and Scenario 

Facility Type Base Medium-High High 

VMT Cong. 
VMT 

VMT % 
Diff 

Cong. 
VMT 

% 
Diff 

VMT % 
Diff 

Cong. 
VMT 

% Diff 

Freeway 
            

78,074  
                           
-    

                      
77,428  

-0.8% 
                                 
-    

  
                      

77,532  
-0.7% 

                                 
-    

  

ML Highway 
         

315,895  
                           
-    

                   
314,159  

-0.5% 
                                 
-    

  
                   

314,378  
-0.5% 

                                 
-    

  

TL Highway 
            

78,415  
                           
-    

                      
76,634  

-2.3% 
                                 
-    

  
                      

76,528  
-2.4% 

                                 
-    

  

Principal 
Arterial 

         
272,180  

                     
244  

                   
274,402  

0.8% 
                                 
-    

  
                   

275,742  
1.3% 

                                 
-    

  

Minor Arterial 
         

192,302  
                     

309  
                   

194,317  
1.0% 

                           
549  

77.9% 
                   

195,262  
1.5% 

                           
553  

79.2% 

Major Collector 
         

299,974  
                           
-    

                   
288,642  

-3.8% 
                                 
-    

  
                   

288,936  
-3.7% 

                                 
-    

  

Minor 
Collector 

         
143,309  

                 
6,129  

                   
146,016  

1.9% 
                       

6,150  
0.3% 

                   
146,289  

2.1% 
                       

6,143  
0.2% 

Local 
         

144,041  
                     

156  
                   

147,893  
2.7% 

                           
167  

7.4% 
                   

148,552  
3.1% 

                           
168  

7.7% 

Total 1,524,190 6,838 1,519,491 -0.3% 6,866 0.4% 1,523,219 -0.1% 6,864 0.4% 

 

Delay 
As with congested VMT, most facilities in the Albemarle RPO experience little to no delay in the PM peak 

period. The slight increase in delay for multilane and two-lane highways seem to suggest that the CAV 

associated capacity improvements are not sufficient to offset the increased travel resulting from CAVs at 

both the MH and H scenarios. Table F-4 summarizes daily delay by facility type and scenario.  

Table F-4 Daily Delay by Facility Type and Scenario 

Facility Type Base Medium-High High 

Delay (min) Delay (min) % Diff Delay (min) % Diff 

Freeway - - - - - 

ML Highway             1,264              1,289  1.9%          1,300  2.8% 

TL Highway             4,638              4,841  4.4%          4,963  7.0% 

Principal Arterial                602                  600  -0.3%             602  -0.1% 

Minor Arterial - - - - - 

Major Collector - - - - - 

Minor Collector - - - - - 

Local - - - - - 

Total 6,504 6,730 3.5% 6,865 5.6% 
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Project Level Performance Measures 
To evaluate changes at a project level, performance measures were summarized for the individual 

projects described previously.  

Project 1 is a widening project for US 158 between NC 34 and NC 168 in Pasquotank County. The facility 

type is arterial, and the project is approximately 10 miles long.   

Project 2 is a widening project for US 17 between US 158 in Pasquotank County and the Virginia State Line 

in Camden County. The facility type is arterial, and the project is approximately 38 miles long. This project 

has been segmented into four separate segments to better capture changes in the cross-section along 

this stretch of highway.    

Table F-5 summarizes the project demand and demand to capacity ratio (D/C) for the base 2050 scenario 

with no CAVs, 2050 with MH CAV adoption, and 2050 H CAV adoption. For Project 1, the presence of CAVs 

in the MH scenario shows a slight decrease in demand for Project 1, while the H scenario shows an 

increase in demand. Project 2 shows an increase in demand for both the MH and H scenario. The capacity 

is more than sufficient for both projects under all scenarios.  

Table F-5 Project Level Peak Hour Demand and Demand/Capacity (D/C) by Scenario 

Project Base Medium-High High 

Demand D/C Demand % Diff D/C Demand % Diff D/C 

P1  2,354  0.1 2,308 -2.0% 0.1 2,844 20.8% 0.1 

P2         

    Segment1  3,130  0.1  3,435  9.7% 0.1  3,363  7.5% 0.1 

    Segment2  2,355  0.1  2,554  8.4% 0.1  2,501  6.2% 0.1 

    Segment3  3,199  0.1  3,393  6.1% 0.1  3,343  4.5% 0.1 

    Segment4  2,079  0.1  2,096  0.8% 0.1  2,080  0.1% 0.1 

 

Project Evaluation 
The case study projects were further evaluated under a build condition with and without CAVs, and a no-

build condition with CAVs. The focus of this analysis was on trying to determine whether or not the 

presence of CAVs changes both the supply and demand side of transportation enough to reconsider 

whether the project should be build, built differently, or delayed. This analysis considers capacity, 

demand, D/C, and delay for the medium-high (MH) scenario only. Delay is further evaluated using an 

average wage rate for the county where the project mostly resides. For both Project 1 and Project 2, this 

is Pasquotank County with an average wage rate of $20.83 (https://www.commerce.nc.gov/north-

carolina-county-average-wages). 

US 158 (Project 1)  
Capacity benefits are realized through the implementation of the US 158 project, and even more capacity 

benefits are derived from the presence of CAVs, see Table F-6. The peak hour demand on the facility is 

much less than the peak hour capacity, and as such, the D/C and delay are not a concern under any 

condition. Under higher demand conditions, the increased capacity from the CAVs will provide benefits. 

An unexpected result is the increase in demand for the no-build CAV scenario. A high-level investigation 

was conducted to confirm that no errors were made in the model coding and/or execution. A review of 

the model development documentation indicates that zonal characteristics, including accessibility, are 

https://www.commerce.nc.gov/north-carolina-county-average-wages
https://www.commerce.nc.gov/north-carolina-county-average-wages
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modified prior to execution of the main model components. These characteristics are “utilized for CAV 

trip estimation and selected trip purposes for the visitor model” (Stantec, 2003). Without in-depth 

modeling forensics that are beyond the scope of this research project, it is impossible to fully explain the 

increased demand for the US 158 facility, and in fact most facilities and zonal centroid connectors in the 

general vicinity of this project. The increased demand for the no-build facility paired with the lower 

capacity results in increased delay and increased cost of delay as shown in Table F-7.  

Table F-6 US 158 MH Build and No-Build Project Level Performance Measures – PM Peak Hour 

 Build No CAV Build CAV No Build CAV 

Length (mi) 10.3 

Capacity 16,790 22,740 11,340 

Demand (peak hour) 2,354 2,308 2,767 

D/C 0.14 0.10 0.24 

Delay (min) 0.70 0.67 2.8 

 

Table F-7 US 158 MH Build and No-Build Annual Cost of Delay – PM Peak Hour 

Cost of delay per mile with project but no CAVs $6.10 

Cost of delay per mile with project and CAVs $5.86 

Savings $0.24 

Cost of delay per mile with CAVs but no project $24.51 

Loss ($18.41) 

 

US 17 (Project 2)  
As with the US 158 project, capacity benefits are realized through the implementation of the US 158 

project, and even more capacity benefits are derived from the presence of CAVs, see Table F-8. The peak 

hour demand for all segments of the facility is much less than the peak hour capacity, and as such, the 

D/C and delay are not a concern under any condition. Under higher demand conditions, the increased 

capacity from the CAVs will provide more benefits than the project alone.  

Regarding delay and the cost of delay, Table F-9, the capacity benefits of CAVs alone does not overcome 

the increase in demand, and while the D/C is still well below congested conditions, some additional delay 

is still experienced. This leads to a very low increase in the cost of delay with the addition of CAVs in the 

travel stream.   
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Table F-8 US 17 MH Build and No-Build Project Level Performance Measures – PM Peak Hour 

 Build No CAV Build CAV No Build CAV 

Segment 1 

Length (mi) 1.01 

Capacity  26,731   34,618   23,064  

Demand (peak hour)  3,146   3,435   3,380  

D/C 0.1 0.1 0.1 

Delay (min)  0.06   0.08   0.12  

Segment 2 

Length (mi) 0.46 

Capacity  15,782   20,577   13,711  

Demand (peak hour)  2,355   2,554   2,527  

D/C 0.1 0.1 0.2 

Delay (min)  0.07   0.08   0.14  

Segment 3 

Length (mi) 2.8 

Capacity  29,188   38,932   25,904  

Demand (peak hour)  3,199   3,393   3,347  

D/C 0.1 0.1 0.1 

Delay (min)  0.07   0.09   0.14  

Segment 4 

Length (mi) 34.0 

Capacity  16,718   22,713   15,141  

Demand (peak hour)  2,079   2,096   2,092  

D/C 0.1 0.1 0.1 

Delay (min)  0.57   0.58   0.99  

 

Table F-9 US 17 MH Build and No-Build Annual Cost of Delay – PM Peak 

Cost of delay per mile with project but no CAVs $22.62 

Cost of delay per mile with project and CAVs $26.17 

Loss ($3.55) 

Cost of delay per mile with CAVs but no project $45.65 

Loss ($23.03) 
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Appendix G – Comparison of Tier 1 and Tier 2  
In this appendix, we focus solely on comparing the results of the Model Design Changes (Tier 2) to the 

Existing Model Design (Tier 1). All percentage comparisons are expressed as the relative difference 

between Tier 2 and Tier 1, calculated as (Tier 2 – Tier 1) / Tier 1 when assessing the effects of CAVs on 

travel demand models, specifically under various MH scenario types. A detailed summary of these 

comparisons, including insights into the key differences between these methods, is provided in the main 

section of the report. 

Systems Level Performance Measures 

Average Trip Length by Trip Purpose 
In the Tier 2 analysis, adjustments were made to the travel time coefficients within the destination choice 

model for work tours, long duration discretionary trips, and shop, dine, other trips. These modifications 

led to longer average trip lengths compared to Tier 1, see Table G-1. For example, shop, dine, other trips 

exhibited an 18.58% increase in trip length, long duration discretionary trips increased by 18.28%, and 

work tours experienced a 7.29% increase. These changes reflect a more refined recalibration of the model 

in Tier 2, aiming to better capture the effects of CAVs on travel behavior. In contrast, coefficients for K12 

trips, medical trips, and short duration discretionary trips remained unchanged between the two tiers. As 

a result, the differences in average trip lengths for these purposes were minimal, with K12 trips showing 

a slight decrease of -0.64%, medical trips with a -0.09% change, and short duration discretionary trips 

seeing a modest increase of 1.26%. These minimal differences suggest that these trip purposes were less 

affected by the model adjustments between Tier 1 and Tier 2. 

Table G-1 Average Trip Length in Miles by Home-based Trip Purpose 

Trip Purpose 
Avg. Trip Length (mi) 

Tier 1 Tier 2 % Diff 

K12 trips 6.30 6.26 -0.64% 

Long duration discretionary trips 9.39 11.49 18.28% 

Short duration discretionary trips 6.26 6.34 1.26% 

Medical trips 10.82 10.81 -0.09% 

Shop, dine, other trips 6.88 8.45 18.58% 

Work tour – drop off kids K12 6.46 6.41 -0.78% 

Work tour - interim stop 8.82 10.99 19.75% 

Work tour 13.61 14.68 7.29% 

 

Vehicle Miles Traveled 
A comparison of VMT is provided in Table G-2 and Table G-3. In the Tier 2 analysis, additional travel 

demand factors, including CAV empty parking trips, airport parking trips, and empty sCAV trips, were 

incorporated. These factors led to higher VMT and greater delays across the network. As a result, VMT 

increased significantly across various facility types. For example, ML Highway saw a 6.52% rise in VMT, 

Freeway experienced a 5.49% increase, and Major Arterial showed a 5.16% rise compared to Tier 1.  



NCDOT 2023-11 Project Report 

 

G2 
 
 

Similarly, Congested VMT also surged, with Freeway experiencing a substantial 44.51% increase and Major 

Arterials a 23.22% rise. During the peak period, these trends continued, with overall VMT increasing by 

2.43% and Congested VMT rising sharply by 23.25%. These results underscore the impact of the additional 

demand in Tier 2, particularly due to CAV and sCAV dynamics, which led to higher traffic volumes and 

congestion levels, especially on heavily utilized facilities such as Freeway and Major Arterial. 

Table G-2 Daily VMT and Congested VMT by Facility Type  

Facility Type 
VMT Cong. VMT 

Tier 1 Tier 2 % Diff Tier 1 Tier 2 % Diff 

Freeway 42,825,329 45,314,230 5.81% 1,888,472 3,403,121 80.21% 

ML Highway 3,618,003 3,870,402 6.98% 96,116 114,679 19.31% 

TL Highway 614,287 629,169 2.42% 0 0 - 

Major Arterial 16,202,527 17,084,034 5.44% 299,152 389,633 30.25% 

Arterial 24,417,203 25,405,121 4.05% 269,205 313,466 16.44% 

Superstreet 1,231,226 1,278,221 3.82% 58,379 65,883 12.85% 

Major Collector 2,245,386 2,278,686 1.48% 57,763 74,850 29.58% 

Collector 5,467,283 5,587,346 2.20% 110,914 119,483 7.73% 

Local 2,000,862 2,058,798 2.90% 16,819 18,715 11.27% 

Total 98,622,106 103,506,007 4.95% 2,796,820 4,499,830 60.89% 

 

Table G-3 Peak Period VMT and Congested VMT 

VMT Cong. VMT 
Tier 1 Tier 2 % Diff Tier 1 Tier 2 % Diff 

22,575,659 23,138,507 2.43% 1,526,009 1,988,373 23.25% 

 

Delay 
Again, additional demand in the Tier 2 analysis, including CAV empty parking trips, airport parking trips, 

and empty sCAV trips, resulted in higher VMT and greater delay, with delay following a similar trend to 

Congested VMT, as both experienced substantial increases across various facility types. Results are 

summarized in Table G-4. 

Table G-4 Daily Delay by Facility Type  

Facility Type 
Daily Delay (min) 

Tier 1 Tier 2 % Diff 

Freeway 43,676 61,731 41.34% 

ML Highway 4,626 5,556 20.10% 

TL Highway 352 381 8.24% 

Major Arterial 25,678 31,765 23.71% 

Arterial 28,382 32,803 15.58% 

Superstreet 2,960 3,513 18.68% 

Major Collector 6,170 6,559 6.30% 

Collector 18,151 19,234 5.97% 

Local 7,655 9,160 19.66% 

Total 137,650 170,702 24.01% 
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Project Level Performance Measures 
Different demand rates impact project-level results like system-level results, with both experiencing 

comparable shifts in metrics such as demand, D/C, and delay because of varying demand, see Table G-5. 

 Table G-5 Project Level Peak Hour Demand and Demand/Capacity (D/C) 

Project 
Demand D/C 

Tier 1 Tier 2 % Diff Tier 1 Tier 2 % Diff 

P1 9,519 10,165 6.36% 0.53 0.56 5.36% 

P2 2,636 2,844 7.31% 0.14 0.15 6.67% 

P3 14,845 15,333 3.18% 0.82 0.85 3.53% 

P4 13,105 13,786 4.94% 0.68 0.71 4.23% 

P5 3,710 4,199 11.65% 0.48 0.55 12.73% 

P6 2,683 2,675 -0.30% 0.37 0.37 0.00% 

P7 

1,085 1,078 -0.65% 0.29 0.29 0.00% 

449 460 2.39% 0.06 0.06 0.00% 

1,227 1,225 -0.16% 0.33 0.33 0.00% 

 

Project Evaluation 
The project level evaluation results are summarized in Tables G-6 to G-11. Under the build and no-build 

scenarios the question is whether the two different approaches yield different results with respect to 

decision making about whether to build or delay a specific project. For Projects 1 and 3 the D/C results 

between the two tiers is very similar. The no-build Tier 2 D/C for Project 4 is much higher (1.36) than that 

for Tier 1 (1.04). Both suggest the need for the project, even with a MH CAV adoption, but the higher 

demand generated with the more behaviorally realistic model design changes show an even greater need 

for the project. These results indicate the benefit of either approach for evaluating the impacts of CAVs 

on project level traffic forecasts, with perhaps a greater need for conducting sensitivity, e.g. risk and 

uncertainly analysis for the Tier 1 applications.       

I-40 (Project 1)  
Table G-6 I-40 MH Build and No-Build Project Level Performance Measures – PM Peak Hour 

Performance Measure 
Build MH CAV No Build MH CAV 

Tier 1 Tier 2 % Diff Tier 1 Tier 2 % Diff 

Capacity 18,124 18,124 0.00% 12,083 12,083 0.00% 

Demand (peak hour) 9,519 10,165 6.36% 9,270 9,891 6.28% 

D/C 0.53 0.56 5.36% 0.77 0.82 6.10% 

Daily Delay (min) 389 500 22.20% 1,749 2,223 21.32% 

 

Table G-7 I-40 MH Build and No-Build Annual Cost of Delay  

 Tier 1 Tier 2 % Diff 

Cost of delay per mile with project but no CAVs $56.94 $114 50.05% 

Cost of delay per mile with project and CAVs $12.20 $31 60.65% 

Savings $44.74 $82 45.44% 

Cost of delay per mile with CAVs but no project $54.87 $139 60.53% 

Loss $(2.07) ($26) 92.04% 
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US 1 South of Cary (Project 3)  
 

Table G-8 US 1 South MH Build and No-Build Project Level Performance Measures – PM Peak Hour 

Performance Measure 
Build MH CAV No Build MH CAV 

Tier 1 Tier 2 % Diff Tier 1 Tier 2 % Diff 

Capacity 18,048 18,048 0.00% 12,032 12,032 0.00% 

Demand (peak hour) 14,845 15,333 3.18% 13,963 14,458 3.42% 

D/C 0.82 0.85 3.53% 1.16 1.20 3.33% 

Daily Delay (min) 449 497 9.66% 1,712 1,823 6.09% 

 

Table G-9 US 1 South MH Build and No-Build Annual Cost of Delay  

 Tier 1 Tier 2 % Diff 

Cost of delay per mile with project but no CAVs  $73.72  $147 49.85% 

Cost of delay per mile with project and CAVs  $39.73  $88 54.85% 

Savings  $34.00  $59 42.37% 

Cost of delay per mile with CAVs but no project  $151.47  $322 52.96% 

Loss  $(77.75)  ($175) 55.57% 

 

US 1 North (Project 4)  
 

Table G-10 US 1 North MH Build and No-Build Project Level Performance Measures – PM Peak Hour 

Performance Measure 
Build MH CAV No Build MH CAV 

Tier 1 Tier 2 % Diff Tier 1 Tier 2 % Diff 

Capacity 19,393 19,393 0.00% 9,297 9,297 0.00% 

Demand (peak hour) 13,105 13,786 4.94% 9,692 12,635 23.29% 

D/C 0.68 0.71 4.23% 1.04 1.36 23.53% 

Daily Delay (min) 367 404 9.16% 1,492 3077 51.51% 

 

Table G-11 US 1 North MH Build and No-Build Annual Cost of Delay  

 Tier 1 Tier 2 % Diff 

Cost of delay per mile with project but no CAVs  $72.63  $145 49.91% 

Cost of delay per mile with project and CAVs  $52.64  $115 54.23% 

Savings  $19.98  $29 31.10% 

Cost of delay per mile with CAVs but no project  $214.02  $443 51.69% 

Loss  $(141.39)  ($298) 52.55% 

 


